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Abstract The study of quantum magnetism remains at the forefront of con-
densed matter physics. Spin models provide a large class of many-body systems,
in which cooperative quantum phenomena can be studied in a controlled way.
In addition, the neutron scattering technique offers a near-ideal tool to probe the
state of magnetic materials. This thesis presents neutron scattering studies of three
selected materials, each representing an important aspect of quantum magnetism.

e CuGeO3 is a quasi one-dimensional S = 1/2 spin-Peierls material. This is
an example of a system that has a quantum ground state with no classical
analogue. The spins dimerize to form a coherent non-magnetic singlet, where
the expectation value of each individual spin is zero, as if they were ‘hidden’.
As a consequence, the excitations (called solitons) are different from the spin
waves of a classical system. In a high magnetic field, the solitons can be con-
densed to form a periodic lattice. Through neutron scattering measurements,
the structure of this soliton lattice has been determined, and the excitations
in the soliton phase have been identified.

e Cu(DCOO),-4D>0 is a two-dimensional .S = 1/2 Heisenberg antiferromagnet
on a square lattice. The T' = 0 ground state of this system has long range order
similar to the classical system. But the order parameter is reduced by quantum
fluctuations, and the physical observables are remormalized. In particular, it
was found that the spin wave dispersion is non-uniformly renormalized. At
finite temperatures long range order is destroyed by thermal and quantum
fluctuations, which act together. Still, there are strong correlations, which on
short length and time scales resembles the long range order. The temperature
dependence of the correlation length and the excitation spectrum has been
measured using two specialized neutron scattering methods.

e LiHoF, is a three-dimensional Ising ferromagnet, in which the magnetic order
can be destroyed even at 7' = 0 by applying a large magnetic field transverse
to the Ising axis. Ordinary phase transitions occur as a function of temper-
ature, when the thermal fluctuations become strong enough to destroy the
order. At 7' = 0 there are no thermal fluctuations and the transition is driven
by quantum fluctuations, which are controlled by some external parameter,in
this case the magnetic field. It is important to understand the universal be-
haviour of such quantum phase transitions, as several novel phenomena in
solid state physics may be related to the proximity of a quantum critical point.
Using inelastic neutron scattering the behaviour of the excitations around the
quantum critical point in LiHoF, has been investigated.
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Preface

The goals of this thesis are manifold. The main objective is to report on some
specific research results obtained during the last three years. At the same time,
it is my intention to make a review of the general progress/status of the fields
studied. In addition, I will take the opportunity to pass on some technical ideas
and experience that I have developed in the course of my experiments. As a result,
there may be passages that appear irrelevant to the individual reader. If so, I refer
the readers looking for specific results to the articles that we have or will publish,
the readers looking for a general review to the articles written by other scientists in
the field and the people looking for experimental tips to the old-proven technique
of learning by doing.

It is always difficult to decide in which order a subject should be presented.
A chronological description will show the relevance of each contribution, but in-
evitably also reflect the staggering path to sagacity. In this thesis, theoretical
developments and experimental results will be presented separately. This may be
unfair to the experimental contributions, as their importance as guide to the theo-
retical development will be neglected. But this will be compensated for explicitly,
by showing in the following how in some directions the experimental results are
in fact ‘ahead of theory’.

The structure of the thesis is the following: The first chapter motivates the title,
the second the technique. The subjects of the project are covered in each of the
three remaining chapters.

Risg, April 12, 2000
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Chapter 1

Quantum Magnetism

It could be argued that the term quantum magnetism in the title of this thesis is
superfluous. Magnetism, defined as the properties of magnetic materials, is after
all a quantum mechanical phenomena. The magnetic moments are built from the
spin and the orbital motion of the electrons in magnetic materials and coupled
through the so-called exchange interactions, which arises from the Pauli exclusion
principle for identical Fermi particles. However, this is not what is meant by
quantum magnetism in this thesis, which is devoted to the study of quantum
effects in many-body physics.

Since the discovery of quantum mechanics, magnetic systems have been rec-
ognized as suitably complex applications of the theoretical developments. Their
historically proven role as an arena in which quantum many-body methods can
be developed and tested relies on the wide variety of models that can be built
from some well defined basic ingredients. By placing a number of quantum me-
chanical objects (Ising, XY or Heisenberg spins) in certain spatial arrangements,
and defining the means of interactions among them, there is an almost unlimited
source of model systems to work with. In other words,

quantum magnetism is the LEGO of many-body physics.

It is in this sense that quantum magnetism is discussed in the present thesis.
Experimental results on physical realizations of three such model systems will be
presented, each illustrating different quantum effects of many-body physics.

1.1 Quantum effects of coupled angular momenta

The building blocks of quantum magnetism are electronic spins, which are the
quantized version of angular momenta. The quantum mechanical treatment of
angular momentum has three important consequences:

e The size of a spin S is quantized in units of &. The total length is 1/S(S + 1),
where S is either an integer or a half integer.

e Like any object in quantum mechanics, it is not possible to specify simultane-
ously all three components of S. Instead, the spin is described by states 1),
which carry the probability that an observable has a certain value. In partic-
ular, the eigenstates of an operator, say S.|m) = m|m), are characterized by
having probability 1 that the spin has a z component of m. The probability
that a spin in any other state |¢)) has a z component of m is given by (m/|¢)
and the expectation value of S, in that state is given by (¢|S;|¢).

e For a given size of the spin, S, the largest possible eigenvalue of S, is S with
the corresponding eigenstate denoted |S). But the total length of the spin is
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given by (S|S8?|S) = S(S+1), which means that a fraction of the spin remains
undetermined. This is a consequence of Heisenberg’s uncertainty principle,
that the commutator of two conjugate variables is at least equal to A. It is
said that the remainder of the spin is ‘hidden’ by quantum fluctuations

To illustrate these points, we first consider the simplest possible spin system,
which is a spin 1/2 dimer (i.e. a pair of spin 1/2) with rotationally invariant
Heisenberg coupling J, expressed by the Hamiltonian

’H:JS’1-S2 . (11)

The corresponding classical system is two unit vectors coupled by JS(S + 1).
The ground state is one in which the spins point in opposite directions, giving a
ground state energy of —3.J/4. The ground state is highly degenerate since the
spins can align along any direction. Once a given direction has been chosen, the
rotational symmetry is broken, but it costs no energy to rotate the two spins into
another direction as long as they are kept anti-parallel. In infinite systems, where
a continuous symmetry is broken, the corresponding zero energy shift of the entire
system is called a Goldstone mode.

The quantum mechanical system can be described in terms of product states of
the individual spins. Choosing the eigenstates of S, as a basis, each spin can point
either up (1)) or down (|])), and the combined system is described by the four
states {|11), [44 ), [T4),[41)}. The ground state is found to be the linear combi-
nation %ﬂ ) —[41)) with energy —3.J/4, while the three remaining eigenstates
of the Hamiltonian are {|11), [{{), %ﬂ 1) 4+ [41))} with the degenerate energy
J/4. The ground state is a singlet with total spin zero, while the excited states
form a triplet with total spin 1.

There are important differences between the classical and the quantum system.
The quantum ground state does not break the rotational symmetry, and therefore
no Goldstone modes exist. The expectation value of any single spin operator is
zero, which means that the ground state is non-magnetic. Classically, it appears
as if the orientations of the spins were random so that they averaged to zero. This
is however not true — the two spins are perfectly coherent.

In quantum magnetism, the quantization of S means that there exist different
types of spins. As evident from the ratio S/1/S(S + 1)(~ 1 — 55 for large S), the
largest quantum effects occur for S = 1/2. When an assembly of many spins are
coupled, the entire system is described by states that mix the states of the individ-
ual spins. And the notion of quantum fluctuations is transferred to the many-spin
states of the coupled system. These quantum properties lead to profound effects
that cannot be visualized by a classical analogue. In the remainder of this chapter,
three aspects of quantum many-body spin systems will be introduced.

1.1.1 Ground states and excitations

An important consequence of quantum mechanics in many-body physics is the
possibility for quantum ground states. That is a state with no classical analogue,
like the ground state of the dimer pair considered above. Let us again consider
a classical spin system (i.e. an assembly of interacting vectors of fixed length).
The ground state is the spin arrangement that minimizes the total energy of the
system. In this state each spin points in a specified direction. This could, for
instance, be an antiferromagnetic arrangement, where neighbouring spins point in
opposite directions, which is called the Néel state.

A quantum spin system with antiferromagnetic interactions will still have a ten-
dency towards antiferromagnetic alignment of the spins. But due to the quantum
fluctuations, the staggered moment (the expectation value m = ((—1)"S%)) will
be reduced (renormalized) from its classical value. This is the case in the S =1/2

8 Risg-R—1180(EN)



Heisenberg antiferromagnet on a square lattice, where m = 0.3 is reduced to 60%
of its classical value. But the ground state of this system is still analogous to the
classical Néel state, which can be treated as a basis for perturbative calculations
of the quantum renormalizations.

This situation is changed in one dimension, where the quantum fluctuations
are so strong that they destroy the Néel order all together. The ground state
of the 1D S = 1/2 spin chain is quantum disordered. In some sense, a classical
analogue can still be imagined by assimilating the quantum fluctuations with
thermal fluctuations at finite temperatures. But there is another posibility for
having a ground state without magnetic order. As seen for the dimer system, the
description by a wave function rather than the orientation of each spin, makes it
possible to have a ground state in which the expectation value of each individual
spin operator is zero, while the spins are still coherent.

One such quantum ground state is realized in the 1D S = 1/2 spin—Peierls
system. This is a spin chain, where spin-lattice interactions allow the lattice to
dimerize, hence causing an alternation of the coupling parameter. The ground
state of this system can be visualized as pairs of spins coupling to singlets, but in
fact the entire spin system is described by one coherent singlet ground state. It is
as if the order is ‘hidden’ when considering the expectation value of single spins,
and is only revealed when the entire system is considered.

The excitations in a system are collective fluctuations relative to the ground
state. When the nature of the ground state changes, so does the nature of the
excitations. In magnetically ordered materials, the excitations are pressesions of
the moments around their equilibrium position. Such excitations are known as
spin waves, and have been subject of intense studies in decades (see e.g. Borovik-
Romanov and Sinha, 1988). Quantum ground states in general have different types
of excitations. For instance, the excitations of the spin—Peierls state are pairs of
domain walls (solitons) that shift the phase of the dimer order by 7. Such a soliton
pair corresponds to a delocalized broken dimer, by which each soliton carries spin
1/2. Therefore solitons can be stabilised in a sufficiently high field to form a regular
soliton lattice.

Chapter 3 describes a neutron scattering determination of this soliton structure
in CuGeOs. In a field of 14.5 T, the soliton structure has a staggered component
with an amplitude of just 10% of the classical moment. The rest of the expectation
value is still ‘buried’ in the singlet pairs. Concomitant with the soliton structure
is a new set of excitations, which have been identified using inelastic neutron
scattering.

1.1.2 Correlations and fluctuations

In an ordered system, thermal and quantum fluctuations in the order parameter
will decrease its average value, and eventually destroy the order all together. In
the disordered phase that arise, there will however still be correlations, that on
short length and time scales resemble the ordered state.

One example of a system, with strong correlations is the 2D Heisenberg antifer-
romagnet. Mermin and Wagner (1966) have proved that at any finite temperature
the long ranged order will be destroyed by fluctuations — even in the classical
system. It is therefore interesting to understand how the correlations evolve in a
system with both thermal and quantum fluctuations.

Chapter 4 will present results from Cu(DCOO)2-4D20O, which is an excellent
physical realization of the 2D S = 1/2 Heisenberg antiferromagnet on a square
lattice. The temperature dependence of the correlation length, &, in the classical
system would diverge towards T = 0 as e’/ where J is the coupling constant.
When quantum fluctuations are added, the leading exponential behaviour persists,

Risg-R-1180(EN) 9



but the divergence is slowed down by the disappearance of the prefactor.

The excitations of the system remain qualitatively the same as in the ordered
phase, but they are damped due to the finite correlation length. As seen above,
an excitation is an eigenstate of the system relative to the order parameter. As an
excitation propagates outside the correlated region of size £ the order parameter
changes and the excitation is no longer an eigenstate, which means that it will
decay. Thus the life time of excitations at finite temperatures is approximately
given by 7 = £/vs, where v, is the group velocity of the collective mode. Within
some prefactors, this simple relation is true both for the classical and the quantum
system.

1.1.3 Quantum phase transitions

In the previous sections, it was mentioned how quantum fluctuations lowered the
staggered magnetization in the ground state of the 2DQHAFSL to about 60%
of its classical value. In the 1D S = 1/2 Heisenberg antiferromagnet, quantum
fluctuations prevent ordering at 7' = 0 all together. If it was possible somehow to
go in a continuous manner from the chain system to the 2D system, there would
be a point at which the ground state would start to build long range order. Such a
point is quite similar to ordinary thermally driven phase transitions, in that there
is an order parameter, which is zero on one side and finite on the other side of the
critical point. But ordinary phase transitions are driven by thermal fluctuations in
the order parameter, which as temperature is increased disorder the system. This
particular kind of phase transition take place even at zero temperature, where
there are no thermal fluctuations. Instead the transition is driven by the zero
point fluctuations that exist in quantum mechanical systems due to Heisenberg’s
uncertainty principle. Therefore such a transition that takes place even at zero
temperature is denoted a quantum phase transition (QPT). It occurs as a function
of some parameter which controls the strength of the quantum fluctuations. The
point in parameter space at which the transition takes place is called the quantum
eritical point (QCP).

Just as studies of thermal phase transitions have been of continuing importance,
both in the development of new theoretical methods and in the understanding of
problems in all areas of physics, there has recently been a considerable interest into
the properties of QPTs. Apart from the challenge it is to develop new theoretical
tools, it has become clear that the properties of many of the novel phenomena in
correlated electron systems are in fact significantly influenced by the proximity
to nearby QCPs. In these materials, however, the QPT is only one ingredient in
complicated and far from well characterized problems. It is therefore of interest to
find simple realizations of QCPs, which can be studied with the aim of developing
a general understanding of QPTs.

One candidate for a simple QCP is LiHoF 4, in which the lowest crystal field level
is doubly degenerate. This makes the system equivalent to an Ising ferromagnet,
which can be driven to a QPT with an external transverse magnetic field as the
controlling parameter. Chapter 5 describes inelastic neutron scattering measure-
ments of the excitations around this QCP. It is found that hyperfine coupling of
the electronic moments to the nuclear moments split the two crystal field levels,
thereby dramatically influencing the excitations. Instead of a softening of the ex-
citation at the QPT, as predicted by mean-field theory, the excitations remain at
a finite energy, and strong quasi-elastic scattering occur. Still, the system is well
described by a rare-earth Hamiltonian, which makes it a good starting point for
quantitative investigations of quantum critical behaviour.

10 Risg-R-1180(EN)



Chapter 2

Neutron scattering

Though there exist a range of experimental techniques that probe the properties
of magnetic systems, the neutron scattering method holds a special position. This
is because neutron scattering directly probes the correlation functions that are
used to describe the systems of interest. In part, t is the existence of the neutron
scattering probe that makes magnetic systems attractive to study. The combina-
tion of the ability to custom design the system with a powerful tool to measure
its behaviour provides a unique playground for studies of many-body physics.

The theory of neutron scattering has been described by amongst others Ba-
con (1975), Squires (1978) and Lovesey (1984), but the main lines will briefly
be presented below. Small sections are also devoted to explain the two ways of
implementing the technique used in the work of this thesis.

2.1 The scattering cross-section

The formalism of neutron scattering is built upon the definition of the scattering
cross-section, o, as the rate of scattered neutrons per incident flux ¥y. In a neutron
scattering experiment, a collimated beam of monochromatic neutrons with initial
energy F; is directed to a target. The rate of neutrons scattered into the solid
angle element AQ) with final energy Ey < E < Ey + AEy is
2

I= \Ilod;;TUEfAQAEf , (2.1)
where dg?T"Ef is the partial differential scattering cross-section. In the following, it
will first be shown how it is related to the physics of the system under study, then
demonstrated how the above mentioned situation is realised experimentally. For
clarity, only unpolarized neutron scattering will be considered, as used through-
out this work. The formalism is straightforwardly extendable to polarized neu-
tron scattering. Current developments of >He filters and 3D polarization analysis,
will probably make polarization analysis much more widely used within the next
decade.

We first consider a single scattering process in which a neutron changes wave
vector from k; to ky, while concomitantly the target changes state from \; to
As. Owing to the weakness of the interaction between neutron and matter, the
transition probability per unit time can be evaluated through Fermi’s golden rule

2r
Wisy = F|<>‘fkf|v|)\iki>|2 ; (2.2)

where V' is the interaction potential between the neutron and the sample. Taking
the neutron wave functions to be plane waves and assuming the interaction po-
tential to be independent of the neutron momentum, the matrix element can be
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reduced to
OrkslV k) = (O] [ 0y )arfa) = IV @A) 2.3

where V(q) is the Fourier transform of the scattering potential and the scattering
wave vector ¢ = k; — ky is given by the neutron momentum transfer.

To obtain the partial differential scattering cross-section, we average over all
initial states with distribution p,;, and sum over all final states Ay that fulfill
energy conservation

2
dgdjzf_ (27rh2) pr

where the energy transfer is hw = %(kf —k7) with m being the neutron mass. By
using the integral representation §(hw+Ex, — Ex,) = 545 [ e—iwtelEr —Brt/h gy
the identity [(A|VIA)]? = (M|VTA)Y(Af[V|A;) and the completeness relation
1= fo [Af)(Ag], the scattering cross-section can be rewritten as

@Q)\i)?(hw + By, — Ex,) , (2.4)

2

di = 1 (o) 57 [ eV @0V (@) (25)
where in the Heisenberg-picture, the time-dependent interaction potential opera-
tor is given by V(gq,t) = e/11/"V (q)e= /" and (O) = 3", pa(A|O|)\) denotes the
average over initial states.

2.1.1 Nuclear scattering

The neutron interacts with the nuclei in the sample via the nuclear forces, which
are very short ranged (~fm= 107! m) compared to the neutron wavelength
(~A=107"% m). The interaction potential between a neutron at position r and a
nuclei at position R can therefore be approximated by the Fermi pseudo-potential

2R 27 h2
V(r) = :1 bré(r —R) = V(q):%b e~ iR (2.6)
m \?2 .
(502) V'@OV(@h) = D brbr (e ROTRO) (2.7)
vy
RR’/

where the scattering length bg of the element at position R is determined by the
isotope and orientation of the nuclear spin relative to that of the neutron.

The nuclei on each site can have a distribution f, of scattering lengths b* due
to different isotopes and non-ordered nuclear spins, where )  f, = 1. We define
the average scattering length b = 3" fob® and 02 = 3 fo(b%)2. If there are
no correlations between the a distribution on different sites, the product brbg: is
replaced by brbgr for R # R' and by g for R=R'.

The scattering cross-section then becomes the sum of a coherent and an inco-
herent part

Lo _ k1 dt et Z brbr (¢! (RO—F (0)y (2.8)
d0dE, k; 2nh <
d’o ky 1 —iwt 72 _ 72 q-(R(t)—R(0))
_ Kk e ¢l L@
<deEf>inc Lo / dte Z A ). (29

The coherent scattering is given by the average scattering length on each site
and produces interference effects, while the incoherent scattering is due to the
random distribution of deviations in the scattering lengths from their mean value.

The nuclear interactions that determine b are too complicated for ab initio
calculations hereof. Instead, the values of b have been determined experimentally
for each element and have been tabulated by Stehn et al. (1964), Koester et al.
(1991) and Sears (1992).

12 Risg-R—1180(EN)



2.1.2 Magnetic scattering

The interaction between the magnetic moment of the neutron and the electronic
moments in the sample can on the other hand be calculated directly from Max-

well’s equations. The neutron dipole moment g, = —v x uno, with the gyro-
magnetic ratio v = 1.913 and the nuclear magneton uy = %, creates a vector

potential A, = u, x r/r? felt by the electron at position r. The interaction po-
tential is then given by the difference between the electron energy in the presence
and in the absence of the neutron.

1

gAn-p—%s-(V x An)| (2.10)
where s is the electronic spin. An external magnetic field is included by adding
its vector potential to p + £ A.. The Fourier transformed interaction potential for
a single electron becomes

V(r) =2ug

i
hg
The total interaction potential is then obtained by integrating over the spin- and
orbit distribution in the sample. For moment distributions formed by individual
moments f; = fj d®ru(r) that are located around ions in the material, the spatial
distribution around each ion can be integrated to give the magnetic form factor

r) .

filg) = /dST—M( e (2.12)
j K

where the integral runs over the moment distribution belonging to the jth mag-

netic ion. The interaction potential is then reduced to a sum over ionic moments

Vig) =8mup Y _ fi(a)e ™" py - (@ x p x @)e 7 (2.13)
j

V(g) =8mppp, - (-4 XP+q x s x q)e” 4" . (2.11)

The expression consists of an orbital part and a spin part. In half-filled shell
configurations (like the 4s electron in Cu®*) or if the total angular momentum
is quenched by the crystal field, only the spin component contributes so that
p; = gS; with g ~ 2. In the rare earths, for example, the orbital contribution is

SEHD-LIL4Y) jq the Landé

significant, and p; = grJ = L + 25, where g, = % + 2J(J+1)

factor.
In the spherical approximation, the form factor can be approximated by

flg) =~ /000 R(r)r? sin(qr)dr + <§ - 1> /000 R(r)r*js(qr)dr , (2.14)

where R(r) is the normalized radial wave function. The spherical Bessel functions
jo(z) = sin(z) and ja(2) = (3272 — 1)sin(z) — 327! cos(z) are the lowest order
terms in an expansion of the phase factor e’". Parameterizations of the form
factors have been given by Brown (1992). In figure 2.1 the form factors for Cu?*
and Ho?T which are the subject of this thesis have been shown.

Inserting the scattering potential into Fermi’s golden rule and following the
same procedure as for the nuclear scattering, the magnetic scattering cross section
becomes

mc?

d2amag B ky hrye?
dQdE; Tk

) 1L9£(a)|” > (0o = Gads)
o

L —iwt a —iq-R(t) ¢ ig-R'(0)
y 27Tﬁ/dte 1§<SR(t)e S5 OO | (215)
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qlA™

Figure 2.1. Squared form factors for Cu®™ and Ho*t as a function of q up to 10 A.
The wider extent of the form factor for Ho®>" reflects that the holmium 4f shell is
more localized than the 4s shell of copper.

where for simplicity, only one type of magnetic ions has been assumed and the
symbol S is used for the angular momentum operator. If there is an orbital contri-
bution, S should be replaced by J. It is possible to have interference between the
motion R(t) of the ions and the dynamics of the spins S(¢), but for the following
purposes such magneto-elastic scattering effects will be neglected. In this case,
the fluctuations in R(t) transfer some of the coherent scattering into incoherent
scattering as contained in the Debye—Waller reduction factor e 2" (%) . Having de-
coupled the lattice motion, the remaining spin-expectation value is recognised as
the dynamic structure factor.

Ao ke [Hyer\” _ 2 N
aodr; = ¥, (W) MO 39F @] 3 _(6as — dads)Sas(a.w)  (216)
i oB

where the dynamic structure factor is the space and Fourier transform of the time
dependent spin—spin correlation function

Ses(a:))gry [ 3T (S5(0S5,(0) (217)
RR'

Thus apart from the geometric factor o3 — oG the magnetic scattering cross
section is directly proportional to the dynamic structure factor. In fact, the geo-
metric factor can often be exploited to separate the longitudinal and transverse
components of S(q,w).

2.2 Neutron scattering instruments

In practice, the realization of the formulated scattering geometry with a perfectly
collimated and monochromated neutron beam is not achievable. There exist a
number of ways to realize an approximation of the scattering geometry, and the two
perhaps most common will be presented below. The two major complications for
neutron scattering experiments are that neutrons are difficult to produce and that
they interact weakly with matter. In combination, they make neutron scattering
a technique, which in many cases is limited by counting statistics.

There are two ways of producing neutrons for scattering purposes. At a nuclear
reactor, the flux of neutrons in the core can be guided out through the shielding
to perform experiments. Alternatively, neutrons can be produced by bombarding
highly accelerated particles onto a target of some heavy element, which is spallated
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with a burst of particles — including neutrons — as a result. These two source
types are denoted reactor and spallation sources, respectively. When created, the
neutrons have energies much higher than the 1 meV to 1 eV range which is inter-
esting to neutron scattering. Therefore the neutrons are sent through a moderator
material, where through elastic collisions the neutrons are thermalised to the de-
sired energy range. The outcome is a neutron beam with a broad distribution of
energies and with a broad directional distribution.

In order to obtain sufficient statistics in a measurement, it is necessary to aban-
don the ideal monochromatic collimated beam used in the theory, and accept a
finite distribution in both energy and divergence. The result is that the measured
intensity is given by the scattering cross-section folded with the experimental res-
olution. Depending on the information required, the count rates versus resolution
must be balanced.

Thus in a nominal scattering condition specified by ¢ and w, there is a finite
probability R(q,w; Agq, Aw) that a neutron with slightly deviating momentum ¢' =
g+ Aq and energy w' = w+ Aw transfers is detected. The function R is denoted the
resolution function and the count rate in an experiment is given by the convolution

o
100 = [ s

The resolution volume Ry = [ R(q,w;q — ¢,w’ — w)dq'dw' expresses the total
acceptance of the experiment.

R(q,w;q' — q,w' —w)dq'dw' . (2.18)

’or
q W

2.2.1 The triple axis spectrometer

One well-proven way to realize the scattering condition is to use a so called triple
axis spectrometer (TAS). The key ingredient is that the energy selection both
before and after the sample is achieved by Bragg scattering from well defined
crystals. If a white beam of neutrons is shined onto a set of scattering planes with
spacing d at an angle of 8, most neutrons will not satisfy the Bragg scattering
condition and will travel through the crystal. But those neutrons that have a
wavelength A = 2dsin 6 will be scattered and leave the crystal with an angle of 26
relative to the incident beam direction. Thus, a single energy E = % has been
separated out. In reality, the divergence of the incoming beam and the mosaicity
(distribution in crystal-plane orientations) of the crystal will result in a finite
energy band rather than a truly monochromatic beam.

In addition to the collimating effect due to the distance to the source and a
finite size of the crystal, the divergence of the beam can be controlled by using
a collimator, which is an assembly of thin neutron absorbing sheets. The largest
divergence by which a neutron can travel through the collimator is given by the
sheet separation divided by their length.

By placing such energy selecting crystals both before and after the sample (de-
noting them respectively monochromator and analyser), the scattering situation
with well defined k; and kj is realised. Since each crystal and the sample repre-
sents an axis of rotation, the instrument is called a triple axis spectrometer (TAS).
Figure 2.2 shows the schematics of the RITA spectrometer at Risp National Lab-
oratory, Denmark. This instrument was used for studying the finite temperature
correlations in Cu(DCOO),-4D,0 as presented in section 4.3.

The traditional elements of a TAS are: source, monochromator, sample, ana-
lyser and detector, each separated by collimators to enable flexibility over the
resolution volume. The ‘re-invented triple axis spectrometer’ (RITA) is one in a
series of newly designed spectrometers, where the overall design goal has been
to gain intensity on the account of resolution along directions in reciprocal and
energy space that can be afforded (Mason et al., 1995, Broholm, 1996, Hiess, 1999,
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Figure 2.2. Schematic representation of the RITA spectrometer. The front end is
constructed to optimise the flux at the sample position by using neutron mirrors
and focusing monochromator. The back end with 7 individually turnable analyser
blades and a position sensitive detector (all in one detector tank) is designed to
enable flexible shaping of the resolution function.

FRM-II, 2000). On RITA, this is achieved by introducing new features, such as a
velocity selector, neutron guides, a focusing monochromator, a multi-blade analy-
ser assembly and a position sensitive detector. A new RITA-II is currently under
construction at Risg. For this instrument, care has been taken to create a flexi-
ble modular design that will allow easy customisation of the instrument for each
individual experiment (Lefmann et al., 2000).

2.2.2 Time of flight neutron scattering

An alternative to the triple axis spectrometers, where the incident and final en-
ergies of the neutrons are filtered by Bragg reflection, is the time-of-flight (TOF)
technique. This method becomes particularly useful at spallation sources, where
the neutrons are created in well defined time-pulses by bombarding atoms with a
high-energetic beam of particles. Knowing the time it takes a neutron to reach the
detector, the velocity and hence energy can be calculated. The advantage is that
one energy-filter can be removed, thus exploiting a larger fraction of the available
neutrons.

The method of finding the energy of the neutrons by measuring their time of
flight has been implemented in different ways. In diffraction experiments, the in-
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Figure 2.3. The HET spectrometer. Figure is adapted from (Eccleston et al., 1998)

elastic scattering contribution is neglected. The sample is illuminated by a white
beam pulse of neutrons, that are scattered into detectors at different scattering
angles. From the time of arrival, the wave length and hence momentum transfer
of the neutrons is deduced. Detectors in the same scattering plane contain essen-
tially the same information but can be combined to supply better statistics. If the
detector assembly could be made to cover all solid angle around the sample, all
neutrons would be exploited. The corresponding two-axis spectrometer inevitably
wastes the neutrons discarded at the monochromator.

For inelastic scattering, the velocity of the scattered neutrons depends on the
energy transfer, and it is not sufficient to measure the time of flight. Therefore the
energy of the neutrons is monochromated before the sample (direct geometry) or
analysed after the sample (indirect geometry). In both cases, one filtering stage
discards neutrons. In comparison, the triple axis spectrometer discards neutrons
both at the monochromator and at the analyser.

The dynamics of Cu(DCOQ), - 4D, was investigated at the HET direct ge-
ometry spectrometer at ISIS, UK (Eccleston et al., 1998), as described in section
3.5. A schematic drawing of the instrument is presented in figure 2.3. The pulse
of neutrons created at the target is thermalised by a 22 K hydrogen moderator.
A nimonic chopper blocks the incident neutron path during the pulse creation,
thereby removing v and fast neutron background. The incident energy is deter-
mined by a Fermi-chopper, which is a rotating drum with thin absorbing sheets.
By varying the phase of the drum to the pulse, the desired incident energy is ob-
tained. The resolution and flux requirements can be accommodated by choosing
between drums with different, sheet-separation and spinning them at multiples of
the pulse-frequency.

Finally, it should be mentioned that even reactor based sources host time of
flight instruments. Here, the constant flux beam is chopped into pulses of desired
duration and interval. Though the main advantage of saving a filtering stage is
lost, reactor based TOF instruments are relevant when an energy resolution of
3 peV to 200 peV is required (NIST and ILL, 2000). They thereby fill the gap
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between the resolution of triple axis and neutron-spin-echo spectrometers, having
the advantage over the later that TOF still works in frequency space.

A note on units Out of practicality, most experimental techniques have a
special set of units associated with it. In neutron scattering, it is customary to use
the units of A, A=! and meV. For neutrons E = % = % leads to the following
useful numerical relations E [meV]= 2.072k? [meVA?]= 81.8/)\? [meVA?]. Other
methods use different units for energy based on for instance the frequency of light.
The conversion between a number of frequently used energy units is defined by
E = eU = kT = pupH = hv = hc/A. Throughout this thesis the defining
constants will often be set equal to unity in theoretical expressions. And when
quoting experimental results, the units that are traditionally used in different
experimental techniques are used interchangeably according to 1 meV <+ 11.60 K
+ 17.28 T <+ 0.2418 THz <+ 8.065 cm™! <« 1.602 x 10722 J.

Similarly will reciprocal space vectors often be measured in units of the lattice
constant so that a reciprocal lattice point is a multiple of 27. And the inner field
H which is formally in units of A /m will be given in tesla, corresponding to setting
Lo equal to unity.
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Chapter 3

CuGeOs
— a spin—Peierls material

Structure and excitations in the
soliton phase

The domain wall pair excitations in dimerised spin—Peierls systems can be sta-
bilized to form a static soliton lattice by application of a magnetic field. Neutron
scattering studies of the spin—Peierls system CuGeQOs have led to the determina-
tion of the magnetic soliton structure with a periodicity of more than 66 lattice
spacings. The mazimum amplitude of the magnetic structure reaches only one
tenth of the ordered moment, the rest being ‘buried’ in a coherent quantum ground
state. Still, the soliton structure completely changes the excitation spectrum which
has also been examined by inelastic neutron scattering.

The ground state of the pure one-dimensional spin 1/2 Heisenberg antiferro-
magnet is disordered due to quantum fluctuations, which raise the ground state
energy. This makes it susceptible to perturbations that can suppress the quantum
fluctuations. If embedded in a non-rigid three-dimensional lattice, the system will
below a certain temperature undergo a so-called spin—Peierls transition, below
which the chain distorts so that spins are paired to form a non-magnetic singlet
ground state. The alternating lattice distortion and the concomitant pairing of
the spins is known as dimerization.

There are two degenerate ways in which the system can dimerize. A given spin
can pair up with either the left or the right neighbour. The elementary excitations
of a dimerized system are therefore domain walls, which separate the two types
of domains. The domain walls are also called solitons and in order to affect only
a finite number of sites, they have to appear in (soliton—anti-soliton) pairs. In
the ideal 1D system, they can be infinitely separated, but if there is any coupling
(magnetic or elastic), the region of a chain spanned by a soliton pair will be in the
‘wrong’ state relative to the surrounding chains. The interchain energy cost will
bind the soliton pairs.

A soliton pair can be imagined as a broken dimer, creating two free spins which
then repel each other, leaving a region of the ‘wrong’ domain between them.
Because each soliton carries spin %, it will be favored by a magnetic field, and
at a critical field H, they are stabilized to form a static lattice of solitons. This
provides a unique opportunity to study a macroscopic quantum ground state in
which the magnetic system and the lattice system are delicately balanced.

This chapter reports on neutron scattering studies of the soliton-phase. As neu-
trons probe both the magnetic and structural correlations with sufficient energy
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resolution, a rather complete description of both the statics and dynamics of the
soliton-phase in CuGeQOs3 has been obtained. Quite remarkably, the soliton struc-
ture is well described by a continuum field theory with only two parameters that
have been fixed by measurements in the spin—Peierls phase at zero magnetic field.
The theoretical expectations for the excitation spectrum are less settled, but the
experimentally observed excitations are qualitatively understood and a quantita-
tive description is anticipated in the near future (Enderle et al., 2000).

The chapter is organized as follows: Section 3.1 and 3.2 give an introduction
to the spin—Peierls phenomena and in particular the soliton solution. The present
understanding of CuGeOg3 as a physical realization of a spin—Peierls system is
summarized in section 3.3. The neutron scattering results are presented in sections
3.4 and 3.5 for the statics and the dynamics respectively.
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3.1 The spin—Peierls transition

The ground state of the classical Heisenberg antiferromagnetic chain is the Néel
state with a ground state energy of E;l = —J5? per spin, where it is appropriate to
use $? = S(S+1), giving ES' = —3 Jfor S = 1/2. In the quantum mechanical case,
quantum fluctuations populate the lowest lying excited states, which is known as
zero-point motion. In fact, they do it to an extent where long ranged antiferromag-
netic order is destroyed, but what is important in this context is that the quantum
fluctuations raise the ground state energy to ES™ = (3 —In2).J (Hulthén, 1938).
Thus quantum fluctuations ‘cost’ energy and the system is therefore susceptible
to any perturbation that can act to reduce the quantum fluctuations.

One such perturbation would be an alternation J(1+4) of the coupling strength,
where § = 0 is the uniform chain and § = 1 corresponds to isolated spin pairs. The
alternation breaks the translational symmetry by doubling the unit cell, thereby
opening a gap in the excitation spectrum as illustrated in figures 3.1 and 3.2.
The size of this gap is proportional to 62/ and hence the ground state energy is
reduced to

1 54/3

where ¢; ~ 7%/34/3 (Cross and Fisher, 1979, Barnes et al., 1999). What is hap-
pening can be realized by going to the extreme alternation limit § = 1, where one
of the coupling parameters vanishes. In this case the system becomes an assembly
of isolated spin-pairs (dimers). The ground state of one dimer can be described as
%ﬂ 1) —|41)) with a ground state energy of —32.J per spin. The excited states
form a degenerate triplet {|11),]{}), \%(H,L) + [41))} with energy 1.J per spin.

One way to realize an alternating coupling would be to exploit a spatial depen-
dence of the coupling J(r,, — rny1) =~ J + (up — upnt1)VJ, where u,, measures
the deviation of r, from the equilibrium position and V.J is the derivative of .J
in this position. By shifting adjacent spins in opposite directions along the chain
(unp = (—1)"ug), an alternating exchange is realized Jp, pt1 = J + (=1)"2ugVJ
with § = 2uo(VJ)/J. In the following, the term dimerisation is used both for the
alternating lattice distortion and for the concomitant formation of spin singlet
states as described above in the § = 1 case.

A distortion of the lattice will have an elastic energy cost that can be assumed
to be quadratic in the displacement and hence also in §

2
FEelast = 2Kuj = %52 , (3.2)

where K is the elastic constant. Since the decrease in magnetic energy is pro-
portional to 0%/3 and the elastic energy only increases as 42, the total energy is
minimized by

dem <(W)2>3/2 . (3.3)

KJ

Hence any finite amount of magneto-elastic coupling (V.J) will lead to dimeriza-
tion.

At finite temperature, thermal fluctuations will affect not only the spins, but also
the lattice. Fluctuations in the lattice will reduce the effect of dimerization thus
leading to an increase in the quantum fluctuations. Eventually, this will destroy
the dimerization at a characteristic temperature T, ~ (VI‘(])2 called the spin—
Peierls temperature. In the uniform phase above Ty, translational symmetry is

recovered.
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3.1.1 The uniform Heisenberg chain

Before embarking upon a quantitative description of the spin—Peierls transition,
it is useful to summarize the properties of the uniform .S = 1/2 antiferromagnetic
Heisenberg chain (on a rigid lattice) described by

H=J> 8 Sit1. (3.4)

This very simple model has a remarkably rich behaviour. Even though an ex-
act solution for the ground state has been found using the Bethe ansatz (Bethe,
1931, Hulthén, 1938, des Cloizeaux and Pearson, 1962, Bonner and Fisher, 1964),
many aspects of the system remain to be fully understood. The ground state
does not exhibit long range order, but the staggered spin—spin correlation func-
tion (—1)"(Sg - S,) decays algebraically with the distance r (Miiller et al., 1981,
Schulz, 1986, Nomura and Yamada, 1991, Lin and Cambell, 1991). However, also
the ‘dimer’-correlation function (—1)"[{(So - S1)(Sy - Sy+1)) — (So - S1)?] has a
similar slow decay with r (Deisz, 1992).

The excitation spectrum is dominated by a quasi-particle mode with dispersion

Wy = gJ| sin g , (3.5)

with a spin wave velocity vs = lim, 0 E,/q = §.J. The term spin-wave velocity
is used even though the elementary excitations are spinons and not spin waves.
At finite temperatures, the susceptibility x(7") increases from its 7' = 0 value of
g:f} , passes through a broad maximum at T' ~ 0.6J, after which it decreases as
described by a high temperature expansion (see figure 3.12 and Griffiths, 1964,
Eggert et al., 1994).

