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ABSTRACT 
Self excited instabilities or oscillations of a cavitating full load vortex rope occur due to an 

interaction between the gas volume and the acoustic waves. From the onset of the oscillations, 
the amplitudes grow until they reach a maximum, called the “limit cycle”. The aim of this 
paper is to predict and to simulate this full load instability with its corresponding “limit 
cycle”. The test case is a reduced scale model installed on test rig in the Laboratory for 
Hydraulic Machines at the EPFL. An advanced hydro acoustic vortex rope model is 
developed to take into account the energy dissipation due to thermodynamic exchange 
between the gas and the surrounding liquid. Three key hydro acoustic parameters are set up 
using both steady CFD simulations and analytical models. First of all, parameters are assumed 
to be constant and time domain simulation is divergent without reaching the limit cycle. 
However frequency of instability is well predicted. Then inclusion of nonlinear parameters is 
found to lead to a limit cycle of finite amplitude. Prediction is compared with results from 
experiments and is in good agreement. It is shown that nonlinearity of the viscoelastic 
damping parameter, modelling the energy dissipation, is decisive to reach the limit cycle. 
Moreover, an energy approach is developed to understand the interaction process between the 
mass source and the system dissipation to reach the equilibrium at the limit cycle. It brings 
out that over one period the dissipation can provide energy to the system whereas the mass 
source dissipates to ensure the equilibrium. 
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1. INTRODUCTION 
The growing development of renewable energies combined with the process of 

privatization, lead to a change of the economical energy market strategies. Instantaneous 
pricings of electricity as function of the demand or the predictions, induces profitable peak 
productions which are mainly covered by the hydroelectric power plants. Therefore, the 
operators harness more and more hydroelectric facilities at full load operating conditions. 
However, Francis Turbine features an axisymetric rope leaving the runner which may acts 
under certain conditions as an internal energy source leading to instability. Undesired power 
and pressure fluctuations are induced and prevent to take advantage of the maximum available 
power. 

Koutnik and Pulpitel [1] applied to Francis Turbines the modelling approach 
developed initially for pump stability analysis based on the use of the cavitation compliance C 
and of the mass flow gain factor χ parameters, see Brennen and Acosta in 1973 [2] and 1976 
[3]. Using the transfer matrix method, Koutnik and Pulpitel [1] derived a stability diagram to 
explain a full load surge occurring on a four 39MW Francis Turbine power plant. A similar 
approach based on cavitation parameters mapping was also successfully applied to explain 
inducer instabilities by Tsujimoto et al. in 1993 [4] and propeller instabilities by Duttweiler 
and Brennen in 2002 [5] and by Watanabe and Brennen in 2003 [6]. More recently, deriving 
the compliance and the mass flow gain factor parameters from CFD simulations of the 
complete machine, Flemming et al [7] predicted instability of a prototype installation based 
on eigenvalues and eigenmodes analysis. However, no validation was available. These 
stability analyses based on constant hydro acoustic parameters C - χ allows to predict 
frequencies and mode shapes. However, this method does not give any information about the 
amplitude of the oscillations. In 2006, Koutnik et al. [8] performed a time domain simulation 
of a self oscillation occurring in a four 400MW Francis Pumped-Storage plant. In order to 
obtain finite fluctuations called “limit cycle”, nonlinearity on the cavitation compliance as 
function of the Thoma number is introduced. Moreover, the system is pushed to the limit of 
the instability by setting a mass flow gain factor parameter very low compared to the one 
derived from the stability analysis. Therefore, during the transient, the system enters in 
unstable conditions and nonlinearity of the compliance switches between stable and unstable 
conditions allowing to reach the limit cycle. It has been shown by authors that limit cycle is 
reachable only if nonlinearity of hydro acoustic parameters is taken into account.  

