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ABSTRACT

We consider images probed through incomplete and noisy
Fourier coverages, both in the context of radio interferometry
(RI) and of magnetic resonance imaging (MRI). We show
that the quality of signal reconstruction can be significantly
enhanced by the introduction of a linear chirp modulation,
which induces a spread spectrum phenomenon.

Index Terms— image processing, compressed sensing,
radio interferometry, magnetic resonance imaging

1. COMPRESSED SENSING

It is well-known that a large variety of natural signals are
sparse or compressible in multi-scale dictionaries, such as
wavelet frames. A band-limited signal may be expressed
as theN -dimensional vector of its values sampled at the
Nyquist-Shannon rate. By definition, a signal is sparse or
compressible in some basis if its expansion contains only a
small numberK ≪ N of non-zero or significant coefficients,
respectively. The theory of compressed sensing demonstrates
that a small numberM ≪ N of random measurements, in
a sensing basis incoherent with the sparsity basis, will suf-
fice for an accurate and stable reconstruction of such signals
[1]. The basic framework proposes to solve the Basis Pursuit
(BP) minimization problem for the signal recovery. This
problem regularizes the originally ill-posed inverse problem
by an explicit sparsity prior on the signal. In the presence
of noise, the so-called Basis Pursuit denoise (BPǫ) problem
is the minimization of theℓ1 norm of the coefficients of the
signal in the sparsity basisΨ under a constraint on theℓ2

norm of the residual noise.
In particular, random Fourier measurements of a signal

sparse in real space represent a good sensing procedure. The
mutual coherenceµ(F, Ψ) between the Fourier basisF and
the sparsity basisΨ may be defined as the maximum com-
plex modulus of the scalar product between vectors of the
two bases. In other words this mutual coherence identifies
with the maximum complex modulus of the Fourier coeffi-
cient values of the sparsity basis vectors. It plays an essential
role in the signal reconstruction quality as, for fixedM , the

sparsity recovered increases with the mutual incoherence,i.e.
the inverse of the coherence, asK ∝ µ−2(F, Ψ). The inco-
herence is maximum between the Fourier basis and the real
space basis identified by a sparsity matrixΨ ≡ ∆ made up of
unit spikes:µ(F, ∆) = N−1/2.

2. RADIO INTERFEROMETRY

Aperture synthesis inRI is a powerful technique in astron-
omy, allowing observations of the sky with otherwise inac-
cessible angular resolutions and sensitivities [2]. In this con-
text, the portion of the celestial sphere around the pointing di-
rection tracked by a radio telescope array during observation
defines the original real astrophysical signal or image probed
x. The field of view (FOV) observed is limited by a primary
beamA(t0) with a support of size identified byt0 ∈ R+.
Standard interferometers are characterized by a smallFOV,
so that the signal and the primary beam are assumed to be
planar. Intensity signals respectively read as scalar functions
x(l) andA(t0)(l) of the positionl ∈ R2, with components
(l, m). Each telescope pair at one instant of observation iden-
tifies a baseline defined as the relative position between the
two telescopes. To each baselinebλ ∈ R3, with components
(u, v, w) in units of the signal emission wavelengthλ, is as-
sociated one measurement called visibility. In the simplest
setting one also considers baselines with negligible compo-
nent w in the pointing direction of the instrument. Under
this additional assumption, if the signal is made up of in-
coherent sources, each visibility corresponds to the valueof
the Fourier transform of the signal multiplied by the primary
beam at a spatial frequencyu ∈ R2, identified by the com-
ponents(u, v) of the baseline projection on the plane of the
signal. Radio-interferometric data are thus identified by in-
complete and noisy measurements in the Fourier plane. In the
perspective of the reconstruction of the original image, these
data define an ill-posed inverse problem.

In the present work, we raise the important problem of the
dependence of the image reconstruction quality as a function
of the sparsity basis, or more generally the sparsity dictionary
(see also [3]). The larger the typical size, in real space, of
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the waveforms constituting the dictionary in which the sig-
nal is sparse or compressible, the smaller their extension in
the Fourier plane, and the smaller the incoherence between
the sparsity and sensing dictionaries. In the context of com-
pressed sensing, a loss of incoherence leads to a degradation
of the reconstruction quality for a given sparsityK and a
given numberM of random measurements.

