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ABSTRACT
This paper presents a novel algorithm for computing the relative mo-
tion between images from compressed linear measurements. We
propose a geometry based correlation model that describes the rel-
ative motion between images by translational motion of visual fea-
tures. We focus on the problem of estimating the motion field from a
reference image and a highly compressed image given by means of
random projections, which are further quantized and entropy coded.
We capture the most prominent visual features in the reference im-
age using geometric basis functions. Then, we propose a regular-
ized optimization problem for estimating the corresponding features
in the compressed image, and eventually the dense motion field is
generated from the local transform of the geometric features. Exper-
imental results show that the proposed scheme defines an accurate
motion field. In addition, when the motion field is used for image
prediction, the resulting rate-distortion (RD) performance becomes
better than the independent coding solution based on JPEG-2000,
which demonstrates the potential of the proposed scheme for dis-
tributed coding algorithms.

1. INTRODUCTION

Distributed processing has recently found applications in vision sen-
sor networks due to the low complexity encoding stage. One of the
most important and challenging tasks in such a scenario is to esti-
mate the correlation between the signals or images captured by dif-
ferent sensors, so that the information can be efficiently processed,
coded or rendered. In this paper, we tackle the problem of estimating
the correlation between a pair of images, where the common objects
in different images are displaced due to the motion in the scene or
positioning of the vision sensors. In particular, we are interested in
computing this correlation when images are highly compressed and
given under the form of few quantized linear measurements. This
permits to have a low complexity acquisition that consists in com-
puting inner products with a random projection matrix, instead of
acquiring the entire image [1, 2].

We consider here the estimation of a motion field between the
compressed image and the reference image. We model the motion
between images as the geometric transformation of visual features.
We first compute the most prominent visual features in the reference
image and approximate them with geometric functions drawn from
a parametric dictionary. We then formulate an optimization frame-
work whose objective is to compute the corresponding features in
the compressed image along with the relative geometric transforma-
tion. We add a regularization constraint in order to ensure that the
estimated motion field is consistent and corresponds to the actual
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motion of visual objects. We show by experiments that the proposed
algorithm accurately estimates the transformation between the pair
of images. In particular, we show that dictionary based on geomet-
ric basis functions permits to capture the correlation more efficiently
than the dictionary built on patches from the reference image [4]. In
addition, we show that the motion field can be used to estimate the
compressed image by motion compensation. Such reconstruction
strategy outperforms independent coding scheme like JPEG 2000 in
terms of RD performance, which outlines the potential of the pro-
posed algorithm for distributed coding applications.

The concept of random projections in distributed scenarios has
been previously studied in [3], where three joint sparsity models are
designed and used in joint signal reconstruction algorithms. The
problem of signal recovery based on random projections has recently
been extended to distributed image or video coding, in an effort to
reduce the complexity of the encoding stage [4, 5]. However, most
works assume that the signal of interest is sparse in an orthonor-
mal basis (e.g., DCT or wavelet) and fail to exploit the advantage of
structured geometric dictionary in capturing the correlation between
images. Few works have been reported in the literature in effort to
build a correlation model for the images [7] or video [8] using a re-
dundant structured dictionary. But these works developed the model
using the approximated image but not from the linear measurements.
However, we focus on estimating the motion from the random pro-
jections and the correlation model is built using the geometric trans-
formation captured by the structured dictionary. Such a scheme is
shown to be accurate in capturing the motion and provides an inter-
esting alternative for distributed video or image coding with a simple
encoding stage.

2. PROPOSED FRAMEWORK

We consider a framework where a pair of images I1 and I2 repre-
sents a scene at different time instants, or from different viewpoints,
are correlated through the motion of visual objects. The images are
transmitted to a joint decoder that estimates the relative motion be-
tween the received signals. The framework is illustrated in Fig. 1.

One of the images is encoded and decoded independently and
serves as a reference image for motion estimation. While this im-
age could be encoded with any coding algorithm, we choose here
to represent the reference image I1 by random linear measurements
y1 = ψ I1 with a projection matrix ψ. The measurements are used
by the decoder to reconstruct an approximation Î1 using a convex
optimization algorithm [9] under the assumption that I1 is sparse in
particular basis (e.g., a wavelet basis).

