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   C
lassical digital signal pro-
cessing (DSP) lore tells us 
the tale of a continuous-time 
primeval signal, of its brutal 
sampling, and of the magic 

sinc interpolation that, under the aegis of 
bandlimitedness, brings the original 
signal back to (continuous) life. In this 
article, we would like to switch the con-
ventional viewpoint and cast  discrete-time 
sequences in the lead role, with continu-
ous-time signals entering the scene as a 
derived version of their gap-toothed 
archetypes. To this end, we will bring 
together some well-known but seldom-
taught facts about interpolation and 
vector spaces and recall how the classic 
sinc reconstruction formula derives natu-
rally from the Lagrange interpolation 
method. Such an elegant and mathemati-
cally simple result can have a great edu-
cational value in building a solid yet very 
intuitive grasp of the interplay between 
analog and digital signals. 

 Traditionally, the standard pedagogical 
approach to discrete-time signal process-
ing has long suffered from what we may 
call a “platonic complex” of sorts: much 
as in the myth of the cave, the discrete-
time world is often introduced as a tribu-
tary notion to the “real” continuous-time 
universe. If we consider the merry-go-
round in  Figure 1 , which links discrete- 
and  continuous-time signal processing, it 
is clear that one can choose either domain 
as a starting point. Historically, however, 
when electronic circuits and analog 
design still constituted the backbone of 
applied signal processing and communi-
cations, teaching practice would invari-
ably start with continuous time and only 
later introduce the “magic” sampling and 
interpolation  formula credited to Shannon 

 [1]. M ost of the classic textbooks used 
today still follow this approach  [2], [3] . 

O n the other hand, the majority of 
our information sources now are digital, 
and most of the data that we enjoy in 
myriad different formats has basically 
been “born digital.” With the Internet 
seeming to displace physical reality, it is 
tempting to introduce signal processing 
by way of discrete-time sequences first, 
and indeed recent books have embraced a 
view in which signals are considered pri-
marily as computer-generated sequences 
 [4], [5] . By building on standard linear 
algebra, one can quickly assemble a work-
able set of signal processing notions, a 
task greatly aided by the ready availability 
of numerical packages and online inter-
active applications. A difficulty in this 
otherwise compelling hands-on approach 
is the pesky transition from the discrete 
to the analog world, which sooner or 
later must be tackled to reconcile our 
physical senses with digital entities. If the 
focus is mainly on the operational side of 
things (by insisting, for example, on prac-
tical interpolation circuits), one fails to 
build a solid bridge between the two dif-
ferent abstractions represented by dis-
crete and continuous time. More often 
than not, sampling and interpolation end 
up retaining an esoteric sheen. 

 Starting to explain signal processing 
from the discrete-time point of view is, 
however, an undeniably “natural” 
approach: in practice, any  observational  
experience involving real-world signals 
amounts to a countable series of mea-
surements (think of your primary school 
projects involving precipitation levels or 
seasonal temperature records). Luckily, 
the transition to the continuous-time 
paradigm can be mathematically mean-
ingful without sacrificing immediateness, 
and it is surprising that the way to do so 
does not appear more prominently in the 
signal processing curriculum. As we will 
illustrate shortly, a simple algebraic tech-
nique called Lagrange interpolation leads 
naturally to the sinc reconstruction for-
mula. Polynomial interpolation schemes 
such as Lagrange’s emerged centuries 
ago in the context of practical, hands-on 
numerical problems so that their connec-
tion to the sampling theorem has a great 
pedagogical value, together with the 
added virtue of requiring only elementary 
mathematics. Similarly, the same linear 
algebra framework can be used to com-
plete the circle in  Figure 1  by casting 
Shannon sampling as a basis expansion 
in a Hilbert space. In so doing, bandlimit-
edness appears as a structural property of 
the space rather than a somewhat myste-
rious (if physically meaningful) require-
ment of the analog signal. 

 Today, many promising research 
topics in signal processing are spurred by 
a keen interest in nonsubspace sampling. 
Compressed sensing, compressive sam-
pling, and sparse sampling, for instance, 
are all extensions of the Shannon sam-
pling framework in which the classic sub-
space structure is no longer applicable 
 [6] . We like to think that, amidst the 
excitement of many new theorems, 
“revisiting the classics,” as we are doing 
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 [FIG1]  The time domain merry-go-round 
(aliasing not included).
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here, and finding long threads of histori-
cal continuity is not only a nice exercise 
but also a source of inspiration.  

