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ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Abstract

SCHOOL OF COMPUTERS AND COMMUNICATIONS SYSTEMS (IC)

Department of Communication Systems MSc

Yann Barbotin

This report studies the applicability of Finite Rate of Innovation (FRI) algorithms to

UltraWide Band (UWB) communications, more precisely in the scope of Low Power

Body Area Networks (LP-BAN ). Three main issues are studied and given proposed

solutions.

First, the classical FRI algorithm is modified to accomodate different symmetrical pulse

shapes. Such a modification – necessary to get acceptable performances – is done by a

simple equalization. Second, LP-BAN devices limitations such as drift, jitter and aggres-

sive quantization are blended in the algorithm. It is done by adjusting the equalization

template and development of a suited quantization algorithm. Third and last, the cost of

FRI denoising procedure (Cadzow denoising) is greatly reduced to fit the requirements of

a low power embedded device. It is centered on performing most of the computations in

a low-dimension Krylov subspace of the matrix to be denoised. The particular structure

of the projected matrix enables selective computation of the eigenpairs.

The result is an algorithm able to resolve close paths within a reasonnable computational

budget. Some issues remain on quantization.

Keywords: Finite Rate of Innovation, FRI, UltraWide Band, UWB, Low-

Power, Body Area Network, ranging, equalization, quantization, Krylov sub-

spaces
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Chapter 0

Introduction

0.1 The ranging problem in Ultra Wide Band (UWB) com-

munications

UWB communications are radio communications using a frequency bandwidth larger

than 500MHz. In comparison to narrow-band communications which rely on modula-

tion of a carrier frequency, the large bandwidth of UWB communications allows to send

signals with features well-localized in time – the more localized is a signal in time the

more it spreads in frequency. This opens the door to communications based on pulses,

and information can be encoded in the distance between pulses (Pulse Position Mod-

ulation: PPM) or in their amplitude (PAM) or the pulse width (PWM). One of the

key advantage of pulse based communication is the ability to precisely localize the time

of arrival of the information (the pulse). An interesting application is to measure the

distance between two UWB devices, and it is called ranging. Take an example between

devices A and B, a potential 2-way protocol may be:� A and B agree they will do the ranging procedure� A sends a pulse to B and keep a timestamp t0 of sending time� B receives the pulse and estimates finely the time t1 at which it received it� B sends a pulse back to A recording the sending time t2� A receives the pulse and estimates finely the time t4 at which the pulse was received� B transmits ∆t = t2 − t1 to A� A estimates the time of flight between B and himself as ToFA,B = t4−t0−∆t
2 and

multiply by the propagation speed to estimate its distance to B

1



Chapter 0. Introduction 2

The accuracy of the ranging relies on a good estimation of t1 and t4, i.e. a good estimation

of the pulse location in time. In practice the channel on which the pulse propagates will

produce echos, and so the problem becomes an estimation of the first received pulse

location, which we assume has followed a straight path between A and B. It is called the

Line of Sight (LoS) pulse. Figure 1 shows a channel with two strong echos and a weak

LoS. In case a scenario as described is figure 1 is relevant, one needs to retrieve precisely

Figure 1: A channel with two echos.

the location of the overlaping pulses, and any algorithm based on maximum detection

is doomed to fail. We turn our attention to a parametric method called Finite Rate of

Innovation (FRI). [1–3] In order for a parametric method to be succesful, one shall be

able to have a relatively accurate model of the pulse shape. We will see it may not be

the case for cost and power consumption reasons. The question “is a parametric method

relevant?” shall be kept in mind at any time, doing so we will identify up to which point

FRI may be succesfully applied.

0.2 Short introduction to FRI

The goal of this section is not be a comprehensive review of the theory as numerous

references exist. [1–3] We proceed to quickly restate the basics. The intuition is that a

signal with a finite number of unknown parameters – the degrees of freedom (DoF) – may

be fully characterized by as many samples providing an adequate sampling kernel. Such

an observation is not constructive, and the hardest part is to formulate an algorithm to

retrieve the parameters from the sample.

In the case of a periodic pulse train, several algorithms were formulated respectively for

the sinc kernel [1–3], the gaussian kernel [2], B-splines [2, 4], E-splines [4], and the list

goes on. A major requirement is for the algorithm to be robust to noise provided extra
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samples. Robust algorithms are available in the sinc and E-spline cases [1, 4]. Emphasis

is put on the sinc sampling kernel as it is the canonical one for FRI and it is relevant to

the UWB setup.

0.2.1 FRI with a sinc sampling kernel

This section is taken from [1].

Noiseless case A periodic train of pulses is defined as:

x(t) =
K∑

k=1

∑

l∈Z

ckδ(t− tk − lτ). (1)

,such thatK is the number of pulses per period τ and ck, tk their amplitude and location.

Observing x(t) through a sampling device operating at frequency 1/T and with a sinc

sampling kernel of bandwidth B yields the samples:

yn = 〈x(t), sinc(B(nT − t))〉 =
K∑

k=1

xkDB(nT − tk) , n = 1 . . . N. (2)

DB is the Dirichlet kernel of bandwidth B: DB(t) = sin(πBt)
Bτ sin(πt/τ) . In a few words,

periodicity has been transfered from the signal to the sampling kernel. N is taken odd

for simplicity.

The Fourier coefficients of x(t) (x is periodic) falling within the bandwidth of the Dirich-

let kernel can be retrieved from the Fourier coefficients of yn:

ŷm =
N∑

n=1

yne
−j2πmn/N =







τ x̂m if |m| ≤ ⌊Bτ/2⌋
0 else

(3)

These coefficients verify:

x̂m =
1

τ

K∑

k=1

xke
−j2πmtk/τ . (4)

Each coefficient of the Fourier series depends on a very small subset of the Fourier vectors

(the complex exponentials). If one knows the subset, which means knows the location,

finding the amplitude is a simple change of basis, i.e. finding the solution of a linear

system.

The hard part is to find the set of complex exponentials, which is a non-linear problem.

It is done by the Annihilating filter method. The annihilating filter is in the z-domain:
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H(z) =
∑K
k=0 hkz

−k =
∏K
k=1

(

1− e−j2πtk/τz−1
)

. It has the property to annihilate the

spectrum of x:

hm ∗ x̂m = 0. (5)

The coefficients {hi}i=1...K , h0 = 1 are solution of the toeplitz system:








x̂−1 . . . x̂−K
...

. . .
...

x̂K−2 . . . x̂−1















h1

...

hK








= −








x̂0

...

x̂K−1







. (6)

Once the filter coefficients are obtained, the locations are computed finding its roots.

Noisy case: Total Least Squares & Cadzow denoising In case the samples are

corrupted, additional samples are required to denoise the signal prior to the annihilating

filter computation. In the Cadzow denoising procedure, the DFT coefficients of the

samples are arranged in a Toeplitz matrix A. We restrain ourselves to a square matrix,

even if it is not strictly necessary:

A =








ŷ0 . . . ŷ−(N+1)/2

...
. . .

...

ŷ(N+1)/2 . . . ŷ0







. (7)

Note that for a real input signal, A is also hermitian. If the original signal contains K

distinct pulses,A shall be of rank K. This can be enforced by clipping the (N+1)/2−K
smallest eigenvalues of A to 0 and synthetizing Ã from this “partial” eigenvalue decom-

position. Ã has the property to be the closest rank K matrix to A in the Frobenius

norm. However, Ã is not Toeplitz anymore. It is made toeplitz by averaging the di-

agonals. The process of reducing to rank K and “toeplitzation” is repeated until the

K + 1th eigenvalue gets significantly smaller than the Kth one. For a complete study of

the convergence of this algorithm and thorough argumentation, see [5].

Building a topelitz matrix T as in equation 6 with column dimension K+1, and annihi-

lating filter h of degree K+1 yields the homogeneous equation: Th = 0, which is to say

h belongs to the null-space of T . In case T is “tall”, its null-space may be empty. With

or without prior denoising, it is reasonnable to solve a relaxed annihilating equation.

The TLS solution of such a surdetermined system is hTLS = arg min‖h‖2=1 ‖Th‖
2. The

solution may be found in the null-space of the closest approximation of T (in the Frobe-

nius norm) with a non empty null-space. Such a vector is colinear to the last column of

V assuming T = USV T .



Chapter 1

FRI in a non-ideal setup

1.1 Problem statement & overview

FRI theory exposed in chapter 0 gives the theoretical foundations to build upon. It

provides a toolbox to work with rather than an immediate “blackbox” solution. Indeed,

real-life impulse communications cannot afford the infinite support of the sinc function,

and implementation has its constraints dictated by available technology or cost.

This chapter provides a case-study of FRI implementation for an LP-BAN (Low Power

Body Area Network) platform. It is not tractable to start with an exact model of LP-

BAN as too many modifications from the theory would be introduced at once. The

progressive approach applied summarizes in two points:� effects on FRI performances of constraints inherent to UWB communications

(square demodulation, pulse shape, . . . ), and possible solutions.� effects on FRI performances of hardware limitations (drift, jitter, quantization,

. . . ), and possible solutions.

The typical Rx hardware chain is illustrated in figure 1.1. Capital letters label different

parts of the chain, and as a convenient reminder, D falls just after discretization in time.

We use DQ rather than E after quantization (discretization in amplitude). With this

reference map, we are ready to proceed with the first part of the chapter.

5



Chapter 1. FRI in a non-ideal setup 6

BPF (.)
2

LPF Sampler Quantizer
A B C D DQ

Figure 1.1: Simplified diagram of the receiver (Rx ) radio-frequency frontend.

1.2 FRI in the general UWB setup

1.2.1 The Rx chain model

1.2.1.1 Signal analysis

Consider the periodic analog signal:

y(t) = x(t) + ǫ(t) ,

such that ∀t ∈ [0τ ] : x(t) ∈ R, ǫ(t) = ǫℜ(t) + jǫℑ(t) (1.1)

ǫℜ, ǫℑ iid white gaussian wss process : ǫℜ, ǫℑ ∼ N (0, σ2).

Just before demodulation, the noise ǫA has lost is whiteness:

yA(t) = BPF{y(·)}(t) (1.2)

def
= xA(t) + ǫA(t) , (1.3)

psd

{

ǫA(·
1
)
}

(ejω)
wss
= F

{

E

[

ǫA(·
2
)ǫ∗A(·

2
− ·

1
)
]}

(ejω) (1.4)

= |hBPF (ejω)|2F
{

E

[

ǫ(·
2
)ǫ∗(·

2
− ·

1
)
]}

(ejω) (1.5)

= |hBPF (ejω)|2. (1.6)

Then at point C – before discretization – the signal is made of 3 principal components:

yC(t) = LPF{xA(·
)
x∗A(·

)
}(t)

+ 2 · LPF{xA(·
)
ℜ
[

ǫA(·
)

]

}(t) (1.7)

+ LPF{ǫA(·
)
ǫ∗A(·

)
}(t),

def
= xC(t) + ǫns(t) + ǫs(t).

The noise has a stationary part ǫs and a non-stationnary one ǫns. This distinction is

important as it will call for two different mathematical treatments.
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1.2.1.2 Modelisation of the stationnary noise ǫs

It is well-known the sum of squares of iid and normally distributed random variables

follows a χ2 distribution. However for a general quadratic form, the distribution is a

mixture of χ2 distributions [6, 7]. To show it, we work in the discrete domain using

matrix formalism. The discretized original noise process is written ǫ, and to each filter

filter name is associated the convolution mask cfilter name. Then:

ǫB = (cBPF ǫ)
∗
cBPF ǫ (1.8)

= ǫ∗ c∗BPF cBPF
︸ ︷︷ ︸

call it P

ǫ. (1.9)

Assuming P is non-singular, it is a positive-definite quadratic form of normally dis-

tributed random variables. It is shown in [7, 8] that a positive-definite quadratic form

of 0-mean gaussian random variables with non-singular covariance structure follows a

mixture of χ2. Indeed, a vector of correlated gaussian random variables can be seen as

the transformation of an iid vector of N (0, 1) by
√

Σ, Σ the covariance matrix of the

original vector: xcorr =
√

Σxiid. Since covariance matrices are symmetric, the quadratic

form in equation 1.8 is equivalent to:

ǫB = ǫ∗idd
√

ΣP
√

Σǫiid. (1.10)

In our case, ǫ is made of iid random variables, so its covariance matrix is the identity

and equation 1.10 is unecessarily complicated. However it is mentionned to highlight

the iid property of the noise is not a requirement. Then using a the diagonalization of

P by an orthonormal matrix Ξ, P = Ξ
∗
ΛΞ, each stationnary noise sample verifies:

ǫB = ǫ∗Pǫ

= Qǫ∗Λ Qǫ
︸ ︷︷ ︸

Q is ⊥⇒iid,

∼N (0,1)

(1.11)

=
n∑

i=1

λiψi , ψi ∼ χ2
1.

which proves the mixture of χ2 property. Call ck the kth moment, ck
def
= Sp

{

P k
}

=
∑
λki li, such that li is the number of degrees of freedom (DoF) of each random variable.

It is proven in [9] ǫB is well approximated by a χ2 distributed random variable.
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Proposition 1.1. [Liu et al. 2009] Let be an approximation of a mixture of χ2 by

a χ2 distribution with l DoF having the same skewness . This approximation differs in

kurtosis as:

∆κ = 12

∣
∣
∣
∣

1

l
− c4

c2
2

∣
∣
∣
∣ .

Proof. See [9].

Of course, in case λ1 = λ2 = · · · = λn one gets a perfect fit as c2
2/c4 = n = l. In general

the fitness is dictated by the homogeneity of P ’s eigenvalues. They can be derived from

the equation of thelpbandpass filter.

Similarly, assuming the approximation holds for ǫB and the filter LPF{·} has non-

negative coefficients [. . . fi . . . ], filtering after demodulation by the square filter and

the low-pass filter yields another mixture of χ2 distributed random variables, with a

circulant autocorrelation matrix. Since the filter coefficients are assumed non-negative,

the same approximation may be applied. No precise claim is made on the validity of

the approximation as it depends on the filters specification. However, simulations show

a χ2 fit is relevant – see figure 1.2(a).