The second image I2 is also projected on a random matrix ψ.
The measurements y2 = ψ I2 are further quantized and are option-
ally entropy coded. The decoder performs the reverse operations (de-
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Fig. 1. Schematic representation of the proposed scheme.

quantization and entropy decoding) to form the measurement vector
ŷ2. This measurement vector is finally used by the joint decoder to
estimate the relative transformation between the images I1 and I2.

We propose to model the correlation between the images by rel-
ative transformation between prominent visual features in both im-
ages. We assume that images I1 and I2 can be represented by sparse
linear expansion of geometric function gγ taken from a parametric
and overcomplete dictionary D = {gγ}. The geometric function
gγ in D is usually called as atom. The dictionary is constructed by
applying set of geometric transformations to the generating function
g. These geometric transformations can be represented by a family
of unitary operator U(γ), so that the dictionary spanning the input
space takes the form D = {gγ = U(γ)g, γ ∈ Γ} for a given set of
transformation indexes Γ. Typically this transformation set consists
of scaling sx, sy , rotation θ, and translation tx, ty operators, defined
as

[
u
v

]
=

[
1/sx 0

0 1/sy

] [
cos θ sin θ
−sin θ cos θ

] [
x− tx

y − ty

]

where x, y defines the image coordinate. Thus, each of the transfor-
mation is indexed by five parameters.

We can then write the approximation of the first image with
functions or atoms in D as

Î1 ≈
N∑

k=1

ck gγk . (1)

The approximation of Î1 can be computed by sparse algorithms
such as Matching Pursuit [6], which greedily pick up the N atoms
{gγk} that best match the image Î1. The second image I2 can be de-
scribed similar to equation 1. Under the assumption that the images
I1 and I2 are correlated, the second image I2 could be approximated
with transformed version of the atoms used in the approximation of
Î1. We can thus write

I2 ≈
N∑

k=1

ck F k(gγk ), (2)

where F k(gγk ) represents a local geometrical transformation of the
atom gγk . Due to the parametric form of the dictionary, the ef-
fect of F k corresponds to a geometrical transformation of the atom
gγk that results in another atom in the same dictionary. Therefore,
it is interesting to note that the transformation F k on gγk , boils
down to a transformation of the atom parameters, i.e., F k(gγk ) =
U(δγ)gγk = gγk+δγ = gγ′

k
. Interestingly, local transformation of

the atoms gγk therefore lead to atoms that are part of a subdictionary
gathering neighbours of gγk and given as

D′ = {gγ′
k

: γ′k ∈ [γk + δγ, γk − δγ]} (3)

Now the main challenge in the joint decoder is to estimate the
local geometrical transformation F k for each of the atoms gγk from

the linear measurements ŷ2. In the next section, we formulate a regu-
larized optimization problem in order to estimate F k, or equivalently
the relative motion between images I1 and I2.

3. MOTION ESTIMATION FROM COMPRESSED
SIGNALS

Given the set of N atoms {gγk} that approximate the first image,
the motion estimation problem consists in finding the corresponding
visual patterns in the second image, while the latter is only given by
compressed random measurements ŷ2. This is equivalent to finding
the correlation between the images, with the joint sparsity model
described above.

We propose to estimate the transformation F k iteratively, by de-
forming each of the N atom parameters γk by one increment in the
parameter space. In particular, as we search for translational motion,
we focus on the search space S that is given by perturbing each atom
position by one unit, i.e., tx ± 1 and ty ± 1 for each atom γk. We
initialize the algorithm with zero motion, i.e., the atoms {gγk} gen-
erated from Î1 are used in the first iteration. Then at each iteration,
we find the best N atoms {gγ′

k
}, or equivalently, the set of atom

parameter Λ that minimizes the mean square error (MSE) w.r.t. the
quantized measurements ŷ2. More formally,

Ed = min
Λ∈S

‖ ŷ2 −ΨΛΨ†Λŷ2 ‖2 (4)

where Ψ = ψ[gγ1 |gγ2 |.....|gγN ]. Then the next iteration is initial-
ized based on the solution of the previous iteration, and the process
is continued for T iterations or till convergence is reached.