 FROM DISCRETE TO 
CONTINUOUS TIME 
 Consider an  N -point discrete-time signal 
x 3n 4, and look at the problem of manufac-
turing an associated continuous-time ver-
sion x 1t 2 . The first step is to move from 
the abstract integer index  n  to a veritable 
time interval; to do so, we must define our 
time base, which is simply how much time 
we “wait” between sample values. Call this 
duration  T,  and note that  T  is now 
expressed in actual  seconds . Then, we 
need to somehow draw a function of time 
x 1t 2  that “fills the gaps” between the 
beginning ( t5 0)  and the  end 1t5 1N2 1 2T) of this brand-new contin-
uous-time signal. While there is clearly an 
infinite number of ways to do that, the fol-
lowing two requirements seem to be all 
but unavoidable: 

 the two signals’ values must coin- ■

cide where discrete and continuous 
times meet: x 1nT 2 5 x 3n 4 

 the continuous-time signal should  ■

be  smooth . 
 Smoothness is a very natural require-
ment for a signal that is supposed to 
model a real-world phenomenon. Just as 
Nature abhors a vacuum, she likewise 
abhors abrupt jumps, either in magni-
tude or in slope. Happily, ultimate 
smoothness is very simple to express 
mathematically since it corresponds to 
the existence of an infinite number of 
continuous derivatives; in other words, 
we require x 1t 2  to be of class C`, where 
the notation CN indicates the set of func-
tions possessing  N  continuous deriva-
tives. Conveniently, the maximally 
differentiable curve through a set of  N  
data points is known to be the unique 
polynomial interpolator of degree N2 1

   P 1t 2 5 a01 a1t1 a2t
2

 1c1 aN21t
1N212 (1) 

 which, like all polynomials, belongs to C`. 
Computation of the interpolator’s  N  coef-
ficients is a classic algebraic problem, 
thoroughly solved in the 17th century by 
Newton, among many others. Numerically, 

one way to arrive at the solution is to work 
out the system of  N  equations 

 5P 1nT 2 5 x 3n 4 6n50,1, c, N21, 

 which can be carried out algorithmically 
using Pascal’s triangle, for instance. 
However, a much more interesting 
approach is to consider the vector space of 
finite-degree polynomials over an interval: 
any element of such a space can be 
expressed as a linear combination of 
simple polynomial basis vectors. The 
interpolator in  (1)  is clearly written out as 
a linear combination of the  monomial  
basis vectors 51, t, t2, c, tN216, but for 
the task at hand a much more interest-
ing and appropriate basis is the set of 
 Lagrange polynomials . 

 Before we explore the concept in more 
detail, let us make a couple of notational 
simplifications, which entail no loss of 
generality. First, let’s set T5 1 unit of 
time, so that we can get rid of one unnec-
essary symbol. Second, let’s consider 
finite-length signals whose support is 
symmetrical around n5 0, i.e., odd-
length signals of length 2N1 1 extending 
from n52N  to n5N; with T5 1 the 
continuous-time interpolation interval is 
therefore the closed interval I5 32N, N 4  
and the interpolation nodes are the inte-
gers from 2N  to  N . The  uniform  
Lagrange polynomial basis for the inter-
val  I  is the family of  2N1 1  polynomials 

 L1N2n 1t 2 5 q
N

k52N,   k2n

 t2k

n2k

 n52N, c, N , (2) 

 each of which is a polynomial of degree 
2N . As an example, the family of five 
polynomials for N5 2 is shown in 
 Figure 2 . If we use Lagrange polynomi-
als, writing out the smoothest interpola-
tor for a discrete-time signal of length 
2N1 1 becomes a borderline trivial task; 
indeed we have simply 

  xL 1t 2 5 a
N

n52N
x 3n 4  Ln

1N2 1t 2  (3) 

 or, in words, we have that the smoothest 
interpolator is simply the linear combina-
tion of the Lagrangian basis vectors in 
which the scalar coefficients are the dis-
crete-time samples themselves. The valid-
ity of the above statement comes from two 
facts: 1) xL 1t 2  above is indeed a polyno-
mial of degree 2N , and 2) xL 1t 2  indeed 
interpolates the discrete-time signal since 
an immediately verifiable property of 
Lagrange polynomials is 

L1N2n    1m 25•1  if n5m
     2N# n, m#N

0 if n2m
  

 from which xL 1n 2 5 x 3n 4. As an example, 
 Figure 3  shows how the five polynomials 
Ln
122 1t 2  beautifully come together to inter-

polate a five-tap signal; note that, at all 
times, all five basis polynomials c ontribute 
to the instantaneous value of the interpo-
lated signal.      

