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Very-High-Speed Slotless Permanent-Magnet
Motors: Analytical Modeling, Optimization,
Design, and Torque Measurement Methods

Pierre-Daniel Pfister and Yves Perriard, Senior Member, IEEE

Abstract—This paper presents a very-high-speed (VHS) slotless
permanent-magnet motor design procedure using an analytical
model. The model is used to design the optimal prototype (target:
200 kr/min, 2 kW). The multiphysics analytical model allows a
quick optimization process. The presented model includes the
magnetic fields, the mechanical stresses in the rotor, the electro-
magnetic power losses, the windage power losses, and the power
losses in the bearings. VHS machines need a new torque mea-
surement method. This paper presents the developed method. It
also presents a ball bearing friction torque measurement method
designed particularly for VHS machines. Remarkably, the method
allowed us to design a prototype which operates beyond the target
of speed and power. The results given by the model are compared
with the measurements of the prototype.

Index Terms—Analytical model, ball bearing, inertia, optimiza-
tion, permanent-magnet (PM) machine, retaining sleeve, slotless
machine, synchronous machine, torque measurement methods,
very-high-speed (VHS) motor.

I. INTRODUCTION

UE TO THEIR high power density, very-high-speed
D (VHS) permanent-magnet (PM) motors are increasingly
requested on the market. Indeed, as the mechanical power is
given by P = Tw, for a given motor volume and torque 7',
the output power and hence power density increase with the
rotation speed w.

The increasing need for low weight, high efficiency, and high
power density motors or generators has led to an intense re-
search and development in the field of VHS motor or generator
[T-L7].

The domains of applications of VHS machines are very
diversified: automotive industry (supercharger, electrically as-
sisted turbocharger [8], fuel cell compressor [9]), machining
industry (machine tool [10], micromachining), home appliance
industry (vacuum cleaner), medical industry (micromotors for
dental medicine), and other specific applications (compressors,
cryocooler [11], vacuum pump, gas turbines [12], [13], fly-
wheels [14]).
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The first aspect which is presented in this paper is the design
of the high-speed motor. A traditional way to design motors
is to perform the optimization using each of its submodels
(thermal, mechanical, electromagnetic, etc.) separately and iter-
atively. This is called a fragmented conception. In this paper, the
mechanical optimum for the motor would be to reduce the rotor
diameter to diminish the stress in it, but it would reduce the
motor torque. The magnetic optimum would be to reduce the
air gap, but it would increase the windage power losses. These
simple examples show the necessity of having an optimization
which uses the complete multiphysics model of the system.

There are at least two different approaches for performing
multiphysics systems optimization. The first one is with finite
element methods. It has the advantage that it can solve com-
plicated structures, but the required computer time is enormous
when there are different physical aspects and different parame-
ters to optimize.

The second method is to create a fully analytical model and to
do a mathematical optimization. The advantage of this method
is that it is extremely fast. It also gives much more insights in
the physics of the system. This method was chosen for the VHS
motor development presented in this paper.

The second aspect which is presented in this paper is the
measuring process linked with the target speed and power of
the machine. The goal is the measurement of a 200 000-r/min
2-kW synchronous machine. Traditional measurement tools are
not compatible with such high speeds.

Although many articles have been written about VHS motors
in general and VHS slotless PM motors in particular, only a
very few teams reached the speed of 200 kr/min [11], [15].

References [15] and [16] have already presented VHS motor
developments. Although the motor model presented in the next
paragraphs is general, the goal of the research is to design a
motor at much higher power than the cited articles. In addition,
in these articles, there are no measurements of the overall
efficiency of the motor presented.

Reference [11] presents a motor design of power and speed
which are similar to the target of this paper, but it does not
present any multiphysics analytical optimization.

The main contributions of this paper are as follows.

1) A designing procedure method which includes both a
multiphysics analytical optimization and experimental
results of the overall motor power balance.

2) An innovative motor torque measurement method which
allows one to validate the model. Although the presented
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Permanent

Fig. . VHS slotless PM motor structure.

method has similarities with [17], the presented innova-
tions give a much better precision.

3) An innovative ball bearing friction torque measurement
method.

