
1

On Feedback for Network Coding
Christina Fragouli, Desmond Lun, Muriel Médard, Payam Pakzad
christina.fragouli@epfl.ch, dslun@mit.edu, medard@mit.edu, payam@digitalfountain.com

Abstract—In this paper we examine possible ways
that feedback can be used, in the context of systems
with network coding capabilities. We illustrate, through
a number of simple examples, that use of feedback can
be employed for parameter adaptation to satisfy QoS
requirements as well as for reliability purposes. We also
argue that there are benefits in applying network coding to
the feedback packets themselves, and finally, we examine
the design of acknowledgment packets.

I. INTRODUCTION
In this paper we present a first attempt to study

feedback in the context of network coding. The
questions we are interested in are 1) how can
feedback help, and 2) how should feedback be
designed. More generally, we look at the problem of
designing and using control information in a system
that employs network coding. In this context, we
propose a number of ideas, that we think mature,
are promising directions for further research.
We consider networks that can be represented

as directed graphs, with each edge corresponding
to a packet erasure channel. A source located at
a vertex of the graph multicasts information to N
receivers R1, R2, . . . , RN . For N = 1 we get a
unicast connection as a special case.
Let mi denote the information-theoretic min-

cut capacity between the source and receiver Ri,
and let m := mini mi. From information-theoretic
arguments we know that the source can multicast
information to each receiver at a rate arbitrarily
close to m, by allowing intermediate nodes in
the network to randomly combine their incoming
information streams [1]. This result assumes that
the source knows the min-cut value and encodes
information at the corresponding information rate.
Moreover, it assumes no complexity constraints:
each intermediate node in the network encodes its
incoming information streams using an arbitrarily
complex forward error correction (FEC) scheme.
FEC schemes that attempt to approach this per-

formance under more practical constraints were pre-
viously investigated for example in [2], [3], [4], [7].

These schemes operate at a network or application
layer, and employ low complexity processing at
intermediate nodes.
Feedback (e.g., ARQ) offers an alternative to

FEC. Idealized feedback assumes that a transmitter
instantaneously knows whether a transmitted packet
has been successfully received or not. In the case
of a unicast connection over a network of erasure
channels, idealized feedback allows to achieve the
min-cut capacity with no coding at the transmitter.
Feedback is also used for congestion control and
rate adaptation. In the context of network coding
such mechanisms are explored in [13], [14], [15].
In practice, feedback comes at a cost. Acknowl-

edgment packets form a new source of traffic in
the network that needs to be reliably transmitted.
Moreover, waiting for acknowledgment packets to
arrive may increase delay. Clearly, there are inter-
esting trade-offs between the use of feedback and
forward error correction for network coded schemes
to be explored.
In this paper we outline a number of examples,

illustrating the benefits that the use of feedback
can offer for network coded traffic (Section II), the
benefits of applying network coding to the feedback
packets themselves (Section III), and the benefits of
designing acknowledgment packets specifically for
network coded traffic (Section IV). detail.

II. HOW CAN FEEDBACK HELP
Current networking protocols employ feedback

towards two goals: reliability against packet losses,
and rate adaptation. We argue in this section, and
illustrate through simple examples, that using appro-
priately designed feedback one can achieve similar
goals for systems that employ network coding.

A. Parameter Adaptation
In a network where the available link capac-

ities dynamically change – for example due to
varying traffic patterns – feedback can be used to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147955462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

adapt network coding parameters to satisfy QoS
requirements. As a specific instance, consider an
application multicasting packets to a set of receivers,
over a network subject to packet erasures. Assume
an asynchronous network operation, where interme-
diate nodes uniformly at random combine packets.
In practical implementations of network coding,
the information packets are divided into sets called
generations, and intermediate nodes on the network
linearly combine only packets belonging in the same
generation [5].
As is observed from experimental studies in the

literature [6], the size of the generation affects the
achievable rate the receivers observe. Indeed, it
affects the size of the erasure correcting codes em-
ployed and thus the erasure correcting capabilities.
Moreover, it also affects the multicasting capacity,
i.e., whether the average min-cut rate towards all
receivers in the multicast group is achieved.
Assume now that we are interested in a delay-

sensitive application, where packets decoded after
a “deadline” are useless and are simply discarded.
Use of a large generation size may allow to achieve
higher information rates, thus reducing the average
packet decoding time. On the other hand, use of
a large generation size may increase the decod-
ing delay, because receivers need to wait for the
reception of more coded packets before decoding.
Indeed, the generation size determines the size of
decoding matrices the receivers use to decode the
data, and thus, the block decoding delay is directly
proportional to the size of the generation. We can
summarize this trade-off as follows: using small
generation sizes may reduce the throughput and
erasure-correcting benefits of mixing information
packets, while large generation sizes may incur
unacceptable decoding delay at the receivers.
Feedback from the receivers to the source can be