 Although it elegantly solves the prob-
lem at hand, Lagrangian interpolation 
suffers from a couple of very serious draw-
backs, the worst of which is that  the set of 
basis functions changes completely for 

0 1 2–1–2

0

0.5

1.0

1.5

–0.5

 [FIG2]  The family of Lagrange polynomials Ln
(2)(t); L0

(2)(t) is drawn in red, L61
(2) (t) in blue 

and L62
(2) (t) in green, with lighter shades indicating negative indices.
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different signal lengths . From an engi-
neering point of view, it is obvious that we 
would like a more universal interpolation 
machine rather than having to redesign 
our interpolator as a function of the 
input. The second drawback, which is just 
as bad, is that polynomial fitting tends to 
become numerically unstable when the 
polynomial degree grows large. A way out 
of the impasse is to relax at least partially 
the smoothness constraint. This leads to 
simpler interpolation schemes that, very 
attractively from a practical point of view, 
do not suffer from either limitation. 
Consider for instance the classic zero-or-
der hold (ZOH): all the rest being equal 
(interpolation interval and so on) the 
ZOH operates by producing a continuous-
time signal x0 1t 2  in which the signal’s 
value is kept constant around interpola-
tion nodes 

 x0 1t 2 5 x 3 :t1 0.5; 4,  2N # t # N, 

which  is shown in  Figure 4  for the same 
five-point signal as in  Figure 3 . The above 
expression can be rewritten as 

  x0 1t 2 5 a
N

n52N
x 3n 4rect 1t2 n 2 , (4) 

 which highlights several interesting 
facts. First of all,  (4)  looks a lot like  (3) , 
 except  that now the continuous-time 
term in the above sum is no longer 
dependent on either the length of the 
interpolation or on the discrete-time 
index in ways other than a simple time 
shift. The ZOH therefore creates a con-
tinuous-time signal by stitching 
together delayed and scaled versions  of 

the same prototype function , thereby 
effectively implementing an interpola-
tion machine that works independently 
of the signal’s length. Conceptually (and 
electronically), this defines a very 
simple device in which the instanta-
neous output value depends only on the 
most recent discrete-time value injected 
in the interpolator; the interpolation 
scheme is therefore  local , in the sense 
that it uses only a fixed (and finite) 
number of input values at a time. By 
contrast, the Lagrange interpolator is 
 global , since  all  discrete-time points are 
necessary to produce any single value of 
the continuous-time signal. 

 We can generalize the ZOH’s paradigm 
to encompass local interpolators for which 
the output has the form of the “mixed-do-
main” convolution 

  x 1t 2 5 a
N

n52N
x 3n 4I 1t2 n 2 , (5) 

 where I 1t 2 , called the  kernel , is a compact-
support function fulfilling the fundamen-
tal interpolation properties 

•  I 10 2 5 1

 I 1t 2 5 0  for t a nonzero integer.
  

 Note that the kernel is  time invariant  in 
that it does not depend on the time 
index; the combination of this property 
with the linearity of the formula in  (5)  
shows that we can interpret interpola-
tion as a “filtering” operation across 
time domains. Let us consider the first-
order kernel, for instance 

I1 1t 2 5 •12 |t|   if |t| , 1

0   otherwise;
  

 the triangular function I1 1t 2 , which is of 
class C1, provides an interpolated signal 
that is the basic “connect-the-dots” line 
between the discrete-time points, as shown 

 [FIG3]  Maximally smooth Lagrange interpolation of a length-five signal.
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 [FIG4]  ZOH interpolation of a length-five signal; shown in orange are the delayed and 
scaled replicas of the rectangular interpolating kernel I0(t).