The detailed structure of radio-interferometric measure-
ments might actually provide a natural response to this issue.
The approximation of baselines with negligible component
w is a key assumption in order to identify visibilities with
Fourier measurements of the original signal. This approxi-
mation actually sets a strong constraint on theFOV probed
by the interferometer, requiring that it is small enough, not
only for the planar approximation of the signal but also in
order to neglect the complete effect of the componentw in
the visibilities. We relax this approximation and considerra-
dio interferometers with smallFOV and baselines with non-
negligible componentw. Relying on the flexibility of realistic
baseline distributions, we make the simplifying assumption
that all baselines have the same componentw. In this con-
text, each visibility at spatial frequencyu identifies with the
Fourier transform of a complex signal obtained as the product
of the original planar signal multiplied by the primary beam
A(t0)x(l) with a linear chirpC(w)(|l|) = eiπw|l|2 , where the
norm |l| identifies the distance to the center of the image:

y (u) = ̂C(w)A(t0)x (u). In the Fourier plane, the modu-
lation amounts to the convolution of the Fourier transform of
the chirp with that of the signal multiplied by the primary

beam ̂C(w)A(t0)x = Ĉ(w) ⋆ Â(t0)x. This convolution in-
evitably spreads the two-dimensional sample power spectrum
of the signal multiplied by the primary beam, i.e. the square
modulus of its Fourier transform, while preserving its overall
norm. This spread spectrum phenomenon increases the inco-
herence between the sparsity and sensing dictionaries.

3. DICTIONARIES AND INVERSE PROBLEM

The band-limited functions considered are completely iden-
tified by their Nyquist-Shannon sampling on a discrete uni-
form grid of N = N1/2 × N1/2 points li ∈ R2 in real
space with1 ≤ i ≤ N . The sampled signal is denoted by
a vectorx ∈ RN ≡ {xi ≡ x(li)}1≤i≤N and the primary

beam is denoted by the vectorA(t0) ∈ RN ≡ {A
(t0)
i ≡

A(t0)(li)}1≤i≤N . The chirp is complex and reads as the vec-

tor C(w) ∈ CN ≡ {C
(w)
i ≡ C(w)(|li|)}1≤i≤N . Because of

the assumed finiteFOV, the functions may equivalently be
described by their complex Fourier coefficients on a discrete
uniform grid ofN = N1/2×N1/2 spatial frequenciesui with
1 ≤ i ≤ N . This grid is limited at some maximum frequency
defining the band limit.

We assume that the spatial frequenciesu probed by all
telescope pairs during the observation belong to the discrete

grid of pointsui. The Fourier coverage provided by theM/2
spatial frequencies probedub, with 1 ≤ b ≤ M/2, can
simply be identified by a binary mask in the Fourier plane
equal to1 for each spatial frequency probed and0 other-
wise. The visibilities measured may be denoted by a vec-
tor of M/2 complex Fourier coefficientsy ∈ CM/2 ≡ {yb ≡
y(ub)}1≤b≤M/2, corresponding toM real measures, and pos-
sibly affected by complex noise of astrophysical or instru-
mental origin, identified by the vectorn ∈ CM/2 ≡ {nb ≡
n(ub)}1≤b≤M/2. Relying on the flexibility of realistic base-
line distributions, we also assume that the spatial frequencies
ub probed arise from a uniform random selection of Fourier
frequencies. As for the assumption of constantw, this allows
us to discard considerations related to specific interferome-
ters. It also allows us to place our discussion in a setting
which complies directly with the requirement of the theory
of compressed sensing for random measurements.