II. ANALYTICAL MODEL

The analytical model is applied to the motor structure shown
in Fig. 1. The geometry is as follows: a PM at the center, a
sleeve, an air gap, three coils, and a stator yoke. The goal of the
optimization process is to reduce the power losses. The power
balance of the motor will be presented first, and the different
power losses contributions are presented in the next part of this
section.

A. Power Balance

The power balance is given by
Pmech = Py, — Ploss (1)

with Pech the output mechanical power, Poss the power
losses, and P, the motor input power. The total power losses
are assumed to be given by

Ploss = Pw + Pbear + «Piron + Pcop (2)

with P, the windage power losses, Pjear the bearing power
losses, P;on the iron power losses in the stator, and P, the
Joule power losses in the coils. Ppecn is related to the power
Ppag transmitted to the rotor by the currents in the coils

Pmech = Pmag - Pw - Pbear - Piron- (3)

B. Torque Due to the Magnetostatic Fields

Since the machine is slotless, the gap between the PM and the
stator yoke is big. This implies that the magnetic flux density is
low in the stator yoke. The yoke can be chosen thick enough
so that no magnetic saturation is needed to be considered inside
of it. Using the article from Xia er al. [18], the magnetostatic

fields are calculated. The torque 7" produced by the interaction
of the current passing through one coil and the PM is calcu-
lated as

p+2_ p+2

+1 | rh 2=t
2BRJl,r} [’W +9(p, 7‘ce77’ci)] flei,0,p)

T =

Tyi

) [t + =) ()]
“4)

with B the PM remanent field, p, the PM relative perme-
ability, p the number of pole pairs, J the instantaneous current
density averaged in a coil section, r; the outer radius of the PM,
r¢ the inner radius of the coil, 7. the outer radius of the coil,
Tyi the inner radius of the stator yoke, 6 the rotor position, I,
the active length, and

TCZPJFZ*T*.PJJ . «
— 5 — ifpeN"\ {2}

1n0@)7 ifp=2 ©)

Tci

g(pv Tcey Tci) =

f(ai, 0,p) = sin (p(ay — 0)) —sin (p(az — 0))
— (sin (p(ag — 0)) —sin (p(a; — 0))) (6)

with a; 2 = 1, ..., 4 the angles which set the dimensions of one
coil, as shown in Fig. 1. This torque model is validated through
2-D finite element methods with an error of less than 0.01%.
More details about this model can be found in [7].

The current density is assumed to vary as a sinusoidal
function of the time. The torque due to the current passing
through one coil is maximum when the instantaneous current
density is maximum Jy,,x and when the rotor position is such
that the total flux passing through the coil is equal to zero. The
maximum torque is called Ti,ax 1pn. With p =1 or p = 2, the
power transmitted to the rotor due to the sinusoidal currents
passing through the three coils T3y, is equal to

3
7Tmax 1phW (7)

Pmag:2

with w the angular velocity.

C. Mechanical Stresses

The mechanical stresses (o, 0, ) are calculated in each of
the two layers of the rotor using the equilibrium equation [19]
in the polar coordinate system (7, c)

do, o,

L% gy (8)
dr r

with F,. the radial force density. Hook’s law gives the depen-
dence of the strain ¢ on the stresses

Ep = %(O‘T —V0y) 9)
Eq = %(aa —vo,) (10)

with F Young’s modulus and v Poisson’s ratio.
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In a rotating system, a volume element is subject to the
following force:
F, = puw’r. (11)

The detailed model of the stresses in the rotor is presented
in [20].

D. Electromagnetic Power Losses

Joule power losses density pcop in the coils is calculated as

Pcop = ch2 (12)

with p. the resistivity and J the current density. The Joule
power losses P, are calculated as

3 peJ2, Ve
Pcop - 5% (13)

with Jp.x the maximum current density averaged over a coil
section, F.. the coil filling factor, and V.. the volume of one coil.

The stator iron power losses Pio, are assumed to be gener-
ated only by the PM. Their density p;,on is calculated approxi-
mately using the Steinmetz equation

Pivon = €1 f2 B (14)

with ¢;, i = 1,2,3 being empirical coefficients given by the
manufacturer, 3 the maximum magnetic field, and f the fre-
quency. The same empirical approach, used in [21] for the
hysteresis power losses, is used here for the iron power losses.
The model yoke thickness is chosen so that Biis at the saturation
limit. B3 is assumed to be constant along a radius. P, can be
expressed as

Piron = 2Trclfwla(rye - 7Ayi)BC?’ (15)

with 7y the outer radius of the stator yoke.

