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A Simple Converse of Burnashev’s Reliability
Function
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Abstract—In a remarkable paper published in 1976, Burna-
shev determined the reliability function of variable-length block
codes over discrete memoryless channels (DMCs) with feedback.
Subsequently, an alternative achievability proof was obtained by
Yamamoto and Itoh via a particularly simple and instructive
scheme. Their idea is to alternate between a communication and a
confirmation phase until the receiver detects the codeword used
by the sender to acknowledge that the message is correct. We
provide a converse that parallels the Yamamoto–Itoh achievability
construction. Besides being simpler than the original, the pro-
posed converse suggests that a communication and a confirmation
phase are implicit in any scheme for which the probability of
error decreases with the largest possible exponent. The proposed
converse also makes it intuitively clear why the terms that appear
in Burnashev’s exponent are necessary.

Index Terms—Burnashev’s error exponent, discrete memoryless
channels (DMCs), feedback, reliability function, variable-length
communication.

I. INTRODUCTION

I T is well known (see, e.g., [1] and [2]), that the capacity
of a discrete memoryless channel (DMC) is not increased

by feedback.1 Nevertheless, feedback can help in at least two
ways: for a fixed target error probability, feedback can be used
to reduce the sender/receiver complexity and/or to reduce the
expected decoding delay. An example is the binary erasure
channel, where feedback makes it possible to implement a
communication strategy that is extremely simple and also
minimizes the delay. The strategy is simply to send each infor-
mation bit repeatedly until it is received unerased. This strategy
is capacity achieving, results in zero probability of error, and
reproduces each information bit with the smallest delay among
all possible strategies.
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1According to common practice, we say that feedback is available if the en-
coder may select the current channel input as a function not only of the message
but also of all past channel outputs.

The reliability function—also called the error exponent—is
a natural way to quantify the benefit of feedback. For block
codes on channels without feedback, the reliability function is
defined as

(1)

where is the smallest possible error probability of
length block codes with codewords.

The decoding time in a communication system with feed-
back may depend on the channel output sequence.2 If it does,
the decoding time becomes a random variable and the notions
of rate and reliability function need to be redefined. Following
Burnashev [3], in this case we define the rate as

(2)

where is the size of the message set. Similarly, we define the
reliability function as

(3)

where is the smallest error probability of a vari-
able-length block code with feedback that transmits one of
equiprobable messages by means of or fewer channel uses on
average. As we remark below, the limit exists for all rates from
zero to capacity.

Burnashev showed that for a DMC of capacity , the relia-
bility function equals

(4)

where is determined by the two “most distinguishable”
channel input symbols as

where is the probability distribution of the channel
output when the input is , and denotes the Kull-
back–Liebler divergence between two probability distributions.
It is remarkable that (4) determines the reliability function
exactly for all rates. In contrast, the reliability function without
feedback is known exactly only for rates above a critical
rate. Below the critical rate, only upper and lower bounds to
the reliability function without feedback are known. For a
binary-symmetric channel the situation is depicted in Fig. 1.

2If the decoding time is not fixed, in the absence of feedback the sender may
not know when the receiver has decoded. This problem does not exist if there is
feedback.
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Fig. 1. Reliability functions for a binary-symmetric channel with crossover
probability ���. Shown is Burnashev’s reliability function for channels with
feedback (solid line) and upper and lower bounds to the reliability function
for channels without feedback. The upper bound (dotted line) is given by the
straight line bound at low rates and by the sphere packing bound at higher rates.
The lower bound (dot–dashed line) is given by the expurgated bound. The upper
and lower bounds coincide above the critical rate, � .

Burnashev showed that by showing that for every
communication scheme

(5)

where represents positive terms that tend to zero as
tends to infinity, and that there exists schemes with

(6)

where now represents positive terms that tends to zero as
both and tend to infinity.