The quasi-particle mode is the lower bound of a spinon continuum extending
the region up to 7.J|sinq/2|, for which the dynamic structure factor has been
calculated numerically (Miller et al., 1981, Lefmann and Rischel, 1996).

The Jordan—Wigner transformation

A spin-wave calculation of the reduction in the staggered moment due to zero-
point fluctuations diverges in one dimension, thus signaling the breakdown of the
spin wave approximation (Broholm et al., 1998). Instead, considerable insight has
been obtained by performing a Jordan-Wigner (JW) transformation, by which the
system is equivalent to one of interacting fermion particles (Luther and Peschel,
1975).

Sf = (=T ememgl = (57)1 (3.6)

1
Sz = —§+a}:an (3.7)
StSui1 = ahann (3.8)

Inserted in the spin part of the Hamiltonian, the Jordan—Wigner transformation
turns the z,y part into a kinetic energy term, while the z part introduces a two-
particle interaction operator

1
Hs = Z Gka};a + N Z v(q)az+qa£,+qakzak R (39)
& kk'q

where ¢, = J(cosk — 1) and v(q) = Jcosq. (In the following % is set equal to
unity and the momentum is in units of the reciprocal lattice constant.) In the
Hartree mean field approximation (MF) the two-particle terms are treated by
using (azak/) ~ nydx, where ng = (e%F* + 1)~!. The resulting fermion energy
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Figure 3.1. Left: The fermion particle energy, which is filled to the Fermi-level in-
dicated by the horizontal line. Two representative excitation processes are demon-
strated with arrows. Right: The corresponding collective excitation dispersion,
where the two processes are again illustrated with arrows.

- Tt -1 Tt

Figure 3.2. Left: An alternating coupling parameter opens a gap in the fermion
bands. Right: This gap is transferred to the dispersion of the collective excitations,
thereby suppressing the quantum fluctuations. The arrows illustrate two possible
processes.

Figure 3.3. Left: Splitting by gupH of the two fermion bands, causing to different
kinds of collective excitations: The inter band (solid arrow) excitations correspond
to longitudinal spin fluctuations, while the band crossing (dashed arrow) excita-
tions corresponds to transverse spin fluctuations. Right: The longitudinal (solid)
and transverse(dashed) dispersion relations with soft modes both at commensurate
positions and at incommensurate positions.
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Ey, = pJcosk is renormalized due to the z component of the interaction. The
value p=1—2/N ), nycosk ~ 1.64 is quite close to the exact result 7.

The relation between the single fermion particle energy and the dispersion of
the collective excitations is visualized graphically in figure 3.1. The degenerate
fermion band is filled to the Fermi level which is indicated by a horizontal line.
Excitations of the system brings particles on the Fermi-brink to unoccupied states
at higher energies. The resulting excitation spectrum has a dispersion relation as
illustrated to the right. An alternating exchange interaction opens a gap in the
single particle band, which is transferred to the collective dispersion relation as
shown in figure 3.2.

For later purposes it is also instructive to see how the system is influenced by
application of an external magnetic field. By inspecting the JW transformation,
it is seen that the Zeeman term splits the two fermion bands by gupH as de-
picted in figure 3.3 (Pytte, 1974, Miiller et al., 1981, Dender et al., 1997). As a
result the inter band and the band-crossing excitation processes acquire different
dispersion relations with soft modes at respectively the zone center and at the
incommensurate positions given by gupH/vs.

3.1.2 Spin—phonon treatment

The coupling between the spin-system and the vibrations in the lattice is through
the dependence of the coupling J,, 415y, - Spy1 on the atomic positions. This
section explains how the phonons are affected by the coupling to the spin system.
In the simplest form, this coupling is given by the distance between the two mag-
netic ions and can be approximated by the constant and linear terms in a Taylor
expansion around the equilibrium positions J(rp+1 — ) ~ J + (Upt1 — up) -
VJ(rny1 — ry), where u, is the displacement of r,, from its equilibrium position.
It is seen that the coupling depends on the difference between two displacements
and it is therefore denoted difference coupling. It is characterized by the fact that
one displacement u,, influences two adjacent bonds.

If the magnetic interaction is mediated by super exchange through some non-
magnetic atom in the crystal structure, then a displacement u,, 4 of that atom will
influence only one bond. This type of coupling is called local coupling. A general
linear approximation for the spin—lattice coupling is

Hsp = Zund . (Vn,dJn—l,nSn—l . Sn + Vn,dJn,n—HSn : Sn—H)
nd

= Z(und . Vn,djn,n+1 + Unp+1d ° Vn+1,dJn,n+1)Sn - SnJrl ) (310)
nd

where n refers to the unit cell and d to the (magnetic and mediating) atoms
within the unit cell. The above mentioned cases are realized as Vy,41,dJn,n+1 =0
for local coupling and Vy qJpnt1 = —Vipi1,dJnnt1 for difference coupling. In
CuGeOg3, the motion of the Cu ions results in difference coupling, while motion of
the connecting oxygen results in local coupling. As the lowest SP active phonon
involves negligible motion of Cu, it corresponds to local coupling. The next mode
is a mixture of the two. (See section 3.3.1)

The kinetic and potential energy of the lattice is treated in the standard way of
transforming to normal modes and quantizing to phonon operators (Ashcroft and
Mermin, 1976, Kittel, 1996)

1 . eq(qa) t
Ung = —= e — L (pF 4 ba) 3.11
d \/N - 2md90(qa)( qo q ) ( )

where eg4(ga) is the polarization vector of ion d for mode a with dispersion
Qo(q, @). Though it is straight forward to include several phonon modes (Werner
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et al., 1999), for simplicity, only one is kept here, and hence the index « is dropped.
Using this transformation, the phonon part of the Hamiltonian is diagonalised:

p—Zﬂo (blbg +;) (3.12)

The spin-phonon coupling term becomes

1 )
Haop=—=> g1, +b,)> €4Sy S, (3.13)
VN 4 "
where
gg = Z e1(q)  (Vpa+e1V,1a)J(n,n+1)/v/2maQ0(q) . (3.14)
d

First, the effect on the phonon system is considered. The renormalised phonon
frequency Q(q) is given by the poles in the phonon Green’s function

/dte"“t J(Db] + O(—t)biby (1) | (3.15)

which is calculated through Dyson’s equation D = Dg + Dol D, where Do(q,w) =
200(q)[w? — Q3(q) + in]~! is the noninteracting phonon propagator (7 is a posi-
tive infinitesimal) and II(g,w) the phonon self energy. Rewriting gives D(q,w) =
200(q)[w? — Qo(q)? — 2Q0(q)T(g,w)] ! with the poles Q, determined as selfcon-
sistent solutions to

Q2 = Q3(q) + 200(q)T(q, Q) - (3.16)

In the random-phase approximation (RPA) the phonon self energy is given by
the susceptibility II(g, w) = |g4|*xa(g,w). The dimer—dimer susceptibility x4(g,w)
is the space and time Fourier transform of the response function —i®(t)([Sn(t) -

Sn+1(t), So - S1])-
In the JW-MF approximation the spin—phonon term becomes

"= gla, k)afar_q(b", +b,) (3.17)
kq

where g(q, k) = —ip(sink — sin(k: —¢q))gq- This gives for the phonon self energy

(k _
Z lo(k, @) (s — 7x—g) (3.18)
w— FE_ ¢t E}
Using Ej_r = —Ej, so that ny — ng—r = — tanh 3E; and sin(k — 7) = —sink,

the assumption of a softening (1, = 0 at a critical temperature T, gives the self
consistency equation

kl2tanhi8,,E
() = 2|ﬁ|2'sm' =iy (3.19)

which is turned into an integral using 4 Y-, — 5= [dk — < fppJ gE(dEy /dk)~!
and pJ|sink| = \/p*>J? — E} so that
4 - 2 2J2
Qo7 |g | / g YPT —E 18,E (3.20)

For T. <« J, the integral can be solved by introducing a cutoff 7, < X < pJ
and integrating £ < X and E > X separately. This determines the transition
temperature

Q
T, = 0.8343 x pJ exp <—%> . (3.21)
4pgx|
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Below this temperature, the lattice dimerizes, thus producing a magnetic exci-
tation gap A(T = 0) = 1.765T, and an alternating exchange coupling J(1 % ),
where 6 = A/pJ.

The MF approximation neglects spin-fluctuations, which a priori must be ex-
pected to be significant in a 1D antiferromagnet. This is partially justified by the
3D nature of the phonons, but a more careful treatment leads to quantitatively
different results for the parameters like T§,. Cross and Fisher circumvented the
MF approximation by calculating the susceptibility from a bosonized version of
the spin system.

_ w — vglq — 7| w ~+ vg|lq — 7|
TXq(OJ) = 2d.[1 <727TT ) Il (727([’ , (322)
with
1> et 1 I(3+4
I(z) ¢ (¢ + 52) (3.23)

T )y VAT VERTC 1 in)
where d = %(1 +a?)73/* ~ 0.38 and a ~ 7 is the momentum cutoff. For a quantum
critical system such as the uniform Heisenberg chain T'x,(w) is a scale invariant
function of w/2xT, which justifies an expansion T'xr(w) = =, Xn(w/27T)".
For g = 7 the coefficients are xo = 0.26, x; = —0.81i, xo = —2.22, y3 = 5.63¢ and
x4 = 13.7. However, numerical calculations predict a significant dependence of the
parameters on temperature and also on possible next-nearest-neighbour coupling,
giving values at T, for xo between 0.28 and 1 for the range of parameters that
are likely to be relevant for CuGeO3 (Werner et al., 1999, Kliimper et al., 1999).

The renormalised phonon frequency at ¢ = 7 is given by the location of the
poles of the Green’s function

w? — Q3(m) Xo X2 W \% xa/ w\4
o~ reXn(@) == = (7)) ~7 (5p) — o 629
This determines the transition temperature as Ts, = 2|gx|*x0/0 (7). Looking for
solutions with w > 0 at T}, gives the equation
1 X2 X4 2

(290(71')|g7r|2 (QWTSP)Q) a Tsp(QWTsp)4w . (3.25)
Since x4 > 0, the right-hand-side is a parabola with the branches pointing down,
there is a solution with w > 0 when the left-hand-side is positive. Thus for Qo (7) <
27/ x0/x2Tsp =~ 2.15x Ty there is only the w = 0 solution, which is the result of a
continuous softening from Qg (7) at high temperatures. But for Qq(7) > 2.15x T,
the phonon energy remains finite at the transition, where a central peak (the new
w = 0 mode) develops. In fact, for large enough Qq(7), the renormalised phonon
frequency hardens at the transition.

The important conclusion is that a spin—Peierls transition can occur for any

value of the unrenormalized phonon frequency.

3.1.3 Effective magnetic model

Having understood the renormalization of the phonon modes and the spin—Peierls
transition itself, the spin-system can be examined. Naturally, the true ground state
and excited states of the system are composite spin- and phonon-states, but until
the task of solving the combined system has been accomplished, it is useful to
consider the effective magnetic Hamiltonian.

As realized above, both the soft and the hard phonon regions lead to a static
(Q = 0) lattice displacement. Treating this displacement classically, neglecting
the phonon dynamics is known as the adiabatic approximation, which leads to an
effective Hamiltonian given by

K
Hap =Y J(L+ Mip)Sp - Snp1 + Eu% , (3.26)
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where d,, = Au,, and the displacement parameter u,, is adjusted to minimize the
ground state energy. But as will be seen below, in the case of hard phonons, an
additional renormalization of the magnetic coupling parameters takes place. Of
particular importance is that an effective second nearest neighbour interaction is
induced. The problem has been treated using flow equations (Uhrig, 1998), unitary
transformations (Zheng, 1997, Weifle and Fehske, 1998, Weifle et al., 1999) and
DMRG calculations (Bursill et al., 1999).

Zheng (1997), Weifle and Fehske (1998) and Weile et al. (1999) used unitary
transformations of the spin—Peierls Hamiltonian to reach an effective spin-only

Hamiltonian. They used two sequential unitary transformations H = eVt #e~Ur
and H = eV2He V2 with

Ay

U, = 2. 2 (=17 (b} = by) , (3.27)
r

Uke = bt —b,.)S, -S4, 3.28

2 fﬂo(ﬂ_) XT:( r ) +1 ( )

Uit = fﬂjgﬂ) > (B = b,)(Sy Spsr — 810 Sy (3.29)

"
where A, and f are variational parameters that are fixed self-consistently. The
first transformation shifts the equilibrium position of the oscillators, thereby de-
scribing the static lattice dimerization. The second transformation decouples the
hard phonons from the spin-system for respectively local and difference coupling.
By averaging over the phonon subsystem Heg = () an effective spin-Hamiltonian
is reached

Her=Jo+ Y _(J1 4+ (=1)"X0)Sy - Sp1 + > Jn D Sr+ Spim (3.30)

r n<2 r

where ug and J, are determined by J, g, and Qo(7). For small Qo(7)/J <
1/10, f is close to zero and the second transformation vanishes. In this situation,
Aug = Ar and J; = J, while there are no longer ranging effective interactions.
At large phonon energies (Qo(w)/J 2 10), f approaches 1. In this case, J; =
J + 19212 /Q0(m) = 3lga[21/292(m)?Y and Jo = |ga|? /20%(m) + 3lg4[21 /29 (m)2Y
for the difference coupling (Weifle et al., 1999) in agreement with the flow-equation
approach (Uhrig, 1998), DMRG calculations (Bursill et al., 1999) and a simple sec-
ond order perturbation calculation similar to the electron—phonon treatment in
BCS theory (Kuboki and Fukuyama, 1987). The parameter Y = coth Qq(n)/2T
makes the effective magnetic coupling temperature dependent. Weifle et al. (1999)
included an intrinsic NNN coupling a.J and report J, up to n = 4 for both local
and difference coupling.

If the phonon frequencies are not much higher than, but just comparable to
the magnetic coupling strength Qq(7) ~ J, the elimination of the phonon dy-
namics may neglect important spin-lattice quasi-particles. In a numerical Lanczos
diagonalisation on finite chains, it was found that for Qo(7) ~ g ~ J the mag-
netic excitations indeed involve a local lattice distortion (Wellein et al., 1998). By
quantum Monte Carlo calculations for the specific choice Qo(7) = J/4aT =0
transition to spontaneous dimerization was found only for sufficiently large spin-
phonon coupling g, > g = (0.225 £ 0.015)J (Sandvik and Campbell, 1999).

Alternating and next-nearest neighbour coupling

As seen above, the soft and hard phonon limits of the spin—Peierls model can
(at least for low applied fields) be transformed to a purely magnetic model with
alternating nearest neighbour (NN) coupling J(1+4) and antiferromagnetic next-
nearest neighbour (NNN) coupling «J. In addition, there is of course the possi-
bility that physical realizations of the spin—Peierls model may have intrinsic NNN
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exchange coupling. It is therefore important to understand the behaviour of such
a magnetic model system, but even in the absence of phonons this poses a consid-
erable challenge.

Classically, there is no spin arrangement that can satisfy both NN and NNN
antiferromagnetic coupling. This is called frustration and tends to destabilize mag-
netic order on behalf of dimer-correlations. In fact, at a critical value a, = 0.2412
translational symmetry is spontaneously broken and the dimer correlator Op =
[(Sn—1-Sn — Sp - Sp+1)| becomes non-zero (Chitra et al., 1995). Obviously, the
alternation directly breaks the translational symmetry and causes a finite value of
Op for any non-zero value of §. In combination, NNN coupling serves to enhance
the dimerization effects due to alternation.

Ounly for 6 = 0 and a < a. does the system resemble the pure NN S = 1/2
chain. The ground state has algebraically decaying antiferromagnetic correlations
(—=1)"(So - Sr), and there is no long ranged dimer order. The excitation spectrum
remains gapless with the same features as for the NN chain (Sgrensen et al.,
1998). The spin-wave velocity is decreased by the NNN coupling. A numerical
study (Fledderjohann and Gros, 1997) gives vs(a) = FJa(l — 1.12a), while a
non-linear o model approach (Affleck, 1990) gives v (a) = ZJ(1 — 4a)/2. A
MF calculation gives vs(a) = F.J(1 — 0.8a) and suggests that J and a can be
determined independently from the temperature dependence of vs (Muthukumar
et al., 1997).

Above a, or for non-zero alternation, the dimer correlator Op becomes finite and
the long-distance behaviour of the antiferromagnetic correlation function crosses
over from algebraic to (faster) exponential decay. A gap A o e /(®=@<) opens
in the excitation spectrum, which is constituted by solitons with respect to the
dimer order.
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3.2 The field induced soliton phase

There are two degenerate dimerised ground states corresponding to respectively
positive and negative ug. The excitations from such a dimerised state are so-called
solitons, which at a certain point along the chain change the sign of the dimeriza-
tion. In one dimension, such solitons will destroy the dimer order, and therefore the
MF and RPA theories presented above implicitly rely on the three-dimensionality
of the phonons to stabilize the dimerization. Through this 3D coupling, solitons in
adjacent chains attract each other, tending to line up perpendicular to the chain
direction. Such arrays of solitons are called domain walls.

The energy cost of forming solitons is decreased by application of an external
field. In the following it will be derived how above a critical field a static lattice
of solitons is formed.

Effect of a magnetic field

The effect of a magnetic field is easily described within the fermion description.
By Jordan—Wigner transformation, the Zeeman term becomes

1
—QMBHZSZ = —Eg,uBHN +g,uBHZaLan , (3.31)

which merely changes the single particle energy by a chemical potential —gupH,
thereby changing the fermion occupation and the Fermi wave vector
_gppH _ 29ppH
Vg rJ
Since xq(w) was calculated in a continuum linear band model, the result should
be corrected for Umklapp processes according to I, (m + Q) = i[II(7 + Q) +
II(m — @)], where @ is the deviation of ¢ from 7. For 2k = , this makes no

Okp

(3.32)

difference since II is quadratic in the deviation from 2kz. Defining { = 7% and
f(€Q) = (m + Q)/II(x), the soft mode condition can be written as

T.(H,Q 1

LoD — L@~ k) + €@+ 8kr)]. (3.39)

The transition temperature T.(H) and Q(H) are found by maximizing T.(H, Q)
with respect to Q. As long as f”(z) < 0, the maximum remains commensurate at
Q@ = 0. In this region

1;56((%) = <QM£H> ~1-0.091 x <ng2](90?>2 : (3.34)

which means that a small field suppresses the stability of the spin—Peierls phase.
This is because the field suppresses the quantum fluctuations, thereby decreasing
the energy gain of the spin—Peierls transition. This is opposite to antiferromagnetic
order, which is destabilized by quantum fluctuations, where TN (H) increases with
the field.

Atz = 47"1’}?(];[) = 0.145, f"(z) = 0 and @) becomes non-zero, indicating that the
system enters a modulated phase. This nonzero solution for @) gives the modulation
of the system and will be called 0k, in the following. Neglecting the possibility of
weak pinning to the lattice periodicity, the modulation is in general incommensu-
rate (IC). This corresponds to Te(H) = 0.77 x T.(0) and gupH = 1.38 x T,(0).
Above this field, 6k, rapidly evolves from 0 to dkr, but it is worth noticing that
0ksp # dkp. Contrary to the general saying, Cross and Fisher theory does predict
a continuous evolution from dks, = 0 with gupH /vs as the asymptotic value.

Though correctly predicting the transition to a phase, where the lattice dimer-
ization (the static g = 0 phonon) is incommensurately modulated, the approach
does not provide insight into the nature of this modulated phase.
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3.2.1 Soliton solutions

A quantitative description of the IC phase was developed by transforming the
boson fields to conjugated phase variables 8(x) and p(z) (Nakano and Fukuyama,
1980, 1981, Inagaki and Fukuyama, 1983a,b, 1984, Zang et al., 1995, 1997, Dobry
and Riera, 1995). The thereby obtained phase Hamiltonian has the form

H= /dw[A(V0)2 + Cp® — Bu(z) cosf + %u(m)Q] , (3.35)

where u(x) is the adiabatic lattice distortion, which is found by minimising the
free energy. For clarity, the lattice constant a is re-introduced explicitly. The pa-
rameters A = 22(1+ 3) —» % and C = 2Ja(r — 1) — % have been adjusted
to reproduce the correct spin-wave dispersion and correlation function exponents.
The spin-lattice coupling is contained in B = Z3.

Writing 6 = 6. + 9, where 6. is a classical field, the quantum fluctuations are

treated in the self-consistent harmonic approximation (SCHA)

2 2 192
cosf o~ et T (1 - G2¢> cosf . (3.36)

The original spin-operator is given by SZ = % cosf(na) + 5=V6(na), where
the magnetization m = (S?) is obtained by inserting the classical field 6.

Assuming the fluctuation average (éQ) to be constant, leads to the following two
differential equations for the semiclassical field

24V%0y = u(z)ge*é“/%osec] (3.37)
a
AK Mg
Tu(a:) = ¢ /2 in g, (3.38)
U
220 = LI 6
V<20, = ﬁs1n2 el s (3.39)

where I' = v, /Ag. This equation has two homogeneous solutions 6, = 0, 5. For
01 = 0 the Néel state is realized with u(z) = 0, while for 6 = 7 the magnetization
vanishes and u(z) = ug = %e’<é2>/2. This is the spin—Peierls state.

The fluctuation average is determined by inserting 1 = 5 into the Hamiltonian,
which becomes quadratic in é, giving the following dispersion relation

o )
wy = \/AZ + 122, A2 =4nBe T, <02):1na”T”;. (3.40)

The energy gap is determined selfconsistently
20, (AN2\""* fug\2/3
a=22(Z) () (3.41)
a \7w a
The change in free energy due to dimerization is

3N\ T jug\is 2K
AE“Z(?) S e (342)

where the fluctuation term is proportional to ué/ ? and the elastic energy to u2,

which leads to a non-zero value at minimum energy

AR
Uo = a— <4Ka2> , (3.43)
giving the excitation gap
\2J?
Ay = Ta? - (3.44)
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Allowing .1 (z) and u(z) to vary but keeping (62) fixed at the value derived in
the uniform case, inhomogeneous solutions can be found. Two such solutions are

cosfg = ZLtanh % (3.45)

u(z) = Zwugtanh % (3.46)

m(@) = t—— g~ (3.47)
~ " Tcoshi cosh & '

These two solutions correspond to solitons which over a length scale of the soliton
width I shift the phase of the lattice distortion. By integration of m(z) it is seen
that the two types of solitons carry a total spin of respectively % and —%. The
energy of the soliton solutions is given by the energy of the dimerised solution plus
a soliton creation energy F; ~ 0.279 x Ao.

The influence of a magnetic field is to replace A(V#)? in the Hamiltonian with
A(VO—h)? where h = %. Neglecting the influence on the shape of the solutions,
the presence of a magnetic field will lower the soliton formation energy by the
Zeeman energy gupH/2, which leads to spontaneous formation of solitons at a
critical field of H, = 0.279 x 2Aq/gup.

The local spin density is given by m(z) =
distortions satisfies m(z) = &=h = %ﬁ?}f,
uniform HAF chain (Griffiths, 1964).

In this incommensurate phase the solitons will repel each other to form a regular
lattice. A periodic generalization of the tanh(z) solution is found in the Jacobi
elliptic function sn(z/Tk, k) of modulus & (It should be noted that some prefer to
use the definition sn(z/Tk, k?).) The periodicity of this function is L = 4TkK (k),
where K (k) is the complete elliptic integral of the first kind. The shape and ampli-
tude of the soliton lattice can be estimated from the above, under the assumption
that the soliton lattice does not influence the differential equations. But in order
to determine the distance L/2, the interaction between solitons has to be included.
This was achieved in a slightly different approach where the fermion operators of
the MF approximated Jordan—Wigner transformed Hamiltonian were written as
complex fields 1(x) = u(z)e’™/2® —jy(x)e "*/2% where u(x) and v(z) are slowly
varying functions satisfying the self consistency equations

%VG, which in the absence of lattice
reproducing the exact result for a

(w—gupH)u = ivsVu+ A(z)v (3.48)
(w—gupH)v = —ivsVuv+ A(x)u (3.49)
Alz) = Mu"(z)v(z) +v"(2)u(z)) . (3.50)

When the dispersion is linearized around the Fermi wave vector, these equations
have the previously found Jacobi elliptic function A(z) = Aysn(xzA, /vsk, k) as
an exact solution. The difference between the free energy of the uniform solution
and the soliton lattice solution is

16 A s )
4 In4/k " 4ln4/k 2In(4/k)2’°

where k' = /1 —k? and § = (H — H.)/H.. Minimization of the energy gives
§ = k*1In(4/k')/2, which is approximately equivalent to k = /T — 20/In(1/9)
from which the periodicity is found according to L = 4TkK (k).

Writing m(z) = m.,(z) + (=1)*/*m,(z) in terms of a staggered (antiferromag-

AE = 2AZN(0)(—

(3.51)
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netic) and a uniform (ferromagnetic) part, the periodic solution becomes

9 3/2
ul) = uo(~1)'snllc/Th, k), uo =o' (@) (3.52)
ma(z) = ma(—1)en(lc/Th, k), my = \/;T_F (3.53)
my(z) = mydn(le/Tk, k), mu:27r1kI" (3.54)

Apart from being the exact solutions to an approximate model, these functions
provide a continuous basis going from a sinusoidal to a sharp (square) soliton
lattice with just two parameters I' and k, one being fixed by the periodicity. This
makes them much more suitable than the standard Fourier series for which an
infinite number of parameters are needed to produce a sharp soliton lattice. But,
for instance when using diffraction methods to investigate the soliton structure,
it is useful to know the Fourier series of the Jacobi elliptic functions.

1

"z (2n - 1)7u

U — q" 2
k) = 3.55
sn(u. k) KK (k) nz::l 11 " 2K (k) (3:55)
2T X "2 (2n — 1)7u
k) = 3.56
R = Rm & T 2k (3.56)
dn(wk) = — 42" i AL (3.57)
T K®m TR 1o CRm ‘
where k = e~ ™K (1=k*)/K(k)
The Fourier components are given by
1
o _ _ T __4q"*
ay = PR 1= 2T n odd (3.58)
1
cn _ m gz
al' = PR T+ @ n odd (3.59)
adn = Jrmy " . (3.60)
kH - >0

So the distortive and the staggered magnetic components give reflections at odd
harmonics away from half order positions. The uniform magnetic component gives
even harmonics.

Once the first harmonic of either the structural or the magnetic component has
been measured, the amplitude can be found

uo = M;(k) 1\;;u(q = 0ksy) (3.61)
msg = klir(k) Hﬁms(q = 0ksp) (3.62)
My = @1 :“2 ma(q = 20ks,) . (3.63)

Effect of NNN and interchain coupling

For treating the hard phonon case and for comparison with physical realizations
of the soliton phase, it is important to investigate how the soliton-structure is
affected by NNN and interchain coupling.
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The effect of NNN coupling is easily realized by remembering that the starting
point of the field theory was to adjust the parameters so that the correct spin-
wave velocity vs was reproduced. The dispersion relation in the dimerised phase
was €(q) = /A2 + ¢%v2 and the results depended only on vs and A. The NNN
coupling will decrease vs but leave the form of the soliton solution unaltered. As
I' = vs/A, NNN coupling will decrease the soliton width (for fixed .7) (Dobry and
Riera, 1995). But it should be noted that often (including the case of CuGeQO3),
the coupling constant J is determined by measuring the dispersion relation (i.e.
determining vs and A), in which case the value of « is irrelevant.

An interchain coupling .J; can be included in a MF way (Zang et al., 1997) by
adding a classical field h(x) = (S}, ,,11) = %(Sfl’m) to the Hamiltonian

H, = —J/ Zh(x) cos b — gh(x)%lx , (3.64)

where Z is the coordination number and Z # Z accounts for the possibility that
a soliton (finite (S7 ,,)) in chain m is not fully transferred to the neighbouring
chains.
Considering the ground state energy for § = 0 (Néel order) and 6 = § (dimeri-
zed), the two are seen to be favored for
_J.Z

Ck = N (3.65)

respectively larger and smaller than 1. It should be noted that NNN coupling
changes Ck slightly. For Cx < 1 the soliton width is decreased by I' = % (1 —
(Z]Z)?Ck)'/? by magnetic interchain interactions.

The effect of interchain elastic coupling (still in the adiabatic approximation)
was considered by Dobry and Riera (1995), who reached I' = T'y/B(0), where

dk cosk-n
B(n) = / / _ (3.66)
(2m)% 1 + Ilg_i sin? %“ + f((—i sin? %"

where n = (ng,ny) and K|, K, and K, are the effective elastic constants along the
chains and in the two perpendicular directions respectively. However, this result
concerned a soliton excitation in a single chain, while the other chains remained
dimerized. For the case of a static soliton lattice, where all chains share the same
modulation, the soliton width becomes I' =T¢/ )", B(m). Since ), B(n) =1, it
is seen that the static soliton width is unaltered by elastic interchain coupling.

3.2.2 Numerical calculations

The field theoretical results for the dimerization dk,,, energy gap A and soli-
ton width T' have been supplemented by numerical calculations based directly
on the microscopic parameters J, a and K. Though both direct diagonalization
and Monte Carlo techniques have been applied (Feiguin et al., 1997), the most
successful approach has been the density-matrix renormalization-group (DMRG)
calculations (White, 1992, 1993, 1998).

The numerical results for the dimerization and the energy gap in the dimerized
phase have been found to be in good agreement with the field theoretical prediction
(Feiguin et al., 1997, Meurdesoif and Buzdin, 1999).

In the soliton phase, the shapes of both the structural and the magnetic soli-
ton components were found to be well described by the predicted Jacobi elliptic
functions. This is not surprising, as the Jacobi elliptic functions form a parame-
terization of periodic functions. However, also the parameters such as the soliton
width, the distortion amplitude and the amplitudes of the staggered and uniform
parts of the magnetic soliton structure are in generally good agreement with the
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field theoretical predictions (Meurdesoif and Buzdin, 1999, Schénfeld et al., 1998,
Uhrig et al., 1998, 1999a,b, Uhrig, 1999, Kliimper et al., 1999).

Some quantitative differences have been reported though (Uhrig et al., 1999a).
The amplitudes of the magnetic soliton structure are reported to deviate between
the field theoretical prediction and the DMRG calculations. Here it is however
important to be consistent in the choice of the parameters when comparing. More
important, the DMRG calculations suggest that the structural soliton width is
about 35% higher than the magnetic soliton width, and that they both increase
slowly with the applied field.

While numerical calculations have the possibility of providing quantitative de-
scriptions of experimental data with fewer approximations and easier inclusion of
the parameters specific to the physical realizations on which the measurements are
performed, they suffer from the difficulty in establishing the functional dependence
of the results on the individual parameters of the model.

3.2.3 Excitations in the soliton phase

The understanding of the dynamics in the soliton phase is far from settled. The
focus has been on two types of excitations: excitations of the magnetic soliton
structure and fluctuations in the positions of the solitons. In the adiabatic (static
lattice) approach, magnetic excitations with total spin of respectively +£1 have
been treated both in the field theory approach (Machida and Fujita, 1984, Fujita
and Machida, 1984, 1988) and through numerical calculations (Poilblanc et al.,
1997, Uhrig et al., 1998, Schonfeld et al., 1998, Yu and Haas, 1999).

Based on the fermion model, a qualitative expectation for the excitation spec-
trum can be established. Figure 3.4 shows how respectively the fermion particle
energy and the dispersion relation evolves upon increasing magnetic field. In the
upper panels, below H., the field splits the two fermion bands, resulting in three
Zeeman split triplet excitations. At H, in the middle panel, the branches of the
two different fermion band join at the Fermi level, resulting in a softening of the
lower triplet excitation. Above H. the incommensurate lattice modulation shifts
the gap positions (and hence kr) in the fermion bands away from £ /2. The re-
sulting excitation spectrum resembles that of the uniform spin chain in a magnetic
field (see figure 3.3), except that the soft modes acquire gaps. In general, the two
degenerate modes at the zone center will be split because of the finite magnetiza-
tion. Thus around the zone center (¢ = 0), a total of four modes are expected: two
commensurate longitudinal modes and two transverse modes at the incommensu-
rate position to either side of the zone center. The same scenario is present around
the antiferromagnetic zone center (¢ = 7) but with the longitudinal and transverse
modes interchanged. A quantitative calculation of the excitation spectrum within
the JW-MF theory based on the Bogoliubov equations for the fermion particles
is in progress (Mortensen and Rgnnow, 2000).

In numerical studies on finite chain lengths, a subset of eigenstates correspond-
ing to different values of the total spin S, are calculated. The magnetization is
then given by m = S, /L, where L is the chain length. Hence the S, = 1 state
with the lowest energy is the ground state at a field in the incommensurate phase
corresponding to a magnetization of 1/L.

The modulated coupling is included either as §,, = cosqry,, or allowed to vary
individually. In each case either g or the series of numbers §,, are determined self-
consistently by minimizing the ground state energy. In the former case, the ground
state energy is minimized by ¢ = 7 + 27 /L in agreement with the expectation. In
the later case, 0, is found to be described by the Jacobi elliptic function sn with
parameters that are in good accord with the field theoretical prediction.

The magnetic excitations can then be determined by keeping the 4,, at the
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Figure 3.4. Schematic illustration of how the excitation spectrum changes as the
field is increased from below H. (upper), at H. (middle) to above H,. (lower). The
left panels show the fermion energy with the Fermi level indicated by the horizontal
line. The arrows illustrate respectively an inter band (solid) and a band crossing
excitation. The right panels show the corresponding excitation dispersions where
the inter band processes (solid) correspond to longitudinal excitations, while the
band crossing processes (dashed) correspond to transverse spin fluctuations.

selfconsistent values for S, = 1 and then calculating the eigenstates with S, =
1+£1. Once the ground state and excited states are known, the excitation spectrum
can be calculated (Yu and Haas, 1999). As a special case the excitation gaps are
given as the difference between the lowest eigen energy and the ground state energy
(Schonfeld et al., 1998).

One drawback of numerical approaches is that the dependence on the parame-
ters like the amplitude d of the exchange alternation, the amount of NNN coupling
a and the elastic constant K is difficult to infer. Therefore these calculations have
to be redone each time a new set of parameters become relevant in the study of
a given physical realization of a spin—Peierls system. The excitation spectrum has
been treated in a sinusoidal approach with different values for (4, «) = (0.014,0.36)
(Poilblanc et al., 1997), (0.12,0) (Uhrig et al., 1998), (0.4,0) (Yu and Haas, 1999)
and for an adaptive modulation with o = 0.35 and K = 2.38. This later choice
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Figure 8.5. Dynamic structure factor S,.(q,w) obtained from exact diagonalization
of a L = 18 chain with a sinusoidal modulation of 8,,. The figure is adapted from
Yu and Haas (1999).

corresponds to 6 = 0.14 in the modulated phase.

In figure 3.5b the excitation spectrum at a magnetization of m = 1/18 is shown.
It is seen that the energy minima are located at ¢ = 0 and at ¢ = 7 — 27m in
consistency with the field theoretical expectation. However, as is the case in zero
field (figure 3.5a), the spectral weight is concentrated at ¢ = m, where a double
peak is observed at an energy slightly higher than the minimum.

Unfortunately, the numerical calculations are limited to magnetizations higher
than 1/Lmax, where Lpyay is the highest number of spins the given method can
be extended to. Due to the low degree of translational symmetry of the coupling
J(1 + 6,), exact diagonalization via the Lanczos algorithm is limited to L < 24.
DMRG calculations have been extended to L = 200 but the energy gaps have only
been reported for m > 0.02. These results are shown in figure 3.6.

Phasons

In the incommensurate phase, the translational symmetry is broken by the for-
mation of a soliton lattice. This soliton lattice can be shifted along the chain with
relatively ease. This is a general feature of systems where a continuous symmetry
is broken and the mode connected with the specific phase or position at which it
is broken is called a Goldstone mode.

In the soliton phase, these longitudinal domain wall oscillations can be consid-
ered as fluctuations in the phase of the soliton lattice and have therefore been
denoted phasons. The dispersion relation for the phasons has been related to the
correlation lengths in the critical region around the spin—Peierls transition (Bhat-
tacharjee et al., 1998, Schoeffel et al., 1996)

wphason(0) = oy/E262 + 0} + €22 , (3.67)

with rough estimates &, = 0.25, {, = 0.43 and &, = 2.35.
If, as predicted from field theory, the phasons are gapless, there will be zero
point oscillations around the equilibrium positions. This will lead to an averaging
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Figure 3.6. The development of the two adiabatic gaps Ay as a function of mag-
netization for a = 0.35 and K = 2.38 corresponding to an alternation of § = 0.14.
The figure is adapted from Schénfeld et al. (1998).

of the magnetic soliton lattice as obtained through the expectation value of SZ. A
quantitative treatment within the field theory leads to

m& ~ (1= 2y)mp + y(mp_1 + Mpt1) , (3.68)

where v was determined by the phason dispersion. This averaging has little effect
on the slowly varying uniform component of the magnetic structure, but signifi-
cantly reduces the staggered component by a factor of approximately 1 — 4. If
on the other hand the discreteness of the lattice (which means that there is only
quasi-translational symmetry) induces a gap in the phason dispersion, then such
an averaging of the magnetic structure will not take place.

3.2.4 Physical realizations of Spin—Peierls systems

The first spin—Peierls transition was discovered in the organic metal-complex com-
pound tetra-thiofulvalene-copper-bisdithiolene (TTF-CuBDT) (Bray et al., 1975,
Jacobs et al., 1976), and subsequently in the related compounds TTF-CuBDSe
and TTF-AuBDT. A review on the spin-Peierls transition and the experimental
results from these materials is given by Bray et al. (1983).

The signature of the spin—Peierls transition is a susceptibility x(7") that follows
the Bonner and Fisher (1964) prediction for an S = 1/2 chain down to a temper-
ature Tsp, below which x(T') rapidly decreases to zero. In the organic spin—Peierls
systems x(T') is perfectly described by the combination of Bonner—Fisher theory
and an alternating chain model, where §(T") follows the self-consistent solution
for the gap with T,, J and 6(0) as fitting parameters. The obtained §(0) was in
reasonable agreement with the prediction §(0) = 1.0767/.J.

The expected BCS-like jump in the specific heat was confirmed experimentally
(Wei et al., 1977). The lattice distortion in TTF-CuBDT was observed as satellite
reflections in X-ray diffraction (Moncton et al., 1977). The gradual development of
these reflections was described by the square of the BCS-like gap. Diffuse scattering
was observed far above the transition (up to 225 K~ 207%,), which is interpreted
as the existence of a low energy phonon mode, thereby explaining the good overall
agreement with the MF and RPA approaches.

The (T, H) phase diagram was derived using a series of techniques. The expected
behaviour was observed with T.(H) decreasing with field until a tricritical point
T.(H.), above which a new phase is realized. The incommensurability of the high-
field phase was observed as a splitting of the satellite reflections in X-ray diffraction
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in TTF-CuBDT (Kiryukhin et al., 1995), and as a broadening of the NMR signal
above H, in TTF-AuBDT (Hijmans et al., 1985).

