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Abstract

Advances in sequencing technology are yielding DNA seqei€iata at an alarming rate — a
rate reminiscent of Moore’s law. Biologists’ abilities toadyze this data, however, have not
kept pace. On the other hand, the discrete and mechanicaknatthe cell life-cycle has
been tantalizing to computer scientists. Thus in the 198@seers of the field now called
Computational Biology began to uncover a wealth of compstégence problems, some
confronting modern Biologists and some hidden in the anofithe biological literature.
In particular, many interesting twists were introduced lassical string matching, sorting,
and graph problems.

One such problem, first posed in 1941 but rediscovered inahg £980s, is that of sorting

by inversions (also called reversals): given two permaitesj find the minimum number of
inversions required to transform one into the other, whargnaersion inverts the order of
a subpermutation. Indeed, many genomes have evolved noosihyly through inversions.

Thus it becomes possible to trace evolutionary historiesnbgrring sequences of such
inversions that led to today’s genomes from a distant comarwestor. But unlike the
classic edit distance problem where string editing wadivelg simple, editing permutation

in this way has proved to be more complex.

In this dissertation, we extend the theory so as to make thdiselistances more broadly
applicable and faster to compute, and work towards more gaoiteols that can accurately
infer evolutionary histories. In particular, we presentrkvthat for the first time consid-
ers genomic distances betweamy pair of genomes, with no limitation on the number of
occurrences of a gene. Next we show that there are conditioder which an ancestral
genome (or one close to the true ancestor) can be reliabynsaticted. Finally we present
new methodology that computes a minimum-length sequendeversions to transform
one permutation into another in, on avera@¢n log n) steps, whereas the best worst-case
algorithm to compute such a sequence u3és\/n logn) steps.

keywords: inversions, reversals, sorting, pairwise distance, dapibins, median, genomes,
evolution, phylogeny, orthology, positional homology



Réesume

Les avancées dans la technologie de séquencage sonireddrfournir une quantité de
données génétiques a un rythme alarmant - un rythmelaptda loi de Moore. Cependant,
la capacité des biologistes a analyser toutes ces demesuit pas le méme rythme. la
nature mécanique et discréte du cycle cellulaire a togjattiré les informaticiens. Dans
les années 1980, les pionniers du domaine maintenantéappsbgie Computationelle ont
commencé a découvrir une quantité de problémes irdtiques dont certains qui posaient
déja probleme aux biologistes, d’autres étant cacla®s les annales de la littérature. En
particulier, il fut introduit de nouvelles variations suesdproblemes classiques de string
matching, tri et graphes.

Un de ces problemes, posé d’abord en 1941 mais redédalasms le début des années 80,
est celui de I'assortiment pamversion (aussi appel&eversa): étant donné deux permu-
tations, trouver le nombre minimum d’inversion nécessapour transformer I'une dans
'autre, une inversion inversant I'ordre d’'une sous-petatian. En effet, beaucoup de
génomes ont évolué surtout ou uniquement par inverdiodevient donc possible de re-
tracer I'histoire évolutive en inférant de telles séoges d’inversions qui ont amené aux
génomes actuels a partir d'un ancétre commun distanis Bé&a difference du probléme
classique de distance edit ou le string editing était ikedatent simple, I'édition de permu-
tation de cette facon s’est révélée étre plus compigieecela.

Dans cette dissertation, nous alimentons la théorie plaugit le champ d’application des
edit distances et accélérer leur temps de calcul. Nousewoms aussi des outils plus
puissants permettant d'inférer les histoires évolstide maniére plus précise. En parti-
culier, nous présentons un travail qui pour la premieie foend en considérations les
distances génomigues entrémporte quelle paire de génomes, sans aucune limitation sur
le nombre d’'occurrences d’'un gene. Ensuite hous montratisyoa des conditions sous
lesquelles un génome ancestral (ou un génome procheriiablé& ancétre) peut étre re-
construit fiablement. Enfin nous présentons une nouvedhodologie qui calcule une
séquence d'inversion minimum pour transformer une peatiart en une autre en moyenne
en O(nlogn) étapes, alors que l'algorithme du worst-case se calcul®@n/nlogn)
étapes.

mots ckes: inversions, reversals, sorting, pairwise distance, dapitns, median, genomes,
evolution, phylogeny, orthology, positional homology
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Chapter 1

Introduction and Background

1.1 Introduction

Inside each organism, the machine of life is constantlyitigrn Messenger RNAs are copied directly
from the DNA strand and interact with each other in potelytigbmplicated ways before finally produc-
ing proteins. On top of this, proteins interact to create ysjual scaffold on which other proteins carry
out the necessities of sustaining the machine. In an attesnmderstand this cycle of life biologists
rely on clues gained through observation, but unfortugatedse processes are too small and too vital to
an organism’s survival to be directly observed. On the oftagrd, many recent technological advance-
ments in chemistry and engineering have enabled new assgyslie these molecular workings. No
new technology has so dramatically fueled the increaseta czlection as DNA sequencing. But the
influx of new data has posed more new questions than answetsed, the process of life is encoded
into the DNA strand in a way so convoluted that most have otignapted to describe its structure in a
statistical manner.

Yet there exists work — actually older than the discoverytef tdouble helix [90] — observing
specific events that modify the genetic code. In particianrtevant [74] noticed that a substrand of
the fruit fly DNA can be inverted; in some strains of fruit flyetsequence of genes on the chromosome
appears in reverse order. Further, he showed that thesesionswere linked to the phenotype of those
individuals that possessed it: male flies with a particutaeision had few or no male offspring [75].
So as early as 1936, evolutionary histories between spetifsit fly were being inferred based on
inversion histories [76].

By 1941 genomes were being modeled by permutations so asdy gtoperties of their evolution;
all permutations of up to 5 elements were being tabulatedhaog, with minimum inversion scenarios
being calculated between them [77]. It was not until 1982 tha fundamental problem was posed:
given two permutations, find a shortest scenario of invessim transform one into the other, where
an inversion inverts the order of a substring of the permangi9l]. So, for two such permutations
(5324 1)and (12 345), ashortest scenario would have thveesions:

(53 2 4 1)
(5 3 4 2 1)
(54 3 2 1)
(1 2 3 4 5 )

Ten years later the more biologically relevaignedversion of the problem was stated: given tsigned
permutations, find a shortest scenarigighedinversions to transform one into the other, where a signed
inversion inverts the order and the signs of the elementssimbatring of the permutation [65]. In this
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setting the pair of permutations from above would requireamario of five signed inversions:

(5 3 2 4 1)
(5 3 2 1 4)
(5 3 2 -1 -4)
(1 2 3 5 4 )
(1 2 3 5 -4)
(1 2 3 4 5 )

Over the following three years a flurry of work on the subjedhtinated in an impressive theory describ-
ing the exact inversion distance between two genomes, hagsaustructure apparent in the so-called
breakpointgraph, and provided a polynomial time algorithm to compbie tlistance and to extract a
shortest scenario of inversions [42] (The unsigned versidhe problem was later shown to be APX-
Hard [14]).

On its own, an accurate evolutionadlistancehas proved useful in phylogenetic tree reconstruction
[58]. For this reason, much effort has been spent trying torave the original, somewhat difficult,
algorithm that was presented in 1995. In 2001 this effortniniated in a linear time algorithm to
compute the minimum inversion distance between two gendha<efficiently analyzes the structure
of the breakpoint graph [8]. However, it remains an open tpess to how fast a minimum inversion
scenariocan be calculated; the fastest algorithm takes (in the veast)O (n/n log n) time [87].

Unfortunately current methods have yet to make a large itnghae to methodological as well as
modeling and data limitations. Indeed, the number of wh@rognes sequenced ten years ago was
extremely low, the cost of producing one being prohibitiMdore importantly, until the turn of the
century, no consideration had been payed to the fact thay manomes cannot be represented by a
permutation.

On the other hand, recent research is considering more earegblutionary models that compare
genomes with unequal gene content; the ice was broken byoSangroup (and, in particular, El-
Mabrouk) [34, 66, 32] near the turn of the century. Along withmulating many problems for the first
time, they showed that deletions of contiguous segmentdedmandled within the framework of the
breakpoint graph. For a deeper introduction into this aireduding examples) see Section 3.2.2.

Sequencing is also cheaper now. A full bacterial genome easefuenced for only three thousand
dollars. Consequently, a few thousand prokaryotic and ¢émgikaryotic sequences now exist. With
talk of the one-thousand-dollar genome on the horizon tmelau of fully sequenced organisms is sure
to increase dramatically.

Of late, more difficult questions have been addressed by dh@rwnity. How many minimum
sorting scenarios between two permutations exist [11, A8)vehich is the most likely? What are some
properties of these scenarios [61]? Can we sample all mmiseenarios to extract useful information
like average inversion length or breakpoint reuse stesi$ti, 51, 55]? These are questions that still lack a
satisfactory answer [56]. Another such question is thanekator reconstruction; given a phylogenetic
tree and known genomes at the leaves of the tree, what aredbelikely genomes for the internal
nodes? In 2002, Bourque and Pevzner [17] associated thidiguevith a better understood problem
called themedianproblem: given three permutations, find a fourth that mimgsithe pairwise distance
between it and the other three.

In this dissertation, we make progress in three of the afergimned areas. We improve on the work
of Bourque and Pevzner and offer a new perspective for attatke ancestral reconstruction problem
in Chapter 4. In Chapter 3 we describe foundational work @mputing the inversion distance in the
presence of duplicate genes. In particular we offer the &niywn (constant factor) approximation
algorithm for finding the evolutionary distance between gagome and the identity permutation along
with an algorithm that, in practice, accurately predices distance between any two genomes. We show
that this algorithm, combined with good tree reconstructiechniques can reconstruct phylogenies

10



better than the other known methods (Section 3.4.7). KinallChapter 5 we show that we can find a
sorting scenario between most pairs of permutatior@(imlog n) time. Supporting much of the work
presented here is the simplifying assumption that certairctsires in genomes are rarely encountered.
We justify the use of this assumption in Chapter 2.

All of the work presented has been accomplished by closalathtion with Bernard Moret. Most of
the work presented has included collaboration with someetulif past and current lab mates including
Guojing Cong, Joel Earnest-DeYoung, Yu Lin, Mark MarrongihNPattengale, Vaibhav Rajan, and Jijun
Tang. We will only present work which we feel we were instrumad in seeing through, indicating
collaborations at the beginning of each section.
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1.2 Background

In our study, we represent a chromosome genes by a signed permutation on the eleméntg, ..., n},
that is, a permutation with positive or negative signs assed to each element. The signs reflect the
fact that genes can be coded in reverse order on the stramditl be read on the other of the two
strands that compose a DNA molecule). iwersionp(i, j) is a permutation that, when appliedto
reverses the order and the sign of the segment thiat begins at théth gene and ends at th¢h one.
Thus

p(%]): (17"'7i_177j77(j_1)7"'77(i+1)77i7j+17"'7n)7

and we denote - p as the composition gf with . For example, withr = (2 4 1-3) andp(2,3)=(1-3
-24)we getr - p(2,3) =(2-1-4-3).

An n gene chromosome could be linear or circular, but note that Mmodels of evolution (ours
being that of inversions) are unaffected by a change in sgmtation from linear to circular or vice-
versa. Each linear permutation corresponds t6 1 circular permutations (of length + 1), which
are equivalent in terms of the scenario of inversions usembtbthem: if we join the ends of a linear
permutation to form a circular permutation then an invergi@, j) can be thought of as inverting the
subpermutation from to j, or as inverting the rest of the permutation while fixing taégermutation
from i to 5 in place. Thus, throughout this presentation we will coasjgermutations to be either linear
or circular as we see fit. Without loss of generality we coasithat every linear permutation has an
implicit far left element 0 and implicit far right element+ 1.

Say represents the identity permutation (1 2 3 4.)..Then we can define the following genome
comparison problems:

Problem 1.2.1. Thesorting by inversions probleror signed permutations, and w5 asks for a mini-

mum length scenario of inversiops, po, . . . , pg that transformsr; into 5. In other wordsry - p1 . . . -
Pd = T2.
We call py, po, . . ., pg anedit scenario

Problem 1.2.2. Theinversion distance problefior signed permutations; and s asks ford(my, ms),
the minimum number of inversions needed to transfeyrimto 7». The numberi(7, 72) is called the
inversion distance

Note that an edit scenario takesto m, if and only if that scenario takes, - m, L'to I. This motivates
the following equivalent, but simpler formulations:

Problem 1.2.3(SBI problem) Thesorting by inversions probleror signed permutationr asks for a
minimum length scenario of inversiops, ps, . . ., pg that transformsr; into the identity permutation.
In other wordsry - p1 - ... - pg = 1.

Problem 1.2.4(1D problem) Theinversion distance problefor signed permutation asks ford(n), the
minimum number of inversions needed to transfarmto /. The numberi(m) is called theinversion
distance

For example, withr; = (3 2-1 4) andns = (-1 3 -4 2) we have minimum edit scenarig2, 3) -
p(3,4) - p(1,2) - p(2,2), which is also a minimum edit scenario for - =, ' = (24 1-3).

1.2.1 The Breakpoint Graph

The breakthrough in the SBI problem came when KececiogluSamkoff [47] and Bafna and Pevzner
[10] independently derived bounds based on a graph thedrainework. Although the frameworks
were different and neither were the one that would eventuml used in the final theory, both groups
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Figure 1.1: A permutation and its breakpoint graph. Desilges are shown in gray, reality edges in
black.

noticed a close correlation between the number of cyclefeir graphs and the inversion distance.
Kececioglu and Sankoff [48] again gave improved algoritlamd bounds for sorting signed permutation
while, only 2 years after the original Kececioglu paper, famhalli and Pevzner solidified the theory
in the landmark paper [42], presenting an exact formula &cuwdating the distance based on certain
structures found in thbreakpoint graph The following exposition describes this correspondence.

Each permutation element will be represented by two vestioae for each “side” of the element.
Edges are included that represent adjacent elements iethritations. Figure 1.1 shows the breakpoint
graph forr = (32 1 4 6-7 -5). The fully sorted identity permutatiof has adjacencies between
consecutive integers. Thus, our desired configurationpisesented by the gray edges in the graph. The
black edges, on the other hand, represent the reality ofdjagencies in the current permutation.

To computed(7) we must look further into the structure of the breakpointpgraDenote the two
vertices representing a permutation elemenin the breakpoint graph by, and=;” (=* can denote
either). Embed the breakpoint graph on a line as followscgbdl 2n vertices on the line so that:

1. = andn; are adjacent,
2. ; is left of 7} if and only if m; is positive, and
3. 71' is adjacent t0r 1 ifand only if r; and; 1 are contiguous im.

Also add a vertex0™ as the leftmost vertex angh + 1)~ as the rightmost vertex. For two vertices
v = wi andvy = wi (z # j) that are adjacent on the line, add the efige vo)—a reality edge; also
add edge$r;", ) for all i along with (0", 7;7) and(m;}, (n 4+ 1)~ )—the desire edges.

The breakpomt graphis just as described in [42], but itseghding clarifies the notion of orientation
of edges. Note that since the degree of every vertex is gxacthe graph decomposes naturally into
cycles. Say inversiop(i,j) acts upona reality edge if it is either thé” or j 4 1% reality edge from
the left. Say an inversioacts upona desire edge if the edge is incident to the rightmost vertékeo
it reality edge or leftmost vertex of the+ 1% reality edge. The vertices that connect the acted upon
reality and desire edges are those thatadfectedby the inversion. In our example, the inversion over
substring “6 -7 -5” (also known as(5, 7)) acts upon reality edggd™,6~) and(5~,87). It acts upon
desire edges6—,5%) and(5~,4™) while it affects vertice$~ and5™.

Two reality edges on the same cycle amvergenif a traversal of their cycle visits each edge in
the same direction in the linear embedding; otherwise tine;diaergent The action of an inversion
p(i,7) on 7 is to swap the connectivity of reality edgel 1T 7F) and reality edgéwj , g+1) Thus,
any inversion that acts on a pair of divergent reality edgissshe cycle to which the edges belong,
so is called aycle-splittinginversion. Conversely, no inversion that acts on a pair of’fecgent reality
edges can split their common cycle. (An inversion that aptsa pair of reality edges in two different
cycles simply merges the two cycles.) Notice that at mostayeke can be created by this action on the
graph. Thus we get the inequality

d(m) > (n+1) —¢(m), (1.2)

wherec() is the number of cycles in the breakpoint graph.

13



This lower bound cannot always be realized. Consider thiixpfeé= (3 2 1) of the permutation
from Figure 1.1 for example. An enumeration of all scenaoio2 inversions shows thdt can be sorted
in no fewer than 3 inversions, whereas inequality 1.1 gi#d3) > 4 — 2. Hannenhalli and Pevzner
[42] found the structures that indicate the gap betweenawer and bound and the inversion distance,
and coined the terms “hurdles” and “fortresses” to refehtnt. We will visit a full exposition of the
inversion distance in Chapter 2 and show strong evidence afy we can safely use inequality 1.1

as an equality, an assumption that is particularly usefutrwilealing with duplicate elements (as in
Chapter 3).