For a plausibility argument that justifies (6) it suffices to sum-
marize the achievability construction by Yamamoto and Itoh [4].
Their scheme relies on two distinct transmission phases that we
shall call the communication and the confirmation phase, re-
spectively. In the communication phase the message is encoded
using a fixed-length block code and the codeword is transmitted
over the forward channel. The decoder makes a tentative deci-
sion based on the corresponding channel output. The encoder
knows the channel output and can run the algorithm used by
the receiver to determine the tentative decision. If the tenta-
tive decision is correct, in the confirmation phase the encoder
sends ACK. Otherwise, it sends NACK. ACKs and NACKs are
sent via a fixed-length repetition code. (The code consists of
two codewords). During the confirmation phase, the decoder
performs a binary hypothesis test to decide if ACK or NACK
was transmitted. If ACK is decoded, the tentative decision be-
comes final and the transmission of the current message ends,
leaving the system free to restart with a new message. If NACK
is decoded, the tentative decision is discarded and the two-phase
scheme restarts with the same message.

The overhead caused by retransmissions is negligible if the
probability of decoding NACK is small. This is the case if both
the error probability of the communication phase as well as that
of the confirmation phase are small. Assuming that this is the
case, the number of channels used for the communication phase
(including repetitions) is slightly above . The prob-
ability of error is the probability that NACK is sent and ACK

is decoded. In the asymptotic regime of interest, this proba-
bility is dominated by the probability that ACK is decoded given
that NACK is sent. In a straightforward application of Stein’s
lemma [5] one immediately sees that we can make this proba-
bility to be slightly less than (thus, achieve error probability

) by means of a confirmation code of length slightly above
. Summing up, we see that we can make the error

probability arbitrarily close to by means of slightly more
than channel uses on average. This con-
firms (6).

To obtain the converse (5), Burnashev investigated the en-
tropy of the a posteriori probability distribution over the mes-
sage set. He showed that the average decrease of this entropy
due to an additional channel output observation, as well as the
average decrease of the logarithm of this entropy, are bounded.
He used these bounds to form two submartingales, one based on
the entropy of the a posteriori distribution and the other based
on the logarithm of this entropy. He then constructed a single
submartingale by patching these two together. Then Doob’s op-
tional stopping theorem was applied to this submartingale and
the desired bound on the expected decoding time, which is a
stopping time, was obtained. Burnashev’s proof is an excellent
example of the power of martingales, however, both the sophis-
tication of the martingale construction and the use of the loga-
rithm of entropy leaves the reader with little insight about some
of the terms in the converse bound. While it is easy to see that

channel uses are needed on average, it was not as
clearto us why one needs an additional channel
uses. The connection of the latter term to binary hypothesis
testing suggested the existence of an operational justification.
The work presented in this paper started as an attempt to find
this operational justification.

Our converse somewhat parallels the Yamamoto–Itoh achiev-
ability scheme. This suggests that a communication and confir-
mation phase may be implicit components of any scheme for
which the probability of error decreases with the largest pos-
sible exponent. Our approach has been generalized by Como,
Yüksel, and Tatikonda in [6] to prove a similar converse for vari-
able-length block codes on finite state Markov channels.

II. CHANNEL MODEL AND VARIABLE-LENGTH

CODES AS TREES

We consider a DMC, with finite input alphabet , finite
output alphabet , and transition probabilities . We
will denote the channel input and output symbols at time

by and , and denote the corresponding vectors
and by and , re-

spectively. A perfect causal feedback link is available, i.e., at
time , the encoder knows . (Following common practice,
random variables are represented by capital letters and their re-
alizations are denoted by the corresponding lowercase letters.)

We will assume, without loss of generality, that the channel
has no “useless outputs symbols,” i.e., no symbols for which

for every . Note that for channels for which
is infinite, the lower bound to the expected decoding time is a
restatement of the fact that feedback does not increase capacity.
We will therefore restrict our attention to channels for which

. For such channels, for every and ;
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if not, there exists an and for which . Since
is reachable from some input, there also exists an for which

. But then contradicting
the finiteness of . The fact that both and are finite sets
lets us further conclude that for the channels of interest to this
paper, there is a for which for every and .