I3 1t 2 5 •1.25|t|32 2.25|t|21 1 for |t| # 1
20.75 1 |t|32 5|t|21 8|t|2 4 2 for 1 , |t| # 2
0 otherwise.
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in  Figure 5 . Again, this is a local interpola-
tion machine since all values of the 
 continuous-time signal depend on at most 
two neighboring  discrete-time samples. 
Next in line is the cubic interpolator  [7]  
(even-degree kernels are not considered 
since they are not  centered in zero), shown 
in the box at the bottom of the previous 
page. T  his kernel’s support is four, and, 
as a consequence, the values of the con-
tinuous time signal depend at most on 
four neighboring discrete-time samples; 
furthermore, the kernel is designed to 
be of class C2. The cubic interpolation of 
the by-now-familiar five-tap signal is 
shown in  Figure 6 .    

 The main drawback of local interpo-
lation schemes lies in the limited 
smoothness of their output. This is 
especially apparent in the ZOH, where 
the result is blatantly discontinuous; 
the situation starts to improve in the 
first-order interpolator, for which the 
output is continuous but the first deriv-
ative is not, and improves even further 
with the third-order kernel, which pro-
vides a twice-differentiable output. In 
general, every time we increase the ker-
nel’s support, we can gain extra degrees 
of continuity but, ultimately, the last 
derivative will be discontinuous; similar 
results can be obtained with local inter-
polation schemes based on B-splines of 
increasing order  [1], [8] . 

 And so, in the end, the conundrum 
seems to be either we choose a smooth 
but complex and instability-prone inter-
polation scheme,  or  we choose a simple 
and stable scheme but whose smooth-
ness leaves something to be desired. In 
fact, a little miracle is in store: if we go 
back to the maximally smooth but 
 nonlocal Lagrangian interpolation, it 
turns out that, as we increase the width 
of the interpolation interval to infinity, 
all the polynomials in the associated 
basis end up converging to shifted repli-
cas of the very same prototype function! 
This function, by now an easy guess, is 
none other than the sinc, viz: 

  lim
NS` 

Ln
1N2 1t 2 5 sinc 1t2 n 2 , (6) 

 and so the ideal interpolator, in the sense 
of an interpolator that is both kernel-based 

and maximally smooth, happens to be the 
sinc, yielding the well-known 

  x 1t 2 5 a
`

n52`
x 3n 4sinc 1t2 n 2 . (7) 

 The interpolator is ideal in a “platonic” 
way as well now, since it has infinite sup-
port and can only be aspired to but never 
arrived at; and so the sinc has brought us 
back to the classical path to continuous 
time. Before we proceed to give a proof of 
this remarkable result, please note that at 
no point in our discussion did the spectral 
properties of the sinc function come into 
play; the sinc just emerges as the ideal 
interpolation kernel bridging the naturally 
smooth polynomial interpolation with the 
algorithmic approach of time-invariant 
interpolation schemes.  

 As for a proof of  (6)  we are partial to 
Euler’s 1748 attempt that, while lacking in 

rigor by modern standards, has all the 
irresistible charm of derivations relying 
only on basic calculus  [9] . The argument 
begins by considering the  N  roots of unity 
for  N  odd. They will be z5 1, plus N2 1 
complex conjugate roots of the form 
z5 e6 jvN k for k5 1, c, 1N2 1 2 /2 and 
vN5 2p/N. If we group the complex con-
jugate roots pairwise we can factor the 
polynomial zN2 1 as 

  zN2 15

 1z2 1 2  q1N212/2
k51

1z22 2z cos 1vNk 2 1 1 2  
 and the above can be quickly general-
ized to 

  zN2 aN5

    1z2 a 2 q1N212/2
k51

1z222az cos 1vNk 2 1 a2 2 . 
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 [FIG5]  First-order interpolation of a length-five signal; shown in green are the delayed 
and scaled replicas of the triangular interpolating kernel I1(t).

 [FIG6]  Third-order interpolation of a length-five signal; shown in purple are the 
delayed and scaled replicas of the cubic interpolating kernel I3(t).
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 Now replace  z  and  a  in the above formula 
by z5 111 x/N 2  and a5 112 x/N 2 , as 
in the box at the bottom of the page, 
  where  A  is just the finite product 14 /N 2 w 1N212/2

k51
11 2 cos 1vN k 2 2 .  T h e 

value  A  is also the coefficient of the first 
degree term in the right-hand side and it 
can be easily seen from the expansion of 
the left hand-side that A5 2 for all  N ; 
actually, this is an application of Pascal’s 
triangle and it was proven by Pascal in 
the general case in 1654. Now, let the 
lack of rigor begin: as  N  grows large we 
know that 

 a1 6
x
N
bN

< e6x, 

 at the same time, if  N  is large, then 
vN5 2p/N is small and, for small values 
of the angle, the cosine can be approxi-
mated as 

 cos 1v 2 < 12v2/2 

 so that the denominator in the general 
product term can in turn be approxi-
mated as 

 N 
2 112 cos 12kp/N 2 2 < N 

2 # 4 k2p2

2 N 
2

   5 2k2p2.

