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In the context of gyrokinetic flux-tube simulations of microturbulence in magnetized toroidal
plasmas, different treatments of the magnetic equilibrium are examined. Considering the Cyclone
DIII-D base case parameter set [Dimits ef al., Phys. Plasmas 7, 969 (2000)], significant differences
in the linear growth rates, the linear and nonlinear critical temperature gradients, and the nonlinear
ion heat diffusivities are observed between results obtained using either an s-a or a magneto-
hydrodynamic (MHD) equilibrium. Similar disagreements have been reported previously [Redd
et al., Phys. Plasmas 6, 1162 (1999)]. In this paper it is shown that these differences result primarily
from the approximation made in the standard implementation of the s-a model, in which the straight
field line angle is identified to the poloidal angle, leading to inconsistencies of order & (e=a/R is the
inverse aspect ratio, a the minor radius and R the major radius). An equilibrium model with
concentric, circular flux surfaces and a correct treatment of the straight field line angle gives results
very close to those using a finite &, low 8 MHD equilibrium. Such detailed investigation of the
equilibrium implementation is of particular interest when comparing flux tube and global codes. It
is indeed shown here that previously reported agreements between local and global simulations in
fact result from the order & inconsistencies in the s-a model, coincidentally compensating finite p*
effects in the global calculations, where p*=p,/a with p, the ion sound Larmor radius. True
convergence between local and global simulations is finally obtained by correct treatment of the
geometry in both cases, and considering the appropriate p*—0 limit in the latter case. © 2009
American Institute of Physics. [DOI: 10.1063/1.3096710]

I. INTRODUCTION tions,*” a further local limit p*=p,/a— 0, with a the minor
radius and p, the ion sound Larmor radius, is assumed and
radial variations of density and temperature, as well as their
gradients, are in particular neglected. This approach is to be
distinguished from global simulations, where the full toka-
mak volume is considered and radial profiles of equilibrium
quantities are taken into account.

In order to gain confidence in the turbulent transport
level predicted by gyrokinetic simulations, benchmarking the
various existing codes for defined sets of physical parameters
is required. The Cyclone base parameters were derived from
a DIII-D discharge in Ref. 5 and have been widely used in
the past years for carrying out such validations and compari-
sons between different codes.

The aim of this work is to discuss and explain differ-

Among different potential technological alternatives for
achieving thermonuclear fusion as an energy source, the to-
kamak, based on an axisymmetric magnetic confinement of a
plasma, has been one of the most studied devices. In a fusion
reactor, the energy and particle confinement times need to be
long enough to obtain a positive energy balance between
injected energy for heating the system and energy produced
by fusion processes in the plasma. Energy and particle losses
observed in magnetic fusion experiments are however well
above those predicted considering purely collisional pro-
cesses. This so-called anomalous transport is believed to re-
sult primarily from small scale instabilities, referred to as
microinstabilities, which are driven by temperature and den-
sity gradients. Understanding microturbulence is therefore of

major interest, as the associated transport, which directly de-
pends on these gradients, determines the minimum size of a
magnetic confinement-based fusion reactor. This microturbu-
lence is widely studied via numerical simulations based on
the nonlinear gyrokinetic equations.l’3

Since microinstabilities tend to have much longer wave-
lengths parallel than perpendicular to the equilibrium mag-
netic field, the computational effort can be significantly de-
creased by using a reduced simulation domain consisting of a
narrow tube, elongated along a given field line, together with
a field-aligned coordinate system. In such flux-tube simula-
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ences observed in gyrokinetic flux-tube computations when
using different magnetic equilibrium models. We investigate
in particular these differences for the Cyclone base case pa-
rameter set considering its importance as a benchmark. Fur-
thermore, we address and clarify the fact that some previous
comparisons between local and global simulations have been
misinterpreted due to such equilibrium issues.

In Ref. 5, flux-tube results were obtained with various
codes, all using the same reduced s-a equilibrium model,8
which provides a simple, comprehensive, analytic model of
essential magnetic equilibrium features and avoids having to
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interface with a magnetohydrodynamic (MHD) code. This
model consists of circular shifted flux surfaces, with s the
shear and « the Shafranov shift between the centers of con-
secutive magnetic surfaces, resulting from the pressure gra-
dient (note that for the Cyclone benchmark, low pressure is
assumed and « is set to zero). However, it has already been
pointed out previously that these simulations may differ
strongly from results obtained using a more realistic mag-
netic equilibrium: In Ref. 9, both s-« and true MHD equilib-
ria were considered, and significant differences in the corre-
sponding linear gyrokinetic results were observed. These
discrepancies were however assigned to the remaining
Shafranov shift present in the low pressure MHD equilib-
rium plasma, which had been neglected in the s-« model.
Furthermore, it was also noted in Ref. 10 that results with an
s-a model significantly differ from those obtained with a
Miller'! geometry in the limit of circular parameters and no
Shafranov shift, but no actual explanation was provided.