14



Chapter 2

Ignoring Hurdles and Fortresses

(This is joint work with Yu Lin and Vaibhav Rajan)

The result of Hannenhalli and Pevzner [42] gives us
d(m) = (n+1) —c(m) + h(r) + {1,0}, (2.1)

wheren is the length ofr, ¢(7) andh () are the number of cycles and so-callagdlesin the break-
point graph ofr, and{1,0} is a correction factor that accounts for the possible oetwe of a rarely
occurring phenomenon, tliertress We will see in this section that the machinery behind equaz.1
is considerably more complicated than inequality 1.1. lantfor problems that require us to build
permutations in order to minimize distance, like the dwgiBcassignment problem in Section 3, it is
advantageous to optimize only one factor (cycles) rathen tiiree (cycles, hurdles, and fortresses).
Fortunately, Caprara [24] showed that hurdles occur in 6ty 2) proportion of the random permuta-
tions of lengthn, effectively justifying the use of inequality 1.1 as an dduyaln this section we prove
the same result using markedly simpler means, a techniguelo extends to the first analysis of the
rarity of fortresses.

In this section we consider the permutation to be circulkatTs, the last element, is adjacent to
the first elementr;.

2.1 Hurdles and Fortresses as Framed Common Intervals

A pair of elements in a circular permutation;, ;1) is called abreakpointwhenever we have; . —
m # 1(forl < ¢ <n-—1)orm —m, # 1. Since there is one-to-one mapping betweeand the
corresponding breakpoint graph, we identify the seconH thig first and so write that contains cycles,
hurdles, or fortresses if its breakpoint graph does..gtlenote the set of signed permutations aver
elements and? to denote the set of those permutations with- 1 breakpoints. Bergeroat al [11]
proved the following result abol? |.

Lemma 2.1.1([11]). Forall n > 1, 1|%,| < [Z2] < |Z,].

Definition 2.1.2 (FCI). A framed common intervglFCI) of a permutation (made circular by consid-
ering the first and last elements as being adjacent) is a sulgsbf the permutationgs, s, ... sib or
-bsyss ... sE-a such that

e foreachi, 1 <i <k, |a| <|s;| < |b], and
e for eachl, |a| < 1 < |b|, there exists g with |s;| = {, and

e it does not contain a proper substrings satisfying the mesitwo properties.

15



So the substring; s, . . . si is a (possibly empty) signed permutation of the integersdahagreater
thana and less than; « andb form theframe The framed interval is said to be common, in that it also
exists as an intervala(a + 1)(a + 2)...b) in the identity permutation. Recall the permutation from
Figure 1.1. The FCls in the permutation can be illustratefbimvs.

(0] [3][2][1]]4] [6][-7][-5] |8]

In this example there are exactly two FCIs, one framed by Maanad the other framed by 4 and 8.

The spanof an FCI is the number of elements betweeandb, plus two, orb — a + 1. FCI B is
nestednside FCIA if and only if the left and right frame elements dfoccur, respectively, before and
after the frame elements &. A componenis comprised of all elements inside a framed interval that
are not inside any nested subinterval, plus the frame elesnArbad componenis a component whose
elements all have the same sign, otherwise the compongobis For example, the permutation from
Figure 1.1 has two components, the leftmost of which is bad.

Bad componentd separateshad component#3 and C' if and only if every substring containing
an element ofB and an element of' also has an element of in it. We say thatA protectsB if A
separate$3 from all other bad components. Quperhurdlds a bad component that protects another bad
component. The component framed by 0 and 6 is a superhurtte jpermutation

(0] [2] [4][3] [s][1] [s] [8]l7] |9]

because it protects the nested component with frame elen@esund 5. Ahurdleis a bad component
that is not a superhurdle. In the above permutation the caemie framed by 2 and 5, and 6 and 9 are
hurdles while in the permutation from Figure 1.1, only théntest component is a hurdle. #rtress
is a permutation that has an odd number (larger than 1) ofidmyrelll of which are superhurdles. The
permutation of Figure 2.1 is one of the shortest possibledsses.

We will use the following useful facts about FCls; all buttf8dollow immediately from the defini-
tions.

1. A bad component indicates the existence of a hurdle.
2. To every hurdle can be assigned a unique bad component.

3. Two FCls can only overlap at their endpoints and at most thett endpoints of an FCI can overlap
with other FCls [13].

4. An interval shorter than 4 elements cannot be bad.

2.2 The Rarity of Hurdles and Fortresses

In this section, we provide asymptotic characterizatiohthe probability that a hurdle or fortress is
found in a signed permutation selected uniformly at randBach proof has two parts, an upper bound
and a lower bound; for readability, we phrase each part anméeand develop it independently.

14 16 15 17 13 18

0] 6] [8] [10][9] [11][7] 12| [14 17][13] [18]

Figure 2.1: A fortress and its breakpoint graph.
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2.2.1 Hurdles

We begin with hurdles; the characterization for these stres was already known, but the original
proof of Caprara [24] is long and complex. The proof is basedh® observation that more than
one component is unlikely to be found in a random permutatiecause the structure of an FCl is
so particular. Thus, most of the following proof evaluates probability of seeing more than one
component.

Theorem 2.2.1. The probability that a random signed permutation:oelements contains a hurdle is
O(n~2).

Lemma 2.2.2(Upper bound for shorter than— 1). The probability that a random signed permutation
onn elements contains a hurdle spanning no more than2 elements i€ (n~2).

Proof. Fact 4 tells us that we need only consider intervals of at eas elements. CalF<,_» the
indicator random variable corresponding to the event tha@l spanning no more than— 2 and no
less than four elements exists. CAlli)<,,—» the indicator random variable corresponding to event that
such an FCI exists with a left endpointat We thus haveF<,,_, = 1 if and only if there exists an,
1 < i < mn,with F(i)<,—2 = 1. Note thatF'(i)<,_2 = 1 implies eitherr; = a or m; = —b for some
FCI. Thus we can write

1

, = n—2\""
PT’(F(Z)<n,2 = 1) < — 2(??, — 1) <l _ 2> (22)

since2(n—1_1) is the probability the right endpoint matches the left endipbr; is -a or b if «; is -b or

a respectively) of an interval of spdrand (’;_‘22)_1 is the probability that the appropriate elements are
inside the frame. We can bound the probability from (2.2) as

| 1 n—4 n—9 -1
Pr(F(i)<p—2=1) < m;( ! )

[n/2]-1 -1
1 n—2
n—1 Z ( { >
1=2
N [n/2]-1 1
1 [ \! n—2
= n—l(z(n—2>+ Z < l > > 23

1=2 I=y/n+1

IA

where the second term is no greater than

[n/2]-1 -1 [n/2]-1
> (") = X (5)" eon @4

I=y/n+1 I=yn+1

and the first term can be simplified
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S5 - X))
AL n A B
(ni2> +;(n—2%)

5+ \/ﬁnﬁr’ﬂ) =0(n7?). (2.5)
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To computePr(F<,—2) we use the union bound afir(|J!" ; F(i)<,—2). This removes the factor of
ﬁ from (2.3) yielding just the sum of (2.5) and (2.4) whichQén~2). The probability of observing a
hurdle in some subsequence of a permutation can be no gtieatethe probability of observing an FCI
(by fact 2). Thus we know the probability of observing a hartiiat spans no more than- 2 elements
isO(n=2). O

We now proceed to bound the probability of a hurdle that spansl or n elements. Call intervals
with such spana-intervals For a bad component spanninglements withu = 4, there is only a single
b = (i—1) that must be/'s left neighbor (in the circular order), and for a hurdlespagn — 1 elements
with ¢ = 4, there are only two configurationsH(i-2) +(i-1) +i” and its counterpart+(i-2) —(i-1) +i")
that will create a framed interval. Thus the probabilitytthve see am-interval with a particulan = ¢
is O(1/n) and the expected number ofintervals in a permutation i©(1).

We now use the fact that a bad component is comprised of etsmgih all the same sign. Thus
the probability that am-interval uses all the elements in its span (i.e., there exi:miested subintervals)
isO(27"). Call a bad component that does not use all of the elements gpan (i.e., there must exist
nested subintervals)feagmentednterval.

Lemma 2.2.3(Upper bound for longer than — 2). The probability that a fragmented-interval is a
hurdle isO(n~2).

Proof. We divide the analysis into three cases where the fragnaargieg subinterval is of span
1. n—1,
2. 4 throughn — 2, and
3. less than 4.

The existence of a subinterval of span- 1 precludes the possibility of the frame elements from the
largern-interval being in the same component, so there cannot bedehusing this frame. We have
already established thdtr(F<,_») is O(n~2). Thus we turn to the third case. If an interval is bad,
then the frame elements of any fragmenting subinterval imag the same sign as the frame elements
of the larger one. If we view each such subinterval and easmeht not included in such an interval
as single characters, we know that there must be at te@ssigned characters. Since the signs of the
characters are independent, the probability that all cers.have the same signlig2°(™) and is thus
negligible. O

Thus the probability of a bad-interval isO(n~?2). Using fact 4 we conclude that the probability of
existence of a hurdle in a random signed permutation etements i (n~2).

Lemma 2.2.4(Lower bound) The probability that a signed permutation anelements has a hurdle
with a span of four elements §&(n—2).

Proof. Call hj the hurdle with span four that starts with elemdht+ 1. So the subsequence that
corresponds tdy, must be+(4k + 1)+(4k + 3)+(4k + 2)+(4k + 4) or —(4k + 4)-(4k + 2)-(4k +
3)-(4k + 1). We can count the number of permutations With for instance. The four elements &f
are contiguous irt!(n — 3)!2" permutations of length. In ¢ = 2/(4!2%) of those cases, the contiguous
elements form a hurdle, so the total proportion of permantetiwithhg is

cweg(%)‘

nl2n
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Similarly, the proportion of permutations that have bbgrandh; is
o) (n—6)12" 1
Fy=c nl2n eo(nﬁ)
and, therefore, the proportion of permutations that havesst one ohg or b is

4l(n — 3)12n

2xc —Ton

o (2.6)

We generalize (2.6) to count the proportion of permutatisitis at least one of the hurdlés,hy,. . . |y, 4);
this proportion is at least

I(n — 3)127
FJ % CM _ (L”/4J)F2 2.7)
4 nl2n 2
which isQ(n2) since the second term 3(n—%). O

2.2.2 Fortresses

Now we turn to the much rarer fortresses. We start by usindgittethat the smallest fortress that could
exist requires the existence of an FCI spanning 19 elemse¢sfigure 2.1), a very unlikely event.

Theorem 2.2.5. The probability that a random signed permutationsorlements includes a fortress is
O(n~19).

Lemma 2.2.6(Upper bound) The probability that a random signed permutatioroelements includes
a fortress isO(n~19).

Proof. We bound the probability that at least three superhurdlesirom a random permutation by
bounding the probability that three non-overlapping bashgonents of length seven exist. We divide
the analysis into three cases depending on the nulrdferlements spanned by a bad component.

1. For one of the three FCls we hawve- 14 < < n — 11.
2. For one of the three FCIlswe hale< [ < n — 15.
3. Forall FCIlswe haveé <[ < 17.

As we did in Lemma 2.2.2 (equation 2.2), we can bound the fmbtyathat we get an FCI of length
starting at a particular position by

1 n—2\"
Pr(F=1) < m<l—2> : (2.8)

In the first case the probability that the FCl is a superhusdig(n—1*-27") if the FCl is not fragmented
andO(n~1?) ifitis (using the same technique as for the proof of Lemma3}.an the second case the

probability is at most
n—15 n—17 1 n—9 —1
F = —
Y f=ny gt (")
=17 k=15

which, by the same reasoning used for equation 2.3 to dérve 2), is O(n~1?). Thus the first two
cases both give us an upper boundigh 1),

Fact 3 tells us that any pair of FCIs can overlap only on thaidipeints. Thus, if we first consider the
probability of finding a smallest FCI, we know that no other @l have an endpoint inside it. So the
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probability of having a second FCI, conditioned on havingraléer first one, is dependent only on the
size of the first. The same reasoning extends to the protyabilhaving a third conditioned on having
two smaller FCIs. Since each of the three FCls spans lesssthanteen elements, the probability of
each FCI appearing is at mosg}; F, = O(n~%), and the probability of there being at least three of
them isO(n~1°). O

We now turn to the lower bound. Consider the probability ef éixistence, among random permuta-
tions, of a permutation with exactly three superhurdlesspay seven elements each. A lower bound on
this probability is a lower bound on the probability of eriste of a fortress in a random permutation.

Lemma 2.2.7(Lower bound) The probability that a random signed permutationroalements includes
a fortress isQ(n=1°).

Proof. Denote byFs 7(n) the number of permutations enelements with exactlg superhurdles span-
ning 7 elements each. To create such a permutation, choose a pdonudf lengthn — 18 (with zero
adjacencies and without hurdles), select three elementsgztend each of these three elements to a
superhurdle, renaming the elements of the permutation edexde That is, replace elemeht by the
framed interval of length 7 = +(i)+(: + 2)+(i + 4)+(i + 3)+(: + 5)+(i + 1)+(i 4+ 6) and rename
all the elements with magnitudeto have magnitude + 6 (for those with|j| > |i|). After extending
the three selected elements, we get a permutation elements where there are exadlguperhurdles
each spannin@ elements.

From Lemma 2.1.1 and the results about the rarity of hurdt@s the previous section, we have

Fya(n) > (n — 182)!2”_18 (1 B O(n,2)> <n —3 18)

Wherewu — O(n=2)) is a lower bound for the number of permutations of length 18
(with zero adjacencies and without hurdles) a(ﬁ@lS) is the number of ways to choose the elements
for extension. Therefore we have

F37(n) (n —18)l2n—18 o0\ (n—18\ 1
i LA SR A -
nl2n > 2 ( Ofn )> 3 nl2n

e Q(n ') (2.9)
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Chapter 3

Unequal Gene Content

The biggest challenge towards applying current methodsaticsequences lies in modelling sequences as
permutations. Most sequences, in fact, do not have singliesof each gene. Two sequences may not
have the same set of genes either. Thus, the use of pernmstatia model for genome rearrangements
can be limited. While it has been sufficient in some cases48229, 28] to simply ignore genes that
occur more than once by considering only the genes that anenom to two sequences, much informa-
tion can be lost in the process [82]. Indeed there existsesemps that have close to half of their genome
duplicated. For one such case, methods we present heredthtedccurate phylogeny reconstruction
on real-world data [30, 15]. While related problems — thdsst tisk for a parsimonious ancestor given
a single genome — have admitted nice solutions [33, 34, 3gtrabthe problems discussed in this
section have yet to be satisfactorily solved.

In this chapter we refer to a genome ageae sequender sequencg as it may not be a permutation.
In our case asequenceds a string over the alphabét (i.e. a sequence is any elementZf). We
first present known formulations of evolutionary models aodresponding problems that deal with
comparing gene sequences, then the (recent) history oftidens, and finally present our results.
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3.1 Insertions and Deletions

Consider the sequencels= (7-1-384-6 5) andB = (1 2 34 5). Notice that the elements 6, 7, and 8
only occur inA while the element 2 only occurs i8. To account for the unequal content betweeand

B we must permit insertions and deletions of elements in ouwtahof evolution. Denote a deletion of
elements in the subsequence froto j asdel(i, j) and the insertion of the string before the element
at position: asins(«, ). One scenario of inversions, insertions, and deletionshierabove example
uses 4 inversions, 2 deletions, and 1 insertion:

(7-1-3 8 4-6 5) - p(5,6) =

(7-1-3 8 6-4 5) - p(6,6)-p(2,2) =

(71-38 6 45) - del(4,5) del(1,1) =

( 1-3 45 - p(2,2) =

(13 45) - ins(“27,2) =
(12345) =B

) p(A, B) - p(3,4) =

) del(2,3) - del(6,6) =
5) - ins(“2",2) =

) =B

Notice that we have deleted contiguous elements of somariathate permutation in each of the edit
scenarios, and that insertions never introduce elemeatsatready exist in the permutation. For that
matter, we could simply delete all of in one move and insert all dB in the second move. To avoid
scenarios like this we impose a parsimony criterion: we ddeehave insertions of a particular number
or deletions of a particular number, but not both.

El-Mabrouk [32] showed that a minimum edit scenario of igi@ns with deletions of contiguous
segments can be computed in polynomial time. However, iamesnunknown as to whether minimum
edit scenarios of inversions with inversions, deletiomsg] msertions is inP. We combine the result of
El-Mabrouk with new insight in Section 3.3.
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3.2 Duplicate Elements

Some genomes may have duplicated genes; we represent émesaap by sequences that contain more
than one occurrence of a number. We call the set of all elesnefniom a sequence thgene family(or
family) , and the size of the family in sequen§ds occ(x, S). A family with occurrence greater than

1 is amulti-elementfamily. For example, the sequende= (3 7-16-3 4-6 5 3) has multi-element
family 3 and multi-element family 6 wheke:c(6, S) = 2.