The aim of this paper is to predict and simulate the instability phenomenon with its 
corresponding limit cycle without being at the edge of the instability. The test case is a 
reduced scale model installed on test rig in the Laboratory for Hydraulic Machines at the 
EPFL. For large guide vane openings, instability occurs and the cavitating vortex rope 
experiences volume pulsations as described in Section 2. The best known mechanism of self 
oscillation excitation is so called negative friction [9]. Considering a spring-mass system with 
a damper in parallel, the self oscillation mechanism is driven by a linear equation of the 
following form: 

0m x c x k x⋅ + ⋅ + ⋅ =�� �         (1) 
When the damping c  is negative, instead of energy being lost due to the friction, energy is 
generated within the system. A slight disturbance from equilibrium leads to the system being 
carried far from the equilibrium state without reaching a limit cycle. However, if a nonlinear 
damping is introduced the limit cycle is reachable. The well known mechanical system is the 
Kaidanovsky-Khaikin frictional model [9] [10] which consists of a mass m fixed to a wall by 
a spring and lying over a transmission belt moving with a given velocity. The nonlinear dry 
friction force on the belt can under certain conditions induce negative friction. Inspired by 
these mechanical models, a new vortex rope model is developed in Section 3 by adding 
dissipation to the standard C- χ model used in the literature. The proposed dissipative model 
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is based on the work of Pezzinga [11] who developed an analytical model of dissipation in 
cavitating pipe flows due to thermodynamic exchange between the gas and the surrounding 
liquid. In this new model, three key hydro acoustic parameters must be set up: the 
compliance, the mass flow gain factor and the dissipative term called the viscoelastic 
damping. As a first step, constant parameters are considered and computed from steady CFD 
simulations of the complete machine. A stability analysis by means of eigenvalues and 
eigenmodes computation is performed to confirm the instability of the investigated operating 
point in Section 4. The corresponding time domain simulation is performed in Section 5 
whereas in Section 6 nonlinear parameters are used. Results of simulations will be compared 
to the experimental “limit cycle“. 
 
2. EXPERIMENTAL MEASUREMENTS ON TEST RIG 
A full load instability phenomenon occurred for a reduced scale model installed on a test rig 
at the Laboratory for Hydraulic Machines. Pressure measurements synchronized with high 
speed video camera have been used to monitor the instability. At the unstable operating point, 
the cavitating vortex rope experienced volume pulsations as shown in Fig. 1. 
 

 
 

Fig.1 Vortex rope pulsation at the unstable operating point 
 
The corresponding time history and frequency spectra of pressure fluctuations in the cone are 
given respectively in Fig.2 a) and Fig.2 b). 

 
Fig.2 a) Time history and b) frequency spectra of pressure fluctuations in the cone 

 
The unstable frequency of pressure signals is 2.5 Hzf =  which corresponds to the vortex rope 
pulsation. The aim of this paper is to perform a hydro-acoustic numerical simulation which 
brings out the unstable frequency and the typical time signal’s shape. 

 
3. SETUP OF THE HYDROACOUSTIC MODEL 
Hydroacoustic model 
 
The test rig and the investigated reduced scale model have been implemented in the hydro-
acoustic SIMSEN software. Initially, SIMSEN was developed by the EPFL for the transient 
and steady-state simulation of electrical power systems and control devices having an 

a) b) 
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arbitrary topology. Then, the capability of the software was extended to hydraulic components 
in order to be able to simulate the transient behaviour of a complete hydroelectric power 
plant. The most common hydraulic components have been implemented such as pump-
turbine, penstock, surge tank, gallery, valve, reservoir, etc [12]. In order to get a common set 
of differential equations for both electrical and hydraulic parts, hydraulic models are based on 
an electrical analogy. Fig.3 gives an overview of the implemented SIMSEN model of the test 
rig which is a closed loop system with one reservoir and one feed pump.  

 
Fig.3 SIMSEN model layout 

 
Modelling of the wave propagation in the pipes is a decisive issue to be able to predict and 
simulate an instability phenomenon. The viscoelastic behaviour for both fluid and wall 
material must be taken into account in the pipe model to predict accurately pressure 
fluctuations amplitudes and system stability limits, [13]. The equivalent electrical scheme of a 
standard viscoelastic pipe, derived from continuity and momentum balances, can be 
represented as a T-shaped RLC circuit, see [12]. On the other hand, because of the onset of 
the cavitating vortex rope in the draft tube, this component cannot be modelled like a standard 
viscoelastic pipe. Indeed, the cavitation modifies the continuity equation of the standard 
viscoelastic pipe model. As shown in Fig. 4 a), the draft tube is divided in two parts. 
Assuming the cavitation located in the cone and the elbow parts between sections 1  and 2  , 
the equivalent electrical scheme is given in Fig. 4 b). 
 