The local motion of atoms are used to define a dense motion
field. Given a pair of corresponding atoms gγk and gγ′

k
in images I1

and I2 respectively, we first calculate the mapping of each pixel z =
(xp, yp) in gγk to its corresponding pixel z′ = (xq, yq) on gγ′

k
using

equation 1. This grid transformation (xp−xq, yp−yq) corresponds
to the amount of local motion captured by the pair of atoms gγk and
gγ′

k
. Using a similar process, the mapping is established for all the

N atom pairs from the respective transform parameters γk and γ′k.
Then the grid transformation captured by all the N pairs of atoms are
merged together to estimate the motion field. One possibility is to
take the weighted average of grid transformation induced by all the
N atoms. One can assign the relative weight based on the response
of the atom at the pixel location z = (xp, yp). Mathematically, the
horizontal component of the motion field at the location z is given as

mxp =

∑N
k=1 w

(k)
z (x

(k)
p − x

(k)
q )

∑N
k=1 w

(k)
z

. (5)

where w
(k)
z is the response or value of the kth atom at the location z

i.e., w
(k)
z = gγk (z) = gγk (xp, yp). The vertical component of the

motion field is defined very similar to equation 5.



During motion estimation, we further enforce the smoothness of
the motion field. The goal of the smoothness term is to penalize the
atom deformation in the neighborhood, so that it results in coherent
motion for the neighborhood atoms. We compute the smoothness
cost function using

Es =
∑

p,q∈N
Vp,q (6)

where N is the usual 4 pixel neighborhood. The term Vp,q is com-
puted using min((mxp −mxq )2 +(myp −myq )2, K), where mxp

and myp are the x and y component of the motion field at the pixel
location z = (xp, yp). We then merge both cost functions Ed and
Es as a single cost function. The estimation of the motion field is
finally given by the solution of the optimization problem given as

E = min
Λ∈S

(Ed + λEs) (7)

We obtained the motion field in an iterative way where each
iteration consists in the perturbation of one of the atoms from the
previous iteration. The joint decoding algorithm is summarized in
Algorithm 1.

Algorithm 1 Joint Decoder
1: Input N, λ, K, T
2: Generate {gγk} from Î1 s.t. Î1 ≈

∑N
k=1 ck gγk

3: Initialize (mx, my) = (0, 0) i.e., {γ′k} = {γk}
4: for 1:T do
5: Generate index search space S as {γ′k} ∪ {η′k}, with γ′k =

(tk
x, tk

y , θk, sk
x, sk

y) and η′k = (tk
x ± 1, tk

y ± 1, θk, sk
x, sk

y)
6: Evaluate data cost Ed

7: Compute motion field (mx, my) and then calculate smooth-
ness cost Es

8: Find N atom indexes {γ′k} in S using Eq. 7
9: end for

4. EXPERIMENTAL RESULTS

4.1. Setup

The experiments have been performed on one synthetic image set
(given in Fig. 2) and one natural image set with resolution 128×128.
The natural image set is built from frames 1 and 18 of the container
video sequence. The dictionary D is constructed using two gener-
ating functions, as explained in [6]. The first one consists of 2D
Gaussian function to capture low frequency component. The second
function represents Gaussian in one direction, and the second deriva-
tive of 2D Gaussian in the orthogonal direction to capture the edges.
The translation parameters tx and ty varies from 1 to 128, while 10
rotation parameters are used between 0 and π. The scaling parame-
ters are uniformly distributed on a logarithmic scale from one up to
a sixth of the size of the image, with a resolution of one fifth of oc-
tave. The random projections are computed using Hadamard matrix
of block size 8 [9]. The measurements y2 are quantized uniformly
using a two bit quantizer. The reference image I1 is encoded inde-
pendently using 3600, and 10,000 measurements for synthetic and
natural image sets respectively. In both cases, the quality of Î1 w.r.t.
I1 is approximately 30 dB. Matching Pursuit is carried out on Î1,
and the image Î1 is approximated using N = 10 atoms for synthetic
image set and N = 50 atoms for natural image set. The search win-
dow size is δγ = 4 pixels for the translation components tx and ty ,
and no changes in scale or rotation is considered.

