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Accurate electrical models are needed to support the design of modern microelectrode arrays. The

point-contact model is presented thoroughly, and an area-contact model is analytically derived in order

to model the electrical characteristics of the cell–electrode interface at subcellular resolution. An

optimum electrode diameter for recording the electrical activity of neurons is analytically determined at

tip electrodes are characterized using the area-contact model. An improvement of the electrical

coupling up to 20 dB is observed for small electrodes, in simulation.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Microelectrode arrays (MEAs) have become an essential tool
both in fundamental and applied electrophysiology research,
enabling stepping from the observation of the electrical behavior
of single neurons toward the simultaneous analysis of population
of neural cells [26]. Commercial MEAs usually contain approxi-
mately 60 electrodes, with electrode sizes ranging from 10 to
50mm, and inter-electrode spacing ranging up to 100mm [9,21].
These dimensions are much larger than the 10mm typical size of
vertebrate neurons used during electrophysiological experiments,
and constitute a limitation in terms of spatial resolution. The
accuracy of real-time discrimination of a firing neuron within a
culture suffers from this spatial under-sampling, and fully relates
on digital post-processing. This issue has recently been recog-
nized, and a new generation of active, silicon-based MEAs
containing a high density and a large number (in the order of
several thousand) of electrodes has been proposed [10,13,20].
These new devices have a pitch dimension as low as 7.8mm with
an electrode diameter of 4.5mm [10], enabling electrophysiologi-
cal experiments at subcellular resolution.

The development of active MEAs, where CMOS microelectronic
circuits are embedded along with the electrode layer into a single-
chip, demands accurate compact electrical models of the interface
ll rights reserved.

pfl.ch (N. Joye).
to be available, in a format enabling co-simulation. The point-
contact model [12], which has been the standard model used to
describe the electrical characteristics of the cell–electrode inter-
face does not provide enough accuracy to model the electrical
properties of the interface at subcellular resolution, since spatial
distributions of the different electrical characteristics at the cell–
electrode interface are not modeled. An area-contact model,
where the spatial distributions of the electrical characteristics are
taken into account, is needed [12]. Furthermore, modern silicon
fabrication technologies enable manufacturing very dense arrays
of three-dimensional electrodes, for which new electrical compact
models must be developed.

This paper presents analytical developments related to the
electrical modeling of the cell–electrode interface in in-vitro

cultured neural cells, under the new constraints caused by
subcellular resolution.

A review of the point-contact model is presented. The point-
contact model has been adapted, and theoretical results are
presented both in analytical, and simulation forms in Section 2. A
rigorous analytical model of the area-contact model, enabling
accurate simulations of high-density MEAs in recording mode has
been developed, and is presented in Section 3, where the model,
its analytical derivation and simulation results are shown. Finally,
the area-contact model is adapted to support three-dimensional
tip electrodes, enabling theoretical performance comparisons
with flat electrodes to be presented in Section 4. A discussion of
the results is provided in Section 5, and concluding remarks are
presented as Section 6.

https://core.ac.uk/display/147955033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/neucom
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2. Point-contact model

The point-contact model which is reviewed in this section is
depicted in Fig. 1, as a system resulting of an adaptation from
several publication sources, where VM is the electrical potential in
the cell, VI is the voltage at the cell–electrode interface with
respect to ground, and VS is the potential which is sensed by the
amplification stage. Ground is located at a sufficiently large
distance from the electrode array. This model has been widely
used to describe the electrical behavior of the cell–electrode
environment [5,12,27,34]. The assumption that the electrical
potential across the cytoplasm and the bath solution is constant
is made [34]. In the case of extracellular stimulation, this
assumption may no longer be valid due to the large current
values issued from the electrodes.

2.1. Model of the cell membrane

As opposed to the Hodgkin–Huxley model [18], a passive
membrane is assumed. This means that no active properties of the
membrane are modeled. Thus as depicted in Fig. 1, the equivalent
circuit of the attached membrane consists of a resistance RM in
parallel with a capacitance CM defined as

Rm ¼
1

gmemAce
ð1Þ

Cm ¼ cmemAce ð2Þ

where Ace is the area of the attached membrane, gmem=0.3 mS/cm2

is the local membrane conductivity [6], and cmem=1mF/cm2 is the
membrane capacity per unit area. In this paper, a cell with a
diameter of 10mm is considered for numerical derivations. This
size is typical for vertebrate neurons, such as dissociated
hippocampal rat neural cells, used in electrophysiological experi-
ments [28].