 
Fig.4 a) Draft tube domain and b) equivalent electrical scheme of the set of cone and elbow parts 

 
In the framework of this investigation, the cone and the elbow are modelled with one pressure 
node and the corresponding continuity equation, modified by the cavitation, is: 

1 1/2 2
1 2 χ+− = = +c

c

dh dQDVQ Q C
Dt dt dt

       (2) 

The discharge variation is equal to the variation of the cavitation volume cV  which is function 
of two state variables: the head and the discharge, [2], [3]. cC  and χ  are respectively the 
cavitation compliance and the mass flow gain factor defined as: 

2
1 1/2 2

χ
+

∂ ∂⋅ ⋅
= − = = −

∂ ∂
c c

c
V Vg A LC

h a Q
       (3) 

The onset of the cavitating vortex rope induces: 
• a change of the wave speed a  in the cone and the elbow [14], [15] which in turns 

modifies the cavitation compliance cC  according to Eq. 3, 
• the appearance of the mass flow gain factor parameter which represents the excitation 

mass source of the hydraulic system being defined as the cavitation volume variation 
as function of a discharge variation. 

Cone & elbow 

Peer

Reservoir 
Feed pump 

 

1 - 

2 - 
I - 
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Moreover, a third parameter of the equivalent electrical scheme is modified by the cavitation: 
the equivalent viscoelastic damping equμ  which defines the viscoelastic resistance in serie 
with the capacitance according to Eq. 4. 

equ
veR

A g L
μ
ρ

=
⋅ ⋅ ⋅

          (4) 

The viscoelastic damping equμ  of both fluid and wall material decreases when cavitation 
appears. This parameter allows to model the energy dissipation due to thermodynamic 
exchange between liquid and gas [11]. For more clarity, the model of the set cone and elbow 
will be called further as the vortex rope model. 
 
Computation of the hydro-acoustic vortex rope model parameters 
 
The RLC model parameters of the standard viscoelastic pipes without cavitation are computed 
from the hydro acoustic characteristics of each component, [12]. However, the computation of 
the three key parameters of the vortex rope model such as the wave speed, the mass flow gain 
factor and the equivalent viscoelastic damping, is performed by CFD simulations of the three 
dimensional flow, [7] with the commercial simulation software ANSYS CFX 11.0. 
Incompressible RANS steady simulations are performed with the Shear Stress Tensor 
turbulence model. Moreover, single phase simulations are considered. Therefore, to derive the 
hydro-acoustic parameters, the cavitation vortex rope volume is assumed to correspond to the 
flow region bounded by the vapour pressure vp  set to 2338 Pa at 20°C. In order to compute 
the three parameters corresponding to the investigated unstable operating point showed in 
Section 2, boundary conditions of the computational domain are setup according to 
experimental data. The Thoma number and discharge measurement allow to define 
respectively the outlet pressure and the inlet velocity of the computational domain. Since 
steady CFD simulations are performed, the cavitation compliance can be computed as the 
vortex rope volume variation as function of the outlet head I

h variation of the computational 
domain or the Thoma number, see Eq. 5. 

1 1/2

1
σ+

∂ ∂ ∂
= − = − = −

∂ ∂ ∂
c c c

c
I

V V VC
h h H

        (5) 

Fig. 5 shows the vortex rope volume as function of the Thoma number variation. 
 

 
 

Fig.5 Variation of the vortex rope volume as function of the Thoma number 
 

The central finite difference approximation leads to a compliance value of 20.0024 mcC =  
corresponding to a wave speed of -127 m.sa = for the experimental Thoma number of 0.11σ = .  
 
 
 

σ=0.11 σ=0.09 σ=0.12 
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On the other hand, the mass flow gain factor, is computed as the vortex rope volume variation 
as function of the discharge variation, see Fig. 6. 
 