A number of other materials have been proposed to exhibit spin—Peierls transi-
tions. There are other transition-metal-complexes like (3MAP)CuCl; and (6MAP)-
CuCl;s (Liu et al., 1995), but also truly organic materials like MEM(TCQN)s-,
(TMTTF),PFg and p-CyDOV (Mukai et al., 1996, Jamali et al., 1998), where the
spins are constituted by localized spin densities at certain parts of the organic
molecules. The compound MEM(TCQN), undergoes first an electronic Peierls
metal-insulator transition at 335 K, below which each dimer contains a localized
spin 1/2 (Huizinga et al., 1979). At 17.1 K, a second dimerization occurs, which
has been ascribed to a spin—Peierls transition (van Bodegom et al., 1981, Blundell
et al., 1997, Lumsden and Gaulin, 1999). In (TMTTF),PFg, the ambient pressure
spin—Peierls ground state below 18 K can be turned into ordinary antiferromag-
netic order above 1 GPa (Chow et al., 1998).

There are materials like TMPD-perchlorate where a lattice distortion is accom-
panied by a sharp decrease in the susceptibility. In this case, however, it is a
structural phase transition, in which the magnetic system plays little if any role
(Terauchi et al., 1976).

However, the inability to grow large single crystals of these organic spin-Peierls
materials, precluded the use of techniques like inelastic neutron scattering. There-
fore the interest in the spin—Peierls transition stagnated until the discovery of
the inorganic spin—Peierls material CuGeQOs. In the meantime, there has been a
significant development in neutron scattering instruments. It may therefore prove
interesting to resurrect one of the best characterized organic spin—Peierls systems.

Recently, it has been suggested that the inorganic o/-NaV,0Os should display a
spin—Peierls transition (Isobe and Ueda, 1996). Subsequently it has been realized
that the behaviour of NaV,QOj5 is more complex due to charge ordering effects and
mixed V4 /V5+ valence states (Poirier et al., 1999, Fudamoto et al., 1999). For
this reason, NaV,Oj is a highly interesting system but inadequate for studies of
the spin—Peierls model, which is the subject of this chapter.
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3.3 Characterization of CuGeQO;

The spin—Peierls transition in CuGeOj3 was first conjectured from susceptibil-
ity measurements by Hase et al. (1993a). The concomitant lattice distortion was
observed in diffraction experiments (Kamimura et al., 1994, Pouget et al., 1994),
thereby verifying the spin—Peierls nature of CuGeQOs. With this, the number of ex-
perimental results on the SP transition has been much increased. Because CuGeOs3
is an inorganic compound of which large single crystals can be grown, it has en-
abled measurements that have not been possible on the previously studied SP
materials. But at the same time, it has been realized that CuGeQO3 is not an
ideal physical realization of the simple spin—Peierls model. Therefore considerable
work, both experimental and theoretical has been devoted to the understanding
of CuGeQO3 (For reviews see Boucher and Regnault, 1996, van Loosdrecht, 1998,
Enderle, 1999). Following an intense effort in the last few years, it seems like there
is now a sufficient basis available for understanding CuGeQs. It is therefore useful
to review the present facts.

3.3.1 Crystal structure

CuGeOQg3 crystallizes in the orthorombic Pbmm structure with room temperature
lattice parameters a = 4.80 A, b =847 A and ¢ = 2.94 A (Vollenkle et al., 1967,
Braden et al., 1996). As illustrated in figure 3.7, one unit cell contains 2 formula
units. There are two inequivalent oxygen sites that will be denoted O1 and O2.

Figure 3.7. The crystal structure of CuGeOs with the arrangement of the CuOg oc-
tahedra and the GeQy tetrahedra indicated. The figure is an ORTEP plot adapted
from Braden et al. (1996).

Each Cu ion is contained in a CuOg octahedron with 1.93 A to the closest
oxygen (type 2). Along ¢, adjacent octahedra share edges and two oxygen ions, so
that they form a ribbon of oxygen rectangles with face centered Cu ions as shown
in figure 3.8.

Each O2 is also part of a GeO4 tetrahedron, where the other three oxygen come
from neighboring CuOg octahedra in the b (one 02) and a (two O1) directions.
Along b, adjacent CuQOg octahedra are related by a glide mirror plane perpendic-
ular to the a axis, giving two formula units per unit cell.

The crystal structure of CuGeQOj; is remarkably simple, and in particular the
arrangement of the GeQOy tetrahedra with a period of just one along the chain
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Figure 3.8. The local crystal structure of the Cu chains in CuGeQOsz. To the left,
the CuQy ribbons are viewed with ¢ horizontal. To the right, the structure is viewed
along ¢, showing how the O2 are spanned between the Cu chains and the Ge chains.
The displacement pattern in the dimerised phase is indicated by arrows.

is rather exceptional for germanates and silicates. Motivated by indications from
electron spin resonance (ESR) measurements for an anisotropic Dzyaloshinskii—
Moriya (DM) exchange interaction (Yamada et al., 1996), this structure has in
fact recently been questioned. An X-ray investigation on a crystal, that had been
annealed in oxygen atmosphere at 1150°C, showed super-lattice reflections that
correspond to a larger unit cell (2axbx4c¢; P212;2) in which the 4 GeOy4 tetrahedra
along the chain are twisted with respect to each other. The authors postulate
that in non-annealed samples, these twists are still present but only short range
ordered. A thorough neutron scattering investigation (Braden et al., 1998b) on
a non-annealed sample excluded such reflections and hence long ranged ordered
distortions of the octahedra. Analysis of the Debye—Waller factors also excluded
a short range ordered twisting of the octahedra. It could be that the signal seen
in the X-ray diffraction is from phonons with a significant spectral weight, which
would not be observed in neutron scattering studies. Until this controversy has
been settled, and through the rest of this thesis, the originally proposed structure
will be used.

Structure of dimerised phase

The distortion of the lattice, which accompanies the spin—Peierls dimerisation
was detected in electron (Kamimura et al., 1994) and X-ray (Pouget et al., 1994)
diffraction experiments as satellite reflections at (%, k, é), where h, k, [ are all odd.
This corresponds to a doubling of the unit cell along a and c.

The crystal structure of the SP phase has been determined by neutron scat-
tering (Hirota et al., 1994, Braden et al., 1996). By measuring 14 satellite re-
flections, Hirota et al. (1994) determined the space group to be Bbem, which
can be derived from the room temperature (RT) structure by allowing shifts
uS" = (zRp —258)/crr, ud? and uf®. Along a and c, the shifts have alternating di-
rection, which causes the doubling of the unit cell in these directions, whereas the
unit cell is already double along b. In fact, due to the loss of mirror-symmetry, the
02 sites divide into two inequivalent sets O2a and O2b. Hirota et al. (1994) found
that the satellites intensities were well described by constraining the refinement
to just three displacements uS", u$? and uQ?.

This was confirmed in a thorough crystallographic study by Braden et al. (1996),
who indexed between 100 and 400 independent reflections at temperatures 295 K,
20 K and 4 K. The 20 K data showed that although there are significant changes in
the unit cell volume and the free positional parameters between RT and 20 K, the
doubling of the unit cell does not appear before Ts,. Refinement of the 4 K data
gave the following displacement parameters uS" = 0.00192(6), u9? = 0.00199(11),
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Figure 3.9. The linear thermal expansion coefficients a,, ap and a. as a function
of temperature from Winkelmann et al. (1995).

u$? = 0.00077(6) and u§® = 0.00009(3). The three first are comparable, while
the shift of Ge is an order of magnitude smaller and therefore negligible. The
distortion is easily understood as driven by a dimerisation of the Cu along the
chain as illustrated in figure 3.8. In order to conserve bond-length energy, the O2
is then pushed in the ab plane between the two Cu ions and one Ge ion.

Lattice dynamics

The linear thermal expansion coefficients «,, a; and a. as shown in figure 3.9
display not only a sharp anomaly at the spin—Peierls transition, but even above
Tsp they show considerable temperature dependence (Winkelmann et al., 1995).
In particular the non-monotonic behaviour of a, and a, with respectively a maxi-
mum and a minimum around 60 K resembles the broad maximum in the suscepti-
bility. This suggests that already at high temperatures, the magnetic fluctuations
influence the lattice through spin-phonon coupling.

A comparison between the thermal expansion coefficients and measurements of
the magnetostriction was interpreted as evidence that the spin—Peierls transition
is assisted by NNN interactions (Biichner et al., 1996).

Despite thorough searches, the soft phonon expected in the simple theory for
the spin—Peierls transition has not been found in CuGeQOj3. With 10 atoms in the
unit cell, there are in total 30 phonon branches, of which three are acoustic. Exper-
imentally, some attention has been focused on the existence of an anomalously low
longitudinal acoustic (LA) phonon branch along the b* direction (Lorenzo et al.,
1994, Nishi et al., 1995, Hirota et al., 1995, Nishi et al., 1999) as shown in figure
3.10. In initial experiments, the mode appeared quite broad, but recently it has
been shown that it is in fact constituted of two sharp modes (Nishi et al., 1999).
Despite the unusual feature that along b* the longitudinal mode lies below the
transverse, it is difficult to imagine which influence this has on the spin—Peierls
transition. On the other hand, it naturally explains the large thermal expansion
coefficient along b as shown in figure 3.9.

In the original theory, the spin—Peierls active phonon would be expected to
become soft at ksp. In the right panel of figure 3.10, the phonon spectrum along
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Figure 3.10. Phonon dispersions of respectively the acoustic phonons along a*, b*
and c* (Hirota et al., 1995, left, ) and the phonon spectrum along [1,0,1] (Braden
et al., 1998a, right, ). For comparison, 1 THz corresponds to 4.136 meV.

[1,0,1] at room temperature is reproduced from Braden et al. (1998a). The phonon
dispersion and intensities were modeled by a shell model calculation as shown
by the solid lines. From this calculation, the polarization-scheme of each mode
was determined. The modes that correspond to the SP distortion from Pbmm to
Bbem are marked by T3 . No single mode has a polarization-scheme matching the
static lattice distortion of the SP phase, but reasonable matching is achieved by
taking the two lowest modes in a ratio of 2 to 3. These two modes have energies
14 meV and 28 meV respectively, which is considerably larger than the gap Ag =
2 meV. In addition, they do not soften at the SP transition. On the contrary, they
continuously stiffen by respectively 6% and 4% as the temperature is decreased
from room temperature. This has now been understood by the extended RPA
calculation described in section 3.1.2.

In fact, only the oxygen displacement contributes to the (Z,k. %) reflections
with k£ even, while for £ odd also the copper displacement is in effect. It would
therefore be interesting to see the phonon spectrum along [1,2,1], but no such
results have been published yet. From far infrared absorption (FIR) experiments
it has been found that the lowest spin—Peierls active phonon is split symmetrically
in the incommensurate soliton phase (Takehana et al., 1998, 1999). The splitting
was found to be proportional to the inverse period dksp.

3.3.2 Magnetic properties

The magnetic moments in CuGeOs are localized as S = 1/2 spins on the Cu**
ions, although recent neutron scattering results suggest that there might be a small
spin-density on the oxygen sites. The large elongation of the CuOg octahedron
gives rise to an ellipsoidal g-tensor that is staggered between adjacent Cu sites
along b. By electron spin resonance (ESR), the principal axes g, = 2.348 & 0.005
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and ¢; = 2.063 £ 0.005 respectively parallel and perpendicular to the Cu—O1
direction have been determined (Honda et al., 1996, Pilawa, 1997). The average
values along the three crystallographic axes are g, = 2.154(3), g, = 2.256(4) and
ge = 2.064(3)

From the crystal structure, it is often possible to guess the type and relative
size of the magnetic interactions, although there exist examples where the original
guesses have been proved wrong (See e. g. Johnston et al., 1987, Eccleston et al.,
1994, Tennant et al., 1997). In CuGeOs3, already the short Cu—Cu distance along
¢ (2.94 A compared to 4.80 A along a and 4.22 A along b) hints that the magnetic
interaction will be strongest along this direction. This assumption is strengthened
by considering the possible exchange paths. While there is a quite short Cu—O-Cu
exchange path along the chain with a total length of 3.86 A, the exchange paths
along the a and b directions involve at least 2 oxygen with total path lengths of
7.53 A and 6.69 A respectively.

Electronic origin of magnetic interactions

More quantitative considerations based on electron orbitals and band structure
calculations have been performed. From simple considerations of the orbital sym-
metries, it can be deduced that a straight Cu-O—Cu bond should provide a strong
antiferromagnetic coupling, while a 90° bond should give vanishing magnetic cou-
pling (Goodenough, 1963). Improving this argument leads to a small ferromagnetic
coupling for 90°.

In CuGeOs, the difference between the rectangle sides (2.51 A and 2.94 A)
gives the double Cu—O—Cu bonds an angle of 99°. To make a smooth transition
between the weak ferromagnetic coupling at 90° and the strong antiferromagnetic
coupling at 180°, the deviation from 90° in CuGeOs will favor antiferromagnetic
coupling. But in addition the existence of Ge side groups also aids to forming an
antiferromagnetic coupling (Eskes and Jefferson, 1993, Geertsma and Khomskii,
1996, Braden et al., 1996). One, perhaps, counterintuitive fact is that since it is
the deviation from 90° bonding that causes the antiferromagnetic interactions, the
strong magnetic coupling is in fact between the two Cu ions that move away from
each other.

It has been shown that the binding energy of the oxygen p orbitals is almost the
same for the orbitals pointing along the chain as if they point perpendicular to
the chain (within the plane of the CuOs ribbon) (Mattheiss, 1994). From this, it
is argued that if the p orbitals dynamically switch between the two orientations,
they could provide a NNN coupling of the Cu-spins (Castilla et al., 1995). In
a three-band calculation, including the two p, , orbitals of oxygen and the d,
orbital of copper, an antiferromagnetic NN coupling of J = 140 K and a NNN
coupling of a = 0.13 were reached (Mizuno et al., 1998). Such calculations have
been extended to include more bands, but then the number of electronic exchange
parameters that need to be determined grows considerably (Tornow et al., 1999).

A slightly different approach of applying standard band structure calculations
(Skriver, 1984) using the known crystal structure also gives quite good values for
the coupling parameters (Khomskii et al., 1996, Zagoulaev and Tupitsyn, 1997,
Sljivancanin et al., 1997).

In summary, attempts to determine the magnetic coupling parameters from
electronic calculations are surprisingly successful. Though not reliable enough to
give the accurate absolute values of the parameters, one important, application of
these calculations is the ability to investigate the relative change of the parameters
upon changes in the crystal structure due to phonons or applied pressure.

The crystal structure has recently been measured for a number of applied pres-
sures up to 6.16 GPa corresponding to a reduction of the unit cell volume by 10%
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(Braden et al., 1999). Combined with measurements of the magnetic properties
like susceptibility, this provides an excellent way to test the dependence of the
magnetic interactions on changes in the structural parameters (the distances and
angles between the ions) (Raupach et al., 1999).

Magneto-elastic coupling

The magneto-elastic coupling parameters have been determined from the experi-
mentally measured phonons (Werner et al., 1999). Using the observed phonon fre-
quencies and displacement schemes for the four active spin—Peierls phonons, both
the effective spin—phonon coupling constants and the individual derivatives of J
with respect to each of the structural parameters were derived. These coupling pa-
rameters can to some extend be reproduced by an electronic calculation, although
there are several large discrepancies (Feldkemper and Weber, 1998, 1999).

Phase diagram

The observation that there is a lattice dimerization at the same temperature as
where the susceptibility starts to decrease rapidly could also be interpreted as
alternating chain behaviour as a result of a structural phase transition. The first
evidence that the phase transition at 14 K is in fact a spin—Peierls transition
driven by the magnetic instability towards forming singlet pairs was provided by
the sensitivity of the transition temperature to the application of a magnetic field.
The initial dependence Ty (H) = Tp(0)[1 — t(gupH/2kpT;,)] was in agreement
with the finding from organic spin—Peierls materials and the theory of Cross and
Fisher (1979), Cross (1979). The experimental values ¢t = 0.39 (Hase et al., 1993b)
and t = 0.52+0.05 (Regnault et al., 1996) for the prefactor are roughly consistent
with the predictions ¢t = 0.365 (Cross and Fisher, 1979, Cross, 1979) and ¢t = 0.44
(Bulaevskii et al., 1978, Bray, 1978, Bray et al., 1983). This is illustrated in figure
3.11, where also the boundary to the soliton-phase is visible.

There has been considerable interest in the order of the C-IC phase transi-
tion(Brill et al., 1994, Rémenyi et al., 1997, Schonfeld et al., 1998). It is believed
to change from second order at 7' = 0 to first order at finite 7', although differ-
ent experiments are not completely consistent and theoretically the order depends
sensitively on the model that is used. In this context, it should be noted that
experimentally it has been observed that the entire IC phase has tendency to
hysteresis, as for instance observed in the present neutron scattering experiments.

Uniform susceptibility

While the susceptibility curve of Hase et al. (1993a) rather uniquely established
the spin—Peierls transition, it proved more complicated to obtain a quantitative
description of the susceptibility in the uniform phase above the spin—Peierls tran-
sition. As illustrated in figure 3.12 the susceptibility curve is more flat than the
Bonner-Fisher shape for a .S = 1/2 nearest neighbour chain.

It has been pointed out (Castilla et al., 1995, Riera and Dobry, 1995) that a much
better description can be obtained by introducing considerable NNN interactions
Jnnn = aJ. In fact, the best description of the susceptibility is obtained by us-
ing a = 0.354 (Fabricius et al., 1998) which is above the critical value a, = 0.241
for spontaneous dimerization. With this value, perfect account is made for the
susceptibility from 40 K and upwards.

Inclusion of inter-chain interactions, which are definitely present, also lower
the susceptibility from the Bonner-Fisher curve (Uhrig, 1997, Bouzerar et al.,
1999). A high temperature expansion gives x(T') = NA(fj’fB)z (1- J(Ha;g:h/‘]))
were Nap%/kp = 0.375 emuK/mole. To reproduce the same high-temperature

)
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Figure 3.11. The phase diagram of CuGeQs showing the uniform (U) phase, the
dimerized (D) spin—Peierls phase and the incommensurate (IC) magnetic soliton-
phase taken from Hase et al. (1993b). The field dependence of Ts,(H) is in agree-
ment with the theory of Cross and Fisher (1979), Cross (1979) shown by the solid
line.

susceptibility as in the 1D treatment, the NNN coupling is reduced to asp =
a1p — JL/J.

In figure 3.12 the susceptibility is compared to the high-temperature expan-
sion (1) for (J e, J1/J) = (180 K,0,0) and to results from exact diagonaliza-
tion. Systems of up to 18 spins were diagonalized using the code RLexact by Lef-
mann and Rischel (1996, 1998). The parameters were from (2) to (6): (180 K,0,0),
(146 K,0.2,0.15), (160 K,0.354,0), (88 K,0,0.15), (88 K,0,0). For finite interchain
coupling, systems of sizes 2 x 6 and 2 x 8 were used. For the curve (6), J = 88 K has
been chosen so that the maximum occurs at the right temperature. This demon-
strates the inability of the pure NN chain to model the measured susceptibility.
The effect of interchain coupling alone is illustrated as the difference between (5)
and (6). It is seen how the 1D chain with NNN interaction (4) makes perfect ac-
count for the data down to about 30 K. The apparent ability of the calculation
to model the drop to zero below T, is an artifact of the gap that exist in finite
sized systems. The gap decreases as N ~! which has been illustrated by each curve
shading the region between the result for respectively 12 and 16 spins. As could
be expected, the interchain curves are more affected by the finite size effect, and
it is inconclusive whether parameter set (3) would actually give an equally good
description of the data as (4) if the system size was increased. It is seen that the
finite size only affects the low temperature part of the susceptibility.

At low temperatures, the susceptibility can be calculated by retaining only single
quasi-particle excitations. Since the excited states form a triplet, the susceptibility
is given by x(T) = %(ng)Qlf?EQT), where 2(T) = (2;)2 [e=«®)/Tdk (Troyer
et al., 1994). This has been evaluated for a dispersion obtained using the lowest
order dimer expansion with the dispersion along the chains replaced by exact diag-
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Figure 3.12. The uniform susceptibility of CuGeOs with the field along b, where
g = 2.25 (Hase et al., 1993a, Fabricius et al., 1998). It is compared to calculations
for different choices of (J,a, J1/J) as explained in the text.

onalization results. With (.J,«, J, /.J) = (146 K, 0.2,0.15) a reasonable agreement
was obtained for low temperatures in the dimerised phase (Bouzerar et al., 1999).

Magnetization measurements

For all directions of the applied field, the magnetization remains very small until
the critical field H, is reached (Ohta et al., 1994, Hori et al., 1995). Above H, the
magnetization increases quickly, approaching asymptotically m = gupH/(27vy)
as predicted by Cross and Fisher. The reason that there is any magnetization at all
in the dimerized phase is that the staggered g-tensor produces a small polarization
which is antiferromagnetic along b but can be canted to give a uniform contribution
along a and c.

Magnetic excitation spectrum

Perhaps the most important feature of the magnetic excitation spectrum is the
existence of an energy gap Ag. For all momentum transfers k, the excitation
spectrum is bound towards lower energies by a sharp dispersion branch, which
has been mapped out along a*, b* and ¢* by neutron scattering (Nishi et al., 1994,
Regnault et al., 1996). As shown in figure 3.13, the minimum gap Ag = 2 meV is
found at kap = (0,1, 3).

The expected triplet nature of this excitation branch was proven by applying a
magnetic field. As shown in figure 3.14, the excitation is split in three according to
the Zeeman energy gup H. While originally reported to be around 2.15 meV (Nishi
et al., 1994), subsequent measurements with higher resolution have established
that Ag = 1.93 £ 0.01 meV (Lussier et al., 1996, Lorenzo et al., 1997). The
determination of v, is somewhat less precise, as it requires the determination of
wg for a number of ¢ values around (0,1, %) Due to the changing slope of the
, %), focusing effects in the experimental resolution can
lead to a g-dependent shift of w, towards higher or lower energies, which has a
dramatic effect on the estimate of v,. Fitting the low-¢q data to w, = /A2 + v2¢?

leads to vs/c ~ 13.24+ 0.8 meV, while the limiting value of the dispersion obtained

dispersion around ¢ = (0, 1
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Figure 3.13. The dispersion of the magnetic excitations in the spin—Peierls phase of
CuGeOs along a*, b* and c* as found by neutron scattering. The minimum energy
gap Ag = 1.93+£0.02 meV is found at kap = (0,1, %) The zone boundary energies
are 2.8 meV, 5.7+ 0.2 meV and 15.7 meV along each of the three directions.
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Figure 3.14. The field dependence of the energy gap A at (0,1, %) as measured by
neutron scattering (Regnault et al., 1996). It is seen how the triplet excitation is
Zeeman split according to gupH .

by fitting equation 3.69 to the entire experimental data leads to vs/c = 15.3 meV
(Regnault et al., 1996). While the former value is probably the most appropriate,
the later indicates the uncertainty in the value.

Triplet dispersion relation

In section 3.1 it was found that for very low and for very high phonon frequencies,
the phonons could be integrated out to yield an effective magnetic model. In
CuGeOs3 the lowest spin—Peierls phonon has an energy approximately equal to J,
for which it is not clear that such an effective magnetic model is valid. But in
the absence of results for the full spin—phonon excitations, it is probably the best
approximation to make.

The easiest interpretable part of the excitation spectrum is the ¢ dependence
of the triplet excitation, but upon inclusion of alternation, NNN and interchain
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coupling there exists no unique result for the dispersion relation. Starting from
the effective magnetic model, a number of different approaches have been taken,
including standard spin-wave theory, expansion from the isolated dimer limit and
Jordan—Wigner mean field approximation (Cowley et al., 1996, Brenig, 1997, Fan
and Gong, 1999, Bouzerar et al., 1999).

In principle, the excitation spectrum can be modeled by the linear spin-wave
result for a 3D antiferromagnet with a single-site anisotropy to reproduce the
gap. Though hardly justifiable, this illustrates the generic problem that the dis-
persion relation alone is insufficient to uniquely determine the magnetic coupling
parameters.

A physically more appealing approach is an expansion from the dimer ground
state (Cowley et al., 1996). The ground state is assumed to be composed by spin
singlets, which can be excited by one of three operators that create each of the
three triplet states. Keeping terms up to second order in the dimer operators, the
Hamiltonian can be diagonalised to give

wg =/ Jo[Jo — J1 c0s(2q.) — 2 c0s(q.) (Ja c08(qa) — Jb cos(qs/2))] (3.69)

where Jy = J(146) and J; = J(1-6). Using the measured dispersion relation gives
the magnetic coupling parameters Jy = 9.8 meV, J; = 11.4 meV, J, = 0.62 meV
and J, = —0.08 meV (where I have included the subsequently measured dispersion
along a in the fits). Neglecting the coupling along a, but including NNN coupling,
the same dispersion is found but with J; replaced by J; — 2Jynyn (Brenig, 1997,
Lake, 1999). It is therefore not possible from this dispersion relation alone to
determine J; and Jynyn independently.

In a slightly different approach, the dispersion was calculated to third order
with no qualitative differences except that the square root in equation 3.69 is ex-
panded (Uhrig and Schulz, 1996, Uhrig, 1997). For the higher order terms, there
is a distinction of J; and Jynn. Supposedly, the best fit to the neutron scatter-
ing data is obtained using frustrating interchain interactions along the diagonal
of the 2D rectangles rather than intrachain NNN coupling. But without a clear
understanding of the precision of the calculation, small differences in the quality
of the fits should be treated with great care.

Equation 3.69 can be written as w, = \/w?p(q.) — 2Jo.J 1 cos(q.) cos(q ), where
w1p(q.) is the dispersion in the absence of interchain coupling. It has been pro-
posed to use a more exact result for w;p(g.) based on exact diagonalization
(Bouzerar et al., 1999). But in this approach, the square root is expanded around
the dimer limit, which is hardly valid. This leads to a prediction for J; which is
a factor of 3 larger than what is obtained by keeping the square root.

In addition to the neutron data for the dispersion, the interchain coupling has
also been estimated from exchange induced splitting of the EPR signal in very
high magnetic fields (up to 180 T) (Nojiri et al., 1998b, Kokado et al., 1998). The
value Jp ~ 0.75—0.9 meV is roughly consistent with the result from the dispersion
relation, but it is unclear how it depends on the presence of NNN coupling.

Excitation continuum

In addition to the sharp triplet mode discussed so far, neutron scattering exper-
iments have revealed a continuum of scattering above it (Arai et al., 1996). By
polarized neutron scattering, both these features have been shown to be mag-
netic of origin (Lorenzo et al., 1997). The uniform Heisenberg antiferromagnet
also shows such a continuum, which is due to two-particle processes. It therefore
extends from the single particle dispersion 7 .J|sing| to twice the zone boundary
energy as m.J|sin ¢/2|. In CuGeOs there are some differences compared to the uni-
form model. The sharp triplet mode and the continuum is actually separated by
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a second gap (Ain et al., 1997). This is because the triplet is formed by a bound
soliton—anti-soliton pair, while the continuum is constituted of free soliton—anti-
soliton pairs (Sgrensen et al., 1998, Dobry and Ibaceta, 1998, Augier et al., 1998,
1999). The continuum is found to have lower intensity than expected from the
uniform model. Instead, the intensity seems to be condensed in the boundaries
ZJ|sing| and 7.J|sinq/2| (Braden et al., 1999).

Other features in the excitation spectrum

Recently, another low energy magnetic excitation branch was discovered, whose
dispersion is given by the already known triplet branch shifted by b* + ¢*/2
(Lorenzo et al., 1999). This is interpreted as a small exchange anisotropy, which
had in fact already been proposed on the basis of electron spin resonance (ESR)
measurements (Pilawa, 1997).

3.3.3 Model parameters for CuGeO3;

As described above, the experimental findings on both the uniform and the dime-
rized phases of CuGeQOg3 are qualitatively understood within an effective magnetic
model. However, as precise calculations are still missing, the parameters cannot be
determined uniquely. On top of this difficulty, there is the question about whether
the phonons can actually be integrated out and whether the effective magnetic
parameters are in fact temperature dependent.

Rather than trying to select one specific choice of parameters, it is important
that there is consistency between the way the parameters were determined and how
they are used. If for example some physical observable is calculated by neglecting
the interchain coupling, it is most appropriate to use the parameters determined
by fitting the previous experimental data to the predictions for the 1D system.

In this context it should be realized, that although the field theoretical treat-
ment of the soliton phase was derived by Jordan—Wigner transformation of the
microscopic Hamiltonian, the parameters were adjusted to yield the correct dis-
persion relation (at low q) w, = /A2 + v2¢>. The results for the soliton phase
depend only on these two parameters, which are directly inferable from the neu-
tron scattering data in the spin—Peierls phase. The prospect of a parameter free
test of the predictions for the soliton phase motivates the neutron scattering study
reported in the following sections.

3.3.4 Doped CuGeO;

There exist various means of doping CuGeQOjz by replacing either Cu with Zn,
Mg or Ni and Ge with Si. A vast amount of work has been reported on doping,
which has profound effects (Sasago et al., 1996, Grenier et al., 1999, Shirane,
1999, Biichner et al., 1999, Masuda et al., 1999, Wang et al., 1999). For instance
substitution of just 1.5% Ni or 4% Zn causes normal antiferromagnetic order
on behalf of the spin—Peierls phase (Lussier et al., 1995, Regnault et al., 1995).
Most of these effects can be understood by considering the impurities as randomly
distributed broken dimer bonds and hence pinning centers for solitons. If enough
such impurity bound solitons exist, the system becomes antiferromagnetic. Though
broken dimer bonds provide a very interesting mean to study the competition
between dimer and antiferromagnetic order, it will not be discussed further in this
thesis.
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3.4 Statics of the high field phase

As described in section 3.2 there exist precise predictions for the soliton structure
in the high-field phase. As these depend on just two parameters Ag and v, which
have been determined experimentally for CuGeQOs, this allows for a parameter
free test of the theoretical approach. This section describes a neutron scattering
investigation of the magnetic soliton structure, but starts by reviewing what has
already been found.

3.4.1 Previous experiments

The incommensurate nature of the high-field phase was demonstrated in X-ray
diffraction measurements (Harris et al., 1994, Kiryukhin and Keimer, 1995, Kiryu-
khin et al., 1996a,b). Above H,. the satellite reflections were split into (%, k, % +
0ksp) where dks, = 1/L. The appearance of third harmonics showed the non-
sinusoidal shape of the modulation, and the relative intensity was used to estimate
the soliton width I'/c = 13.6 £ 0.3.

In a 0.5 T region around H. the commensurate and incommensurate peaks were
found to coexist, without showing any sign of broadening. This is in accord with
the hysteresis observed in magnetization measurements. From ESR measurements,
it was found that not just the transition, but the IC phase itself exhibits hysteresis
(Palme et al., 1996).

The spontaneous strain e(H)/e(0) has been derived from thermal expansion and
magnetostriction measurements (Lorenz et al., 1998). This number is proportional
to the average square displacement parameter (u?). Only in a narrow region just
above H, is the experimental result in agreement with the average (u?) calculated
from the field theoretical Jacobi elliptic function. A considerably better agreement
was reached in a DMRG calculation using J = 160 K, a = 0.35, K = 18J and
6 = 0.014. A similar agreement could be obtained by allowing a field dependent
r.

The elastic constants Cy, and C.. have been found to behave differently above
the IC transition (Saint-Paul et al., 1997). While Cj;, jumps to a lower value above
H,, C.. increases in a continuous manner. This is interpreted as gradual filling of
solitons with decreasing regions of the remaining dimerised regions. The volume
fraction of the solitons relative to the dimerised regions was extracted and found to
increase to 1 at about 14 T. This picture is certainly true, but the relation between
C.. and the soliton structure is probably too complicated to give accurate handles
on the extent of the solitons as a function of the field.

Copper NMR has been measured up to 26 T (Fagot-Revurat et al., 1996, 1997,
Horvatié et al., 1999). Above H,. a broad lineshape develops, signaling a continuous
distribution of the local magnetization. The line-shape was analysed using the
Jacobi elliptic functional form with the amplitudes m,,, ms and the soliton width
I, as free parameters. From H. to 26 T the uniform magnetization amplitude
varies from m, = 0.016 to 0.030, while the staggered magnetization varied from
m, = 0.023 to 0.029. The soliton width was found to decrease from 10 to 6.3.
The modulus k decreased according to k' = v/1 — k2 ~ 0.56(H/H, — 1)%-35. These
observations are generally in good accord with the field theoretical prediction
expect for the staggered amplitude, which is 4 to 8 times lower than the prediction.
It has been proposed that the reason for such a low result in the NMR experiment
is that the zero point motion of the phason mode introduced an effective averaging
of the magnetic structure compared to the field theoretical prediction. While the
averaging would have little effect on the slowly varying uniform component, it
would significantly reduce the staggered component.
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3.4.2 Experimental details

The static behaviour of the high field phase was investigated using three differ-
ent spectrometers, each providing a different range of resolution versus reciprocal
space coverage. In a preliminary experiment on the thermal triple axis spectrom-
eter E1, the development of 5 satellite reflections was investigated. The existence
a magnetic structure was proven at the thermal two-axis instrument E4. The de-
tailed structure of the magnetic soliton lattice was determined in a high resolution
experiment on the cold triple axis spectrometer V2.

The sample

Samples for the investigation were grown by Revcolevschi and Dhalenne 1999 using
the floating zone method.

For the first two experiments, a sample of size 3x 7 x 16 mm?® was used. CuGeOs,
apparently, has a tendency towards growing as twinned crystals, and so also our
first sample was in fact twinned. A rocking curve in the be-plane revealed two
peaks separated by 2.8° and of equal peak intensity. However, one twin had almost
the double mosaicity and hence composed about two thirds of the sample weight.
During the first experiment each of the two twins were used depending on whether
the specific measurement required resolution or intensity. In the first inelastic
experiment, the second twin constituted a continuous uncertainty of the origin of
double peaks and possible continua observed in the energy scans.

For the two next experiments we used another crystal which was borrowed from
Michel Ain 1997. This crystal was slightly larger (4 x 8 x 17 mm?®) and had the
advantage of not being twinned.

Figure 3.15. Pictures of the crystal which was grown by the floating zone method
(left), and of the sample mounts that were designed to allow changing between
different pre-aligned scattering planes (right).

Crystal mounting

The occurrence of satellite reflections at the (%, l %) positions, incommensurabil-
ity along [ and an expected magnetic ordering at the (0, 1, 1)-type positions made
it necessary to invoke several different orientations of the crystal. Combined with
the restriction that the cryomagnet used did not allow for any post mounting ad-
justment of the scattering plane made it necessary to design a set of sample holders
allowing us to change scattering plane without the need to realign the sample. The
crystal was embedded in a small aluminum block equipped with several threads
for mounting in different sample pins, each realizing a given scattering plane. The
sample pins were equipped with two perpendicular ‘weak links’, which allowed each
pin to be aligned. Once a pin had been bent into alignment, the aluminum block
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with the crystal could be removed and replaced, keeping the alignment within less
than half a degree, which is sufficient for the vertical resolution of the neutron
spectrometers that were used.

The VM1 14.5 T vertical field cryomagnet

The high-field phase was accessed using a 14.5 T vertical field cryomagnet from
Oxford Instruments. The coils provide an opening of 20 mm at the sample position
and a divergence of £2°. The total width of the aluminum shields is 2 x 34 mm
with a dark angle of only 25°. The core provides a sample space of @19 mm and a
base temperature of 1.6 K. With a dilution insert, a sample space of @15 mm and
a base temperature of 40 mK is possible. Recently, a pair of dysprosium pole-shoe-
boosters have been designed, enabling fields of 17 T in a limited sample space of
(6.5 mmx4 mm.

Figure 3.16. Schematics of the 14.5 T wertical field cryomagnet VM1 at HMI,
Berlin.

Field dependence on the E1 thermal triple axis experiment

With the wave-length set to 2.4226 A and a collimation of 20’-80’-20’-40", a reso-
lution of typically 0.02 A~' was achieved. The rather unconventional collimation
configuration was found to perform best in terms of signal to background ratio.
The need for a low background made it important to stop the ‘unwanted’ neutrons
as early as possible, be it before hitting the monochromator or the analyser.

The experiment consisted of two parts. The development of five different satellite
reflections upon entering the high field phase was investigated. In addition, a search
was conducted in an attempt to locate scattering due to the proposed magnetic
order of the high field phase, but no elastic signal other than the (£, &, £) satellite
reflections was found.

Two different crystal orientations with respectively (h,2h,l) and (h,6h,l) in
the scattering plane made a total of five satellite reflections (3,1,1), (2,3, 1),
(2,3,2), (3,3,%) and (1,3, 2) accessible.

923959 29953
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Figure 3.17. Scans along ¢* through the (%, 1, %) satellite reflection at respectively
11 T< H. and 12.75 T> H.. At 12.75 T the third harmonics have been marked

with arrows.
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Figure 3.18. Left: The incommensurability 0ksp, measured with neutrons as the
splitting of the (é , 1, %) and (%, 3, 2) satellite reflections. A representative selection
of the X-ray data for ( , 3, %) is shown. The data are compared to the theories by
Cross and Fisher 1979a, 1979b (dashed line) and by Buzdin et al. (1983) (solid
line) using the value Ag/vs = 0.13. Right: The field dependence of the amplitude
of the two reflections scaled to each other.

Figure 3.17 shows scans through the (;,1, %) satellite reflection respectively
below and above the transition. Apart from the expected splitting into (2 )1, é
0ksp), a tremendous increase in intensity was observed. The data were analysed
by fitting the peaks to simple Gaussian line shapes. The splitting of the two
strongest reflections (3,1,1) and (1,3, 1) was recorded as a function of magnetic
field and is shown in figure 3.18. Through the slightly anisotropic g-tensor, the
critical field depends on the orientation of the sample. Throughout this text, we
scale to the average g-value, which makes the results for different orientations
collapse on one curve. This is also the case for the splitting dk;,(H), where we
obtain perfect agreement with both the previous X-ray results (Kiryukhin et al.,
1996a,b) and the field theory based predictions by Cross and Fisher 1979a, 1979b
0ksp = gupH/(2mvs) and by Buzdin et al. (1983) 1/6ks, = QA”S In ;22— The best
agreement with field theory is reached by using the upper limit value 0.13 for the
experimentally determined ratio Ag/vs = 0.12 £ 0.01. In fact, the dk;,(H) data
can be used to determine Ag/vs = 0.130 & 0.002 quite precisely.

At the maximum field of 14.5 T, the (3,1, 1) satellite reflection was recorded
as a function of temperature until the uniform phase was reached at 10 K. The
splitting and intensity as a function of temperature is plotted in figure 3.19. It
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Figure 3.19. The incommensurability 0ks, and amplitude of the (%, 1, %) satellite
reflection as a function of temperature in a field of 14.5 T.

is seen how the intensity decreases continuously towards the transition, while the
splitting remains finite and almost constant. This reflects the fact that even the
uniform phase is susceptible to incommensurability when subject to an applied
field. The slight decrease of 6k, (T.)/0ksp(0) = 0.86 with increasing temperature
is in accord with the field theoretical calculations by Machida and Fujita (1984)
who calculated 0ksp(T.)/0ksp(0) = 0.82 numerically for a field corresponding to
16 T in CuGeOs;.