2.2. Model of the cell–electrode interface

The electrical equivalent circuit of the cell–electrode junction
is depicted in Fig. 1. It includes three resistances RS1, RS2, and RS3,
Fig. 1. Point-contact model of the cell–electrode interface (not to scale).
which represent the resistance between the electrode and the
counter electrode, and a cell membrane-electrolyte interface
capacitance Chd.

When no cell lies on top of the electrode, the resistance
between the electrode and the counter electrode is described as

RS ¼ RS1þRS2þRS3 ¼ Rspread ð3Þ

where Rspread is the spreading resistance, which is the resistance
encountered by a current spreading from the electrode out into
the solution. Assuming that the counter electrode is infinitely
large, it is shown in [29] that the spreading resistance of a circular
disk electrode with a radius Rel can be approximated by

Rspreadffi
rs

4Rel
ð4Þ

In the case where a cell covers the entire surface of the
electrode, as depicted in Fig. 1, RS2 is equal to the sealing resistance
Rseal, which is the resistance between the cleft and the surround-
ing solution. This resistance has been described in [34] as

Rseal ¼
rs

ypd
ð5Þ

where rs is the resistivity of the electrolyte (for typical solutions
rs=1Om), d is the average distance between the cell and the
electrode, and y is a correction factor related to geometry (y=5–8)
[4,5,34].

In this work, the potential across the electrolyte solution is
considered to be constant [34]. Thus, RS3 can be neglected in
numerical simulations. Furthermore, RS1 is also neglected. As
shown in (3), RS1 is smaller or equal to Rspread. Moreover, the
electrode radius Rel is usually 2–3 orders of magnitude larger than
the average distance d between the cell and the electrode, as
described in Section 2.4. Thus, Rspread is significantly smaller than
Rseal and RS1 can be neglected. This assumption has been verified
in simulation.

Chd (cell membrane-electrolyte interface capacitance) models
the charge region, also called the electrical double layer, which is
formed in the electrolyte at the interface with a neural cell. This
electrochemical reaction appears at any interface between two
different phases [19]. From the triple-layer model [3,36], the
capacitance Chd is defined as the series of three capacitances as
described in (6)

1

Chd
¼

1

Ch1
þ

1

Ch2
þ

1

Cd
ð6Þ

where Ch1 represents the capacitance between the membrane
surface and the first-layer of non-hydrated ions (the inner
Helmholtz plane); Ch2 represents the capacitance between the
layer of non-hydrated ions and the second layer of hydrated ions
(the outer Helmholtz plane); and Cd is the diffuse layer
capacitance (also known as the Gouy-Chapman capacitance).
These three capacitances Ch1, Ch2 and Cd are defined as

Ch1 ¼
e0eIHP

dIHP
Ace ð7Þ

Ch2 ¼
e0eOHP

dOHP � dIHP
Ace ð8Þ

Cd ¼
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e0edkTz2n0N

p
kT

Ace ð9Þ

where e0 is the dielectric permittivity of free space; eIHP and eOHP

are, respectively, the inner and outer Helmholtz planes relative
dielectric constant; dIHP is the distance of the inner Helmholtz
plane (IHP) to the cell membrane; dOHP is the distance of the outer
Helmholtz plane (OHP) to the cell membrane; ed is the diffuse
layer relative dielectric constant; k is Boltzmann’s constant; T is
the absolute temperature; q is the electron charge; z is the valence
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Fig. 2. Bode plots for the amplitude and phase of the transfer function H(jo) of the

system. A cell–electrode distance of 70 nm and a circular electrode with a diameter

of 5mm are considered. H(jo)=Hm(jo)He(jo)=VS(jo)/VM(jo) is the transfer

function of the system, with Hm(jo)=VI(jo)/VM(jo) and He(jo)=VS(jo)/VI(jo).
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of ions in solution; n0 is the bulk concentration of ions in solution;
and N is Avogadro’s number.

2.3. Model of the electrode

The equivalent circuit of the electrode is based on an electrode
model typically used to describe the electrode–electrolyte
impedance as depicted in Fig. 1 [11,32]. It includes a constant-
phase angle impedance ZCPA, which represents the interface
capacitance, in parallel with a charge transfer resistance Rct. The
Warburg impedance due to diffusion of the chemical reactants in
solution, which would appear in series with Rct, is not included in
this model. It is negligible for the materials and frequency range
used in electrophysiological experiments.