 
 

Fig.6 Variation of the vortex rope volume as function of the discharge 
 

The central finite difference approximation leads to a mass flow gain factor value of 
0.033 sχ = −  at the experimental investigated discharge nQ . The last parameter to derive from 

CFD simulations is the equivalent viscoelastic damping. This parameter models the energy 
dissipation in unsteady cavitating flows due to a combination between the gas release and the 
heat exchange between the gas and the surrounding liquid. Considering both effects and 
assuming an homogeneous cavitation in the pipe cross section, Pezzinga [11] developed a 
formulation for the second viscosity as follows: 

4

2

2

equ
c m cR T a

p
ρ ρ α

μ
Θ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=          (6) 

Of course, the vortex rope volume at full load conditions is far from the assumption of an 
homogeneous cavitation development in the pipe. However, this parameter being unknown 
for the vortex rope model, this formulation is considered as a first approximation to get an 
order of magnitude of this parameter. To derive this parameter from CFD simulations, 
pressure is considered at the outlet of the CFD domain; wave speed and cavitation volume, 
have been computed previously. By applying this expression at the operating point defined by 
the Thoma number 0.11σ =  and the investigated discharge nQ , it yields to an equivalent 
viscoelastic damping value of 1555 Pa.sequμ = . Tab. 1 summarizes the three key hydro-acoustic 
parameters derived from CFD simulations. 
 

a χ μequ 
[m.s-1] [s] [Pa.s] 

27 -0.033 1555 
 

Tab.1 Hydro-acoustic parameters of the vortex rope model derived from CFD simulations 
 
4. STABILITY ANALYSIS OF THE OPERATING POINT 

In SIMSEN, dynamic behavior of the hydro-acoustic model of the test rig is given by a 
set of first order nonlinear differential equations of the following form: 

[ ] ( ) ( )dXA B X X V X
dt

⎡ ⎤⋅ + ⋅ =⎣ ⎦          (7) 

where [ ]A  and ( )B X⎡ ⎤
⎣ ⎦  are the state global matrices of dimension [ ]n n× , X  and ( )V X  are 

respectively the state vector and the boundary conditions vector with n  components. The 
equations of the vortex rope model developed in Section 3 are included in this matrix system. 
And the three vortex rope parameters are considered as constant for the stability analysis, see 
Tab.1.  

Qn Qn-5% Qn+5% 
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Nonlinearity of this system is due to [13]: 
• the resistance terms in matrix ( )B X⎡ ⎤

⎣ ⎦  modeling the head losses in the pipes; 

• the Francis Turbine component modeled by a nonlinear pressure source in the 
boundary vector ( )V X .  

Stability analysis in SIMSEN [13] is based on linearization of this set of equations around an 
equilibrium point and then, stability is deduced from eigenvalues of the linearized set of 
differential equations. Damping and oscillation frequency of the eigenmodes are respectively 
given by the real part and the imaginary part of the eigenvalues. If the real part is negative the 
mode is stable, whereas if it is positive the mode is unstable. Moreover, each eigenvalue is 
associated to an eigenvector which represents the eigenmode’s spatial shape. For the vortex 
rope parameters given in Tab.1 eigenvalues and eigenvectors are computed. In Fig. 7 the first 
five eigenvalues are plotted in the complex plan. The x-axis corresponds to the modal 
damping and the y axis to the modal frequency. 

 
Fig.7 System eigenvalues with parameters given in Tab. 1 

 
The unstable eigenmode corresponding to a positive modal damping, is the first eigenmode 
which frequency is 2.7 Hzf = . Therefore, using the parameters derived from CFD 
simulations, the unstable frequency of the vortex rope pulsation is predicted with an error of 
8% according to the experimental value of 2.5 Hz . Moreover, this result shows that the 
unstable frequency measured experimentally in the cone corresponds to the first eigenmode of 
the system which is plotted in Fig. 8.  

 
Fig.8 First eigenmode unstable: a) pressure δH and b) discharge δQ fluctuations 

 
The x axis is the abscissa representing the location in the test rig. Being a closed loop system, 
abscissa 0 mx =  and 100 mx =  corresponds to the same location, being the feed pump 
location. The draft tube component is located between 59 mx = , the runner outlet location, 
and 64 mx = , the downstream reservoir location. One can observe that the standing wave in 
the test rig, features large discharge fluctuations due to the vortex rope large compliance 
compared to the pipes and the related large vapor volume fluctuations during the oscillations.  

stable unstable 
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The linearization of the set of differential equations allows to identify the system 
stability and predicts sytsem eigenfrequencies and related mode shapes. However, this 
method does not give any information about the amplitude of the oscillations. Indeed, this 
linear theory only predicts that the amplitude of the eigenmode fluctuations given in Fig.8 
grow exponentially in time according to the modal damping given in Fig. 7. The aim of this 
paper is to simulate in the time domain pressure and discharge fluctuations of the standing 
wave which should grow exponentially until a maximum, called a “limit cycle“.  