In this work, we show that the above mentioned differ-
ences in fact mainly result from the approximation made in
the standard flux-tube implementation of the s-a model, in
which the straight field line poloidal angle (essential for a
flux-tube model using a field-aligned coordinate system) is
identified to the geometrical poloidal angle, which leads to
inconsistencies of order € (e=a/R is the inverse aspect ratio,
a the minor radius, and R the major radius). Indeed, as
shown in this paper, results with a low S, circular boundary
MHD equilibrium are well recovered when using a model
with circular, concentric magnetic flux surfaces which cor-
rectly treats the straight field line angle. Moreover, this
model is straightforward to implement. Note that this rather
technical aspect concerning order & inconsistencies is to be
distinguished from physical finite & effects as those de-
scribed in Ref. 12.

Considering the importance of the Cyclone case as a
reference benchmark it appears essential to shed light on
these geometry issues since they, in particular, lead to a co-
incidental agreement between flux-tube results with s-a
equilibrium and global results with a correct treatment of the
equilibrium at finite p*=1/180, as shall be clearly illustrated
in this work. This particular value of p* is in fact consistent
with the DIII-D discharge from which the Cyclone case is
inspired. It is shown in this paper that a true agreement can
be achieved when the flux tube and global simulations both
correctly treat the equilibrium, and when the global compu-
tation is carried out for conditions approaching the p*—0
limit, intrinsic to the flux-tube implementation.

The remainder of this paper, which can be viewed as a
contribution to the current emphasis on validation and veri-
fication of fusion-relevant simulations,13 is organized as fol-
lows. In Sec. II, the gyrokinetic equations in general axisym-
metric geometry, as implemented in the GENE (Refs. 6 and
14) code, are presented. In Sec. I1I, the different geometrical
models which have been considered for the simulations are
discussed: (1) an ideal MHD equilibrium provided by the
CHEASE code,” (2) an ad hoc, circular, concentric magnetic
flux surface model which provides a simple correction to the
flaws of the s-a implementation, (3) a reminder of the stan-
dard s-a implementation pointing out its order & inconsisten-
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TABLE I. Normalization of independent variables.
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cies. In Sec. IV, we present a detailed comparison between
linear and nonlinear flux-tube simulations using the different
geometrical models. These results are obtained with the
GENE code, and confirmed in the linear regime by simula-
tions carried out with the GS2 (Refs. 4 and 16) and GKW
(Ref. 17) codes considering both s-« and MHD equilibria. In
addition, simulations are carried out with GENE using the
reduced ad hoc circular concentric model, which correctly
treats the straight field line angle. The linear flux-tube results
are then compared to global simulations using the GYGLES
(Ref. 18) code, and agreement in the linear growth rate of ion
temperature gradient (ITG) modes is shown when geometry
is correctly implemented and in the appropriate limit p*— 0
for the global code. Conclusions are drawn in Sec. V.

Il. THE GYROKINETIC EQUATIONS FOR GENERAL
AXISYMMETRIC EQUILIBRIA

The simulations presented below are based on the Eule-
rian flux-tube code GENE,6’14 which solves the nonlinear,
electromagnetic, multispecies, gyrokinetic equations on a
fixed grid in phase space. In this paper, only electrostatic
modes with one ion species and adiabatic electronic response
are considered, and therefore the equations are expressed in
this limit. We consider a Clebsch-type'? field-aligned (x,y,z)
coordinate system in which (x,y) is the plane perpendicular
to the magnetic field B=B,VxXVy, x is a magnetic flux
surface label (radial coordinate in units of length), y labels
the field lines on a given flux surface (binormal coordinate in
units of length), z is an angle-like variable labeling the posi-
tion along the field line (parallel coordinate), and By is a
reference magnetic field amplitude.