Usually, several sequences x
(1)
D , . . . , x

(P )
D are obtained at different but relatively close

times: different to have independence between the x
(·)
D but close enough to have propa-

gated on the same channel thus having identical distribution. Adding them coherently

results in a sum of (non weighted) χ2 distributed random variables, which has the prop-

erty to increase the number of DoF. As the number of DoF increase, the χ2 distribution

quickly tends to a gaussian one. This fact can more generally be considered true from

the central limit theorem. Such a property is witnessed in 1.2(b) for a value of P typical

to LP-BAN .

All the preceeding developments lead to the approximation:

For P large enough,
P∑

p=1

ǫ
(p)
D is normally distributed. (1.12)

To fully characterize the process, the autocorrelation is computed emprically. Figure 1.3

shows Pearson moment-product for the stationnary noise (normalized autocorrelation)
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(a) Stationary noise in LP-BAN at the end of the Rx chain.
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(b) Averaging pulses increase the number of
DoF in the χ2 distribution, allowing for a gaus-
sian approximation.

Figure 1.2: Stationary noise distribution.

with or without averaging of the pulses:

ρs[k, i] =
E [ǫs[k]∗ǫs[k − i]]

√

Var[ǫs[k]]Var[ǫs[k − i]]
(1.13)

=
E [ǫs[0]∗ǫs[−i]]

Var[ǫs]
(1.14)

=
rs[i]

rs[0]
. (1.15)

ρs only depends on filters in the Rx chain. It can thus be estimated over a long noise

sequence of fixed power. Then autocorrelation for a particular noise of power rs[0]

– estimated with the standard unbiased estimator of the variance – is computed as

rs[i] = rs[0]ρs[i]. It overcomes the large variance of the autocorrelation estimator for

large indices.

We thus have a complete characterization of the stationnary noise component by esti-

mating its mean and variance.

1.2.1.3 Modelisation of the non-stationnary noise ǫns

The non-stationnary component has the good taste to be gaussian. Given an original

noise power σ2, a convolution matrix Cfilter name and a gain gfilter name for each filter

(possible presence of an active electronic component), the autocorrelation matrix Rns of

ǫns verifies:
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Figure 1.3: Pearson moment-product of the stationnary noise. Fs is LP-BAN Rx
sampling frequency.

Rns = 4σ2g4
BPF g

2
LPFCLPF [(CBPFxx

∗C∗BPF ) · (CBPFC∗BPF )]C∗LPF . (1.16)

where · is the Hadamard product, a.k.a. “element-wise product” or “direct product”.

The non-stationnarity of the process is caused by“xx∗”not being toeplitz. The relevance

of a circular convolution is questionable, however the signal is well localized, a shift can

make sure the non-0 elements are not wrapped around. The primary effect of averaging

is to multiply the autocorrelation by 1
P – the proof is trivial.

1.2.1.4 Validation of the noise model

In the rest of the chapter we will assume P pulses are acquired and averaged. Pulses

could be kept distinct for a variant of FRI described in [10], however averaging of the

pulses is necessary in LP-BAN to virtually increase the number of quantization bits as

later explained in 1.3.1.

The noise random processes ǫs and ǫns are obviously cross-correlated. Simulations showed

a Pearson moment-product not exceeding 0.15. We thus make the assumption these 2

processes are not cross-correlated: Rs,ns = 0 ; still keeping in mind the crudeness of
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the approximation. Hence it will be meaningless to give more than a couple significant

digits in the autocorrelation of ǫD.

The global autocorrelation matrix is:

R = E [ǫDǫ
∗
D] (1.17)

=
(

I I

)




Rs Rs,ns

Rns,s Rns








I

I



 (1.18)

= Rs +
�

�
�*

0
Rs,ns +

�
�

�*
0

Rns,s +Rns. (1.19)

To illustrate the above formula, figure 1.4 shows R structure for an input signal with

one pulse. A distinctive bulge on the diagonal is observed at the pulse position.� ��������
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Figure 1.4: The autocorrelation matrix for a single pulse input. Frequency is 10×Fs.

The adequacy of the noise model is witnessed in figure 1.5. The component 1.5.d was

obtained by substraction of the signal and the stationnary noise from the noisy signal,

(d) = (a) + (b)− (c). They seem all compatible with the model.
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1.2.1.5 The LP-BAN pulse shape
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Figure 1.6: Pulse fit by a cubic B-spline .

The last component of the signal is the pulse in itself. The studied pulse is xC(t) in

the analog domain, and xD[n] in the digital domain. It is well approximated by a cubic

B-spline .(figure 1.6) B-spline are naturally defined in the Fourier domain (Schönberg

formula [11]):

β̂n(ω) =

(
sin(ω/2)

ω/2

)n+1

=

(

ejω/2 − ejω/2
jω

)n+1

. (1.20)

As in [12], introducing the one-sided power function (x)n+
def
= xn if x ≥ 0, = 0 else

and its Fourier transform Xn+(ω), the identity
Xn+(ω)

n! = 1
(jω)n+1 yields the time-domain

formula [12]:

βn(x) =
1

n!

n+1∑

k=0

(

n+ 1

k

)

(−1)k
(

x− k +
n+ 1

2

)n

+
. (1.21)

where the monom of complex exponentials was expanded by the binomial formula.

By equation 1.21, the pulse approximation is in the time-domain (up to scaling and

dilation):

β3(x) =







2
3 −

∣
∣t2
∣
∣+
|t3|
2 , 0 ≤ |t| < 1

(2−|t|)3

6 , 1 ≤ |t| < 2

0 , 2 ≤ |t|
. (1.22)
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1.2.2 Computation of the Cramér-Rao (CR) bound

1.2.2.1 Generalities (theory)

With the knowledge of a good approximation of the noise process, its autocorrelation and

the pulse shape, the next step is to compute a theoretical lower bound on the variance

of the paramters estimates. For unbiased estimator this bound is called the Crámer-Rao

bound. A measure for the amount of information a random vector Y carries about a

given parameter θ is called Fisher information IY (θ):

IY (θ) = E

[

∂2

∂θ2
ln fθ(Y )

]

. (1.23)

such that fθ(Y ) is the joint probability density function of Y , parametrized by θ.

Then any unbiased estimator θ̂Y of θ based on a realization of Y has its variance bounded

by: ([13] §32.8)

Var
[

θ̂Y
]

≥ [IY (θ)]−1 . (1.24)

The above inequality is the one stated by Cramér in his seminal book. [13] It corresponds

to the univariate case or multivariate with independant estimation of the parameters.

For independant and joint estimation in the multivariate setup:

Theorem 1.2. [Cramér-Rao lower bound]

Given a random vector Y , the vector of samples, with a joint probability density fθ ∈ C1

and a set of parameters θ = [θ1 . . . θn]. Define its Fisher information matrix JY (θ)

such that Jk,l = E

[
∂
∂θk

ln fθ(Y ) ∂∂θl ln fθ(Y )
]

. The covariance matrix of any unbiased

estimator θ̂Y of θ based on Y is bounded by:

Cov
{

θ̂Y

}

≥ JY (θ)−1. (1.25)

Proof. See Rao’s original paper [14].

An explicit formula for the Fisher information matrix of a signal with additive gaussian

noise is found in [15] and [1]:

Proposition 1.3. Given a timeseries yθ = xθ + ǫθ, with xθ deterministic and ǫθ

a gaussian 0-mean random vector with autocorrelation matrix Rθ, the entries of the

Fisher information matrix JY (θ) are:

Jk,l =
1

2
Sp

{

R−1
θ

∂Rθ
∂θk

R−1
θ

∂Rθ
∂θl

}

+

(
∂xθ
∂θk

)∗

R−1
θ

∂xθ
∂θl

. (1.26)
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Proof. See [15].

Note that in general the“trace”term in equation 1.26 vanishes as the noise is independant

of the estimated parameters. This is however not the case in the LP-BAN setup as

the non-stationnary noise is correlated with the input signal and thus the parameters.

The intuition is the spike-like nature of the noise at the location of the pulse provides

additional information.

1.2.2.2 Computation of the CR bound on pulse locations in LP-BAN signals

CR formula for LP-BAN From equation 1.26, it looks we have all the ingredients

to compute a CR bound on the pulse locations in LP-BAN signals. The only missing

link is the derivative of the pulse shape. Recalling the pulse is a cubic B-spline :

∂β3

∂t
(t) = F−1

{

F
{

∂β3

∂·
2

(·
2
)

}

(·
1
)

}

(t)

= F−1
{

β̂2(·
)

(

e
j·
/
2 − e−j·/2

)}

(t) (1.27)

=
(

β2 ∗∆1
c

)

(t)

= β2
(

t+
1

2

)

− β2
(

t− 1

2

)

.

where ∆1
c = δ

(
1
2

)

− δ
(

−1
2

)

is the centered finite difference operator By formula 1.21,

the quadratic B-spline is in the time-domain:

β2(x) =







− |t|2 + 3
4 , 0 ≤ |t| < 1

2
(|t|− 3

2
)2

2 , 1
2 ≤ |t| < 3

2

0 , 3
2 ≤ |t|

. (1.28)

If we make the approximation the signal is a sum of pulses φ(t) = aβ3(s · t) and noise

as in [1], the signal has the form:

y(t) = xtK (t) + noise =
K∑

k=1

ckφ(t− tk) + noise. (1.29)

Then we identify the different terms in equation 1.26 to compute the Fisher information

matrix of the pulse locations tK = [tk]k=1:K based on samples obtained at time n/Fs =

[1 . . . N ]T /Fs.� ∂xθ

∂θk
= [−ckφ′(1/Fs − tk) · · · − ckφ′(N/Fs − tk)]T ,
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s.t. φ′(t) = a · s ·
[

β2
(

s · t+ 1
2

)

− β2
(

s · t− 1
2

)]

.� ∂R∂tk = ∂Rns

∂tk

= 4σ2g2
BPF g

2
LPFCLPF [Bk · (CBPFC∗BPF )]C∗LPF ,

s.t. Bk = −a2
BPF · s2

BPF

(

B̃k + B̃
∗
k

)

,

and B̃k = β3′ (sBPF [n/Fs − tk]) β3 (sBPF [n/Fs − tk])∗.

This is all we need to compute the CR bound.

Validation of the formula (and efficience of the FRI based algorithm) To

validate the formula, we used a “toy example” signal made of a single pulse at location

t1. Then over 200 trials, we measured the RMSE of the FRI based estimation. recall

several approximations were made through the bound computation. Thus, what we call

CR bound is in fact an approximation of the real CR bound.

We consider the bound valid if the RMSE of the FRI algorithm is larger than the bound

for all tested SNR. Note it is only a sanity check, it does not gives a definitive answer,

just raise the confidence in the computed bound correctness.

We consider the FRI based algorithm to be efficient if it kisses the CR bound. Keep

in mind it is only a toy example. Being efficient on this signal is a prerequisite to good

performances on multi-tap signals.

Two approximations of the bound were used:� A “good” approximation, faithful to the formula developped above. However since

the autocorrelation matrix Rs is empirically estimated and truncated, it may not

be exactly positive definite (pd) as seen in 1.7. The problem is r∗1R
−1r2 is not an

inner-product anymore, which may result in negative Fisher information, which

does not make sense. It is quite natural to obtain a non-sensical result as we

started with a non-pd autocorrelation matrix. . . The solution employed, was to

clip negative eigenvalues to the smallest positive one. Over several tests, ‖Rs‖∞
varied by less than 3%.� The second approximation called “crude” does not enforce positive definitness of

the autocorrelation matrix. When negative Fisher informations occures, and thus

results in an imaginary Cramer-Rao bound, we treat this value as a real number.

the second deviation from orthodoxy is the omition of the trace term in the Fisher

information formula. The “crude” approximation will thus be above the “good”

one, and may show some variations. The purpose of this approximation is to
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verify enforcing positive definitness has a neglectable impact, and to see if the

trace-term is important to the bound accuracy.

0

1

8
9:;<9=>?<

@ABCDEFGHCI JK L MDJNOFGAPCQRS

Figure 1.7: The estimated autocorrelation matrix may not be positive definite.

Results are reported in figures 1.8(a) and 1.8(b). It seems the trace-term has a small

impact, but its lack is enough to fail the CR bound validation.

The “good” bound approximation passes validation and the FRI based algorithm is

efficient down to Ep/N0 = 6dB. It was excpected the algorithm will diverge from the

bound at high SNR as the pulse origin was determined by “naked-eyed” analysis on a

pulse-shape sampled at 10 × Fs by fitting a B-spline template on the pulse shape as in

figure 1.6. Thus, the result is slightly biased.
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Figure 1.8: Comparison of the FRI algorithm RMSE with the “good” and “crude”
bounds.
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1.2.3 The multi-tap channel: adding equalization to the FRI algorithm

1.2.3.1 Problem statement

The name multi-tap channel is used for LP-BAN signals as only one pulse is transmitted,

the other ones observed being echos from the channel.

One of the first problem arising with multitap channels is due to the non-linearity of the

Rx chain. Indeed, the demodulation block is non-linear. If we input a signal made of

two real-valued pulses s(t) = p1(t) + p2(t) the demodulation introduces a cross-term:

sdemod(t) = p2
1(t) + p2

2(t) + 2p1(t)p2(t). (1.30)

This additional term is non null if the supports of p1 and p2 overlap. It is obviously an

important setback, but it is ignored for now. In fact it will surface later in the results

(figure 1.15), limiting the accuracy for close paths.

Another important issue is the mismatch between the real pulse shape and the pre-

supposed sinc kernel. This mismatch did not prevented the FRI algorithm to kiss the

Cramér-Rao bound in the single tap case since the TLS solutions coincide for different

symmetrical pulses. However, as visible in figure 1.9(b), it is not the case for multitap

anymore. Blame cannot be put on the cross-term as the pulses support barely overlap

in figure 1.9(b). The problem is nevertheless easy to spot, the TLS solution is not the

expected one but a symmetrical mixture of sinc pulses around the main pulse as seen

in figure 1.9(c). In a few words, more energy is removed from the residual by cancelling

the side lobes of the sinc pulses than by fitting a smaller pulse. It is a catastrophic

outcome as small pulses are missed, and worse the large one as well. Moreover a simple

misestimation of the number of pulses in the signal will lead to the same result. It seems

essential to get somewhat closer to the ideal sinc shape.