 
5. NUMERICAL SIMULATION WITH CONSTANT MODEL PARAMETERS 
In this Section, time domain simulation of the instability is performed with constant vortex 
rope parameters given in Tab. 1. Time history of pressure fluctuations at the node of the 
vortex rope model is given in Fig. 9. 

 
Fig.9 Time history of pressure fluctuations in the draft tube 

 
One can observe that the simulation is divergent which induces very high pressure 
fluctuations without reaching a “limit cycle”. In accordance with the eigenvalue analysis, the 
unstable frequency simulated in the time domain is 2.7 Hzf = . In the field of mechanical 
oscillations, a typical representation, called a “phase plane”, is extensively used to obtain 
properties of the differential equations such as equilibrium, periodicity or stability. Usually, 
for hydro-acoustic systems, the phase plane represents the pressure as function of the 
discharge [16] and the resulting curve is called the phase path. In Fig. 10 pressure of the 
vortex rope model as function of the outlet discharge is plotted to represent the phase plane of 
the simulation. 

 
Fig.10 Phase plane diagram 

 
By definition, a “limit cycle” is an isolated periodic solution of the system [17] and is 
represented in the phase plane by an isolated closed path. During one period along the closed 
path, the total energy of the system ξ  returns to its original value, see Eq. 8. 

( ) ( )0 0Tξ ξ− =           (8) 

- 



IAHR WG Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno 

In that case, the energy loss in the system and the energy gain of the vortex rope excitation are 
at equilibrium. Since limit cycle is not reached in this simulation, the system dissipation must 
be modified by integrating nonlinearity on the viscoelastic damping parameter of the vortex 
rope model. 
 
 
6. NUMERICAL SIMULATION WITH NONLINEAR MODEL PARAMETERS 

In this Section nonlinearity of vortex rope model parameters is introduced. The mass flow 
gain factor is kept as constant whereas the wave speed and the viscoelastic damping are 
nonlinear. The variation law for the wave speed is derived from CFD simulations whereas the 
law for the viscoelastic damping is empiric and compared to Eq. 6. Indeed it is difficult task 
to derive the variation law of the viscoelastic damping which models energy dissipation 
between liquid and gas from a steady isothermal single phase CFD simulation. 

 
Variation laws of nonlinear parameters 
 

In Section 3 the wave speed has been computed for a given operating point at a given 
pressure. To derive the variation law of the wave speed as function of pressure, the same 
methodology is involved by computing the vortex rope volume for several outlet pressure of 
the computational domain. Therefore, the wave speed is deduced by the derivative of the 
vortex rope volume as function of the pressure, see Fig. 11. 

 
Fig.11 Variation of wave speed as function of pressure 

 
Moreover, an empiric variation law has been derived for the viscoelastic damping 

parameter to fit time domain simulations with measurements. The proposed model features a 
variation of the viscoelastic damping proportional to the square of the pressure. The global 
variation of this parameter is compared to the analytical formulation given by Eq. 6 applied to 
an ideal gas model. The state equation of an ideal gas being: 

c
p V n R T⋅ = ⋅ ⋅           (9) 

the gas fraction and the wave speed in Eq. 6 can be replaced by the following variation laws: 
1

c p
a p

α
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∼

∼
           (10)  

Including Eq. 10 in Eq. 6, the analytical variation law as function of pressure is compared to 
the empiric variation law in Fig. 12. 
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Fig.12 Comparison between the empiric and the analytical variation laws of the viscoelastic damping 

 

For pressure lower than 2 m the equivalent viscoelastic damping is equal to zero 
corresponding to the situation where the cone and the elbow are filled entirely of gas. 
Differences between the two variation laws appear at high pressure level.  

The variation laws for the wave speed and the viscoelastic damping fit to the set of 
constant parameters given in Tab. 1 for the pressure in the draft tube corresponding to the 
operating point.  

 

Time domain simulation 
 

Influence of nonlinearity of each parameter on the time domain simulation is 
investigated. In Fig. 13 pressure fluctuations of time domain simulations with and without the 
wave speed nonlinearity are compared. 