In the following, we thus present the electrostatic subset
of the gyrokinetic equations as implemented in the GENE
code, involving a number of terms which depend on the
magnetic equilibrium. The ion particle distribution function
fi 1s split into an equilibrium part f;; and a small fluctuating

part f1;, fi=foi+f1,» where

N ng ox mivf/Z + uB
CQaT/m)>? P T

l

Soilvy, i)

is a local Maxwellian with density n, and temperature 7;.
The fluctuation f}; depends on the (x,y,z,v, ) phase space
coordinates and time ¢, where v is the velocity parallel to the
magnetic field, and w=mv? /(2B) is the magnetic moment.
The normalizations of the different quantities, chosen such
that each normalized quantity is of order unity, are defined in
Tables 1 and II, where v;=\2T;/m; and c,=\ZT,/m; are,
respectively, the ion thermal and sound speed, p,=c,/(}; is
the ion Larmor radius evaluated with the sound speed, and
L, is a reference macroscopic length scale. In addition, gra-
dients of equilibrium quantities are normalized to L, and one
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TABLE II. Normalization of dependent variables.
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defines B=B/ B,. Using this coordinate system and normal-
izations, the gyrokinetic equation for ions reads
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(1)
As in Eq. (1), note that we shall drop the subscript labeling
species-dependent variables as well as the hat for the normal-
ized quantities so as to lighten notations. Here one has de-
fined gj=(9}-f1—(0/v”)(7j(1_>1ﬂfo/avH for j=(x,y,2), @;=vyi/css
and 0,=2Z;T,/T;. The gyroaveraged electrostatic potential is
denoted ®;=J,(\)®,, where J, is the zeroth-order Bessel
function and N>=k% (2u/B). The second term of Eq. (1)
contains the equilibrium gradients driving term, with 1/Ly
=—dInT/dx and 1/L,=-d Inn/dx, it is followed by the
nonlinear E X B drift term. The term containing K, and K,
as well as the following finite pressure term (dp/dx is the
radial derivative of the total plasma pressure) combine the
magnetic curvature and VB drift effects. The coefficients K,
and K, are given by

~ gxxgyz _gyxg)mﬁ

K, = ,
* B? Jz
aB g)fygyz _ g)'ygxz (9B
YT oox B2 oz’

with the metric tensor elements g/=Vu'-Vu/,u',u/=x,y,z.
The pressure term is normalized to p=p/p., and B is de-
fined as B=2p sito/ B(z), where p,s is a reference pressure and
Mo is the vacuum permeability. The last two terms of Eq. (1)
are related to particle trapping in the low magnetic field re-
gion of the magnetic confinement, and both include the Jaco-
bian J=J"*=[(Vx X Vy)-Vz]".

The self-consistent electrostatic potential ® is obtained
by solving the gyrokinetic quasineutrality equation (in nor-
malized units)

Zr [1-To(b)]P, = WZBJ JO()\)fldv”d,u, — (@, —(D))),

2)

with 7=T,/T;,b=[1/(Z; Bk}, K\ =g"k;+g"k;+g kk,,
I'y(b)=exp(=b)I,(b) the scaled modified Bessel function, and
(®,) the poloidal flux surface-averaged value of ®;. The
term on the left hand side of Eq. (2) is the polarization
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density, the first term on the right hand side is the perturbed
ion gyrodensity, and the second term is the linearized adia-
batic electron response.

The magnetic equilibrium thus enters the problem via
the magnetic field amplitude B(z), the Jacobian J(z), the cur-
vature terms K,(z) and K,(z), the pressure gradient dp/dx,
and the metric tensor elements g(z) appearing in the
quasineutrality equation through the perpendicular wave
number k,. Note that the pressure term is not taken into
account in the following since low [ equilibria are consid-
ered.

lll. EQUILIBRIUM MODELS

In this section, the different models which have been
considered for describing the background magnetic equilib-
rium are presented.

A. Interface with the MHD equilibrium code CHEASE

One option in the GENE code is to obtain the relevant
geometrical coefficients from realistic equilibria via an inter-
face with the MHD equilibrium code CHEASE,15 which solves
the Grad—Shafranov equation. CHEASE provides equilibrium
quantities in the straight field line coordinate system
(W, x, ), where V¥ is the poloidal flux function, y is the
straight field line poloidal angle, and ¢ is the toroidal angle.
These quantities are then transformed to the field-aligned
coordinate system (x,y,z) used in GENE according to the
relations

x=ﬂ‘lf—x0,

.
y="(gx-® -yo 2=X- (3)
roBo 90

where r( is taken here as the geometrical radius at the equa-
torial midplane of the magnetic surface considered in the
flux-tube computation, B is a reference magnetic field, g is
the safety factor at the considered flux surface, and (xy,y,)
define the center of the flux tube. The metric tensor in

(x,y,z) coordinates is expressed in terms of the metric tensor
in (¥, x, @) coordinates using the relations

Vx=qo/(roBy) V'V,
Vy=(ro/qo)lg'x V¥ +qV x-Vol, 4)
Vz=Vy,

which leads to

2

90 1

g%= ( ) g™, gV=—(q'x¢"" +qg",
roBy By

2
, 0] ,
gV= (;) [(@')x’e™™ +2qq' xg" ¥ + ¢’ + g**],
0

(5)
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FIG. 1. Circular flux surface and (r, 6, ®) coordinates.