1.2.3.2 Equalization of the spectrum

Since the pulse p is symmetric, ∃w symmetric s.t.:

(p ∗ w)[n] = sincB[n]. (1.31)

with B the desired bandwidth. In the DFT domain:

P [ω]W [ω] = rectB [ω]

⇔ W [ω] = rectB [ω]
P [ω] .

(1.32)
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Figure 1.9: Application of the plain FRI algorithm with an important model mismatch
is not suitable for multitap signals.

If we choose the bandwidth B to be maximal – i.e. the largest bandwidth avoiding

aliasing – equation 1.32 simplifies to:

W [ω] =
1

P [ω]
. (1.33)

It is simply the inverse of the pulse spectrum. In the noisy case, it is customary to use

the Wiener filter for its RMSE minimization properties. In the LP-BAN setup:

yD[n] = xD[n] + ǫs[n] + ǫns[n]. (1.34)

One cannot apply directly the Wiener filter as ǫns is non-stationnary. Its PSD is thus

singular at the origin, and its treatment would require regularization to annihilate the

singularity. Choice is made not to wander down that path. Instead, the more pragmatic

approach to ignore it, and pray for the best will be employed



Chapter 1. FRI in a non-ideal setup 21

Regarding the stationnary noise, the equalization has a whitening effect. Its autocorre-

lation is similar to the pulse shape as seen in figure 1.3. This makes the equalization

relatively well-suited for the task as the sTLS solution is energy-wise optimal for samples

corrupted by additive white gaussian noise. This equalization operation can be seen as

a deconvolution. Figure 1.101 shows we observe the desired dirichlet kernel shaped pulse

(periodic sinc) through a device with a B-spline shaped point-spread function. Appli-

cation of a simple deconvolution – multiplication by the inverse in the Fourier domain

– yields the original dirichlet pulse plus a whitened noise in the low-frequencies. With

this simple aparatus half of the DFT coefficients can be used in the FRI algorithm.

16 samples

32 
samples

Figure 1.10: Straightforward deconvolution whitened the noise

Thus, for a maximal bandwidth and ignoring the non-stationnary noise, the Wiener

deconvolution filter is:

W [ω] =
P ∗[ω]

P [ω]P ∗[ω] + NSR[ω]
. (1.35)

Where NSR[ω] is the spectral Noise to Signal Ratio. Assuming the original sinc pulse

has full bandwidth, the convolution filter p has unit-norm and the DFT of the Pearson

moment-product S[ω] is known – which is reasonable as it only depends on the Rx chain

1The signals shown in this figure are slightly oversampled to make them smoother. In reality, the
dirichlet kernel would have maximum bandwidth, i.e. its DFT spectrum would be a flat line instead of
a box
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filters – the spectral NSR is:

NSR[ω] =
σ2

η2
S[ω]. (1.36)

, where σ2 is the noise power and η2 is the signal power. The noise power is evaluated

on a noise-only portion of the input, and the signal power on portion containing some

pulses after substraction of the noise floor.

1.2.3.3 Numerical results

While the Wiener deconvolution approach is certainly a good one, the simple deconvo-

lution followed by discard of the high frequencies Fourier coefficients proved to be quite

simple yet efficient in the simulations. As expected, equalization made the FRI algorithm

to perform very well on multitap signals, figure 1.11 shows the benefits. Equalization

imposes itself so clearly, it will be implied from now on.
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Figure 1.11: Equalization of the coefficients improves performances (2 distant taps,
RMSE computed on 50 trials).
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1.3 Low-power/low-cost UWB receiver: aggressive quan-

tization, drift and jitter

1.3.1 FRI with 1-bit quantization

Full double precision was assumed in previous results. A more stringent quantization is

a reality on embedded devices. There is no better way to find if the algorithm is “fire-

proof” than by using the minimum number of bits possible: 1. The goal is to obtain

more than 1-bit of information by repeating several time the same signal. Each repetion

shall provide a new point of view, be it by a different realization of the noise or a different

quantization level. Two approaches will be described: one based solely on the noise, and

one hybrid.

The goal is to draw a rough pictures of these solutions, as time does not allow for more.

The subsequent analysis has some rough edges as well.

1.3.1.1 Monte-Carlo (MC) quantization

Monte-Carlo sampling, is a sampling scheme where some randomness is included in the

process. A famous example is the Buffon’s needle experiment. It can be seen as MC

sampling if its goal is to estimate π. MC sampling for LP-BAN is very similar, it consist

of fixing a threshold τ and through P repetitions of the same signal – i.e. different noise

realizations – collect for each sample a binary sequence (b1, . . . , bP ). Since repetition are

independant, the only exploitable quantity in the binary sequence is the occurence rate

of each digit – we call r the rate of “1” in the sequence, which defines the rate of “0”

as 1 − r. Then, given this rate, use a reconstruction function f : [0 1] 7→ S. A trivial

example would be f(r) = r, in which case S = [0 1].

The maximum likelihood estimator of the rate based on (b1, . . . , bP ) realisation of the

i.i.d (B1, . . . , bP ) is r̂P = 1
P

∑P
i=1 bi. It bias depends on r, however maxr (E [r̂P − r]) ≥

1
2(P+1) . It is then consistent since the bias vanishes with P . Its variance is Var [r̂] = σ2

P ,

with σ2 = Var [Bi]. Let θ ∈ [0 θmax] an input value to be quantized with the P -repetition

MC quantizer. Call θ̂P the output of this estimator.

For a particular value θ, every repetition –i.e. every non-quantized samples spaced by

the pulse reptition period – is the sum of:� the noiseless signal value θ� a χ2 random variable independant of θ
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depends on adjacent samples value as well).

For the sake of simplicity, the χ2 r.v. will be assumed gaussian with mean µχ and variance

σ2
χ. This simplification thus only allows to give qualitative results. The noise is then

aggregated in a single gaussian r.v. with mean µ = µχ and variance σ2 = θσd+σ
2
χ. Given

a single fixed threshold τ , the binary random variables Bi ∼ Bernoulli
(

Qµ,σ2(τ − θ)
)

.

It follows the variance of the estimator r̂ is:

Var [r̂] =
Qµ,σ2(τ − θ)

(

1−Qµ,σ2(τ − θ)
)

P
. (1.37)

=
r(1− r)

P
(1.38)

It is not insightful to base the variance of an estimator on a particular value of the

estimated parameter. We recall θ ∈ [0 θmax] – it is noteworthy θmax is proportional to

the SNR. A Taylor expansion followed by first order approximation on the variance of θ̂

yields:

Var
[

θ̂
] Taylor≈

(

Q−1′
µ,σ2 (E [r̂])

)2
Var [r̂]

2

=
(

Q′−1
µ,σ2

(

Q−1
µ,σ2 (E [r̂])

))2
Var [r̂]

=
Qµ,σ2(τ − θ)

(

1−Qµ,σ2(τ − θ)
)

PNµ,σ2

(

Q−1
µ,σ2(r)

) (1.39)

=
Qµ,σ2(τ − θ)

(

1−Qµ,σ2(τ − θ)
)

PNµ,σ2(τ − θ) .

, withN the gaussian pdf. For SNR→∞, i.e. θmax large, the quantitymaxθ |τ − θ − µ| →
θmax ∝ SNR. The conclusion is:

Proposition 1.4. As the SNR grows, the variance of the monte-carlo estimator in the

range of interest grows like

|θ| ∝ SNR : Var
[

θ̂P
]

∼ e|θ|
√

|θ|P .

Proof. ∀t < µ : 1 <
Qµ,σ2(t)

Nµ,σ2 (t) < 3. The easy way to show it is to use the integral criterion

for monotonic positive functions and to bound the equivalent series using the identity

2for a continuous, invertible and differentiable function g and its inverse g−1, g−1′(t) = 1

g′(g−1(t))
. It

is a simple and direct consequence of the chain rule for differentiation.
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1 + 1/2 + 1/4 + · · · = 2. Thus for |θ| large enough assuming −θ ≈ τ − θ − µ < 0 (the

same holds for positve, the roles of Q and 1−Q are swaped) , equation 1.39 gives:

1−Qµ,σ2(τ − θ)
PNµ,σ2(τ − θ) < Var

[

θ̂P
]

< 3
1−Qµ,σ2(τ − θ)
PNµ,σ2(τ − θ)

which means:

Var
[

θ̂P
]

∼ 1

PN0,σ2(θ)

Then recall σ2 ∝ |θ|.

It is thus impossible to use this kind of sampling for any input SNR, as its variance

grows exponentially – the bias of r̂P not even taken into account, the RMSE will be

even larger than the variance.

1.3.1.2 Multiple Thresholds (MT) quantization

Using the Monte-carlo sampling at high SNR is bound to produce catastrophic results.

This section has the purpose to present an algorithm well-behaved at high SNR. A good

target is uniform quantization for noiseless signal. It can be achieved using a different

threshold for each repetition.

To do so, the maximum amplitude of the signal must be determined in as few repetitions

as possible. A possible way to do it is:� Start with a low initial threshold τ1 and multiply it by 2 for each repetition if

some digit is “1” – τnew = 2τcurrent – otherwise repeat quantization with the same

threshold a few times.� If the quantized signal is all-0 for these repetitions, conclude current threshold

is too high and take τnew = (τcurrent − τprevious)/2, otherwise conclude current

threshold is too low, τnew = 2τcurrent.� Stop when the uncertainty on the signal amplitude is smaller than the achiev-

able unfiorm quantization step, i.e. τcurrent− τprevious ≥ τcurrent

# of repetitions remaining , call

current threshold value τmax.� Use the remaining repetions to do uniform quantization in [τ1 τmax].

At high SNR, the result is equivalent to uniform quantization, up to a few repetions

“wasted” to estimate the signal amplitude. In order to perform correctly in a medium

range of SNR, each level of the “uniform quantization” can be repeated. In any case,
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the output of this algorithm is a vector of thresholds τ and their associated number of

repetitions p, and a matrice R where each row represents a rate of “1” for a particular

threshold associated. The task is then to devise a function foptimal such that

foptimal = arg min
f

max
input s

‖f(τ ,p,R)− s‖ . (1.40)

It is a hard task, and the solution proposed is more heuristical than anything else. The

estimated jth sample of the signal is

ŝj =







∑

i τiN
(
Q−1(Ri,j)

)
; ∃Ri,j 6= 0, 1.

τi, i = minĩ∈{k: Rk,j−Rk+1,j 6=0} ĩ ; otherwise.
(1.41)

The rational is a rate estimate close to 1
2 has a much lower variance than one close to 0

or 1. Thus a gaussian bell is applied to convert Q−1(Ri,j) the estimated distance from

the threshold into a score. For example, if one receives only 0s for a particular threshold,

the estimated distance would be +∞, however this is based on too few observations of

a rare event. It makes more sense to compute a score taking into account the quality of

the estimation.

One limitation is the threshold may not be tuned with the desired “finesse”. It was taken

into account and subsequent results use a tuning compatible with LP-BAN . Figure 1.12

shows the MT quantization fulfill its role at high SNR. Moreover best of both worlds

can be combined. With this approach only the range 10-20dB is problematic. It may

be improved using a different threshold than the default one for the MC algorithm.
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Figure 1.12: Quantization error comparison of MC and MT.

It is interesting both methods asymptotically reach a similar bound for a number of

repetitions large enough. It would have been interesting to compare it with a uniform

log2(P )-bits quantizer to see if this bound is related to it.
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Figure 1.13: MT quantization at high SNR.

1.3.1.3 Hybrid solution

A simple hybrid solution can be built from the MC and MT algorithms:� Apply the MT algorithm until τmax is found.� If τmax/τ1 is larger than some fixed constant, proceed with MT (current imple-

mentation uses 5dB).� Else uses MC with threshold τmax/2.

The resulting algorithm is listed in 1. It is by no mean optimal, and the number of levels

in the “linear sweep” shall be reduced in order to minimize the variance of the estimator.

From the LP-BAN specifications, a 5 levels uniform quantization was chosen. Call each

of these levels τ0 < τ1 < · · · < τ5. For a particular sample, if we pick one realization for

each threshold, we obtain a binary vector like [1 1 0 0 0] or [1 0 1 0 0]. The first

one is consistent and the second one is not since it shall be “above” τC and “below” τB .

There are 6 consistent vectors : [0 0 0 0 0], [1 0 0 0 0], [1 1 0 0 0], . . . , [1 1 1

1 1]. One way to estimate the value of a sample, would be to combine realizations at

random and consider only the consistent results. It can be achieved without the random

combinations as the asymptotic result is a product of the rate of 0/1 for each threshold.

Namely:� to each consistent vector assign value vi, i = 0 . . . 5. In our case since levels are

uniformely spaced: vi = i/5� for each sample estimate the probability pi its true value s is above τi� the estimated value for this sample is: ŝ =
∑5
i=0

[

vi
∏i
j=0 pj

∏5
k=i+1(1− pk)

]

.
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This is the“Hybrid”quantization algorithm used in section 1.6. It is similar to algorithm

1 but for the linear sweep which has a fixed number of levels.
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Algorithm 1 quantize: Hybrid quantization algorithm

Input: a number of repetions P and a repetition acquisition function getRepetition()

returning an 1×N vector containing non-quantized samples,
τ1 the original quantization threshold,
κ the minimum gain to enable MT quantization

Output: XQ a P ×Nmatrix containing in each row XQ[i] the binary samples for the
ith repetition, τ the threshholds for each repetition
textbfParameters M?[. . .Mi . . . ], s.t. Mi = max

M∈N:
∑M

m=1
(2m−1)≤P−i

maxd // t.b.d., maximum dichotomy depth
H(·) the Heaviside function.
nc the number of consecutive all-0 quantized vector to confirm a threshold is too

large.
p← [11...1]
i← 1
n← 0 // exponential sweep
while j < nc ∧ i < P do
XQ[i]← H(getRepetition()− τi)
j ← (XQ[i] 6= [0 0 . . . 0])?0 : j + 1
τi+1 ← (XQ[i] 6= [0 0 . . . 0])?2τi : τi
i+ +

end while
j ← 1; step← τi/2; ld← i; up← false; rm← 0 // dichotomic search
while Mj − rm + i < P ∧ j < ld,maxd do

step← step/2
τi← τi− 1 + up?step : −step
XQ[i]← H(getRepetition()− τi)
rm← rm− (XQ[i] = [0 0 . . . 0])?0 : 2j − 1
i+ +; j + +

end while
if τi− 1 < κτ1 then

// fallback to MC
while i ≤ P do
τi ← τi−1 − step
XQ[i]← H(getRepetition()− τi)
i+ +

end while
else

// linear sweep
while i ≤ P do
τi ← τi−1 − step
if τi < τ1 then
τi ← τld−1

end if
XQ[i]← H(getRepetition()− τi)
i+ +

end while
end if
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1.3.2 Drift & Jitter

WARNING: Drift and jitter should not be understood in terms of the sampling clock,

but of the time laps between two signal repetitions.