3.2.1 Problem Definitions

The first work dealing with multi-element families and insi®an minimization was initiated by Sankoff
[66], who posed the exemplar problem:

Problem 3.2.1((ERD) Exemplar Reversal Distancelsiven sequenced and B, each with at least
one element from some alphab&tfind a (not necessary contiguous) subsequeticand B’ of each
sequence with exactly one occurrence of each element s thatd(A’, B’) is minimized.

The elements oft’ and B’ are called theexemplars The ERD problem was proven NP-Hard [20]
and currently no good algorithms exist to solve it. The fwelltg two related problems are of particular
interest in this section:

Problem 3.2.2((OtMDA ) One-to-Many Duplicate Assignment problen@iven a sequenced € >*
and an integem, rename all but a single element from each multi-elementlyaim be unique, so as
to minimize the number of inversions, insertions, and aelstnecessary to turd into the identity
permutation of length.

Problem 3.2.3((MtMDA ) Many-to-Many Duplicate Assignment problenGiven two sequences, B <
¥*, find a renaming of elements from multi-element familieslding A’ and B’, so that the following
conditions are satisfied:

1. for each multi-element family of A or B, there exist exacthynin(occ(xz, A), occ(x, B)) pairs of
elements — one from and one fromB — each pair having been renamed to the same unique
element,

2. all other occurrences af (in one of the sequences) have been renamed to be uniquentdeme
and

3. the length of the minimum scenario of inversions, insasj and deletions fror’ to B’ is mini-
mized.

OtMDA and MtMDA remain tricky to reason about due to the condion of operations that are
considered in the objective function (inversions, ingertdeletion). Thus, there exist few results beyond
those presented in Sections 3.3 and 3.4 that directly ajppytMDA and MtMDA. For instance, it
remained unclear as to whether they are in P or not. For thisoreresearchers have chosen to focus on
specific aspects of the problem. The following is a summahefvariations and simplifications found
in the literature:

(OtMRD) One-to-Many Reversal Distance The same as OtMDA except the objective function only
counts the number of inversions in the subsequence restriotthe remapped elements.

(MtMRD) Many-to-Many Reversal Distance The same as MtMDA except the objective function only
counts the number of inversions in the subsequences testtit the remapped elements.

(RDD) Reversal Distance with Duplicates The same as MtMRD except the input is restricted to se-
quences with equal size gene families (for any familycc(x, a) = occ(z, B)).
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(OtMCM) One -to-Many Cycle Maximization The same as OtMRD except the objective function only
counts the number of cycles in the induced breakpoint graph.

(MtMCM) Many-to-Many Cycle Maximization The same as MtMRD except the objective function
only counts the number of cycles in the induced breakpoipigr

(OtMBM) One-to-Many Breakpoint Minimization The same as OtMRD except the objective func-
tion only counts the number of breakpoints in the inducednpgation.

(MtMBM) Many-to-Many Breakpoint Minimization The same as MtMRD except the objective func-
tion only counts the number of breakpoints in the inducednpgation.

In the following section we attempt to put these problemsghith our own work into context.

3.2.2 Background

Our approach [54] was the first to address the OtMDA problerpregenting a constant-factor approx-
imation algorithm. We briefly present a refined (and improuaderms of the error bound) version of
this work in Section 3.3. One of the main steps in finding olutian to the OtMDA problem requires
the computation of theninimum covera minimum cardinality set of non-overlapping substrinigsr
the input sequencd) that match (in forward or reverse direction) the maximurmber of elements
from the lengthn identity permutation. For examplé(1 2),(3 4),66 -5)} and{(1 2 3),-6 -5-4)} are
both covers forA = (-6 -512-6 -5-4 3 4 1 2 3) withn = 6, but only the later is a minimum cover.
Computing the minimum cover in this case is equivalent to B&M It turns out that the greedy method
of repeatedly choosing a largest common substring from asadportion ofd and the identity yields
a minimum cover (see Lemma 3.3.3). The relaxed analogue WeIttdBM, applicable to MtMDA, is
unfortunately APX-Hard to compute even with a guaranteé dheg(z, A) = occ(x, B) for all = [41].
We show in Section 3.4 that the MtMDA problem has a satisfgcsolution in practice.

Chenet al. [26] attempted to solve RDD as a step in solving a larger groblgiven two nucleotide
sequences, find genes that are most likely to have been theisdhe nearest ancestor (called ortholo-
gous genes). A step in their algorithm uses an analogue tmitlienum cover, named more verbosely
“minimum common string partition”: find a minimum cardirtglipartition of two strings into the same
collection of substrings or report that none exists (edaiviato MtMBM). A thread of work exists that
addresses MtMBM under various restrictions [41, 27, 50, AfJof these results apply only to instances
where for allz, occ(x, A) = occ(x, B), so cannot be directly used within our approximation frammyv
but could lead to progress in the future.

While, as we stated, the use of common partition-based rdstilimited (APX-Hard) for the
MtMDA problem [41], these methods are also somewhat limitedDtMDA due to the existence of the
following family of permutations.

Theorem 3.2.4. There exists a family of permutations where the minimum comsiring partition
yields a distance twice that of the optimal for OtMDA.

Proof. Take A to be a sequence of length that is created by concatenating the permutatign(-1-2
...—n) and a permutatiomls where every adjacency is a breakpoint and there are onlgsydllength
four 1. Because it is comprised only of length four cyclds, must have an odd number of elements (
is odd) and will need exactlyn + 1)/2 inversions to sort. Choice of either all the elementsigfor all
the elements ofi, will yield the minimum size coven. Thus, if all the elements ofi; are chosen to
match those in the identity; inversions and 1 deletion are required whereas if all thmeidgs of A,
are choserin 4 1)/2 inversions and 1 deletion are required. Saagows the ratio of optimal to worst
case cover choic%, goes to 2. O

!For instance, take the permutation of length n = 2m+(m+1):
Az = (-(2m+1)-1 (2m+2)2m2-(2m+3)-(2m-1)-3 (2m+4) (2m-2). . .-(m-1) (n-1) (m+2) m -n-(m+1) )
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Since cover (minimum common partition) based methods siragiempt to rename the sequence
S0 as to minimize the number of breakpoints, better solattonOtMDA can sometimes be found by
attempting to minimize cycles in the resulting breakpoirgpdp. We offered a first look into the power
of this approach in [83], which we present in Section 3.5. Wuwek by Chenet al. [26] also has
a cycle maximization heuristic applied after assigning aimum common partition. The only other
known work attempts to directly solve MtMCM by formulating ateger linear program which has an
exponential (im, the length of the sequence) number of formulas and vas4ibi.

Bryant [20] established that the exemplar reversal digg¢B&D) problem is NP-hard via a reduction
(the simple version is found as an addendum to the origina¢pdrom the unsigned reversal distance
problem (proven hard by Caprara[25]). The reduction takesunsigned permutation — the input for
the unsigned reversal distance — and replaces each elemathttwo elements+{e —¢). This way the
exemplar problem picks a sign for the elements of the undigeemutation so as to minimize the signed
inversion distance, which yields a minimum reversal sderfar the unsigned permutation. Notice that
the identical reduction to OtMRD (and hence, MtMRD) holdshe@et al. [26] showed that RDD is
NP-Hard with a similar technique. Note, however, that tleiduction cannot be applied to the cycle
maximization problems (OtMCM and MtMCM) due to the fact thlaé assignment that maximizes
cycles does not necessarily give the minimum reversal riistgdas when hurdles are creafed)n
Section 3.6 we give a more complicated reduction that appdi¢he cycle maximization problems. The
proof is more general than existing proofs because it subsuhe aforementioned result of Bryant and
Chen.

2with A = (2 -2 1), both choices yield a single cycle but (2 1) is a haindhereas (-2 1) is not. There are also instances
when the assignment that minimizes the reversal distantalways yieldfewercycles than the maximum cycle assignment:
for A =(2 1 3 -3 5 4) there is one assignment that gives 2 cycles andd?ds whereas the optimal assignment gives 1 cycle
and 0 hurdles.
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3.3 Approximating the One to Many Duplicate Assignment (OtMDA)
Problem

(This is joint work with Mark Marron)

In this section, we extend work of EI-Mabrouk [32] by providia polynomial-time approximation
algorithm with constant error bound to compute edit distgnender inversions, deletions, and unre-
stricted insertions (including duplications) from the agguence to the identity permutation. We also
show that the algorithm we implemented works well in practi&n approximation with heuristics that
perform well in practice, is the best we can hope for due to\\ReHardness result of Section 3.6.

As in the standard statement of the equal gene content pnolle assume that the desired (optimal)
edit scenario is that which uses the fewest operations,alliiperations counted equally. We move from
a subject sequenceto a perfectly sorted targét.

Our approach is based on a canonical form for edit scenarfoshwwve introduced in [54]. we
showed that shortest edit scenarios can be transformeceqnivalent sequences of equal length in
which all insertions are performed first, followed by all éngions, and then by all deletions. We state
the theorem here without proof.

Theorem 3.3.1([54]). Given a minimum edit scenari®- oy - 02 - ... - 0,, = T there is an equivalent
edit scenariaS - insy -...-insy vy -. .. inv, - - - dely - ... -del, = T where all insertions are followed
by all inversions which are followed by all deletions.

The utility of this theorem is two-fold. As we will see, it imstrumental in the application of
Lemma 3.3.4 to our approximation algorithm. It also alloves im practice, to take advantage of El-
Mabrouk’s exact algorithm for inversions and deletionsjolitwe then extend by finding the best pos-
sible prefix of insertions, producing an approximate sotuivith bounded error.

Section 3.3.1 outlines our method for handling unrestiigtesertions. Section 3.3.1 gives the algo-
rithm matching that method. Section 3.3.2 presents the t@malgorithm outline as well as an analysis
of its error bounds. Finally, Section 3.3.3 gives some eirgdiresults for method presented here.

3.3.1 Unrestricted Insertions

The presence of duplicates in the sequence makes an analysls more difficult; in particular, it
prevents a direct application of the method of Hannenhaltli Revzner and thus also of that of El-
Mabrouk. We could solve this problem by assigning distirarnes to each copy, but this approach begs
the question of how to assign such names. Sankoff proposeskémplar strategy [66], which attempts
to identify, for each gene family, the “original” gene (astdict from its copies) and then discards all
copies, thereby reducing a multi-set problem to the simggérersion. However, identifying exemplars
is itself NP-hard [21]—and much potentially useful infortioa is lost by discarding copies. We found a
simple selection method that discards none of the elemétihe sequence, based on substring pairing,
while yielding a constant error bound.

Sequence Covers

Our job is to pick a group of substrings from the subject st €very element in the target appears in
one of those substrings. To formalize and use this propedyneed a few definitions. Call a substring
eies ... ey, ablockif we havevy, e; 1 = e; + 1. Given a blocks;, define thenormalizedversion ofs;

to bes; itself if the first element irs; is positive, and the inversion ef otherwise; thus the normalized
version ofs; is a substring of the identity. Call a subsequefizg of the target string’, thenon-deleted
portion of T' if T,,4 (i.e. only the elements frofi that also exist ir). Note thatT,,; is not a substring,
but a subsequence; that is, it may consist of several digpairts of 7. Thus it is unique. Given a sét
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of normalized blocks irb such that all the elements are also incomparable under bstriswg relation,
definew( to be the string produced as follows; order the string§' téxicographically and concatenate
them in that order, removing any overlap. We will say thatta(sef blocks fromS is acoverfor T if
T,q isWC. Note that a cover must contain only blocks.

SetT = (1,2,3,4,5,6,7) andS = (3,4,5,—4,—3,5,6,7). The set of normalized maximal blocks
is {(3,4,5),(3,4),(5,6,7)}; Thais (3,4,5,6,7); a possible cover fof" is {(3,4,5),(5,6,7)}; and
WC, is (3,4,5,6,7).

Lemma 3.3.2. For a subjectS, d operations from the identity’, there exists a cover of si2d + 1.

Proof. By induction ond. Ford = 0, S itself forms a cover, since it is a block; hence the cover as s
1, obeying the bound. For the inductive step, note that delstare irrelevant, since the cover only deals
with the non-deleted portion; thus we need only verify thaertions and inversions obey the bound. An
insertion between two blocks simply creates another blatlle one inside a block splits it and adds
a new block, for an increase of two blocks. Similarly, an nsi@n within a block cuts it into at most
three blocks, for a net increase of two blocks, while an isiar across two or more blocks at worst
cuts each of the two on the ends into two blocks, leaving ttervening sequence contiguous, also for
a net increase of two blocks. Since we h&26l — 1) + 1) + 2 = 2d + 1, the bound is obeyed in all
cases. O

Building the Minimum Cover

Let C(T,S) be the set of all (normalized versions of) maximal contigusubstrings (blocks) shared
betweerl” and.S. We will build our cover greedily from left to right with thisimple idea: if, at some
stage, we have a collection of strings in the current coaty thhen run through the operator, produces
a string that is a prefix of lengthof our targetl’, we consider all remaining strings@{7’, .S) that begin
at or to the left of positiori—that can extend the current cover—and select that whiamestfarthest
to the right of positioni. Although this is a simple (and efficient) greedy constittiit actually returns
a minimum cover, as we can easily show by contradiction.

Lemma 3.3.3. The cover derived by our greedy algorithm is optimal.

Proof. Assume there exists a cover, dy,;,, that is smaller than the one provided by our construction,
Ceonst- Order the sequencesdry,;,, by increasing value of the smallest index in the sequencex be

the smallest element, say thth element in this order such thatis not the same as thgh sequence of
C.onst Under the same order. We have three cases:

1. During the construction af.,,s:, a was not selected faf..,,s; because the previous selection of
a cover element id',,,,s; did not cover all the way to the start index @f Thena is not the first
differing element in the order, a contradiction.

2. During the construction of'.,,st, o was not selected fof.,,,s; because there was a sequence
that had the same start index @sbut covered fewer elements than But this contradicts the
selection criteria for our construction.

3. During the construction of'.,,.s:, @ was not selected fof'.,,,s; because there was a sequence

that had the same start indexasbut covered more elements thanThenC.,,,s; has at most as
many elements a6,,,;,,, a contradiction.
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3.3.2 Our Algorithm

Now that we have a method to construct a minimal cover, we saiga unique labels to all duplicates,
which in turn enables the use of EI-Mabrouk’s method for catimg the edit scenario.

We first present a result relating the number of blocks in tnercto the maximum number of
insertions and deletions. To do this we will need to look attdrget sequencE with all the elements
that do not appear i§ removed, we call this new sequeriEg to denote that all the inserted elements
have been removed.

Lemma 3.3.4. Let « be the minimal edit scenario froi$i to 7', using! insertions andm inversions.
Let o/ be the minimal edit scenario of just inversions and deletitmm S to T;.. The extensiony
(extendingy’ with the needed insertions) has at mbstm insertions.

Proof. Clearly, our method will do at least as well as looking at eiaskrted string iff” and taking that
as an insertion foft. Now, looking at the possible effect of each type of operatio splitting a previous
insertion, we have 3 cases. Takas the inserted substring:

1. Inserting another substring cannot split an insertedtsing—it just creates a longer string of
inserted elements. (if is inserteduvvow — uvi VW)

2. Deletion of a substring cannot split an inserted sulggtriit just shortens it, even perhaps to the
point of eliminating it and thus potentially merging two gkboring strings. (Ifvs is deleted,
UV VV3W — UVVIW)

3. Aninversion may split an inserted substring into two sefgastrings, thus increasing the number
of inserted substrings by one. It cannot split a pair of itegksubstrings because the inversion
only rearranges the inserted substrings; it does not createblocks. (Ifusv; is the substring
inverted,u; usv1vow — U T UZV2W)

Thus, if we have insertions andn inversions in«, there can be at most+ m < |a| = d inserted
substrings irl". O

Starting with the subject with cover elementgsy, s, . .., sx) numbered by the order in which
they appear in the targ&t. We place in order (fof from 1 tok) eachs; in its final location inT" with at
most two inversions; one to place it and one to orient its.sigmus, we use at mo&t inversions. By
Lemma 3.3.2 and Lemma 3.3.3 we have 2d + 1, so our inversion scenario will have at mdsgt+ 2
inversions. Theorem 3.3.1 tells us that Lemma 3.3.4 apfié®th insertions and deletions, thus there
at mostk insertions and: deletions. Thus, the edit scenario produced by the proposshod has at
most6d + 2 operations, wheré is the minimum distance.

While this error bound is large — it is a factor of 3 larger ththe lower bound given in Theo-
rem 3.2.4 — it is the lowest known bound for OtMRD. Furthergjdahe bounds can be easily computed
on a case-by-case basis in order to provide information ermticuracy of the results for each run. We
expect the error encountered in practice to be much lowetlatdurther refinements in the algorithm
and error analysis should bring the bound closer to thateofdver bound.