The eddy current and hysteresis power losses in the magnet
are neglected. The eddy currents in the sleeve and in the coils
are also neglected.

E. Windage Power Losses

The article from Vrancik [22] indicates that the windage
power losses P, are calculated as

Py, = mC4lryw? pair (16)

with [ the length considered, 7o the inner radius of the air
gap, and p,;, the air density. The skin friction coefficient Cy
is calculated using an empirical formula

1
=2.04 4+ 1.768In(Re+/C, 17
Nier n(Rer/Cy) 17)
with Re the Reynolds number
Re = 120 (18)
v

with v the air kinematic viscosity and § the air gap.

______ Motor , . Ball bearings torque measurement device
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Fig. 2. Bearings friction torque measurement setup: the conductive shaft
driven from the left, the two ball bearings, and a hole on the right is for the
torquemeter.

F. Ball Bearings Power Losses Model

In a ball bearing, there are many parameters which influence
the friction torque: the dimensions, the rolling paths materials,
the balls materials, the contact angles, the construction preci-
sion, the speed, the preload, and the lubrication.

Theoretical models are available in the literature [23], [24]
to estimate this torque. However, due to the VHSs and the
uncertainties of many model parameter values, the accuracy of
such models may be poor [25].

Among articles about the use of ceramic ball bearings for
high-speed applications [26], there are not many about friction
torque. Reference [27] gives an empirical model for a given
design and speed range.

Therefore, a setup was done to do an empirical model for the
ball bearings considered for the prototype. The model which
allows one to calculate the power losses in the bearings Pyear
has the following form:

cs
Pbear:C4<1‘If:IZ> .

The next section shows the procedure to obtain the two con-
stants ¢4 and cs.

(19)

III. BALL BEARINGS POWER LOSSES
A. Setup

As shown in Fig. 2, two ball bearings are mounted on a
conductive shaft which is made of aluminum. A multipolar
axially magnetized PM is mounted at the end of the shaft of
the motor and drives the conductive shaft. Eddy currents are
created in the conductive shaft, so the coupling is contactless.
The reaction torque 75, is measured on the fixed part which
surrounds the bearings.

Two toric shape elastic pieces stand at the two sides of the
bearings. The preload is adjusted on the bearings through a
screwed piece (on the left, in Figs. 2 and 3).

The data of the tested bearings are shown in Table I.
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Fig. 3.

Picture of the bearing friction torque measurement setup.

TABLE 1
DIMENSIONS, DATA SHEET PROPERTIES, AND MEASURED
MODEL PARAMETERS OF THE BALL BEARINGS

Inner diameter 6 mm

Outer diameter 17 mm

Axial length 6 mm

Contact angle 15°

Ball type Ceramic
Preload | 17 mNm 35 mNm
cq 1.17x 1076 W | 6.12x 10-6 W
cs 2.153 1.969

B. Measurement Procedure

As the coupling between the motor shaft and the conductive
shaft is done by the mean of eddy currents, there is a speed
difference between the two shafts. Let f be the conductive shaft
rotation frequency, f,,, the motor rotor rotation frequency, and
A f the frequency difference between them

Af:fmff-

In order to relate A f to the torque applied on the conductive
shaft by the motor shaft, the conductive shaft is fixed (f = 0)
while the motor is running. The torque 77 is measured as a
function of Af = f,,,. It gives the slip curve

T1 = g1 (Af).

(20)

2y

Then, the conductive shaft is set to rotate freely. The motor is
driven at different speeds. The reaction torque 75 is measured
as a function of f,,

T2 - g2(fm)-

As there is no speed sensor on the conductive shaft, its
rotation frequency is deduced using the slip curve

f=fm— g1 (Do)

Using (22) and (23), the friction torque and hence the power
losses is deduced as a function of the shaft speed.

The results are shown in Fig. 4. The friction torque of the
ball bearings is dependent on the speed and on the preload. The
measurements which include the mechanical coupling through
the air are fitted using (19). The resulting coefficients are shown
in Table I.

(22)

(23)

Power losses [W]

5 L |

— 35N preload
01.. N preload
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—-./‘/!'/../.: i
. Rotation frequency [Hz]

500 1000 1500 2000 2500 3000

Fig. 4. Power losses in a pair of ball bearings: the dots represent the measure-
ments and the curves represent the deduced model.