A variable-length block code is defined by two maps: the en-
coder and the decoder. The encoder3 functions

, where is the set of all possible
messages, determine the channel input
based on the message and on past channel outputs . The
decoder function , where is the receiver ob-
servation space until the decoding time , i.e., takes values
in . The decoding time should be a stopping time4 with re-
spect to the receiver observation , otherwise the decision of
when to decode would depend on future channel outputs and
the decoder would no longer be causal. We treat the case when

, and point out that what we are setting out to prove,
namely (5), is trivially true when .

The codes we consider here differ from non-block (also called
sequential) codes with variable delay, such as those studied in
[8] and [9]. In sequential coding, the message (typically as an in-
finite stream of bits) is introduced to the transmitter and decoded
by the receiver in a progressive fashion. Delay is measured sep-
arately for each bit, and is defined as the time between the intro-
duction and decoding of the bit. This is in contrast to the codes
considered in this paper, where the entire message is introduced
to the transmitter at the start of communication, and mea-
sures the duration of the communication. Due to their different
problem formulations, sequential codes with feedback have reli-
ability functions that differ from those for variable-length block
codes, just as fixed constraint length convolutional codes have
reliability functions that differ from those of fixed-length block
codes.

The observation space is a collection of channel output
sequences and for a DMC with feedback the length of these
sequences may vary. (The length of the channel input itself
may depend on the channel realization.) Nevertheless, these se-
quences have the property of being prefix-free (otherwise the
decision to stop would require knowledge of the future). Thus,

can be represented as the leaves of a complete -ary tree
(complete in the sense that each intermediate node has

descendants), and has expected depth . Note that the
decision time is simply the first time the sequence
of channel outputs hits a leaf of . Furthermore, we may label
each leaf of with the message decoded by the receiver when
that leaf is reached. This way the decoder is completely specified
by the labeled tree . The message statistics, the code, and the
transition probabilities of the channel determine a probability
measure on the tree .

III. BINARY HYPOTHESIS TESTING WITH FEEDBACK

The binary case will play a key role in our main
proof. In this section, we assume that the message set con-

3For clarity of exposition we will only treat deterministic coding strategies
here. Randomized strategies may be included without significant modification
to the core of the proof.

4A discussion of stopping times can be found in [7, Sec. 10.8].

tains only two elements. We will arbitrarily denote the two
hypotheses by and (ACK and NACK, respectively). We
denote by and the corresponding probability distribu-
tions on the leaves of . The following proposition bounds the
Kullback–Leibler divergence . It will be used in
the main result of this section to bound the error probability of
binary hypothesis testing with feedback. The reader familiar
with Stein’s lemma will not be surprised by the fact that the
Kullback–Leibler divergence plays a key role in
binary hypothesis testing with feedback. The steps here closely
parallel those in [10, Sec. III] and [11, Sec. 2.2].

Proposition 1: For any binary hypothesis testing scheme for
a channel with feedback

where is the decision stopping time, , and
denotes the expectation of conditioned on hypothesis .

Proof: In the following, we will denote probability under
hypothesis by and probability under hypothesis by

. Let

(7)

so that , and the proposition is equiv-
alent to the statement . Observe that

where (8)

Note now that

(9)

where is the encoder function at time . Consequently,
is a supermartingale under hypothesis . Observe

that the existence of a for which for all
implies that . We can now use Doob’s Optional-
Stopping Theorem (see, e.g., [7, Sec. 10.10]) to conclude that

.

We can apply Proposition 1 to find a lower bound on the error
probability of a binary hypothesis testing problem with feed-
back. The bound is expressed in terms of the expected decision
time.