3.3.3 Experimental Results

To test our algorithm and get an estimate of its performang@actice, we ran simulations. We gener-
ated pairs of sequences, one the sequéhc 3, ..., n), for n = 200,400, 800, and the other derived
from the first through an edit scenario. Our edit scenaribganous lengths, include 80% of randomly
generated inversions (the two boundaries of each invessicmuniformly distributed through the array),
10% of deletions (the left end of the deleted string is sekkemiformly at random, the length of the
deleted string is given by a Gaussian distribution of m&@and deviatiorir), and 10% insertions (the
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locus of insertion is uniformly distributed at random and tength of the inserted string is as for dele-
tion), with half of the insertions consisting of new elengeand the other half repeating a substring of
the current sequence (with the initial position of the stbgtselected uniformly at random). Thus, in
particular, the expected total number of duplicates in tiigext sequence equals the generated number
of edit operations—up td00 in the case 0800-gene sequences. We rahinstances for each combina-
tion of parameters (in the figures below, we show the averaggmum, and maximum values over the
10 instances). The results are gratifying: the error is coasily very low, with the computed edit dis-
tance staying below% of the length of the generated edit scenario in the linegrgfahe curve—that

is, below saturation. (Of course, when the generated eélites® gets long, we move into a regime of
saturation where the minimum edit scenario becomes arbjtshorter than the generated one; our es-
timated length shows this phenomenon very clearly.) Fgjire, and 3 show our results for sequences
of 200, 400, and800 genes, respectively.
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3.4 Applying the Cover to the Many to Many Duplicate Assignmet
(MtMDA) Problem

(This is joint work with Mark Marron, Jijun Tang, and Williasrndt)

Here, we generalize the approach from the previous seati@ornpute the distance between two
arbitrary sequences and show through extensive simugatitat we reconstruct a scenario of operations
that reflects the true evolutionary distance. Since thisnigx¥perimental result, it is hard to verify
exactly what the minimum number of operations is; hencedleviing results do not apply to MtMDA
directly, but give an indication of how well our distancesck the true distance. Our algorithm computes
distances between two sequences in the presence of imsetinzluding duplications), deletions, and
inversions; in our simulations, the distance computed wtogely approximates the true evolutionary
distance up to a (high) saturation level. The approximaiidn fact good enough that it can be used in
conjunction with a distance-based phylogenetic recoatitnu method (we used the most common one,
neighbor-joining) to reconstruct trees of reasonablessfap to 100 sequences) and very large pairwise
distances with high accuracy.

It is worthwhile to note that although we consider only irsiens (aside from duplicating insertions
and deletions), the properties of a minimum cover discugs&ction 3.4.1 imply that it would likely
perform well with other operations such as transpositiadhg: cover is a model-independent method.
However, due to the fact that transpositions distances etrtoybe well understood we do not consider
them in this exposition.

The rest of the section is organized as follows. Sectionl3eétablishes the background. Sec-
tion 3.4.2 discusses the difficulties faced when using tviitrary sequences and how we solve them
to recover a solution in the spirit of our earlier resultsputlines our method for producing a cover in
guadratic time. Section 3.4.3 presents the design of oustudies while Section 3.4.4 shows how our
constructed cover performs when estimating pairwise tigantes and how these distances can be used
in tree reconstruction. Finally, Section 3.4.7 uses ouladise method with a more sophisticated tree
building method, and shows that the combined methods beiés more accurately than other know
methods.
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3.4.1 Background
The Cover

Our solution attempts to assign each gene in the subject éme fyjom the same family in the target;
that is, it creates a maximum matching between the genesriaspmnding gene families of the two
sequences. However, some matchings are clearly prefexablbers because they reduce the number
of insertions, deletions, and rearrangement operatiangrex to transform one genome into the other.
We define aminimum coveto be a cover that maps the subject to the target with the fevaesmon
substrings. The effect of renaming according to a minimsécds to yield a breakpoint graph [42] with
maximum number of cycles of length 2, minimizing the numbkbreakpoints between the renamed
sequences. Thus a minimum cover is a solution to MtMBM.

Difficulties With an Arbitrary Target

The difference between our work from Section 3.3 and thahisfgection is the presence of duplicate
genes in the target. When building the cover with the idemérmutation as the target, all candidate
cover elements from the subject are immediately apparesguse of the unique correlation between
their identity and their index in the target genome. In theecaf an arbitrary target, however, this
correlation no longer exists. Moreover, a cover may no lormgeer all genes from one or the other
genome: clearly, if genomd has more duplicates of genethan genome3, and genome3 has more
duplicates of geng than genomed, then any matching between these two sequences must leaee so
duplicates of gene unassigned il and some duplicates of gepainassigned irB. For example, with
subject (1 2 3-5 -2) and the identity permutation (1 2 3 4 5) as target, we havavarcusing indices
in the target, for indices 1 through 3, one for index 5, and fonéndex 2; but for the same subject and
for target ¢7 1 2 3 5-3), we obtain partial covers for indices 2 through 4 or forided 5 through 6.
We settle for fast heuristics to build our cover due to theltsf Goldsteiret al. [41], who show that
computing a minimum cover is APX-Hard even with a guaranteedcc(xz, A) = occ(z, B) for all z.

3.4.2 Constructing a Small Cover

The algorithm used in Section 3.3 looks for the longest miatchubstring. As long as such a longest
match is unique, there is no difficulty beyond identifyinglsumatches as quickly as possible. (A naive
cubic-time algorithm will do, although, as we shall see, $hene job can be done in quadratic time.)
When the longest match is not unique, however, finding a minimaover may require an exploration of
the alternatives and thus exponential time. Instead, wea ggeedy heuristic to break ties.

We have tried several tie-breaking heuristics (and contptimem to breaking ties at random). One
heuristic is based on identifying a possible extension efrttatch (to one or the other side). If the
substring to one side of the match is the inverse of the sabsto the same side of the match in the
other genome, for instance, if we had substrings {82 2) in the target and (1 2 2 4) in the subject, we
may prefer to match these substrings to each other (eveglththiere may be another (1 2) elsewhere
in both sequences) because they are only a single invensiam gach other. Another heuristic is to
minimize the interaction between matches. The longer thelmae make at each iteration, the fewer
potential matches may be needed overall, so we may want twssehtbe match with a range of indices
that crosses the smallest number of other match rangedoi$8ct.5 contains some conclusions about
the effectiveness of these heuristics.

To find the longest match, we begin by finding all possible mmaimatching substrings and then
repeatedly pick the next largest substring, doing necg$srikkeeping to reflect our successive choices.
Let M be the set of all maximal matching substrings between thgesuénd the target that have not yet
been picked. For instance, if we start with target genome 11324 5 6 7 8) and subject genome (6 7
345612367 8), weinitially havad/ = {(67), (3456), (12), (3), (678)}. We say that two matches
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ALGORITHM COVER:

C =0.
M = {s: sis a maximal substring of the subject and target}.
WHILE C cannot cover the Target DO:
Add longest ! € M to C.
M = M\{l}.
FOREACHo € M that overlaps [ DO:
u = o without the substring common to o and |.
M = M\{o} U{u}.
RETURNC

Figure 3.4: Choosing a nearly minimal cover.

overlapif their indices in the target intersect. By picking the lesgmatch, we cover a part of the
target that may overlap with some numbeof other matches, call thew, 0s,...,0, € M. In our
example, match (3 4 5 6) would be chosen first, coveringstirem matches (6 7) and (6 7 8) and the
3 from match (3). The overlapping portion of each matghl < i < s is then removed, resulting in
shorter matches. Thus, three of those matches in our examilplee shortened yielding (7), (7 8), and
(). The resulting algorithm is described in Figure 3.4.

We proceed to show that COVER can be implemented to run effigidirst stating the theorem
and then providing the necessary background to prove it.

Theorem 3.4.1. Algorithm COVER can be implemented to run in quadratic time.

We represenfl/ by a list arranged by match length. We keep an auxiliary datectsire, thandex
reference to maintain the sed/ through each iteration. This index reference is an arrayng@exed)
of lists, one for each index of the target; each such lisindex list contains the matches that have an
endpoint on that target index. For instance, in our exantpletsuch matches would be (34 5 6), (6 7),
and (6 7 8). These matches are associated with ingiteugh6, 6 through7, and6 through8 of the
target. Thus index% of the target would have three members to its index list, beedhe matches (3 4
56), (6 7), and (6 7 8) all have the 6 (from position 6 in the ¢&r@s an endpoint. Index 7, however,
would have a single match (6 7), because (6 7 8) does not havaryendpoint. A simple way to find all
possible maximal matches in quadratic time is to slide tigest over the target, comparing all possible
combinations of indices between the two. Each match foumdaiced inA/ and the index lists for its
endpoints. The key to this implementation is the efficiemtatp of overlapping matches. With the index
lists we can find alb € M that overlap a givem» € M by examining each list that corresponds to an
index thatm spans. When the mateh that spans indicesthroughk is chosen, we can shorten eagh
that overlaps from the left by relocating it from the indest fior 5,7 > j > k, to the index list for — 1.
Similarly, eachoy, that overlapsn from the right can be relocated to the index list fo# 1.

Lemma 3.4.2. The maximum number of matches that can have an endpoint ata igidex of the target
is bounded byin, wheren is the length of the longer genome.

Proof. Each index in subject or target can be of two types: a leftgittrendpoint of a match. All four
combinations of endpoint types can occur for a given paindides. If there were more than one match
per pairing of endpoint types then one of them could not beimalx therefore there can be at most four
distinct maximal matches associated with every pair ofdesli Since there areindices in the subject,
there can be at mogt, matches associated with a single index of the target. O
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It follows immediately that the number of maximal matchesasen two sequences, the larger of
which has size, is O(n?).

Lemma 3.4.3. Initialization of M and of the index reference takes quadratic time.

Proof. We know that the number of maximal matche®ig:?) and that the length of a match is bounded
by the size of the sequences. We can add a match to a list peghlny length in constant time through
direct indexing. Likewise, addition to the end of a giveneardist can be done in constant time. Since
there areO(n?) matches and placement into the index referena@(is), we can build these lists in
quadratic time. O

Lemma 3.4.4. A match can be relocated between index lists at most twiagdbbging removed from
consideration.

Proof. It is sufficient to show that a matahwill not be encroached upon from the same side twice.
Assume that is shortened from one direction by matehand later from the same direction by match
m’ without being covered. Because was picked by the algorithm firstp’ must not stretch past
the opposite end of.. Therefore, eithern’ covers less thaa or e must be completely covered —a
contradiction in either case. O

We are finally ready to prove Theorem 3.4.1.

Proof. (of Theorem 3.4.1) Initialization takes quadratic timerfiraa 3.4.3). Each match in each in-

dex list is visited a constant number of times (Lemma 3.4&hen visited, each match is shortened,
removed from consideration or relocated to the index lithatedge of the most recently chosen match,
and then relocated in the length list. Since each of theseatipes runs in constant time, the running

time is bounded by a constant times the total number of mateiséed. Since each index list is visited

at most once and the length of that list is at most linear (Latarn3.4.2 and 3.4.4), the running time is

O(n?). O

Theorem 3.4.5. The distance function can be computedin?) time.

Proof. The cover can be generated and applie@{n?) time. Then the algorithm presented in [54] or
[32] can be applied. Both methods rund{n?) time. O

3.4.3 Experimental Design

We used two types of tests to assess the accuracy and ufilityrdree distance algorithm. The first
set of tests were designed to determine if our distance ihmetccurately modeled the true pairwise
tree (true evolutionary) distances. The second set of vests used to evaluate the effectiveness of our
distance function within the most simple distance-basedogienetic reconstruction algorithm.

Pairwise Error

For this experiment, we generated evolutionary trees withwin edge lengths and compared the pair-
wise distances between the leaves with those computed bglganithm. Variance in tree shape does
not matter here; in fact, since we want a large range of pa@wiee distances, a perfectly balanced tree
is best.

In the following tests we used the simplest version of thehmetdescribed earlier. The algorithm
picks the largest match to make and in the case of ties pick®bthe tied matches at random. Clearly
other information is present in the sequences that couldigeaa better choice of match and thus lead
to a more accurate distance score. However, all of the heunmthods that we used failed to have
a noticeable impact on the accuracy of the distance valuened. Furthermore, in experiments with
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a large number of random restarts, we found that most of theesaclustered around the true value
with a small number of outliers; we also found that averagingr a smaller number of random restarts
and discarding any substantially outlying points providedistance estimate that was nearly indistin-
guishable from the distance estimate computed with the fiserdest heuristics (see Section 3.4.5).
While the use of biological information to select the bestahaould prove effective in generating more
biologically plausible evolutionary paths, the currentthoel seems to perform quite well in terms of
distance computations.

Not enough is known about inversions, deletions, insestiamd duplications to enable one to set
good parameters (such as lengths of inversion, for insfanpéori, so we chose values so as to ensure
that a single operation would not completely alter the gemokhost of our tests were conducted with a
root genome of 800 genes on a tree of depth 4; such a tree haavisland thus 120 pairs of sequences
with paths from 2 to a maximum of 8 edges between sequences.

Tree Reconstruction

We tested the performance of our distance functions usiiggnber-joining, the standard distance-based
tree reconstruction method. Due to the dearth of real-windds reconstructed using biological tech-
niques, we had to generate model trees that would exercisdgarithm over a wide range of plausible
models of gene-order evolution. (We conducted one studygusial data with very large numbers of
insertions and deletions; partial results to date show m®n80].) We generated one thousand trees
using a variation of the birth-death model that producesgelavariation in tree topologies, especially
imbalanced ones that are known to be insufficiently repteseim a pure birth-death model [44]. The
only constraint that was placed on the operations was teatthected number of inserted elements was
equal to the expected number of deleted elements, in ordeetp all genome sizes within a reasonable
range. (Cases where certain sequences are much smallattiesg, due, e.g., to symbiosis, certainly
exist, but the variation generated by our mechanism neadgrapasses that case already.) Three ran-
dom restarts of our distance algorithm were used for eactopabdes to produce the pairwise distance
matrix.

Within the thousand trees the percentage of inversiongddrom 50% to 90%. The remaining
percentages were split evenly between insertions (dupigcand non-duplicating) and deletions. Non-
duplicating insertion and duplication percentages werggaver three different tests, in which each
received a quarter, a half, and three quarters of the pergent he expected Gaussian distributed length
of each operation filled a range of combinations from 5 to 3€rafions per operation type. Finally, the
expected number of event per edge was 20 with a Gaussiaitdliistt variance of 10 operations.

To generate a tree we began with the identity genome on 8G8sgerd performed 200 evolutionary
operations on it using the same parameters that are speftifigenerating the tree. This genome was
then used as the root of the tree. For each node we checkeshibild become a leaf, based on the
maximum depth allowed and a random choice, if not we stoppi2itherwise we created each of the
two children by performing the randomly selected operatitas specified in the previous paragraph)
on the parent. Each type of operation (inversion, non-dagiig insertion, duplication, and deletion)
was selected at random according to a fixed distribution. ifiteeval over which an operation acts is
produced with one endpoint selected at random and a lengtiindirom a Gaussian distribution. For
duplications, the interval to be duplicated is selectedtaed inserted at an index chosen uniformly at
random in the genome.
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Figure 3.5: Experimental results for 800 genes with exgketige length 10. Left: generated distance
vs. reconstructed distance; right: the variance of contpdistances per generated distance.
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Figure 3.6: Experimental results for 800 genes with exgketige length 20. Left: generated distance
vs. reconstructed distance; right: the variance of contpdigtances per generated distance.

3.4.4 Experimental Results
Pairwise Error

We present results for one of the many mixes of operationginsmur simulations; other mixes gave very
similar results. This particular data set used a mix of 700érnsions, 16% deletions, 7% insertions, and
7% duplications. The inversions had a mean length of 20 atahaard deviation of 10. The deletions,
insertions, and duplications all had a mean length of 10 wigttandard deviation of 5. We used four
trees of 16 leaves as described earlier, with 10, 20, 40, @rexpected operations per tree edge; these
choices can result in very large pairwise distances—up &xpacted 480 operations (on just 800 genes)
for the most distant pairs. For these four trees, our algoritvas run with 10 random restarts and simple
randomization for the selection of the matchings.

Figures 3.5 through 3.8 show the results (as a scatter ptbedf20 data points for each experiment)
for these four datasets. In each figure, the left-hand pmwstihe estimated tree distance on the ordinate
against the true evolutionary distance (from the simumgtion the abscissa. A perfect result would
simply trace the 1:1 diagonal, which is lightly marked onteptot to aid in evaluating the results. The
right-hand plot displays the deviation from the 1:1 ideahdanction of the true evolutionary distance,
plotting largest and smallest differences between condprakies and the true value, for each true value.

These plots show that our distance estimator tracks theetrokeitionary distance very closely up
to a saturation threshold, where it starts lagging senolbishind the true value. Such saturation is of
course expected; what is surprising is how high that saturahreshold is. On sequences of roughly
800 genes, saturation appears to occur only around 250tew@ny events and our estimator tracks very
accurately to at least 200 events. Moreover, the smallés pidicate that the variance is very small up
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Figure 3.7: Experimental results for 800 genes with exgketige length 40. Left: generated distance
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Figure 3.8: Experimental results for 800 genes with expgketige length 60. Left: generated distance
vs. reconstructed distance; right: the variance of contpdistances per generated distance.
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Figure 3.9: Experimental results for 1,200 genes with etqubedge length 20. Left: generated distance
vs. reconstructed distance; right: the variance of contpdistances per generated distance.

to 200 events and remains reasonable up to 250 events.