 
Fig.13 Influence of nonlinearity of each parameter on the time history of pressure fluctuations 

 

One can deduce that the introduction of a nonlinear viscoelastic damping allows to reach the 
“limit cycle”. However, the pressure fluctuations keeps sinusoidal shape whereas 
experimental data feature a sharped shape for high pressure. By including the nonlinearity of 
the wave speed the typical researched shape appear with a frequency of 2.7 Hzf = . In Fig. 
14, inlet and outlet discharges fluctuations of the vortex rope model are compared. 

 
Fig.14 Time history of the inlet and the outlet discharges of the vortex rope model 

- 
- 
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1
Q  and 2

Q  correspond respectively at the upstream and the downstream discharge of the 
cavitation volume. It shows that during the instability, mass water is moved by the gas 
volume pulsation. When the vortex rope volume increases, the downstream discharge 
increases and vice versa. The variation of the viscoelastic damping due to nonlinearity 
increases dramatically the energy dissipation of the system allowing to reach the “limit cycle” 
represented in the phase plan in Fig. 15. 

 
Fig.15 Phase plan representation of the limit cycle 

 

Energy balance during the limit cycle 
 

As introduced in Section 5, during one period of the “limit cycle” represented by the closed 
path in the phase plan of Fig. 15, the total energy of the system ξ  returns to its original value. 
In the following, an energy balance approach is developed to understand the interaction 
between the excitation source and the dissipation of the circuit during the limit cycle.  
 
The first step of this approach is to find a formulation of the total energy ξ  of the fluid system 
as function of the state variables of the electrical model. The total energy is constituted of a 
kinetic energy k

ξ , a potential energy 
p
ξ and a source energy s

ξ [18]: 

k p s
ξ ξ ξ ξ= + +           (11) 

Considering that the test rig electrical model is divided in n  meshes, the total energy of the 
system is the sum of the energies included in each mesh.  

1 1 1 1
i i i

n n n n

i k p s
i i i i

ξ ξ ξ ξ ξ
= = = =

= = + +∑ ∑ ∑ ∑         (12) 

 
In Fig. 16 a) the mesh including the excitation mass source in the draft tube is given, whereas 
in Fig. 16 b) a standard mesh is shown. 
 

  
 
 

Fig.16 Electrical mesh a) including the excitation mass source and b) without excitation 
 
In the investigated model, the energy source of the excitation is considered only in the mesh 
given in Fig. 16 a). During the limit cycle this energy can be expressed as: 

2 1 1/2s
g Q hξ ρ χ += ⋅ ⋅ ⋅ ⋅          (13) 

- 

a) b) 

Vortex rope model Peer model 
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However, for the kinetic and the potential energies, all the meshes must be taken into account. 
Considering a typical mesh given by Fig. 16 b): 

( )( )

2

1 1

1/2 1/2
1 1

1
2i

i

n n

k k i
i i
n n

p p i i i
i i

g L Q

g h h Q dt

ξ ξ ρ

ξ ξ ρ

= =

− +
= =

⎧ ⎛ ⎞⎪ ⎟⎪ ⎜ ⎟= = ⋅ ⋅ ⋅ ⋅⎪ ⎜ ⎟⎜⎪ ⎟⎜⎝ ⎠⎪⎨⎪⎪ = = ⋅ ⋅ − ⋅ ⋅⎪⎪⎪⎩

∑ ∑

∑ ∑ ∫
      (14) 

 
The second step of the approach is to derive the total energy according to the time: 

1 1/22
1/2 1/2 1 1/2 2

1

n
i

i i i
i

dhdQ dQd
g Q L h h g h Q

dt dt dt dt
ξ

ρ ρ χ +

− + +
=

⎛ ⎞⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎜ ⎟⎟ ⎜⎟⎜ ⎜= ⋅ ⋅ ⋅ ⋅ + − + ⋅ ⋅ ⋅ ⋅ + ⋅ ⎟⎟⎟ ⎜⎜ ⎜ ⎟⎟⎟ ⎜⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠⎝ ⎠ ⎝ ⎠
∑   (15) 

Using the Kirschoff law applied to the voltages in the mesh given in Fig. 16 b) it yields to: 

( ) ( )1/2 1/2 1 1 i

i
i i ve i i ve i i i l

dQ
L h h R Q Q R Q Q R Q H
dt + − − +⋅ + − = ⋅ − − − + ⋅ = −    (16) 

Integrating Eq. 16 in Eq. 15 the derivative of the total energy can be rewritten as: 

( ) 1 1/22
1 1/2 2

1
i

n

i l
i l s

dhdQd d d
g Q H g h Q

dt dt dt dt dt
ξ ξ ξ

ρ ρ χ +

+
=

⎛ ⎞⎟⎜ ⎟⎜= − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ = +⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑   (17) 

Therefore, the variation of the total energy is due to a balance between the lost power 
l

d
dt
ξ  in 

the resistive components of the electrical circuit and the gain power 
s

d
dt
ξ  due to the excitation 

source. In Fig. 17, time histories of these two powers are plotted. 