1.3.2.1 Drift

The drift D can be made relatively small if compensated, for the purpose of simulation,

we will assume it is smaller than ±10ppm (translated in term of the sampling clock),

which means the signal will be shifted by at most 10 samples after 1 million samples

acquired. The obvious effect, is the repetitions of the signal will not be combined coher-

ently anymore. If we abstract the effect it may have on the MT quantization, the effect

on the pulse shape amounts to a discrete convolution on a grid with interval N × T ×D
– N the number of samples per pulse and T the sampling-step – with a box of width

P the number of repetitions. So, the pulse is getting wider and its axis of symmtery

is translated by 1
2P × N × D. For a drift reasonnably small, the mismatch with the

pulse-shape is expected to have little effect and the estimation of the location will be

slightly biased. We observe such a behavior in LP-BAN with typical drift (section 1.6.

The bias will be no more than 0.164 samples.

1.3.2.2 Jitter

We assume the jitter distribution is symmetrical. As P tends to infinity, the effect

of jitter is to convolve the pulse shape with its distribution. The symmetry of the

distribution makes the resulting pulse shape symmetrical as well. Figure 1.14 shows

how given a jitter distribution, the pulse shape may vary. To overcome this effect, one

may increase the number of repetitions P . However the price for this is to increase the

effect of drift. One shall find a compromise between these two evils.

1.4 Estimating the number of taps

Two questions need to be answered:

1. Can the number of taps be reliably estimated before denoising?

2. How does performance varies with misestimation? especially shall one overestimate

or underestimate the number of taps?
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Figure 1.14: Effect of jitter on the pulse shape

A partial answer can be given to question 2. If the model is accurate, i.e. if the signal

can be unambiguously described in term of it, then overestimation of the number of

parameters is not a problem. In case it is not, which can be caused by excessive drift and

jitter (with respect to the repetitions), there is no reliable way to cope with it. Indeed,

preference may be granted to a simpler model even if it introduce a larger residual error.

As the model mismatch grows, the line between a legitimate simpler explanation and

missing some taps in the signal becomes thinner.

Since a relatively cheap algorithm will be introduced in chapter 2, we may indulge

repeating denoising and the computation of the annihilating fitler. The following method

is proposed:� Start with a conservative number of taps. We use the minimum between a pred-

ifined maximum and the number of eigenvalues it takes to capture a certain energy

in the denoising matrix (right now 1− 10−4 of the total energy).� From this starting point we decrease the estimated number of taps until we have

a consistent result. A result is deemed consistent if estimated locations are sep-

arated by more than the minimum resolvable distance and estimated amplitudes

are significantly above noise power and have a ratio greater than the minimum

resolvable amplitude ratio (set to 1/5). The minimum resolvable distance is set to

1 sample, and amplitude limit is 4 times the estimated noise standard deviation.
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simpler model – 1 tap less – and see if the residual energy does not grow too much.

As of today a simpler model is accepted if residual energy decreases.

This strategy leads to a very accurate estimate of the number of taps, and more im-

portant to good ranging performances. It is summarized in algorithm 4 along with the

equalization.

1.5 Algorithmic summary

This sections contains the general description of the algorithm developped to solve the

ranging problem. To complete the picture, quantization was outlined in 1 and fast

Cadzow denoising algorithm will be developped in 2

Algorithm 2 amplitudes: Least-squares estimate of the taps amplitude

Input: y a vector of N (odd) samples,
t the estimated locations,
p(·) the pulse template (function).

Output: c the estimated amplitudes, optimal in the sense of least-square.

Compute w the maximum number of samples a single pulse “covers”
Find the set of samples S = {si} ←

⋃

tk
[w samples closest to tk]

Call s the elements of S organized in a column vector of length S.
Build a S ×K matrix A s.t. Aj,k ← p(sj − tk)
return c ← A†s, s.t. “†” denote the Moore-Penrose inverse (a.k.a. left pseudo-
inverse)

Algorithm 3 consistent: Check the admissibility of a FRI estimation result

Input: y a vector of N (odd) samples,
t the estimated locations,
p(·) the pulse template (function).

Output: a boolean indicating consistency
// the following 3 constants may be modified
κ← 4 // factor of how much a tap has to be above noise
ρ← 1

5 // fraction of the largest tap a tap has to be above
δ ← 1 // minimum distance between taps (in samples)
if min

(
∆+t

)
< δ ∨min (c) < max (κσ, ρmax(c)) then

return false

else
return true

end if
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Algorithm 4 FRIanalysis: FRI based signal analysis

Input: y a vector of N (odd) samples,
Kmax ≤ M−1

2 the maximum number of taps expected,
Emin a lower bound estimate of the proportion of energy attributable to noise,
p̂ the DFT coefficients of a pulse template p = p(⌊N/2⌋ : ⌊N/2⌋), same dimension as
y,
M the (odd) number of DFT samples to run FRI on,
µ, σ the noise average and standard deviation.

Output: K the estimated number of taps,
t = [t1, . . . , tK ] and c = [c1, . . . , cK ] the locations and amplitudes of the taps.

ŷ ← F {y − µ}
ŷeq ← ŷ/p̂ // element-wise division
x← [xr xc]← [[ŷeq]1:⌈M/2⌉ [ŷeq](N−⌈M/2⌉):N ]
K ← arg mink=1...Kmax lowrankApprox (toeplitz(xr, xc))// done during the first
Cadzow iteration in practice
x̃← cadzow (x,K) // see chapter 2
t← roots (annihilatingFilter(x̃,K)) // see [1]
c← amplitudes (y, t, p)
// Loop until a consistent result is found
while ¬consistent (c, t, σ) ∧K > 1 do
K ← K − 1
x̃← cadzow (x,K)
t← roots (annihilatingFilter(x̃,K))
c← amplitudes (y, t, p)

end while
simpler ← true

// Apply Occam principle: look for a simpler satisfying solution

rprev ←
∥
∥
∥y −∑Kk=1 ck · p (support(y)− tk)

∥
∥
∥

while simpler ∧ K > 1 do
K←K − 1
x̃← cadzow (x,K)
t̃← roots (annihilatingFilter(x̃,K))
c̃← amplitudes

(
x, t̃,p

)

r ←
∥
∥
∥y −∑Kk=1 c̃k · p

(
support(y)− t̃k

)
∥
∥
∥

simpler ← rprev > r // may be tweaked.
if simpler then
t, c, rprev ← t̃, c̃, r

else
K ← K + 1

end if
end while
return K, t, c
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1.6 Numerical results

1.6.1 Methodology

Simulations were performed with the equalized FRI algorithm on a 2-taps channel. Num-

ber of taps is estimated automatically as in algorithm 4. Several combinations of the

following items are tested:� Quantization: Infinite (double precision), 2-bits3 and Hybrid (with 3 and 5 levels).� Drift: none or 10ppm.� Jitter: none or uniformely distributed in ±1.5 samples or ±3 samples.

In order to better match the pulse shape when drift and jitter are present, we may use

a wider template refered as fat template. It is obtained by convolution with a 3 samples

wide box-function. This template may also be used with less jitter to see if a precise

knowledge of the jitter distribution is necessary.

Each plot contains the RMSE and distribution of the error on the first location esti-

mation. 50 trials were performed if not otherwise stated. To each color corresponds a

different amplitude ratio between taps: 1/0 (no 2nd tap), 1/0.5 (2nd tap half of 1st tap),

1/1 (equal strength), 1/1.5, 1/2. Each page contains four plots with different distances

between taps: 2, 3, 4 and 8 samples.

1.6.2 Analysis of the results

The error introduced by the cross-term is in general weaker than the one caused by drift,

jitter or quantization. It is interesting to note that if no minimum distance between

the paths is enforced (1.5 in current code), the algorithm will find an artificial tap

corresponding to the cross-term for taps distants of 2 samples, thus reducing the error

caused by the cross-term.

The algorithm can cope with drift and jitter efficiently thanks to a wider template. It

does not require many bits of quantization as 2 seems to be enough. However, quanti-

zation with only 1bit which requires the use of a gain control quantization algorithm –

like the hybrid algorithm – has drawbacks. It is not precise in a wide range, thus if the

LoS pulse is significantly smaller than the largest tap (<1/2) it will probably be missed.

3we refer to a real 2-bit quantization, i.e. each sample acquired at a given time t may take one of
four values
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And this regardless of the SNR. The advantage of a parametric method as FRI over the

traditional interpolation/maximum search disappear.

As a partial conclusion, it seems necessary to find a way to reliably quantize the signal

with a large jitter in order to use a parametric method. In any other of the tested

scenarii, it can be used to resolve close paths.
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Figure 1.15: Infinite quantization (double precision) without drift nor jitter.
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Figure 1.16: Infinite quantization (double precision) 10ppm of drift and no jitter.
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∆t = 8, drift=10ppm, jitter∼ U (±3samples), fat template.
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Figure 1.17: Infinite quantization (double precision) 10ppm of drift and ±3 samples of jitter.



C
h
ap

ter
1.

F
R

I
in

a
n
o
n
-id

ea
l
setu

p
39

5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

Ep/N0 [dB]

R
M

S
E

 o
n

 1
s
t −

ta
p

 [
s
a

m
p

le
]

∆t = 2, drift=10ppm, no jitter.
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∆t = 4, drift=10ppm, no jitter.
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∆t = 8, drift=10ppm, no jitter.
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Figure 1.18: 2− bits quantization (double precision) 10ppm of drift and no jitter.
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∆t = 2, drift=10ppm, jitter∼ U (±3samples), fat template.
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∆t = 3, drift=10ppm, jitter∼ U (±3samples), fat template.
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∆t = 4, drift=10ppm, jitter∼ U (±3samples), fat template.
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∆t = 8, drift=10ppm, jitter∼ U (±3samples), fat template.
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Figure 1.19: 2− bits quantization (double precision) 10ppm of drift and ±3 samples of jitter.



C
h
ap

ter
1.

F
R

I
in

a
n
o
n
-id

ea
l
setu

p
41

5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

Ep/N0 [dB]

R
M

S
E

 o
n

 1
s
t −

ta
p

 [
s
a

m
p

le
]

∆t = 2, drift=10ppm, no jitter, fat template.
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∆t = 3, drift=10ppm, no jitter, fat template.
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∆t = 4, drift=10ppm, no jitter, fat template.
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∆t = 8, drift=10ppm, no jitter, fat template.
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Figure 1.20: Hybrid quantization (double precision) 10ppm of drift and no jitter (uses a template slightly thinner than the fat template).
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∆t = 2, drift=10ppm, jitter∼ U (±1.5samples), fat template.
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∆t = 3, drift=10ppm, jitter∼ U (±1.5samples), fat template.
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∆t = 4, drift=10ppm, jitter∼ U (±1.5samples), fat template.
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∆t = 8, drift=10ppm, jitter∼ U (±1.5samples), fat template.

 

 

drift offset

1:0

1:0.5

1:1

1:1.5

1:2

Figure 1.21: Hybrid quantization (double precision) 10ppm of drift and ±1.5 samples of jitter.
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∆t = 2, drift=10ppm, jitter∼ U (±3samples), fat template.
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∆t = 3, drift=10ppm, jitter∼ U (±3samples), fat template.
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∆t = 4, drift=10ppm, jitter∼ U (±3samples), fat template.
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∆t = 8, drift=10ppm, jitter∼ U (±3samples), fat template.

 

 

drift offset

1:0

1:0.5

1:1

1:1.5

1:2

Figure 1.22: Hybrid quantization (double precision) 10ppm of drift and ±3 samples of jitter.



Chapter 2

A faster denoising

2.1 Working with LP-BAN : Overview & Goals

The low-power and small form factor requirements of LP-BAN scream for a faster way

to denoise the input signal. This chapter focuses on the Cadzow denoising method, and

how it can be made faster for the problem at hand. The particularities of LP-BAN are:� number of samples is small. Throughout this chapter we will use 31 as a relevant

example.� number of reflections is small. 3 reflections will be used as a typical example.� computations done in fixed-point arithmetic.� reduced set of fast built-in operations.

– + - x, boolean operations and register shifts are cheap

– /,
√

and trigonometric functions evaluations are costly� additional hardware is limited by cost and space.

Each denoising iteration consist of finding a best low-rank approximation of a square

toeplitz hermitian matrix – such a restriction holds given an odd number of samples.

It can be achieved by keeping the largest spectral components. The obtention of these

spectral components by an eigenvalue decomposition is the main contributor to the

computational burden. More precisely, reducing the complexity of cadzow denoising

boils down to an efficient solver for the partial symmetric eigenvalue problem. The

principal eignevalues are supposed to be separated – i.e. distinguishable at machine

precision.

44
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The cost of trigonometric functions, divisions and square-roots rules out methods based

on rotations like Jacobi procedures.([16] §8.6.3) The space and cost limitation makes

’divide and conquer’ methods less attractive since they rely on paralellization to get high

performances. Most of these ’unsuitable’ algorithms have received a lot of attention for

the past two decades as spectral analysis is usually performed with clusters of computers

at hand rather than on embedded devices. This marketing analysis gives nevertheless

a clue at which period we shall look for interesting litterature. Fixed-point arithmetic

and reduced set of instructions hint at the 60s/70s.