Using a constant-phase angle impedance ZCPA instead of a
capacitance results in a better agreement of the model with
impedance measurements [8]. Thus, ZCPA can be described as

ZCPA ¼
1

ðjoCdlÞ
n ð10Þ

where Cdl is the double layer capacitance as described in (6)–(9),
and n is an empirical factor between 0 and 1 representing the
surface irregularities.

The charge-transfer resistance Rct represents the faradic
process where charges transfer between the electrode and the
electrolyte by means of oxidation–reduction reactions. For small
values of overpotential during a faradic charge transfer, Rct may be
expressed as

Rct ¼
kT

q

1

zJ0Ael
ð11Þ

where z is the number of electrons involved in the oxidation–
reduction reaction, J0 is the equilibrium exchange current density,
and Ael is the electrode surface.

The resistance of the metal wire connecting the electrode to
the circuitry and parasitic circuit elements such as fringe
capacitances of this wire are neglected.

2.4. Transfer function of the system

The cell–electrode system depicted in Fig. 1 is described with
the following equations:

½VMðjoÞ � VIðjoÞ� ¼ ImðjoÞZmðjoÞ ð12Þ

VIðjoÞ ¼ IsealðjoÞRsealðjoÞ ð13Þ

½VIðjoÞ � VSðjoÞ� ¼ IelðjoÞZelðjoÞ ð14Þ

VSðjoÞ ¼ IelðjoÞZloadðjoÞ ð15Þ

ImðjoÞ ¼ IsealðjoÞþ IelðjoÞ ð16Þ

where Im is the current flowing through the membrane; Iseal is the
current flowing through Rseal; Iel is the current flowing through
the electrode; Zm is the membrane impedance with Chd; Zel is the
electrode impedance; and Zload is the load impedance. The load
impedance represents the input impedance of the first amplifica-
tion stage. It is typically a 1–20 pF capacitance [2,7,15,30,38].

Thus, considering (12)–(16), the transfer function H(jo)=
VS(jo)/VM(jo) of the system is established as described in the
following equations:

HðjoÞ ¼ RsealZload

RsealZmþðZmþRsealÞðZloadþZelÞ
ð17Þ

ZmðjoÞ ¼
1þ joRmðCmþChdÞ

ð1þ joRmCmÞðjoChdÞ
ð18Þ
ZelðjoÞ ¼
Rct

1þRctðjoCdlÞ
n ð19Þ

The Bode plots in amplitude and phase of the transfer function
have been determined in Matlab, using the numerical values
detailed in the following. For Chd, the values given in [27] are
considered. In particular, it is assumed that eIHP=6, eOHP=32,
dIHP=0.3 nm, dOHP=0.7 nm, z=1, and n0=150 mM. Considering a Pt
electrode, the values given in [11] are considered for ZCPA and Rct;
dOHP is equal to 0.5 nm, dIHP is neglected, z=4, n0=154 mM, and
n=0.9. Furthermore, the relative dielectric permittivity er of the
electrolyte solution at the interface can take values between 6 and
78.54 [3,25]. er=50 is accepted as a typical value [25]. Finally a
typical load capacitance of 10 pF is taken into account.

The Bode plots for the amplitude and phase of the transfer
function are determined for a typical cell–electrode distance of
70 nm [27] and a circular electrode with a diameter of 5mm, as
depicted in Fig. 2. The value of the scaling factor y used to
determine the sealing resistance in (5) is fixed to 5.78 as described
in [4,5]. The voltage drop across the electrode is almost negligible
in the frequency range of 10 Hz–10 kHz, which corresponds to the
considered frequency range of neural activity. Moreover for this
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frequency range, the voltage attenuation between the potential
that is sensed VS(jo) and the intracellular potential VM(jo) has a
large variation in amplitude depending on the frequency of the
neural signal. In the configuration chosen for Fig. 2, VS(jo) is about
4 orders of magnitude smaller than VM(jo) for a frequency of
10 Hz, and only 2 orders of magnitude smaller for a frequency
of 3 kHz. Therefore, in the frequency range of interest, the
cell–electrode system behaves as a high-pass filter. This latter
characteristics is also presented in [14,31,39].