IV. OPTIMIZATION
A. Optimization Process

Two commercial software applications are used for
the optimization: Pro@DESIGN [28] and Mathematica.
Pro@DESIGN includes different optimization algorithms.
Some are based on a sequential quadratic programming solver
using the partial derivatives and penalty functions. One para-
meter is chosen to be the objective function and all the others
are fixed, constrained in intervals, or free. Mathematica also
includes many optimization algorithms. A code in Mathematica
was written to handle models with a large number of parame-
ters. The two software applications showed the same results.

The objective function is chosen to be the total power losses
shown in (2). This is an indirect way to take into account the
thermal aspect of the motor. These losses include the iron power
losses in the stator, the Joule power losses in the coils due to
the applied current, the windage power losses in the air gap.
The eddy current power losses in the rotor are not considered in
this paper. The rotor power losses will be considered in a future
article. The output power is used as a constraint. In addition,
the mechanical model is used as a constraint: The stresses in
the center of the PM and at the inner side of the sleeve have to
be lower than the maximum stress of the different materials.

The geometrical parameters which are optimized are the
following: the outer radius of the PM, the outer radius of the
sleeve, the interference between the PM and the sleeve, the air
gap, the coil thickness, the angles a1 and «o, the active length
of the motor, and the number of PM pole pairs.

The result of the optimization is shown in Table II. With the
given constraints on the active length, a one pole-pair motor is
more efficient than a two pole pair.

B. Pareto Frontiers

The suggested method for designing VHS motors allows one
to study Pareto frontiers.

The Pareto frontier defines optimal parameter sets. It is the
boundary between the feasible parameter sets and the param-
eter sets which are not feasible. For example, as shown in
Fig. 5, the point of the surface represents the design with the
lower possible power losses for a given active length and coil
thickness. Below the surface, there is no feasible design. Above
the surface, the designs are not optimal.

The Figs. 5-7 are realized by doing 400 optimizations for
each figures. Nevertheless, the advantage of the purely analyt-
ical method is that it is extremely fast. The time used by the
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MODEL CONSTRAINTS AND MINIMIZATION OF THE POWER LOSSES

TABLE 1I

Model constraints:

PM remanence (BRr)

Outer angle of the coils (aq4 — av1)
Number of phases

Mechanical power

Speed

Results of the optimization:

Active length of the motor

Outer radius of the PM

Outer radius of the sleeve

Inner radius of the coils

Outer radius of the coils

Inner angle of the coils (a3 — a)
Outer angle of the coils (as — 1)
Air gap

Number of PM pole pairs

Phase current amplitude (sin wave)
Efficiency

Bearings power losses

.18 T
<118 °
3
2 kW
200 krpm
57.6  mm
5215 mm
5715  mm
8.11 mm
36.15 mm
23 °
118 °
2395 mm
1
43.9

95.0

228>

.15

\)
A
7 o
//////////} e

i/

TABLE III

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 1, JANUARY 2010

Fig. 7. Pareto frontier of the power losses, the active length, and the air gap.
No extra constraint is added on the radial dimensions of the rotor.

PROTOTYPE SPECIFICATIONS AND RESULTING DESIGN

Prototype specifications:

Joule power losses Active length of the motor ({4) <30 mm
Air gap power losses 11 Outer angle of the coils (g —ay) <118 °
Iron power losses 19 PM NdFeB
PM remanence (5BR) 1.18 T
Number of phases 3
Mechanical power 2 kW
Speed 200  krpm
Prototype specifications resulting from the optimization:
Active length of the motor 30 mm
Outer radius of the PM 6.244 mm
Outer radius of the sleeve 824 mm
Air gap 1.36  mm
Inner radius of the coils 9.6 mm
Outer radius of the coils 16.8 mm
Inner angle of the coils (a3 — as9) 22 °
Outer angle of the coils (ag — 1) 118 °
Number of PM pole pairs 1
Fig. 5. Pareto frontier of the power losses, the coils thickness, and the air gap. Phase current amplitude (sin wave) 311 A
The radial dimensions of the rotor are constrained to be equal to the dimensions Efficiency 93.7 %
of rotor of the prototype presented in Section VI-A. Bearings power losses 53 W
Joule power losses 38 W
Airgap ] 04 0.02 0' 0.02004 Air gap power losses 28 W
; ’;ﬂ . Active length [m] Iron power losses 15 W
X , %ﬂ? 0.06
008 ,%%;fj‘ 10 . L . .
/%:f,\\s’ 200 the constraint on the radial dimensions of the rotor increases
Y N radial
“{// //¢ﬁ\\\§§\\\\\l o the power losses for high active lengths.
"' 4‘/////1&\\\%\)\\“ o o Pareto frontiers are very useful to give an representation of
2 0 the effect of changes of some parameters.