 Finally, for large  N , the numerator can be 
approximated as 11 cos 12kp/Nk 2 < 2 
and therefore the above expansion 
becomes (by bringing A5 2 over to the 
left-hand side) 

ex2 e2x

2
5 xa11

x2

p2b
   3 a11

x2

4p2b a11
x2

9p2bc.

 The last trick is to replace  x  by jpt 
and  voila  

 
sin 1pt 2
pt

5q
`

n51
a12

t2

n2b. 

 A more rigorous proof can be found in 
“The Sinc Product Expansion Formula.” 

 DSP, LINEAR ALGEBRA, 
AND HILBERT SPACES 
 While describing Lagrangian interpola-
tion, we have already exploited the con-
venience of vector spaces to quickly 
identify the role of the main ingredients 
in the interpolation recipe. We will now 
carry this one step further and introduce 
a precise mathematical framework in 
which signals are equivalent to elements 
of a suitable vector space; this will help 
us immensely for our next task, which is 
closing the loop from continuous time 
back to discrete time. 

 The initial step is to consider the 
world of finite-length discrete-time sig-
nals, where all is always well; this is the 
eminently practical domain of DSP algo-
rithms, it is the  actionable  world of 
numerical packages such as MATLAB, it 
is, in short, the world of standard linear 
algebra  [10] . The equivalence between an 
 N -point finite-length discrete-time signal 
and a vector in Euclidean C 

N is immedi-
ate to see as the  N -point signal x 3n 4 , 
with 0 # n , N, can be expressed as the 
(column) vector 

 x5 3x 30 4  x 31 4  c x 3N2 1 4 4T. 

 Another useful way to look at the above 
equivalence is to consider the canonical 
basis for C 

N  5e1k26k51, c, N21 , where 
e1k2 ; d 3n2 k 4 ; as for any given basis, 
we can express any vector in C 

N  as a 
linear combination of basis vectors and 
in this case we have the straightforward 

 x5 a
N21

k50
x 3k 4e1k2. 

 Once the signal-vector analogy is estab-
lished, we can rely on geometric intu-
ition to easily introduce and explain the 
whole signal processing machinery. We 
know for instance that the standard 
inner product in C 

N is a measure of sim-
ilarity between vectors 

 8x, y9 ; 8x 3n 4, y 3n 4 95 a
N21

i50
x* 3i 4 y 3i 4. 

 As a consequence, the convolution oper-
ation (which is just an inner product 
with a circular shift) is easily under-
stood as a localized measure of similar-
ity between a candidate vector (the 
input signal) and a prototype vector 
(typically, an impulse response). From 
the point of view of linear algebra, the 
discrete Fourier transform is just a 
change of basis in C 

N  in which we 
replace the canonical basis 5e1k26  with 
the orthonormal Fourier basis 5w1k26 , 
where w1k2 ; wk 3n 45 11/"N 2e  

j2pnk/N . 
Again, this is conveniently expressed as 
a matrix-vector multiplication 

 X5Wx, 

 where the elements of the matrix are 
Wnk5 11/ "N 2e2j12p/N2nk. Consequently, 
each new coordinate in the Fourier basis 
is the inner product of the “old” vector 
with one of the Fourier basis vectors, i.e., 
each new coordinate is a measure of sim-
ilarity between the old vector and a sinu-
soid at a given frequency; Fourier 
analysis, therefore, “turns the space 
around” to discover and highlight hidden 
signal properties. Even more explicitly, 
we can write out the generic analysis and 
reconstruction formula 

  x5 a
N21

k50
 8w1k2, x9 w1k2, (8) 

 which shows how any vector in C 
N can 

be expressed as a linear combination of 
sinusoids where the weighting terms are 
none other than the Fourier coefficients. 
Note that this formula is valid for  any  
orthonormal basis and we will use it to 
much effect in the next section. 