The proposed method is an aggregate of well-established algorithms and a few more

recent developpements. It can be summarized as a tridiagonalization followed by selec-

tive computation of eigenpairs. Choice is made to start with an expose of Rayleigh-Ritz

algorithm and Krylov subspace methods, and then go on with the Lánczos iterations

which are at the core of the algorithm. The reason for such a path is to emphasize

Lánczos iterations are more than just a tridiagonalization tool. It is inspired and thus

very similar to the treatment in Parlett’s book.[17] The later proved to be an invalu-

able reference on the subject and is highly recommended to read. Note the algorithm

was developped with LP-BAN ’s characteristic in mind, however it is fairly general and

potentially useful for other platforms as well.

The contribution of this chapter is to give a complete description of an efficient solver

for the partial symmetric eigenproblem for small or large matrices, to provide a few

propositions to glue the parts together, and some bounds to facilitate a fixed-point

implementation.

2.2 The Rayleigh-Ritz algorithm and Krylov subspaces method

The reference with an outline the closest to this section is Parlett’s book. [17] However

the present expose aims at being self-contained, and some proofs are different – appro-

priate references are provided when similar. In addition it contains different concepts

and some jargon, so for the sake of clarity, Figure 2.1 provides a schematic view of the

progression.
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proj. in 

general subspace S 

m

proj. in 

Krylov subspace K 

m

(Lanczos iterations)
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theory
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theory
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case

Refinement
Kaniel  Saad

theory

Figure 2.1: Overview of of Rayleigh-Ritz procedure and associates.

2.2.1 Eigenpairs approximation from a linear subspace: the Rayleigh-

Ritz algorithm

Consider Q m a linear subspace of C
n with dimension m ≤ n. One way to define it is

through an orthonormal basis Q, namely:

Q
m = span(Q). (2.1)

The question we are asking, is if there is a way to approximate some eigenpair of A ∈
C
n×n from a given subspace, and how can we do it.

Eigenvectors ofA enjoy a fundamental property: they span a subspace which is invariant

with A, i.e. if ξ is an eigenvector of A, then Ax ∈ span(ξ), ∀x ∈ span(ξ). By linearity

the same holds considering span(Ξ), where Ξ = [ξ1, . . . , ξn].

If Q m is not exactly invariant then the eigenvectors of QprojQ mA = AQ – called the

Ritz vectors – match m eigenvectors of A. However there is no hint at which is the

index of the matched eigenvectors.

If Q m is not invariant, an approximation of A eigenvectors may be derived via the

Rayleigh-Ritz algorithm. It is a well-known and used procedure in the field of compu-

tational physics, civil engineering, . . . . In signal processing terminology, it is no more



Chapter 2. A faster denoising 47

than mapping the eigenpairs of projQ mA = Q∗AQ by the inverse orthonormal transfor-

mation Q∗. Fitness of the approximation is then measured in term of the residual error

in the eigenvalue equation. Namely:� Compute the projection Ã = projQ mA, called the Rayleigh quotient matrix by the

physics folks.� Compute
{

(λ̃1, ξ̃1), . . . , (λ̃m, ξ̃m)
}

the eigenpairs of Ã.� Compute the Ritz pairs of A from Q m: (θi, ri) = (λ̃i, Qξ̃i).

An interesting property of the Ritz values is that they approximate well the eigenvalues

up to the residual error in the eigenvalue equation [18]:

For each Ritz pair (θi, ri),∃λ an eigenvalue of A such that |λ− θi| ≤ ‖Ari − θiri‖ .
(2.2)

An obvious shortcoming of such a method is that several Ritz values can be matched to

the same eigenvalue if their respective inequality overlap – rigorously said, if the solution

intervals of the inequalities in 2.2 overlap. Moreover clustered eigenvalues will make it

very likely to happen. Secondly, the fitness of the Ritz vectors cannot be precisely

assessed generally. The exception is when eigenvalues are well separated. The Gap

theorem precise this statement:

Theorem 2.1. [Parlett]

Let λ be the closest eigenvalue of A to a Ritz value θ, and their associated eigen/Ritz

pairs (λ, ξ), (θ, r). Define the gap γ = min
λi 6=λ
|λi − θ|, then

√

1−
(‖Ar − θr‖

γ

)2

≤ |〈r, ξ〉| (≤ 1). (2.3)

and

|λ− θ| ≤ ‖Ar − θr‖
2

γ
. (2.4)

Proof. See [17] §11.7.

The culprits of the Rayleigh-Ritz algorithm for a general subspace Q m are for us the

lack of correspondance between indices of the spectrum and Ritz spectrum and the lack

of extensibility. Lack of extensibility is failing to answer how to cheaply get a projection

in a better subspace if not good enough – i.e. if inequalites overlap. A restriction to

Krylov subspaces is aimed to answer both of these shortcomings.
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2.2.2 Krylov subspaces reveal extremities of the spectrum

A basis for a dimension m Krylov subspace of the matrix (linear operator) A is ob-

tained applying m-times A to a generating vector f . This basis is denoted KmA (f) =

[f , Af , . . . , Am−1f ]. The subspace itself is K mA (f) = span (KmA (f)). Then any element

a of this subspace has a natural polynomial representation:

a =
m−1∑

i=0

ai ·Aif = fpa(A). (2.5)

,where pa(·) is a polynomial of degree less than m.

This correspondence between Krylov subspaces and polynomial less than a certain degree

yields some elegant and powerful results on the eigenpairs approximation. It may not be

intuitive at first to build polynomials of a square matrix, however it gets easier to work

with them as there is a correspondence between the characteristic polynomial of A and

its minimal polynomial. The former is a polynomial of an argument in C while the later

is for an argument in C
m×m. They are both defined over C so a priori a correspondence

between them (may) make sense. We assume the notion of characteristic polynomial is

well-known, and proceed with the definition of the minimal polynomial:

Definition 2.2. The minimal polynomial µ of A ∈ C
m×m is the monic polynomial over

C of minimal degree having A as a root, i.e. µ(A) = 0.

Proposition 2.3. Let A ∈ C
m×m, p its characteristic polynomial, µ its minimal poly-

nomial and λ one of its eigenvalues. Then:

p(λ) = 0⇔ µ(λ) = 0. (2.6)

Proof.

µ(A) =
n≤m−1
∑

i=0

µiA
i (2.7)

= Ξ





n≤m−1
∑

i=0

µiΛ
i



Ξ
∗ def

= 0. (2.8)

Which in canonical form is equivalent to:
∏n≤m−1
i=0 (Λ − θiI) = 0. The polynomial of

smallest degree satisfying this equation is
∏

θ∈L (Λ− θI). Thus:

µ(A) = Ξ




∏

θ∈L

(Λ− θI)


Ξ
∗ (2.9)

=
∏

θ∈L

(A− θI). (2.10)
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,with L the set of (unique) eigenvalues of A. Thus p and µ have the same roots, with

potentially different multiplicity.

Put simply, µ is p with its duplicate canonical terms squashed. The above property is

a stronger version of the Cayley-Hamilton theorem for square matrices which states µ

divides p.

Corollary 2.4. [Parlett 1980]

A vector w = ω(A)f ∈ K mA (f) and (θ, r) a Ritz pair of the same Krylov subspace, then:

w ⊥ r ⇔ ω(θ) = 0. (2.11)

With this very handy definition for orthogonality, the Ritz vectors {ri}i=1:m obtained

from K mA (f) can be formulated as: Namely:

r′i =
∏

θ∈L \{θi}

(A− θI)
︸ ︷︷ ︸

µi(A)

f , ri = r′i/‖r′i‖. (2.12)

It is simply the minimal polynomial with the canonical term corresponding to θi removed.

Using this formulation of the Ritz vectors, Parlett derived the following bound:

Lemma 2.5. [Parlett 1980] Define ̺A−λkI the Rayleigh quotient of A − λkI, Ξk =

[ξ1 · · · ξk] the orthonormal basis formed by its k principal eigenvectors and h the nor-

malized orthogonal complement of t to span(Ξk):

̺A−λkI(π(A)f) ≤ (λ−k − λ−n )

[
sin[arg(f , span(Ξk))]

cos[arg(f , ξk)]
· ‖π(A)f‖

π(λk)

]2

. (2.13)

Proof. See [17].

Before going further, a useful theorem is needed. It will give the ability not only to

derive bounds on the convegence of Ritz pairs to the two extremal eigenpairs of the

spectrum but on their adjacent eigenpairs as well.

Theorem 2.6. [Courant-Fischer theorem]

Let A ∈ C
n×n an hermitian matrix and ̺A(x) = x∗Ax

〈x,x〉 its Rayleigh quotient defined on

C
n.

Consider λ+
m the mth eigenvalue of A in ascending order (λ+

1 ≤ · · · ≤ λ+
n ) and similarly

λ−m in descending order. Then for any non-trivial m-dimensional linear subspace Sm of

C
n

λ+
m = min

Sm
max

x 6=0∈Sm
̺A(x). (2.14)
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and conversely

λ−m = max
Sm

min
x 6=0∈Sm

̺A(x). (2.15)

Proof. Proof of the converse: Define Ξm = [ξ1, . . . , ξm] the m-dimensional orthonormal

basis formed with the m principal eigenvectors of A.

max
Sm

min
x 6=0∈Sm

̺A(x) ≥ min
x6=0∈span(Ξk)

̺A(x)

= ξ∗mAξm = λ−m.

The intersection of a two subspaces of dimension m and n−m+ 1 both from a space of

dimension n is necessarily non-trivial, i.e. it contains a non-0 element. Thus ∃x 6= 0 ∈
span([ξm, . . . , ξn]) ∩ Sm which yields:

min
x 6=0∈Sm

̺A(x) ≤ ̺A(x)

≤ λ−m.

Thus λ−m = max{Sm}minx 6=0∈Sm ̺A(x). Proof for the min-max equation is similar.

Corollary 2.7. [Cauchy interlace theorem]

The Ritz values {θ1, . . . , θm} of any projection of A in a m-dimensional linear subspace

verify:

λ+
k ≤ θ+

k ≤ λ+
n−m+k (2.16)

λ−n−m+k ≤ θ−k ≤ λ−k (2.17)

The previous two results yield the following bounds for x ⊥ span(Ξm−1):

0 ≤ θ+
m − λ+

m ≤ ̺A−λ+
mI

(x) (2.18)

0 ≤ λ−m − θ−m ≤ ̺A−λ−mI
(x) (2.19)

The relationship between the minimal polynomial and the characteristic polynomial

explicits x ⊥ (spanΞk−1). Namely Px(t) the polynomial representation of x must have

roots matching the Ritz values of the subspace it is orthogonal to:

P⊥x (t) = P (t)
k−1∏

i=1

(t− θk) (2.20)
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Now the remaining task is to upper-bound as tightly as possible the ratio of polynoms

in Parlett’s inequality

‖P⊥(A)h‖
|P⊥(λ−k )|

2.20
≤ ‖P (A)h‖

|P (λ−k )|
k−1∏

i=1

‖A− θ−i ‖
|λ−k − θ−i |

(2.21)

≤ ‖P (A)h‖
|P (λ−k )|

k−1∏

i=1

∣
∣
∣
∣
∣

θ−i − λ−n
θ−i − λk

∣
∣
∣
∣
∣

(2.22)

Note | · | can be dropped around the product term as Corollary 2.7 guarantees positivity.

Moreover:

‖P (A)h‖ =

∥
∥
∥
∥
∥
Ξ

(
n−k−1∑

i=0

σiΛ
i

)

Ξ
∗h

∥
∥
∥
∥
∥

(2.23)

Since, h ⊥ span(Ξk), one can write Ξ
∗h = [0ξk+1 · · · ξn]∗h

def
= Ξ

⊥∗
k h. The polynomial

part in equation 2.23 being diagonal:

‖P (A)h‖ =

∥
∥
∥
∥
∥
Ξ
⊥
k

(
n−k−1∏

i=0

piI−Λ

)

Ξ
⊥∗
k h

∥
∥
∥
∥
∥
. (2.24)

This rewriting is by no mean different from equation 2.23, it however makes clear one

end of A’s spectrum has no influence. Thus, from the maximization property of the

eigenpairs:

‖P (A)h‖ ≤ max
t∈[λ−n λ

−

k+1
]
|P (t)| . (2.25)

To maximize the ratio, one shall find a polynom as small as possible in the interval

[λnλk+1] and a very large magnitude at λk, these constraints are illustrated in 2.2(a).

It is well-known1 the polynom satisfying these conditions and maximizing the ratio is

the Chebyshev polynomial of degree m − k, Tm−k. Figure 2.2(b) shows its remarkable

properties. After scaling to map [−1 1] to [λ−n λ
−
k+1], the ratio evaluates to

min
P 6=0∈Pm−1

max
t∈[λ−n λ

−

k+1
]

‖P (t)‖
|P (λ−k )| = 1/Tm−k

(

1 + 2
λ−k − λ−k+1

λ−k+1 − λ−n

)

. (2.26)

It is clear the gap between λk+1 and λk plays an important role in the tightness of the

bound as it determines the “amount of absciss” the Chebyshev polynomial has, in order

to grow above 1 – or in order for its inverse to get close to 0.

The inequation 2.13 combined with 2.16 now yield the Saad-Parlett bound:

Theorem 2.8. [Saad & Parlett 1980]

Let A ∈ C
n×n with eigenpairs {(λ−i , ξ−i )}i=1:n ordered by decreasing eigenvalue. The

1Translation: ’I am too lazy to write it down’. Look at [19] for good survey.
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(a) Constraints on the “ideal” polynomial.
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(b) Chebyshev polynomials are good candi-
dates, in fact they are the best.

Figure 2.2: How to maximize the ratio of polynomials in Parlett’s inequality 2.13

Ritz values {θ−k }k=1:m of K mA (f) verify

0 ≤ λ−k − θ−k ≤ (λ−k − λ−n )







sin[arg(f , span(Ξk))]

cos[arg(f , ξk)]
·

∏k−1
i=1

θ−i −λ
−
n

θ−i −λ
−

k

Tm−k

(

1 + 2
λ−
k
−λ−
k+1

λ−
k+1
−λ−n

)







2

. (2.27)

and

sin[arg(ξk,K
m
A (f))] ≤ sin[arg(f , span(Ξk))]

cos[arg(f , ξk)]
·

∏k−1
i=1

λ−i −λ
−
n

λ−i −λ
−

k

Tm−k

(

1 + 2
λ−
k
−λ−
k+1

λ−
k+1
−λ−n

) . (2.28)

Proof. The above developement gives a flavor of the proof for 2.27. A complete proof is

found in [17] §12.4 equation (12-4-1).