9o :_To
g9=—"g"  ¢%="(q' xg "X+ qg"Y),
roBo q0
g =gX,

with ¢'=dq/dV. The other required quantities are dB/dx
=(roBy/qo) 9B/ 3V, 0B/ dz=3IB/dx, and J2*=BJYX®, where
J%¢=[(VaxVb)-Vc]'. In the local approximation, which
underlies flux-tube simulations, one neglects the
x-dependence of all equilibrium quantities across the simula-
tion domain. All geometrical coefficients therefore only need
to be known on the magnetic surface of interest (x=x,), and
are thus only functions of z in the axisymmetric system con-
sidered here. Axisymmetry of the considered equilibria in-
deed translates into the independence with respect to y of the
coefficients. The CHEASE code has been modified to directly
provide these coefficients on the z-grid required by GENE,
i.e., an equidistant mesh along the straight field line angle Y,
and no further interpolation is required, thus taking advan-
tage of the high precision cubic Hermite representation used
in the equilibrium code. For the simulations in this paper, the
MHD equilibria have been computed by prescribing the ana-
lytical shape of the last flux surface, together with pressure
and current profiles. Note that the GENE interface with the
CHEASE code is an alternative to its interface with the
TRACER (Ref. 20) code to obtain geometrical coefficients for
realistic geometry.

B. Model with circular concentric flux surfaces

In addition to the CHEASE interface, one also considers
an ad hoc, analytical, axisymmetric, magnetic equilibrium
model assuming circular, concentric flux surfaces. It is de-
rived using the (r, 6, ¢) coordinates (see Fig. 1), where (r, 6)
are poloidal coordinates in the (R,Z) plane such that R=R,
+rcos fand Z=r sin 6, ¢ is the toroidal angle, and (R,Z, ¢)
are cylindrical coordinates. The poloidal flux function V¥ is
prescribed to depend only on r, ¥=V(r), and one assumes
that dV/dr=rB,/ g, where g(r) is an ad hoc profile related to
the true safety factor ¢(r), as shown below in Eq. (6). The
length R thus appears as the major radius at the magnetic
axis, i.e., at r=0. The toroidal magnetic component is pre-
scribed to be given by B,=R,B,/R, with R=R(1+€ cos 6),
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where e=r/R is the inverse aspect ratio of a given magnetic
surface. This leads to a magnetic field representation
B=V¢XV¥+RB,V ¢=R\B,/R[e,+r/(Ryg)e,], where e,
and e, are the unit vectors along the toroidal and poloidal
direction, respectively. The safety factor profile ¢(r) is then
given by
2m —
q)= | BTy GO (6)
2T 0 B-Vé V1= 62

The straight field line angle y is defined such that
(B-V¢)/(B-Vy)=q, which leads to the relation dy/d@

=B-V¢/(¢gB-V0). Integrating over 0 yields
l-€ < 0)
tan{ — | |.
l+e€ 2

0
X(r,0) = lf BV 19 -2 arctan{
(7)

qgly B-V¢
This leads to the following metric tensor in (W, x, ¢) coor-
dinates:

«w=ﬁ gxx=l @4_ esin’y

7’ 2lRP T (1-&72 ]

Bye sin y 1
Ty_ _20= bb_ 3
8 - &R (8)
g‘1’¢=gx¢=0‘

The geometrical coefficients are then written in the (x,y,z)
coordinate system using Egs. (5) and (8). Even though simu-
lations presented in the following use the exact expressions,
we explicit here the corresponding metric coefficients to first

order in €,
gF=1, g¥=§xy—e€siny,

g7 =1+ (§x)> —2€cos y—2§xesin x,

)
. €sin y 1—2€ecos y—Syesin y
g§r=- > gyZ: >
o To
. 1-2ecos x
8= B .
o

where the magnetic shear is §=(r/q)dg/dr=(r*Byq')/(qq)
and from Eq. (7) one has y=6-e€ sin 0+ O(€).