Lemma 1: The error probability of a binary hypothesis test
performed across a DMC with feedback and variable-length
codes is lower-bounded by

where and are the a priori probabilities of the hypotheses.
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Proof: Each decision rule corresponds to a tree where each
leaf is associated with a decoded hypothesis . Thus,
we can partition the leaves into two sets corresponding to the
two hypotheses

where is the decision region for hypothesis .
The log sum inequality [12], [13] (or data processing lemma

for divergence) implies

(10)
By Proposition 1, , thus (10) can
be rearranged to give

(11)

where is the binary entropy function. Writing the overall
probability of error in terms of marginal error probabilities
yields

which allows us to bound as

Substituting back into (11) yields a bound on the expected depth
of the decision tree conditioned on just in terms of and
the a priori message probabilities

(12)

Following identical steps with the roles of and swapped
yields

(13)

We can now average both sides of (12) and (13) by weighting
with the corresponding a priori probabilities. If we do so and
use the facts that is the probability of
making the correct decision and is the
probability of making an error together with the concavity of the
binary entropy function, we obtain the following unconditioned
bound on the depth of the decision tree :

Solving for completes the proof.

It is perhaps worthwhile pointing out why the factor
arises: if one of the hypotheses has small a priori

probability, one can achieve an equally small error probability
by always deciding for the other hypothesis, irrespective of the
channel observations.

IV. EXPECTED TREE DEPTH AND CHANNEL CAPACITY

Given the channel observations , one can calculate the a
posteriori probability of any message .
Recall that a maximum a posteriori probability (MAP) decoder
asked to decide at time when will chose (one
of) the message(s) that has the largest a posteriori probability

. The probability of error will
then be . Similarly, we can define the proba-
bility of error of a MAP decoder for each leaf of the observation
tree . Let us denote by the probability of error given
the observation . The unconditioned probability of error is
then .

For any fixed , we can define a stopping time as the
first time that the error probability goes below , if this happens
before , and as , otherwise

or (14)

If exceeds , then we are certain that , and
for all , so the event is

included in the event . (We have inclusion instead
of equality since does not exclude .)
Thus

(15)

where the second inequality is an application of Markov’s in-
equality.

Given a particular realization we will denote the entropy
of the a posteriori distribution as .
Then is a random variable5 and

. If , then from Fano’s inequality it
follows that

(16)

The expected value of can be bounded by condi-
tioning on the event and its complement then ap-
plying (16) and then (15) as follows:

This upper bound on the expected posterior entropy at time
can be turned into a lower bound on the expected value of by
using the channel capacity as an upper bound to the expected
change of entropy. This notion is made precise by the following
lemma.

Lemma 2: For any

5Notice that ��� � � � is commonly written as ��� �� � � �. We
cannot use the standard notation since it becomes problematic when we substi-
tute � for � as we just did.
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Proof: Observe that is a submartingale
(an observation already made in [3, Lemma 2]). To see this

where follows from the data processing inequality and the
fact that — — forms a Markov chain given

. Hence, is indeed a submartingale. Since
is bounded between and for all , and the

expected stopping time , Doob’s Optional-
Stopping Theorem allows us to conclude that at time , the ex-
pected value of the submartingale must be above the initial value

. Hence

Solving for yields

V. BURNASHEV’S LOWER BOUND

In this section, we will combine the two bounds we have
established in the preceding sections to obtain a bound on the
overall expected decoding time. Lemma 2 provides a lower
bound on as a function of and . We will show
that a properly constructed binary hypothesis testing problem
allows us to use Lemma 1 to lower-bound the probability of
error in terms of . This in turn will lead us to the
final bound on .

The next proposition states that a new channel output symbol
cannot change the a posteriori probability of any particular mes-
sage by more than some constant factor when is finite.

Proposition 2: implies

where .
Proof: Using Bayes’ rule, the posterior may be written re-

cursively as

The quotient may be upper- and lower-bounded using
and ,

which yields the statement of the proposition.