In this discrete setting, the Fourier coverage is in general
incomplete in the sense that the number of real constraintsM
is smaller than the number of unknownsN : M < N . An ill-
posed inverse problem is thus defined for the reconstruction
of the signalx from the measured visibilitiesy:

y ≡ Φ
(w,t0)x + n with Φ

(w,t0) ≡ MFC
(w)

A
(t0), (1)

where the matrixΦ(w,t0) ∈ C(M/2)×N identifies the com-
plete linear relation between the signal and the visibilities.
The matrixA(t0) ∈ RN×N ≡ {A

(t0)
ij ≡ A

(t0)
i δij}1≤i,j≤N

is the diagonal matrix implementing the primary beam. The
matrix C(w) ∈ CN×N ≡ {C

(w)
ij ≡ C

(w)
i δij}1≤i,j≤N is the

diagonal matrix implementing the chirp modulation. The uni-
tary matrixF ∈ CN×N ≡ {Fij ≡ e−2iπui·xj /N1/2}1≤i,j≤N

implements the discrete Fourier transform. The matrixM ∈
R(M/2)×N ≡ {Mbj}1≤b≤M/2;1≤j≤N is the rectangular bi-
nary matrix implementing the mask characterizing the inter-
ferometer. It contains only one non-zero value on each line,
at the index of the Fourier coefficient corresponding to each
of the spatial frequencies probedu.

For the sake of simplicity and without loss of generality,
we consider simple astrophysical signals sparse in a dictio-
nary of Gaussian waveforms, all with equal and fixed size
given by a standard deviationt ∈ R+. The sparsity dictionary
identifying Gaussian waveforms of sizet may be denoted by
Ψ ≡ Ψ(t) ≡ Γ(t). The sensing dictionary as seen from
the sparsity dictionary itself therefore reads asΘ

(w,t0,t) ≡
Φ(w,t0)Γ(t) ≡ MFC

(w)
A(t0)Γ(t).

4. SPREAD SPECTRUM AND COHERENCE

We assume a Gaussian primary beamA(t0) with a size iden-
tified by a standard deviationt0. After normalization of the
vectors of the sparsity and sensing dictionaries inℓ2 norm,
a simple analytical computation gives the mutual coherence



between the sensing and sparsity dictionaries as:

µ
(

FC
(w)

A
(t0), Γ(t)

)

=
2tt0

t2 + t20

[

1 +

(

2πwt2t20
t2 + t20

)2
]− 1

2

.

(2)
Analyzing the evolution of the coherence as a function of

the parameterst, t0, andw in the continuous limitN → ∞
is very enlightening. Firstly, when the sizet of the Gaus-
sian waveforms tends to zero, the mutual coherence tends to
zero. In the absence of chirp modulation and primary beam,
this null value was expected as the modified sparsity dictio-
nary identifies with the Dirac basis. Secondly, in the limit
of an infinite chirp rate, the coherence also tends to its min-
imum null value independently of the sizet of the Gaussian
waveforms. This limit provides a strong result in the sense
that the incoherence lost by considering a sparsity dictionary
of Gaussian waveforms of arbitrary non-zero sizet may be
completely recovered thanks to a chirp modulation with high
enough chirp ratew. This result suggests the universality
of the spread spectrum phenomenon according to which the
quality of theBPǫ reconstruction can be rendered indepen-
dent of the sparsity dictionary for a large enough component
w of the baselines.

5. SIMULATIONS AND RESULTS

The astrophysical signalsx considered are built as the super-
position ofK = 10 Gaussian waveforms, with random posi-
tions, and random central value in the interval[0, 1] in some
arbitrary intensity units. The signals are sampled as images
x on a grid ofN = 64 × 64 = 4096 pixels. Fields of view
L = L1/2 × L1/2 with L1/2 not larger than several degrees
of angular opening may be considered for the approximation
of a planar signal to be valid. A primary beamA(t0) with a
full width at half maximum (FWHM)2t0(2 ln 2)1/2 = L1/2

is also considered and with unit value at the center. In the
discrete setting the inverse problem is transparent to the pre-
cise value of theFOV so that we do not need to fix it. Ob-
servations are considered forM/2 complex visibilities with
M/2 ∈ {50, 100, 200, 300, 400, 500, 1000} corresponding to
coverages between1 and25 per cent of the Fourier plane. A
small amount of instrumental noise is also added as indepen-
dent identically distributed Gaussian noise.