used to adaptively adjust the generation size, and
thus maximize the number of packets successfully
decoded within the delay specifications. The source
response to this type of feedback can be thought
of as being similar in nature to the TCP window,
used by TCP for purposes of congestion control:
closing the transmission window would correspond
to reducing the generation size, while opening the
transmission window would correspond to increas-
ing the generation size. We illustrate this approach
for the following simple example.
Example 1: Consider a combination network

with h sources, N receivers, and k coding edges
{AiBi} as depicted in Fig. 1. Assume that time is
slotted, and that at every time slot we can send one
symbol through every edge (unit capacity edges).
Moreover, assume that the edges between nodes A
and B have an associated delay. This delay is a
random variable distributed according to a given dis-
tribution P , and operating using a “slower” clock.
For example, assume that the delays associated with
the links change in an i.i.d. fashion every M time-
slots. Finally, due to QoS requirements, the receivers
need to decode the data within a delay of T thres.

S

S1 S2 Sh

· · ·

· · ·
A1 A2 Ak−1 Ak

B1 B2 Bk−1 Bk

R1
R(k

h)

· · ·

· · · · · ·

Fig. 1. The combination B(h, k) network has h sources and N =
`

k

h

´

receivers. The k nodes {Ai} have mincut h from the source.
Each receiver observes a distinct subset of h B-nodes, and thus has
also mincut h. Edges have unit capacity and sources have unit rate.

To transmit at rate h to all receivers, the source
can send at most h uncoded data packets through h
edges AB, and additionally, k − h linear combina-
tions that depend on all source symbols through the
remaining edges. Consider a receiver that observes
h of these k − h edges. Ignoring the processing
delay, for the receiver to decode the data within
a delay of T thres, all edges AB it observes need
to incur delay less than T thres, which occurs with
probability P(d < T thres)h. Thus, if even one of
the h edges incurs non-acceptable delay, all the h
received symbols become useless to the receiver.
On the other extreme, if the source sends uncoded

transmission through every edge, then a receiver
does not need to perform decoding: an edge with
delay greater than T thres will not render any other
received symbol useless. However, with uncoded
transmissions there will exist receivers that observe



3

rate one (instead of h).
Without feedback, the source will in general

choose the strategy that will with high probability
maximize the achievable throughput within the de-
lay constraints.
Assume now that the receivers send feedback to

the source. The source can then simply not use
the edges AB that incur unacceptable delay, and
employ a coding scheme that allows to maximize
the achievable rate using the remaining edges. To
conclude, use of feedback may allow to optimize the
achievable rate subject to rigid delay requirements.
!

B. Reliability
We here argue that use of feedback can help to

save resources, such as memory, in systems that
provide reliable transmission over erasure networks.
We also propose the use of schemes that combine
ARQ and FEC at a given designed rate as described
in the following.
Consider the simple example of a source A trans-

mitting information to a destination C over a path
with intermediate node B. Packets are dropped on
paths AB and BC with probability εAB and εBC

respectively. We assume that εABεBC , and thus the
min-cut capacity is (1 − εAB).

A B C
εAB εBC

Fig. 2. A path from source A to receiver C through the intermediate
node B.

Table I gives a small summary of schemes which
we discuss in terms of delay, achievable rate and
memory requirements, defined in the following.
The first scheme assumes that all nodes A, B

and C employ a capacity-achieving FEC scheme,
as described in [2], [3]. The source node A encodes
k symbols to create n1 coded outputs using a
code C1 and sends them over the channel AB.
Node B will receive on average n1(1− εAB) coded
symbols over n1 time slots. Node B will send n2

packets, using a code (more generally, processing)
C2. If node B finishes transmitting at time d, where
max{n1, n2} ≤ d ≤ n1 + n2, then node C will
receive on average n2(1− εBC) packets after d time
slots. We use, similar to [4], the following metrics:
1) Delay incurred at the intermediate node B: this