These results are not limited to small trees. We ran anotgessof tests involving trees of 50
leaves; while the main purpose of these tests was to assesgsidlity of tree reconstruction using our
distance computations, we checked the computed distage@ssathe true distances for these trees as
well. Figure 3.9 shows the same two scatter plots (this timeoaghly 1,250 data points) for one such
tree. For these larger trees, we used a root genome of 1,2@3 georder to prevent early saturation;
the example reported in the figure used an expected edgénleh@0 evolutionary events. With the
larger number of genes, saturation now does not occur ustileach at least 350 evolutionary events.
The error plot shows that the error remains sharply bounaedighout the range of values tested.

Tree Reconstruction

Since our distance computation tracks tree distances swadety and since distance-based methods are
guaranteed to do well when given distances that are clobe toue evolutionary distances, we also ran a
series of tests designed to ascertain the quality of tremnstiction obtained with the most commonly
used distance-based reconstruction method, neighbingpi(NJ). The NJ method runs in low cubic
time and thus is applicable to large datasets, but, likeisthdce-based methods, it is known to produce
poor results when the range of tree distances gets largee(seg[60].

Recall that we generated a very large number of diverse tyg@dgies, producing a population
of trees that more closely matches the observed balandgstistaf44] than would be the case with a
pure birth-death process. We evaluated results using @énelatdRobinson-Foulds (RF) distan¢é4],
which is simply (in the case of binary trees, as in our serfesxperiments) the number of edges (or
bipartitions) present in one tree, but not in the other. Wessl cases, we present tRé- error rate
which is the ratio of the RF distance to the number of taxa étthe. In terms of the latter measure,
most systematists will consider rates above 10% to be uptaigle and rates below 5% to be very good.

The tree reconstruction performed very well on the gendraes, as shown in Figure 3.10. Ap-
proximately 65% of the reconstructed trees had a Robinsutds error rate of less than 5% and only
15% of the trees had an error above 10%. This reconstructindane without any use of error correc-
tion, variances, or knowledge of the underlying model tleategated the trees; it also used the simplest
form of neighbor-joining. Thus, it would be easy to improtiege results by refining the reconstruction
method.

As an additional check, we also compared how well our metterébpms with respect to simply
removing duplicate content and applying EI-Mabrouk’s ¢xaethod [32]. This comparison gives us an
indication of how important it is to handle duplication irtiesating true tree distances. We computed
a distance matrix for each tree where a single entry of a rmats obtained by pairwise removal of all
duplicate content and subsequent computation using Ekdddts exact method. The NJ method was
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Figure 3.10: The histogram of RF error rates for reconswostbased on our distance computation.
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Figure 3.11: The difference in RF distance between the ndethithout duplicates and our method as a
function of the number of duplicates on an edge.

applied to each matrix to obtain a tree. Over all thousarebsttiee reconstruction without duplicates had
a lower RF error rate than ours on only 14% of the trees; fumloee, in three quarters of those cases,
the overall RF error rate for both methods was lower than 1QB&tis, these were relatively easy cases.
Thus, our method does better on the harder cases; the awiffagence in RF error rate on the trees

where our method did worse on was 1.2, while the averagerelifée in RF error rate on the trees our
method did better on was 3.5. This is strong evidence thataihod makes significant improvements
on the state of the art. Furthermore, because of this low eate in the 14% of cases where our method
was not the best, there is good reason to believe that algliggtter tie breaker (see Section 3.4.5) will

yield even more cases where the method presented here wins.

To examine how well our technique handled copies, we condpdioe every test run) the RF dis-
tances of our reconstruction with those of the reconstraatiithout duplicates as a function of the total
number of duplications. Figure 3.11, a scatter plot of tHedinces in RF distance, indicates that, as
the number of duplicates increases, our method does condsly better at reconstructing the tree.
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Figure 3.12: Number of cases with error for each tie-breaker

3.4.5 Improved Heuristics

For distances used in tree reconstruction, the relativerorgl of the values is more important than their
absolute magnitude; it is most important to see computddruiss increase as the simulated distances
do. Our major goal with the introduction of more sophist&chheuristics is to reduce the variance of the
scores so that the distance ordering will be more consiathpotentially result in more accurate trees.

The results presented earlier in the section used a verylesihguristic; we selected the longest
match for a cover element and then chose a match at random éasles of ties. We investigate two more
promising tie-breaking heuristics (introduced in Sectd#d.2): picking a match that has the smallest
overlap with the other cover elements or picking a match biilng at the immediate context of the cover
elements in the source genome. By choosing the match thatinaeal overlap with all other matches,
we maximize the number of longest-match candidates for éxeénound. To understand the motivation
for the context driven heuristic suppose we are trying todicdver element for a subsequence (of genes)
s in the target. Also suppose that in the target, the subseguerthe left ofs is s; and to the right of
s is s,. Then we would like to pick a match in the source genome thaitie context subsequencgs
ands!. that are as similar tg; ands, as possible.

To assess the improvements when using these heuristicsvieaasets of pairwise distance com-
parisons. One set used sequences of length 800 with 20Qtiopsriiom the identity to the first taxa and
200 operations between the taxa. The second set used seguétength 1200 and took 400 operations
between the identity genome and the first and between thafidgsthe second taxa. In both data sets the
probability of an operation being an inversion was 80%, afidp@ deletion 10%, of being a duplicating
insertion 5%, and of being a non-duplicating insertion 5%e Tistance between each pair was then
computed using three heuristics, first the random selegtasirun, then the score was computed using
overlap minimization, and finally the score was computedgiine overlap minimization with context.
Figure 3.12 indicates that there is little difference in ¢neor values for the various methods. More im-
portantly, the more sophisticated heuristics have veltg litnpact on the variance. All methods resulted
in a sample variance of about 22.6 for the sequences cotelrugth 400 operations.

3.4.6 Saturation

Unsurprisingly, the high-error trees have arisen fromrsditon in the pairwise distance data. To this
point, we have referred to saturation as being the point vtier variance grows too large to make the
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distance to the genome size increases.

calculated distances useful. We now use a numerical definisaturation occurs whenever the true
evolutionary distance exceeds the distance computed watenethod (which, it should be recalled, is
not necessarily a minimum edit distance).

We compared reconstructed trees with an RF error greaterlid@ to trees with RF errors of less
than 5%. In the high RF error category over 91% of the distamagices show saturation, whereas in the
low RF error category 75.5% of the matrices are devoid of atyration. The distribution of the number
of operations where saturation occurs for the high and loweR&r groups is shown in Figure 3.13.
Further investigation into the properties of the trees m high and low RF categories revealed little
correlation between factors such as tree size, genomeisigerfes), or distribution of operations. The
major limiting factor in the accurate reconstruction oeseauising this distance score is thus definitely
the onset of saturation. Since the average genome size iexp@riments was approximately 1000
elements, reconstruction is highly accurate when the cteolpedit distance does not exceed 10% of the
genome size and in general performs well until the numbepefations exceeds 25% of the genome
size. Even in these cases the distance computation perffuitesswell up to the saturation point, as
illustrated in Figure 3.14. The vertical axis is the difiece between the actual and computed distances
while the horizontal axis is the ratio of the computed distato the genome size. Note that in a regime
of saturation the computed distance stays the same whiecthal distance is rising, so only the positive
points should be considered when looking for saturation.
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3.4.7 Sophisticated Tree Reconstruction

We still lack a good approach for inference of ancestral geders under thmsertion, duplication, loss,
and rearrangemenfiDLR) model, both from the point of view of computationafat and from that of
accuracy. Indeed, Theorem 3.3.1 and the study of Earneéiidg et al[30], indicate that internal gene
orders are seriously underconstrained and so may not bhbélseihferred—we need a more detailed and
sensitive model of the evolutionary operations on a generorg.

Thus, we tested our method with a reconstruction algorithat $searches for a parsimonious tree
from all possible topologies, using linear programming][8%ang and Moret[84] proposed a linear
programming (LP) formulation that obviated the need to saer 99.99% of candidate topologies in
their experiments. It turns out that the LP score was closegmto the actual score that Tang and Moret
proposed using this score in lieu of scoring the tree, augidiny median computation. The resulting
reconstruction lacks ancestral orderings, but gives aldggpan estimated score, and estimated edge
lengths (the values of the LP variables), much as a maxiniketiHood reconstruction does for sequence
data. Specifics about the full tree reconstruction algoritdan be found in our paper [79].

Experimental Design

Our objective is to verify that computing under the full iDltRode, i.e., handling both rearrangements
and changes in gene content, allows for better reconstru¢tian handling only rearrangements on
genomes reduced to signed permutations. Relative accigrfuys our main evaluation criterion. How-
ever, absolute accuracy is needed in order to put the cosgmain perspective. Since, in phylogenetic
reconstruction, error rates larger than 10% are considemadceptable, there is obviously little use in
improving the error rate by a factor of two if the result istjbsinging it from 60% down to 30%. We
also need to test a wide range of parameters in the iDLR madedell as to test the sensitivity of the
methods to the rate of evolution. These considerationsedigutesting on simulated data, where we
can conduct both absolute and relative evaluations of acgubefore we move to applying the tools
to biological data, where only relative assessments ofescoan be made. The range of dataset sizes
need not be large, however, as we know that applying DCM nalstf&5] scales up results from datasets
of fewer than 15 taxa to datasets of over one thousand taxalitti¢ loss in accuracy and very little
distortion over the range of parameters. As we can run mamg ilests on small datasets and as our
primary interest is the effect of model parameters on acgyk@e generated datasets in the range of 10
to 13 taxa.

Simulated trees are often generated under the Yule-Handaugl—they are birth-death trees. Many
researchers observed that these trees are better baléuacechost published ones. Other simulations
have used trees chosen uniformly at random from the set wéaltopologies, so-called “random” trees;
these, in contrast, are more imbalanced than most publisbesl Aldous[2] proposed thiesplit model
to generate trees with a tailored level of balance; depgnainthe choice of, this model can produce
random treesq{ = —1.5), birth-death treesd = 0), and even perfectly balanced trees. We use all three
types of trees in our experiments; farsplit trees, Aldous recommended usifig= —1 to match the
balance of most published trees; instead, we chose the pteato match the computational effort on
the datasets from which those trees were computed, whialsléalusings = —0.8. On random ang-
split trees, expected edge lengths are set after the tregagiem by sampling from a uniform distribution
on values in the sdtl, 2, ... ,r}, wherer is a parameter that determines the overall rate of evolution
the case of birth-death trees, we used both the same prawdseaedge lengths naturally generated by
the birth-death process, deviated from ultrametricity tireh scaled to fit the desired diameter.

We generate the true tree by turning each edge length intorespmnding number of iDLR evolu-
tionary events on that edge. The events we consider undé@lii model are insertions, duplications,
losses, and inversions of genes or contiguous segmentsohadeeral genes—in particular, inserting,
duplicating, or deleting a block @f consecutive genes has the same cost regardless of the Falud/e
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forced the expected number of inserted and duplicated elisnt@equal the expected number of deleted
elements, in order to keep genome sizes within a genera¢raifg varied the percentage of inversions
as a function of the total number of operations from 20% to 9U#e remaining percentages were split
evenly between insertions/duplications and losses, Wwélbalance of insertions and duplications tested
at one quarter, one half, and three quarters. The expectess@a-distributed length of each operation
filled a range of combinations from 5 to 30 genes. These arditboms similar to, but broader in scope
than, those used in the experiments reported in Swesisalj81]

In all our simulations, we used initial (root) genomes oftD@enes. The resulting leaf genomes are
large enough to retain phylogenetic information while éiing large-scale changes in structure. These
sizes correspond to the smaller bacterial genomes and aide conclude that our results will extend
naturally to all unichromosomal bacterial genomes.

The collections of gene orders produced by these simukatiome then fed to our various competing
algorithms. These are of two types: (i) algorithms runnimgtlee full gene orders, namely NJ and
our new LP-based algorithm; and (ii) algorithms running qoadized gene contents, which include NJ
again (running on the inversion distance matrix produce®BAPPA), GRAPPA [59], and MGR [88].
Gene contents are equalized by removing genes from famiitbismore than one gene, then keeping
only singleton genes common to all genomes. On some of tleasats, the equalized gene content is
minuscule—with high rates of evolution, the number of gestegred by all 12 taxa is occasionally in
the single digits, obviously leading to serious inaccugadin the part of reconstruction algorithms. We
collect the data (including running times, the actual tréeternal inferred gene orders, inferred edge
lengths, etc.) and compute basic measures, particulalRtbinson-Foulds[64] distance from the true
tree—the most common error measure in phylogenetic recanisn.

Results and Discussion

We ran collections of 100 datasets of 10 to 13 genomes, eat}®@® genes, under various models of
tree generation and various parameters of the iDLR model.u$®d birth-death, random, apdsplit
(with 3 = —0.8) models, with evolutionary diameters (the length of theglest path, as measured in
terms of evolutionary operations, in the true tree) of 201,400, and 800 operations. (We ran tests
with diameters of 800, but noted that most resulting ingtarexhibited strong saturation—that is, that
many of the true edge lengths were significantly larger thanredit distances between the genomes at
the ends of the edge; since no reconstruction method can linviee presence of strong saturation,
we did not pursue diameters larger than 800.) For each ttaeesl, we measured its RF error rate
(the percent of edges in error with respect to the true tred)tlaen averaged the ratios over the set of
test instances for each fixed parameter. We computed tloeofattie RF rate for our approach with that
for NJ on full genomic distances and with those for the thiger@aches with equalized gene contents,
binning the results into one “losing” bin (the other methad better), one bin of ties, and 5 bins of
winners, according to the amount of improvement. Not all it@@ances are included in these averages,
because some instances had equalized gene contents ofgusg genes and could not be run with
GRAPPA.

We present below a few snapshots of our results. Table 3visstiee results of using full genomic
distances fops-split trees on datasets of diameters 200, 400, and 50Qy 86/ inversions. In this case,
no difference was found between the results returned by Belbdsed method and those returned by NJ
using full genomic distances. The average RF error rate fGRMvas 23% for diameter 200, 32% for
diameter 400, and 42% for diameter 500. As simple a methodldsmNdily beats existing methods that
must rely on equalized gene contents, often by large fageogs, factors of 4 or more in 26% of the
cases with diameter 200 with respect to MGR). The reductiagriior rate was sufficient in many cases
to turn unacceptable results (with error rates well in ex@#sl0%) into acceptable ones.

Experience with sequence data leads us to expect that an M®dnshould do better than NJ when
the diameter and deviation from ultrametricity get largewr OP-based approach is a hybrid: unlike an
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Dataset NJ GRAPPA MGR
200 | 16-4-25-1-0| 50 | 4 14-0-11-4-0f 1| 3 26-6-21-4-1| 36 | 6
400 4-0-5-4-0|1 23| 0 3-0-6-1-0 0| O 5-1-7-6-12| 1| 4
500 5-5-5-8-0| 69 | 8 || 11-2-14-17-15| 18 | 23 || 17-7-14-17-14| 24 | 7
w t | w t | w t |

Table 3.1: The accuracy for NJ on full genomic distances anthfee evolutionary diameters compared
to three methods on equalized gene contents. Column triplew wins, ties, and losses, in percent.
Quintiles in the winning columns denote error reductiongaayors larger than 4, 3, 2, 1.5, and 1.

MP method, it does not reconstruct ancestral labels, baitdikMP method, it attempts to minimize the
total length of the tree; thus it should at least occasignalitperform NJ. We tested this hypothesis on
random trees and birth-death trees where, in both casesnezajed edge lengths by uniform sampling
from the sef{1,2,...,r}, for values ofr ranging from 20 to 100, still using 80% inversions. Tables 3.

and 3.3 present the results, this time limited to the refeeWiGR and to the two methods using full

genomic data.

| 20 40 60 80 100

LP| 09 80 78 6.0 26.0
NJ| 05 85 87 95 255
MGR | 11.3 31.8 34.0 35.0 49.0

Table 3.2: Error rates, in percent, on random trees for tleea@proaches using full genomic data and
for MGR on equalized gene contents.

| 20 40 60 80 100

LP| 02 85 7.6 57 194
NJ|14 90 85 8.0 180
MGR | 9.7 31.7 31.8 33.7 514

Table 3.3: Error rates, in percent, on birth-death treeghfertwo approaches using full genomic data
and for MGR on equalized gene contents.

Both tables show gains for the LP-based method over simpksh¥olutionary rates increase, until
both methods start failing at = 100. Note that the accuracy gains over MGR are consistently very
high.