The surprising observation of large increases in intensity of in particular the
(%, 1, %) satellite reflection made a quantitative analysis of the peak intensities
interesting. The peak widths were in good accordance with a resolution calculation
with the rescal program based on the Popovici method (Cooper and Nathans,
1967, Tucciarone et al., 1971, Popovici, 1975, Tennant and McMorrow, 1996).
From these calculations, the normalization constants Ry which converts peak-
intensities to structure factors were determined. A priori, five structure factors
are insufficient to allow a determination of the distortion scheme, but in this case,
the well known zero field distortion pattern served as a good starting point. Still,
it was not possible to obtain a reasonable fit without using unphysical distortion
parameters. The reason was that the large intensity at low @Q-values could not be
modeled by a structural distortion, for which the intensity scales like Q2.

This in combination with the absence of magnetic scattering at other places in
the reciprocal space caused the speculation that the increased intensity is due to
a contribution from the magnetic soliton structure.

Structural distortion and magnetic order on the E4 thermal two-axis
instrument

To verify the hypothesis of a magnetic contribution to the low-@Q satellites, the
structure factors of 14 satellite reflections were collected.

The experiment was performed on the two-axis spectrometer E4 at HMI, Berlin.
The pyrolytic-graphite (PG) monochromator was tuned to a scattering angle of
42.65° giving a diachromatic beam of neutrons with wavelengths 2.441 A for
PG(002) and 1.2205 A for PG(004). To reach sufficiently far out in reciprocal
space, A = 1.2205 A was used. Without any filter there was a weak contamination
of A/2 in the order of 1%.

The untwinned crystal number 2 was mounted with (0,0,1) and (h, 2h,0) in the
scattering plane in order to reach satellite reflections of the form (h+ %, 2h+1, l+%).
With a maximum scattering angle of 20 = 117° a total of 14 non-equivalent
reflections were accessible. The neutrons with wavelength A/2 will scatter from
Bragg peaks at the same instrument position as the satellite reflections. For each
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Figure 3.20. Left: The Gaussian width of a number of powder reflections from
the aluminum sample holder as a function of scattering vector Q). The solid line
indicates the calculated resolution, which gives very good account for the observed
widths. Right: The resolution ellipses defined as the HWHM of the resolution func-
tion for each of the satellite reflections in the (h,2h,l) plane. For clarity, the
resolution ellipses have been scaled by a factor of 10 in both directions.

of the 14 reflections, rocking scans were performed in order to obtain the integrated
intensity at (T, B) = (2 K,14.5 T), (2 K,0 T) and (20 K,0 T). The latter in order
to correct for the A/2 background.

In order to extract the structure factors, it is necessary to carefully consider
the resolution of the instrument, which for both 2- and 3-axis spectrometers is
derived as the sequential convolution of the transmission function for each part of
the spectrometer. If all distribution functions are assumed Gaussian, the convolu-
tions correspond to adding the resolution widths in quadrature. However, as the
resolution function is multi-dimensional, appropriate coordinate transformations
are necessary before each component can be added (Lebech and Nielsen, 1975).

The calculated resolution was verified by comparing the calculated and mea-
sured widths of a number of powder reflections from the aluminum sample holder.
The good agreement as depicted in figure 3.20a show that the resolution calcula-
tion is reliable. In figure 3.20b the resolution ellipsoid for each of the 14 satellite
reflections is shown. In addition to the resolution widths, also the resolution vol-
umes Ry, to which the measured intensities were normalized, were calculated and
are listed in table 3.1.

The first part of the experiment aimed to reproduce the zero field results of
Hirota et al. (1994) and Braden et al. (1996). In figure 3.21 rocking scans of the
(%1%) reflection at 2 K and at 20 K are shown. The integrated intensity was found
by fitting resolution-determined lineshapes to the data. The solid lines in figure
3.21 are the result of such fits. It should be noticed how the resolution calculation
gives perfect account for the measured width. At 20 K, there is no dimerisation,
so the only intensity at the satellite positions is due to A/2 scattering from Bragg
peaks. At 2 K, additional intensity from the lattice distortion is observed. The
intensity of the satellite reflection was taken as the difference in integrated intensity
between the 2 K data dn the 20 K data. Since the two 0 T scans were performed
at the same scattering angle 26, an alternative means of analysis was to subtract
the measured intensities at 20 K from the 2 K intensities point by point. This
procedure gave identical intensities, thereby consolidating our confidence in the
resolution treatment.

The fitted integrated intensities were corrected for the resolution volume Ry to
give the structure factors listed in table 3.1. The structure factor for the distortion
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Figure 3.21. Rocking curves of the (%,1, %) satellite reflections at 20 K and at
2 K. The solid line is the result of a fit to a peak with the width given by the
experimental resolution. The dashed line in the 2 K graph is the fit to the 20 K
data.

ho k1 | q[A7Y] 20 1/Rg I(0T)  I(14.5T) e
/2 1 1/2| 146 163 028 65 +17 66418 18+ 5 186+ 5
3/2 3 1/2 | 317 359 057 25420 257411 14+ 12 14T+ 6
1/2 1 3/2| 335 380 060 199442 259410 120+ 25 156+ 6
3/2 3 3/2| 438 503 079 217+£18 170416 171+ 14 134 & 12
5/2 5 1/2| 500 592 096 149+£20 8% 7 1424 19 7T+ 7
1/2 1 5/2| 543  63.6 106 15348 62+£22 162+ 51 66+ 23
5/2 5 3/2| 591 701 124 315+£16 114+ 7 389+ 19 141+ 9
3/2 3 5/2| 611 728 132 62420 43+ 7 824 26 57+ 9
7/2 7 1/2| 704 863 1.88 215420 6111 404+ 37 115+ 22
5/2 5 5/2| 729 902 208 20418 224 3 614 37 454 7
1/2 1 7/2| 753 941 230 183+20 32+ 4 419+ 47 T4+ 8
7/2 7 3/2| T66 962 243 423 +£27 168+ 14 1026 £ 65 408 & 34
3/2 3 7/2| 804 1027 285 141+£27 46+ 4 401+ 78 131 & 12
7/2 7 5/2| 877 1168 3.92 30+£38 0+ 9 117149 0434

Table 3.1. Integrated intensities in degrees/ min of the 14 measured satellite reflec-
tions at zero and at mazimum field.

satellites is given by F(q) = Y., baq - ua(q)e™"4, where uq(q) = Y, ug(r)e=1"
is the Fourier component of the displacement of atom d. We adopt the distor-
tion parameter choice of Hirota et al. (1994) and Braden et al. (1996) where only
u$™ x 1000 = 1.92, uQ? x 1000 = 1.98 and uQ? x 1000 = 0.77 are non-zero. Fitting
the 0 T intensities to |F|?> gave distortion parameters that are proportional to the
square root of the overall normalization factor for the intensities. This parameter
could be determined by scaling the satellite intensities to the main Bragg peak
intensities, but as the latter are highly extinction affected, this is an inaccurate
method. Instead, the normalization factor was chosen such that the sum of the
fitted displacement parameters was equal to the sum of the displacement parame-
ters reported by Braden et al. (1996). The resulting displacement parameters are
uS" x 1000 = 2.04 £ 0.14, u$? x 1000 = 1.82 £0.10 and uSQ x 1000 = 0.79 £+ 0.09.
The fact that the relative sizes of the displacement parameters of Braden et al.
(1996) were well reproduced shows that the method for the experiment and the
analysis is reliable.

The second part of the experiment proceeded by measuring rocking curves of
the satellite reflections in the high field phase at 14.5 T. Figure 3.22 shows scans
of (3,1,5 +6) and (2,3, + 0), where it is seen that the resolution picks up both
satellite reflections and the \/2 peak. The data were fitted to the two satellite re-
flections at +4 and the A/2 peak. All three contributions had the shape given by
the instrumental resolution, and the satellite amplitude was the only free parame-
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Figure 3.22. Rocking scan through the (%, 1, % +0ksp) and (%, 3, % +0ksp) satellite
reflections at 14.5 T. The insert displays the reciprocal space trajectory of the
scan. Both satellites and also the (3,6,1) Bragg peak due to \/2 contamination are
picked up by the resolution which is indicated by the half-height ellipse. The /2
contribution determined at 20 K is shown by the dashed line. With the satellite
intensity as the only fitting parameter, perfect account is made for the data (solid
line).

ter. The amplitude of the A/2 peak was kept fixed at the value obtained at 20 K, 0
T as shown with the dashed line. For (2,3, 1), both the A\/2 peak and the second
satellite contribute to the measured intensities, but the resolution treatment gives
full account for this. The inserts show the trajectory of the rocking scans in the
reciprocal plane. The resolution is illustrated with a half-height contour.

The satellite intensities were normalised to the resolution volume and the overall
scale factor determined from the 0 T data. The resulting 14.5 T structure factors
are listed in table 3.1. One immediately notices the drastic increase in intensity at
low q. As the nuclear satellite intensity scales with ¢, it is not possible to account
for this by changing the distortion parameters.

Instead, a magnetic contribution which scales with the square of the form factor
f(q) for free Cu®>™ (Watson and Freeman, 1961) was introduced. The magnetic
intensity also depends on the direction of the magnetic moment. The best fit is
obtained with the moment parallel/antiparallel to the field and hence perpendicu-
lar to the scattering plane. A Fourier component with amplitude 0.098 &+ 0.003up
accounts well for the low ¢ part of the intensities.

At higher ¢, the form factor reduces the magnetic contribution, and the in-
tensities are mainly nuclear of origin. A fit gives Fourier components, which are
roughly halved compared to the spin—Peierls phase. When the lattice distortion
becomes incommensurate, the Fourier component of the lattice distortion is split
into two components each of half the size of the original. So, when the Fourier
components are halved, it means that the amplitude of the lattice distortion re-
mains more or less unchanged: u$" x 1000 = 1.58 £0.26, u$? x 1000 = 1.96 £ 0.36
and u;n x 1000 = 0.61 £ 0.25. In the incommensurate phase, there is the possibil-
ity that u?2 becomes non-zero, but it is expected to scale with § <« 1. Indeed if
included in the fit, we get a small value. It should be noted that u9? is modulated
out of phase with the remaining u’s and should therefore be imaginary (Grenier
et al., 1998).

A further illustration of the magnetic origin of the low-() intensity is given in
figure 3.23, where the calculated nuclear scattering has been subtracted from the
measured structure factors. The excess contribution is seen to follow nicely the
formfactor for free Cu®* (Watson and Freeman, 1961).
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h k1 | q[AT] |Flasp  |FIR  |Flewy  1FIE
12 1 1/2 | 1.46 1x 1 1 40+ 1 41
3/2 3 1/2 | 3.7 34+ 2 1 31+1 29
1/2 1 3/2| 335 26+ 5 16 33+1 30
3/2 3 3/2| 4.38 36+ 3 34 2943 26
5/2 5 1/2 | 5.09 30+ 4 20 16+ 1 21
1/2 1 5/2| 543 35 + 11 34 1445 20
5/2 5 3/2| 591 83+ 4 89 30 %2 28
3/2 3 5/2| 6.11 18+ 6 16 12+2 15
7/2 7 12| 7.04 86 + 8 90 2545 37
5/2 5 5/2 | 7.29 13+ 8 0 10+1 9
12 1 7/2| 753 89 + 10 81 16 & 2 21
7/2 7 3/2| 766 218+14 208 87T +7 59
3/2 3 7/2| 8.04 85+ 17 116 28 +3 25
7/2 7 5/2 | 877 25 + 32 21 047 17

Table 3.2. Structure factors and fitted structure factors in 1000 x 10724 cm—2.
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Figure 3.23. The excess intensity | Fesp|> —|Fauc|® after subtraction of the calculated
nuclear scattering follows the formfactor for a free Cu** ion (solid line).

Magnetic soliton structure on the V2 cold triple axis instrument

The (3,1, 1) reflection is almost completely magnetic in origin (40:1 c.f. table 3.2),
and can therefore be used to investigate the detailed structure of the magnetic
soliton. This was done using the cold triple axis spectrometer V2, HMI, Berlin.
V2 is located on a °®Ni neutron guide, and can therefore not be equipped with
collimation before the vertically focusing 24’ PG monochromator. The remaining
three beam-paths were collimated to 20’. With a neutron energy of 3 meV (\ =
5.236 A), a resolution FWHM of 0.009 A~! along I through (4, 1, 1) was achieved.

The increased resolution and lower background compared to th E1 experiment
made it possible to quantitatively follow the evolution of the third harmonics
(%, 1, % + 3dksp) as depicted in figure 3.24. The intensity of the higher harmonics
is proportional to the overall intensity, which increases monotonically with the
field as shown in figure 3.18. But at the same time the soliton shape develops
more and more towards a sinusoidal form, which cause a reduction in the relative
intensity of the higher harmonics. Therefore the third harmonics go through a
maximum in intensity just above the transition.

In figure 3.25 scans through (%, 1, %) at respectively 12.25 T and 13 T are shown
(In both cases compared to the 0 T scan). At 12.25 T, the IC and the C peaks
are seen to coexist, while at 13 T the C peak has completely disappeared. But the
13 T scan reveal third and even very weak fifth order harmonics.

The data were fitted to resolution limited Gaussian lineshapes with a relative
intensity given by equation 3.60, with the overall amplitude, dk;p and I' as fitting
parameters. The amplitude and ks, were completely determined by the first har-
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Figure 3.24. Pseudo-color map of the (%, 1, %) satellite reflection as a function of
applied magnetic field. The weak nuclear peak below H. is seen to split by dksp into
the two strong reflections (%, 1,% + 0ksp). The third harmonics (%, 1, % + 30ksp)
are seen to undergo a mazrimum just above the transition and then decay due to
the gradually more sinusoidal soliton shape.
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Figure 3.25. Scan along c* through the (%, 1, %) satellite reflection at respectively
12.25 T (left) and 13 T (right). At both fields, the zero field scan is shown for
comparison. The peaks were fitted to resolution limited Gaussian line shapes with
the relative intensity given by equation 3.60. With the overall amplitude, the in-
commensurability dksp, and the soliton width I' as variable parameters, good fits
were obtained as shown by the solid line.

monics, while I' is determined by the relative intensity of the third harmonics. The
fifth harmonics have no influence on the fits, but the fact that their amplitudes
are correctly reproduced validates the Jacobian elliptic soliton shape. In principle,
any line-shape with a I' like parameterization could reproduce the first and third
harmonics, but in general not the fifth.

The result for I' as a function of the field is shown in figure 3.26, where it
is compared to the result from earlier X-ray measurements (Harris et al., 1994,
Kiryukhin et al., 1996a,b) and to DMRG calculations (Uhrig et al., 1999a) as
discussed below. The X-ray data were originally analysed by fitting the ratios
I3/ I; to one constant value I'/¢ = 13.6+0.3. The data in figure 3.26 were obtained
by digitizing the data for I3/I; and dksp in reference (Kiryukhin et al., 1996b).

The apparent discrepancy between the neutron and the X-ray data can be un-
derstood by realizing that while the neutron result measures the magnetic soliton
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Figure 3.26. Respectively the magnetic and distortive soliton width as extracted
from the neutron (circles) and X-ray (start) measurements. The result of DMRG
calculations shown with the solid lines was digitized from reference (Uhrig et al.,

1999a) and converte from m to H using 1/m = QA”O In IffIH

width, X-rays probe the distortive soliton width. It has been predicted theoreti-
cally (Zang et al., 1997, Uhrig et al., 1999a) that such a difference is possible when
detailed interactions in CuGeQOs3 are taken into account.

Both widths exhibit the same field dependence with a rapid decrease just above
H,.. Thanks to the wider field range in the present data, it is possible to see a
slow increase at fields above 13 T, which can be described by I'/e = 0.26 £ 0.11+
(5.74 £ 1.46)H/[T).

Apart from the rapid decrease just above H, both widths are in quite good
agreement with the DMRG calculations of Uhrig et al. (1999a) shown by the
solid line in figure 3.26. These calculations used Ag/vs = 0.157, while the present
0ksp(H) data lead to 0.130+0.002. As T ~ vs/Ag, the DMRG calculations under
estimates I', and can most likely be brought to complete agreement above 13 T
by using Ag/vs = 0.13.

The behaviour just above H, must be related to the coexistence of the C and
IC peaks, as described above. This coexistence was also seen in the X-ray experi-
ment, which employed slightly better resolution. In neither experiments was any
broadening of the peaks observed, which excludes a random distribution of the
solitons. This behaviour is often seen in first order transitions, where domains of
the old phase are gradually reduced in volume until the transition is complete.
The extend of the coexistence is in good accord with the hysteresis observed in
the magnetization curves.

Amplitudes of the magnetic soliton structure

Knowing the soliton shape as determined by dk,, and I', the amplitudes m; and
m,, of the magnetic soliton structure can be determined. At 14.5 T, the high
resolution V2 data give § = 0.01494 + 0.00003, T' = 9.75 £ 0.35, £ = 0.8313,
K (k) =2.0624, k = 0.0729 and kK (k)/7m x (1 + k)//k = 2.17.

The Fourier component of the magnetic moment is p(g = §) = 0.098 +0.003 15
corresponding to a Fourier component of the magnetic structure of ms(q = 6) =
%,u(q = ) = 0.045 £ 0.002, where g = 2.19 when the field is perpendicular to
(k/2,k,1) (Pilawa, 1997). The amplitude m; of the magnetic structure is then
given by m, = M Lk (g = §) = 0.097 + 0.004.

This value is about 30% lower than the field theoretical prediction ms = \/2177_1“ =
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Figure 3.27. Scan along ¢* through (0,0,1420ks,) at respectively 13T and 14.5 T.
At the low-Q; side, the strong nuclear (0,0,1) Bragg peak shoots up, but the ampli-
tude of the second harmonics could still be accurately determined by the fits shown
with the solid lines.

0.12 — 0.14 depending on whether the value I' = v;/Ag = 7.9 or the measured
value of 9.5 is used. This is in sharp contrast to the NMR measurements, which
led to a value of ms = 0.026 at 14.5 T. If the magnetic structure was affected by
zero point motion of phasons, then also the neutron scattering experiment should
find a reduced staggered moment. One possible explanation for this discrepancy
would be if the phasons had a finite frequency fast compared to the NMR, time
scale (~170 MHz) but slow compared to that probed by the neutron scattering
(~ 2 x 10* MHz). This will be further discussed in section 3.5.

In addition to the staggered component of the local magnetization, which has
been described so far, theory also predicts a uniform component. Being uniform,
it will be superimposed on the nuclear Brag peaks, and therefore impossible to
observe directly. However, the main peak is accompanied by even harmonics, which
can be detected with sufficiently tight resolution.

In figure 3.27, scans in the tail of the strong (0,0,1) nuclear Bragg peak reveal
the second harmonics (0,0, 1 + 20k;p) at both 13 T and 14.5 T. The structure fac-
tor was extracted by scaling to the (é , 1, é +0ksp) reflections measured in the same
configuration and correcting for the different resolution volumes as calculated by
rescal. The corresponding Fourier components (0,0, 1+2§) of the magnetic struc-
ture are 0.0062+0.0008 up and 0.0047+0.0010 up at respectively 13 T and 14.5 T.
The amplitude of the uniform component is given by m, (1‘) H‘” M
which becomes respectively m, = 0.017 £ 0.002 and m, = 0. 019 i 0. 004 The
extracted values of m, are again about 25% lower than those predicted by the-
ory and those measured by NMR, but are roughly within a standard error from
those. The self consistency of the entire description can be tested by calculating
the incommensurability dks, = mm,, /2K (k) from m,,. The values 0.0105 + 0.0013
and 0.0145 £ 0. 0032 are in good agreement with those measured directly as the
splitting of (2, . 1+ 6k,), giving 0.0112 and 0.0149 respectively.

Finally it should be noted that there is potentially a systematic error connected
with the overall normalization from scattering intensities to structure factors, that
could well explain the 30% disagreement between the extracted amplitudes and the
field theory. But the ratio mg/m, = 5.1+1.1 does not depend on this normalization
and compares well to the field theoretical prediction.

3.4.3 The magnetic soliton structure

In summary, the three neutron scattering experiments reported have provided a
rather complete description of the magnetic soliton structure. The amplitudes m;
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Figure 3.28. One period L of the soliton lattice showing the modulation of the
magnetic moment m(r) and the structural displacement (—1)"u(r), with widths
Iy, and Ty respectively. The length of the arrows illustrate the staggered part of
m(r), and the tails are displaced from the base-line by the small ferromagnetic part.
The present soliton is drawn according to the parameters determined at 13 T.

and m,, of both the staggered and uniform parts and the incommensurability §k;,
are without any free parameters well described by the field theoretical predictions.
Above 13 T, both the magnetic and distortive soliton widths are well described
by the DMRG calculations of Uhrig et al. (1999a). Just above the transition, the
C and IC peaks coexist and the soliton widths exhibit a rapid decrease with field,
which remains to be explained theoretically. Nevertheless, it is fair to say that the
magnetic soliton structure in CuGeOs has been solved and is depicted for 13 T in
figure 3.28.
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3.5 Dynamics of the high field phase

Having solved the soliton structure and found it to be well described by theory,
it is interesting to see if a similar success can be reached for the dynamics in
the soliton phase. The present section reports the results of inelastic neutron
scattering measurements in the soliton phase. The theoretical expectations are
much less settled in this case, which prevents a quantitative analysis of the findings.
Instead, it is hoped that the experimental findings will stimulate a convergence of
the theoretical description.

3.5.1 Previous experiments

Several experiments in the soliton phase have shown that the excitation spectrum
is significantly changed in comparison to the spin—Peierls phase. But so far it has
not been possible to interpret the experimental results to reach a general picture
of the dynamics.

In addition to the acoustic phonon, there is another contribution to the spe-
cific heat in the IC phase, which has been ascribed to the phason mode. Gapped
phasons would give rise to an exponential temperature dependence, and therefore
the observed T2 law (Lorenz et al., 1998) in principle excludes gapped phasons.
However, upon close inspection, the C'/T v.s. T? curve does show a tiny hump at
0.3 meV, which could be due to a gapped phason.

Several optical spectroscopy experiments have probed the soliton-phase (Loa
et al., 1996, 1999, van Loosdrecht et al., 1996a,b, van Loosdrecht, 1998, Nojiri
et al., 1998a,c). The soliton-assisted Raman-excitation peak at 17 cm™! corre-
sponding to 2.1 meV in the spin—Peierls phase (Loa et al., 1996, Els et al., 1998)
is replaced by two close lying modes with energies matching gupH + 0.29 meV
and gupH + 0ksp x 44.9 meV (Loa et al., 1999). Similarly, most of the low energy
features observed in the spin—Peierls phase disappear above H., while new features
appear. In particular, Loa et al. (1999) observed a peak at 2.7 cm™! ~0.4 meV,
which could be the incommensurate phason. However, optical resonance processes
often involves two or more quasi-particles, with no handles on their individual
wave-vector, which turns the interpretation into a process of qualified guessing.
This further motivates an inelastic neutron scattering study, where both the en-
ergy and the wave-vector of the excitations can be probed.

3.5.2 Identification of the excitations

The inelastic neutron scattering experiments were performed on the V2/FLEX
triple axis spectrometer at HMI, Berlin. The collimation was achieved by the 58Ni
neutron guide and three 60’ collimators. The PG(002) monochromator was set, to
vertical focusing, while the analyser was kept flat. Energy transfers were achieved
by keeping the final energy E; = 3.5 meV (k; = 1.3 A=!) constant and varying
the incident energy. Higher order neutrons were removed by a Be filter. For energy
transfers below 1.5 meV (E; < 5 meV) Be filter was placed before the sample, for
higher energy transfers it was moved to after the sample.

Originally, the scattering plane (0, k,l) was used to investigate the excitation
spectrum around (0, 1, %) where the minimum gap Ag occur in zero field. But
with the discovery of the elastic magnetic signal at (,1,1), a new experiment
was performed probing the (h, 2h,[) plane.

Excitations around (0,1, 1)

For this experiment, the twinned crystal number 1 was mounted with * and ¢* in
the scattering plane. (Just to explain, crystal number 2 was not available at the
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Figure 3.29. Energy scans with focused analyser at (0,1, %) for respectively 10 T
and 14.5 T.
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Figure 3.80. Energy scans with flat analyser at (0,1, %) for respectively 12 T and
18 T.

time of this experiment.)

For the initial survey, a different configuration was used with the analyser set to
horizontal focusing and the two corresponding 60’ collimators removed. To make
a connection to the existing work on the SP phase (Regnault et al., 1996), a few
scans were performed below H.. Figure 3.29 shows energy scans at (0, 1, %) at 10 T
and 14.5 T respectively. The former shows the three Zeeman split triplet modes
at 2 meV and 2+ 1.25 meV, while the latter displays a double peak around 1 meV
and a broad feature at higher energies. The peak shapes with a sharp rise and a
high energy tail is due to the resolution of the focusing analyser enhanced by the
existence of a twin in the crystal.

Due to the twinning of the crystal, it is difficult to determine whether the broad
feature above 1.6 meV in the 14.5 T scan is a real continuum, a damped remainder
of the 2 meV triplet, or several weak peaks multiplied in in number by two due to
the twin. Therefore focus was set on the sharp modes at lower energy which were
investigated using the flat analyser configuration with two Be filters. A series of
scans were taken as a function of applied field, of which two for 12 T and 13 T
are shown in figure 3.30.

It is seen how the lower triplet mode at 12 T is replaced by two new modes at
13 T. A series of such scans were taken at fields from 8 T to 14.5 T, as summarized
in figure 3.31a.

At 13 T the g-dependence was investigated by performing scans at (0, 1, %+Aq).
Care was taken in choosing the direction in which the second twin did not have any
effect. The results are summarized in figure 3.31b. The intensity of both modes dies
away on the scale of dky, = 0.01. There appears to be no or very little dispersion
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Figure 3.31. Pseudo color summary of the energy scans taken at different magnetic

fields at (0,1, %) and at 13 T as a function of (0,1, % + 6q). For comparison the

dispersion found in the SP phase has been indicated by the solid black line.
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Figure 3.32. The position in energy and amplitude of the two modes for q =
(0,1, %) as a function of field (left) and for ¢ = (0,1, % + Agq) at 14.5 T.
of the modes.

From the raw data in figure 3.31, the position in energy and intensity of the
modes was extracted and is depicted in figure 3.32. It is worth noticing that the
lowest triplet mode does not become soft before the transition, and that it does
not, continuously evolve into the two new modes.

In the scans away from (0,1, %), no sign of a soft incommensurate mode was
observed. This search was of course limited to the window between the edge of the
elastic background at 0.25 meV and the lower edge of the lowest commensurate

mode at 0.5 meV.

Excitations around (3,1,1)

The discovery of magnetic satellite reflections at (1,1, 1 + dk,,,) prompted for an
investigation of the excitation spectrum around this point. These measurements
were performed on the untwinned crystal number 2. In zero field, the triplet ex-

citation has the energy 2.8-2.9 meV at (3,1,3) due to the weak ferromagnetic
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Figure 3.33. Energy scans at (%, 1, %) for respectively 12 T and 13 T.
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Figure 3.34. Pseudo color summary of the excitation spectrum at (%, 1, %)

coupling along a. As shown in figure 3.33, this remains qualitatively the same
in an applied field, where the situation from (0,1,1) is repeated, but at slightly
higher energies. At H,, the triplet modes disappear and two new modes evolve.

However, as evident from the 12 T scan, the energies of the Zeeman modes have
softened by 0.4 meV. The middle mode, which should remain constant decreased
by about 0.4 meV to 2.39 £ 0.01 meV. The lower mode decreased by 2 meV to
0.88+0.01 meV, which corresponds to the Zeeman energy 1.6 meV plus additional
0.4 meV.

The evolution as a function of field is summarized in figures 3.34 and 3.35. What
could have looked like a continuum in the investigation around (0,1, 1) looks in
this untwinned crystal rather to be a broad remainder of the triplet modes.

Recalling the expectation in figure 3.4 from considering the fermion bands above
H,, the commensurate modes observed can be identified with the two transverse
modes Ay. These modes have also been deduced from numerical calculations,
which have unfortunately only been performed for a few parameter choices that
are not applicable to our experiment. Therefore a qualitative analysis must await
the theoretical development.

From the fermion mode, also an incommensurate mode Ag > $(A; + A_) is
expected, but no evidence for such a mode was found in the experiments. It is
possible that the apparently weak dispersion of the A, mode is in fact due to
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Figure 3.35. The position in energy and amplitude of the two modes for q =
(%,1, %) as a function of field (left) and for q = (%,1,% + Aq) at 14.5 T. The
data result from Gaussian fits with a constant background, which rose significantly
above the transition as illustrated by the green triangles.

incommensurate modes at % + 0ksp with Ag ~ A, . If so, the longitudinal mode
must have a lower amplitude than the transverse. An explanation for this could
be that interchain interactions provide a mechanism for longitudinal excitations
to decay into transverse fluctuations.

The phason mode

In addition to the magnetic excitations AL and A, an incommensurate soft mode
related to the phase of the modulation has been anticipated. The search for this
mode was complicated by the inevitable fact that the condition for focusing of an
acoustic excitation is at the same time the condition for picking up the resolution
tail from an elastic Bragg peak. In figure 3.36, energy scans around (3,1, %) are
shown. The Bragg tails of the two satellite reflections (%,1, 3 +0k,,) are indicated
by dashed lines, and it is seen how they disturb the low @; side of the data. This
situation is worsened by an anomalous scattering effect due to inelastic scattering
from the pyrolytic graphite monochromator and analyser (See Currat and Axe,
1978).

But on the high @, side there are no such spurion effects and a mode is clearly
observed. It is seen to have a minimum in energy of 0.26 meV and a maximum in
intensity at the incommensurate position (%, 1, % + 0ksp). At the commensurate
position, the intensity has completely vanished.

This mode is interpreted as a gapped phason. As mentioned in section 3.4, a
soft, phason would cause zero point fluctuations, lowering the staggered soliton
amplitude, m,, from the value predicted by field theory, which does not take
phasons into account. But since the neutron scattering determination of mg is in
good accord with field theory, this indirectly suggests that any phasons must be
gapped. Thus elastic and inelastic neutron scattering leads to a consistent picture.

To reconcile this with the reduced staggered moment observed in NMR mea-
surements, it must be realised that NMR is much slower probe than neutron
scattering. It averages the spin configuration over time scales given by the NMR
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Figure 3.36. High resolution scans of the low-energy incommensurate mode. Left:
At the low Q; side, the resolution tails from the (%, 1,% + 0ksp) is indicated by
the dashed lines. Right: The undisturbed high Q; side reveals an incommensurate
mode. The solid line and the open triangles are guides to the eye.

frequency ~ 170 MHz. Therefore thermally excited phasons with frequencies
~ 0.2 meV~ 5 x 10* MHz will affect the NMR signal but not the neutron scat-
tering results. Most NMR measurements were performed at T = 4 K, where the
observed mode at 0.26 meV~3 K would be considerably populated. At 1.3 K, the
NMR line width and hence the deferred m, was in fact seen to increase, albeit
only with 5% (Horvati¢ et al., 1999).

The reason that the phason is gapped is that the translational symmetry of the
solitons is discrete and not continuous, as required for a Goldstone mode. This
will be the case, if the is a small tendency towards pinning of the solitons relative
to the lattice cites, which could also explain the hysteresis effects observed in the
soliton phase.

3.5.3 Summary and outlook

In summary, the inelastic neutron scattering experiments in the soliton phase of
CuGeO3 have shown two commensurate modes around 1 meV and a low energy
incommensurate mode around 0.26 meV. The commensurate modes have been
identified with the transverse excitations expected from the fermion model for
the spin dynamics. The IC mode is believed to be a phason, and the observation
that it is gapped solves the apparent discrepancy for mg in neutron and NMR
measurements.

Though qualitatively understood, these findings call for a qualitative theoretical
treatment of the excitations in the soliton phase. Experimentally, further charac-
terization of the excitation has been planned and in particular a search for the
longitudinal modes will be conducted.
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Naturally, the excitations in a spin—Peierls system must be hybridizations of
both spin and lattice fluctuations, and the next major task will be to identify
and understand this hybridization. A useful method for separating the magnetic
and nuclear neutron scattering is through polarization analysis. To date it is not
practically feasible to perform polarization analysis in fields above 12.5 T, but
when eventually new equipment is developed, a very interesting experiment will
be to separate the components involved in the phason mode.
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Chapter 4

CU_(DCOQ)Q . 4D20
—a 2D 5§ = % Heisenberg
antiferromagnet

Correlations and fluctuations at
finite temperature

This chapter describes experiments on Cu(DCOO)s-4D5 O, that aimed to investi-
gate the properties of the 2D S = 1/2 Heisenberg antiferromagnet on a square lat-
tice. The (T = 0) ground state exhibits long ranged Néel type order with spin-waves
as the elementary excitations. At finite temperatures the system is characterized by
an exponential decay of the correlation length with a concomitant damping of the
fluctuations. Remarkably, the behaviour of this quantum (S = 1/2) system is well
described by the classical model with the parameters renormalized due to quantum
fluctuations.

The previous paragraph dealt with the description of a coherent (ordered) quan-
tum ground state and the identification of the elementary excitations hereof. This
paragraph focuses on the correlations and fluctuations that exist in a system that
lacks long range order, namely the 2D Heisenberg antiferromagnet (HAF) at finite
temperatures, as defined by the Hamiltonian

H=37> 8;-S;. (4.1)
ij

In the study of critical properties such as correlations and fluctuations, 2D systems
play a particular role on the borderline between order and disorder. In 3D, both
the Ising, XY and Heisenberg antiferromagnet will obtain long ranged order at a
finite temperature. On the other side, there can be no finite T' phase transition
in 1D. The 2D Ising system does have a finite transition temperature as found
by Onsager’s solution (Onsager, 1942). Mermin and Wagner (1966) showed that
there can be no long range order at finite temperatures in the 2D Heisenberg
and XY models. But for the later, Stanley and Kaplan (1966), Stanley (1968a,b),
Berezinskii (1971, 1972), Berezinskii and Blank (1973), Kosterlitz and Thoules
(1973) and Kosterlitz (1974) showed the occurrence of so-called topological order
below a finite temperature Tk called the Kosterlitz—Thouless temperature.

In addition to the long-standing interest from this location on the borderline
between disordered 1D systems and ordered 3D systems, the 2D S = 1/2 HAF on
a square lattice (2DQHAFSL) has attained particular attention, due to its relation
to the high-T, cuprate superconductors. The common feature of these materials
are CuQOs planes, where the Cu ions are arranged in square lattices connected by
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oxygen ions. By non-stochiometric doping into the remaining crystal structure, the
carrier concentration can be optimized to achieve superconductivity. In the un-
doped materials, the CuO, planes form 2D S = 1/2 Heisenberg antiferromagnets
on square lattices (Vaknin et al., 1987).

Several of the high-T,. materials such as YBayCuzQOg and BisSroCaCusQOg are in
fact constituted of double layers of CuO2 with a non-negligible coupling between
the two layers. The effect hereof should eventually be addressed but so far, much
attention has been devoted to the single layer materials Las CuO4 and SroCuClyOs.

The cuprates are characterized by very strong nearest neighbor coupling (J ~
1500 K) in the plane, which complicates studies of their properties on a comparable
temperature scale. In addition, there is the specific limitation to neutron scattering
studies that the wave-length and energy relation (4 A~ 5 meV) of the neutrons are
not well matched to the relevant scales in the cuprates (a ~ 6 A, .J ~ 130 meV).

Therefore, even if the motivation is to understand the cuprates, it is useful to
extend the experimental efforts to other physical realizations of the 2DQHAFSL.
Materials such as KBasCu(NO2)g and Cu(DCOs)5-4D>0O (CFTD) were known to
be 2DQHAFSL well before the advent of high-T, superconductivity, and deserve a
reinvestigation with the developments and questions based on the cuprates. While
KBayCu(NO3)g tends to grow in thin needle shaped crystals, it is fairly easy to
grow large (~cm?) single crystals of CFTD. This section describes neutron scatter-
ing studies of the properties of CFTD as a physical realization of a 2DQHAFSL.
After a characterization of CFTD, the behaviour is presented in three sections
covering respectively the zero temperature properties, the correlations at finite
temperature and the dynamics at finite temperature.
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4.1 Characterization of Cu(DCO,); - 4D->0

As the goal is not to understand Cu(HCO»), - 4H,O (CFTH), but to gain exper-
imental results concerning the 2DQHAFSL, it is important first to establish the

extend to which CFTH represents the ideal model system. This section summarizes
the knowledge of CFTH and the deuterated form Cu(DCO-), - 4D;0 (CFTD).

Deuteration for neutron and proton-NMR experiments

In neutron scattering studies, the existence of hydrogen in the samples is prob-
lematic due to the large incoherent scattering cross-section of hydrogen. This will
give rise to a g independent elastic signal that in particular disturbs quasi-elastic
studies such as those reported in section 4.3. Therefore, it is common practice to
deuterate organic materials when performing neutron scattering studies.

Another reason for deuterating is found in proton NMR studies. By deuterating
all but one crystallographic type of hydrogen in the material, the NMR signal can
be related to only those positions in the crystal structure.

Deuteration seldom changes the overall crystal structure and therefore does not
affect the magnetic properties qualitatively. There are however small changes in
lattice and magnetic behaviour associated with deuteration, and the characteri-
zation and determination of the relevant parameters should be performed on the
deuterated version of the system whenever possible. There are examples where
deuteration has led to relevant changes in the magnetic Hamiltonian, as in the
S =1 chain material NENP, where the orthorombic anisotropy changes sign upon
deuteration (Enderle et al., 2000).

The preparation of deuterated CFTH (CFTD) is straight forward, but require
skills and patience. Formic acid and water are commercially available in respec-
tively 97% and 99.9% deuterated form. The crystal growth should then be per-
formed without contact to the atmosphere, as this will cause substitution of Hy,O
and D-O. It is estimated that the final samples are 97% deuterated, although this
has not been checked. One method for measuring the degree of deuteration is by
ion-irradiation (Broholm, 1999).

4.1.1 Crystallographic properties

The crystal structure of CFTH has been studied with X-ray (Kiriyama et al., 1954)
and neutron (Okada et al., 1966, Kay, 1975) diffraction. While X-ray scattering
provides good resolution for determining the lattice parameters and the positions
of heavy atoms, the structure factors for neutron scattering are more sensitive to
the hydrogen positions. The crystal structure is monoclinic with layers of copper
formate in the ab-plane separated by layers of crystal bound water. At room
temperature, the space group symmetry P2;/a and the lattice parameters are
a=815A,b=2818 A and ¢ = 6.35 A with the non-orthogonal angle § = 101.1°.
At 236.1 K there is a para-electric to antiferroelectric phase transition, at which
the water molecules order. The ordering of the water-molecules removes the cen-
ter of symmetry and the unit cell is doubled along ¢, with a new space group
symmetry P2, /n (Kiriyama et al., 1954). The association of the phase transition
with the ordering of the water molecules was confirmed by dielectric absorption
(Kiriyama, 1962a, Okada and Sugie, 1968), NMR, (Kiriyama, 1962b, Soda and
Chiba, 1969) and Raman (Berger, 1975) studies. Also, the shift of the transition
temperature: 236.1 K, 245.6 K and 246.1 K for respectively Cu(HCOO),-4H,0,
Cu(HCOO)3-4D,0 and Cu(DCOO)3-4D> 0 illustrates the role of the water molecules.
In the deuterated form, CEFTD, the same structures and space group symmetries
are found. The lattice parameters are @ = 8.184 A, b = 8.137 A, ¢ = 6.323 A and
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B =100.79° at 296 K and a = 8.113 A, b =8.119 A, ¢ = 12.45 A and 8 = 100.79°
at 120 K.