£

N

V. MOTOR TORQUE MEASUREMENT

This method is based only on the inertia of the motor rotor.
A coder measures the angular position « of the rotor. The
acceleration ¢ of the rotor is related to the frequency f. of the
coder with resolution 7 as

Fig. 6. Pareto frontier of the power losses, the active length, and the air gap.
The radial dimensions of the rotor are constrained to be equal to the dimensions
of the rotor of the prototype presented in Section VI-A.

Mathematica package for the calculation of the 400 optimiza-
tions of Fig. 51is 23.9 s, Fig. 6: 33.2 s, and Fig. 7: 116.3 s.

In the calculation of Figs. 5 and 6, a constraint is added in
the optimization process. The radial dimensions of the rotor are
fixed. They are equal to the one of the prototype presented in
the next section (Table III). In the calculation of Fig. 7, no extra
constraint is added. Since the radial dimensions of the rotor are
optimized in this case, it means that the optimization process
takes more time. The comparison of Figs. 6 and 7 shows that

&= 2 fe. (24)
n

Knowing the inertia I, the torque 7" that needs to be applied
to produce the acceleration ¢ is obtained

T = Ié. (25)

The inertia of the rotor of the prototype is [ = 1.6431 x
1076 kg - m?.
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Fig. 8. Motor torque obtained by numerical differentiation. The useful infor-
mation is covered by noise.
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Fig. 9. Speed as the function of time obtained by analytical differentiation.

Torque [Nm]
0.20

0.15: _/\/N\\
0.10f v

0.05

0.00 L

Time [s
0.00 sl

0.05 0.10 0.15 0.20 0.25

Fig. 10. Torque as a function of time obtained by analytical differentiation.

The value n needs to be compatible with low and high
speeds. For the prototype presented in the next section, the
angle « is measured by the coder with n = 1. A numerical
differentiation allows one to obtain the rotor speed. Using a
numerical differentiation once again, the torque is computed
(Fig. 8). The noise in the measurements makes a numerical
differentiation useless. As shown in Figs. 8-11, the voltage
applied to the power bridge which supplies the prototype is
96 V. The current is limited from 0 to 227 ms.

The solution for eliminating this noise is to do first a poly-
nomial fitting of the curve representing the rotor position as a
function of the time and then differentiate analytically. Fig. 9
shows the speed as a function of time. A second analytical

Torque [Nm]

0.20
0.10
0.05
0.00 Speed [rpm]
0 50000 100000 150000 200000
Fig. 11. Torque as a function of speed.

Fig. 12.  Picture of the VHS slotless PM prototype.

derivative is calculated to obtain the torque (Fig. 10). This
method is powerful to cancel the noise.

Before the fitting, a resampling can be done, because there
are more points per unit of time at high speed than at low speed.

The combination of the speed and the torque functions
(Figs. 9 and 10) gives the torque versus speed curve. The result
obtained is shown in Fig. 11. In this case, the current is limited
through an electronic regulation from 0 to ~188 kr/min. It
corresponds to the region which is approximately constant.

The advantage of this method is that the complete torque
versus speed curve can be measured very rapidly since the
whole measure is done in one step.

The disadvantage of this method is that it is very sensitive
to the correctness of the calculation of the inertia. Another
disadvantage is that it is not possible to measure the torque in a
thermically stabilized regime.