When designing a MEA, the only parameters that can be
modified in the point-contact model described in Fig. 1 are the
size and shape of the electrode (the load capacitance is supposed
to be fixed). Therefore considering a circular electrode, the
amplitude of the transfer function H(jo) versus the electrode
radius is derived in Fig. 3. The assumption that the whole
electrode surface is covered by the neuron is made. If this is not
the case, and as described in [27], a surface overlapping coefficient
that takes into account the contact area between the cell and
the electrode has to be taken into account when specifying the
different elements in the point-contact model. As expected, the
size of the electrode must be large enough in order to obtain a
sufficiently small voltage drop between VS(jo) and VM(jo). As
observed in Fig. 3, the transfer function H(jo) drops dramatically
for an electrode radius smaller than 1mm. Furthermore, for
diameters larger than 5mm, increasing the electrode size has
almost a negligible effect on the voltage drop.

Two parameter variations are considered in Fig. 3, resulting in
a variability interval graphically depicted with vertical bounded
segments. First, the relative dielectric permittivity er of the
electrode interface is initially set to 50, as justified above.
However, er can be as low as 6 at the interface if oriented water
molecules in the diffuse layer are assumed, and as large as 78.54
in the case of water at 25 1C [3,25]. Secondly, the factor n in (10),
which represents the electrode surface irregularities, is initially
set to 0.9. However, it has been shown that this value varies
approximately between 0.87 and 0.93 for Pt electrodes [11,35].
Thus for the worst case, where er=6 and n=0.93, the amplitude of
the transfer function can be as much as 20 dB smaller than the
Fig. 3. Amplitude of the transfer function H(jo) versus the electrode radius for

different frequencies of VM (100 Hz–10 kHz) corresponding to the frequency range

of neural activity. A cell–electrode distance of 70 nm and a neural cell diameter of

10mm are considered. Expected limits of variability for er (between [6, 78]) and n

(between [0.87, 0.93]) are indicated with vertical bars. Plots are produced with

er=50, n=0.9.
typical case at subcellular resolution. For larger electrodes, this
incertitude is less significant. Variations of other parameters, such
as the resistivity of the electrolyte rs or the equilibrium exchange
current density of the electrode Jo, could also be considered.
However, their effects are negligible.
3. Area-contact model

An area-contact model [12], where the spatial distribution of
the electrical characteristics is taken into account, is presented in
this section. The goal is to describe the electrical properties of the
cell–electrode interface at subcellular level when recording the
electrical activity of neural cells. As for the point-contact model,
the assumption that the electrical potential across the cytoplasm
and the bath solution is constant is made. Future models must
also include the impact of local action potential currents on the
spatial distribution of intracellular potential at the subcellular
scale, which is beyond the scope of this paper. The neural cell is
considered to have a typical diameter size of 10mm.

3.1. Cell–electrode interface voltage

First, the voltage VI(r,jo) at the cell–electrode interface, where
r is the distance to the center of the cell, is established. As a first
approximation step, the electrode is not taken into account. Thus,
the equivalent circuit of the attached membrane is described in
Fig. 4 with the following circuit element parameters:

rmðrÞ ¼
1

gmem@Ace
ð20Þ

cmðrÞ ¼ cmem@Ace ð21Þ

chðrÞ ¼
Chd

Ace
@Ace ¼ chd@Ace ð22Þ

@Ace ¼ 2pr@r ð23Þ

rsealðrÞ ¼
r
d

@r

2pr
ð24Þ

In the Laplace domain, the attached membrane can be
described as

VIðr; sÞ � VIðr � @r; sÞ

rsealðr � @rÞ
þ

VMðsÞ � VIðr; sÞ

zmðrÞ
¼

VIðrþ@r; sÞ � VIðr; sÞ

rsealðrÞ
ð25Þ

With the approximation given in (26) and the circuit elements
described in (20)–(24), the cell–electrode interface can be
expressed as the first order linear equation given in (27)

@VIðr; sÞ ¼ VIðr; sÞ � VIðr � @r; sÞ ¼ VIðrþ@r; sÞ � VIðr; sÞ ð26Þ

@VIðr; sÞ

@r
þ2arVIðr; sÞ ¼ 2arVMðsÞ ð27Þ
Fig. 4. Area-contact model of the attached cell membrane, where VM(jo) is the

intracellular potential, and VI(r,jo) is the potential at the cell–electrode interface at

a distance r from the center of the cell.
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where a is

a¼
srschd½gmemþscmem�

2d½gmemþsðcmemþchdÞ�
ð28Þ

The voltage VI(Rce,s) at the border of the neural cell, where Rce is
the radius of the cell, is considered to be equal to the potential of
the bath solution [4]. Thus with the initial condition VI(Rce,s)=0,
the solution to this equation is as follows:

VIðr; sÞ ¼ VMðsÞð1� eaðR2
ce�r2ÞÞ ð29Þ

The distribution of the cell–electrode interface voltage VI(r,s)
for various frequencies in the range of neural activity is shown in
Fig. 5. The electrical property values that were used for the point-
contact simulation depicted in Fig. 2 are considered as well. As
expected, VI(r,s) is maximum at the center of the cell and is
minimum at the edge of the cell.
3.2. Transfer function of the system for an electrode centered with

the cell

A circular electrode is now included into the area-contact
model. Thus, with a first approximation where the spreading
resistance is neglected, the electrode can be modeled as presented
Fig. 5. VI/VM versus the distance from the center of the cell for different

frequencies of VM (100 Hz to 10 kHz) corresponding to the frequency range of

neural activity. A cell–electrode distance of 70 nm is considered.

Fig. 6. Area-contact model of the electrode with the load impedance.
in Fig. 6. The definition of the circuit elements is as follows:

rtðrÞ ¼ Rct
Ael

@Ael
¼

rct

@Ael
ð30Þ

zCPAðrÞ ¼
1

ðjocdÞ
n ð31Þ

cdðrÞ ¼
Cdl

Ael
@Ael ¼ cdl@Ael ð32Þ

where rct and cdl are, respectively, the area specific values of the
charge-transfer resistance and double layer capacitance.

Furthermore if the current absorbed by the electrode is
neglected, which is the case for frequencies smaller than 10 kHz,
VS(s) can be expressed as

VsðsÞ ¼ Zload

Z Rel

0

VIðr; sÞ � VsðsÞ

zelðr; sÞ
ð33Þ

where zel(r,s) consists of rc(r) in parallel with zCPA(r).
As for the point-contact model, the load impedance is

considered to be a capacitance Cload of 10 pF. Therefore using
expressions (28)–(33), VS(s) can be expressed as

VsðsÞ ¼
pð1þrctðscdlÞ

n
Þ

sCloadrctþR2
elpð1þrctðscdlÞ

n
Þ

R2
elþ

eaðR2
ce�R2

el
Þ � eaR2

ce

a

" #
VMðsÞ

ð34Þ

The transfer function of the cell–electrode system H(s)=VS(s)/
VM(s) versus the electrode radius is presented in Fig. 7(a) for
different frequencies of VM(s). The physical and electrical
parameter values that were used in Figs. 2 and 5 are considered
again. As shown in these graphs, for electrodes diameters smaller
than 1mm, the amplitude of H(s) can be more than 20 dB smaller
than it is in the case of electrode diameters around 8–10mm.
Consequently, larger electrode sizes should be considered, when
mechanical limitations permit it. However, if the electrode size is
too large, VS(s) slightly decreases due to the decrease of VI(r,s) at
the edge of the cell as depicted in Fig. 5. An optimum electrode
radius can be clearly identified at approximately 4mm for the
typical case.

As described in Fig. 7(a), the frequency has negligible effects on
the optimum electrode size. Similar results have been found
regarding the cell–electrode distance [23]. However, this optimum
size has a strong dependence on the load capacitance, as
described in Fig. 7(b). The larger the load capacitance, the larger
is the optimum electrode size. Moreover, the effect of Cload is
stronger for small electrodes. This information is very useful for
the design of the amplification stage of a silicon-based MEA.

As explained earlier, unlike the point-contact model, the area-
contact model takes into account the voltage distribution at the
interface between the cell and the electrode. This explains why
VS(s) slightly decreases when the electrode size is increased above
the optimum electrode radius. Moreover, the area-contact model
also takes into account the spatial distribution of the current
flowing through the electrode Iel(r), as depicted in Fig. 6.
The smaller dependence of the transfer function H(s) derived
from the point-contact model on the electrode size is determined
by this phenomenon. This can be evidenced by comparing Figs. 3
and 7(a).