@

Figure 4.1. The crystal structure of CFTD with face-centered square ab-layers of
copper formate separated by crystal bound water.

The crystal structure with the atomic positions is shown in figure 4.1. It can
be described as face centered ab-planes of copper formate separated by the water
molecules. The Cu?t ions are coordinated by four formate-oxygen and two water-
oxygen, giving an octahedron which is about 20% elongated along the Cu?T-D50
directions. The corresponding g-tensor is 2.4 along the Cu?T-D,0O direction and
2.1 in the plane, with an average of 2.2. The two inequivalent Cu sites in the ab
plane give a staggering of the g-tensor.

In both CFTH and CFTD, the ab plane is almost square, within 0.4% and
0.07% respectively. In the following, this difference will be neglected, and the
basal plane treated as being square. In particular, as the Cu ions are placed in a
face centered way, there is only one nearest neighbour distance d = %\/ a? + b2 =
5.74 A. The monoclinic angle 8 means that adjacent ab-squares are shifted along
the a direction. As this thesis deals with the 2D phase, where correlations between
the planes can be neglected, the shift is irrelevant.

J
/\

Figure 4.2. The magnetic lattice in CFTD with face-centered square ab-layers of
copper spin 1/2 coupled within the plane through J and between the planes only
through the weak interlayer coupling J'

The magnetic unit cell is spanned by the nearest neighbour vectors = ;—d (a—b)
and y = 35(a +b), defined in units of the nearest neighbour distance d = 5.74 A.

In reciprocal space, the 2D magnetic system is independent of the component
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along c¢* (perpendicular to the planes). For instance, the crystallographic lines
(1,0,1) and (0,1,1) correspond to respectively (7, —7) and (7, 7).

From the crystal structure, it is natural to expect weak magnetic coupling be-
tween the copper formate planes. Provided a path for interactions within the
planes, the system can be expected to be quasi two dimensional. The in-plane
super-exchange between the Cu?* ions is mediated by the formate ions, whose 7-
type orbitals are not localized at any part of the ion. If a 7-electron is transferred
to a Cu?* ion, the orientation of the magnetic moment of the latter is transferred
to the formate ion and can thus be transferred further to the neighbouring Cu?*
ion.

4.1.2 Magnetic properties

The 2D antiferromagnetic nature of CFTH was first realised through suscepti-
bility measurements (Martin and Waterman, 1959, Flippen and Friedberg, 1963,
Kobayashi and Haseda, 1963, Seehra, 1968, 1969). The measurements display both
a 3D antiferromagnetic transition at 7 = 16.5 K and a broad maximum around
65 K. Down to about 35 K, the susceptibility, including the 65 K maximum, is
well described by the high-temperature series expansion for a 2D square lattice
S = 1/2 Heisenberg antiferromagnet by Rushbrooke and Wood (1958):

Ng*u% 1 1 1 0.0156  0.0151 . 0.00002

=414+ =+ — + —
xJ U+i+tmtest t5 6

+ - ) )
(4.2)

where ¢ = T'/.J. From the position Tax = 0.91 x J of the maximum, the coupling
parameter J was found to be 71.5 + 3.0 K.

The ordered phase below T has been studied with proton NMR on the partially
deuterated material Cu(HCOQ)5-4D>O such that only the hydrogen in the formate
groups was probed (van der Leeden et al., 1967, Dupas and Renard, 1970). An
antiferromagnetic structure with a zero temperature staggered moment of only
0.53 x .S was derived. With a critical exponent of 8 = 0.324+0.02, the magnetization
curve m(T) o< (Tx — T)? deviated from the mean field Brillouin function (Dupas
and Renard, 1970). The low temperature part of m(T") could be described by a
Green’s function calculation (Lines, 1969, 1970) introducing an uniaxial anisotropy
D =gupHa/xJS = 4x 1073, but as this method fails for higher T', it should not
be used to determine the anisotropy of the system.

The magnetic structure was determined through neutron scattering by Burger
et al. (1980). This study confirmed the zero-point reduction of the staggered mo-
ment being (0.48 +0.02) x pp per copper ion. The moments are aligned antiferro-
magnetically in the ac plane in a four sublattice structure that allows weak canting
along b without giving a net magnetization, which was excluded by a polarized
neutron scattering experiment. The ordering direction was found to be 8° from
the a axis, away from the c-axis.

Electron spin resonance measurements have been used to estimate the magnetic
Hamiltonian, including anisotropic perturbations (Seehra and Castner Jr., 1970).
For this study, the spin-direction was found to be 8.5° from a towards the ¢
direction. Without further investigations, it can only be concluded that the spins
align in the ac plane, close to the a direction. The position of the ESR modes as
a function of strength and direction of the applied field, was analysed in a model
with exchange anisotropy and a symmetric g-tensor. The exchange anisotropy
parameters were estimated to be 1-8x10~* x J and 0.01-0.03 x J for respectively
the symmetric exchange anisotropy and an asymmetric Dzyaloshinskii-Moriya
(DM) type interaction D - (S; x S;), which is allowed due to the low crystal
symmetry. The DM vector was found to point mainly along the spin-direction.
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The analysis was however based on a two-sublattice model rather than the four
sublattice model found by neutron scattering.

Yamagata and Sakai (1980) and Yamagata et al. (1981) have analysed bulk
magnetization curves using the four sublattice model. They consistently reach a
DM interaction of strength 0.013 x J, but with a direction closer to ¢ than to a.
The symmetric exchange anisotropy was estimated to be 3-5x107% x J, slightly
lower than from ESR, but roughly consistent. Because of the four sublattices, it
was possible also to estimate the inter-layer coupling to be 3 x 1075 x J.

One much used method for determining the exchange parameters in magnetic
materials is by measuring and subsequently modeling the excitation spectrum.
This procedure has led to the determination of the main exchange parameter
J =732+0.2 K in good agreement with the result from the paramagnetic sus-
ceptibility. Measurements of the spin-wave dispersion is described in section 4.2.2.

Effects of an applied field

To lowest order in the spin-wave expansion, the application of a magnetic field has
the same effect as an easy-plane exchange anisotropy. A 2D system with such an
anisotropy will develop a Kosterlitz—Thouless transition, at which the correlation
length diverges. As an effect, the transition temperature will be pushed to higher
temperatures. It is believed that future studies will bring interesting insight into
the effect of this suppression on the correlations and fluctuations above Tx.

In a preliminary neutron scattering study, the intensity of the antiferromagnetic
Bragg peak at (1,0,0) was studied as a function of temperature for different fields.
In zero field, the transition to long range order at Ty = 16.5 K is seen as a sharp
onset of the peak. In applied fields, this onset is smeared out but also shifted
towards higher temperatures. The extracted transition temperatures in fields up
to 8 T are shown in figure 4.3.

10
8,
= | 3DLRO
B O
g4 2D
=
2r - SRO
%6 1‘8 20 22 é4 26 28

Temperature [K]

Figure 4.3. Ty as a function of applied field perpendicular to the 2D planes. The
red points are extracted from neutron scattering measurements of the magnetic
(1,0,0) reflection. The blue line is extracted from magnetization measurements as
described below.

4.1.3 Magnetization study

This section reports the results from a magnetization study of CFTD. The mea-
surements were performed with the help of Charles Dewhurst, using an Oxford
Instrument MagLab vibrating sample magnetometer (VSM) at the University of
Warwick. It was the purpose to measure the field dependence of the transition
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Figure 4.4. Temperature dependence of the susceptibility x(T') ~ m(T)/H in a field
of 0.2'T applied along the c* direction of a 61.8 mg sample of CFTD. The left panel
shows the 3D transition to antiferromagnetic order at Ty = 16.65 K. The right
panel shows the broad peak above Ty, scaled to a coupling parameter J =73 K. It
is compared to the results based on high-temperature expansion (Rushbrooke and
Wood, 1958) and exact diagonalization of a 4 x 4 system (Lefmann et al., 2000).

temperature as well as supply a broad set of data both above and below T that
can test the theoretical understanding of the system. The data have not yet been
fully analysed, but are included for the case that subsequent studies of CFTD
could benefit hereof.

An interesting observation was that if the samples were allowed to dehydrate
(becoming pale blue), they gave rise to a ferromagnetic signal below 30 K. To
avoid this, a 61.8 mg sample was fixed to the VSM sample stick by tight wrapping
with PTFE tape.

The magnetization was measured both in temperature sweeps at a constant
field and in field sweeps at constant temperatures. The field was applied along
the a, b, ¢* and a + b directions. Except for well below Ty, all field directions
gave similar results, reflecting that CF'TD is close to being an isotropic Heisenberg
antiferromagnet. In this brief summary only the results with the field along c* are
presented.

In a reasonably low field, the susceptibility can be approximated by x ~ m/H.
In figure 4.4 the temperature dependence of the magnetization, m(7T) in a field
of 0.2 T is shown up to 200 K. The broad maximum due to short range 2D
correlations as well as the sharp peak at Ty is seen. The low temperature part
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Figure 4.5. Temperature dependence of the magnetization (left), m(T) and of
dm(T)/dT (right) at fields varying from 0.05 T to 10 T. The field was applied
along the ¢* direction of a 61.8 mg sample of CFTD.

of m(T') and of dm(T)/dT is shown for a series of fields between 0.05 T and
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10 T in figure 4.5. In zero field the susceptibility displays a kink at the critical
temperature T, corresponding to a discontinuity in the derivative dm/dT. Upon
increasing field, this sharp signature is smeared, but as seen in the left panel of 4.5
there is still a rounded kink that shifts towards 7' = 0. This feature corresponds
to the maximum in dm(T")/dT, which in the right panel is seen to move towards
T = 0 until 0.7 T where the maximum disappears.

However, the minimum in dm/dT', which for the smallest field almost coincides
with the maximum, is seen to move towards higher temperatures. In figure 4.3
the location of the minimum is plotted as a function of field. It is seen to exactly
correspond to the temperature where magnetic Bragg peaks developed in a neutron
scattering study. It must therefore be concluded that the minimum in dm(T")/dT
gives Ty, while the maximum must correspond to a rearrangement of the weakly
ordered moments. To understand this behaviour is a theoretical challenge requiring
a theoretical treatment of the coupling between strongly fluctuating planes. The
work of Berezinskii (1971, 1972) and Berezinskii and Blank (1973) can probably
serve as a point of departure.

Recently, there has been some interest in the behaviour of the magnetization
versus field in the 2DQHAFSL at zero or very low temperatures (See e. g. Zhito-
mirsky and Nikuni, 1998). Though these studies are mostly concerned with effects
close to the saturation field Hgay = 8.J/gup ~ 440 T, the experimental results that
extend only to 10 T are summarized in figure 4.6. For temperatures well above Ty,
the magnetization increases linearly with field. Below T, dm/dH starts at a high
slope corresponding to 0.12 emu/mole T, and then assumes the same linear depen-
dence as for temperatures above Ty. Further investigations of the magnetization
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Figure 4.6. Field dependence of the magnetization (left), m(H) and of dm(H)/dH
(right) at temperatures varying from 2 K to 82 K. The field was applied along the
c* direction of a 61.8 mg sample of CFTD.

curve will probably benefit from studies on systems with an even lower value of
the coupling parameter J, for which the saturation field is actually feasible for
experiments.

Summary and comparison with other 2DQHAFSL’s

Possible candidates with lower values of J include materials like KoBaCu(NO3)g
and NdyCuPO4-D50. Though they are currently only on the level where a thor-
ough characterization of their ability to represent the model system is needed,
these materials could in future complement the present results from CFTD.

As already mentioned, much of the revived interest in the 2DQHAFSL stems
from the fact that this model to some extend describes the undoped parent com-
pounds of the high-T, cuprate superconductors. However, many of these systems
have significant perturbations of the simple model. For instance, the compounds

78 Risg-R—1180(EN)



YBayCuszOgy, and BiySroCaCuy0sys5 actually form double layers with consider-
able inter-double-layer coupling of the order J/10 (Andersen and Uimin, 1997).
The two systems that most closely represent the 2DQHAFSL are LasCuO4 and
SroCuCl; Oz, which have been studied to a large extent. From the point of view
of understanding superconductivity, LasCuO2 has the advantage that it can be
doped to continuously study the transition from an antiferromagnet to a super-
conductor. However, exactly this ability to develop carrier mobility signals that
care should be taken when interpreting the undoped La;CuQOy4 as a completely
localized spin model (See section 4.2.2).

In summary, CFTD can be considered a very good physical realization of the
2DQHAFSL, albeit with small perturbations. Most notably, the intraplane cou-
pling J' causes 3D ordering at a finite transition temperature Tx. In table 4.1
the perturbative interactions in CFTD are compared to those in SroCuCl,O5 and
LasCuOy.

CFTD SI“QCIIC]QOQ LaQCuO4
J [meV] | 6.3140.02 125+ 6 135
Janis/J ~10~* 5x 1074 6 x 1074
Jom/J ~0.03 0 0.015
J')J ~4x107° ~ 108 5x107°
Jann/J | 0.07 £0.01F ~ 0.08 —0.10 £ 0.041
T~ [K] 16.35 256 + 6 325

Table 4.1. Comparison of the relevant magnetic coupling parameters for respec-
tively CFTD, Sro CuCly Oy (Keimer et al., 1992, Vaknin et al., 1997) and Las CuOy4
(Hayden et al., 1991, Greven et al., 1995, Birgeneau et al., 1999, Coldea, 1999a,).
tAssuming that the zone-boundary dispersion is entirely due to NNN coupling, see
section 4.2.2.
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4.2 Zero temperature properties

Though this investigation mainly deals with the behaviour at finite temperatures,
it is useful to review the zero temperature properties of the 2DQHAFSL. In 1D,
the ground state is disordered by quantum fluctuations. This is evident from the
exact solution based on the Bethe ansatz (Bethe, 1931, Hulthén, 1938). No exact
solutions exist for the ground state in higher dimensions, but it has been shown
that in 3D the ground state does contain long ranged antiferromagnetic order
(LRO) (Dyson et al., 1978, Kennedy et al., 1988). The order is destroyed by
thermal fluctuations at a critical temperature. In 2D it has been proven that
thermal fluctuations destroy LRO at any finite temperature (Mermin and Wagner,
1966). No rigorous results exist for the existence of LRO in the ground state at zero
temperature, but some attempts come close. Considering easy plane anisotropy,
J(SFSy + S/S] + aS;S3), it has been shown that the ground state has LRO
for any value of @ if S > 1 and for 0 < a < 0.13 and o > 1.78 at S = 1/2
(Kubo, 1988). However, there exist a large amount of approximate approaches
which combined form overwhelming evidence that the ground state is long range
ordered. A review of both the T' = 0 and finite temperature properties is given by
Manousakis (1991).

4.2.1 Spin-wave theory

Knowing that the ground state is ordered, it makes sense to investigate its be-
haviour using the so-called spin-wave theory (SPW), which is a very successful
method in the description of magnetism in ordered systems. As will be described
in the following sections, the 2DQHAFSL is dominated by spin-wave excitations
both at zero and at finite temperatures. As an introduction, the simple linear
spin-wave theory for nearest neighbour (NN) interactions will be derived.

Linear spin-wave theory for nearest neighbour coupling

The following gives a short derivation of the linear spin-wave theory for a near-
est neighbour antiferromagnet in d dimensions (i.e. linear chain, square, cubic or
hyper-cubic lattice). The Hamiltonian is written as

H = %JZS,« Spis (4.3)
r,0
where 0 runs over the z = 2d nearest neighbours.

The lattice is divided into two sublattices, A (up) and B (down), so that a
spin belonging to A has neighbours on B and vice versa. Lattices where such a
division is possible are called bipartite. For each of the two sublattices, the spin
operators are transformed into boson operators through the Holstein—Primakoff
transformation (Holstein and Primakoff, 1940)

S4 =S-adla Sz =bb—-S
St =284t f(9) and Sh =V2Sf(S)b (4.4)
ST =V25f(S)a Sg =25t f(S),

where f(S) = /1 —ctc/2S (c is either a or b). One major difference between
the spin operator S* and the boson operator n = cfc is that while the former
is bounded to a subspace of 25 + 1 states, the later spans an infinite number
of states. The operator f(S) ensures the truncation to the physical subspace of
2S5 + 1 states, but at the same time holds the complication of the problem. In the
spin-wave approximation only terms up to a given power in the boson operators
are kept. Expanding f(S) ~ 1 — cf¢/4S + - -+ leads to increasingly higher powers
of cfe/28S.
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In linear spin-wave theory only the terms that are quadratic in the boson op-
erators are retained in the Hamiltonian. To this order f(S) is approximated by
1. Next order with f(S) ~ 1 — cf¢/4S is then called first order (in cfc/2S). Re-
membering the definitions S* = §* 4 iS¥, their inverse 5* = (ST + S~) and
SY = (ST — S7), the inner product becomes

Sy-Sp~—8%+S(ata+b'b+a'dt + ab) . (4.5)
The Hamiltonian couples bosons on different lattice sites, but exploiting the trans-
lational symmetry, it can be decoupled by Fourier transformation giving
z
HP = —§NJ52 +2J8 Y “[ada, + biby + 74 (albl + agb,)] | (4.6)
a

where v, = 1 Y5 ¢'4'? is introduced for shorter notation. The Fourier transformed
Hamiltonian still couples the a, and b, operators, but can be diagonalised through
a Bogoliubov transformation to new quasi-particles o, and 3,

ag = uqag — vyl b:; = —v40q + uqﬁg (4.7
(g = UqQq — Uqﬁg by = _Uqaz +ughy (4.8)
which satisfy the commutation relation provided that u3 — vg = 1, which is sat-
isfied by the parameterization u, = coshf, and v, = sinh§,. Requiring that the

Hamiltonian expressed in these operators should be diagonal (without any terms
connecting a, with ;) leads to tanh 26, = v, and

z
H=—5NJS(S +n) +stzq:,/1 —72(adaq + B18,) (4.9)

where n = % >4 1—1/1 =77 ~0.158 (here and below, the numerical values are

for d = 2). The first term is the ground state energy, while the second gives the
energy dispersion for the quasi-particles, which are called spin waves.

wg = 2J84/1 =72 (4.10)
The expansion in powers of cfc is justified if

1
~ > (che) 20197 < 1. (4.11)
q

€

This number corresponds to the average number of spin waves per site or expressed
differently, the staggered magnetization given by
J— 1 T z 1
m= ;(—1) (87) ~= 5 —€=10.303 (4.12)
is reduced to about 61% of the classical value due to zero point motion of the
spin-waves.
Similarly the other results can be thought of as renormalised due to quantum
fluctuations. In this spirit, a number of renormalization constants are defined with

respect to the classical values of the different parameters:

v, = chgl vgl = 2v28Ja
ps = Zpp§ py = S
XL = Zyx¢ ¢ = 55 (4.13)
17‘1
xi(@w) = Zixtew)  xTaw) = 51/720(w —w,).

To first order in the spin-wave expansion, Z. = 14+ n = 1.158, Z, = 2.99, Z, =
1—n—2e¢ = 0.448 and Z; = 0.519 The renormalization Z, of the spin-wave velocity
is actually only defined from the ¢ — 0 limit of the dispersion relation, but up to
first order spin wave theory, it is uniformly renormalised over the entire g-range,
Wy = chgl. The uniform and dynamic susceptibilities could be calculated by
including a term h )" €™!S* to the Hamiltonian, but they can also be extracted

from the scattering functions via the fluctuation—dissipation theorem.
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Scattering functions

The neutron scattering cross-section is given in terms of the correlation functions
(S§(0)S2(t)). Since the Hamiltonian commutes with Y- 57, only the terms (22),
(+-) and (—+) will be non-zero. Defining S, = ﬁ >, €' S, the dynamic struc-
ture factor becomes

S99 (g, ) = / etdn(Se, (1)) = / et 3052, [n)(n|SE(H]0) , (4.14)

where |0) denotes the ground state and the completeness relation 1 = )" |n)(n|
has been inserted. Remembering that S(t) = e~ Ht/hGeHt/h Ht/h|p) = eBNt/h|p)
and [ e™! = §(w) this becomes

S (g,w) = (0|5 ,[n)(n|S;10)6(w — En/h+ Eo/h) . (4.15)
n
Writing the spin operators in terms of the quasi-particle operators a, and f,
and using the corresponding eigenstates, the dynamic structure factor can be
evaluated. The transverse part is S*(q,w) = S*(q,w) = S¥¥(¢q,w). Neglecting
higher order excitations in S%*(q,w), the rotationally invariant dynamic structure
factor S(q,w) =3, 5 (q,w) becomes

_ 1/2
S(q,w) =S (h—;j) 0w — wy) - (4.16)

The absorptive part of the susceptibility is then given by the fluctuation—
dissipation theorem 2hx"(q,w) = (1 — e7#")S(q,w), where for positive energies
the exponential disappears at 7' = 0.

There exist different relations between the renormalization parameters. Not-
ing that Z. renormalizes the energy scale and that the susceptibility is in in-
verse energy units, it follows that yi(q,w) = Zax"(q,w) = Zax<(q, Zew) =
(Za)Z:)x (g, w™). From this it is seen that Z, = Z,/Z.. Another relation be-
tween the parameters is obtained from the prediction of hydrodynamics (Halperin
and Hohenberg, 1969) that ps = v2x . As this relation is satisfied by the classical
result, it must also hold for the renormalization parameters: Z, = ZCQZX.

Effect of further neighbour, interlayer and anisotropic coupling

The spin-wave calculation can be generalized to more complicated couplings, by

replacing z.J \/ 1—12 by \/ A2 — B2. Including second J' and third J" neighbour
and inter plane J. coupling gives (Morr, 1998)
A, = 2J+J.—2J'(1—cosqacosgb) — J"(2 — cos2qa — cos2qb) (4.17)
B, = Jcosga+ Jcosqgb+ J.cosqc (4.18)

Since an antiferromagnetic NNN coupling leads to frustration, this increases the
effect of the quantum fluctuations, as manifested in the staggered magnetization,
which for a < 0.3 decreases linearly according to m ~ 0.303 — 0.2 x a.

Higher order spin-wave theory

As seen above, linear spin-wave theory gives the dispersion wgo) =4JS,/1— ’yg
and ground state energy per site Eéo) = —2J5%(1+1n/S), where n = 2 >, (1 —
+/1—12) ~0.158. Keeping terms up to order 1/S in the expansion gives:
H=Ey" + > W (afay + B]8,) (4.19)
q

2J
+57 2 (1= Cog)afaqagag + BBeSY By) = 2(1+ Cp)alay + By by .

qq’
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where E(()l) = —2JS5%2N(1+n/25)?, wél) = wéo)(1+n/25) and Cyg = /1 =72,/1 - ’yg,.
It is worth noticing that the dispersion relation is uniformly renormalised by
14+1n/28S.

Going to second order becomes a considerable task of careful book keeping, lead-
ing to a number of summations that have to be evaluated numerically (Igarashi,
1992). The result for m = 0.3069, Z. = 1.1794, Z,, = 514 and Z, = 0.724 are close
to the first order results, suggesting convergence of the expansion. The values are
also in good accord with other methods. Remarkably, it was found that even to
second order, the dispersion is uniformly renormalized with w((f) = chgl.

Here a small remark is in place. Whether the second order SPW theory gives a
uniform renormalization of the dispersion or not depends delicately on the treat-
ment of Umklapp processes. Depending on how these are related, a small disper-
sion can actually occur along the zone boundary (Igarashi and Watabe, 1991). In
a slightly different approach based on the Dyson-Maleev formalism Canali et al.
(1992) and Canali and Wallin (1993) found that the second order correction is an
increase of 4% at (%, %) but only 2% at (7, 0).

Igarashi (1993) has also calculated the second order result with NNN interaction
Jnnn = aJ included. The first order corrections grow with increasing «, which
reflects how frustration favors quantum fluctuations.

4.2.2 Spin-wave dispersion in CFTD

The excitation spectrum of CFTD has been measured at 4.3 K by Harrison et al.
(1992) and Clarke et al. (1999) using inelastic neutron scattering. As expected for
a 2D Heisenberg antiferromagnet, the spectrum is composed of a single spin-wave
branch with no dispersion along ¢*. However, there is a gap of A = 0.38+0.02 meV
at the zone center, which probably arises from a small anisotropy in the symmetric
exchange 6 = (J,, — Jzz)/J, like a Dzyaloshinskii-Moriya interaction. The zone
boundary energy along b*, corresponding to ¢ = (%, §), is 14.8 £0.2 meV and the
entire dispersion along b* was well described by the dispersion relation

By = 45T\ (6 + 1= 9)(1+7,) | (4.20)

with J = 7.4+ 0.2 meV and § = 0.0007 + 0.0001. The tilde indicates that J cor-
responds to the classical spin-wave dispersion. Correcting for the quantum renor-
malization gives the real J = J/Z..

As will be described in section 4.4 the present time-of-flight neutron scattering
study has also led to a measurement of the spin-wave dispersion along both (1,1)
and (0,1). The analysis of these data are described in section 4.4.4 and the result
is shown in figure 4.7.

It is first noted that the spin-wave velocity can be extracted directly from the
data as the initial slope around (m, 7). Due to the small gap in CFTD, the form
wq = v/A? + v2¢? should be employed, but with 5A as the lowest probed energy,
the fits were insensitive to A, which was kept fixed at the value 0.38 meV deter-
mined by Clarke et al. (1999). Because of the poor statistics along (1,0), only the
(1,1) data were included in the fit giving vs/d = 10.55 £ 0.06 meV.

The dispersion along (1,1) is in good agreement with the earlier measurements
by Clarke et al. (1999) and can be fitted by the classical spin-wave result using
J = 7.46 £ 0.02 meV, corresponding to J = 6.31 = 0.02 meV. But along (1,0) the
dispersion was found to exhibit a dip at the zone boundary ¢ = (7, 0), making it
7% lower than at (%, 5). As shown by the dashed line, this can be accounted for by
introducing a NNN coupling, giving J = 8.00 & 0.08 meV and a = 0.066 % 0.008.
At this value of «a, the second order spin wave theory (Igarashi, 1993) predicts
Z.=1.201 and v, = 1.117 x v/2Ja, giving J = 6.68 £ 0.07 meV.
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Figure 4.7. The spin-wave dispersion of CFTD along (1,1) and (1,0) at 8 K. The
solid and dashed lines are fits to linear spin-wave theory with parameter choices
(J,a = J')J) = (7.46 + 0.02 meV,0) and (8.00 £ 0.08 meV,0.066 £ 0.008) re-
spectively. The dot-dashed line is the series expansion result by Singh and Gelfand
(1995) using J = J|Z. = 6.31 + 0.02 meV.

However, as explained below, there exist some indications that the uniform
renormalization of the dispersion found in spin-wave theory is not correct at ¢ =
(7,0). In a series expansion from the Ising limit Singh and Gelfand (1995) found
that the energy at this point of the zone boundary was lowered by 7%, which
is exactly the value observed in CFTD. Apart from around ¢ = (w,7), where
the series expansion is expected to fail, the predicted dispersion as depicted by
the dot-dashed line in figure 4.7 is indistinguishable from the NNN result. It is
therefore not possible on the basis of the dispersion alone to distinguish between
the two possibilities, but the coincidence that the observed dip matches the one
predicted by series expansion without any free parameters makes this explanation
more attractive.

4.2.3 Beyond spin-wave theory

It is important to remember that the spin-wave expansion is really an expansion
from the Néel state. In the 2DQHAFSL the staggered magnetization is reduced by
30% indicating that a significant part of the ground state expectation value lies in
states that are neither of the two Néel states. Therefore, in spite of its success in
describing the ground state parameters, the spin-wave expansion should be treated
with an appropriate amount of scepticism and additional methods should be used
to improve the credibility of its predictions.

Numerical calculations

Even with the large number of symmetries offered by the nearest neighbour Heisen-
berg antiferromagnet, numerical exact diagonalization is currently only possible
on finite systems of up to about 36 spins. For finite IV x N systems, only a discrete
number of points exist in reciprocal space. To measure the dispersion at (7,0), N
just has to be even, but to measure it at (3, ), NV must be dividable by four.
Exact diagonalization of a 4 x 4 system has been feasible for a while (Chen
et al., 1992). Interestingly, this leads to exactly the same energy at both points
hw(m,0)/J = hw(Z,%)/J = 2.710. It is a very small system for which care should

2572
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be taken in attempts to extrapolate to infinite systems, but the fact that the two
energies are exactly the same does insinuate that this would be a robust result.

Unfortunately the next N that is dividable by 4 is 8, and exact diagonalization of
64 spins will remain out of reach in a while despite of Moore’s law for the growth of
computational power. There is one improvement possible however, which is based
on a clever choice of boundary conditions. Forming a square out of four 4 x4 blocks,
such that the two along each diagonal are copies of each other, gives a total of 32
inequivalent spins. The reciprocal space of the full 8 x 8 system is thereby depleted
in a way that still enable calculation of the excitation energy at the two points of
interest. Though still being far from N = oc it is indeed interesting to see if the
lack of zone boundary dispersion persists, and the implementation of this scheme
is in progress (Lefmann et al., 2000).

Abandoning the goal of finding all the lowest lying eigenstates of the system,
somewhat larger system sizes can be treated in Monte Carlo based calculations.
For any ‘trial’ state |¢r), the ground state |1)g) can be produced by applying the
evolution operator e~ for sufficiently long imaginary time 7.

eTEO

_ o—TH :
|,¢}0> - <1/}0|1/)T> |’(/)T> 3 (4 21)

which can be seen by applying (1o| on both sides of the equation. The basic
idea of the projector- or Greens function Monte Carlo technique is to perform
the imaginary time evolution in finite steps A7 numerically, thereby reaching an
approximation for the ground state. Since this technique operates only on a small
subspace of the entire set of states, systems up to 16 x 16 have been studied. The
results generally confirm the findings of SPW theory, but the extrapolation to
N — oo gives uncertainties that are too large to answer detailed questions like
the possible existence of a 7% zone boundary dispersion (Trivedi and Ceperley,
1990).

Series expansion from the Ising limit

As an alternative to the spin-wave expansion, Singh and Gelfand (1995) have
performed a series expansion in A from the Ising limit (A = 0):

H= —% > JIS;SEH + A(SESE + SYSY)] - (4.22)
rr’

The series expansion for the spin-wave velocity is given below. A direct sum-
mation with A = 1 gives vs/Ja = 2.267, which is far from the expected value
of 1.18 x 21/2S. This is due to the poor convergence of the series, which can be
improved by considering the Padé approximants (Cabannes, 1976).

A given function f(z), can be approximate around z = 0 either by the simple
Lth order Taylor polynomial T}, (z) = 25:1 t,x™ or by the [N, M] Padé approxi-
mant, which is defined as the ratio between two polynomia Py (z)/Q a(z) of order
respectively N and M. If the first L Taylor coefficients of a function are known,
they can be used to calculate the Padé approximants for which NV + M < L. In
general, the best approximants are found around the diagonal N ~ M ~ L/2.
Astonishingly, it is in many cases found that the Padé approximants give a better
approximation of the function than the Taylor expansion from which they were de-
rived. However, it is difficult to assess the convergence of the Padé approximants,
and sometimes it fails — this is the weakness of the Padé approximant method.

Since the series expansion above is in orders of A2, L = 5 and the three most
promising Padé approximants are [2,2], [2,3] and [3,2]. As seen in table 4.2 these
three approximants agree within 0.3% and give v, = 1.67 x Ja corresponding to
Z. =1.18 in good agreement with the spin-wave expansion and other results.
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The series expansion for the dispersion relation is given in table 1 of Singh and
Gelfand (1995). Specifically, for the three g-vectors (0,0), (3, %) and (0, ), the
series are:

(vg/cd)? = 4X? — 2.30556\* + 2.41051\% — 3.06490)\% + 4.10055\"0  (4.23)
w(0,0) =2 — 5/3A% + 0.31713\* — 0.41923)\° + 0.27100\® — 0.38943\'°

w(Z, ) =2+1/3)% + 0.05324\* — 0.00907A° + 0.00511)\% + 0.00208\'°

w(0,7) =24+ 1/3X2 — 0.09954\* — 0.00169X° — 0.02807)\% — 0.01062°

The coefficients for ¢ = (0,0) are seen to remain large and alternating, thus
warning about a poor convergence of the series. While w(0,0) is expected to be
zero, a direct summation gives 0.113. This result is not improved by a Padé anal-
ysis shown in table 4.2. It has in some cases proven advantageous to make the
transformation A2 = 2z — 22, which moves the competing discontinuity at A = —1
to minus infinity. In this case however, there is no sign of improvement through
such a trick. It will seem that the series expansion from the Ising limit is not able
to reach the gapless zone-center energy of the Heisenberg model. This is under-
standable, as the existence of a gap in the Ising model poses a qualitative difference
between the two models.

v2 1 2 3 4 w(0,0] 1 2 3 4
1 [ 2537 3066 2553 3.082 1 [0560 0077 0451 -4.56
2 | 2874 2781 2.790 2 0470 0.382 0.309
3 | 2759 2.789 3 10396 1.576
4 | 2799 4 | 0342
w@, D 1 2 3 4 wmo)| 1 2 3 4
1 [2397 2401 2.380 2.385 1 [2257 2235 2220 2.197
2 | 2379 2381 2.383 2 |2232 2394 2.160
3 | 2381 2332 3 |2234 2153
4 | 2386 4 | 2187

Table 4.2. Padé approzimants [N, M] (row and column) for va, w(0,0), w(F, %)
and w(w,0) with X2 as variable. The numbers re in units where h, J and a are
equal to unity. For w(0,0), it is noticed how very few approximants are close to
the expected value of zero.

The convergence looks more promising for the two zone-boundary points, where
the coefficients become quite small for the A!° term. The values obtained by direct
summation are w(%, ) = 2.385 and w(0, 7) = 2.193, respectively. Approximately
the same values are reached for the well-behaved Padé approximants. It is therefore
reasonable to trust the two values, although it is of great importance to have them
confirmed by other methods like QMC.

The important result is that while the dispersion along [1, 1] is uniformly renor-
malized by Z., the dispersion along [0, 1] shows a suppression of the excitation
energy at (0, 7) by approximately 7%.

The physical origin of this non-uniform quantum correction has not yet been
clearly explained, but a hint may be found in the flux-phase description of Hsu
(1990). Using a resonating-valence-bond like ground state, which has the major
fault that it has zero staggered magnetization, Hsu reaches a dispersion relation
which is uniformly renormalized along (1,1) but has a large suppression of the
energy at (0,). In this work, the suppression is related to nesting of the Fermi-
surface obtained after a quasi-particle transformation. It could be imagined that
the true ground-state is a combination of the flux-phase and the spin-wave ground-
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state — closer to the later, and that the dispersion is in some sense an average of
the two.

It is worth noticing that the spin-wave dispersion obtained in the series expan-
sion analysis corresponds to the spin-wave theory result, with nearest neighbour
coupling J&& ~ 1.07 x J and next nearest neighbour coupling J&ky ~ 0.06 x J.
This could be an indication that an analytic calculation of the zone-boundary
dispersion should be based on mapping the quantum effects that are neglected in
spin-wave theory onto an effective NNN coupling. This is a challenging task that
involves the part of the ground-state expectation value that is not found in the

Néel state.

4.2.4 Summary of zero temperature properties

As described above, the zero temperature value of most physical quantities of
the 2DQHAFSL have been established by comparing different approximative and
numerical methods. In summary, the ground state of the 2DQHAFSL exhibits long
range antiferromagnetic order and the 7" = 0 properties are therefore qualitatively
described by the classical spin wave theory. Quantitatively, the parameters are
renormalized due to quantum fluctuations: m = 0.31, Z, = 1.18, Z, = 0.51,
Z,=0.72 and Z; = 0.61.

While it should not be forgotten that only a few exact results exist and that
the full nature of the ground state is still not known, it is fair to say that the
zero temperature behaviour of the 2DQHAFSL is relatively well understood. One
exception to this is the question of a possible zone-boundary dispersion, which
needs to be clarified.
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4.3 Correlations at finite temperature

In 1966 it was rigorously proven by Mermin and Wagner (1966) that at any non-
zero temperature the one- and two-dimensional Heisenberg model with finite in-
teractions cannot exhibit long ranged magnetic order. Their proof was inspired by
Hohenberg and built on Bogoliubov’s inequality

S (A ANIB, H), BY) < kuTI(B, ADP (124
with A = S7(Q — q) and B = S*(q). For the antiferromagnet, Q = (w, ), while
Q@ = 0 for the ferromagnet.

This absence of long ranged order makes it necessary to modify methods based
on a perturbative expansion from the Néel state or to invoke new methods that do
not require knowledge of the ground state. At low temperatures, the spins are still
strongly correlated, and the disorder is only visible on length scales larger than
the correlation length £(T"). The present section reports measurements of £(T") in
CFTD, but first the theoretical foundation is reviewed.

Structure factor S(¢) and correlation length ¢

The correlations in a system are described by the time independent correlation
function (S(0)-S(r)) or by its Fourier transform S(q), which is called the structure
factor. Sometimes it is called the instantaneous structure factor to explicitly distin-
guish it from the dynamic structure factor S(g,w). The two correlation functions
are defined and related by

S(gw) = / D e TTRN(SH(0) - S,(1)) dt (4.25)

Slg) = Y _€*7(Sy-8,) = %/S(q,w)dw. (4.26)

In the absence of long range order, the correlation function will decay with
r, and the correlation length is often defined as the long distance decay rate of
the spin-spin correlation function (Sy - S,) oc e~"I/€_ If the correlation function
follows precisely an exponential decay as a function of the distance r, the structure
factor becomes a Lorentzian S(q) o 1y, and the correlation length is the
inverse of the half-width half-maximum (HWHM) of the structure factor. From
a calculational point of view, it is useful to realize that i/ corresponds to the
location of the pole in S(i§) along the imaginary momentum axis (Elstner et al.,
1995a).

If the space and momentum dependences deviate from these ideal forms, the def-
inition becomes ambiguous. Analytical theories often reach real-space behaviour
f(r)e~I"1/¢ where f(r) is some pre-exponential factor. For instance, three predic-
tions for S(q) that have been proposed in the litterature are the simple Lorentzian
Sp and two scaling forms proposed by respectively Chakravarty et al. (1989)
(CHN) and Chubukov et al. (1994) (CSY). These three options have the following
real-space behaviour:

1 F! L
v = S oo 20
N In(1+ ¢%¢2)  F1 _lzl 26 2|r| 1.0 (17|
Kk v A R
1 Fro 2K(r|/§)

Vivee w0
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Figure 4.8. The real space (left) and reciprocal space (right) behaviour in units
of r/€ and g€ of three possible lineshapes for the correlation function: Sy (solid),
Scan (short-dashed), Scsy (dot-dashed) and in the left panel also Seuy (dotted)
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Figure 4.9. The real space (left) and reciprocal space (right) line shapes scaled to
their respective FWHDM.

where Sy = £\/2/7 ensures the normalization, v ~ 0.577216 is Euler’s constant,
K, (z) is the modified Bessel function of second kind and K0 = %K,,(a:). The
form Seun = Si + %B fSCHN, where By is of the order of unity, is a slight gener-
alization of the simple Lorentzian S.,. Respectively the real-space and reciprocal
space shapes of the three forms are illustrated in figure 4.8.
Another used definition is through the second moment of the structure factor
-1 9%S(q)

2 _ . 4.
=550 =0) o 0 (4.28)

This definition is often used in studies on finite lattices L x L, where the structure
factor is known only on a discrete lattice in units of 27/ L, from which the derivative
is then calculated. Analytic results for the three line shapes considered here give
respectively &y = &, €y = €y/1— By /2 and &y = €/V2.