VI. EXPERIMENTAL VALIDATION OF
THE ANALYTICAL MODEL

A. Optimized Prototype

Because of the mechanical natural frequencies, the active
length of the motor was constrained to be smaller or equal to
30 mm. The prototype specifications are presented in Table III.
The design resulting from the optimization of the analytical
model and some construction constraints are also presented in
Table III. The material of the rotor sleeve is a titanium alloy.
The material of the PM is NdFeB. The prototype is shown in
Fig. 12.
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Fig. 13. (Top) measurement of the electrical input electrical power and
(bottom) mechanical output power of the VHS slotless PM prototype.
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Fig. 14. Efficiency of the VHS slotless PM prototype. The dashed curve
represents the ratio between the output torque measured by the presented
method and the input power the VHS slotless PM prototype. The continuous
curve represents a curve fitting of the dashed curve. The dots represent the
analytical model.

B. Measurement of the Optimized Prototype

A test and measurement bench is used for the acceleration of
the VHS prototype. The method presented in Section V filters
signals which are significant. The electronic current regulation
creates current ripples. Their effect can be seen on the input
power shown in Fig. 13. This curve is obtained by averaging
over a current period the sum of the instantaneous electrical
power in each of the three phases. The dashed line in Fig. 14
represents the efficiency of the VHS prototype calculated by
dividing the input power of the prototype by the mechanical
output power deduced by the method of Section V. The ripple
in this efficiency curve is due to the fact that the torque mea-
surement method filters the effect of the current regulation in
the electronics which commands the power bridge. The ripples
on the right side are also due to a side effect in the polynomial
fitting process. This efficiency curve is averaged using a poly-
nomial function of order eight. The resulting real efficiency is
represented as a continuous line also shown in Fig. 14.

The mechanical power output curve shown in Fig. 13 is
obtained by multiplying the real efficiency (continuous line
shown in Fig. 14) by the input power.

At 200 kr/min, the efficiency is 87.0% and the output power
is 2.19 kW. It takes 244 ms to accelerate the rotor from O to
200 kr/min. The maximum measured speed is 206 kr/min.

C. Model Validation

It is important to emphasize that the model is a fit-free model.
Every parameter is taken from the literature, material data sheet,
or is separately measured.

The 2-D torque model shown in (4) is validated through 2-D
finite element methods with an error of less than 0.01%. The
measured static torque is 11.2% lower than the model because
of 3-D effects.

Since there are no fitting parameters, the presented model
has the advantage to be general. Indeed, any fitting parameter
would be geometry dependent or design dependent and lowers
the range validity of the model. For this reason, the choice
was made not to include any parameters fitted to the measured
prototype.

The constraints on the rotor dimensions added by the me-
chanical model are validated by the fact that the rotor does not
break at 200 kr/min.

As shown in Fig. 14, the dots represent the efficiency given
by the analytical model. For the power output of 2.19 kW at
200 kr/min, the efficiency given by the model is 93.9% instead
of the 87.0% measured. As shown in Fig. 14, we see that
although there is a ratio between the theoretical and measured
power losses, the curve form is correct.

This confirms that some important theoretical aspect have not
been taken into account in the modeling. To improve the model,
the following aspects need to be considered.

1) The eddy currents power losses in the rotor produced by

the magnetic field created by the current in the coils.

2) The eddy currents power losses in the coils.

3) The iron power losses in the stator yoke due to the field
created by the current in the coils.

4) The effect of the 3-D structure on the torque model.

5) The effect of the higher harmonics of current due to the
120° ON operation mode inverter. Indeed, in this paper,
only the first harmonic is considered, since the currents
are assumed to be sinusoidal functions of the time.

VII. CONCLUSION

The different aspects of the modeling of a VHS PM slotless
motor have been presented: the multiphysics analytical model,
the optimization, the prototype, the measurements methods, and
the comparison between the model and the measurements. The
approach shows excellent results: it allowed to overcome the
original target of 200 kr/min, 2 kW.

The magnetic torque model is in very good agreement with
2-D finite element methods.

The optimization process, which takes in the presented case
less than 1 s, allows one to test many different configurations.
In particular, Pareto frontiers are calculated. They give a repre-
sentation of the physics of the motor.

Both the ball bearing measurement method and the mo-
tor torque measurement method showed good results. The
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ball bearing friction torque measurement method gives results
which are useful for the validation of the total efficiency of the
prototype. The motor torque measurement method is successful
at 200 kr/min, 2 kW. It showed that the model gives a right
insight into the physics the PM slotless machine, although there
are still missing parts in the power losses model.

The next step which will need to be considered is the rotor
losses created by eddy currents, in the PM, in the sleeve, and in
the coils.
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