 
Fig.17 Time histories of the lost power and the gain power 

 
One can observe that during one period, the dissipation can provide energy to the system 
since the power becomes positive. Hence, in order to balance the total energy, the excitation 
source dissipates since the power becomes strongly negative. According to Eq. 8, the total 
energy returns to its original value during a period. According to the previous development 
Eq. 8 can be rewritten as: 

( ) ( )
0 0 0

0 0
T T T

l s

d d d
T dt dt dt

dt dt dt
ξ ξ ξ

ξ ξ− = ⋅ = ⋅ + ⋅ =∫ ∫ ∫     (18). 

Integrating numerically the two power curves in Fig. 17 over a period, the equality of Eq. 18 
is confirmed. 
 
 
 

l

d
dt
ξ  

s

d
dt
ξ  

s

d
dt
ξ  

l

d
dt
ξ  

[W] [W] 
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7. CONCLUSION 
In this paper a new model for the vortex rope has been developed taking into account an 
additional dissipation due to thermodynamic exchange between the gas and the surrounding 
liquid. Therefore three key hydro acoustic parameters must be set up: the compliance or the 
wave speed, the mass flow gain factor and the additional dissipation called viscoelastic 
damping. It has been shown that consideration of constant parameters is useful to perform a 
stability analysis based on eigenvalues and eigenvectors computation. In that case, this linear 
method allows to identify the stability of the system and to find out unstable frequencies with 
mode shapes. However, time domain simulation with constant parameters is divergent 
without reaching a maximum called the “limit cycle”. For this reason, nonlinearity of 
parameters is introduced. It is shown that the essential parameter which allows to reach the 
limit cycle is the viscoelastic damping. As for the nonlinearity of the wave speed, it allows to 
reproduce the typical pointed shape of the pressure fluctuations measured on the test rig. 
Amplitude of the limit cycle is in good agreement with experiments since the variation law of 
the viscoelastic damping has been fitted to obtain this result. Therefore, futher investigations 
must be carried out to derive an analytical model for this key parameter. Moreover, an energy 
approach during the limit cycle showed the interaction process between the excitation mass 
source of the vortex rope and the system dissipation to reach an equilibrium. Indeed, it brings 
out that over one period, the dissipation can provide energy to the system whereas the mass 
source dissipates to ensure the equilibrium. 
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10. NOMENCLATURE 

p
c  (-)  pressure coefficient  T  (K)          temperature 
p  (Pa)  pressure   n  (mol)          amount of substance 
h  (m)  pressure   ξ  (J)          total energy 
E  (J.kg-1)  specific energy  ξk  (J)          kinetic energy 
H  (m)  net head   ξp  (J)          potential energy 
Q  (m3.s-1) discharge   ξs  (J)          source energy 

1Q  (m3.s-1) discharge inlet vortex rope R  (s.m-2)          resistance 

2Q  (m3.s-1) discharge outlet vortex rope L  (s2.m-2)         inductance 
σ  (-)  Thoma number  C  (m2)          capacitance 
f  (Hz)  frequency   veR  (s.m-2)          viscoelastic resistance 
n  (Hz)  rotational frequency 
ρ  (kg.m-3) fluid density 

c
ρ  (kg.m-3) cavitation density 

m
ρ  (kg.m-3) mixture density 
g  (m.s-2)  gravity acceleration 
A  (m2)  area 
L  (m)  length 
a  (m.s-1)  wave speed 

c
V  (m3)  cavitation volume 
αc  (-)  fraction volume of cavitation 

c
C  (m2)  cavitation compliance 
χ  (s)  mass flow gain factor 

equ
μ  (Pa.s)  viscoelastic damping 
Θ  (s)  relaxation time 
R  ()  constant perfect gas law 