Alternatively, discrete data for S(g) can be fitted to a functional form like the
Lorentzian, thereby extracting the correlation length and the amplitude Sy. Due
to the statistical error in experiments, this is the only method that is applicable
when analyzing neutron scattering data. Independent of the exact line-shape, this
method will extract a correlation length which is close to the inverse HWHM.
The HWHM for each of the three line shapes are HWHM, = ¢!, HWHMuy =
5*1\/BfT,1(e*2/Bf/Bf) —1 and HWHMsy = £ 'V/3, where T,,(z) is the nth
order tree-generating function. For 0 < By <1, HWHM_gguy varies from 1 to 1.465
which is close to the result for £ys. In figure 4.9 the line-shapes have been plotted
in units of rxFWHM and q/FWHM using their respective values for FWHM. It
is seen how apart from a difference in the ‘background’, which would not be easily
identified in an experiment, the scaled line-shapes are very alike.

Defined as the long distance decay rate, the three line shapes considered here
share the same correlation length ¢. However, as just demonstrated, numerical
calculations evaluated through the second derivative or experimental results based
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on fits would lead to differences of up to a factor of v/3. It is therefore important
that quantitative comparisons use consistent definitions for the correlation lengths
or take the differences in the definitions properly into account.

4.3.1 Theoretical and numerical predictions

In the treatment of the short range ordered system, much attention has been fo-
cused on the correlation length. In addition to being one of the most important
observables, the correlation length has attained status as a bench-mark because
it provides a way to compare and test analytic, numerical and experimental re-
sults. A number of different approaches have been taken, including quasi-particle
transformations, mapping onto the quantum non-linear ¢ model (QNLoM), high-
temperature expansions, semiclassical methods and quantum Monte Carlo calcu-
lations.

Quasi-particle transformations

Various quasi-particle formulations, such as the Schwinger-boson (Schwinger, 1952,
Arovas and Auerbach, 1988, Auerbach and Arovas, 1988, Kopietz, 1990), Dyson—
Maleev (Dyson, 1956, Maleev, 1957, Takahashi, 1989) and Holstein—Primakoff
(Holstein and Primakoff, 1940, Hirsch and Tang, 1989) transformations have been
applied. They all lead to the same self-consistency equation for the parameters 7
and A that renormalize the zero temperature spin-wave dispersion according to

wg = Ay/1 —n?72. In the low-temperature limit, these equations can be solved as

o= 1- %(T//\O)%*“?ffe) [1+0(T/J)?] (4.29)
A= M- g(T/)\O)?’ +O(T/Xo) (4.30)

where A\g = 45JZ.. The correlation function is then given by

(—1)ll (E)Q & iy (4.31)

Ao 7r|7“|
with the correlation length
Sh s 2mPs
1) = T ome B+ 0T 2m, ) (432)

The exponential decay of £(T") at increasing temperature is common to all theo-
retical predictions and has been verified experimentally. The prefactor Shw,/kgT
is however subject to corrections.

The susceptibility acquires a term linear in temperature

S —€ kgT
x(T) P

= 1277 "oz,

+0(T?) . (4.33)

The factor of % to the T'= 0 result xy, = sSJ;Zi is due to the loss of a well defined
direction of the order parameter, by which x is averaged over the three directions
which at T' = 0 give X2z = Xyy = X1 and x.. = 0.

The quantum non-linear ¢ model

A much celebrated approach has been the mapping of the Heisenberg antiferro-
magnet onto the quantum non-linear o model (QNLoM) (Haldane, 1983, Affleck,
1988b,a). Technically, the QNLoM can be obtained as the long-wavelength, large-
S and low-temperature limit of the HAF by disregarding the so-called topological
Berry phase term. The procedure will be outlined below.
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The first step in reaching the field theoretical description is to introduce the
notion of coherent states |IN) where IN runs over the unit sphere. While {| —
S),-++,|S)} form a minimal complete set of basis states, the coherent states are
not orthogonal but do satisfy the completeness relation [ |[N)(N|dN = 2r. They
are related to the original states by (IN|S|N) = SN, giving the relations |S) =
|IN = (0,0,1)) and |N) = exp(zS+ — 5*S7)|S) with 2 = — & exp(—i¢) in terms of
the spherical coordinates of IN = (sin 8 cos ¢, sin 6 sin ¢, cos §).

By inserting an infinite number of the completeness relation into the partition
function Z = Tr exp(—SH(S)), the path-integral formulation is reached.

_ /DN(T) exp {— /OB drH(SN (7)) — iS /01 duN(r) - <%—JZ x %—J;f)}

(4.34)

In the semiclassical limit, N (r) becomes the direction of the spin at site r and can
conveniently be written as N (r) = (=1)"n(r)y/1 — a2412(r) +a?l(r), where a is the
lattice constant, d the dimension, n? = 1 and n.-1 = 0. At low temperatures where
the correlation length is long (adjacent spins point in almost opposite directions)
it can be assumed that n and [ are slowly varying functions Vn < a™', VI < a~2
and || < a~!. This is used to keep only terms up to the lowest (second) order in
the action

S_—/ dr/dd { 24 X712 +2il <nx?>}+o, (4.35)
T

where p? = JS%a®> ?and x| = 1/4dJa®. The term 6 =iS ", ( fo dr fo dung,:
(%22 x 220 ) js the topological part of the so-called Berry phase Wthh due to the
factor (—1)™ cannot easily be turned into a continuum description. However, un-
der the smooth function assumption 6 vanishes for the 2D model (Haldane, 1988).

The field [ can be integrated out to give

1 [P 1
S = —/ dT/ddrpg [(Vn)2 + —2(8Tn)2 . (4.36)
2 0 Us

This action represents the so-called quantum non-linear sigma model (QNLoM)
with v, = 2d'/?SJa. It can also be obtained in a more direct manner (Affleck,
1988b) by defining

Sz z,y — S;L-J,-Ly -5 zy+1 T+ Sac-i—l,y-i-l)/( (S + 1))
Sey+ Sag1y + Sz yt1 + Ser1,y41)/4 (4.37)
)

Say = Set1y + Sey+1 = Sat1,y+1)/(4V/S(S +1))
Sey+ Set1,y = Seyr1 — Sey1,y41)/(4V/S(S+1)) .

where z and y are even integers. Under the assumption of slow variation, they
correspond to modes near (mw, ), (0,0), (7,0) and (0,7) respectively. Knowing
that for the 2DQHAFSL, the ground state has long range order, or in general, just
assuming that n is well defined at all points in space and time, Haldane showed
that in two dimensions, the Berry phase falls out (Haldane, 1988). In addition,
the knowledge from spin-wave theory, that the excitation energy has minima only
at (m,7) and (0,0), the two additional fields can be expected to become irrelevant,
and the Hamiltonian density becomes

~ A~~~

1 0 2
p— 4.
H/’U Ps (Vn) + X l ( 38)

leading to the same action as derived above.
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Renormalization group analysis

Several different approaches have been taken to study the QNLoM. In their semi-
nal work, Chakravarty et al. (1989) (CHN) used a one-loop renormalization group
method to reach results for the structure factor.

CHN starts by adding a source term Hfoﬁ dr [dro(r,T), where o(r,7) is one
component of the M dimensional field n = (7, 0). Using the constraint |n| = 1,
o(r,7) is integrated out. The remaining field 7 (r, 7) is then expanded in Fourier
coefficients m(k,w,). The integrals are regularized by introducing a momentum
cutoff A and the space dimension is rescaled to this so that & < 1.

The renormalization procedure is achieved by integrating out the high momen-
tum part e~! < k < 1 to reach a new effective action. This is known as momentum-
shell integration because only a shell of momentum space is integrated out. Defin-
ing new variables k' = €! and 7' = 7 /7 the new effective action can be brought to
the same form as the original provided that the parameters are rescaled according
to

u' =ue™ (4.39)

) =nPe 2 (7 4+ 1) (4.40)
10 2, —dl 1 _

hu' =n“e”*(hu + th(M NI, (4.41)

where ug = ShAvs, go = hwsA? 1/ p t = g/u, to = kgTAT2/p% ho = HA =91/ (hwy)
and I =3, > i, (kK*+w2+hg)~". The spin rescaling 7 is determined by the
requirement that the the Zeeman energy h'/n and temperature scales in the same
way (h'u'/n = hu), giving n = e (1 — 1¢(M — 1)I). From the rescaling scheme
the following flow equations are achieved

% =(1—d)g+ %(M —2)¢? coth(g/2t) (4.42)
% =(2—d)t + %(M — 2)gt coth(g/2t) , (4.43)

where Ky = 2'=47=%/2/T'(d/2), and T is the Euler gamma function. In two di-
mensions with M = 3 there is a T' = 0 fixed point at g. = 1/(4x), while there
is no finite temperature fixed point. The flow equations are integrated until the
renormalized correlation length equals the lattice constant e='"¢ = a. Though
this is not an exact determination, it gives the leading order of the temperature
dependence

_ 2 kgT . _{7T. —on

&= A h]j)s sinh ! [smh(gO/QtO)e1 2/t (4.44)
There are three regions for which limiting results for ¢ can be written out
hvg 27ps

=0.74 x aA c— 1t 44
E=0T4x%xa kBTeXp<kBT> g<yg (4.45)
€= 1.14 x aA 0 - (4.46)

=1L kT 9=9c -

2

£= ag/ g>gc+t, (4.47)

9= 9e (1 — 325 exp(Sﬂps/T))

where ps = p2(1 — go/g.) is the quantum renormalised spin-wave stiffness.

The three regions are sketched in figure 4.10. For g < g. the correlation length
diverges exponentially towards a long range ordered ground state, and the low tem-
perature properties are described by a renormalization of the parameters. This is
called the renormalised classical (RC) region. Above g. the ground state is quan-
tum disordered (QD) in what can be denoted a quantum fluid, where the correla-
tion length is only weakly temperature dependent and stays finite as T — 0. At
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Figure 4.10. Schematic phase diagram of the QNLo M as a function of tempera-
ture T' and the coupling parameter g. The leading temperature dependence of the
correlation length & is indicated for each of the three regions RC, QC and QD. At
T = 0 there is long range order for g < g.. The arrow illustrates the location of
the 2DQHAFSL when mapped onto the QNLo M.

the critical point g. the correlation length is inversely proportional to tempera-
ture, and this quantum critical (QC) behaviour will influence the region above the
RC and the QD until it is eventually taken over by ordinary classical behaviour
at high temperatures. As described in section 4.2, it is well established that the
ground state of the 2DQHAFSL is long range ordered, which means that the low
temperature properties should be described by the RC prediction.

It is seen that this one loop calculation reproduces the result from the quasi-
particle approaches. But the method can be improved by summing over all non-
zero Matsubara frequencies (instead of performing a momentum-shell integration).
This leads to an effective action S = 5;— [ d*r(Vi)? corresponding to the classical
NLoM. In this model, the correlation length has been determined as (Hasenfratz
et al., 1990) and Hasenfratz and Niedermayer (1990)

e kBthl 27 tcl
_ ¢ ety 4.4
¢ 8 2mwg xp (tcl> (I+ s +) (4.48)

The renormalization procedure of CHN led to an estimate for ¢.; that depends
logarithmically on the momentum cutoff A. Instead it was proposed to calculate a
long-distance property in both the classical and the quantum models. The effective
coupling constant t.; is then determined by matching the two results. Choosing as
a variable the change f(h) — f(0) of the free energy as a function of the chemical
potential, Hasenfratz et al. (1990), Hasenfratz and Niedermayer (1990) reached

_ 2mps 3 kT .
27 [t = kB"T — 327?1’ leading to

¢ e Vs . 27

= — >4 —
821ps P\ kT
Recently this approach has been improved further by comparing f(h) — f(0) of

the NLoM with the result obtained directly from the 2DQHAFSL using a spin-

wave expansion (Hasenfratz, 1999). This procedure circumvents the cutoff-effects
that occur when going from the 2DQHAFSL to the QNLoM. The result is that &

1kgT <kBT>2 (4.49)

2 27ps 27ps
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in 4.49 is multiplied by a factor exp(—C(7)), where v = 2JS/T and

&k _ sk mx exp(=mk) — 1 + exp(in)
(2m)2 mi i (1 — exp(—mx))

Cly) = g +1In8y + 2772 / . (4.50)
1/2
where n, =~y (Eij(l —cosk;)(1 — cos k])) . The function C(7) has been tab-

ulated by Hasenfratz (1999). It has been pointed out by Beard et al. (1999) that

kT

2
that the same spin-wave theory also gives part of the O (%p ) term namely

33(kpT)?/23(4mps)2.
Within the momentum-shell renormalization scheme the structure factor is
renormalized according to

S(¢,t0) = exp [21 -2
Y

/l t(l’)dl’] S(elq,t(1)) , (4.51)

which with the matching condition ¢2(¢9) + ¢~ 2 = €?! leads to the scaling form

_ 14 3BIn(1+2?)

S(a) = Sof(a6) . F(@) L (452
with Sp = S(¢g=0) = %, where By and B, are constants that cannot

be determined within the renormalization approach. The one loop renormalization
approach gives By = 1 (Chakravarty et al., 1989), but higher order corrections
are believed to give a value closer to zero (Ty¢ et al., 1989, Makivi¢ and Jarrell,
1992).

In addition to the renormalization group approach, the QNLoM has been treated
in an expansion from the large-M limit, where M is the dimensionality of the field
(Sachdev and Ye, 1992, Sachdev, 1992, Chubukov and Sachdev, 1993, Chubukov
et al., 1994). This approach reproduces most of the renormalization group results,
but showed that the numerator of the scaling function f(¢£) only contains the log-
arithmic term for moderately large g€ > 1, while f(g¢) ~ (140.022¢%¢?)/(1+¢¢?)
for g¢ — 0. This result shows that there is only a very small difference between
¢ and the correlation length &y defined from the second moment of S(g). The
same conclusion was reached in an 1/M expansion for £5/¢, where the difference
was found to be only 0.3% (Chubukov and Starykh, 1999). This reflects that the
line-shape is in fact very close to a Lorentzian.

Quantum criticality

It was realized by CHN that the QNLoM had a critical value g. of the effective
coupling constant, above which the ground state was quantum disordered. Since
the ground state of the 2DQHAFSL has long range order, it must correspond to
a value of g below g.. In comparison, the frustrated triangular lattice system is
believed to have a quantum disordered ground state corresponding to g > g.. But
even for the square lattice, ps = 0.181.J is considerably smaller than .J, signaling
that the system is not too far from the critical point.

Chubukov et al. (1994) have derived scaling forms for a number of physical
observables including the instantaneous and dynamics structure factors. They are
valid for a 2D quantum Heisenberg antiferromagnet in the vicinity of a quantum
phase transition from a Néel ordered state to a spin fluid state. These general
scaling considerations lead to the same linear temperature dependence of ¢! as
in equation 4.46.

The QNLoM was treated in an expansion in powers of 1/M. This led to results
similar to the RG treatment of CHN, with a prediction for £ in the QC regime

& = 0.962hc(T — 0.3098 x 27ps) L . (4.53)
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For a g smaller than but close to g., the correlation length was expected to
cross over from the RC prediction to the QC prediction. In the 2DQHAFSL, such
a cross-over would be expected around 0.5, but a very important question is
whether the mapping of the 2DQHAFSL onto the QNLoM is still valid at this
temperature.

Elstner et al. (1995a) used high temperature expansions (HTE) for the instanta-
neous structure factor S(q) and susceptibility x(q) to address the question of such
a cross-over. They suggested to consider the spin wave mass m = vy/x for the
two respective models. The lowest (1/M) order QC prediction is mqc/T = 1.04.
For the RC prediction, they used the CHN-HN prediction modified by a renormal-
ization group argument mpc = 18%22e=27s/T(1 — T/47p,)~*, and showed how
the HTE result crossed over from mgc to mgre around 0.6.J. This is illustrated in
figure 4.11. It would therefore be natural to conclude, that there is a cross-over in

2

=
an

Spin wave mass m(T)/T
'_\

o
o

0 02 04 0.8 1

0.6
Temperature T/J

Figure 4.11. The temperature dependence of the spin wave mass m(T) = ¢(T)/&(T)
divided by temperature for respectively a high temperature expansion (HTE), the
QC prediction and the RC prediction using either the zero temperature spin wave
velocity co or the temperature dependent spin wave velocity ¢(T).

the spin wave mass from RC to QC behaviour. However, the RC prediction may
also be plotted using the temperature dependent spin wave velocity

v, (T) = v° <1 + % (%))1 (4.54)

calculated by Kaganov and Chubukov (1988). In this case, which is the solid line in
figure 4.11, the RC prediction is seen to follow almost exactly the HTE calculation.
This illustrates that in discussing cross-over effects, care should be taken that all
quantities are calculated to the same order in the approximations involved.

High-temperature expansion

The mapping onto the QNLoM is an approximation based on the assumption
of low temperatures. High-temperature expansion (HTE) provides results in the
other limit. To lowest order the correlation length becomes &(T) = 1/In(T/JS?),
which has been shown by quantum Monte Carlo calculations to perform well
down to T' ~ 2J (Manousakis and Salvador, 1989). HTE have been performed
up to 14th order for the structure factor S(q) of the two dimensional square
lattice Heisenberg antiferromagnet for spin values between S = 1/2 and S = 5/2
(Elstner et al., 1995a,b). The correlation length was extracted from the second
moment definition. This study confirmed the experimental observations that the
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second order result by Hasenfratz and Niedermayer (1991) failed for higher values
of the spin. The explanation for this is that the cutoff in the NLoM calculation
is approximately given by A ~ ST/psa. When A exceeds the Brillouin zone, it
ceases to have effect and the integrals become equivalent to those of the classical
model.

Pure-quantum self-consistent harmonic approximation

The connection with the classical model was also exploited in a so-called pure-
quantum self-consistent harmonic approxzimation (PQSCHA) (Cuccoli et al., 1995,
1996, 1997, 1998), where the quantum fluctuations integrated out in a Gaussian
approximation leaving an effective classical model in which the Hamiltonian and
the effective operators are functions of 7' and S. Defining an effective temperature
Teg the effective Hamiltonian is brought to the same form as that of the classical
antiferromagnet. The correlation length is then given by £(T') = &a(Test), where the
classical correlation length can be calculated by classical Monte Carlo methods.
The validity of this approach is similar to that of the HTE with the advantage
that any physical quantity that can be calculated in the classical model can be
obtained within the PQSCHA and the calculation can easily be extended to include
perturbative terms like a magnetic field, anisotropy or inter-plane coupling in the
Hamiltonian.

Quantum Monte Carlo calculations

With analytic results for respectively the low and the high temperature limit, re-
sults obtained by quantum Monte Carlo (QMC) calculations have in combination
with experimental data played a crucial role in establishing how the two limits
connect (Lee et al., 1984, Gomez-Santos et al., 1989, Manousakis and Salvador,
1988, 1989, Ding and Makivi¢, 1990, Makivi¢ and Ding, 1991, Kim et al., 1997,
Kim and Troyer, 1998, Harada et al., 1998, Beard et al., 1998, 1999, Keller-Marxer,
1999).

In QMC calculations, finite lattices of size N X N are considered and the anal-
ysis proceeds by increasing N until it the results converge. Obviously, aN has to
be considerably larger than the correlation length, which sets a lower temperature
limit for the applicability of the method. On increasing IV the demand on the com-
putational power increases drastically, and hence the system sizes have increased
steadily with the development of faster computers. Today systems of N = 1000
have been studied down to temperatures where £ = 120 (Kim and Troyer, 1998).

As a compensation for the limited system sizes, advanced methods for extrapo-
lating the results to larger system sizes and towards N — oo have been developed,
by which reliable results have been obtained for ¢ up to 105 (Caracciolo et al.,
1995, Beard et al., 1998, 1999). These results illustrate how the CHN-HN predic-
tion fails due to cutoff effects for ¢ below 10° while the cutoff-corrected result by
Hasenfratz (1999) holds down to £ ~ 100.

Summary of theoretical predictions

In figure 4.12 the results of the different methods are summarized.

It is instructive to divide out the leading exponential temperature dependence,
on which all approaches agree. In the right panel the results have been divided
by the third order result by Hasenfratz and Niedermayer (1991). It is seen how
upon increasing temperature first the CHN, then the HN and finally the Hasen-
fratz (1999) predictions depart from the QMC data at T' ~ 0.4 x .J. But at that
temperature the HTE and PQSCHA take over.
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Figure 4.12. The theoretical and numerical predictions for the correlation length
&(T). In black lines the NLoM results (Chakravarty et al., 1989, dot-dashed),
(Hasenfratz and Niedermayer, 1991, dashed) and (Hasenfratz, 1999, solid). In red
the QC scaling (Chubukov et al., 1994, solid) and the PQSCHA (Verrucchi, 1999,
dashed). The HTE by Elstner et al. (1995b) is shown in blue, the green symbols
are QMC' data from (Kim and Troyer, 1998, squares) and (Beard et al., 1998,
circles) In the right panel, the predictions are plotted relative to the Hasenfratz
and Niedermayer (1991) result.

In summary, the panoply of methods that have been applied combine to a
consistent description of the time independent properties as exemplified by the
correlation length. The mapping of the 2DQHAFSL onto the NLoM is valid out-
side of the renormalised classical region, but only if the cutoff effects are properly
taken into account when determining the relations between the parameters of the
two models.

4.3.2 Experiments on cuprate 2DQHAFSLs

The instantaneous spin correlations in the cuprate materials LasCuQO4 (Yamada
et al., 1989, Keimer et al., 1992, Birgeneau et al., 1995, 1999) and SroCuCl;04
(Greven et al., 1994a,b, 1995) have been studied intensely using the energy inte-
grating neutron scattering method that will be described below. By progressive
improvements on the experiments, the correlation length £(7") in these materials
have now been measured in the temperature ranges 0.2 < T'/.J < 0.5 for La;CuO4
and 0.2 < T/J < 0.4 for SroCuCly,0s.

For both materials i £(T") in good accord with the prediction from the QNLoM
and with QMC calculations. But the upper temperaure limit of these data is
approximately where the different theoretical methods meet (c.f. figure 4.12). It
would therefore be desirable to extend the experimentally probed temperature
range beyond this limit. However, due to the high value of J ~ 1500 in these
materials, it has proved difficult to improve the measurements further. Instead,
the following sections present measurements on CFTD, where the much lower
value of J = 73 K allowed determination of £(T") up to T ~ .J.

4.3.3 Energy integrating correlation length measurements

The neutron scattering cross-section is proportional to the dynamic structure fac-
tor S(g,w), and therefore has to be integrated over energy w in order to reach S(q).
In principle, this could be done by measuring S(g,w) and then integrating the data
over energy. However, as the signal is weak compared to the intrinsic background,
this method is not feasible in practice. Instead, the low dimensionality is exploited
in a 2-axis configuration, where the integration is performed directly.
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Figure 4.13. Illustration of the 2D energy integrating configuration for E; =
10 meV when q is lying on the (0,1,1) line. All values of |ky| are accepted, but
only two are shown. They are ko corresponding to zero energy transfer and k¢
corresponding to hw = 5 meV. It is seen how all possible q correspond to the same
in-plane component gap .
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Figure 4.14. Direct measurement of the 2D rods in the S = 5/2 honeycomb an-
tiferromagnet MnPSs obtained at a time-of-flight spectrometer by Wildes et al.
(1998a) (see also Wildes et al. (1994, 1998b) and Rgnnow et al. (2000)). The
zero energy transfer locus of an energy integrating scan is shown with the dashed
line, illustrating the importance of choosing the incident energy so that the mosaic
tails from the Bragg peaks are avoided.

For low dimensional systems, the scattering will be independent of any momen-
tum transfer in the ‘missing’ directions. In the 2D system, only the momentum
transfer gop in the plane is important. By placing the planes perpendicular to
the outgoing neutron wave-vector, gap becomes independent of the length of ky
(c.f. figure 4.13). By counting all neutrons scattered into this direction, the signal
integrates over energy transfer corresponding to one particular gsp.

In reality, the signal is only approximately equal to the instantaneous structure
factor, but is rather given by:

d’o

E; k
dol / 107 @) S(gasw)do = S(gap) | (4.55)
d9d |,

oo kK
where the factor ks /k; = \/2m(E; — hw)/k; normalizes the incoming and outgoing
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Figure 4.15. The scattering vector q (dot-dashed) and prefactors ky/k; (solid) and
|f(q)|? (dashed) as a function of energy transfer, when the spectrometer is set to
gop = (m,pi) for respectively the measurements on CFTD (left) and on Las CuO;4

(right).

flux and f(q) is the form factor, which in this work is taken to be that of free Cu®*.

For the integration to work, the excitation spectrum must be confined to an
energy interval, in which the factor ',z—f| f(g)]* does not vary too much. In the
experiments on CFTD, an incident energy of E; = 10 meV~ %J was used. In
comparison, similar experiments on LasCuQO,4 and SrsCuCl;O4 used incident en-
ergies up to J and .J/3 respectively. In the following, it is addressed how good the
energy integration is for this choice of incident energy, and how corrections can
be made for an imperfect integration.

For a given 2D momentum transfer, e.g. gop = (m,7), the absolute length of ¢
becomes a function of the energy transfer as shown in figure 4.15. Also the factors
kg/k; and |f(q)|? are depicted. It is seen that in the interval —F; < w < Ej,
the longest ¢ vector is equal to k;, which for CFTD gives | f(k;)|*> = 0.79 and for
LasCuOy (with E; = 115 meV) |f(k;)|* = 0.19. Whereas f(q) is almost constant
for CFTD, the k¢/k; = /1 — Iw/E; factor does vary, and its influence on the
measurements should be taken into account.

An elastic filter to remove incoherent background

Despite the deuteration, the sample still provided a significant incoherent back-
ground, which became a problem as the peak in S(gq) broadened and weakened
with increasing temperature. To circumvent this problem, a special kind of filter
was constructed. By placing crystals of pyrolytic graphite (PG) in the outgoing
beam (between sample and detector) and tuning them to Bragg scatter neutrons
with Ey = Fj, an elastic filter was realized. The idea was that while the magnetic
signal is distributed over energy, the incoherent signal stays elastic, hence the fil-
ter will mainly discard the incoherent with only moderate effects on the magnetic
scattering.

In practice there are several technical aspects that need consideration. Firstly,
due to the finite resolution of the front end of the spectrometer, there will be a dis-
tribution of incident energies around the nominal E;. For the filter to successfully
suppress all elastically scattered neutron, it must have a relaxed Bragg-scattering
condition with at least the same energy width as the incoming beam. On the other
hand, it should not exceed this width as the magnetic signal should remain as lit-
tle affected as possible. Such a matching of the energy width can be achieved by
using several crystals each with a fairly small mosaicity. By slightly misaligning
the individual crystals, the total energy width can be controlled.

The second important point is that if the individual crystals are placed too
closely after each other, the neutrons scattered out of the beam by one crystal
can be scattered back into the beam by the previous crystal. This will reduce the
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reduction factor of N crystals with individual transmission ¢ from tV to ﬁ

This can be avoided by placing the crystals far enough apart that the rejected
neutrons can escape at the side of the filter as illustrated in figure 4.16.

}A % ﬂ Collimator o _

- Ey # E;

PSD

PG-filter Analyser-filter

Figure 4.16. Schematic drawing of the elastic filter with 3 1”x2” crystals and the
7 analyser blades rejecting the neutrons that have been elastically scattered at the
sample.

The filter was composed of 3 17 x2” crystals before the collimator at the entry
of the detector tank. These were aligned by hand as to minimize the count rate in
the background. The fine-tuning of the total transmission function was achieved
with the analyser block with its 7 individually turnable blades. This is a good
example of how a flexible instrument design facilitates specialized experiments.
The analyser block was oriented such that effectively 2 blades were encountered
along any neutron path to the detector.

Once calibrated to expel 10 meV neutrons, the transmission function T'(w) of
the filter was determined by scanning the incident energy as shown in figure 4.17.
The transmission function was best described by a sum of two Gaussians as defined
to the right of the figure.

1o

0.8 s 1 (wmwn)?

— | T(w):l—Zane 27 on

~ 0.6r
0.4 n | an Wn On
0.2t 11| 037 -0.46 meV 0.34 meV
' 2 1081 0.20meV  0.58 meV
{0/ ‘ ‘ ‘ ‘
-2 -1 0 1 2
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Figure 4.17. The measured transmittance T (w) through the elastic filter around
the filtering energy of 10 meV. The solid line is a fit to a double Gaussian shape
as defined to the right.

Corrections for non-perfect integration

. . . . E; k
The error contained in the actual integration of [ w1f(a) |25(q, w)T (w)dw com-
pared to the definition S(g) = S(q,w) can be estimated by assuming a functional
form for S(g,w). The behaviour of S(¢,w) at finite temperatures is discussed in
section 4.4. For the present purpose, the prediction from RG and scaling arguments

based on the QNLoM mapping is used.
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Figure 4.18. The dynamic structure factor S(q,w) at 36 K and at 70 K in the scal-
ing prediction (Tyc et al., 1989). The panels to the right illustrate the experimental
integration factor IZ—f|f(q)|2T(w). Black is zero and white is maximum.
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Figure 4.19. The line-shapes at 36 K and at 72 K obtained respectively by correct
integration (solid blue), actual integration without (dashed red) and with the elastic
filter (dot-dashed green). The £ and Sy obtained by Lorentzian fits are listed.

In figure 4.18 pseudocolour plots of S(q,w) are shown for T'= J/2 = 36 K and
T = J = 72 K. The integration factor is illustrated as colour bars on the right
side of the plots. At 36 K the spectral weight is confined to a few meV around
0, over which the integration factor does not vary much. This is no longer the
case at 72 K, where the spectral weight has been distributed over an energy range
similar to the integration range. On the other hand, the elastic filter has most
effect at low temperatures, which is also realized when considering the line-shapes
expected respectively without and with filter.

Three different line-shapes were calculated by numerical integration of the
line-shapes for respectively the true S(g), the integration range affected result
fEi 52 1#(@)|2S(q,w)dw and the result that would be obtained with an elastic

—oo k;
filter ffm ’;c—f|f(q)|25(q,w)T(w)dw. These line-shapes were fitted to Lorentzians,
giving values for £ and Sy as shown in figure 4.19. The difference between S(q)
and S;(q) is illustrated for 36 K and 72 K in figure 4.19.

Being able to calculate the ratio between the £ and Sp that will be extracted from
an experiment and the real values, makes it possible to correct for the imperfect
integration. The experimentally determined parameters should be divided by this
ratio, which is shown as a function of temperature in figure 4.20.

It is seen how below T ~ J/2, the integration range means little to the result,
while the elastic filter drastically lowers the measured values for both ¢ and Sy.
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Figure 4.20. Correction factors for the correlation length & and the amplitude Sy,
respectively without (dashed red) and with the elastic filter (dot-dashed green).

Above T ~ J/2, the elastic filter has less effect, but the integration range starts
to have influence. As long as the correction factors remain fairly small, they are
rather insensitive to the precise form of the assumed S(g,w), but beyond 100 K, the
correction factors become so large that the result becomes biased by the choice of
S(q,w). In order to perform measurements beyond this temperature, the incident
energy should be raised.

4.3.4 Experimental details

The energy integrating neutron scattering measurements were performed using
the RITA (re-invented triple axis) spectrometer at Risg. A schematic drawing of
the instrument is shown in figure 2.2 of chapter 2. The features of this instru-
ment makes it particularly suitable for studies of low-dimensional systems. The
premonochromating velocity selector suppresses higher order contamination in the
beam by a factor of 102 at 10 meV. This is important because it allows a free choice
of incident energy to optimize the resolution, (g, w) range or in this case the energy
integration without being restricted to the energies suitable for filters such as BeO,
Be or PG. The front-end is equipped with a vertically focusing monochromator
and focusing neutron guides, giving a high flux at the sample position. Often,
measurements on low-dimensional systems are limited by the intensity and not by
the resolution. The analyser consists of 7 individually turnable blades, allowing a
custom modeling of the resolution in (g, w). For this experiment, the analyser was
removed and the detector placed in the two-axis position.

The 17x 12 cm? position sensitive detector (PSD) can in combination with the 7-
blade analyser be used to image planes in (¢, w) space. This experiment employed a
simpler but very powerful use of the PSD. By inspecting the distribution of counts
over the detector, so-called spurion intensity due to for instance coincidental failure
of the shielding for particular arrangements of the spectrometer can be recognized.
An example of such spurion intensity is shown in figure 4.21. By masking out the
part of the detector that suffers from spurion intensity, the otherwise problematic
apparently g dependent noise can be removed. Often, the center of the detector
will hold the best signal to noise ratio, so by integrating the counts in a window of
the detector, the signal to noise ratio can be improved. At the same time, however,
the absolute number of counts decreases, and there will be an optimum detector-
size, where the background intensity and statistical scatter contribute equally to
the standard error when the data are fitted during analysis. The important point
about the PSD is that all this masking and windowing can be performed during
the process of analysis, after the experiment has taken place.
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Figure 4.21. Visualization of the counts in the PSD during a scan through the
(0,1,1) rod. Upper left: the sum over all scan point for each pizel in the detector.
The three windows that have been selected contain respectively signal (red), uni-
form background (green) and a spurion (black). Upper right: The data summed
over the horizontal pizels. It is seen how the signal peaks at the scan center, while
the spurion increases in intensity with decreasing scattering angle (K ) all the way.
Lower left: The data summed over the vertical direction. In the horizontal direc-
tion, the signal is much more concentrated, which is because the spectrometer only
employs horizontal collimation — in fact the spectrometer is vertically focusing.
Lower right: the counts in respectively the signal window and the spurion window.
It is seen how masking of the spurion reduces the background by more than 50%.

Convolution with the experimental resolution

As explained above, scans through the (0,1,1) rod are expected to measure S(q)
convoluted by the experimental resolution. Since the correlation length £(T) de-
creases exponentially, S(g) will go from being narrow to being broad. To accom-
modate this, three different resolutions were employed. The instrument resolution
can most easily be controlled by insertion of collimators. At the lowest temper-
atures, a collimation of 15’ was used to give sufficient resolution to measure the
narrow width of S(g). At higher temperatures, this gave unnecessarily good reso-
lution with a concomitant loss in intensity. Therefore also 30’ and 60’ collimations
were used. Finally, for the highest temperatures also the elastic filter was used in
combination with 60’ collimation.

In each configuration, the resolution was determined experimentally, by per-
forming grid scans of the (0,1,0) and (0,1,1) Bragg peaks as shown in figure 4.22.
The principal axes and orientation of the resolution ellipse were extracted by fit-
ting a Gaussian function to the grid-data. The vertical resolution was determined
by tilting the sample. The resolution is given by Aqg = QA\, where ) is the angle
of Q perpendicular to the scattering plane.

Having determined the resolution, the experimental data were analysed by fit-
ting it to the theoretical scattering cross-section (a Lorentzian in this case) con-
voluted with the resolution function. The convolution was performed using an
adaptive algorithm to ensure convergence.
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Figure 4.22. The instrument resolution was determined by grid scans of the (0,1,0)
and (0,1,1) Bragg peaks. Both the measured intensity and the remainder after fits
to Gaussian functions are shown.

Sample and cryostat

The 12 x 12 x 4 mm? single crystal of CFTD was grown by Andrew Harrison and
Douglas I. D. Youngson by slow dedeuteration of CusCO3(0D)2-D50 in a solution
of ds-formic acid in D5O. It was mounted on a cadmium coated aluminum pin
and lowered in a helium flow cryostat (Orange type) with a base temperature of
1.6 K. The reciprocal axes b* and c* were in the scattering plane, so that scans
could be performed through the (0,1,1) rod with ¢*||k;.

Data

Scans were recorded at a series of temperatures ranging from Tx = 16.5 K to
100 K using the four different instrument configurations mentioned above. In figure
4.23, typical data for each of the four configurations are shown. The right panel
illustrates how the use of the elastic filter changed the signal to noise ratio from
1/10 to 2/1. This allowed data to be taken up to 90 K as seen in figure 4.24. The
signal still allows a quite accurate fit to the peak, but above this temperature,
the integration range required progressively larger correction factors. Because the
correction factors rely on an assumption about S(g,w), analysis of data beyond
this temperature would not be unbiased.

Analysis

The experimental data were well described by Lorentzians and were insufficient
to distinguish between other possible lineshapes. The data were therefore fitted
to a Lorentzian line shape convoluted by the full experimental resolution. At
each point of the scan, the resolution was found by interpolating between the
two measured resolution ellipses. Since S(g) does not depend on the momentum
transfer perpendicular to the planes, the resolution ellipse was projected down
along this direction. In the two remaining directions, the convolution was carried
out numerically by an adaptive algorithm to ensure convergence. The results of
these fits can be seen as the solid lines in figure 4.23 and 4.24.

4.3.5 Results for £(T) and Sy(7T)

The experimental data for £(T') as summarized in figure 4.25 covers the tempera-
ture range 0.2x J < T < 1.25 x J and two orders of magnitude in £. It is seen that
there is good agreement between the data for each of the four configurations in the
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Figure 4.23. Typical scans through the (0,1,1) rod. (a) Data taken at 18 K with
respectively 15° and 80’ collimation. (b) Data taken at 40 K with 60° collimation
with and without the elastic filter. It is seen how the different configurations of the
spectrometer gave consistent values for the correlation length &.
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Figure 4.24. Scan taken at 90 K with the elastic filter.

region of overlap. At the lowest temperatures, the coarse resolution configurations
underestimate £. At these temperatures the peak width is about a tenth of the
coarse resolution, which makes the determination vulnerable to systematic error
due to imperfect determination of the resolution. Thus for low temperatures, most
emphasis should be put on the data taken with 30’ and 15’ collimation.

In the lower panel where the data are plotted relative to the HN prediction it is
seen that Cexpt/Eun changes from 1 to about 0.8 at T = J/2 and increases above
1 for higher temperatures. Although the error bars and scatter of the data are
unsatisfactorily large in this presentation, the behaviour is seen to be consistent
with Hasenfratz (1999) and the PQSCHA results. Thus for the first time has
the behaviour in the region where the different theoretical approaches meet been
tested experimentally.
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Figure 4.25. The measured correlation length £(T) for each of the four configura-
tions. The data are compared to the NLoM predictions (Hasenfratz and Nieder-
mayer, 1991, dashed black) and (Hasenfratz, 1999, solid black) and the PQSCHA

result (dot-dashed red).