Bounds from theorem 2.8 proved to be quite loose for k > 1. However, by the remarkable

growth of the Chebyshev polynomial outside [−1 1] witnessed in 2.2(b), the bound is in

general tighter for a high degree polynomial, i.e. at the ends of the spectrum (a similar

bound holds for the low end). It is important to state “in general” as the gap between

an eigenvalue and its neighbors plays a role as well. In the Cadzow denoising problem,

the largest leading eigenvalues are in general much better separated than the remaining

ones as the later tend to cluster around 0. As well, the bound makes clear the choice of

f is not crucial as long as it is not colinear to an eigenvector of A. In the rest of the

chapter we will thus drop f from the notation and suppose it was suitably selected.
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Hence, Krylov subspaces are the tools of the trade for a quicker Cadzow algorithm.

What is needed is an efficient algorithm to build an orthonormal projection into these

subspaces.

2.3 Projection of an hermitian matrix into a Krylov sub-

space: the Lánczos iterations

The problem to be solved is the design an orthonormal basis Qm such that Q∗mAQm =

projK m(A)
def
= T . The obvious method is to generate m vectors by power iterations

on a random f , and then use an orthonormalization procedure like the Gram-Schmidt

algorithm. However it is costly and it does not give insight on the nature of T . Lánczos

iterations [16, 20] perform the same task efficiently and the derivation of the algorithm

reveals T is real, symmetric and tridiagonal. Before going further it is good to have a

look at the algorithm itself.

Algorithm 5 Lánczos iterations (×m)

Input: A an n×n hermitian matrix, m ∈ {1 : n} the dimension of the Krylov subspace
Output: Qm = [q1 · · · qm] an m × m unitary matrix; α, β n × 1 column vectors,

such that α the principal diagonal and β2:n the first upper/lower diagonals of T =
Q∗mAQm.
pick an n× 1 vector r, possibly at random
set q0 ← 0

for i = 1 : m do
βi ← ‖r‖
qi ← r/βi
r ← Aqi − βiqi−1

αi ← 〈r,qi〉
r ← r − αiqi

end for
return [q1 · · · qm], α, β

2.3.1 Derivation and properties of the Lánczos iterations
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Fun Facts Cornelius Lánczos is an hungar-

ian physicist, friend of Albert Einstein. He had

to flew Europe as Nazi Germany started discrim-

inating against jews. He landed in Purdue where

divergent views with the dean of physics made

him resigned. To make for a living he did some

numerical analysis – subject he did not especially

enjoy – for Boeing Inc. During this time he in-

vented the FFT [21] – more than 20 years before

Cooley & Tuckey rediscovered it independently.

He invented the so-called Lánczos Algorithm in

1950 [20] before returning to physics in Ireland

upon an offer from E. Schroedinger.

There is a beautiful way to derive the Lánc-

zos iterations properties using the polyno-

mial characterization of vectors in Krylov

subspaces. The proof of the Lánczos algo-

rithm given here relies solely on properties

of orthogonal polynomials and elementary

algebra. The connection between orthog-

onal polynomials and the Lánczos algo-

rithm is of course well-known [20], how-

ever no proof based purely on orthonor-

mal polynomial sequences and their prop-

erties were found in the litterature (if any-

body knows of one, the author is inter-

ested).

Definition 2.9. Sequence of orthogonal polynomials.

The sequence p0(t), p1(t), . . . is a sequence of orthogonal polynomials iif ∀i ≥ 0, pi

is a polynomial of degree i and 〈pi, pi+1〉 = 0, where 〈·〉 is an inner-product (maybe

weighted).

Lemma 2.10. ([22] §22.1.4-5)

A sequence of orthogonal polynomials ad-

mits a 3-terms recursion :

pi+1(t) = (ait+bi)pi(t)+cipi−1(t) , ∀i > 0.

(2.29)

such that,

pi(t) = kit
i+k′it

i+. . . . , bi =
ki+1

ki
, ai = bi

(

k′i+1

ki+1
− k′i
ki

)

, ci =
ki+1ki−1〈pi, pi〉
k2
i 〈pi−1, pi−1〉

.

Proof. Assume p0(t), . . . , pi(t) is an orthogonal sequence. Plugging in the coefficients

one can verify 〈pi+1, pi〉 = 〈pi+1, pi〉 = 0. By linearity of the inner-product 〈pi+1, pj〉 =

0 , ∀j : 0 ≤ j ≤ i.

Each basis vector verifies qi ∈ K iA. Thus, the bijection between qi ∈ K iA and Pi−1

associated to the property 〈qi,qj〉 = δij together establish columns of Qm form a

sequence of orthogonal polynomials. From lemma 2.10 we deduce each of them can

be computed from the previous two. Given the intitial conditions q1 = f
‖f‖ and
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q̂2 = Aq1 − projq1
A; q2 = q̂2

‖q̂2‖
:

qk = (c1,kA− c2,kI)qk−1 − c3,kqk−2 , ∀k ∈ {2 : m}. (2.30)

The constants c1,k, c2,k, c3,k are to be determined. The orthogonality constraint yields:

〈qk,qk−1〉 = c1,kq
∗
k−1Aqk−1 − c2,k

= 1
︷ ︸︸ ︷

q∗k−1qk−1−c3,k

= 0
︷ ︸︸ ︷

q∗k−1qk−2

= 0.

⇔ c2,k = c1,kq
∗
k−1Aqk−1.

and

〈qk,qk−2〉 = c1,kq
∗
k−2Aqk−1 − c2,k

= 0
︷ ︸︸ ︷

q∗k−2qk−1−c3,k

= 1
︷ ︸︸ ︷

q∗k−2qk−2

= 0.

⇔ c3,k = c1,kq
∗
k−2Aqk−1.

This allows us to factor c1,k in the recursion equation:

c−1
1,kqk = (A− q∗k−1Aqk−1

︸ ︷︷ ︸

def
= αk−1

)qk−1 − q∗k−2Aqk−1
︸ ︷︷ ︸

def
= βk

qk−2
def
= rk. (2.31)

It is natural to use the degree of freedom c1,k to ensure the normality of qk. Hence:

γk
def
= c−1

1,k = ‖rk‖. Obivously γk, αk ∈ R. The former since it is a norm and the later

since A is hermitian – indeed for a generic column vector v, [v∗Av]∗ = v∗A∗v = v∗Av.

In order to make the nature of the decomposed matrix clearer, equation 2.31 is rewritten

as:

Aqk−1 = γkqk + αkqk−1 + βkqk−2 , ∀k ∈ {2 : m}. (2.32)
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which together whith the initial conditions is written in matrix notation as:

AQm = QmTm , such that Qm = [q1 · · · qm] (2.33)

and Tm =

























α1 β2

γ1 α2
. . .

γ2
. . .

. . . 0

. . .
. . . βk
. . . αk

. . .

0 γk
. . .

. . .

. . .
. . . βm

γm−1 αm

























.

Moreover Tm is hermitian as T ∗m = [Q∗mAQm]∗ = Q∗mA
∗Qm = Q∗mAQm = Tm. Thus

βk = γ∗k−1 = ‖rk‖ , ∀k ∈ {2 : m}, which makes Tm a real, symmetric tridiagonal

matrix:

Tm =

























α1 β2

β2 α2
. . .

β3
. . .

. . . 0

. . .
. . . βk
. . . αk

. . .

0 βk+1
. . .

. . .

. . .
. . . βm

βm αm

























. (2.34)

To summarize: rk = Aqk−1 − αkqk−1 − βkqk−2, αk = q∗k−1Aqk−1, βk = ‖rk‖,
qk = r

‖rk‖
, which is exactly one step of algorithm 5. Note that the algorithm performs

slightly different but equivalent operations. It has been shown to be numerically the

most stable implementation [23]. We proceed with a very useful lemma on the roots of

polynomials forming an orthonormal sequence:

Lemma 2.11.

Roots of polynomials pi and pi+1 from an orthogonal sequence strictly interlace. {pi} is

called a Sturm sequence.

Proof. See Szegő[24] §3.2 or Chihara [19] §5.
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Corollary 2.12. [Sturm sequence property]

The eigenvalues of a real tridiagonal symmetric T i+1 obtained by Lánczos algorithm

and T i
def
= T i+1;1:i,1:i strictly interlace.

Proof. By the polymial characterization of vectors in a Krylov subspace, T i+1 and T i

can be represented by their minimal polynomial. Since the minimal polynomial divides

the characteristic polynomial, each root of the minimal polynomial is an eigenvalue

(no multiple eigenvalue). By construction, the minimal polynomials of T j and T i are

orthogonal ∀j 6= i. Applying previous lemma proves the claim.

Corrolary 2.12 will later come in handy to compute a few eigenvalues of Tm.

2.3.2 Krylov subspace projection for LP-BAN

It is time to show the above method can be fruitfuly used to denoise LP-BAN data.

The experiment was made of 31 equalized FFT samples from the LP-BAN simulator,

arranged in a 16 × 16 hermitian toeplitz matrix A = Ξ
∗
ΛΞ. The signal contained 3

pulses. Projection of A in K d(A;f) = Q∗dT dQd was computed by Lánczos iterations

with PRO, for d = 3, . . . , m. Define T d = Ξ
∗
K,dΘdΞ

∗
K,d the eigenvalue decomposition of

T d. All eigenvalue decompositions were performed with MATLAB eig function. Figure
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Figure 2.3: Convergence of outermost Ritz values.

2.3 shows the convergence of Ritz values to outermost eigenvalues.
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Table 2.1 verifies the ritz spectrum obtained by full Lánczos process (tridiagonalization of

A) matches the spectrum ofA. It shows PRO is effective to counter loss of orthogonality.

Table 2.2 shows convergence of the 3 principals Ritz pairs obtained by partial Lánczos

process with increasing number of steps to the 3 principals eigenpairs obtained by full

Lánczos process. It shows Kaniel-Saad theory can be successfuly applied to reduce

computations.

|Λ−Θ16| | |(Q16ΞK,16)∗Ξ| − I|
0 7.E-10 2.E-10 7.E-10 5.E-10 · · · 7.E-10 7.E-10 6.E-10 6.E-10

2.08E-17 3.E-09 7.E-10 3.E-09 2.E-09 · · · 3.E-09 3.E-09 3.E-09 3.E-09
1.39E-17 1.E-11 3.E-12 1.E-11 9.E-12 · · · 1.E-11 1.E-11 9.E-12 9.E-12
1.39E-17 7.E-13 2.E-13 7.E-13 5.E-13 · · · 3.E-12 5.E-12 6.E-12 1.E-11
3.47E-18 1.E-12 3.E-13 2.E-12 1.E-12 · · · 5.E-12 8.E-12 9.E-12 1.E-11
3.47E-18 4.E-13 8.E-14 4.E-13 3.E-13 · · · 2.E-12 3.E-12 3.E-12 3.E-12
5.03E-17 5.E-15 1.E-15 7.E-16 5.E-14 col. 3.E-12 5.E-12 5.E-12 8.E-12
6.25E-17 5.E-13 1.E-13 5.E-13 3.E-13 5 to 12 9.E-13 2.E-12 2.E-12 3.E-12
4.86E-17 2.E-13 4.E-14 2.E-13 2.E-13 skipped 1.E-12 2.E-12 2.E-12 3.E-12
3.47E-18 5.E-13 1.E-13 5.E-13 3.E-13 · · · 1.E-12 3.E-12 3.E-12 5.E-12
4.16E-17 3.E-14 7.E-15 3.E-14 3.E-14 · · · 3.E-13 5.E-13 5.E-13 7.E-14
5.55E-17 7.E-14 2.E-14 7.E-14 6.E-14 · · · 4.E-13 6.E-13 5.E-13 1.E-12
5.55E-17 7.E-17 2.E-16 3.E-16 1.E-17 · · · 3.E-16 2.E-15 2.E-15 7.E-14
2.78E-17 2.E-16 2.E-16 2.E-16 1.E-16 · · · 7.E-16 2.E-16 1.E-15 2.E-14
1.67E-16 3.E-16 4.E-17 2.E-16 1.E-16 · · · 4.E-16 8.E-16 7.E-16 5.E-15
5.55E-17 3.E-16 2.E-17 2.E-16 2.E-16 · · · 2.E-16 7.E-18 2.E-16 2.E-15

Table 2.1: Accuracy of full-Lánczos with PRO

d |λi − θd,i|, i = 1, 2, 3. |1− (Q16ξ16,i)
∗Qdξd,i|, i = 1, 2, 3.

3 0.024105 0.133501 0.250646 0.066269 0.609642 0.959551
4 0.003834 0.055381 0.147553 0.010151 0.295366 0.814299
5 0.000335 0.014201 0.046684 0.00068 0.063985 0.316324
6 1.94E-05 0.002273 0.012965 2.76E-05 0.006373 0.057887
7 7.07E-08 2.06E-05 0.000241 7.89E-08 3.44E-05 0.000591
8 1.30E-10 8.24E-08 2.00E-06 1.45E-10 1.38E-07 4.94E-06
9 9.83E-13 1.35E-09 6.66E-08 1.10E-12 2.29E-09 1.67E-07

10 9.44E-16 3.05E-12 3.06E-10 4.44E-16 4.82E-12 6.87E-10
11 1.67E-16 8.83E-15 1.73E-12 2.22E-15 1.47E-14 3.50E-12
12 5.55E-17 5.55E-17 1.05E-15 2.00E-15 1.67E-15 2.66E-15
13 1.67E-16 5.55E-17 1.39E-16 2.00E-15 2.00E-15 8.88E-16
14 0 1.67E-16 1.67E-16 1.78E-15 1.67E-15 5.55E-16
15 5.55E-17 1.11E-16 8.33E-17 1.55E-15 2.44E-15 1.44E-15
16 5.55E-17 1.67E-16 2.78E-17 2.66E-15 1.67E-15 3.33E-16

Table 2.2: Convergence of outer Ritz pairs to corresponding eigenpairs.