Keeping the proportions of inversions to 80%, however, itee very realistic, as gene duplications
and losses are presumably more frequent in nature thamng@ments, nor very challenging, as, given
a bounded set of possible gene choices, duplications aseldasll saturate sooner than inversions. The
experiments of Swensaat al[81] did not test low percentages of inversions, so we rasicdests with
20% inversions only, keeping all other relative percendagfeevents identical. Table 3.4 shows these
results. We were pleased, and somewhat surprised, to @baetwal improvements in the quality of
trees for rates up to = 40; the threshold effect te = 60 corresponds to a type of saturation caused
by too many insertions and deletions. (Approaches with lezpeagene contents are not reported, since
they failed completely, as expected.)

Finally, we reproduced the results of Earnest-DeYoung[@i]the dataset of 13 bacteria, with
genome sizes ranging from 1,000 to over 5,000 genes and gemkes of up to 70 members, this
time without any special preprocessing, and using our Ls&thapproach rather than NJ. Once again
the resulting phylogeny is one SPR (subtree) move away fraindf Lerat et al. The large disparity in
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|20 40 60 80
LP |38 30 210 37.8
NJ|31 49 189 337

Table 3.4: Error rates, in percent, on birth-death treek witly 20% inversions.

gene content between species in this dataset was hand@datidally, for the first time for this dataset
(or, indeed, for any other set of cellular genomes).

3.4.8 Conclusion and Future Directions

We have outlined a method that accurately computes treendis$ (true evolutionary distances) under
the full range of evolutionary operations between two aabjt sequences. Our experimental results
indicate that the accuracy is excellent up to saturationg¢hwis reached remarkably late—for instance,
with sequences of roughly 800 genes, our distance compntagimains highly accurate up to 200—
250 evolutionary events. Indeed, these distances areaecemough that the simple neighbor-joining
method applied to distance matrices computed with our glgomreconstructs trees with high accuracy.
These findings open up the possibility of reconstructinglqugnies from whole-genome nuclear data,
as opposed to the organellar data that have been used sodae $own that the more sophisticated
LP method can utilize our distances better than the simptghber-joining procedure.

While our experiments show that our distance computati@cdsirate, the accompanying scenario
of evolutionary events is only one of many possible sequefiteises a “canonical form” [54]); hence
our level of confidence in the correctness of reconstructextsiral sequences is low. In order to re-
construct good ancestral sequences, we will need additmolagical information, such as boundary
constraints (centromere, origin of replication, etc.hgth distributions, and sequence data around each
gene. Unfortunately, direct comparisons between the rdethGhenet al. [26] and those of this section
are hard due to the fact that the Chen algorithm takes nidéesequences as input. The second half
of the algorithm works on two gene sequences where the nuafilbecurrences of a particular gene in
each genome is equal, but other than that their method islcguite similar to ours. No study has
been done to discern whether the minute differences in otinade make any difference in distance
estimation or duplicate assignment.
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3.5 Towards a Practical Solution to the One to Many DuplicateAssign
ment (OtM DA) Problem

(Work in this section was joint work with Nick Pattengale)

Whereas many of the results earlier in this chapter showatdith can get close to the true pairwise
distance in the presence of duplicate and missing genehijsirséction we show that some instances
of OtMCM can be solved optimally. If the particular optimallgtion to OtMCM has no hurdles in it
— a fact that we can check in linear time [9] — then we know we ddave a solution for OtMDA.
Fortunately, the results of Section 2 suggest that this evidkibly be the case, making a minimal solu-
tion for OtMCM a minimal solution for OtMDA. We conclude thedion by giving a framework for
approximating OtMCM.

3.5.1 The Generalized Breakpoint Graph

We have seen in Section 1.2.1 that the basic structure desga pair of sequences with no duplicates
and equal gene content is theeakpoint graphactually a multigraph). For this section, however, gene
families need not be singletons, so we generalize the aanigin to includeonly singleton gene families
as follows. LetBG 4 g denote the breakpoint graph for sequengeand B. As with the normal
breakpoint graph, each singleton gené A becomes a pair of verticeg,” and g™ (the “negative”
and “positive” terminals); however, we leave out the gemilias with multiple members, since only
the singletons have a readily usable structure. We needcarmanodate gaps left in the sequence
where duplicate genes exist ih Call the versions off and B without multi-gene familiesd’ and B’
respectively. We add an edge dasireedge, in the charming terminology of [69}) —,y™) for each
singletonz andy, wheneverr occurs immediately to the left of in B’. We add areality edge (also
known elsewhere as a black edge), y?) if = is the element to the left of in A’ and we have either
p = q if z andy have different parities (ial’, naturally) orp # ¢ if  andy have the same parity. Thus
desire edges trace the (re-)ordering4that we need to achieve to matéh while reality edges trace
the given ordering ofl. Figure 3.15 illustrates the construction.

A=4 -3 2 3 1 6 9 3 8 -10 -7 9

(a) the genomet
_Componentl Component 2.
,,,//6;°'f5/f/’;7/; NN e f/\ii\
/ e N\ /S /\ \ N\
0t 44t 2=2t 11t 6= 6% 8 8" 10t10~ 7+ 7~ 11—
A=0 4 2 1 6 8 -10 -7 11
B=o0 1 2 4 6 7 8 10 11

(b) the breakpoint grapBG 4 5

Figure 3.15: A genomel and its associated breakpoint grapli:4 p (with respect to the identity
permutationB) after genes from families with duplicates (3 and 9) are nezdodesire edges are shown
in gray, reality edges in black.
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Figure 3.16: Adding an elemedtto a breakpoint graph.

3.5.2 The Consequences of An Assignment

Our job of assigning duplicates may be compared to that diefegg books in a library with unlabeled
shelves. Each book has a proper location on a shelf and meuttipies of a book must be shelved to-
gether. A librarian can proceed by first removing misshebmoks and then identifying the appropriate
location of each book based on the context of the books thairein their correct spot.

In our problem each multi-gene family has been removed fioenordering, leaving a structure of
cycles defined by singleton genes. We call each gene in a-gart family of B a candidate since
it is one of the choices for a duplicate assignment to a cporeding gene inA. Like each book in
the library, each candidate has a location between two rengaelements irB’; each family, like each
group of book copies, contains candidates that all sharsdhee destination (when sorted) between
elements ofA. For each candidatd, denote by3+(d) the positive terminal of the next smaller (in
value) element ilBG 4 g and by~ (d) the negative terminal of the next larger element. We cali¢he
vertices thébookend®f d and the cycle on which they reside thigelf of d. For instance, in Figure 3.15,
the bookends for the family of gersg(a family of 3 members) argt and4~ and therefore the shelf for
the family of3s is cycleA. Although the definition of bookends applies equally welstogletons, we
are only interested in bookends for candidates: bookergdgaat of the breakpoint graph, but candidates
are not, since multi-gene families do not appear in the lpeiak graph.

Once we have chosen a candidate, the candidate and its ntaighine inA effectively form a
singleton gene family, so we can add the candidate to thépoa® graph. The consequences of that
choice are summarized in the following easy lemma, whictedies many of our results.

Lemma 3.5.1. When a candidaté is chosen, exactly two edges are affected: the reality dufespans
the location wherel is added and the edge between its bookends.

Proof. Refer to Figure 3.16. Adding to BG 4 g splits the reality edge that spans the location where
d is added, creating two new endpoints andd—, as well as splitting the desire edge that links(d)
and$~(d) to meet each of ™ andd ™. O

We say that a candidatéis addedon-cycleif, once added, it lies on its own shelf; otherwise it is
addedoff-cycle The following is an immediate consequence of Lemma 3.5.1.

Lemma 3.5.2. When a candidate is added off-cycle, two cycles get joined.

3.5.3 The Cycle Maximization Problem

We have formulated duplicate assignment as two optimiagiroblems (OtMDA or MtMDA): choose
an assignment of duplicates that maximizes the number éégye the resulting breakpoint graph (that
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Figure 3.17: Breakpoint graphs corresponding to choicenefaf two candidates for geeon cycleC.

Figure 3.18: The breakpoint graph of Figure 3.15 inscrilvethiee circles (cycld is not shown).

is, BG 4,p to which the chosen candidates have been added). Note ¢éhatdbr in which the chosen
candidates are added does not affect the structure of thitingsbreakpoint graph.

Consider cycle” in Figure 3.15. This cycle is associated with the subsecighe, 8, —10, —7,9,11),
which contains two occurrences of gediehus we must choose which of these two occurrences to call
the match of gen® in B. Figure 3.17 shows the augmented breakpoint graphs mgultm each
choice of candidate. The graph on the left, where we chosegihdidate betweehiand8, has one more
cycle than the graph on the right, where we chose the camrdiiittveen—7 and 11, and is thus the
better choice.

As we've seen, the choice of a candidate is advantageouslyed on a breakpoint graph inscribed
in a series of circles, one for each cycle in the graph. We énglaeh cycle ofBG 4 g in a circle
by choosing any start vertex and then following the cycleguFé 3.18 shows three of the four cycles
of Figure 3.15 inscribed in three circles. Returning to thve possible duplicate assignments shown
in Figure 3.17, we can look at the inscribed versions of tliggraphs, as illustrated in Figure 3.19(a).
Choosing candidates adds edges across the circle, edgesahaross each other, depending on the
parity of the candidates and the locations of their bookeftie effects on the graph can be represented
in just onecircle-drawing as shown in Figure 3.19(b). In this representation, we et two choices
by drawing two curved line segments, both originating ongbemeter between the bookents™ and
8T and each ending between the two terminals of the correspgrdindidate. Choosing the candidate
between6t and 8~ gives rise to desire edges that do not cross in the inscriepesentation; we
represent such choices with solid lines. The other carelidstweery~ and 11—, does give rise to
crossing desire edges; we represent such choices withalksés.

These curved lines represent assignnogrrations we will call an operation represented by a solid
line astraightoperation (because it does not introduce crossings) andepnesented by a dashed line
a crossoperation. The collection of all operations that share aipemt represents all members of a
gene family fromA, so we also call it &amily and call its common endpoint (between the bookends and
represented by a solid disk on the periphery of the circldinfigures) thdamily home We can now
state the three constraints for our optimization problem:

1: Each family home is a distinct point on the circle.
2. The family home is not the endpoint of any operation nabat family.
3. The other endpoint of each operation is unique to that apen.

The objective to be maximized is the number of cycles. Figu2® shows the operations for each of the
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(a) the graphs of Figure 3.17 inscribed (b) the two choices of
in circles part (a)
superimposed

Figure 3.19: How the cycle splitting problem can be insatibea single circle.

Figure 3.20: The operations that represent the gene fandieour running example.

gene families from our running example. Operations thas<ycles are off-cycle and therefore will
join cycles.

Figure 3.21 shows a single cycle and its operations for ttmplffied (“one-to-many”) case where
B has only singletons and for the general (“many-to-many$eocahere bott and B have multi-gene
families. (The case where two multi-gene families have #raesbookends can be handled because the
relative location of the bookends does not change.) In tinergd case we have multiple homes per
family, with one additional constraint:

4: Each home in the same family must connect to all of the saagoints.

The problem thus becomes picking as many operations as éinereomes per family such that the
cycle count is maximized. The only additional complicatisrthat applying an operation removes that
operation from consideration in all other homes for its fgrtas required by the fourth constraint).

Straight and cross operations display a form of duality siggests we can focus on straight opera-
tions alone.

Theorem 3.5.3. Applying a cross operation converts all operations that intersect(call the set of
such operationd) to their complement—crosses are replaced by straights straights by crosses.

(a) a one-to-many instance (b) a many-to-many instance

Figure 3.21: Examples of circle-drawings for the simplifeade (left) and the general one (right).
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(a) drawn on the (b) zooming in (c) after (d) result
circle as usual on each applying cross redrawn on the
operation operationc circle

Figure 3.22: lllustration for Theorem 3.5.3. Labels for gmnts along the circle are numbered.

(a) before (b) after
application application

Figure 3.23: Applying cross operatian

Furthermore, for any two operations ify if they intersected before applyirg then they no longer do
after applyinge, and vice versa.

Proof. We sketch the proof graphically, using Figure 3.22, a tylpsitaiation where three operations,
two of which are crosses, one a straight, overlap each oflercross operation shown in parts (a) and
(b) twists, but does not break the cycle, as shown in partif@)e redraw the cycle inscribed neatly in
a circle, we find we must reverse the indices on half of theegyeigure 3.22(c) shows the result after
reversing indices on the bottom half of the cycle. Intelisgcbperations no longer intersect and the
identities of the operations have been inverted. O

Figure 3.23 shows the implications of Theorem 3.5.3 in a ncoraplicated setting.

3.5.4 Buried Operations

An operation makes no contribution to the cycle count of aglete assignment if the two new desire
edges it creates lie on the same cycle. In Figure 3.24, theahof candidates for the gene families are
indicated in the breakpoint graph on the left and shown asatipes in the inscribed representation on
the right.

In Figure 3.25, we show again the three operations depictédgure 3.24(b), but this time only
the three operations and the resulting two cycles are shdlete the operation corresponding to gene
family 2 (shown as a heavy curve): the curved edge is bounded on eBchysthe same cycle; we say
that such an operation uried Since the two desire edges created by this operation lib@same
cycle, the operation does not increase the number of cyridadt it actually reduces the number of
cycles, which stood, in this particular example3after operations-6 and—4).

Theorem 3.5.4.If a duplicate assignment creates a totabdiuried edges, then the number of cycles is
bounded by: — b + 1, wherea is the number of cycles present in the breakpoint graph iedusy the
shared singleton genes plus the total number of duplicatggaments to be made.
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(a) the breakpoint graph (b) the inscribed version
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Figure 3.24: An example withl = (2-34 -6 5-4 -2 6 1). Chosen duplicates are shown in grey.

Figure 3.25: The cycle and the operations; operation “28 fihavy curve) is buried.

Proof. The number of cycles cannot exceed- 1, since each duplicate assignment can give rise to at
most one new cycle. Consider the effect on the breakpoimihgod choosing an operation: a single
desire edgel is replaced with two desire edgé$ andd), and a single reality edgeis replaced with
two reality edges’ andr). By constructiond) andd;, each inherit one of the original endpointsdf
similarly, ; andr/, each inherit one of the original endpointsiofBy assumption, the chosen edge is
buried, so thatl; andd,, lie on the same cycle; therefore so do all of the original e ofd andr.
Thus all of the newly created edges must lie on a cycle thatdir existed. Since this is true of any
buried operation, every one of the buried operations deesslay one the maximum number of attainable
cycles. O

3.5.5 Chains and Stars

There exist two patters of straights that, while need notaiorburied operations, nevertheless impose
sharp bounds on the number of cyclesk#&hain (for £ > 3) is an assignment in which operations
form a chain, that is, each chosen operation overlaps twheobtherk, its predecessor and successor
around the circle. Figure 3.26(a,b) illustrafeshains. Ak-star (for £ > 1) is an assignment in which

k operations form a clique (each overlaps every other). Ei§26(c,d) illustrateg-stars.

Remark 3.5.5. For any integerk > 1 (but recall thatk-chains are only defined fdr > 3), we have:

1. ak-chain has no buried operations;

AT Q
<

\/
&
D €

P

(a) a 4-chain (b) a 5-chain (c) a 3-star (d) a 4-star

Figure 3.26: Some examples of stars and chains.
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(a) operations indicated by heavy (b) the resulting reduced instance;

lines (and arrows) are those chosen heavy edges will produce an
to produce the reduced form of part optimal solution to the reduced
(b) instance

Figure 3.27: Creating a reduced instance and solving it.

. in ak-chain withk odd, the cycle count i3,
. in ak-chain withk even, the cycle count &
. in ak-star withk even, every operation is buried and the cycle court is

g b~ W N

. in ak-star withk odd, no operation is buried and the cycle court.is

We conjecture that these two patterns, along with buriedatipms, describe all operations that may
reduce the number of straights that do not create a new cycle.

3.5.6 Reduced Forms

A serial assignment procedure could reach a state in whichpesation remains that could split a
cycle. We call such a statereduced fornof the instance. In a reduced form, an instance is composed
of multiple cycles linked by the operations from the remagnfamilies. This structure lends itself
naturally to a graph representation; an analysis of thiplgraveals conditions under which optimality
can be verified.

Theorem 3.5.6. After applying a maximal nonoverlapping set of straight rapiens M, remaining
operations can only (by themselves) join two cycles.

Proof. The application of a set &f nonoverlapping straights always yieldsiew cycles, each separated
from the others by two adjacent operations or, in the casa afudermost cycle, by one operation that
separates it from all others. Singé is maximal, every remaining operation from every family daps

an element of\/. Application of anym € M, therefore, must span two of the new cycles, joining them
into one. O

Figure 3.27(b) shows the reduced instance induced by agmplyach of the (straight) operations
chosen in Figure 3.27(a). We are left with a reduced form that be viewed as a graph where the
vertices are the cycles created so far; but because thdt grambedded in the plane, the edges incident
on a vertex are strictly ordered, in distinction to a nornalpdp.