Although most emphasis has been on the correlation length, the experiment in
principle also gives a determination of the amplitude Sy of the structure factor. In
this case, however, the lack of an absolute normalization of the data complicates
a decisive interpretation of the data. In figure 4.26 the data for the different
configurations have been normalized to each other in the regions of overlap. It is
seen that it is possible in this manner to collapse the data on one curve which
covers more than two orders of magnitude. At temperatures above 0.8 x .J the
amplitude becomes more or less constant, in apparent agreement with the NLoM
result. However, as seen from the correlation length it is questionable whether the
NLoM result should be given any significance above J/2.

The NLoM prediction for Sp has actually been questioned even for T' < .J/2
on the basis of data from SroCuCl,05, where a constant value for Sy/&2 was re-
ported (Greven et al., 1995). This question is addressed in the lower panel, where
So/€? is shown as a function of temperature. Though it is difficult to draw conclu-
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Figure 4.26. The measured amplitude So(T') for each of the configurations have
been scaled to agree within the regions of overlap. Similarly has the predictions
from the NLo M (solid black) and the QMC (Kim and Troyer, 1998, dashed red).

sions about the functional form it is clear that there is a significant temperature
dependence.

4.3.6 Consolidation of the time independent properties

Recently, these results have been complemented by a proton NMR study on
Cu(HCO3)2-4D,0 (Carretta et al., 2000). By analyzing the relaxation rate through
a mode-coupling approach, the correlation length has been extracted in a temper-
ature interval similar to the present study. Though the determination of {(T) is
less direct than for the neutron scattering data, the analysis reaches a consistent
conclusion.

In summary, the introduction of CFTD as a physical realization of the 2DQHAFSL
has added to the cuprate based investigations by allowing measurements over the
temperature region where there was a gap between the different theoretical ap-
proaches (Rgnnow et al., 1999). Subsequently this gap has been closed by extend-
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ing the QMC calculations (Beard et al., 1999) and by performing a more correct
treatment of the cutoff effects when mapping the 2DQHAFSL onto the QNLoM.
Tt is therefore fair to say that the time independent behaviour of the 2DQHAFSL
has been understood on a detailed quantitative level.
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4.4 Fluctuations at finite temperature

This section describes a time-of-flight neutron scattering experiment on CFTD.
The purpose was to address the behaviour of the excitation spectrum at finite tem-
peratures, where the correlation length decreases exponentially with temperature.
The experiment showed that even at T ~ J/2, where £ ~ 3a, the excitation spec-
trum contains well defined spin-waves albeit damped and softened considerably.
The temperature dependence of both the damping and the softening was found to
be consistent with theoretical predictions, but additional efforts are needed both
theoretically and experimentally, before the dynamic behaviour of the 2DQHAFSL
can be consolidated.

Having understood the instantaneous correlations in the 2DQHAFSL, we now
turn to the dynamic behaviour. Again, most of the physics is compiled in a pair-
correlation function

S(g,w) = / dt et 3 e (=R (5, (0) . Sp(1)) (4.56)
RR’
known as the dynamic structure factor.

Most descriptions of excitation spectra in many-body physics build on the notion
of quasi-particles that are elementary excitations from a certain ground state. At
T = 0, the elementary excitations in the antiferromagnetically ordered ground
state of the 2DQHAFSL are spin-waves. At finite temperature, the ground state
is no longer ordered but the existence of large correlated regions enables spin-wave
like excitations to persist.

Very few experimental results exist on the finite temperature excitation spec-
trum of the 2DQHAFSL. In a triple-axis neutron scattering study of CFTD, Clarke
(1991) and Clarke et al. (1999) measured scans along both energy and ¢ at tem-
peratures up to 7' ~ 0.4 x J. Above Ty they observed spin-wave peaks that were
broadened and lowered in energy as the temperature was increased. Using time-
of-flight (TOF) neutron scattering, the full S(q,w) along (1,1) and (1,0) has been
measured for temperatures up to T' ~ J/2. The excitation spectrum is still com-
posed of spin-waves, albeit damped and softened due to the loss of long range
order at finite T'.

The following lists the available theoretical predictions for the finite tempera-
ture dynamics, then describes the TOF experiment and its analysis and discusses
the results. According to my knowledge, literature contains no reports of direct
measurements of the spin-wave damping in the 2DQHAFSL. T believe that the
present measurements on CFTD will stimulate a convergence of the theoretical
predictions and aid to a better understanding of excitations in short range ordered
systems.

4.4.1 Theories of excitations at finite temperatures

At T = 0 the excitation spectrum contains well defined spin-waves. Due to the
negative curvature of the dispersion relation, energy and momentum conservation
prevents a single-magnon from spontaneously decaying into multi-magnon exci-
tations. At finite 7" there are two mechanisms for decay of a magnon excitation;
i) it can be scattered against other thermally excited magnons and ii) due to the
finite correlation length £(T') a propagating spin-wave will eventually be scattered
against the ‘boundary’ of the region where its polarization matches that of the
order parameter. The finite life-time, 7, of the spin-wave excitations results in a
line-width, I' = 1/7, of the excitation spectrum.

A number of articles deal with the finite temperature excitation spectrum us-
ing a variety of different approaches. With the first experimental results at hand
it is time to reach a coherent picture of the problem. In the following, a short
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review is given of the reported results. No attempt is made to asses the validity
of the approximations used in the different approaches. Instead, the results are
compared to the experimental data in an attempt to reach a conclusion or at least
guide further theoretical efforts towards consensus. We begin, though, by some
considerations over what functional form is adequate to describe the excitation
spectrum in the presence of finite life-times.

Lifetimes and line-shapes

The excitation spectrum is contained in the dynamic structure factor S(gq,w),
which is the Fourier transform in space and time of the spin-spin correlation
function (So(0)Sg(t)). An excitation mode with a characteristic frequency w, and
a finite life-time 7,, will give rise to a peak in S(q,w) at approximately w, and
with width approximately I'y = 1/7,. If I'; < w,, this picture holds precisely, but
as the damping factor I'; becomes comparable to the frequency, the excitation
spectrum develops a non-trivial line-shape.

The line-shape problem has been discussed by Fak and Dorner (1992, 1997)
in the case of phonons in solids and liquids. Much of their discussion can be
generalized to magnetic excitations, as it is based on the linear response theory.
The dynamic structure factor is related to the imaginary parts of the generalized
susceptibility and the retarded Green’s function as:

S(0,0) = 2 X (0,) = = T 2,6 4,) (4.57)
where Z, is a normalization factor.
For well defined excitations with infinite life-time, the retarded Green’s function
is given by
Go(q,w) = ! — — L —
Ww—wg+1€ W+ wgt1E

(4.58)

where ¢ is a positive infinitesimal number and w, the frequency of the excitation.
The imaginary part is

Im{Go(q,w)} = —7[d(w — wq) — H(w + wy)]- (4.59)

The full Green’s function (including damping terms) can be derived through

Dyson’s equation
1 2w

Glq,w) = = 2 , . (4.60

(@) Got(gyw) — Ty(w)  w? — w2 — 2w A (w) + 2iw, Ty (w) (4.60)

where the self-energy ¥,(w) = A,(w) — il'y(w) has to be calculated e.g. through

a diagramatic expansion. The real part describes the energy shift relative to the

zeroth order dispersion relation w,, while the imaginary part I';(w) is related to

the inverse life-time.

It is desirable to parameterize the general function in a way that experimental
data can be fitted to a small number of parameters. Often it will be the case,
that the unperturbed dispersion relation w, can be derived from theory with just
a few parameters entering the functional form. On the other hand, the functions
Ay(w) and I'j(w) will only in special cases be calculable. Instead, it is practical to
keep only the first terms in a power expansion. The real part of the self energy is
an even function of energy and can be approximated by A,(w) ~ A,, while the
imaginary part is an odd function that will be approximated by I'y(w) ~ T'yw/wq.
The approximation is good for small w, but not necessarily for larger energies.

The resulting Green’s function
2w,

G =
(¢:w) w? — Q2 + 2iuT,

(4.61)
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with QZ = w(? +2wyA,, corresponds to the result for a damped harmonic oscillator.
It is important to realize that the perturbations of or interactions among the
excitations in general lead to both a damping I'; and a shift of the excitation
energy from w, to Q, ~w, + A,.

The dynamic structure factor can be written in several mathematically equiva-
lent forms

1 1 40w, T

S(qw) = = —=Z, 1_a (4.62)
Tl —e/T 71 (w2 — 02)2 4 40,°T?2
1 1 r r
= — z" g — 1 4.63
ml—ev/T [(w—wq)2+I‘3 (w+wq)2+I‘3] , (463)

where Z = Z,w,/Qq, wy = Q2 = T2 and Z)) = Zyw, /w,.

For I'y; > Q, it is essentially a single Lorentzian at w = 0. For I'y < §, the
scattering is very close to the sum of two Lorentzians located at w & w,, which is
an often used line-shape

1 1 r, Iy,
S(q,w) = —— ew/Tqu [(w T o) A T + CETAEE 1“3] .. (4.64)
However, there exist few (if any) examples where the double-Lorentzian with a
plus-sign comes out as a theoretical line-shape. It has the unphysical properties
that the zeroth and first moments diverge at zero temperature. The first moment
also diverges in the high temperature limit. The inadequacy of the sum of two
Lorentzians is discussed in the context of the 2DHAFSL by Wysin and Bishop
(1990).

Ideally, the neutron scattering cross-section should off course be compared to
the true S(¢,w) when calculable, but in terms of reducing the data to a set of
parameters which can be compared to theory, the above considerations are useful
and add only the two parameters A, and I', to the parameters involved in w,.

Tyé¢, Halperin and Chakravarty (89)

Using a combination of hydrodynamics, scaling and RG analysis, Ty¢ et al. (1989)
(CHN-Ty¢) reached a scaling relation

S(q,w) wy ' S(q)® (g€, w /wo) (4.65)

ve | T

where S(q) is the equal time correlation function, £(T) is the correlation length at
temperature T and v, is the zero temperature spin-wave velocity. As a dynamic
scaling function they use the simple sum of two Lorentzians

Yq Yq
P = 4.67
(@v) (v —vg)? + 72 * (v+vy)2+92 " (4.67)

with the dimensionless spin-wave frequency v, and damping factor ~, given by:

vy = \/7(]\/(54-—1111-}—(] (4.68)

Y0\/1+ pk>&
_ 4.69
Va [1 %G)ln(l + k2§2)]3/2 ) ( )

where classical rotor simulations were fitted to give = 1.7, v = 0.8, u = 2.0 and
© =0.150r § = 1.05, 70 = 0.86, 4 = 1.4 and © = 0.08.
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The ¢ — 0 limit of the spin-wave frequency wy(T) = wqu glves the finite
temperature spin-wave velocity vs(T) = w,¢ \/ = v,(0 ,/ Qﬂp . The factor

of \/g comes from x1 (T) ~ 2x1(0 ), due to the absence of broken symmetry at
finite T.

Tyé¢ and Halperin (90)

Ty¢ and Halperin added a microscopic calculation of spin wave collisions within
the Dyson-Maleev formalism (Ty¢ and Halperin, 1990). They give 4 different k
regions: A, B, C and D:

A: T,= Jze2(§?2 <1n(27;;92) + CA> (4.70)
B: T, = JZZ(Z?Q <ln(g) + CB> (4.71)
c: T,= % (e(g)r®)"? (4.72)
D: Ly =73 \/%Z iS)\/WTS , (4.73)

where 7 = 2T'/J2S, z = 4 is the number of neighbors and e(q) = /1 — 72 is the
normalized dispersion. The regions are separated by:

Gmin K @4 K T°/278? K qp < T <L ge < TP < gp < 1. (4.74)

Following the spirit of CHN mapping, they rewrite the result in terms of spin-
wave velocity ¢ and spin wave stiffness p;.

A: T, = ”q 9 (T /2mps)?(21n(27ps /T) + In(2/7) + wa) (4.75)

B: T, = ”q T4 (7 /270p5)*(In(T / Ficq) + up) (4.76)

C: T, = 0'6262" (Teq/B)2(T 27 ps)? (4.77)
1.80 , T

D: Ly = == (T/2np,) el (4.78)

where u4 and up are constants of order unity and f(§) ~ % is a function varying
slowly on the direction of q. The constants us and up are fixed by fits to the
classical rotor simulations. The requirements on ¢ are as follows:

1/31 1
8rhe hic ) e Sy

(4.79)

T\?> T T
min K g4 <K p_ — KL K — <K qc K

2ps

To make comparisons to classical rotor simulations, they also derive the result
for the classical limit:

Ag:  T,= %C(I(T/27rps)2(2 In(27ps/T) + In(2/7) + w4) (4.80)
By : T, = %Cq(T/Qﬂ'ps)Q(ln(l/qa) +1n(v32¢™?) + up) | (4.81)
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where the two regions are separated by g4 < e™/*(T/p,)?/(V/27) < qp. They get
fair agreement with classical rotor simulations using u4 = 0 and up, = —0.9 or
uy =—1and up, = —1.

As shown in Fig. 2 of Ty¢ and Halperin (1990), both the RG scaling result
and the A-limit of the analytical calculations obey the scaling behaviour I'y /w, =
F(g&(T)). For higher temperatures, the classical rotor simulation data also follow
this behaviour, although they do not agree with either of the theoretical curves.

Wysin and Bishop (90)

Wysin and Bishop (1990) have performed classical MC/molecular dynamics on
the 2DHAFSL directly (not on the classical rotor model. They find quite good
agreement with the scaling predictions by CHN-Ty¢ but with parameters § = 2.5,
v = 1.7, p = 1.7 and © = 0.7. They state, though, that there is considerable
freedom in choosing the parameters. The investigation covers temperatures up
to T/JS? = 0.85. This article also gives a nice discussion of different possible
line-shapes.

The spin-wave frequency wy(T') is in this work adopted from the scaling analysis
(Ty¢ et al., 1989).

Auerbach and Arovas (88)

In a Schwinger boson mean-field appoach Auerbach and Arovas (1988) reached
scaling functions for S(q) and S(¢,w). Later Kopietz (1990) performed a Brillouin-
zone integration occurring in the result analytically, thereby allowing a comparison
to other theories as a function of ¢ and 7'. While the scaling function for S(g) was
reasonably close to the CHN-Ty¢ result, the damping was found to be I'y/wg
1/q¢. While in disagreement with CHN-Ty¢, this result was also obtained by
Takahashi (1989) for the quantum ferromagnet.

Makivié and Jarrell (92)

Makivié and Jarrell (1992) have performed quantum Monte Carlo calculations
of the imaginary-time spin correlation function S(q,7) = 5~ ffooo e YT S (q,w)dw.
For the discrete and noisy QMC data-set they invert the Laplace transform by the
maximum entropy method. They deduce the spin-wave frequency w, and damping
Yq = (w?) — w; from the first and second moments of the relaxation function.
They find that for small g, S(g,w) does follow the scaling proposed by CHN-Ty¢.
However, the scaling frequency wo(T') was found to exhibit a different temperature
dependence than wq o /T /¢ proposed by CHN-Ty¢. For 0.35x J < T < 0.4 x J,
they find wo& ~ 1.8, while the product decreases to 1.52 at T' = 0.5 x J. This result
disagrees with CHN-Ty¢ and is closer to the results from Schwinger-boson and
modified spin wave theories by Auerbach and Arovas (1988) and Takahashi (1989)
%, the parameter By
had the value in the original RG scaling analysis, but was later shown to be
reduced by higher-loop corrections (0.23 (Makivié¢ and Jarrell, 1992) or even 0.1
(Ty¢ et al., 1989)). Similarly, Makivi¢ and Jarrell find it necessary to introduce
the parameter A = 0.1 in w,/wo(T) ~ \/3/2q£(6 + 2 Aln(1 + ¢%¢2))/2. The other
parameters were found to be § = 0.25, 7o = 1, ¢ = 0.85 and 8 = 0.115. For wy,
the scaling is valid for ¢ < 5; at higher ¢¢, wy/wo decreases with temperature.
The same behaviour is seen for 7,/v0, but here the scaling breaks down already
at g€ ~ 3.

In addition to the spin-wave velocity, which is the initial slope of w,, figures 2
and 4 of Makivi¢ and Jarrell (1992) also give the spin-wave frequency out towards
the zone boundary, which is reproduced in figure 4.27. The zone boundary energy

respectively. In the scaling function for S(q)
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Figure 4.27. The spin-wave frequency for four different temperatures digitized from
reference (Makivié and Jarrell, 1992). The zone-boundary energies indicated with
solid lines correspond to Z, =1.17, 1.15, 1.12 and 1.06 for increasing temperatures.

corresponds to 45JZ.(T), where Z, =1.17, 1.15, 1.12 and 1.06 respectively for
T/J =0.35, 0.38, 0.40 and 0.45.

Unfortunately, the temperature range 0.35 < T//J < 0.5 covered is rather lim-
ited and it is therefore difficult to conclude to what extend the scaling functions
would be valid over a larger range. With the improvement in computational ca-
pabilities, it would be very interesting to see the work extended to lower (and
higher) temperatures.

Wang, Li and Gong (97)

have developed a self-consistent correlation theory of the relaxation function (Wang
et al., 1997). With this, they can calculate most physical observables including the
spin wave dispersion and the damping (defined from moments of the relaxation
function) for 0.4 < T//J < 1.8. They show that a gap develops at (7, 7) and that
the zone-boundary energy softens. At the zone center, the damping increases with
temperature from 0 to v, ~ J at T = 2J. At T = 0.4 x J their result is in
very close agreement with QMC (cf. figure 7 of Wang et al. (1997) and figure 4
of Makivi¢ and Jarrell (1992)). Figure 4.28, which is adapted from Wang et al.
(1997), shows the results at relatively high temperatures. The zone boundary en-
ergies correspond to Z.(T) =1.05, 0.98, 0.88, 0.79, 0.74 and 0.70 for T'/.J =0.4,
0.6, 0.8, 1.0, 1.2 and 1.8 respectively.

Nagao and Igarashi (98)

worked with a variant of the mode-mode coupling theory (Nagao and Igarashi,
1998). They do not show any graphs of the spin-wave damping, but it is contained
in their results — just needs to be digged out. As seen in their figure 5, they
predict a much more rapid softening than the QMC result. At T = 0.4 x J they
estimate Z. ~ 0.91.

Winterfeldt and Ihle (99)

have developed a Green’s-function theory for the short-range ordered system (Win-
terfeldt and Thle, 1997, 1999). They fix some parameters (a; and as) of the theory
by trying to match the ground state energy per spin u, staggered magnetization
m and uniform static susceptibility y. This is not simultaneously possible, and
instead, they work with a couple of different parameter choices. For a; = as they
reproduce the 7" = 0 SPW dispersion from linear SPW theory. However, once they
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Figure 4.28. Spin-wave frequency and damping for 0.4 < T/J < 1.8. Figure is
adapted from Wang et al. (1997).

allow a; # ao the dispersion develops a minimum at ¢ = (0, 7), much resembling
the linear SPW result in the presence of NNN interactions.

The damping factor v, is found to be in fair agreement with the QMC data,
albeit slightly underestimated. This is interpreted as a result of considering only 2-
magnon processes. The spin-wave frequency w, is calculable within the approach,
but no values are reported.

Chubukov, Sachdev and Ye (94)

There is also a prediction for the quantum critical regime. CSY reports a result
for the generalized susceptibility x(g¢,w), which through the fluctuation dissipation
theorem gives S(q,w):

2 "
S(g,w) = 1 e—Bu X (¢;w) - (4.82)

Since the temperature factor is brought in explicitly, there is no problem with
the principle of detailed balance. The form for x(gq,w), which is similar to the
damped harmonic oscillator is given by:

_ q
3 ps ps 63 —(w+ i’Yq,w)Q

€q = hegV/ 1+ ¢?82 /€ (4.84)

2 h?cl pt 1

x(q,w)

& =ni/xt (1.85)
pi= 306+ 3 I+ E€) (486)
X = /G + (B (487
Yoo = 5ty (2mpLB) 7 (2In(2mplf) +T) . (4.88)

where 7, and the parameters § and I' are of order unity. However when plotted
out this form also has a problem in that when the damping 7,,. becomes finite,
S(q,w) develops a dip at ¢ = 0. Strictly speaking the CSY form is only valid for
¢ < 1 which is not the case when we measure around ¢ = 0.
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Summary of the different approaches

All of the mentioned approaches agree that well defined spin-wave like excitations
persist at finite temperatures even though long range order is lost. They also share
the result that the dispersion softens and the spectrum is progressively broadened
due to damping. The scaling form by CHN-Ty¢ was found to describe well the
results from several numerical studies. But, with quite different values for the 5
parameters and with different scaling of wo(T)&(T). Probably, this merely reflects
that 5 parameters plus wqg are sufficient to describe the behaviour.

The recent works (Wang et al., 1997, Nagao and Igarashi, 1998, Winterfeldt and
Thle, 1997, 1999) appear very promising, but all involve self-consistent equations
that are solved numerically, which complicates their evaluation. In this thesis, only
the results that could be directly read of the references are included.

4.4.2 Time-of-flight excitation spectrum measurements

When the excitation spectrum is broadened to occupy a significant part of (g, w)
space, the time-of-flight (TOF) neutron scattering technique acquires its full ade-
quacy. The inherited weakness due to the restriction of probing along paraboloids
in g and w is resolved as more of the probed space becomes relevant. This section
describes how TOF neutron scattering was used to measure the dynamic structure
factor in CFTD for temperatures up to 7' ~ J/2.

2D configuration

Figure 4.29. Lllustration of how the TOF-paraboloid intersects respectively the dis-
persion cone of the ferromagnetic spin-wave excitations in the colossal magneto-
resistance material Lag 7 Pby.3MnQOs (Perring et al., 1996) (left) and the spin-wave
dispersion of a 2D Heisenberg antiferromagnet with the planes perpendicular to k;.

(right)

Due to the energy and momentum relation, a TOF experiment probes a paraboloid
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in (q,w) space defined by

w= %(kf —k}) = %(ki —ky)- (ki +ky) = %(m ki—q%) . (4.89)
Scattering will be detected, where this paraboloid extroverts the dispersion man-
ifold wq of the sample.

Figure 4.29a illustrates how the dispersion cone of an acoustic excitation is
intersected, forming a ring of intensity in the data-set. To measure the dispersion
relation along some direction in reciprocal space, the incident energy is varied to
place the intersections at different energies. In a 2D system, the lack of dispersion
perpendicular to the planes can be exploited to measure the entire dispersion along
some direction in one run. By placing the planes perpendicular to k;, the data
can be projected down onto the gop L k; plane as illustrated in figure 4.29b. By
placing the direction of interest in the scattering plane spanned by the detector-
bank, the entire dispersion was recorded along this direction.

4.4.3 Experimental details

The measurements were performed on the TOF spectrometer HET described in
chapter 2. The weak scattering from a 2D S = 1/2 system required as much flux as
possible. Therefore the most relaxed resolution (3S corresponding to the ‘sloppy’
chopper rotating at 3 times the pulse frequency) was chosen. This gave a flux of
1.5 x 10* neutrons cm~2s~!. The resolution was 1.1 meV FWHM at zero energy
transfer, decreasing to 0.4 meV at 25 meV transfer.

Figure 4.30. The sample mount used for the HET experiment. The neutrons travel
through the back-plate of 1 mm aluminum, which is gold-plated to avoid chemical
interaction with the sample.

A CFTD sample of 3.71 g was mounted as shown in figure 4.30 with c*||k;
and b" in the horizontal plane. This placed a* 11° from vertical and the 2D
planes perpendicular to k;. Neglecting the small difference (0.07%) between a and
b, the horizontal and vertical banks all cover equivalent directions gop||(£1, £1)
in the magnetic reciprocal space. Correspondingly, the four diagonal banks give
the scattering along (1,0) type directions. This allows us to add the banks, thus
obtaining a factor of 4 in counting rates. The added data-set are shown in figure
4.31.

The data contain several different features. The spin-wave dispersion is clearly
visible along both directions. Also visible is a band of scattering around 20 meV
as well as ‘blobs’ around 7 meV that are confined at certain ¢ positions. Finally,
a large elastic signal mainly due to incoherent scattering from the sample is seen.
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Figure .31 continued from previous page.
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Figure 4.31. The measured scattering along (1,1) (left) and (1,0) (right) obtained
by adding four equivalent detector-banks in each case.

The band around 20 meV is believed to be related to the motion of the DO
molecules, which order at 236 K~20.3 meV. These local modes should have little
g-dependence. The apparent additional scattering at w ~ 7 meV around ¢ =
(m,m) and ¢ = (2m,0) is interpreted as acoustic phonons emanating from the
crystallographic (1,0,1) and (1,1,1) Bragg-reflections. This becomes clear when
looking at the 72 K and 150 K data, where the phonon scattering is dominant.
There, it is seen how the 20 meV band and 7 meV ‘blob’ persist and grow in
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intensity with the bose-factor.

4.4.4 Analysis

The analysis proceeds as follows:

1. From cuts along ¢ and along energy in the 8 K data, the dispersion-relation
and hence the coupling parameter are extracted.

2. Through spin-wave theory, the magnetic contribution was simulated and sub-
tracted from the 8 K data to get a background data set, which was then
subtracted from the remaining data-set.

3. Cuts along energy of the background corrected data-set were fitted to a dis-
persion broadened with a damped harmonic oscillator line-form, to extract
the spin-wave damping and softening.

Cuts and fits

The output from detector-corrections and vanadium normalization is the resolu-
tion convoluted scattering cross-section shown in figure 4.31 in units of mbarns sr—!
spin~!, where 1 barn= 10"2* ¢m? and sr is steradians (the full sphere is 47 sr).

If the full theoretical cross-section including magnetic and nuclear scattering
was known or at least expressible in terms of a number of parameters, it could be
convoluted by the instrument resolution and fitted to the experimental data. In
practice this is almost impossible and seldom practical. Instead, it is very useful
to select limited sub-sets of the data (called cuts) and fit these individually. By
considering small enough sub-sets, the approximation of a constant background
is often valid. And the sets of fit parameters (one set for each cut) can then be
considered and interpreted to understand the physics of the system.

For the HET data, cuts are made using the MATLAB based program MSLICE
(Coldea, 1999b). The data are in form of a 2D array spanned by the number
of detectors and the number of energy bins for each detector, along with the
information about the solid angle element AQ and energy interval AE covered
by each data-bin in the array. In this thesis, the data-sets are shown in graphs,
where the x-axis has been converted from detector-number to the ¢op value they
represent.

A cut defines a set of bins of equal width and length as illustrated in figure
4.32. The data-bins that lie within the cut-bins are included, keeping not only the
intensity but also the information of the total solid angle element contributed to
each cut-bin. In other words, a cut is merely a sub-set of the data-bins, selected
and grouped according to their position in (g, w).

Fitting the data requires a parameterized model for the scattering cross-section,
which can be convoluted by the experimental resolution for each data-bin. The
parameters are then determined by a least-squares procedure. The resolution con-
volution is accomplished by the program TOBYFIT (Perring, 1999) which calls
the Multi-frills (Osborn and Perring, 1999) package for fitting. The scattering
cross-section used to fit the CFTD data was that obtained from spin-wave theory:

o

— k_f 2 ]‘ ]- - ’Yq
dQdE; ~ AT O 17 fyqf(w,wq) ; (4.90)

where w, = 457, /1— 72. The line shape f(w,w,) was chosen to be a delta-

function é(w — wy) at 8 K and that of a damped harmonic oscillator

4 Tywew
f(wawq):_ 1

491
7 (w? — w2)? + 4lM%w? (4.91)
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Figure 4.32. Cuts in the 8 K data along q of width 9 meV to 10 meV. The data-
bins that fall within each cut-bin are summed to make one point on the graph. The
solid line is a fit to linear spin-wave theory convoluted by the full experimental
resolution.

for T < Tn. The variable parameters were the effective coupling parameter J
[meV], the spin-wave damping I', [meV] and the overall amplitude 4 [mbarns sr="
spin~']. The solid lines in figure 4.32 show the result of such fits.

The spin-wave dispersion at 8 K

The effective coupling parameter .J should for each cut be interpreted as the value
that through linear spin-wave theory gives the right energy w, = 45 J \/1—=12.
If due to anisotropy, further neighbor interactions or quantum corrections the
dispersion from linear spin-wave theory is not correct, then the value of J will
differ for different cuts.

To establish the dispersion relation at 8 K, the J values were for each cut
converted to a point on the dispersion curve, which was shown in section 4.2.2,
figure 4.7. For a cut along energy at a constant ¢ £ dg like in figure 4.32b, a

point w, = 45j1 /1 —~2 is produced on the dispersion curve (blue points in figure

4.7). The standard error is directly obtained as ow, = (.J)4S./T — 7,. For a cut
along ¢ at a constant energy E+0F the corresponding ¢ is found by inverting £ =

4,<3j1 /1 — 73. Rather than assigning an error in g, the points from ¢ cuts (red points

in figure 4.7) are assigned a standard error in energy. Though technically equivalent
this facilitates fitting the dispersion data to a more general expression for the
dispersion relation. The interpretation of figure 4.7 is described in section 4.2.2.
The main results are that the dispersion along (1,1) is given by renormalized linear

spin-wave theory 4SZ..J, /1 —~2 with Z. = 1.18 and J = 6.31 £ 0.02 meV, while

the zone boundary energy around (7, 0) is suppressed 7% by quantum fluctuations.

Background subtraction

The overall amplitude for cuts along (1,1) varied only within the standard error
from each fit, giving an average value of 5742 mbarns sr~! spin~!. Using the fitted
values for A and J = Z, x 6.31 meV, the spin-wave contribution to the scattering
cross-section from equation 4.90 was convoluted with the instrument resolution for
each data-bin, giving the result in figure 4.33a. This simulated magnetic scattering
was subtracted from the 8 K data, leaving a background-set shown in figure 4.33b.

The remainder is constituted by the intrinsic background, the elastic scattering
and the phonon contribution. The intrinsic background of the instrument is due to
detection of fast neutrons that have made it through the shielding, detector-noise
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Figure 4.33. The calculated magnetic contribution (left) and the background data-
set (right) at 8 K.

etc. At low temperatures, this is the dominating signal at low energies, since there
are no excitations that can loose energy to the neutron. The large elastic signal
is mainly due to incoherent scattering from the sample, which is not perfectly
deuterated and therefore contains a small amount of hydrogen.

Scaled to the appropriate temperature factor, this background data-set was
subtracted from the data taken at higher temperatures, thus leaving effectively
only the magnetic scattering. The background corrected data are shown in figure
4.34.

It is seen how the background correction successfully removes the 20 meV
phonon band. This gives confidence that also the 7 meV ‘blob’ is treated cor-
rectly. (Since the 7 meV ‘blob’ is superimposed on the magnetic scattering, it is
difficult to verify this directly.) The corrected data show that the spin-wave dis-
persion persists, gradually broadened up to 45 K. At 72 K, the data are essentially
flat an feature-less. At this temperature, the excitation spectrum is expected to be
very broad, weak and perhaps gapped (Wang et al., 1997). The statistical scatter
combined with the error from the background subtraction make interpretation of
the 72 K and 150 K data impossible.

The background corrected data from T to 45 K were analyzed as described for
the 8 K data, but including a damping I'; in form of a DHO line-shape. Constant-g
cuts along energy were found to provide the most stable fits. At low temperatures
cuts of width and spacing 0.05 x (7, 7) were used. As the signal broadened with
the concomitant weakening, some fit became unstable. For these ¢’s the width was
increased to 0.1 x (7, 7). Eventually, even some of the broad cuts gave unstable
fits. In the following results, only the stable fits have been included.

4.4.5 Results

The outcome for each temperature was a set of parameters A,, J, and T, for
a number of ¢’s between (Z,Z) and (£, 22). Because of the symmetry around
(m, ), the results are presented in a reduced g measured from this point.

Absolute amplitude

The amplitude A makes it possible to determine the renormalization factor Z, de-
fined in section 4.2. According to the definitions of the renormalization constants,
S(q,w) = Z4S5q, Z;w?) = 7,5 (q,w ), where it is used that Z, = Z,/Z. and
that S°(g,w!) given in equation 4.16 is in units of inverse energy. Linear spin-wave
theory assumes order along a given direction which is denoted the z direction. For
1-magnon scattering the dynamic structure factor becomes Syz(g,w) = 0 when
a=zora#fand S(q,w) = Sra(q,0) +Syy(¢,0) +5::(¢, w) = 2544(¢. w). Above

122 Risg-R—1180(EN)



W B
o o

N
o
(uids ABW JS) sulequu

Energy [meV]
Energy [meV]

=
o

B a
o o

w
(uids ppw Jsia/sumqw

Energy [meV]
Energy [meV]

w
(uids ABW Is) sulequu

N
Energy [meV]

Energy [meV]

N
o
(uids AW JS) sulequu

Energy [meV]
Energy [meV]

[
o

Figure 4.84. The background corrected data along (1,1).
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Figure 4.35. Cuts along q for 2-4 meV of vertical 8 K data (a), horizontal 8 K
data (b), vertical 16.24 K data (c) and horizontal 16.24 K data (d). In each case,
the amplitude is given in mbarns sr—! spin~!.
TN where the direction of the order parameter fluctuates in space and time, there is
no preferred z direction. In this isotropic case, Sga(q,w) = Syy(q,w) = S.2(q,w) =
15(q,w), where S(q,w) is still given by equation 4.16.

Neutron scattering measures the geometrical average

S (1~ Guds)Sas(,0) | (4.92)
af

which above Tx gives 25(q,w). Below Tx the spins align in the ac plane (perpen-
dicular to b) and almost along a. For the horizontal detector banks, ¢ is perpendic-
ular to a and hence approximately perpendicular to the spins and the geometric
factor gives %S(q, w). For the vertical banks, the geometric factor becomes gap
dependent with maximum S(q,w), where ¢ is parallel to the ordering direction. In
figure 4.35 cuts along ¢ for 2 meV< E <4 meV are shown for 8 K (a,b) and for
16.24 K. It is seen how at 16.24 K~ Ty there is no difference between the ampli-
tudes in the vertical (c) and horizontal (d) detector banks, which reflects that there
is no preferred orientation of the moments so that in both cases, the geometric
factor is 2. At 8 K, the geometric factor for the horizontal detector banks (b) is 1,
and the ratio 83.3/65.1 = 1.28 is close to the expected 2/1 ~ 1.33. The amplitude
in the vertical banks (a) is energy dependent, and will not be considered, as there
is sufficient statistics in the horizontal banks. By comparing the fitting form to
the spin-wave prediction, it is seen that above Tn, A = %(fyre)QZXS. Below T,
using only the horizontal detector banks, A = 1(yr.)?Z,S.

For each temperature, A was found to be independent of ¢ within the statistical
scatter. This means that the structure factor found in spin-wave theory remains
valid even in the short range ordered region. To find the renormalization factor
Zy, the average A was computed for each temperature. At 8 K only the horizontal
banks were used to find A. The result for Z, (T') is listed in table 4.3.

The low temperature value Z, = 0.50 £ 0.02 is in very good agreement with
the theoretical prediction Z, = 0.51 (Igarashi, 1992, Singh and Gelfand, 1995). In
comparison, the value measured in Lap;CuO4 was Z, = 0.39 £ 0.1, which is still
consistent within the standard error (Hayden et al., 1998).

Spin wave softening

As the temperature is increased, the spin-waves soften so that the energy of the
dispersion is lowered. This results in a lower value of the effective coupling pa-
rameter .J,(T') used in the fits. As described for the 8 K dispersion, .J,(T') can be
converted back to a dispersion curve. It is instructive however to consider directly

124 Risg—R-1180(EN)



12

11

Z ()

0.9 e Experiment ]

v QMC-DHO
A QMC-MEM
%% "01 02 03 04 05 06
T/J

Figure 4.36. The spin wave-softening in CFTD as a function of T, obtained by
averaging over q. The QMC results are by Makivié¢ and Jarrell (1992) (MEM)
and Syljudasen and Rgnnow (2000a) (DHO), while the solid line is an analytic
prediction by Kaganov and Chubukov (1988) and Elstner et al. (1995a)

jq(T), where the ¢ dependence from spin-wave theory is divided out. This value
was evenly scattered around an average value J(T'), meaning that along (1,1) the
dispersion shape remains described by spin-wave theory. The softening can there-
fore be expressed in terms of a temperature dependent renormalization factor Z.().
The average values J(T') and the corresponding renormalization factors are listed
in table 4.3 and depicted in figure 4.36.

In figure 4.36 the renormalization factor Z.(T') = J(T)/J(0) = Z.(0)wy(T)/w,(0)
is compared to the QMC predictions by Makivi¢ and Jarrell (1992) (MEM) and
Syljuasen and Rgnnow (2000a) (DHO) and to the simple spin-wave result of
Kaganov and Chubukov (1988) and Elstner et al. (1995a).

Z.(T) = Z.(0) <1 + %3;) <%) ) (4.93)

It is seen that there is good consistency between the data, the QMC results and
the analytic prediction.

In comparison, the spin-wave velocity in Lay;CuQ4 has been found to decrease
from 850 meV Aat 4 K to 750 meV Aat 300 K, corresponding to Z.(T = 0.2.J) =
1.04, which is a much more rapid decrease. This must be taken as another indi-
cation that LapCuQy is not ideally described by the simple 2DQHAFSL model
system.

Spin wave damping

Concomitant with the softening, the finite correlation length leads to a damping
of the spin waves. This was modeled by a DHO line shape in the fits. The results
for T'y(T) are depicted in figure 4.37. The CHN-Tyc scaling prediction 4.69 is
represented as shaded areas bounded by the two different choices of parameters
(Tye¢ et al., 1989) (lower) and (Makivi¢ and Jarrell, 1992) (upper). At 25 K, also
the QMC result as extracted from Makivi¢ and Jarrell (1992) is shown as a solid
red line. Except at 45 K, where the fits are rather loosely confined, the results
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tained by fitting constant-q cuts of the background corrected data in figure 4.3/.
The shaded region represents the scaling prediction as discussed in the text. For
25.6 K and 30.4 K the red line and squares shows the results from QMC cal-
culations by respectively Makivié and Jarrell (1992) and Syljudsen and Ronnow
(2000a,).

show that I'; increases with g, albeit with considerable scatter and relatively
large standard errors. The quality of the data does not permit a discussion of the
functional form of the ¢ dependence, but it is roughly consistent with the scaling
prediction. To address the temperature dependence, the average value T'(T) is
considered and depicted in figure 4.38. The average I'(T) should lie within the
limiting values at ¢ = (0,0) and ¢ = (%, %), which bound the shaded regions
in figure 4.38. The CHN-Ty¢ scaling prediction is shown using the parameters
from Makivi¢ and Jarrell (1992) (yellow), while the QMC result has been digitized
directly from Makivi¢ and Jarrell (1992) (pink). Up to T' = 0.5.J, the data lie within
the scaling prediction, which however only only imposes a very weak constraint.
The QMC results of Makivi¢ and Jarrell (1992) overestimates the damping by
almost a factor of 2.
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Figure 4.38. The spin wave-damping in CFTD as a function of T, obtained by
averaging over q. The shaded region represents the predictions from scaling analysis
(yellow) and QMC calculations (Makivié and Jarrell, 1992) (pink) as discussed in
the text. The triangles are new QMC results of Syljudsen and Rgnnow (2000a)

New quantum Monte Carlo results To understand the discrepancy between
the experiment and the QMC results, a new QMC investigation has been under-
taken (Syljuasen and Rgnnow, 2000a,b). The QMC method calculates the correla-
tion functions in imaginary time 7, which gives the Laplace transform of S(q,w).