C. s-a model

Finally, let us review the standard implementation of the
so-called s-a model for «=0. One again considers a circular,
concentric, magnetic surface geometry as in the previous
model. The (x,y,z) coordinates are defined as in Eq. (3)
except for the straight field line angle x which is approxi-
mated to the geometrical angle 6 so that y=(ry/q)(q0— )
—yo and z=#6. Despite this approximation, (x,y,z) is still
considered here as a field-aligned coordinate system. The
metric coefficients to first order in € are as follows:
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g¥=1, g9=350, g¥=1+(0)7 g=<=0,
(10)
@ =1/ry, g5=1/r}.

A comparison with Eq. (9) exhibits differences of order e
between the two models, which points out that the approxi-
mation concerning the straight field line angle is only valid
in the limit of an infinite aspect ratio tokamak (e=0). Nev-
ertheless, in order to retain trapping effects, the magnetic
field amplitude is still defined for this model as

B _Bs_Ro

=—=1/(1+ 0), 11
B B, R (1+€ecos 6) (11)

thus keeping finite aspect ratio terms. On the other hand,
from the definition of the field-aligned coordinate system,
one has B=B,Vx X Vy, which, from the metric coefficient
(10) implies

(B/By)* = (Vx X Vy)* = (Vx)*(Vy)* = (Vx - Vy)?
() =1. (12)

Comparing Eq. (11) with Eq. (12) underlines an inconsis-
tency of order € in the s-a model, namely, the metric is
computed as if e=0 but the magnetic field amplitude still
retains an € dependence. As will be shown in Sec. IV, this
inconsistency leads, for finite € cases, to significant differ-
ences between microturbulence simulations considering the
s-a model and simulations using either a MHD equilibrium
or the previous concentric, circular model.

=g g —

IV. CYCLONE TEST CASE

In the following, Cyclone-like parameters5 are consid-
ered, namely, n,=n,, T,/T;=1, q=1.42, §=(p/q)dq/dp
=0.8, and ¢=ry/Ry=0.18. Here, the normalized radial
variable is defined for the MHD equilibrium as p=\®/®,,
@ is the toroidal flux, and ®, is the value of the toroidal flux
at the edge. For the ad hoc circular and s-« models, one
identifies p=r/a. The gradient values are defined at p=p,
=0.5 as Ry(VInT;)=6.96, R,V Inn)=2.23, where (A)
=[AJdx/ [Jdy is the flux surface average of any quantity A.
Note that the parameter Ly; in Eq. (1) is estimated as follows:

B dinT; (|Vx])
(VInT)= <|Vx|) e Lo
1 (VIn T)
- Ly T (Val) (139

with a similar relation for L,. We shall first focus on flux-
tube computations and then compare these results to corre-
sponding global ones.

A. Linear flux-tube results

Before considering nonlinear results, we first compare
linear simulations using the three different equilibrium mod-
els described in Sec. III. Figures 2 and 3 show the linear
growth rates and real frequencies of toroidal-ITG modes, re-
spectively, as a function of the poloidal wave number k, in

Phys. Plasmas 16, 032308 (2009)
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FIG. 2. (Color online) Growth rate as a function of the poloidal wave
number k, of linear ITG modes for the Cyclone test case considering three
different équilibrium models: MHD (circles: GENE; crosses: Gs2; triangles:
GKW), s—« (diamonds: GENE; squares: Gs2), and ad hoc circular concentric
(stars: GENE).

units of p,, where p, has been evaluated with T,(p,) and the
magnetic field B, on axis. The results have been obtained
from the flux-tube codes GENE, GS2, and GKW [formerly
known as LINART (Ref. 17)] using an MHD equilibrium or
the usual s-a model, as well as from a GENE simulation using
the corrected circular model. The MHD equilibrium used
here is computed with the CHEASE code such that the last
closed flux surface is circular and the Cyclone local param-
eters are matched at py=0.5. The pressure profile is chosen
such that the value of B=(p)2u,/B? is small (~107°), where
(p) is the volume-averaged pressure, and the current profile
is adjusted so as to obtain the required value of the shear § at
po- The growth rates and frequencies are of the order of the
ion diamagnetic frequency which itself is of order c,/L..,
where L. is a characteristic gradient length of the system.

0.8

0.2f

0 0.2 0.4 0.6 0.8

FIG. 3. (Color online) Real frequency spectra of linear ITG modes for the
Cyclone test case considering different equilibrium models. Same labels as
in Fig. 2.
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FIG. 4. (Color online) Geometrical coefficients for different equilibrium
models: MHD (solid line), s-a (dashed line), and ad hoc circular concentric
(dashed-dotted line).

Choosing L..;=L,, frequencies and growth rates are thus nor-
malized to ¢,/L,. This is the same normalization as consid-
ered in Ref. 5, which facilitates comparisons.