2.3.3 Lánczos algorithm in finite-precision arithmetic

It was known by Lánczos himself that his algorithm suffers from numerical instability

in finite-precision arithmetic. Later developements by Paige [25] show a lethal loss of



Chapter 2. A faster denoising 59

orthogonality between the basis vectors happens whenever a Ritz pair has converged to

a corresponding eigenpair. Moreover the error on the basis vector is in the direction of

the converged Ritz vectors. It has the devastating effect to clone the converged Ritz

value. This artifact is usually refered as the ghost eigenvalue problem in the litterature

and is illustrated in table 2.3.

Spectrum of
A T 16 w/ PRO T 16 (plain)

0.4703, 0.4703, 0.4703
0.3253, 0.3253, 0.4703
0.2336, 0.2336, 0.3253
0.1493, 0.1493, 0.2336
0.0631, 0.0631, 0.1493
0.0486, 0.0486, 0.0631
0.0236, 0.0236, 0.0486
0.0217, 0.0217, 0.0236
0.0167, 0.0167, 0.0217
0.0118, 0.0118, 0.0167
-0.0145, -0.0145, 0.0118
-0.0252, -0.0252, -0.0145
-0.0330, -0.0330, -0.0252
-0.0369, -0.0369, -0.033
-0.0372, -0.0372, -0.0369
-0.0372, -0.0372, -0.0372

Table 2.3: The ghost eigenvalue problem and a possible solution

Several fixes have been proposed. The soundest of all was proposed by Parlett ([17]

§13.8) and is called selective orthogonalization (SO). It tracks convergence of Ritz pairs

at each step i by performing an eigenvalue decomposition of T i. If new pair(s) have

converged it orthogonalize the last basis vector against all the converged ritz vectors. It

proved to be a very efficient and relatively economic procedure.

Another procedure – which we will use – is the partial reorthogonalization (PRO) of

Simon.[23] It estimates the loss of orthogonality at each step and reorthogonalize the

new basis vector against the ones with an inner-product crossing a threshold νlow and

their adjacent basis vectors νhi. The hysteresis threshold (νlow, νhi) was set by statistical

anlysis and then backed by some analytical arguments.

It is not in the scope of this report to analyse reorthogonalization procedures. As an

end note, PRO was chosen over SO for its relative simplicity. Further analysis would be

required to make a more educated choice.
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2.3.4 A practical stopping criterion

It may not be apparent from theorem 2.8 that Ritz vectors converge at a speed similar to

the Ritz values. To show it, given the bound on the Ritz value α−k − θ−k ≤ (α−k −α−n )ǫ2:

sin[arg(ξk,K
m
A (f))]2 ≤ ǫ2 (2.35)

1− 〈ξk,ψ〉〈ξk,ψ〉∗ = (2.36)

1− |〈ξk,ψ〉| ≤ (2.37)

whereψ is the closest unit-norm vector in K mA to ξk. It tells us the inner-product between

Ritz and eigen vectors converge to 1 at a speed comparable to the Ritz/eigen values. This

is backed up by table 2.2, and basing the stopping criterion on the innermost eigenvalue

to be computed seems reasonnable. The idea is to use the monotonic convergence of the

Ritz values from below. It is guaranteed by theorem 2.7. It is additionally supposed

convergence speed is decreasing, which is observed in simulations – however it is not

mandatory. Let the innermost Ritz value have index K (decreasing order). Then for

each Lánczos iteration d, d ≥ K:

1: compute λ
(d)
K starting bisection in [λ

(d−1)
K , 2λ

(d−1)
K − λ(d−2)

K ]// if λ
(d−1)
K or λ

(d−2)
K are

not available use Geršgorin theorem.

2: if λ
(d)
K − λ

(d−1)
K is above desired precision then

3: do another iteration

4: else

5: halt

6: end if
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Figure 2.4: Early stopping with machine precision set to 10−8.
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Figure 2.4 shows an important number of iterations can be saved especially if a lot of

eigenvalues are close to 0.

2.4 Partial eigenvalue decomposition of real, symetric tridi-

agonal matrices

2.4.1 Computation of the eigenvalues

The Lánczos algorithm results in projK mA = QTQ∗. The structure of T makes it easy

to compute a particular subset of its eigenvalues. First the characteristic polynomial

pm(λ) of T verifies:

p0(λ) = 1 , p1(λ) = λ− α1 (2.38)

pk(λ) = (λ− αk)pk−1(λ)− β2
kpk−2(λ) , ∀k : 1 < k ≤ m.

To obtain the above recursion, simply expand det(T −λI). It provides the characteristic

polynomials pk of the sub-matrices T 1:k for 0 < k ≤ m as well. Recalling the Sturm

sequence property established in 2.12, the number of sign change(s) in the sequence

{p0(λ), . . . , pm(λ)} is the number of eigenvalues greater than λ. Figure 2.5 provides an

illustrative example on a small 3× 3 matrix.

The ability to count eigenvalues makes it possible to find any kth eigenvalue of T using

a search algorithm like a bisection for example. Such an algorithm was described in [26]

and is listed in appendix ??. The bisection search has the nice property to minimize the

maximum number of step to find a root over the set of continuous functions. However,

the characteristic function is relatively smooth – it is a polynomial of finite degree m

– which renders the bisection wasteful. Dekker & Brent[27] developped a root finding

algorithm which by a clever choice of bisection, linear interpolation and quadratic inverse

interpolation speeds up convergence for smooth functions while preserving the min-max

property of the bisection. It can thus be combined with the Sturm sequence to yield the

following algorithm:

1: isolate desired roots by bisection

2: use Brent algorithm on each interval containing exactly one root

2.4.1.1 Step 1: isolation of the eigenvalues
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p0(x) = 1
p1(x) = x− 2
p2(x) = (x− 2)(x− 4)− 32

p3(x) = (x− 5)((x − 2)(x− 4)− 32)− 22(x− 1).

Figure 2.5: ± alternance of characteristic polynomials sequence counts smaller eigen-
values.

Algorithm 6 Finds intervals with exactly one eigenvalue.

Input: α, β 1st & 2nd diag. of T ; 0 < K ≤ m
Output: {(infk, supk)}k=(m−K):(m−1)

m← length(α)
xmin ← mini=1:K |αi| − |βi+1| − |βi|
xmax ← min (1,maxi=1:m |αi|+ |βi+1|+ |βi|)
β ← β · β
[thinfk thsupk ]← [xmin xmax], k = (m−K) : (m− 1)
a← 0
for k = (m−K) : (m− 1) do

while a < k do

th← thinf
k

+thsup
k

2
a← sturmCount (α,β, th)
for i = (m−K) : (m− 1) do

if q ≤ i then
if th > thinfi then

thinfi ← th
end if

else if th < thsupi then
thsupi ← th

end if
end for

end while
end for
return

{

(thinfk , thsupk )
}

k=(m−K):(m−1)
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A method to find the K largest eigenvalues of T is listed in pseudo-code in algorithm 6.

The behavior of the algorithm can be described in a few words:� start with an interval [xmin, xmax] containing the eigenvalues λ+
m−K , . . . , λ

+
m−1.� to each of these eigenvalues λ+

i assign the pairs (thinfi , qinfi )
def
= (xmin,m) and

(thsupi , qsupi )
def
= (xmax, 0). Each pair has the form (threshold th,# of eigenvalues >

th). Note the guess for qmin may be wrong.� consider the eigenvalue with lowest index. Do a bisection search on the threshold

until thinf matches the index.� at each step of the bisection with threshold th compute q the number of eigenvalues

larger than th.� update the pairs of current eigenvalue and the larger ones

if q is smaller or equal to the eigenvalue index update the ’inf ’ pair if new

threshold is tighter, else update the sup pair (if tighter).� if thinf matches the index of current eigenvalue, set next eigenvalue as current.

Continue bisection.� terminate when no eigenvalue left.

(th, q) λ13 = 5.1 λ14 = 5.3 λ15 = 9

– (-4, 0) (12, 16) (-4, 0) (12, 16) (-4, 0) (12, 16)
(4, 12) (4, 12) (12, 16) (4, 12) (12 16) (4, 12) (12, 16)
(8, 15) (4, 12) (8, 15) (4, 12) (8, 15) (8, 15) (12, 16)
(6, 15) (4, 12) (6, 15) (4, 12) (6, 15) (8, 15) (12, 16)
(5, 13) (5, 13) (6, 15) (5, 13) (6, 15) (8, 15) (12, 16)
(5.5, 15) (5, 13) (5.5, 15) (5, 13) (5.5, 15) (8, 15) (12, 16)
(5.25, 14) (5, 13) (5.25, 14) (5.25, 14) (5.5, 15) (8, 15) (12, 16)

(a) Updated values in bold and current eigenvalue in gray .

-4 12λ
15

λ
12

th
2

0

λ
14

λ
13

λ
1

... ...

th
1

th
3

obtained intervals

(b) spectrum and thresholds

Figure 2.6: Typical execution of algorithm 6 starting in interval [−4, 12] to isolate
the largest 3 eigenvalues.

Figure 2.6, shows the execution on a realistic (non-scaled) matrix.
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There is one question left to answer: how to select an admissible initial interval. It is

answered by Geršgorin disc theorem:

Theorem 2.13 (Geršgorin).

Let B be an m ×m matrix such that B = D + F with D = diag(d1, . . . , dm) and F

diagonal entries are 0. Then:

λ(B) ⊆
m⋃

i=1

[di − ri, di + ri]

such that ri =
∑m
j=1 |fij| for i = 1, . . . ,m.

Proof. See [16], §8.1.2

In the symmetric tridiagonal case, it easily follows:

Corollary 2.14.

The K largest eigenvalues of a real tridiagonal symmetric matrix are in [λmin, λmax]

such that

λmin = min
i∈{1,...,K}

(|αi| − |βi+1| − |βi|)

λmax = max
i∈{1,...,m}

(|αi|+ |βi+1|+ |βi|)

β1 = βm+1
def
= 0.

Proof. Developping Geršgorin theorem for a tridiagonal symmetric matrix yield the iden-

tity on λmax and λ̃min = mini∈{1,...,m} (|αi| − |βi+1| − |βi|). Recursive application of the

Sturm sequence property yields: λK(TK) < λK(Tm). Applying Geršgorin theorem on

the submatrix TK completes the proof.

2.4.1.2 Step 2: computation of an eigenvalue

We use Brent & Dekker root finding algorithm. As a reference, this particular algorithm

– with some additional bells and whistles – is known as fzero in the MATLAB envi-

ronement. A thorough explanation of the algorithm is found in [27]. A fixed-point ready

code is listed in appendix A.1 as fzeroS. MATLAB code is listed in appendix ?? under

the same name.
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2.4.2 Computation of the eigenvector

The task looks trivial at first. Given an eigenvalue λ solve the singular homogeneous

system (T − λI)ξ = 0. Well Algebra 101 tells us to fix any ξi = 1 and to remove the

corresponding equation from the system – any i can be picked as T structure guarantees

no single row of T − λI is independent to every other row. So let’s remove the first

equation. It amounts to get rid of the constraint pm(λ) = 0, which after all has to be

true since λ is an eigenvalue. The tridiagonal symmetric nature of T yields the following

formula to compute ξ:

ξ1 = 1 , (arbitarily set 6= 0). (2.39)

ξi = ξ1
pi−1(λ)
∏i−1
j=1 αj

, j = 2, . . . , m. (2.40)

Now, try this new toy on a typical symmetric tridiagonal matrix, with an eigenvalue

λ computed up to precision 10−8/|λ| ≈ 10−8. A true eigenvector was comupted using

MATLAB eig function. Normalization was then applied to our estimated eigenvector

by matching the 1st coefficient. Here is the result:

estimated eigenvct. true eigenvct.

-0.046318507639632 -0.046318507639632

-0.140683576369929 -0.140683573722696

-0.063209455229830 -0.063209448271466

0.095189552760338 0.095189567740435

0.382156738749264 0.382156771708248

0.747816680474655 0.747816721172518

0.493888566871232 0.493888553311323

0.122828744421528 0.122828566005606

0.026040808557118 0.026039945766723

0.006353666983591 0.006350352290455

0.001199311810890 0.001181334248749

0.000294476245805 0.000178620974257

0.001363062825963 0.000014911687636

0.013501929330903 0.000001565397746

0.213812815573857 0.000000088985210

7.898210524988566 0.000000002301723

Non-matching digits are underlined. First row was used for normalization.
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One would expect accuracy of the eigenvector to match the one of the eigenvalue ap-

proximation. It is indeed true at the beginning of the recursion, but it soon gets out of

hand: last entries should approach 0, however they grow above unit. Thus, the subspace

spanned by the estimated eigenvector would bear little resemblance to the true subspace.

The intuitive explanation is that instead of being a solution to the homogeneous system,

it solves [28]:

(T − λI)ξ = µkek , ξk = 1. (2.41)

with ek the kth vector of the canonical basis. ξ is in fact an eigenvector of the matrix T

with the perturbation µk on the kth diagonal entry. In finite-precision arithmetic

“all equations are equal, but some are more equal than others”2

, i.e. the most redundant equation r shall be removed:

r = arg min
k=1:m

µk (2.42)

There is no good index r known a-priori. This problem was well-known since the be-

ginning of last century, and received a solution, first by Godunov [29], and then –

independently – by Fernando [28]. We will focus on Fernando’s solution as it is elegant

and lends itself easily to an efficient implementation.3

2.4.2.1 Fernando’s double factorization

It is noteworthy the normalized Sturm sequence formula implicitely describes an LDlL
∗

factorization of T − λI. Indeed:

p̄i+1(λ) =
pi+1(λ)

pi(λ)
= αi − λ−

β2
i

p̄i
. (2.43)

2However, we won’t call them Snowball or Napoleon.
3Another reason is that the only free reference (not a book) I could find for Godunov’s method

contains errors...
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yields the matrix factorization:

T − λI = LDlL
∗.

Dl =














p̄1

. . . 0

p̄k

0
. . .

p̄m














, L =

















1
β2

p̄1
1 0

. . .
. . .
βk+1

p̄k
1

0
. . .

. . .

βm
p̄m−1

1

















.