is the time (d − k/Cmc), where Cmc is the min-cut
capacity. It represents the excess time, relative to
the theoretical minimum, that it takes for k packets
to be communicated, disregarding any delay due to
the use of the feedback channel. This quantity is
similar to the overhead in the literature on rateless
erasure codes (see, e.g., [8], [9], [10]).
2) Blocksize: the size of an individual coding block.
This quantity is a reflection of delay as it is more
conventionally referred to in networking literature,
i.e., the time between when a single, particular
packet is required at node A and when it is decoded,
and available for use, at node C. Larger coding
blocks correspond directly to larger values of this
delay. As an example, for streaming applications
where the data packets need to be consumed in
the correct order and at the code rate, the block
size immediately translates to the start-up delay
before the information can be used without further
interruption.
3) Feedback: the number of feedback packets used.
This value proportionally contributes to the overall
decoding delay.
4) Memory requirement: the number of memory
elements needed at node B.
5) Achievable rate: the rate at which information
is transmitted from A to C. We say that a coding
scheme is optimal in rate if each component code
achieves capacity over its corresponding channel.
Scheme II (end-to-end FEC) assumes that the in-
termediate node B simply forwards its incoming
packets, and does not have the capability of more
sophisticated storage and processing. Scheme III,
that was investigated in [7], assumes that the coding
node B has a fixed, finite memory of length m in
which it stores packets formed from an incoming
packet stream, and it sends packets formed from
random linear combinations of its memory contents.
This scheme achieves a factor (1 − πm) of the
min-cut capacity, where πm < εBC is the steady
state probability of an appropriately defined Markov
chain as described in [7].
Alternatively to FEC, ARQ also allows to achieve

the min-cut capacity. Current ARQ schemes operate
on the assumption that we want to successfully
receive all transmitted packets, and ensures that by
using one feedback packet per message packet. We
describe this as having feedback of rate Rf = 1. On
the other hand, in the case where we implement FEC
using rateless codes [8], [9], we have one feedback



4

Schemes Rate Delay Feedback Memory Blocksize
I FEC min-cut: (1 − εAB) O(

√
k log k) 0 O(k) k

II end-to-end FEC (1 − εAB)(1 − εBC ) O(k) 0 0 k
III FEC-m (1 − εAB)(1 − πm) O(k) 0 m k

IV ARQ (Rf = 1) min-cut: (1 − εAB) O(
√

k) k O(
√

k) 1
V FEC+ARQ (Rf ) min-cut: (1 − εAB) O(

√
k) kRf O(

√
k) k

TABLE I
SCHEMES FOR PACKET ERASURE NETWORKS. FOR SCHEMES REQUIRING FEEDBACK, WE ASSUME THAT FEEDBACK IS LOSSLESS AND

INSTANTANEOUS. DETAILED CALCULATIONS APPEAR IN [4].

message at the end of transmission (signifying “stop
transmission”). Assume that we send k information
packets. In this case, we say that we have feedback
at an average rate of 1/(k(1 + ε)). That is, the
destination sends one feedback message as soon as
it receives k(1+ε) packets and is thus able to decode
the k information packets.
More generally, we define the feedback rate of a

scheme as

Rf =
number of feedback messages
number of received packets

.

Scheme V captures this general case. The scheme
uses ARQ with rate Rf = 1/f , i.e., every f time
slots node C sends a feedback to node B indicating
how many packets it has received. Node B can
then release that many elements from its buffer.
relaxed, for example, node C sends a feedback once
it receives f packets, etc).
Note that the feedback delay for this scheme is

smaller than the usual ARQ (with Rf = 1) by a
factor of Rf . At the same time, the average memory
used at node B is only a constant 1/Rf(1 − εBC)
elements larger than that of ARQ. The main benefit
of this scheme is that it allows us to achieve the
min-cut rate, while keeping the average memory
requirements at node B finite. Moreover, feedback is
required only on link BC, as opposed to both links
AB and BC. Memory requirements may become
an important consideration in practical systems. For
example, router B may have a common pool of
memory, to be shared among several connections.
Scheme V would allow more connections to benefit
from processing at the router B.

III. APPLYING NETWORK CODING
TO ACKNOWLEDGMENT PACKETS

We now argue there might exist strong incentives
for applying network coding to the feedback packets

themselves. In particular, it may lead to a significant
reduction in terms of bandwidth, as the following
example illustrates.

Consider multicasting along a tree, where N
receivers, at the leaves of the tree, send acknowl-
edgment packets back to the source at the root of
the tree. These N ack packets attempting to reach
the same destination may lead to congestion at the
higher levels of the tree.

packets, The main overhead of the ack packets
comes from the fact that they do not only contain
the payload, i.e., the useful information, but also the
overhead of the packet headers. Our observation is
that, by slightly increasing the payload of the ack
packets, and using network coding techniques, we
can ensure that every edge in the tree is traversed
by at most one ack packet.

Assume that the payload of the ack vector trans-
mitted by receiver i is a length N vector, having
one at position i and zero everywhere else. Each
intermediate node, upon reception of multiple ack
packets, XORs these vectors, and sends the result-
ing vector to its next ancestor. The procedure is
repeated, until the root receives a single vector, with
one at the position of receivers having successfully
received the information. This procedure is illus-
trated in Fig. 3 for a particular configuration. Note
that, intermediate nodes do not need to keep state
information in order to implement this scheme. As
soon as a single acknowledgment packet arrives at
an intermediate node, it can trigger a time window
associated with a particular multicasted information
packet. The node then accumulates ack packets for
the specific information packet during this win-
dow, and sends their XOR to its ancestors. This
approach to concatenating acknowledgment packets
is inspired by the inverse multicast tree monitoring
approach in [11].