Our objective is to lower-bound the probability of error of a
decoder that decides at time . The key idea is that a binary
hypothesis decision such as deciding whether or not lies in
some set can be made at least as reliably as a decision on the
value of itself.

Given a set of messages, consider deciding between
and in the following way: given access to the original
decoder’s estimate , declare that if , and de-
clare otherwise. This binary decision is always correct
when the original decoder’s estimate is correct. Hence, the
probability of error of this (not necessarily optimal) binary de-
cision rule cannot exceed the probability of error of the original
decoder, for any set . Thus, the error probability of the optimal
decoder deciding at time whether or not is a lower
bound to the error probability of any decoder that decodes
itself at time . This fact is true even if the set is chosen at
a particular stopping time and the error probabilities we are
calculating are conditioned on the observation .

For every realization of , the message set can be divided
into two parts, and its complement , in such a
way that both parts have an a posteriori probability greater than

. The rest of this paragraph describes how this is possible.
From the definition of , at time the a posteriori probability
of every message is smaller than . This implies that the sum
of the a posteriori probabilities of any set of messages is
greater than at time , and by Proposition 2, greater than

at time . In particular, . We separately con-
sider the cases and . In the first case,

, let be the set consisting of only the message
with the highest a posteriori probability at time . The a poste-
riori probability of then satisfies

. As argued above, its complement (the remaining
messages) also has a posteriori probability greater than

, thus for this . In the
second case, namely when , the a posteriori proba-
bility of each message is smaller than . In this case, the set

may be formed by starting with the empty set and adding
messages in arbitrary order until the threshold is exceeded.
This ensures that the a priori probability of is greater
than . Notice that the threshold will be exceeded by at most

, thus the complement set has an a posteriori probability
of at least . Thus, .

For any realization of we have the binary hypothesis
testing problem, running from until , deciding whether
or not . Notice that the a priori probabilities of
the two hypotheses of this binary hypothesis testing problem
are the a posteriori probabilities of and
at time each of which is shown to be greater than in the
paragraph above. We apply Lemma 1 with and

to lower-bound the probability of error of
the binary decision made at time and, as argued above, we
use the result to lower-bound the probability that .
Initially, everything is conditioned on the channel output up to
time , thus

Taking the expectation of the above expression over all realiza-
tions of yields the unconditional probability of error
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Using the convexity of and Jensen’s inequality, we obtain

Solving for yields

(17)

Combing Lemma 2 and (17) yields the following result.

Theorem 1: The expected decoding time of any variable-
length block code for a DMC used with feedback is lower-
bounded by

(18)

where is the cardinality of the message set, the error prob-
ability, , and is any number satis-
fying .

Choosing the parameter as achieves the re-
quired scaling for (5).

VI. SUMMARY

We have presented a new derivation of Burnashev’s asymp-
totically tight lower bound to the average delay needed for a
target error probability when a message is communicated across
a DMC used with (channel output) feedback. Our proof is sim-
pler than the original, yet provides insight by clarifying the role
played by the quantities that appear in the bound. Specifically,
from the channel coding theorem we expect it to take roughly

channel uses to reduce the probability of error of a MAP
decision to some small (but not too small) value. At this point,
we can partition the message set in two subsets, such that nei-
ther subset has too small an a posteriori probability. From now
on it takes (asymptotically) channel uses to decide with
probability of error which of the two sets contains the true
message. It takes at least as many channel uses to decide which
message was selected and incur the same error probability.

For obvious reasons we may call the two phases the commu-
nication and the binary hypothesis testing phase, respectively.
These two phases exhibit a pleasing similarity to the communi-
cation and confirmation phase of the optimal scheme proposed
and analyzed by Yamamoto and Itoh in [4]. The fact that these
two phases play a key role in proving achievability as well as in
proving that one cannot do better suggests that they are an in-
trinsic component of an optimal communication scheme using
variable-length block codes over DMCs with feedback.
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