The sizet of the Gaussian waveforms may be written in
terms of a discrete sizetd as t = tdL

1/2/πN1/2. We con-
sider the valuestd = 2 and td = 16. For td = 2 the ap-
proximate band limit of the signal is around the same value
as that accessible on the grids considered, while fortd = 16
it is much smaller. Original signal samples are reported in
Fig. 1. The componentw may also be written in terms of a
discrete componentwd asw = wdN

1/2/L. We consider the
valueswd = 0 andwd = 1. The casewd = 0 identifies base-
lines with negligible componentw. The casewd = 1 identi-
fies baselines with non-negligible and constant componentw,

corresponding to a linear chirp modulation with a band limit
equal to that accessible on the grids. In other words the com-
ponentw is a factor2/L1/2 larger than the maximum value
of the componentsu andv in the plane of the signal, so that
for the smallFOV assumed the baselines are strongly aligned
with the pointing direction. Let us emphasize that a specific
design of interferometer arrays should be studied in order to
obtain such an alignment, or largerFOV should be consid-
ered.

A number of30 simulations are generated for each value
of td, wd andM considered. The visibilities are simulated
and the signals are reconstructed through theBPǫ problem,
which is solved by convex optimization. The quality of re-
construction is analyzed in terms of the signal-to-noise ratio
SNR of the reconstructions multiplied by the primary beam.
We actually compare two different settings for the reconstruc-
tions. In the first setting, calledΓBPǫ, we assume that the
Gaussian waveform dictionary with appropriatet is known,
and we use it explicitly as sparsity dictionary:Ψ ≡ Γ(t). As a
consequence, theΓBPǫ problem deals with the best possible
sparsity valueK = 10. The reconstructions in the absence
(wd = 0) and in the presence (wd = 1) of the chirp mod-
ulation are respectively denoted byΓBPǫ0 andΓBPǫ1. It is
the precise setting in which we just brought up the spread
spectrum phenomenon. In the second setting, called∆BPǫ,
we assume that the sparsity dictionary is the real space ba-
sis: Ψ ≡ ∆. As a consequence, the∆BPǫ problem deals
with the best possible coherence value. However, the spar-
sity computed in real space increases drastically with the size
of the Gaussian waveforms, suggesting that the reconstruc-
tion quality should clearly decrease when the Gaussian size
increases. The reconstructions in the absence (wd = 0) and
in the presence (wd = 1) of the chirp modulation are respec-
tively denoted by∆BPǫ0 and∆BPǫ1. But the mutual co-
herence here remains unaffected by the chirp modulation, so
that this modulation should fail to enhance the reconstruction
quality in this case. It is known that this∆BPǫ approach
provides reconstruction qualities very similar to the standard
CLEAN algorithm currently used inRI.

The results of the analysis are reported in Fig. 1. The
SNR’s of the∆BPǫ0 reconstructions are significantly smaller
than those of theΓBPǫ0 reconstructions. Moreover as ex-
pected, the∆BPǫ1 approach does not profit from the spread
spectrum phenomenon relative to the∆BPǫ0 approach. The
SNR’s of the ΓBPǫ1 reconstructions are significantly larger
than those of theΓBPǫ0 reconstructions. This is the spread
spectrum phenomenon related to the reduction of the mutual
coherence in the presence of the chirp modulation. Moreover,
theSNR’s of theΓBPǫ1 reconstructions are essentially inde-
pendent of the sparsity dictionary identified bytd. This sup-
ports very strongly the principle of universality of the spread
spectrum phenomenon relative to the sparsity dictionary, in
perfect agreement with our theoretical considerations.