4.2. Performance analysis

The transformation F k is estimated using the algorithm described in
Algorithm 1. The resulting dense motion field is used to warp the
reference image Î1 and the image thus reconstructed is represented
by Î2 (see Fig. 1). Fig. 3 and Fig. 4 show the comparison of the re-
constructed image Î2 w.r.t. I2 and I1 for synthetic and natural image
sets respectively. It is clear that the MSE is small for Î2 − I2 com-
pared to Î2−I1, indicates that the image Î2 is closer to I2 than I1. In
other words the proposed scheme captures the correlation between
the images efficiently. We also compare the accuracy of motion w.r.t.
the ground truth. For the synthetic scene the normalized L1 norm er-
ror of the generated motion field (from 60 quantized measurements)
w.r.t. ground is 0.02.

Furthermore, in order to demonstrate the effect of regularization,
we estimate the transformation F k based only on the data cost Ed,
i.e., λ = 0, and Fig. 5 shows the reconstructed image Î2 with and
without regularization. It is clear that the regularization helps a lot
to improve the quality of the reconstructed image Î2.

Finally, Fig. 6 shows the RD comparison of the reconstructed
image Î2 with JPEG 2000 based coding strategy. The bit rate is
computed by encoding the quantized measurements using an Arith-
metic coder. From the Fig. 6 it is clear that the proposed scheme
outperforms JPEG 2000 by a margin of almost 3 dB, especially at
lower rates. Similar observation is made for synthetic image set. For
example, to attain the reconstruction quality of 27.6 dB, JPEG 2000
requires approx 1800 bits, while proposed scheme requires only ap-
prox 150 bits. It is worth mentioning that the gain over independent
coding scheme is achieved mainly by compensating the motion be-
tween the images, and further gain could be achieved by improving
the reconstruction stage.

4.3. Benefit of structured dictionary

In order to demonstrate the benefit of geometric dictionary, we com-
pared the results to a scheme, which adaptively constructs the dictio-
nary using blocks or patches in the reference image [4]. As demon-
strated in [4], we divide the image I2 into 8 × 8 blocks and the
measurements are generated for each blocks, and further they are
quantized, and entropy coded. The decoder selects the best block
within the search window that minimizes the MSE. The displace-
ment between the corresponding blocks represents the motion field.
The generated motion field is used to warp the reference image Î1,
and the image Î2 is thus reconstructed. Fig. 6 compares the quality
of reconstructed image Î2 with our scheme, and it is clear that our
scheme outperforms block based scheme, mainly due to rich repre-
sentation of the visual information provided by structured dictionary.

5. CONCLUSIONS

In this paper we have presented a method to estimate the dense mo-
tion field from the linear measurements. We have used structured
dictionary to capture the prominent geometric features in the images.
We relate the prominent features in both images using a geometry
based correlation model. Then the motion field is computed using a
regularized optimization under local transform constraints. Experi-
mental results demonstrate that the proposed methodology is able to
compute an accurate dense motion field, which opens an interesting
perspective towards the design of distributed coding algorithms in
vision sensor networks.



(a) (b)

Fig. 2. Synthetic Image set (a) Image I1 (b) Image I2

(a)MSE : 116 (b)MSE : 446

Fig. 3. Synthetic Image set: Comparison of Î2 with I2 and I1 (a) 1−
|Î2−I2| (b) 1−|Î2−I1| (white pixels denotes no error). The image
Î2 is reconstructed using 60 quantized measurements.

(a)MSE : 252 (b)MSE : 334

Fig. 4. Natural Image set: Comparison of Î2 with I2 and I1 (a) 1−
|Î2−I2| (b) 1−|Î2−I1| (white pixels denotes no error). The image
Î2 is reconstructed using 1700 quantized measurements.
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