As clearly appears in Figs. 2 and 3, significant differ-
ences are observed, in agreement with Ref. 9, when compar-
ing results using the reduced s-a model or the MHD equi-
librium and, in particular, the maximum linear growth rates
differ by almost a factor of 2. However, when using the
analytical circular model, agreement with the MHD equilib-
rium case is reached within 10%. This latter point clearly
shows that the differences observed in this finite aspect ratio
circular cross section geometry between simulations consid-
ering either the s-a or a realistic MHD equilibrium mainly
result from the inconsistencies of order € in the s-a& model
pointed out in Sec. III C. By exchanging one geometrical
term at a time in GENE’s equations between the s-a model
and the circular analytic model, it can be shown that the
differences result primarily from the discrepancies in the g”¥
and K, terms. In Fig. 4, the most relevant geometrical coef-
ficients are plotted as a function of y for the different equi-
librium models described in Sec. III. The g** and K, terms
present the largest relative differences in the vicinity of y
=0 where ITG modes balloon. Furthermore, we note that the
difference in the g** term does not have a significant effect
on the linear results, since it is the mode with k,=0 which is
the most unstable, corresponding to the perpendicular wave
number k% = gyyki.

GENE simulations using the three different equilibria
have also been compared for various values of the tempera-
ture gradient while keeping all other parameters as in the
Cyclone test case. In Fig. 5, the maximum linear growth rate
over all k, for ITG modes is given with respect to the nor-
malized, flux surface-averaged temperature gradient
R(V In T;). The linear critical temperature gradient obtained
when using the s-a model is found around Ry(In V T;)=4,
which is in agreement with Ref. 5, and is decreased to
Ro{In T;)=3 for realistic MHD equilibrium models as ob-
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FIG. 5. (Color online) Growth rate of the most unstable ITG mode as a
function of the ITG for MHD (circles), ad hoc circular concentric (stars),
and s-a (crosses) equilibrium models. All other parameters as in the Cy-
clone test case.

served in Ref. 9. We note again that the MHD results are
well recovered using the circular ad hoc equilibrium. This
observation is of particular importance when using critical
gradient values in semiempirical transport models.”!

B. Nonlinear flux-tube results

As in the linear case, nonlinear simulations considering
Cyclone test case parameters show strong discrepancies be-
tween results using s-a and MHD equilibria, while compu-
tations using the corrected circular model recover well those
obtained with the MHD equilibrium.

Nonlinear simulations with the three different equilibria
have been compared for Cyclone base parameters, with a
numerical resolution n,Xn,Xn, Xn,Xn,=128X48X 16
X 32X 8 and a perpendicular flux-tube box of dimensions
L, X L,=118p; X 96p,. Figure 6 shows the ion heat diffusiv-
ity time trace. When using the MHD equilibrium, the time-

8 : : : : :
—__MHD, < >=4.09

oS0, <Y > = 2.12

_ad-hoc, <y = 3.74 i

0 50 100 150 200 250 300
tcS/R

FIG. 6. (Color online) Ion heat diffusivity x; obtained by nonlinear GENE
simulations for the Cyclone test case using MHD (solid line), s-a (dashed
line) and ad hoc circular (dashed-dotted) equilibrium models.
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FIG. 7. (Color online) k, spectra of time-averaged ion heat diffusivity x,(,)
obtained via nonlinear GENE simulations for the Cyclone test case using
MHD (circles), s-a (crosses), and ad hoc circular (stars) equilibrium
models.

integrated ion heat diffusivity y; is estimated at x,L,/(p’c,)
=4.1 (corresponding to x;/xgg=3.3, using the standard
Gyro-Bohm normalization XGB:pch/a), which differs by
almost a factor of 2 from the value obtained using the s-«
model, for which x,L,/(p*c,)=2.1 (xi/xgs=1.7). We note
that the value y; for the s-« case agrees with the LLNL GK
fit

XL (plc,) =15.4[1.0 = 6.0(L;/R)] (14)

presented in Ref. 5, which also provides x,L,/(p’c,)=2.1 for
R/Ly=6.96. The simulation using the ad hoc circular model
gives x;L,/(pic,)=3.7 (xi/ xgz=3.0) and thus agrees within
10% with the result using the MHD equilibrium. Strong dis-
crepancies, for slightly different physical parameters, be-
tween nonlinear simulations using either the s-a model or a
corrected circular equilibrium obtained from the Miller
model'! were also stated in Ref. 10, but no detailed explana-
tion of the actual cause was provided.