S(q,7) = /000 dwe ™7 S (q,w) (4.94)

The analytic continuation by which S(g,w) is obtained corresponds to inverting
the Laplace transform. Since the QMC data are discrete and contain statistical er-
rors, this inversion is not straightforward. Following the maximum entropy method
(MEM) employed by Makivi¢ and Jarrell (1992), identical results were obtained.

The advantage of the MEM is that no assumptions for the line shape of S(g,w)
are needed, but it is seldom possible to estimate its validity. As an alternative
to the MEM, a definite assumption for the line shape was taken. By Laplace
transforming the assumed line shape, the imaginary time QMC data were fitted
directly. Using a damped harmonic oscillator (DHO) line shape, the resulting
spin-wave damping as shown in figure 4.38 was approximately halved compared
to using the MEM method.

It is seen that the QMC results obtained using the DHO method are in almost
exact agreement with the experiment. The consistency of the new QMC results is
presently being checked by studying different choices of line shapes and trying to
understand why the MEM apparently fails (Syljuasen and Rgnnow, 2000a).

Using the same method, the zone boundary energies at respectively (5, %) and

T

(m,0) were calculated for 7' > 0.5J. The temperature dependence of w(F, %) is
depicted in figure 4.36, while w(7, 0) was consistently found to be slightly lower as
depicted in the insert of figure 4.39. The extrapolated T = 0 difference is around
6% in close agreement with the measurement and the series expansion result of
Singh and Gelfand (1995). From this, it is concluded that the zone boundary
dispersion is a true quantum effect in the pure nearest neighbour model.
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Figure 4.39. Left: S(q,w) for ¢ = (m,0) (solid) and (5,%) (dashed) at T0.5.J
from a L x L = 32 x 32 lattice. Right: The extrapolated L — oo peak positions
for (m,0) (filled circles) and (%,%) (open circles). Insert: The relative difference
(w(m,0) —w(F, §))/w(F, §) in percent.

4.4.6 Conclusion and outlook

In summary, a TOF neutron scattering experiment on CFTD has shown that up
to T ~ J/2, well defined spin-wave excitations persist. Fitting cuts through the
data has supplied information on the zone-boundary dispersion, the temperature
dependent renormalization of respectively amplitude and energy of the excitations,
as well as the temperature and in part ¢ dependence of the spin-wave damping.
The results are summarized in table 4.3. There is generally good consistency be-
tween the results and the prediction based on the combined picture from different
theoretical and numerical approaches.

T [K] 8 1624 209 256 304 362  45.1
A 37+3 47+2 49+2 48+3 41+3 57+4 40+8
Z,x100 | 5144 49+2 5142 49+2 4243 58+5 41+8
J [meV] | 7.45(2) 7.48(4) 7.38(5) 7.41(8) 72(1) 6.7(2) 6.5(2)
Z. 118 1.19(1) 1.17(1) 1.17(1) 1.14(2) 1.07(4) 1.03(4)
T [meV] | 0.002) 0.48(7) 0.74(8) 1.06(9) 1.5(2) 2.4(3)  2.7(5)

Table 4.3. The q averaged results from fits to the TOF-data at 7 temperatures from
8 K to 45 K. The susceptibility renormalization factor Z, was determined from the
absolute amplitude A in units of mbarn st—! fu=!. The renormalization factor for
the spin-wave velocity Z. was determined from wq(T)/(4SJ), where J = 6.31 meV
was determined at 8 K. The spin wave damping I, gave the width of the damped
harmonic oscillator line-shape used in the fits.

It would be interesting to improve the experimental data, which should be
possible. Some improvement could be achieved simply by increasing the counting
time, by which the statistical uncertainty is reduced. If the same or a different
spectrometer could supply more flexibility in the choice of resolution and incident
energy, while still imaging the dispersion relation in the detector banks, this would
enable a more rigorous phonon correction. Finally, as part of the full picture, the
damping and possible opening of a gap at the zone-center could be probed on a
triple axis type spectrometer, which gives much more flexibility in optimizing the
resolution and incoherent background.

On the theoretical side, it is hoped that the present results will stimulate an
effort to converge the predictions from different approaches in order to consolidate
a picture like it has recently happened for the time-independent problem.
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Chapter 5

LiHoF,
— an Ising ferromagnet
in a transverse field

Excitations around the quantum
critical point

LiHoFy is a well characterized rare-earth ferromagnet, which in a field of 5 T
applied perpendicular to the easy axis undergoes a quantum phase transition to a
polarized paramagnet. This chapter presents a neutron scattering study of the exci-
tations around this quantum critical point. The behaviour of the excitations is well
understood by a mean-field random-phase-approximation, although a few quanti-
tative details need to be addressed. The existence of a well controlled quantum
phase transition in a system with a completely characterized Hamiltonian opens
possibilities for detailed investigations of pure quantum critical behaviour.

There exist materials, where the strength of the quantum fluctuations can be
controlled in such a way that the system can be taken from an ordered ground state
to a disordered ground state at T' = 0. Such a transition is called a quantum phase
transition (QPT) and the universal behaviour around the quantum critical point
(QCP) is of great current interest. Recent years have seen significant advances in
the theoretical treatment of quantum critical behaviour (Sachdev, 1999).

Experimentally, the situation is rather difficult, as there is the need for some
external parameter that can control the quantum fluctuations through the QCP.
Examples are the pressure, chemical composition or an applied magnetic field.
By applying pressure it is possible to introduce minute changes in the crystal
structure, thereby changing the coupling parameters (see e. g. Carter et al., 1991,
Bogenberger and v. Lohneysen, 1995). However, only a very limited region around
the QCP is available and the method seldom gives a very accurate handle on the
phase transition. Changes in the chemical composition can potentially take the
system between very different states. But at the same time, non-stochiometric
compositions introduce a randomness, which can have severe influence on the
behaviour of the system. Also, as new or modified samples have to be used for each
point along the phase transition, the possibility of studying the critical behaviour
is limited. Much better access to the QCP is provided in systems, where it is
an external magnetic field that drives the transition. With modern magnets, the
magnetic field can quickly be changed with an accuracy that is several orders
of magnitude smaller than its absolute value. Such a magnetic field driven QPT
occurs in the transverse field Ising ferromagnet, which is the subject of the present
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chapter.

Here inelastic neutron scattering study of LiHoF, is presented. In LiHoF, the
crystal field generates an effective two-level system corresponding to an Ising sys-
tem, and the experiment aimed to observe the characteristic behaviour of the
excitations around the QCP in a transverse field Ising model.

As an introduction, a single mean-field and random-phase treatment of the Ising
model will be presented, followed by a description of LiHoF,. The inelastic neutron
scattering experiment and its interpretation will then lead to a conclusion about
the perspectives for further studies of LiHoF, as a model QCP.
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5.1 The transverse field Ising ferromagnet

The transverse field Ising model defined by the Hamiltonian
1 zZ Qz T
H:—EZJijsisj -T)_S; (5.1)
ij i

was actually first proposed by de Gennes (1963) to model hydrogen-bonded fer-
roelectrics. It generally describes a system of particles that can tunnel between
two identical states with a probability determined by I' and an interaction given
by J. Because most applications of the model have not been directly related to a
ferromagnet in a transverse field, the symbol I' is used rather than gugH  , but
the term transverse field will be used synonymously.

The simplest theoretical approaches to the model are the mean field theory and
the random phase approximations (de Gennes, 1963, Brout et al., 1966, Wang and
Cooper, 1968) which are expected to work well as long as the coordination number
z is large or if the interactions are long ranged. Other methods include series expan-
sions (Elliott et al., 1970), the Blume-Hubbard method, Monte Carlo (Creswick
et al., 1988, de Oliveira and Chiappin, 1997), local magnetic field distributions
(Thomsen, 1986), renormalization group calculations (Burkhardt and Gunton,
1974), 1/z expansions (Stinchcombe, 1973a,b) and correlated-basis-function anal-
ysis (Ristig and Kim, 1996).

The mean field (MF) approximation is achieved by writing S7 = (S*) + (S7 —
(8%)) and neglecting the term that is quadratic in the fluctuations

D3 SIS = 5 3 (S + (57— (SIS + (5]~ (5°)

~ NJo(S*)* + Jo 3 _ Si(S) | (5.2)

where N.Jo = >_,. Ji; and (S%) is the mean expectation value of S*. This approxi-
mation decouples the Hamiltonian into noninteracting spins coupled only through
the self consistent field v = (T, 0, Jo(S?)).

H:—Z’Y‘Si (5.3)

The eigenvalues of the MF Hamiltonian are :i:%'y and the average spin vector is

(S) = (sin#,0,cos6) x 1tanh £y, where 6 is the angle between z and + such

that sinf =I'/~y and cosé = Jo(S?) /7. The selfconsistency equation is then given
as

(57 = =225 __1tanh gy /12 + (5 . (5.4)
but is more transparently expressed in terms of v and cosf

ycosf = §.Jocosftanh 1By . (5.5)
In the ordered state, where cos 6 is nonzero, the equation reduces to

v = 1Jotanh £ 8y . (5.6)

Outside the ordered region, v = I', and in both cases the components of the
average moment are given by:

1 1
{S)| = 5 tanh;fBy (5.7)
(%) = Y—— 73_F2 (5.8)
0
W T1 1
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Figure 5.1. The mean field solution for the longitudinal and transverse components
of the average moment as a function of temperature and transverse field.

The behaviour as a function of 7" and I is depicted in figure 5.1. The region with
nonzero (S*) is the spontaneously ordered ferromagnet, while the nonzero value
of (S*) is just the field induced polarization of the paramagnetic moments. The
critical temperature f3. is determined from where v becomes equal to T’

T = LJytanh 14,1 . (5.10)

In zero transverse field, T, = Jp/4, while T, vanishes for a critical transverse field
. = Jo/2. This is the quantum critical point, where at zero temperature the
system goes from being ordered to disordered as the transverse field is increased
beyond I'.. The solution for 7, is single valued and can be turned around to give
the value of the critical field as a function of temperature I'.(T").

The excitation spectrum can be derived through the random phase approxima-
tion (RPA), which gives the susceptibility

XeP (@) = X7 (@) + Y x0T (@) I X (W) (5.11)

in terms of the Fourier transformed coupling J, and the MF single ion suscepti-
bility
. n|S®|m)(m|S?|n
Xgﬁ(w) = lim Z< [ m) m] 7] >(nn—nm) , (5.12)

0+ £ En,—E,—w-—ie

where |n) are the eigenstates of the MF Hamiltonian. For simplicity, the following
considerations are restricted to T' = 0 and neglect the elastic part. In this case the
single ion susceptibility becomes

2
X (W) = Tim. cqp 7

it S 5.13
=0t 2 — (w+ie)? (5:13)

where cap = (n|S®|m)(m|S?|n). In particular, c,, = ['*/+>. For the Ising system,
where only J7* = J, is nonzero, substitution into the RPA equation gives

¥ = X% + Jq|ng|2 _ 29Cea 4Jq'72|cwz|2
! O 1= G 72 -w? (7 - w?)(wf - w?)
Tz X%Z 2’)/ch
=0 o 5.14
Xo T I e (5.14)
V4 — XSZ — 2’YCZZ
Xo =1 e S

where the limit ¢ — 0% has been taken. All three susceptibilities give rise to an
excitation with dispersion

wp =% = 2J, %/, (5.15)
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Figure 5.2. Schematic illustration of the dispersion w, around the QCP.

while for x7* there is an additional excitation at the single ion energy wo = 7.

Assuming a sinusoidal Fourier transform of the coupling J, = acos(q), the
behaviour of w, as a function of ¢ and field is sketched in figure 5.2. It is seen that
at the transition, the dispersion softens for ¢ = 0. The remainder of this chapter
describes an attempt to establish an experimental demonstration of this softening
at the QCP in LiHoF4.

5.2 LiHoF,

The current interest in the properties around quantum critical points have pro-
moted a resurgence of interest in LiHoF,. This material is known to be a nearly
ideal 3D Ising ferromagnet and as such undergoes a QPT in a transverse field of
5 T.

5.2.1 The rare earth Hamiltonian

The appealing feature of LiHoF, is that the understanding of magnetism in rare-
earth (RE) systems has been developed to a very advanced level (See e.g. Jensen
and Mackintosh, 1991). The unfilled shell of 4f electrons couples according to
Hund’s rules, forming a total angular momentum .J. This has resulted in a standard
rare-earth Hamiltonian.

H= Zvcf(Jz) +ZAIi -J; _ZgL:u’BH'Ji _ %Z‘Iijij‘]j (5.16)
i i i ij

The crystal field V.(J), is due to the electronic environment felt by the differ-
ent 4f orbitals that form the angular momentum .J. This lifts the 2J + 1 degen-
eracy within the multiplet. An ab initio calculation of the crystal field operator
requires a detailed knowledge of the electronic states in the system and is seldom
sufficiently precise. However, when the symmetry of the crystal structure is taken
into account, only a few parameters need to be determined. In LiHoF, only six
parameters are needed.

The hyperfine coupling A between the electronic moments J and the spin
I = 7/2 of the holmium nuclei cause an additional splitting of each crystal field
level. This splitting will be seen to have substantial effects on the behaviour around
the QCP.

The Zeeman energy —grupbsH - J is given by the Landé factor g;, = % +
S(S+1)—L(L+1)

ST7(TED) equaling % for holmium.
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The coupling tensor J = Jex+ Jaip has contributions both from exchange me-
diated coupling and from direct coupling between the dipole moments. In LiHoF 4
it is believed to be dominated by the dipole coupling, as it is the case in LiTbF,
(Als-Nielsen et al., 1974, Holmes et al., 1975, Als-Nielsen, 1976). The dipole cou-
pling can be calculated both in real space and in reciprocal space using the method
of Bowden and Clark (1981).

T3P = Z—O(gLuBVw :

T T3

where r;; is the vector separating the moments J; and J;. The fact that the dipole
coupling is long ranged, proportional to 1/|r — 7'|> has important consequences,
as will be described below.

(5.17)

Apart from the dipole coupling and the Zeeman energy, attempts of ab initio
calculations of the parameters entering rare-earth Hamiltonians have only reached
limited success so far. However, as there are only a limited number of parameters
in the Hamiltonian, these can be determined experimentally. By collecting a suffi-
ciently broad set of data (magnetization, magnetic structure, excitation spectrum
etc.) the parameters can be determined in a way that they correctly describes
the existing data. Once this is achieved, new measurements can be compared to
theoretical predictions without any free parameters. In the following, the exist-
ing measurements and knowledge of the rare-earth Hamiltonian for LiHoF, are
described.

Existing experimental data

The magnetic properties of LiHoF4 have been characterized through a series of ex-
perimental techniques. Magnetization and susceptibility measurements have been
performed by Hansen et al. (1975). At T, = 1.53 K the system orders ferromagneti-
cally with saturation moments of 6.9 along the ¢ direction. By fitting x|(T) and
x.(T), the crystal field parameters were determined. The resulting crystal field
energy levels were roughly consistent with direct measurements hereof by polarized
absorption and Raman spectroscopy (Christensen, 1979, Salatin et al., 1997b,a).
The temperature dependence of H.(T') close to T, was found proportional to the
square root of the reduced temperature t = 1—T/T, with a logarithmic correction
H, =153 x T x t'/2(In0.483/t)"/? consistent with predictions from renormal-
ization group considerations (Christensen, 1979). Electron spin resonance (ESR)
measurements by Magarino et al. (1980) revealed a hyperfine structure of the res-
onance due to coupling A = 0.032 K to the eight states of the I = 7/2 nuclear
spin. The value of A was confirmed in a specific heat study of Mennenga et al.
(1984a,b), who also estimated the first three coupling parameters [J; = 4.6 mK,
J2 = =7.4 mK and J3 = 0.69 mK.

The phase diagram as depicted in figure 5.5 was determined from susceptibility
measurements by Bitko et al. (1996), who also found that the critical exponent of
the susceptibility equals the mean-field prediction v = 1 both at the classical phase
transition in zero field and at the quantum phase transition at zero temperature.
The phase boundary was successfully described by a mean-field solution to the
rare-earth Hamiltonian with an effective coupling Jo = >, J» = 0.027 K and
the transverse g-factor, g, = 0.74, as fitting parameters. It should be noted, that
the substitution of g, for the Landé factor gy while retaining the crystal field
operator is not a consistent approach. The crystal field limits the available orbitals
at low temperatures, thereby causing an effective g-tensor. In a simple model, the
crystal field operator can be neglected by introducing an effective g-tensor, but
they should not be used simultaneously. In the approach of Bitko et al. (1996),
g1 is simply a rescaling of the field in order to match the experimentally observed
phase boundary.

134 Risg—R-1180(EN)



There can be several reasons, why such a rescaling is necessary. The mean-
field approximation neglects the correlation between fluctuations, which in general
leads to an overestimation of the ordered region. In the related material HoF3s,
the corrections to the mean-field result have been calculated to first order in a
1/z expansion by Jensen (1994) (z is the coordination number). The correction
to e.g. the transition temperature was 11%. Though more than usual for three-
dimensional systems, this correction is still far from the 40% discrepancy for the
critical field in LiHoF4. The dipole coupling for the z and y components of the
moments is in fact antiferromagnetic, which will act to reduce the effect of a
transverse field. In the calculations described below, the full dipole coupling has
been included, but the effect hereof is much too small to account for the critical
field. In principle an exchange contribution could aid the dipole coupling, but it
would have to be two orders of magnitude larger than what was estimated from
the specific heat measurements, which seems highly unlikely.

The most plausible explanation for the failure to predict the right critical field
is that the estimated crystal field is not completely correct. Starting from the
parameters of Hansen et al. (1975), it is not possible to get a notably better fit
of the susceptibility and the measured crystal field levels. It can however not be
excluded that there exists a different set of crystal field parameters that generate
a similar scheme of crystal field levels but with different eigenstates. The possi-
ble parameter-space is however limited by the fact that the current parameters
reproduce the correct saturated moments, which means that the ground state is
correctly modeled.

5.2.2 The effective Ising model

Though in principle, all calculations and comparison to experiments could be
performed in terms of the rare-earth Hamiltonian, it is instructive to consider the
effective Ising model, which motivated the study.

The Ising model is characterized by the matrix elements (1 [S*| 1) = —(} |S*| |) =
2 and (1 [S*| 1) = (1 S?| J) = 5 which multiply respectively J and I'. The
corresponding matrix elements in the RE model are {g|.J?|g) = —(e|J*|e) = M
and (g|J*|e) = (e|J*|g) = A, where |g) and |e) are the two lowest lying states.
The parameters of the effective Ising model are therefore Jising = 4M 27, and
I'=2gupH,A.

Also in the RE model, it is the transverse field that produces the splitting
2AgrupH, which is therefore readily identified with the splitting I" in the Ising
model. In zero field, the two lowest eigenstates are formed by the J* eigenstates
{]=5),]—1),13),|7)} and {| = 7),| — 3), |1), |5)} respectively. Therefore J* cannot
couple directly between the two. But in a transverse field, the term grupH,J*
mixes a component proportional to H, of the next level into the two lowest. As this
level is formed by | + 6), | + 2), it gives J* a nonzero matrix element proportional
to H,. As a consequence, the splitting T’ of the two lowest lying states starts by
being proportional to H2? as shown in the right panel of figure 5.3. The matrix
element of J? is on the other hand only mildly affected by the transverse field as
depicted in the left panel of figure 5.3.

5.2.3 Doped LiY,Ho_,F,

In addition to the easy control of the QPT through the transverse field, the
holmium ions can be substituted by non-magnetic yttrium. Reich et al. (1986,
1990), Wu et al. (1991, 1993), Rosenbaum (1996) and Bitko (1997) have performed
a systematic study of the effects of doping in LiY,Ho_,F4. For low concentrations,
z, of yttrium, the effect of depleting the magnetic system is simply to reduce Tn
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Figure 5.5. Left: In solid, the splitting T of the two lowest levels as a function
of the transverse field. The result 2AgpupH, from considering just the 3 lowest
states is shown by the dashed line. The insert displays the absolute energies of the
3 lowest modes. Right: The matriz elements M and A as a function of field.

proportional to (1 — z). But around z = 0.5, the system has become an assembly
of randomly placed dipoles, which due to the spatial dependence of the dipole
coupling will be both ferro- and antiferromagnetically coupled. In effect, the sys-
tem behaves like a spin glass. The ability to use the transverse field to lower the
barriers for tunneling between the two Ising states of each ion opens for very in-
teresting experiments, where the spin glass is relaxed through quantum annealing
rather than normal thermal annealing (Brooke et al., 1999).
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5.3 Excitations around the quantum phase tran-
sition

As seen in section 5.1 the elementary excitation of the transverse field Ising model
is expected to soften at the quantum critical point. This is an essential ingredient,
which is responsible for much of the physics that is characteristic to the quantum
phase transition. An inelastic neutron scattering investigation was performed in
order to establish to which extent the behaviour in LiHoF4 is given by this simple
picture.

5.3.1 Experimental details

To follow the decreasing excitation energy towards the critical point, the exper-
iments required relatively tight resolution. For this, the cold neutron triple axis
spectrometer TAS7 at Risg National Laboratory was used. With incident energies
of 2.7 meV, 3 meV and 4.2 meV, resolutions between 0.06 meV and 0.21 meV
(FWHM) were achieved depending on the choice of collimation.

The sample was a single crystal of dimensions 12.3 x 10.3 x 5.6 mm?, the short
dimension being the Ising direction. The sample was mounted with the reciprocal
axes (1,0,0) and (0,0, 1) in the scattering plane. To manage the significant torque
that a ferromagnet suffers in a transverse field, the sample was embedded in a
copper coffin as shown in figure 5.4. By making the coffin 0.3% larger than the
sample, the difference in thermal contraction upon cooling ensured a tight mount-
ing at low temperatures without crushing the crystal. The holder was made from
oxygen free copper to provide sufficient thermal conduction at low temperatures.

Figure 5.4. The LiHoFy sample embedded in a coffin of oxygen free copper.

The magnetic field was provided by a 9 T vertical field cryomagnet from Oxford
Instruments. Due to the importance of having the field strictly transverse to the
Ising axis, some efforts were made to estimate the accuracy of the field alignment.
By rotating a Hall-probe inside the magnet core, it was found that the field axis was
within 0.2° of the cryostat axis. Once aligned on the spectrometer, the alignment
of the sample with respect to the cryostat was found by observing the Bragg
reflections while tilting the cryostat. Since the sample was aligned within 0.15° of
the cryostat axis, the magnetic field was at maximum 0.35° away from the Ising
axis.

The low temperatures were achieved with a dilution refrigerator insert also
from Oxford Instruments. From the mixing chamber, the sample is suspended on
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Figure 5.5. Left: Field dependence of the integrated intensity of the magnetic Bragg
reflections (1,0,1), (2,0,0) and (0,0,4) at the base temperature. Right: The phase
boundary between the ordered and the paramagnetic phases in LiHoFy. The symbols
represent the result from observing the intensity of the (1,0,1) Bragg peak, while
the solid line was obtained by Bitko et al. (1996) from susceptibility measurements.

a 20 cm long ¥12 mm oxygen free copper rod into the core of the magnet. The tem-
perature was measured at the mixing chamber with a base temperature of 50 mK.
While the heat transport through the copper rod is usually sufficient to keep the
sample temperature close to the measured, neutron-activation of the sample may
have caused a higher temperature. In future experiments, a thermometer should
be placed in the direct vicinity of the sample.

5.3.2 Summary of results

Phase diagram and order parameters The phase boundary between the
ordered and the paramagnetic phases was found by observing the intensity of the
magnetic Bragg reflections as a function of field and temperature. In the left panel
of figure 5.5 the field dependence of the three magnetic Bragg peaks (1,0,1), (2,0,0)
and (0,0,4) at the base temperature is depicted. The two Bragg peaks (2,0,0) and
(1,0,1) behave similarly, with a well defined onset at 4.24 T. By performing scans of
the (1,0,1) reflection at increasing temperatures, the phase boundary as shown in
the right panel of figure 5.5 was obtained. One surprising feature was the absence
of the enhancement of H,. due to the hyperfine coupling below 0.4 K. One possible
explanation for this is that the activation of the sample due to the irradiation
with neutrons heated the sample. Unfortunately, the thermometer was located
at the mixing chamber separated from the sample by a 20 cm copper rod. It is
therefore not unlikely that there could be a temperature gradient between sample
and mixing chamber. Comparing to the phase boundary of Bitko et al. (1996),
it is therefore concluded that the actual temperature of the sample was around
0.4 K. In the calculations below, this temperature will be used.

The intensity at (0,0,4) is seen to behave differently with a tail above what
seems to be H. for (2,0,0) and (1,0,1). First, it is remembered that the system
has both electronic moments J and nuclear moments I. However, the nuclear spin

scattering cross-section for holmium (%) = 0.0018 x 10724 cm? is so much

smaller than the magnetic cross-section (yrg)? = 0.29 x 10724 ¢cm?, that it can be
neglected. Thus, the intensity of the (0,0,4) reflection should be proportional to
(J*)2, which as seen in figure 5.1, {J%) increases linearly with the field belw H.,
and is almost constant at the saturation value above H,.. This behaviour, which
is also seen in the RE MF calculations, is almost opposite to the intensity of the
(0,0,4) reflection, which therefore remains a puzzle.
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Excitations The excitation spectrum was investigated by performing energy
scans at constant values of ¢ along (h,0,0), (1,0,) and (h,0,1). The spectrum
was recorded at the three magnetic fields 3.6 T, 4.24 T and 6 T chosen respectively
below, at and above the critical field H. = 4.24 T. The data are summarized in
figure 5.7.

There are several important features to be observed in figure 5.7. It should first
be noted that the sharp ellipse around zero energy transfer is the resolution convo-
lution of the (2,0,0) Bragg peak. Along (h,0,0) a quasi-elastic signal is observed.
Part of this is incoherent background scattering, but there is also a ¢-dependent
component, which at 4.24 T is seen to be more intense and narrower confined
around (2,0,0). This is the so-called central peak associated with the transition,
which was also investigated by scans along (h,0,0) for zero energy transfer as
presented in figure 5.6. The scan at 6 T was almost completely dominated by
the sharp nuclear (2,0,0) reflection. This data-set was subtracted from the scans
taken at lower temperatures as shown in the left panel of figure 5.6. Below H,. the
Bragg peak gained a field dependent magnetic contribution, which complicates
analysis of the critical scattering severely. Therefore only the scans above H, are
considered in figure 5.6, where the background corrected data have been fitted to
a Lorentzian line-shape S(q) = So/(1 + ¢?£?).

Though the quasi-elastic component containing the time independent correla-
tions of the system is an important piece in a full description, the present experi-
ment was focused on the behaviour of the excitations that have been mapped out
in figure 5.7. It is seen that the qualitative features of the excitation spectrum are
unaffected by the quantum phase transition. There is one low-energy mode, which
disperses along (h, 0,0) but shows little dispersion along (1, 0,1). Along (1,0,1) and
(h,0,1) only limited energy ranges have been mapped out, but individual scans
throughout the range showed that no additional low-energy modes exist.

5.4 The random phase approximation

The excitations, were modeled by a random-phase approximation (RPA) of the
RE Hamiltonian. The details of this approach have been described by Jensen and
Mackintosh (1991), Leask et al. (1994), Rgnnow (1996).

As discussed above, there were certain indications that the true sample temper-
ature during the neutron scattering experiment was in fact closer to 0.4 K than to
the nominal temperature of ~50 mK. To make a comparison between the calcula-
tions and the experiment, the temperature in the calculations was set to 0.4 K and
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of H,

=424 T.

a critical field of 4.24 T was imposed. Because the field has to be rescaled to meet
this requirement, it is difficult to make a direct connection between the actual
field strength in the experiments and that entering the calculations — except at
H. which is well defined in both cases. Therefore the following analysis is mainly
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Figure 5.8. Summary of the excitation spectrum obtained by an RPA calculation
with T = 0.4 K and Ay = 0.59.

restricted to this field.

It is seen how the qualitative behaviour is in good agreement with the experi-
mental data in figure 5.7, although the absolute energy scale is somewhat off. The
spectral weight is concentrated around (2,0,0) where the dispersion has a mini-
mum. Just as it was seen in the experiment, the calculation shows that the mode
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the resonances is given by a small imaginary number € = 0.01 meV introduced to
avoid the divergence of the susceptibility at the resonance.

only goes through a minimum around H..

By comparing the experimental data to the calculation, it is realised that the
apparent broadening of the mode observed experimentally between (1,0,0) and
(1,0,1) is in fact because the observed peak is constituted by two individual modes
lying close in energy. The calculated splitting is, however, too large compared to
the experimental energy width.

Due to the long ranged nature of the dipole coupling, there are discontinuities in
its Fourier transform at the reciprocal space points. This can be seen in figures 5.7
and 5.8, where the spectral weight jumps to a lower energy from q = (1,0,1—€™)
to (1+€7,0,1). The same situation is present around (2,0,0) as illustrated in figure
5.9.

The dispersion and integrated intensity along (h,0,0) have been extracted and
is shown in figure 5.10. As shown by the solid lines, the dispersion is reasonably
well described by a simple sinusoidal ¢ dependence.

As already apparent from the summary in figure 5.7, the excitation does not
soften at H., as would be expected from the simple theory presented in section 5.1.
This is further demonstrated in figure 5.11, where the limiting excitation energy
at (1 +¢€,0,1) for e — 0 is extracted as a function of the magnetic field around
the QCP. It is seen that the gap goes through a minimum at H, in what could
be called an incomplete softening. This incomplete softening at H, is due to the
hyperfine coupling, which splits the ground state by Aps ~ 2AIJ = 0.188 meV.
This has been illustrated in figure 5.11 where the dashed line has been calculated
without the hyperfine coupling. In this case, the gap closes at H..

In fitting the phase boundary, Bitko et al. (1996) had to introduce a scaling of
the magnetic field. By replacing g;, = % by g1 = 0.74, the field was effectively mul-
tiplied by Ay = %gl = 0.59. But as this scaling was introduced to compensate for
an inaccurate crystal field operator, it should not be expected to successfully de-
scribe the excitations. One minimal generalization of this approach was attempted
by introducing a second scaling parameter A,y multiplying the field operator. The
two scaling parameters were chosen such that the correct critical field was pre-
dicted. However, it was found that varying A.s gave only minor changes in the
excitation energies, and an unreasonably large value was required to match the
calculation to the experimentally observed dispersion.

In summary, the experimental data on LiHoF, are in general well understood

142 Risg-R-1180(EN)



0.8 08
67T
4247
-—0.6’ -—06’ 3T u
3 3
E E
50.4' 30.4' 1
o T
c c
Yool - Wo.2! 1
o 424T
o 3T | o
1 12 14 16 18 2 1 12 14 16 18 2
Q=(H,0,0) Q=(H,0,0)
150
-+ 6T || geool - 6T
> o 424T +++ 2 o 424T e
B 3T f t = v 3T RIPPTTEY
gt bt Tz ekt
3 A f g st
T T L R B O LA
g 50 gt ) , e 82000 vevvrTT
E | g
=
o o
1 12 14 16 18 2 1 12 14 16 18 2
Q=(H,0,0) Q=(H,0,0)

Figure 5.10. Right: Measured dispersion and integrated intensity of the excitation
along (h,0,0) at three different fields respectively below, at and above the critical
field. Left: extracted dispersion and integrated spectral weight from the RPA results
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Figure 5.11. Field dependence of the limiting excitation energy at (1 + €,0,1) for
€ — 0. The solid line is an RPA calculation using the full RE Hamiltonian, while
the dashed line is without the hyperfine coupling.

on the basis of a standard rare-earth Hamiltonian. A quantitative analysis of
the magnetization, susceptibility, specific heat and single ion crystal field levels
have been used to fix the parameters of the Hamiltonian. The phase diagram and
the excitation spectrum is qualitatively described by the RE model, but as these
observables depend more critically on the exact eigenstates and eigenvalues of the
crystal field, there are slight discrepancies in the absolute value of the critical field
and of the excitation energies. It is believed that by using the presented neutron
scattering data, these inconsistencies can be reconciled by a careful revision of the
model parameters.
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5.5 Conclusion and perspectives

The two previous chapters reported experimental results that directly provided
new insight into the model systems they were meant to study. The outcome of the
present experiment on LiHoF,; does not directly address the physics of the QPT
that motivated the study.

Instead it has been demonstrated that the effects around what have been de-
noted ”the worlds simplest quantum critical point” (See e. g. Aeppli and Rosen-
baum, 1998) are in fact complicated by hyperfine coupling to the nuclear mo-
ments. But it has also been shown that measurements of the excitation spectrum
are qualitatively understood within the RE model, and can be used to fix the few
undetermined parameters herein.

Even though its Hamiltonian is a bit more complicated than the simple Ising
model, it is one of the few materials where the microscopic Hamiltonian is known,
which can be driven continuously through the QCP. It may not be the simplest
QCP, but as it is very well characterized, it opens possibilities for detailed and
quantitative investigations of a quantum phase transition.
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Chapter 6

Outlook

In summary, this thesis has presented neutron scattering studies of materials that
exemplify three different aspects of quantum magnetism. It has been demonstrated
how this technique provides direct information about the observables of interest.
For CuGeO3; and CFTD new insight was obtained not only into the behaviour
of the specific materials but also about the model systems they represent. For
LiHoF, the outcome has been a bit more modest, but the study has demonstrated
the potential for future studies.

In the following, I have proposed a number of measurements, sub-projects and
complimentary studies. Some of them could possibly provide answers to funda-
mental questions in quantum magnetism. Others are experimental demonstrations
of accepted theoretical predictions. Except for the faint risk that established the-
ories are overthrown, they just serve to please a physicist’ mind. Finally, a few
experiments aim to clarify aspects of the specific materials. The list is intended
both to reflect my own ambitions and to inspire any colleagues in the field. Anyone
should feel free and encouraged to work along these suggestions, but it may be
useful to contact me and make sure that the given experiment has not already
been performed or is in progress.

6.1 CuGeO;

The study of the soliton phase is only one corner of the vast interest in this mate-
rial. The initial puzzle of why CuGeQs is a spin—Peierls material at all, has lately
been answered in terms of hard phonon coupling, but the large body of experimen-
tal data on the spin—Peierls transition and the theoretical developments still need
to be combined in a quantitative description. One really interesting aspect which
has so far only briefly been touched upon is the hybridization between spin and
lattice excitations. As mentioned in chapter 2, the neutron scattering cross-section
holds the potential to probe correlations between the spin and lattice degrees of
freedom. Experimental studies of the spin—lattice excitations could provide impor-
tant progress in the understanding of composite particle systems. Concerning the
soliton phase, the coexistence and hysteresis effects at the C-IC transition have
not been completely described, but more importantly, the excitation spectrum
needs to be better characterized before an attempt of a theory can be properly
tested. The four experiments that I would propose are therefore

e Polarized neutron scattering investigation of the hybridized spin—lattice exci-
tations.

e Measurement of the dispersion, polarization and field dependencies of the
phason mode.
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e Measurement of the dispersion along b and ¢ of the A+ modes in the soliton
phase.

e Search for the longitudinal, incommensurate Ay modes.

6.2 CFTD

Where CuGeQs; is in fact rather far from the simple ideal spin—Peierls model,
CFTD has proven to be a very good realization of the 2DQHAFSL. The 7' = 0
properties of this model are generally well understood, but the experimental
demonstration of the zone boundary dispersion calls for a theoretical understand-
ing of its origin. An additional test of theory would be to see if the spin-wave
amplitude also behaves anomalously around (, 0).

Combined with studies on systems with higher values of the spin, the measure-
ments on CFTD have led to a conclusive determination of the correlation length in
the 2D square lattice Heisenberg antiferromagnet. The situation for the amplitude
So is not equally good. An improvement hereof will either require improvement of
the integration range in a two-axis measurement or better control over the phonon
background in a time-of-flight measurement.

The measurements of the finite temperature dynamics are among the first that
have been reported. Though the temperature dependence of the spin-wave damp-
ing was successfully determined, it is desirable to determine its g-dependence.
Since the signal remains even at quite high damping rates, there is a posibility
that the actual line shape of the damped excitations can be determined.

Finally, there is an entire branch open to studies of the system in applied mag-
netic fields. To begin with, the cross-over in the correlation length to diverge at
the Kosterlitz—Thouless temperature could be investigated.

e Determination of the spin-wave amplitude around (m,0).
e Measurement of Sy over a wide temperature range.

e Measurement of g-dependence and line shapes of the spin-waves.

Complementary triple axis measurements of the damping and pseudo gap
around w = 0.

Application of a magnetic field, correlation length, Tkt etc.

6.3 LiHoF,

The measurements on LiHoF4 aimed to get a ‘text book’ picture of the softening
around the quantum critical point. The situation turned out to be more complex
due to the hyperfine coupling and the dipole interaction. Still, the behaviour of
the system is understood through the rare-earth Hamiltonian. If the final details
of the model could be adjusted to get a complete description, it would allow for a
parameter free analysis of the studies of the yttrium doped systems.

e Precise determination of the lowest crystal field levels in zero field, including
their amplitude, which will provide information on the matrix elements.

e Investigation of the quasi-elastic signal containing the hyperfine splitting.

e Parameter free modeling of the randomization effects in the dilute systems.
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can be studied in a controlled way. In addition, the neutron scattering technique offers a near-
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to form a coherent non-magnetic singlet, where the expectation value of each individual
spin is zero, as if they were ‘hidden’. As a consequence, the ezcitations (called solitons) are
different from the spin waves of a classical system. In a high magnetic field, the solitons
can be condensed to form a periodic lattice. Through neutron scattering measurements,
the structure of this soliton lattice has been determined, and the excitations in the soliton
phase have been identified.

e Cu(DCOO)2-4D-0 is a two-dimensional S = 1/2 Heisenberg antiferromagnet on a square
lattice. The T' = 0 ground state of this system has long range order similar to the classical
system. But the order parameter is reduced by quantum fluctuations, and the physical
observables are renormalized. In particular, it was found that the spin wave dispersion
is non-uniformly renormalized. At finite temperatures long range order is destroyed by
thermal and quantum fluctuations, which act together. Still, there are strong correlations,
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dependence of the correlation length and the excitation spectrum has been measured using
two specialized neutron scattering methods.
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stroyed even at T' = 0 by applying a large magnetic field transverse to the Ising axis.
Ordinary phase transitions occur as a function of temperature, when the thermal fluc-
tuations become strong enough to destroy the order. At T' = 0 there are no thermal
fluctuations and the transition is driven by quantum fluctuations, which are controlled by
some external parameter,in this case the magnetic field. It is important to understand the
universal behaviour of such quantum phase transitions, as several novel phenomena in solid
state physics may be related to the proximity of a quantum critical point. Using inelastic
neutron scattering the behaviour of the excitations around the quantum critical point in
LiHoF4 has been investigated.
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