We can now take advantage of graph properties such as mlar@stles, and connected compo-
nents. Because of the ordered nature of the edges incidentaigiven vertex, planarity is somewhat
specialized in our case: nonplanar edges can occur in sigiplations than in general graphs, as shown
in Figure 3.28(c). Cycles again play a vital role in these gesphs. If we restrict our attention to planar
graphs, we can look at the elementary cycles (those thahidelh inside face of the planar embedding)
and obtain directly the value of an optimal solution. As shawFigure 3.28, each connected compo-
nent produces a cycle around its outer hull (one of the cyldeshe outer face of the planar graph).
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(a) the effect of (b) a reduced form: (c) adding a “nonplanar”
applying lines trace the cycles operation to the reduced
an operation between created by the operations form from (b) joins the
two circles cycles

Figure 3.28: The effect of choosing operations on a reduced.f

(a) the solution embedded (b) the circle-drawing of the
through a reduced form solution

Figure 3.29: An optimal solution to the reduced instanceigufe 3.27

Each elementary cycle yields another cycle to its insidguieé 3.28(c) shows how nonplanar edges can
join these two cycles.

Theorem 3.5.7. The number of cycles in a solutighto a planar reduced instance with elementary
cycles and:c connected componentsi¥.S) = m + cc (m is the cycle rank of).

Proof. This certainly holds for a reduced instance with no openatioAssumeR(S) = m + cc for
a particular instance and solution, then look at the efféadualing another edge. If that edge links
two previously disconnected components, then the cyctasarthe hulls of these components will get
merged, removing a cycle and a connected component. If s Enks two connected components,
then an elementary cycle will be created. Since the edgedadddanar, we know that the same cycle
runs past both endpoints of the operations and thus thetapevaill split it. O

It remains to relate results on reduced forms back to thenadignscribed breakpoint graph for-
mulation; we illustrate the process in Figure 3.29, wheeeldft part shows the solution obtained on a
reduced form and the right part shows the correspondingdignlinscribed in the circle.

3.5.7 An Approximation Framework

We evaluate a solutioi against an optimal solutiof for a particular instance. Callpc(.S) the number
of breakpoint graph cycles created for a solutibgo that the approximation ratio for the algorithm that
creates solutioty is Z;’EES)) Call the maximum set of non-overlapping operations (ferdincle-drawing

of the instance) in the solutiofi* C S and the same in the optim@* C O. We continue by comparing

the score given for the reduced form induced¥iyandO*.

Properties of Solutions

In this section we show that a solution with a maximum numbbeoanected components (in a reduced
form) will be no worse than half the optimal. Theorem 3.5.hédpful if a solutionS happens to be
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planar (in our peculiar way, where the edges incident to a particudatex have a fixed ordering). We
can turn the formula of Theorem 3.5.7 into an inequality vehee ignore the effect (on the score)
introduced by non-planar edges:

Theorem 3.5.8.cc < hpe(S) < m + cc wherecc is the number of connected components in a solution
S andm is the cycle rank of.

Proof. The lower bound comes from the fact that, as noted earli@h eamponent of the solution
represents at least one cycle. Now we prove the upper bound:

Take the maximum cardinality planar subgraptof S and the score of that subgraplpc(P) =
mp + ccp. Trivially, we know thatcc = ccp. Call the set of non-planar edgéé= S \ P. Each edge
in N will add one to the cycle rank sa = mp + |N|. Each edge ofV must span two elementary
cycles inP. Take a maximum subset of those edgés C N such that no two edges iN* span the
same two cycles. Each edgeNi* will join the two elementary cycles into one so we haye:(S) <
cc+mp—|N*|+|N\N*|. Sincemp—|N*|+|N\N*| < mp+|N| = mwe havehpc(S) < cc+m. O

The inequality in the above formula arises from the fact thay a subset of the edges &\ P
can positively contribute tédpc(P). This formula provides us a way to compare solutions without
worrying if a solution is planar or not; at first glance it s#lyat if we maximize the number of connected
components ir$ we are within somen of the optimal. Thatn is at most: —|O*| wheren is the number
of families so any solution that maximizes the number of emted components would be no worse than
m = O(n) from the optimal. This does not appear to help since therlistbetween two permutations
isO(n).

However, it is well known that a graph with cycle rank v vertices, and edges hagsc = v—e+m
connected components. Thus we can find a version of Theo®tBat suites us.

Corollary 3.5.9. v —e+m < hpe(S) <v—e+2m

This is interesting because it relatesand2m. Indeed, if we were to find a solution with maximum
v — e +m we would be within half of the optimal solution. Apparentllye non-planar factor can detract
at mostm from a solution. We proceed to show that whenis maximized to obtain a solutiof,
m < cc and thus the optimal solution is at most doubje:(.S). . .

Theorem 3.5.10.For a solutionS wherevg — es +mg (in the reduced form induced I8}) is maximum
and an optimal solutior® (with vo,e0,me) it must be thakhpc(S) > hpe(O), providedvo — ep > 0
orvg —eg > 0,mp > mg.

Proof. By Corollary 3.5.9, we know thatpc(S) is at leastvg — es + mg, SO we have(vs — eg +
mg) < 2hpc(S). Also by Corollary 3.5.9, we havepc(O) < vo — eo + 2mo, which (because when
vg —eg+mg IS maximum so i2(vs — eg +mg)) iS no greater thad(vs — es +mg) provided we have
vo—eo > 00rvg—eg > 0,mo > mg. We concludéipc(O) < vp—ep+2mo < 2(vs—es+mg) <
2hpc(S). O

3.5.8 Conclusion

We have described a graph-theoretical framework in whichefizesent and reason about duplicate
assignments and their effect on the number of cycles presehe resulting breakpoint graph. We
have given some foundational results about this framewindkuding several that point us directly to
to algorithmic strategies for optimizing this assignmeWe believe that this framework will lead to a
characterization of the duplicate assignment problem dsasedo the development of practical algo-
rithmic solutions. We showed that this framework gives asnaxe that could lead to an approximation
algorithm for certain classes of instances of OtMCM and Mtil@e will see in the next section that
the work here also leads to NP-Hardness results.
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3.6 NP-HardnessProof for OtMCM, MtMCM, RDD, OtMRD, and MtMRD

We have seen that a choice of a duplicate has the effect dtirspland joining the cycles of the break-
point graph; in order to minimize the distance, we choosdiclfes so as to maximize the number of
cycles. We show that One-to-Many Cycle Maximization (OtMCiBNP-Hard by a reduction from a

restricted version of 3-Dimensional Matching (called Mgk Matching). We conclude the section by
showing how this powerful reduction extends to MtMCM, RDOMRD, and MtMRD.

3.6.1 Triangle Matching

We pose a restricted version of the 3-Dimensional Match8ig)M) problem (called “Triangle Match-
ing” or TriM) as a graph problem on colored vertices. Notet the input to TriM is restricted in our
presentation to only chordal (triangulated) graphs; thsriction is imposed only for ease explanation
since the two reductions that follow carry through even wtieninput is a general graph on colored
vertices.

Input: A chordal (triangulated) grapy = (V, F) such thatV = X UY U Z (X,Y, andZ are the
coloredsets)and NY =X NZ=YNZ=40.

Output: A set of triangles{(z,y, z) | (z,v), (y,2), (z,2) € Eforxz € X,y € Y,z € Z} such that
every vertex exists in exactly one triangle.

The difference between TriM and 3DM is subtle; TriM is thesren of 3DM suitable for drawing
on a page. Figure 3.30 shows an instance of 3DM where an adiedetriple is produced from three
other triples when drawn on a page. Since TriM is a graph pruolihis case is built into its structure so
there is no such thing as an “unintended triple”.

Figure 3.30: An instance of 3DM with triple§y, z, x), (z,2', ), (x,v/, 2') } that can't be represented
by a graph. The dotted triple;, =, 3/) is an unintended byproduct of the other three.

Theorem 3.6.1. TriM is NP-Hard.

Proof. The standard reduction from 1in3SAT to 3DM (see [39]) canibectly applied to TriM so as to
show it NP-Hard. O

3.6.2 Preliminaries

Section 3.5.3 describes the terminology and concepts thae to reason about the cycle maximization
problems. A consequence of Lemma 3.5.1 is that a cycle caplibé$o two if the orientation (sign) of
the chosen candidate is correct. Without loss of generality we later see —we can consider only those
instances that are a single cycle. Thus, the choice of a datadis advantageously viewed on a graph
inscribed on a circle; a problem instance of OtMCM can bemglve a circle-drawing Figure 3.21(a).
Our reduction will rely heavily on the fact that we can creatpermutation that yields a desired
configuration of separate cycles. As depicted in Figure,3a&lcan include, in a constructed instance
to OtMCM, single operation families (no choice is allowelat start us off in a desired configuration.
So each single operation family would be its own cycle-vertdote that operations that exist between
cycle-vertices now link the cycle-vertices creating aaian where the two breakpoint graph cycles are
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(a) the gray operations induce a (b) the induced instance with three

particular instance cycle-vertices

Figure 3.31: Creating a three cycle instance of OtMCM.

(a) length 3 cycles from TriM are (b) a solution tok-OtMCM
(1,3,5),(1,4,5), (2,3,5), (2,3,6) (dark edges are chosen candidates)

Figure 3.32: An instance of TriM converted 2eOtMCM.

joined into one. Figure 3.33 and Figure 3.28 give the readeeldor the effect of linking cycle-vertices

by edges.

3.6.3 TriM to OtMCM

We reduce TriM to OtMCM through the decision version of OtMCMIedk-OtMCM. k-OtMCM asks
the question: “can we find a solution for OtMCM that yiekdsycles”. k-OtMCM reduces to OtMCM
because the number of cycles in a solution to OtMCM, of cquraa be compared tb to obtain an
answer tok-OtMCM. We assume that the number of vertices in a TriM instais divisible by three
because we can immediately return “no” if it is not.

Setup

We say that a cycle-vertest links toanother cycle-verte® if there exists a candidate from a family on
A which connects td3. We convert an instance of TriM to an instancekeDtMCM. For eachw € V
we create a separate cycle-vert¢x) € C using the method described in Section 3.6.2.

Cycles are linked based on the edge#inEachc € C has a single family associated with it where
candidates from it will connect. For each edgeb) € E we create a candidate linkinga) to ¢(b)
where ¢ € X andb e Y)or (@ € Y andb € Z) or (a € Z andb € X). This construction results in
a setup where all cycle-vertices representing elemenis lifik only to elements o, elements oft”
link only to elements o7, and elements aof link only to elements ofX. The possible configurations
of solutions that satisf-OtMCM, as we will see, is thus very limited. Figure 3.32 slsaan instance
of TriM that has been converted keOtMCM and one choice of candidates thaOtMCM might take.

A key notion is summarized in the following remark (illuged in Figure 3.33). ..

Remark 3.6.2. Two cycle-vertices bridged by a candidate cannot createa eycle. Three cycle-
vertices linked in a triangle, however, combine to form a egule.
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(a) Three cycles to be (b) One cycle (strong (c) A new cycle (dotted) is
joined by straight black) exists when two created once all three are
operations. are joined. joined.

Figure 3.33: The effect of choosing candidates across sycle

Limitations on Structure

As stated, the structure of feasible solutions that sakisBtMCM is greatly limited by our construction.
We explore these limitations here by viewing our instancé-@tMCM as a graph where the cycle-
vertices inC are the vertices and the edges are dictated by the canditlatebvious way. This is done
so that we can use the termpath cycle andconnected componeirt the expected manner on this meta
graph (the word cycle no longer refers to the cycles in the Hplgunless explicitly noted).

The most important corollary of our construction deals withinherent “directionality”. When
inspecting a solution to ouk-OtMCM instance we can start at a cycle-vertexGinand follow the
candidate from its associated family; from the cycle-vettat we next reach we can follow its candidate
and so forth. Without loss of generality we call this movebwock-wise (and movement in the opposite
direction counter clock-wise); this matches the way we ltrasvn the example in Figure 3.32.

We restate Theorem 3.5.7. ..

Theorem 3.6.3.The number of breakpoint graph cycles in a planar solufonith m elementary cycles
and cc connected components/igc(S) = m + cc (m is the cycle rank of).

The following lemmata refer to properties #fOtMCM instances that have been reduced from
TriM. . ..

Lemma 3.6.4. Any clock-wise path on a connected component in a soluticst tarminate at a cycle.

Proof. If this is not true then there exists a cycle-vertex that teates a clock-wise path. This is a
contradiction because every cycle-vertex has at leastamdidate coming from it and there are a finite
number of cycle-verticeg (| is finite). O

Lemma 3.6.5. Every connected component in a solution must have exaalygyuie.

Proof. A consequence of Lemma 3.6.4 is that every connected componest have at least one cycle.
Assume that there is more than one cycle in a connected canpostarting from a cycle-vertex on
one cycle we must be able to follow a clock-wise path from @mother cycle. This is a contradiction,
however, because the clock-wise degree of any node is 1. O

Lemma 3.6.6. The length of all cycles in a solution must be a multiple of 3.

Proof. By our construction a cycle-vertex f&€ only links to a cycle-vertex fo¥’, a cycle-vertex folt”
only links to a cycle-vertex foZ, and a cycle-vertex foZ only links to a cycle-vertex foX. So every
cycle is a multiple of 3. O

Lemma 3.6.7. All feasible solutions té&-OtMCM must be planar.

Proof. This is a direct consequence of Lemma 3.6.5. O
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Mapping the Solution

We know from Lemma 3.6.5 and Lemma 3.6.6 that the candidaigrasent given by:-OtMCM will
be comprised of connected components with a single cyctetsses length that is a multiple of 3. We
setk = Yo, .

3

Lemma 3.6.8. Withk = %2, k-OtMCM can be satisfied if the candidate assignment is caugrof
only length 3 cycles.

Proof. From Lemmata 3.6.5 and 3.6.6 we know that there exists no conamt of size less than 3. Since
every feasible solution th-OtMCM is planar (Lemma 3.6.7), we know the number of breakipgraph
cycles can be calculated from the number of connected coemperand cycle rank by Theorem 3.6.3.
By Lemma 3.6.5 that formula can be simplified, in our case,&a@fr(S) = 2cc. Since the number
of splits created is related only to the number of connectedponents and the number of connected
components will be maximized when they are all of minimune size know that the maximum number
of splits occurs when a solution is comprised of only lengtty@es. The Lemma follows immediately
from the fact that the greatest number of length 3 cyclesiplasis 'LB' (yielding '%'2 breakpoint graph
cycles). O

Theorem 3.6.9. OtMCM is NP-Hard.

Proof. Itis straightforward to see that by construction, and Len3n6a8,k-OtMCM will give a solution
with disjoint triangles of cycle-vertices if and only if tfeeexists a partition of the vertices for TriM into
disjoint triangles. As previously noted;OtMCM is NP-Hard implies OtMCM is NP-Hard. O

3.6.4 TriM to MtMCM, ERD, OtMRD, and MtMRD

It follows immediately from Theorem 3.6.9 that MtMCM is NPakl. The same reduction can be used
to show OtMRD — and hence, RDD and MtMRD — to be NP-Hard as lamg@hurdles are created
in the breakpoint graph implied by a feasible solution to @Ml We show that any instance with a
feasible solution containing: cycles and some hurdles can be converted into an instankeanycles
and no hurdle (hurdles can be detected in linear time).

Notice that our reduction used only straight operations.traight associated to an element with a
particular sign will be a cross when the element has the digpsign (see Section 3.5.3). For a particular
feasible solution to OtMCM that has bad components, we gaplgichange two straight operations on
the cycle (we know there is one by Lemma 3.6.5) of each bad ooer to a cross. Since this entails
flipping the sign of two elements in the permutation we knoat #gach such component will now have
two elements of opposite sign to the others and hence, wijbloel (see the definition of bad component
in Section 2.1). The number of cycles will remain the same@ime the analogue to Figure 3.33 that
possesses two Cross operations).
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Chapter 4

Reconstructing Ancestors

Suppose that a set of extant species have evolved so thahylegenetic relationship between these
species can be represented by a binary tree. A toy exampiteaiuch phylogenetic tree is in Figure 4.1.
The problem of ancestral reconstruction calls for us tolltigeinternal nodes of this tree with the states
of the genome just prior to each speciation event. In thatioadl approach of Tesler and Pevzner
[88], one of many so-called median permutations is takeretthb ancestor permutation. To this end,
in Section 4.1 we introduce a fast heuristic to speed up amawne the median score of the most
commonly used median algorithm. In Section 4.2 we introdunew and powerful means to accurately
compute ancestral permutations.

4.1 Noninterfering Inversions
(This is joint work with Jijun Tang and William Arndt)

Phylogeneticists have sought to exploit the advantageemé-grder data (no need for reconcilia-
tion of gene trees, very little saturation, existence oé rrents that uniquely characterize some very
old divergences, etc.), but have had to contend with the ¢dghputational complexity of working with
such data. Of particular interest in a phylogenetic coriteitte problem of finding the median of three
genomes, that is, finding a fourth genome that minimizes time sf the pairwise distances between
it and the three given genomes [67]. This problem, while dpéairly easy for aligned sequence data,
is NP-hard for gene-order data [23, 63]. Since phylogenetionstruction based on reconstructing
ancestral states may need to compute such medians repeddstilapproximations or heuristics are
usually needed, although exact methods have done well fall ganomes (from organelles, for in-
stance) [57, 70]. One such heuristic, implemented in thellgosoftware MGR [88], attempts to find a
longest sequence of inversions from one of the three givaorges that, at each step in the sequence,
moves closer to the other two genomes. However, nothingdwlabout the theoretical behavior of this
heuristic and no systematic experimental investigatioitisofisefulness has been conducted. Recently,

(1234).