In Fig. 7 the time-averaged ion heat diffusivity spectrum
Xi(ky), defined such that ;== X;(k,), is presented as a func-
tion of the normalized poloidal wave number k,p,. The spec-
trum obtained using the s-« model strongly differs from the
ones using either the ad hoc circular model or the MHD
model, especially for kyp, above 0.2 which corresponds to its
maximum amplitude.

Figure 8 shows the time-averaged ion heat diffusivity
using both the s-a and MHD models for different values of
the temperature gradient. The nonlinear critical gradients
R/ L, are shifted upward with respect to the corresponding
linear critical gradients according to the well known
Dimits-shift’ effect. For the s-a model, the resulting R/ Ly
is around 6, identical to results in Ref. 5, and contained in the
fit given by Eq. (14), while its value is around 5 using the
MHD equilibrium.

Phys. Plasmas 16, 032308 (2009)

Linear R/L.. .
Tcrit
MHD

FIG. 8. (Color online) Ion heat diffusivity y; for the Cyclone test case as a
function of the ITG. Results are given for simulations using either the MHD
(circles) or the s-a (crosses) equilibrium model.

C. Linear comparison with global simulations

In view of the significant effects on the linear growth
rates and nonlinear diffusivities from the approximations in
implementing the s-a model in the flux-tube simulations, the
agreements between these same flux-tube results and global
simulations reported in Ref. 5 appear surprising. Indeed, no
similar approximations in implementing the equilibrium in
the global simulations had been made. In order to address
this apparent paradox, such local-global comparisons are re-
peated for linear simulations using GENE and the global, lin-
ear PIC code GYGLES.'® Global simulations, which consider
the entire tokamak volume, are expected to approach the
flux-tube results for p*=p,/a—0, where a is the minor ra-
dius. Note that the limit p*=p,/a— 0 is the assumption made
in the standard flux-tube approach; this is in particular re-
flected by the fact that one neither accounts for the radial
dependence of plasma density and temperature profiles and
their gradients, nor for the radial dependence of magnetic
equilibrium metric coefficients.

The GYGLES code is run using an analytical equilibrium
with concentric, circular flux surfaces, identical to the one
described previously in Sec. III B, with no further approxi-
mations on the geometry. The ad hoc safety factor profile is
chosen to be §=0.854+2.184(r/a)?, corresponding to g(ry)
=1.4 and 5(ro)=(ry/q)dq/dr(ry)=0.78 at ry/a=0.5 so that
the values of the actual safety factor and shear assume the
values of g=g/(1-€)"?=1.42 and §=5+€/(1-€2)=0.8
used for the local simulations in the previous section. The
temperature and density gradient profiles are defined as

RydT r—r
0= __ Ky COSh_2< 0),

T dr Ar
(15)

Ryd -
_O_nZ—Kn cosh‘2<r rO),
n dr Ar

with peak gradients k;=6.96, k,=2.23 matching those con-
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FIG. 9. (Color online) Growth rate spectra of linear ITG modes for the
Cyclone test case as computed by the flux-tube code GENE and the global
code GYGLES. GENE was run with either the s-a (crosses) or circular analyti-
cal model, and for the latter considering the polarization drift term I'; either
to all orders in k | p, (circles) or only to second order (stars). GYGLES results
are given for p*=1/140 (diamonds) and p*=1/1120 (squares).

sidered in the GENE simulations and the radial width of the
global profiles is chosen as Ar=0.3a.

In Fig. 9, growth rates of ITG modes from GENE simu-
lations using different geometrical models are plotted with
respect to the poloidal wave number k,p, and for GYGLES
results for different values of p*. The ratio p* is varied by
rescaling the major and minor radii R, and a. For plotting
results obtained from the global GYGLES code for a given
toroidal wave number n, one makes use of the relation ky
=nqy/ ro. Indeed, using Eq. (3), one obtains

AW x. ) = A )" = A x)elrox-rao oo
= uzl(x,z)e‘”‘)’y . (16)

A first series of global simulations with a value of p*
=1/140 yields a ky-spectrum which basically matches the
flux-tube simulations using the s-a geometry. A second k,
spectrum obtained with the global code for the lower value
p*=1/1120 is however in closer agreement with the GENE
results using the circular analytical model. Details of the
convergence in p* of the GYGLES results going from p*
=1/70 to p*=1/1120 is shown in Fig. 10 for the fixed po-
loidal wave number kyp,=0.3. One notes that the apparent
match, previously published in Ref. 5, between the global
results for 1/p*=180 (which is very close to the actual pa-
rameters of the DIII-D Tokamak from which the Cyclone
case is inspired) and the flux-tube s-« results is purely coin-
cidental. However, when decreasing p* toward zero, the glo-
bal simulation results truly converge toward the flux-tube
results with correct treatment of the geometry, as clearly il-
lustrated in Figs. 9 and 10.