5

S

Q0

[11 . . . 11]

Q1

[11 . . . 00]

R1

[10 . . . 00]

R2

. . .

QN

2

[00 . . .11]

RN−1

. . .

RN

[00 . . . 01]

Fig. 3. A tree of depth two spanning N receivers and the associated
ack packets.

IV. ACKNOWLEDGMENT PACKET DESIGN
In this section we look at the contents of ARQ

packets that support network coded connections.
Consider again the unicast connection depicted in

Fig. 2 where node A transmits h information packets
to node C. The receiver C needs to receive h linear
independent combinations of the source data. As
is well known, any set of h linearly independent
combinations, i.e., any basis of the h-dimensional
space, would allow the receiver to decode. Thus, the
receiver simply needs to acknowledge to the node B
how many linear independent combinations (degrees
of freedom) it has received, as opposed to the exact
packets.
In particular, TCP assigns sequence numbers to

bytes transmitted, and depending whether it receives
an acknowledgment packet from the receiving host
within a timeout interval, it either discards a packet
or retransmits it. A receiver acknowledges the last
received byte, using a sequence number of length
32 bits.
Acknowledging degrees of freedom allows to

dispense of the sequence numbering the receiving
host simply needs to acknowledge the number of
received packets. Note that with network coding,
assuming the information packets are generated
over a large field, the probability that any received
packet is a linear combination of the previously
received packets is negligible (see [12]). Thus, the
number of received packets will accurately reflect
the number of degrees of freedom. It is clear that
we can convey the number of received packets

within the TCP prescribed timeframes with a much
smaller number than 32 bits, for example, using 8
bits. Moreover, acknowledging degrees of freedom
allows to reduces the overhead of keeping track of
the sequences of packets received, which reduces
both the computational and memory requirements.

V. CONCLUSIONS
In this paper we presented a number of simple

observations that indicate the possible benefits use
of feedback can offer in the context of network
coding. Such benefits include, adaptive parameter
optimization to satisfy QoS requirements, and re-
duction of resources such as memory elements and
bandwidth consumption.

REFERENCES
[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp.
1204–1216, July 2000.

[2] D. Lun, M. Médard,M. Effros, “On coding for reliable commu-
nication over packet networks,” in Proc. Allerton Conference on
Communication, Control, and Computing, 2004.

[3] D. S. Lun, M. Médard, R. Koetter, and M. Effros. “Further results
on coding for reliable communication over packet networks,” in
Proc. ISIT 2005

[4] P. Pakzad, C. Fragouli and A. Shokrollahi, “Coding schemes for
line networks,” in Proc. ISIT 2005.

[5] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding”, in
Proc. 41st Allerton Conf. Communication, Control and Comput-
ing, Monticello, IL, Oct. 2003.

[6] C. Fragouli, J. Widmer and J.Y. LeBoudec, “Effi cient broad-
casting using network coding”, to appear in ACM Trans. on
Networking, 2007.

[7] D. S. Lun, P. Pakzad, C. Fragouli, M. Médard, and R. Koetter,
“An analysis of fi nite-memory random linear coding on packet
streams,” in Proc. WiOpt ’06.

[8] M. Luby, “LT codes,” in Proc. IEEE Symposium on the Founda-
tions of Computer Science (STOC), 2002, pp. 271-280.

[9] A. Shokrollahi “Raptor codes”, IEEE Transactions on Informa-
tion Theory, vol. 52, iss. 6, pp. 2551-2567, 2006.

[10] P. Maymounkov, N. J. A. Harvey, and D. S. Lun. “Methods for
effi cient network coding,” in Proc. Allerton 2006.

[11] C. Fragouli and A. Markopoulou, “A network coding approach
to network monitoring,” in Proc. Allerton 2005.

[12] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger,
“A random linear network coding approach to multicast,” IEEE
Transactions on Information Theory, vol. 52, iss. 10, pp. 4413-
4430, October 2006.

[13] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast
with intra-session network coding,” in Proc. 43th Annual Allerton
Conference on Communication, Control, and Computing, Sept.
2005.

[14] T. Ho, Y.-H. Chang, and K. Han, “On constructive network
coding for multiple unicasts”, in Proc. 44th Annual Allerton
Conference on Communication, Control, and Computing, Sept.
2006.

[15] A. Eryilmaz and D. S. Lun, “Control for inter-session network
coding,” In Proc. 2007 Information Theory and Applications
Workshop (ITA 2007), January-February 2007.