Similarly, starting the recursion from the other end yields the UDuU
∗ factorization. In

[28](eq.15) the following formula on the residual is proven:

µk = Dl(k) +Du(k)− (αk − λ). (2.44)

The equation to be removed in the system minimizes equation 2.44. An efficient way to

solve the system is to use the previously computed factorizations [28](thm.3). Starting

with ξr = 1, the LDlL
∗ factorization with lower diagonal l = [l1, . . . , lm−1] provides

the forward recursion:

ξi = −lj−1ξi−1. (2.45)

and the UDuU
∗ factorization with upper diagonal u = [u1, . . . , um−1] provides the

backward recursion:

ξi−1 = −ui−1ξi. (2.46)

The eigenvectors obtained with this method have the same accuracy as the eigenvalue

approximation they are computed from.

A MATLAB code listing is provided in appendix ??.

2.5 Implementation & fixed-point arithmetic

The targeted hardware has basic 32− bit arithmetic, boolean and comparative capabil-

ities: ±, ×, ∧, ∨, ¬, ⊕, ≡, 6=, >, . . . . In addition it has standard shift operations

on registers – useful to multiply or divide by a power of 2 – and composite operation

like multiply accumulate ×Σ (add result of a multiplication to a register), which is very

useful for matrix multiplications or inner-products.
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The signed fixed-point number format is written sQi.f , where s stands for “signed”, i is

the number of integer bits, and f the number of fractional bits. The total number of

bits is refered as b = 1 + i+ f . The position of the fractional “.” is called radix.

With this in mind, implementation issues boil down to two requirements:

1. guarantee accuracy: prevent or treat overflow/underflow suitably. If an algorithm

satisfies this condition for every operation, it is called stable.

2. use cheap operations as often as possible

To enforce condition 1, we make the choice to downscale the data. Doing so allows to

rule out overflow in many cases, leaving correct underflow handling the only remaining

issue. Namely we assume 1
2 ≤ ‖A‖F < 1. It can be cheaply enforced as the matrix is

Toeplitz and the interval allows division by a power of 2. Note scaling is not meaningful

in itself as it is a simple shift of the radix. It however provides a reference, setting the

matrix to have roughly unit energy.

Stability of the Lánczos iterations

Proposition 2.15.

The Lanczos algorithm 5 is stable for sQ0.(b − 1).

Proof. Since Q is unitary, ‖T ‖F = ‖A‖F , thus |αm|, |βm| < ‖A‖F , ∀m. It follows

‖r‖ < ‖Q‖F after both affectations since column vectors of Q have unit norm. For the

same reasons, operations inside these two affectations yields result of norm less or equal

to ‖A‖F .

The next step is to guarantee stability of the eigenvalue decomposition of T .

Stability of the Sturm sequence computation

Proposition 2.16.

The (non-normalized) Sturm sequence pi(λ) verifies:

|pm(λ)| < (1 + |λ|) max (|pm−1|, |pm−2|)

for all 1 ≤ i ≤M
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Proof. It is true for i = 1, thus ∃pi : |pi(λ)| < (1 + |λ|) max (|pi−1(λ)| , |pi−2(λ)|). then

using the recursion formula and the identity α2
i + 2β2

i < 1:

|pi(λ)| =
∣
∣
∣(λ− αi)pi−1(λ)− β2

i pi−2(λ)
∣
∣
∣

<

(

|λ|+
√

1− 2β2
i + β2

i

)

max (|pi−1(λ)| , |pi−2(λ)|) .

A substitution x←
√

1− 2β2
i (remember 0 ≤ β2

i < 1/2) and derivation with respect to

dx reveals strict growth in ]0 1[, thus maximum is reached for β2
i = 0.

The values of λ for which the Sturm sequence is going to be evaluated is bounded by

Proposition 2.17.

The interval [xmin xmax] is included in ]− 1
√

2[

Proof.

The lower-bound holds trivially: |xmin| < max (|αi|, |βi|+ |βi−1|) and |αi| < 1. More-

over β2
i + β2

i−1 < 1/2. Since the objective function is monotonically increasing in βi,i−1

optimum is reached for β2
i = 1/2 − β2

i−1, i.e. β2
i = β2

i−1 = 1
4 (a symmetric argument

would have done the job as well).

For the upper-bound, we follow the same reasonning, we can thus eliminate the variable

αi, and solve (we call the ”β2s” y and z for short):

max
y,z

f(y, z) =
√

1− 2(y + z) +
√
y +
√
z, s

¯
.c. 0 ≤ y + z ≤ 1/2.

The symmetry of the problem implies: ∇f = 0 iif y = z.Computing the partial deriva-

tive in y yields an extremum (which is a maximum) 4yo = 1 − 4yo. Thus β2
i = β2

i−1 =
1
8 ⇒ α2

i = 1
2 . It follows |xmax| <

√
2.

As an example, the upper-bound is reached by the following matrix (up to 0-padding):

Tmax =
1

2
√

2








0 1 0

1 2− ǫ 1

0 1 0







, for ǫ small enough .

It is then natural to use some extra knowledge to make the Geršgorin interval tighter

setting xmax = min(1, xmax).

Proposition 2.18.

The Sturm sequence computation is stable enforcing pi−2(λ) has 2 leading zeros at each

step i.
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Proof. Use proposition 2.16 with property |λ| ≤ 1.

Previous result draws an implementation of the non-normalized Sturm sequence avoid-

ing overflow and making underflow as unlikely as possible. It mimics floating-point

representation, in a very limited way.

Algorithm 7 Evaluation in ]-1 1[ of the characteristic polynomial of tridiagonal real
symmetric matrix T s.t. ‖T ‖F < 1. Signed fixed pt. Q2.(b − 3) arithmetic.

Input: α, β2 1st & and square of 2nd diag. of T s.t. ‖T ‖F < 1; λ a scalar s.t. |λ| < 1.
Output: [fl el] = pM (fl2

−el)
el ← 0; β2 ← [1 β2]
p2 ← 1; p1 = λ− α1

for m=2:M do
s← leftmostbit(p2); el ← el + s
[p1p2]← shiftleft([p1p2], s)
p← (λ− αm)p1 − β2

mp2

p2 ← p1; p1 ← p
end for
return [p el]

The function leftmostbit returns the position of the leftmost non-0 bit relative to the

first fractional digit, i.e. leftmostbit( 00.0101...011)=1 and leftmostbit( 10.0101...011)=-

2. It assumes big-endian format. Evaluation of the non-normalized characteristic poly-

nomial is only required in algorithm 9, which is implemented to handle this particular

(fraction, exponent) format.

Stability of the isolation algorithm

For the isolation of eigenvalues and the LDlL factorization the normalized Sturm se-

quence is used. It is hard to determine if such a sequence can be stabily computed with

an agressive fixed-point format, only a weak guarantee holds:

Proposition 2.19.

Provided a stable implementation of sturmCount, isolation is stable for Q1.(b− 2).

Proof. β · β is stable as |βi| < ‖A‖F ≤ 1 ⇒ β2
i < |βi|. Next notice the objective

function and constraint are symmetric, thus maximum is reached for |αi| = |βi| =

|βi+1| = 1/
√

3 < 2/3.

Proposition 2.20.

The (normalized) Sturm sequence qi(λ) verifies:

|qi(λ)| < (1 + |λ|) max

(

1,
1

|qi−1|

)

.
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for all 1 ≤ i ≤M and |λ| < 1

Proof. The upper-bound holds trivially from pi(λ) < (1 + |λ|) max (|pi−1(λ)|, |pi−2(λ)|)
and the definition qi(λ) = pi(λ)

pi−1(λ) .

Proposition 2.21.

Using b-bit words and signed fixed point representation sQ
⌈
b−1

2

⌉

.
⌊
b−1

2

⌋

, sturmCount is

stable with the modification:

q ← αi − λ− (q 6= 0)?
β2
i

q
: 2
b
2
−1|βi|

Proof. The third term is upper-bounded by 2
b
2
−1, thus q < 2

b
2
−1 + 2‖A‖F < 2

b
2 . Thus

q cannot overflow.

Proposition 2.20 yields the rather poor sQ
⌈
b−1

2

⌉

.
⌊
b−1

2

⌋

. It is good enough to count ±
alternance in the sequence (bisection), but the eigenvector computation will require an

implementation with a moving radix point, which is not listed in this report.

2.6 Numerical results (under construction)

Simulation were performed with the code listed in ??. Notice it uses double floating-

point arithmetic, and is thus not a faithful representation of computations on LP-BAN

. However, precision was limited to 10−8 in the computation of the eigenvalues and in

the PRO routine. It is a little less than the achievable precision in sQ2.29. All steps but

the computation of the eigenvectors and the PRO were shown to work for such a fixed

point representation and input condition 1
2 ≤ ‖A‖F < 1. The non-compliant code will

need to be tweaked at implementation to avoid overflow.

Despite these limitations, this framework shall provide faithful information on the ex-

pected performances.

First accuracy of the method will be assessed in comparison to the classical full-precision

svd based Cadzow denoising routine. Then a precise count of operations will be given

based on the ops inserts in the MATLAB code. Finally the method will be compared

to the state of the art, i.e. what would LAPACK do?
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2.6.1 Accuracy measure

.

The stopping criterion in the classical Cadzow routine is ǫ >
σK+1

‖y‖ if the target rank is

K, σK+1 is the smallest singular value of the (M − K − 1) × (K + 1) toeplitz matrix

built from the vector of fourier coefficients y. The classical value used to report results

in previous chapters is ǫ = 10−10. Limiting precision to 10−8 in the Krylov subspace

method yielded ǫK ≈ 5× 10−7 in 9 Cadzow iterations.

2.6.2 Complexity

For a typical number of coefficients (31) and a target rank of 3, the entire denoising cost

is estimated to:

add: 100k

mult: 100k

div: 1.2k

sqrt: 200

shift: 10k

clz: 5k

32pts-FFT: 300

bool: 9k

2.6.3 Comparison with LAPACK

It is good to look at the state of the art, to avoid “homebrewing” suboptimal algorithms.

Given a Toeplitz hermitian matrix, a full SVD will be done by:� full Lánczos iterations� QL/QR factorization of the tridiagonal matrix

A more economical version extracting only a few eigenpairs would be:� full Lánczos iterations� bisection search to compute the eigenvalues� inverse iterations to compute the eigenvectors
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The skeleton used in this report is similar to a numerically savvy use of LAPACK.

However there are 2 important differences:� only a few Lánczos iterations are done, especially after a few cadzow iterations

when a lot of eigenvalues are close to 0.� inverse iterations are avoided using a very cheap double factorization of T

The comparison was made to the best of my knowledge: LAPACK does not seem to

provide the double factorization nor the faculty to stop the Lánczos algorithm early.

2.7 Chapter digest

The main point made in this chapter is a best low-rank approximation of an hermitian

matrix can be found in a Krylov subspace of much smaller dimension. The availability

of a relatively fast and efficient algorithm – the Lánczos iterations – to perform the pro-

jection makes this approach relevant. Moreover, connection between Krylov subspaces

and polynomials of a certain finite degree revealed the projection has a symmetric tridi-

agonal structure and its eigenpairs can be selectively computed, giving the proposed

method an additional edge over the traditional full-SVD approach. The computational

gain is particularly clear in figure 2.7(a). As well, the relatively low count of divisions

and square-root operations and some guarantees on fixed-point computations makes it

suitable for an implementation on embedded devices with limited arithmetical capabili-

ties.

A flow chart provided in figure 2.7(b) summarize the algorithm.
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(b) Flow-chart of the Krylov subspaces based algorithm. Dimensions compares to K ≪ m≪ n.

Figure 2.7: Summary of the proposed algorithm properties.
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Fast Cadzow denoising, code

listing

A.1 Brent algorithm: pseudo code

The main difficulty is to compute accurately a ratio of characteristic polynomials. It is

solved by a representation (fraction, exponent). The ratio of two of these numbers is

then computed via the divfe function. The function charpol is listed in algorithm 7

Algorithm 8 divfe: Division of scalars represented in in the [fraction exponent] format.
Result must have magnitude less than 2i. Signed fixed pt. Qi.(b− i− 1) arithmetic

Input: fn, fd s.t. |fn|, |fd| < 4 and en, ed integers. Supposes
∣
∣
∣
fn2−en

fd2
−ed

∣
∣
∣ < 2i.

Output: s = fn2−en

fd2
−ed

if leftmostbit(fn) + en − ed < −i then
s← shiftleft(fnfd , en − ed)

else
s← shiftleft(fn,en−ed)

fd
end if
return s

75
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Algorithm 9 zeroS: Find the unique zero of the characteristic polynomial in an interval
(signed fixed-pt sQ2.(b− 3))

Input: α, β 1st & 2nd diag. of T ; [a, b] an interval s.t. b− a ≤ 1
2 , ε a maximum error

(ε ≥ 24−b)
Output: z an approximation of z0 s.t. pM (z0) = 0 and |z − z0| ≤ ε.
tol ← ε

2 ; [fa ea] ← charpol(α,β2, a); [fb eb] ← charpol(α,β2, b); [fc ec] ←
[fb eb]; c← a
while |c− b| > ε do

if ¬(fb > 0⊕ fc > 0) then
c← a; [fc ec]← [fa ea]; d← b− a; e← d;

end if
clb← (eb > ec)?(|shiftleft(fc, ec− eb)| < |fb|) : (|fc| < |shiftleft(fb, eb− ec)|)

if clb then
a ← b; b ← c; c ← a; [fa ea] ← [fb eb]; [fb eb] ← [fc ec]; [fc ec] ←
[fa ea]

end if
m← c−b

2
alb← (eb > ea)?(|shiftleft(fa, ea−eb)| < |fb|) : (|fa| < |shiftleft(fb, eb−ea)|)

if (|e| < ε) ∨ alb then
d← m; e← m

else
s← divfe(fb, eb, fa, ea);
if a ≡ c then
p← 2×m× s; q ← 1− s

else
q ← divfe(fa, ea, fc, ec); r ← q × s
p← s× (2×m× q× (q− r)− (b−a)× (r−1)); q ← (q−1)× (r−1)× (s−1)

end if
[p q]← (p > 0)?[p − q] : [−p q]
if (2× p < 3×m× q) ∧ (p < |s×q|

2 ) then
e← d; d← p

q
else
d, e← m

end if
end if
a← b; [fa ea]← [fb eb]; b← b+(|d| > tol)?d : (m > 0)?tol : −tol; [fb eb]←
charpol(α,β2, b)

end while
return z ← b
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