 The power of the abstraction provid-
ed by vector spaces is twofold: first of 

  a11
x
N
bN

2 a12
x
N
bN

 5
4x
N

 q
1N212/2

k51
a12 cos 1vN k 2 1 x2

N 
2
111 cos 1vN k 2 2 b  

  5
4x
N

 q
1N212/2

k51

112 cos 1vN k 2 2 a11
x2

N 
2
# 11 cos 1vN k 2
12 cos 1vN k 2 b  

 5 Ax q
1N212/2

k51
a11

x2 111 cos 1vN k 2 2
N 

2 112 cos 1vN k 2 2 b
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all, as in the case of finite-length sig-
nals, it provides an intuitive and consis-
tent explanation of discrete-time signal 
processing that is steeped in familiar 
geometrical concepts. But, more impor-
tantly, it also represents a paradigm that 
can be extended to entities that require 
more mathematical subtlety than the 
good old tangible finite-length sequenc-
es, namely infinite-length signals and 
continuous-time signals. The mathe-
matical framework that encompasses 
these many worlds is the Hilbert space 
 [11]–[13] , defined in abstract terms as a 
vector space possessing an inner prod-
uct operator and the property of com-
pleteness. The basic operations in a 
vector space are rather intuitive; for the 
space of infinite-length discrete-time 
sequences, for instance, the inner prod-
uct is defined as 

 8x, y95 a
`

i52`
x* 3i 4 y 3i 4, 

 (which of course raises all sorts of con-
vergence questions; for the purpose of 
this article, let’s remain on the conser-
vatively safe side by restricting ourselves 
to the space of absolutely summable 

sequences). The convolution operator is 
easily derived as 

 1x * y 2 3n 4 ; 8x* 3m 4, y 3n2m 4 9. 
 For continuous-time signals (that is, 
functions), the inner product is defined as 

 8x, y95 3`
2`

x* 1t 2y 1t 2dt 

 so that 

 1x * y 2 1t 2 ; 8x* 1t 2 , y 1t2t 2 9. 
 Completeness, on the other hand, is a 
rather technical concept ensuring that 

the results of limiting operations remain 
within the vector space (i.e., it guarantees 
that the space is not, say, like the set of 
rational numbers where there are se-
quences converging to irrational limits). 
Again, for the scope of this article, com-
pleteness will be tacitly assumed. 

 BACK TO DISCRETE TIME 
 The search for the ideal interpolation 
scheme has forced us to abandon the 
comforts of finite-dimensional vector 
spaces and tread the subtler grounds of 
infinite time spans. As this point, we may 

0 5 10–5–10

0

0.5

1.0

 [FIG7]  A portion of the sinc function and its Lagrange approximation L0
(100)(t) (thin line).

 Consider the Fourier series expansion of the even function 

f 1x 2 5 cos 1tx 2  over 32p, p 4  and made periodic over R. 
We have 

  f 1x 2 5 1

2
 a01 a

`

n51

an  cos 1nx 2  
 with 

  an5
1

p3
p

2p

cos 1tx 2cos 1nx 2dx 

  5
2

p3
p

0

1

2
3cos 1 1t 1 n 2x 2 1 cos 1 1t 2 n 2x 2 4dx 

  5
1

p
c sin 1 1t 1 n 2p 2

t 1 n
1

sin 1 1t 2 n 2p 2
t 2 n

d  
  5

2sin 1tp 2
p

 
121 2nt
t22 n2  

 so that 

 cos 1tx 2 5 2tsin 1tp 2
p

 3 a 1

2t2 2
cos 1x 2
t22 1

1
cos 12x 2
t22 22 2

cos 13x 2
t22 32 1

cb  

 In particular, for x5p we have 

 cot 1pt 2 5 2t

p
 a 1

2t2 1
1

t22 1
1

1

t22 22 1
1

t22 32 1
cb  

 which we can rewrite as 

 pacot 1pt 2 2 1

pt
b 5 a

`

n51

 
22t

n22t2 

 If we now integrate between zero and t, both sides of the 
 equation we have 

 3
t

0

acot 1pt 2 2 1

pt
bdpt5 ln

sin 1pt 2
pt

 `
0

t

5 ln c sin 1pt 2
pt

d  
 and 

 3
t

0

 a
`

n51

 
22t

n22t2 dt 5 a
`

n51

lna12
t 2

n2b 5 ln cq`
n51

a12
t 2

n2b d  
 from which, finally, 

 
sin 1pt 2
pt

5q
`

n51

a12
t 2

n2b . 