The parameter variations used in Fig. 3 are also considered in
Fig. 7. As for the point-contact model, the amplitude of the
transfer function has a maximum incertitude of approximately
20 dB for small electrode sizes. Moreover, it is shown in Fig. 7(b)
that this incertitude is less significant when smaller load
capacitances are used. In the worst case, where er=6
and n=0.87, the optimum electrode radius is approximately equal
to 5mm.
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Fig. 7. Amplitude of the transfer function H(s)=VS(s)/VM(s) versus the electrode

radius for (a) different frequencies of VM corresponding to the frequency range of

neural activity and (b) different load capacitances. A load capacitance of 10 pF is

used in (a) and a frequency of 1 kHz is considered in (b). In both cases, a cell–

electrode distance of 70 nm is used. Expected limits of variability for er (between

[6, 78]) and n (between [0.87, 0.93]) are indicated with vertical bars. Plots are

produced with er=50, n=0.9.

Fig. 8. (a) Conceptual cross-section of a neural cell lying on the tips of a three-

dimensional MEA with the attached membrane adapting to the surface topology.

(b) Conceptual view of the surface of a 4� 4 three-dimensional tip electrode array.
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4. Three-dimensional tip electrode

A new approach based on three-dimensional tip electrodes has
been developed as a way to increase the electrical coupling
between the cultured neural cells and the individual sensors in a
MEA [22]. With respect to standard planar electrodes, the
electrical coupling between an electrode and a neural cell is
expected to be improved as a benefit of a larger cell–electrode
contact area.

As pointed out in Section 3, the area-contact model is
appropriate to describe the electrical behavior of a cell–electrode
interface at subcellular resolution. Thus, this model is suited to
describe the electrical behavior of the proposed three-dimen-
sional tip electrode, and is derived analytically in this section. The
following set of numerical parameters has been chosen in the
simulations, as realistic values which can be obtained using a
modern silicon fabrication technology in the development of the
structure described in Fig. 8. Three-dimensional tip electrodes
have a diameter of 3–4mm, a height of 1.75mm and a pitch of
5–6mm, which guarantees that every neuron is in electrical
contact with several electrodes [22], as depicted in Fig. 8.

This technology must not be confused with three-dimensional
MEAs which are reported in literature in [1,17,37]. In these cases,
the three-dimensional electrodes are used to penetrate a layer of
cells which have been injured during the preparation of acute
brain slices, and is located at the tissue slice border. Consequently,
their heights are much more significant, and range from 47 to
100mm.

4.1. Cell–electrode interface voltage

Following the method applied in the case of planar electrodes,
the cell–electrode interface voltage VI(r,s) is established for a cell
centered with the tip of a three-dimensional cone. As a first
approximation step, the electrode is not taken into account. Thus,
the equivalent circuit of the attached membrane is described in
Fig. 9(a), where zm(r) consists of chd(r) in series with rm(r)//cm(r) as
described in Fig. 4; Hc is the height of the three-dimensional cone,
and Rc the radius of its base. The electrical property values that
were used for the planar electrodes simulations are also
considered in this section. In order to derive the cell–electrode
interface voltage VI, the axis l along the three-dimensional surface
is considered instead of the axis r, as depicted in Fig. 9(b). Thus,
VI(l,s) can be expressed as in (29)

VIðl; sÞ ¼ VMðsÞð1� eaðL2
ce�l2ÞÞ ð35Þ

Furthermore, the three-dimensional topology has an influence
on the cell–electrode distance d(l) as shown in Fig. 9(b). For r4Rc,
the cell–electrode distance is considered to be equal to the cell–
electrode distance d2D of a cell lying on a flat surface. For roRc,
d(l) is expressed in function of d2D and dtip, where dtip is the cell–
electrode distance at the tip of the cone as depicted in Fig. 9(b).
This distance depends on the height Hc, the radius Rc, and the
flexibility of the cell membrane. It is expected to be smaller than
d2D. However, the exact value of this distance may vary since the
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Fig. 9. (a) Area-contact model of the attached membrane of a cell lying on the tip

of a three-dimensional cone; Hc is the height of the three-dimensional cone and Rc

is the radius of its base. (b) Schematic representation of the cell–electrode distance

d(l) for a cell lying on the tip of a three-dimensional surface; d2D is the cell–

electrode distance of a cell lying on a flat surface, and dtip is the cell–electrode

distance at the tip.