In Fig. 9, one observes that there are nonetheless some
remaining differences between the local and global results at
the largest considered value 1/p*=1120, which increase with

kyps. Part of this deviation is related to the different imple-

Phys. Plasmas 16, 032308 (2009)

0.2 ,
1
: GENE circ.
| s
0 ] Ui
0.15 : -l
- - - —I ——————————————————————
€ o I
= b 1 4
e ! GENE s—o
I
0.05} : :
1
: ™ GYGLONE DIIl-D
0 | 1 L 1 /'t
0 200 400 600 800 1000 1200

1/p*

FIG. 10. (Color online) p* scaling of the ITG growth rate at k,p,=0.3 for the
global code GYGLES. GENE results are obtained with the s-a or the circular
analytical equilibrium model.

mentations in the two codes of the quasineutrality equation.
Indeed, taking advantage in the flux-tube calculation of the
assumed periodicity in both the x and y directions, it is
straightforward to express the polarization drift term in Fou-
rier representation to all orders in k, p,. This term is repre-
sented in Eq. (2) by the modified Bessel function I'y(»). On
the other hand, in the global code GYGLES, the polarization
drift term in the quasineutrality equation is handled in real
space by a second order differential operator, corresponding
in Fourier space to a second order Taylor expansion in k| p
of I'y(h). As shown in Fig. 8, a better agreement is thus
obtained if one introduces the same approximation I'y(b)
=1-b+0(?) =1 —ki/ 7B? in the flux-tube simulation. Note,
that there still remain additional differences between the
GENE and the GYGLES implementation of finite Larmor radius
effects: In GYGLES the perturbed ion gyrodensity and the

gyroaveraged potential @, are only evaluated up to second
order in k, p,, whereas all orders are retained in GENE
through the zeroth-order Bessel function Jy(\) appearing

both in the relation ®,=J,(\)®,, as well as in the gyroden-
sity, i.e., the first term on the right hand side of Eq. (2).

V. CONCLUSIONS

In the present paper, we have investigated the influence
of different treatments of the equilibrium in linear and non-
linear gyrokinetic simulations. The results presented here
were focusing on the Cyclone DIII-D base case parameter set
considering its importance as a reference benchmark. It has
been shown that the significant differences obtained in linear
and nonlinear simulations when using the s-a model or a
circular MHD equilibrium mainly result from approximating
the poloidal angle to the straight field line angle in the stan-
dard implementation of the s-a model, which leads to incon-
sistencies of the order of the inverse aspect ratio €. These
differences reach a factor of almost 2 in the predicted turbu-
lence induced heat flux for the standard Cyclone parameters.
It is also found that using the s-a model the linear and non-
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linear critical gradients R/Ly . are overestimated by at least
20%. As a consequence, one should not only be aware of
these discrepancies when comparing flux-tube codes among
each other, but also when applying flux-tube results, and in
particular the so-obtained critical gradients, to semiempirical
transport models.

When considering a circular, concentric analytical equi-
librium model which correctly treats the straight field line
angle, one obtains good agreement with simulations using a
true MHD equilibrium. This improved analytic model is ap-
plicable to both local and global simulations and is straight-
forward to implement in flux-tube codes.

The importance of using a correct geometrical model is
of further interest when comparing results from flux-tube and
global codes. In particular, it was shown in this paper that the
previously reported apparent agreement between flux tube
and global simulations’ had resulted from the unfortunate
combination of two different effects, namely the inconsisten-
cies of order € in the equilibrium model of the flux-tube
codes and the physical finite size p* effects in the global
simulations. True convergence between linear flux-tube re-
sults with a correct treatment of the geometry and global
simulations in the appropriate limit of p*—0 was demon-
strated. In this respect, it is also interesting to note that the
nonlinear p* scan in Ref. 22, using the global code GTC,
converges to a value of x;/ xgg==3.4, which is in good agree-
ment with our value of x;/ xgg=3.0 obtained with GENE us-
ing the corrected circular model. On the other hand, global
GYRO results, in Ref. 23 converged toward the value of
Xi/ Xgg = 1.9 in the limit p* — 0, which is also in good agree-
ment with the value of y;/ ygg=2.1 obtained with GENE us-
ing the s-a model.
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