THE SINC PRODUCT EXPANSION FORMULA
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[dsp EDUCATION] continued

as well pull out the standard tools of har-
monic analysis and look a little deeper in 
the spectral properties of the interpo-
lated signal. The quintessential property 
of the sinc function is its being the ban-
dlimited function  par excellence , with a 
 symmetric compact support around zero 
and a flat magnitude over the support. 
Assuming the usual time base of T5 1, 
the sinc’s support is between 2p and p 
as shown by the Fourier transform 

 F 3sinc 1t 2 45 rect a V
2p
b; 

 increasing the time base just shrinks the 
spectral support, and vice versa. 

 It stands to reason that a sinc-inter-
polated signal, which is just a linear 
combination of (delayed) sincs, will be 
in turn a bandlimited signal. This is 
indeed true for any signal of practical 
interest and actually very easy to show 
for signals that are absolutely summable 
(which, as announced before, is the case 
we’re in anyway); for these signals, after 
plugging  (7)  into the Fourier analysis 
formula, one can interchange integra-
tion and summation with impunity and 
prove the result. 

 Sinc-interpolated signals are there-
fore bandlimited signals whose spectral 
support is determined solely by the 
interpolation time base; the natural 
question now is whether  any  bandlim-
ited signal can be harmlessly sampled 
into a discrete-time sequence. We know 
the answer to be yes since we have all 
heard of the sampling theorem, but here 
it’s about the journey and not the desti-
nation. Our preferred route is to show 
that the space of p-bandlimited func-
tions forms a Hilbert space and that 
sampling is just the result of a basis 
expansion. The way to proceed is to first 
build an orthonormal basis; for this pur-
pose consider the family 

 w1n2 1t 2 5 sinc 1t2 n 2 ,  n [ Z. 

 By noting that w1n2 1t 2 5w102 1t2 n 2 , 
orthogonality can be proved first by rewrit-
ing the inner product as a convolution 

 8w1n2 1t2 , w1m2 1t2 95 8w102 1t2n2 , w102 1t2m 2 9 
  5 3

`

2`

sinc 1t 2   
 3sinc1 1m2n 22t 2dt
  5 1sinc * sinc 2 1m2 n 2  
 and then by applying the convolution 
theorem for continuous-time functions 
to compute its value in 1m2 n 2  
 8w1n2 1t2 , w1m2 1t2 95F 

21 crect2a V
2p
b d

t5m2n
 

  5
1

2p3
p

2p

e jV1n2m2dV 

  5 e 1  if n5m
0  if n 2 m

 

 so that 5w1n2 1t 2 6n[Z is indeed orthonor-
mal. To have a Hilbert space, we should 
also prove the completeness of the 
space of p-bandlimited functions, as 
explained in the previous section; 
unfortunately, that relies on the proof 
of completeness for the continuous-
time Fourier basis, which is long and 
rather technical and which we are 
therefore forced to skip in this article. 
Nonetheless, armed with our (putative) 
Hilbert space and its orthonormal basis, 
we can now pick an arbitrary p-band-
limited function x 1t 2  and  formally 
compute its basis expansion coefficients 

  8w1n2 1t 2 , x 1t 2 95 8w102 1t2 n 2 , x 1t 2 9 (9) 

  5 1w102 * x 2 1n 2   (10)

  5
1

2p3
`

2`

rect a V
2p
b  

 3 X 1 jV 2e jVndV (11)

  5
1

2p3
p

2p

X 1 jV 2ejVndV

 (12) 
  5 x 1n 2 ;  (13)

 in the derivation we have first rewritten 
the inner product as a convolution and 
then applied the convolution theorem; 
the penultimate line is simply the inverse 
Fourier transform of X 1 jV 2  calculated 

for t5 n. Remarkably, the  n th basis 
expansion coefficient is just the sampled 
value of x 1t 2  at t5 n. To close the loop 
once and for all, we need only consider 
the generic orthonormal basis recon-
struction formula  (8)  

 x 1t 2 5 a
`

n52`
8w1n2 1t 2 , x 1t 2 9 w1n2 1t 2  

  5 a
`

n52`
x 1n 2sinc 1t2 n 2 ,  (14)

 which yields the interpolation formula 
 (7) , and then we’re back to the beginning 
and the merry-go-round is ready for 
another spin. 
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