Fig. 10. VI/VM versus the distance from the center of the cell for different cell–

electrode distances dtip at the tip. A frequency of 1 kHz, a cell–electrode distance

d2D of 70 nm, a height Hc of 1.75mm, and a radius Rc of 1.5mm are considered.
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cell–electrode interface mainly consists of glycocalix and adhesion
promoting proteins such as laminin or poly-d-lysine [33]. Using
the above mentioned approximations, d(l) is expressed as

dðlÞ ¼
d2D � dtip

Lc
l� dtip ð36Þ

l¼
r

cosa ð37Þ

when rrRc. d(r) is therefore equal to

dðrÞ ¼ ðd2D � dtipÞ
r

Rc
þdtip ð38Þ

If r4Rc, then d(r)=d2D and

l¼ Rc
1� cosa

cosa

� �
þr ð39Þ

The distribution of the cell–electrode interface voltages VI(r,s)
for different cell–electrode distances dtip at the tip of the three-
dimensional cone is described in Fig. 10. A frequency of 1 kHz, a
cell–electrode distance d2D of 70 nm, a height Hc of 1.75mm, and a
radius Rc of 1.5mm are considered.

As shown in Fig. 10, the three-dimensional tip has two effects
on the cell–electrode voltage VI(r,s). The first one is an increase of
VI(r,s) obtained with the three-dimensional topology compared to
the one obtained with a flat surface. This increase is approxi-
mately equal to 2–3 dB and is due to a larger area of the attached
membrane. The second effect is an increase of VI(r,s) for r smaller
than Rc. This increase is due to a decrease of the cell–electrode
distance around the tip of the three-dimensional structure which
increases rseal. This increase can be as large as 30–40 dB at the tip
if the cell is touching the tip of the three-dimensional surface
(dtip=0). However, a very short distance between the electrode tip
and the neuron cell is assumed in this work, de-facto resulting in a
favorable situation, as explained earlier. These two effects are also
observed with different frequencies between 10 Hz and 10 kHz
and with cell–electrode distances between 10–100 nm.

4.2. Transfer function of the system for a three-dimensional tip

electrode centered with the cell

A three-dimensional circular electrode is now included into
the model, as depicted in Fig. 8. The electrode model presented in
Fig. 6 is used with a typical load capacitance of 10 pF. Following
the method applied for the determination of the cell–electrode
interface voltage VI(r,s), VS(s) can be expressed as (33) and (34)
using d and l from (36)–(39). Thus, the transfer function of the
cell–electrode system H(s)=VS(s)/VM(s) versus the electrode radius
is presented in Fig. 11 for different cell–electrode distances dtip at
the tip. The electrical and physical parameters used in Fig. 10 are
considered.

As shown in Fig. 11, using three-dimensional tip electrodes
impacts on VS(s) in two ways, mostly. First, an increase of VS(s)
compared to the value obtained with planar electrodes is
observed. This result is due to a larger area of the attached
membrane, which increases VI(s,r) as depicted in Fig. 10. The
increase of VS(s) is between 3–10 dB depending on the size of the
electrode.

Second, an increase of VS(s) when dtip is decreased is observed
for r smaller than Rc. As explained above, this increase is due to
the decrease of the cell–electrode distance around the tip of the
three-dimensional structure which increases rseal. This increase of
VS(s) can be as large as 20 dB for an electrode diameter of 1mm, as
shown in Fig. 11. However, the electrode impedance is large for
small electrode sizes. Therefore this effect does not influence the
optimum size of the electrode. For the three-dimensional
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Fig. 11. Amplitude of the transfer function H(s)=VS(s)/VM(s) versus the electrode

radius for different cell–electrode distances dtip at the tip. A frequency of 1 kHz, a

cell–electrode distance d2D of 70 nm, a height Hc of 1.75mm, and a radius Rc of

1.5mm are considered. The load impedance is a 10 pF capacitance.
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topology and physical parameters used in this section, the
optimum electrode diameter size is slightly smaller than for
planar electrodes, and is identified between 6 and 7mm.