 

 

0 0.1 0.2 0.3 0.4 0.5
200 400 600 800 1000

0

10

20

30

40

PSfrag

Coverage
S
N

R
(d

B
)

ΓBPǫ0

ΓBPǫ1

∆BPǫ0

∆BPǫ1

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4
200 400 600 800 1000

0

10

20

30

40

Coverage

S
N

R
(d

B
)

ΓBPǫ0

ΓBPǫ1

∆BPǫ0

∆BPǫ1

 

 

0 0.2 0.4 0.6 0.8 1
1.3 3.9 6.6 13 26
0

5

10

15

20

25

30

35

x103

Coverage

S
N

R
(d

B
)

TVǫ0

TVǫ1

Fig. 1. Interferometry: the first and and third panels from the leftrepresent original astrophysical signal samples with sizes
td = 2 andtd = 16 of the Gaussian waveforms respectively. The second and fourth panels from the left represent theSNR
of reconstruction as a function of the coverage fortd = 2 andtd = 16 respectively. Magnetic resonance imaging: the second
panel from the right represents original Shepp-Logan phantom image. The first panel from the right represents theSNR of
reconstruction as a function of the coverage. AllSNR curves in the three corresponding panels represent the meanSNR over
30 simulations, and the vertical lines identify the error at1 standard deviation.

6. MAGNETIC RESONANCE IMAGING

In the standard setting, data acquired inMRI also provide
an incomplete and noisy coverage of the Fourier plane, also
calledk-space, of the original two-dimensional imagex of
interest. However the use of quadratic magnetic fields was
advocated for various purposes, notably for reducing alias-
ing artifacts in the signal reconstruction [4]. This technique
is known under the name of phase scrambling and exactly
corresponds to alter the original image by the linear chirp
modulation that we considered inRI. It therefore obviously
appears that the quality of sparse signal reconstruction can
equivalently be enhanced in this context through the spread
spectrum phenomenon.

As an illustration, we consider the Shepp-Logan phan-
tom in some arbitrary intensity units as original imagex

sampled on a grid ofN = 256 × 256 = 65536 pixels
on someFOV L = L1/2 × L1/2. An ill-posed inverse
problem of the form (1) is posed. In this case, no explicit
sparsity basis is considered, i.e.Ψ ≡ ∆, and no pri-
mary beam applies, i.e.A(t0) ∈ RN×N ≡ δij}1≤i,j≤N .
Acquisitions are considered for a generic random distri-
bution of M/2 complex Fourier coefficients withM/2 ∈
{1311, 2621, 3932, 5243, 6554, 13107, 26214} correspond-
ing to coverages between2 and 40 per cent of the Fourier
plane. A small amount of instrumental noise is again added
as independent identically distributed Gaussian noise.

By definition, the image exhibits exactly sparse magni-
tude of the gradient. An explicit theoretical computation of
the incoherence was not achieved in this case. But the inco-
herence between the Fourier sensing basis and the space of the
magnitude of the gradient of the signal, which may be thought
of as a sparsity basis made up of step functions, is clearly
not optimal. The introduction of a linear chirp modulation
will therefore automatically spread the spectrum of the image
and increase the incoherence between the sensing and spar-
sity bases. We consider the valueswd = 0 andwd = 1 for the
linear chirp. The image is reconstructed by solving the well-

known analysis-based Total Variation (TVǫ) problem, which
consists in the minimization of theℓ1 norm of the magnitude
of the gradient of the signal under a constraint on theℓ2 norm
of the residual noise. This problem is again solved by convex
optimization. The reconstructions in the absence (wd = 0)
and in the presence (wd = 1) of the chirp modulation are
respectively denoted byTVǫ0 andTVǫ1. Again, a number
of 30 simulations are generated for each value ofwd andM
considered. The quality of reconstruction is analyzed in terms
of the signal-to-noise ratioSNR of the reconstructions. The
results of the analysis are reported in Fig. 1. These results
confirm the efficiency of the spread spectrum phenomenon in
increasing the quality of signal reconstruction inMRI.

7. CONCLUSION

We have shown, on the basis of the theory of compressed
sensing and through simulations, that a linear chirp modu-
lation can drastically enhance the reconstruction qualityof
signals inRI and MRI, thanks to a related spectrum phe-
nomenon. While this modulation can be simply obtained
through quadratic magnetic fields inMRI, it will require the
study of specific designs of arrays inRI.
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