The design of MEAs can largely benefit from exploiting the
aforementioned results. If no severe spatial constraints are
applied to the design, the optimum electrode diameter is chosen
in order to obtain the maximum amplitude of the measured
voltage VS(s). In this configuration, the three-dimensional elec-
trode offers a 3 dB increase in the amplitude of the system transfer
function, compared to planar electrodes. However, when design-
ing a high-density MEA, the electrode size can be constrained by
small inter-electrode spacings. Thus, a smaller electrode size has
to be chosen. In this case, selecting a three-dimensional electrode
could be an appropriate solution, where the increase of VS(s)
compared to planar electrode can be has large as 10 dB for dtip

equal to d2D and 20 dB for dtip equal to zero.
5. Discussion

This paper focuses on presenting rigorous analytical expres-
sions for three cell–electrode interfaces. The widely-accepted
point-contact model is presented in a form adapted from
[11,27,34]. The area-contact model expressions for flat and
three-dimensional electrodes are presented. Electrical simulations
for the three cases are presented, under various parametric
conditions.

The models are presented as tools that are used to support the
development of silicon-MEAs, including high-resolution MEAs
[10,13,20]. The systematic analysis of the area-contact models
demonstrates the existence of an optimum electrode size, which
can be derived for planar and three-dimensional electrodes, and
which depends on the load capacitance. Nevertheless, this
optimum electrode size also depends on the cell type and size.
In this paper, standard dissociated hippocampal rat neural cells,
which are typically used in electrophysiological experiments, are
considered.

The models have primarily been developed to enable the
electrical co-simulation of the cell–electrode interface along with
the low-noise amplifiers stages which are driving neural signals
off-chip, into analog-to-digital converters, and subsequent digital
processing units [2,7,10,13,15,20,30,38]. A noise model can be
inserted into the model of the electrode, to enable realistic noise
simulations of the full system [24]. Ongoing work in this direction
is currently performed in order to determine the specifications of
a low-noise CMOS amplifier stage (input impedance, input
referred noise, etc.).

Electrical measurements to be performed on fabricated MEAs,
and comparisons with the proposed models are not addressed in
this paper, intentionally. However, realistic variation of electrical
model parameters has been performed to determine the incerti-
tude interval of the simulated results. In the area-contact model,
the maximum incertitude in the amplitude of the transfer
function reaches approximately 20 dB for subcellular resolution.
This incertitude is shown to be less significant for larger
electrodes and smaller load capacitances.

As a major theoretical result, three-dimensional tip electrodes
are demonstrated to increase the electrical potential that is sensed
compared to planar electrodes, using the three-dimensional
adapted area-contact model. This increase is due to a larger
cell–electrode contact area due to the three-dimensional topology,
and a closer cell–electrode distance around the tip of the
electrode. An additional increase of VS(s) could also be obtained
using Pt-black or TiN electrodes coating (planar or three-
dimensional) [11]. Because of their roughness, these types of
electrodes benefit from the substantial increased electrode area.

Finally, three-dimensional tip electrodes have also been
designed with the target of performing electrical stimulation of
neural cells. In this case, special care needs to be taken to the
strong electric fields at the electrode tips in order to prevent
electroporation of the neural cells [16]. Stimulation models are
thus specific and different from the recording models, and are
beyond the scope of this paper.
6. Conclusion

Analytical models enabling the electrical co-simulation of the
cell–electrode interface, along with analog front-end electronics
are presented in two main incarnations. A point-contact model
adapted from several publication sources is presented, and an
area-contact model is analytically derived, enabling to model the
electrical behavior of the cell–electrode interface of neuron
cultures during electrical activity recording with high-density
MEAs.

The area-contact model is presented as a model more
suitable for subcellular multi-electrode resolution, which is a
requisite for modeling and simulating the electrical behavior of
novel high-density silicon-based MEAs. The existence of an
optimum electrode diameter has been analytically determined,
using the latter model. When measuring the extracellular
voltage potential of standard dissociated hippocampal neural
cells, which have a diameter size of approximately 10mm, the
optimum is equal to 8–10mm for a planar electrode with a 10 pF
load capacitance. Moreover, the optimum electrode size has
been shown to strongly depend on the load capacitance, which
is typically the input capacitance of the amplification stage of
silicon-based MEA.

The electrical model of the cell–electrode interface consisting
of three-dimensional tip electrodes has also been derived
analytically, and simulated using the area-contact model. Using
the physical dimensions of manufactured electrodes in [22], an
optimum electrode diameter of 6–7mm has been derived. A
10–20 dB increase in the amplitude of the system transfer
function compared to planar electrodes can be achieved with
small three-dimensional electrode arrays. This increase occurs
thanks to an increase of the cell–electrode contact area, and an
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increase of the seal resistance due to an expected decrease of the
cell–electrode distance around the tip of the three-dimensional
electrode.
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