(1-3-24)/ \ (123-4)
[ ] [ ]
3124 / \ 23-14
( ). ( )

Figure 4.1: A phylogenetic tree. The ancestral (internafenlabels are bold.
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Figure 4.2: The breakpoint gragh(m = (-6 -4 -2 1 -3 -5)).

Arndt and Tang [7] provided significant improvement on thesitistic by considering sets cbmmuting
inversions, that is, inversions that can be arbitrarilyrdeced among themselves without affecting the
end result.

In this section, we show that finding maximum cardinalityssftcommuting inversions is equivalent
to finding maximum independent sets on circle graphs andrsbeaone in low polynomial time—we
give a simple algorithm for this purpose. We also shed lighthe relationship between maximal sets of
noninterfering inversions and independent sets on cin@elgs. We further classify sets of commuting
inversions intanterfering and noninterfering inversions, whemneninterfering inversionare commut-
ing inversions that also make maximal progress (e.g., tdsvarmedian). Finally, we characterize the
relationship of sets of noninterfering inversions to signes and that of signatures to inversion medians.

For most of the section, we show how to analyze single petiootin terms of commuting and
noninterfering inversions; in Section 4.1.4, we show hoexttend the analysis to multiple permutations.

4.1.1 Definitions

In this section we use extensively the fundamental defimgtipom Section 1.2.

Commuting and Noninterfering Inversions

Depicted in Figure 4.2 is the breakpoint graph that we widl f our running example in this section.
Cycle-splitting inversions on this graph are of particufderest to us because, in the absence of hurdles,
they are the inversions that mowene inversion closer to the identity. A set of cycle-spiiftinversions

on a permutationr are commutingif and only if the application of them in any order yield thevsa
permutationr.

Definition 4.1.1. A set ofm inversions onr (with respect tar) is noninterferingif and only if

1. the setis commuting; and
2. applying these inversions in any order mowedoser tor by m inversions.

Example 4.1.2.For 7 = (-6-4-21-3-5) a maximum cardinality set of commuting inversions is
{p(1,1), p(1,4), p(1,5), p(1,6), p(2,3), p(3,3), p(4,4)} while a maximum cardinality set of noninter-

fering inversions i p(1,1), p(1,2), p(1,4), p(4,4)}.

Edit Partial Orders and Inversion Signatures

We informally introduce some notions here that are usedilyeavthe Section 4.2. Recall that adit
scenariois a minimum-length sequence of inversions that twrimto, say,7. Theedit partial order
(EPO), then, is the graph of all edit scenarios betweamdr; the permutations are vertices and edges
link those permutations one inversion away from each othlee intersection of all EPOs from a set of
permutationsP to permutationr is thesignature graphand any vertex (permutation) in this graph is an
inversion signatureSee Definition 4.2.1 for a more formal treatment.
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0 a set of noninterfering inversions of sizeconstitutes a subgraph of the signature graph of size
S t of terf f titut b h of th t h of
>ty (') = 2™. This motivates our use of noninterfering inversions fat fzomputation of inversion

signatures; experiments in Section 4.2 confirm that thidhoukis often faster that other known methods.

Circle Graphs and Permutation Graphs

When a set of chords is drawn so that each endpoint of the diesradn a circle we have ahord
modelof a circle graph. Theircle graphrepresents the intersection of these chords where eaaxvert
corresponds to a chord and each edge corresponds to itiregselwords [36]. For a permutation we can
define apermutation graptas follows. Each vertex is an element of the permutation anebge(u, v)
exists if and only ifv > » andv appears to the left af in the permutation [37]. It is simple to see that
a permutation graph is a circle graph.

4.1.2 Maximum Sets of Commuting Inversions

We now show how to find a maximum cardinality set of commutingeisions efficiently, omitting
proofs due to space limitations. We can interpret the irglafean inversion to be indices of an interval
on a line. Two interval®verlapif and only if they are disjoint or if one is contained insidestother,
and two intervals that share the same endpoint do not ovehtathis way each oriented inversion of
7 could be mapped to an interval yielding a set of intervalmeof which overlap and some of which
may meet at an endpoint.

Lemma 4.1.3. A setC of inversions commute if and only if no two inversions fi@raverlap.

Thus, we have a set of intervals that when projected ontoctegjield a chord model of a circle
graph [40]. Call this circle grapl¥-. See Fig. 4.4(a) for an example of such a graph. It is cledr tha
a maximum independent set 6% corresponds exactly to a maximum independent set of commuti
inversions. With the use of th@(n) algorithms by Bader et al. [8] to build the HP-graph and@h&?)
algorithm of Valiente [89] for maximum independent set ofirele graph, we get the following theorem.

Theorem 4.1.4.A maximum cardinality set of commuting inversions can baddo O(n?) steps.

4.1.3 Maximum Sets of Noninterfering Inversions

In this section we show how to relate the problem of findingtasaoninterfering inversions to finding
an independent set on the union of two circle graphs.

Since a set of noninterfering inversions is also a set of catimg inversions, the constraints 6%
(from Section 4.1.2) will have to be satisfied. Additionahstraints must be introduced to ensure that
the set of commuting inversions that are picked also sorp#renutation, call the graph representing
these constraint&'s. We will see that these intricate interactions can also pbeesented by a circle
graph; first this is shown for a component that can be repteddoy a single cycle in the breakpoint
graph and then is generalized to any permutation.

Single Cycle Components

One important property of commuting inversions is that thgliaation of one inversion can not disturb
the orientation of an inversion it commutes with.

Lemma 4.1.5. Given mutually commutative oriented inversigns, j) and o (k, 1), the application of
(without loss of generality) will either

1. makes span two different cycles or
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2. leaveo oriented.

Proof. Call r ands the reality edges being acted upon dy At least one of- or s will remain intact
after the application op, say it isr. At least one of the vertices incident tanust remain intact, call
it v. There is a pattP from v to awu incident tor that does not include. Note that the adjacencies of
v andw are not affected by and that, because is oriented, ifv is on some side of thenw is on the
same side of. But p can only remove a subpath of the cycle when creating anottobe.cBecause
ando commute, whether the removed subpath is also a subpdathooinot,w andv will remain on the
same sides of their respective reality edges, thus leatimgnversiorno oriented. O

Each oriented inversion will split the cycle into two by swap the affected vertices of the desire
edges being acted upon. Thus, when we embed the cycle onle wigccan represent the action of
an inversion as a cord with its endpoints on those desiresedger two inversions that intersect and
act upon a disjoint set of desire edges we know that applyimgaf them will put the reality edges
acted upon by the other on different cycles; so in this caeegacting chords represent inversions that
interfere.

Finding the interactions between inversions that sharalayedge takes more care however. More
specifically, consider the set of inversions that all shareaity edge as an endpoint and share the
same desire edge. For example the set of inversions that skadity edgd2—,17) is {p(2, 3), p(3, 3),
p(4,4), p(4,5), p(4,6)}, which can be partitioned into inversions that share edge1™) {p(2, 3),
p(3,3)} and those that shafé—, L") {p(4,4), p(4,5), p(4,6)}.

The following lemma describes the structure of the interiee between those that share a desire
edge. First, let us order such a dein two ways. Call the ordering: : I — N that which numbers
inversions from shortest to longest. As stated, the actfanadnversion onG(-) is to swap endpoints
of the two desire edges being acted upon. Because they shartea upon reality and desire edge we
can look at the shared vertexthat will be affected by all inversions ih The orderings : I +— N is
that which numbers inversions by the order in which we visinbnv endpoint, starting at the common
reality edge and proceeding through

Lemma 4.1.6. Take inversions, j € I. i interferes withj if and only ifa(i) > «(j) and

B(i) < B().

(In other words, an inversion interferes with all shortevémsions that appear after it on the cycle.)

Proof. Recall thatv is the shared vertex that will be affected by all inversiamd.i For an inversion
ielandanyj € {k|k eI\ {i}anda(i) > a(k)} with endpointsv andu respectively, we know that
i interferes withj if and only if u ends up on a different cycle tharafter applying:. If we follow the
cycle in the same order used to buifdthe reality edges we visit before encounteringre those that
will be remain on the cycle witlh when it is attached by the new reality edge. So those invesdiaat
act upon such reality edges will remain oriented, and theyeagactly thoseg that haves(j) < (5(7).
The others will respect(i) < 3(j). O

Example 4.1.7.Fig. 4.3(a) shows the graph from Fig. 4.2 embedded on a citcienposes the ordering
on all inversions that share desire ed@¢¢",R™) so thata(p(1,1)) < a(p(1,2)) < a(p(1,4)) <
a(p(1,5)) < a(p(1,6)). We also havei(p(1,6)) < B(p(1,1)) < B(p(1,5)) < B(p(1,2)) <
B(p(1,4)). So forp(1,5) we havea(p(1,5)) > a(p(l,4)) > a(p(1,2)), as well asg(p(1,5)) <
B(p(1,2)) < B(p(1,4)), which tells us thap(1, 5) interferes wittp(1, 2) andp(1,4). Further,a(p(1,5)) <
a(p(1,6)) andB(p(1,5)) > B(p(1,6)) shows thap(1,5) interferes withp(1,6). Fig. 4.3(b) shows the
result of applying inversiom(1, 5) on the graph.

Corollary 4.1.8. The interference relationship between all inversions titon the same desire edge
can be represented by a permutation graph.
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4= 2F

3+
1+ 5t
2( o1 6~
1~ 4+
Lt
67 R~
(a) Chords rep- (b) After applying inversion
resent inversions that will effect p(1,5).

the desire edgés™, R™).

Figure 4.3:G(7 = (-6 -4 -2 1 -3 -5)) embedded on a circle. We see the affectitivatsionp(1, 5) has
on those inversions acting upon the same desire gd@e}) interferes withp(1,2), p(1,4), andp(1,6)
but notp(1,1).

Theorem 4.1.9.Gg can be represented by a circle graph.

Proof. If two inversions both act an a reality edge then apply Cargl¥.1.8. Otherwise, embed the
cycle on a circle and notice that the effect of an inversioto isplit the circle (see Fig. 4.3). Therefore,
a chord model representing the interference between twardions that don't share a reality edge is
obtained by drawing a chord for each inversion between thigyedges it acts upon. O

Fig. 4.4 shows the two circle graphs that represent the @n&t of the HP-graph from Fig. 4.2.
In this caseG¢ is a subgraph ofFs so Go U Gy is a circle graph. A maximum cardinality set of
noninterfering inversion would be represented by the sehofds{AB, AC, AE, DE} (matching that
from Example 4.1.2).
3t 1T 4=, 2°F
3_ — 1_

(a) The chord model fof . (b) The chord model fof7s.
Figure 4.4: The chord models for circle graphs representiagonstraints ot (7 = (-6 -4 -2 1 -3 -5)).

The union of two circle graphs, however, does not necegsggld a circle graph. We handle this
by decomposing the problem into computationally easyaoelte and hard-to-handle subproblems by
using the first of two phases from the polynomial time ciralepi recognition algorithm of Bouchet
[16, 73]. This first phase repeatedly decomposes the grapheljgin decomposition This is done by
finding a partition on the verticdig, andV; (|V1| > 2 and|V>| > 2) so that the set of all edges between
V1 andVs; form a complete bipartite graph. Call the sets of vertices tbompose this complete bipartite
graphVi. C V; andVs. C V5. This subgraph is then replaced by the two graphs inducedkigg
only vertices inV; and V4, and adding a marker vertex to each graph connected tolgnlgnd V5.
respectively.
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Once no such decompoaosition exists (i.e. a subgraph is pansbprd model is found for each sub-
graph in the second phase. If every prime subgraph yielderal chodel, then we can apply the quadratic
algorithm of Valiente[89] to find the maximum independent &fethe circle graph. If only some sub-
graphs yield a chord model, we can handle those indepegdgittl the same algorithm. The computa-
tionally hard-to-handle subgraphs are those that do ntat giehord model. It is on these subgraphs that
we are forced to run a general algorithm for maximum indepahdet. Call this algorithnd/15(-).
Fig. 4.5 shows how a set of vertices is partitioned into cotew component¥; = Vi, U Vi, U Vi
andV, = Vi, U Vo, U Vo WhereVy,, Vo, Vi, andVy, are possibly empty sets. In our setting, the

Figure 4.5: What the chord model of a join decomposition wdabk like if such a chord model exists.

setsVia, Vip, andVi. (resp.Vaq, Vo, andVs.) may not actually yield chord models, but the representa-
tion of Fig. 4.5 is instructive in seeing how the independg2it of such a decomposition interact with
each other. Now when composing solutions of independegataehard-to-handle subgraphs we must
consider two possibilities: either 1) vertices frdf. and V5. are used forM 1.S(V;) and M1S5(V3)
respectively, or 2) vertices from none or only one of the tnowsed. For the later case all vertices from
both independent sets will be in the independent setion G¢. In the former case we can use the
vertices fromV;. or from V5, but not both, so we recursively tedf 7.5(V1, U Vi) + M1S(V3) and
MIS(Va, U Vay) + MIS(V7) and use the larger of the two as the score for the subproblem.

Multiple Cycle Instances

In Section 4.1.3 we show how to represent the constraintscofrgonent that is comprised of a single
HP-cycle. In this section we show how to transform a multgylele component into a single cycle while
appropriately ignoring inversions that are created by tloegss.

In [42], Hannenhalli and Pevzner introduce the notion 6f @)-split where a cycle of length six or
larger is split into two (by adding two vertices) in such a vilagt preserves at least one minimum edit
scenario in the process. Such a change in the graph can leseaped in the corresponding permutation
by a remapping of some vertex labels, this process is callgdtg-padding Here we introduce the
inverse operation to the split, th{e, )-join, which takes two cycles and joins them in such a way that
preserves all edit scenarios. Similarly, the analogue eoptédding is the€d, )-shrink A (d, r)-join
removes the vertices~ andz™ (from two different cycles) for some permutation elemertiong with
reality edgesz—,71) and(xz*,rs), and desire edgele—, d1) and (z ™, d2). After removal, the edges
r = (r1,79) andd = (dy,d,) are created to form a valid HP-gragh(~). It is easy to verify that a
(d, r)-join operation is equivalent to(@, r)-shrink which acts by removing the elemenand renaming
all other elements with magnitude> z to have magnitude — 1 with the same sign. SG(7) = G(r).

Lemma 4.1.10. Apply to permutationr a (d, r)-shrink by removing an element(corresponding to
verticesz~ and ™ from two different cycles) to obtair. The EPO forr will be a subgraph of the
inversion EPO fort andd(r) = d(7).

Proof. The length of the permutation decreases by one but so doesuthber of cycles, therefore
d(m) = d(#). We now show that théd, r)-join of cyclesC; andC, turning G(r) to G() will preserve
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the relative direction between edges. Fix a direction orcifote with reality edgéz—, ) by visiting
r1 beforez~ followed byd;. Conversely, fix a direction on the cycle with edge™, r») by visiting d
beforexz™ followed byrs. Thus, after the application of thd, r)-join the remaining reality edgecan
be visited fromr to r, in a tour continuing tel, andd; from desire edgé. Since the direction for the
new edges is consistent with the direction of the remove@gdfe direction of to reality edges ir’;
and(s is also consistent. So any inversion that acts on egesr;) and(z ™", ) for a edit scenario
on 7 will now act onr for a edit scenario ort. Since(z~,71) and(z™,r,) are on different cycles of
G(m), there can be no oriented inversions done that act on thettthe aame time. O

An important corollary to Lemma 4.1.10 is that all orientaddrsions onr will be preserved. Thus,
we can shrink a multiple cycle component to an “equivalegtie and then run the algorithm ignoring
oriented inversions introduced by the shrinking process.

4.1.4 Handling Multiple Permutations

When improving the MGR heuristic for medians or implementa greedy heuristic for maximum
signature computation, one needs to consider sets of iomershat occur in multiple permutations.
This is done by simply ignoring intervals that don't occura&nted inversions in all permutations,
while merging the constraints on the remainder of the peationis. That is, to find the maximum
independent set of commuting/noninterfering inversionsnany permutations, take the intersection of
the sets of oriented inversions over all permutations andtie above algorithm on the union of the
remaining constraints.

415 Two Notes on Hurdles

There are two places that hurdles complicate our analydie fifst concerns the existence wisafe
oriented inversions, those that make an oriented compameniented. Of course, inversion that are
unsafe on their own are easily identified (one way is to juphaihe inversion and check the component),
thus we simply remove all unsafe inversions from consid@mabefore running our algorithm. 1t is
possible, however, that a set of noninterfering inversians collude to create a hurdle.

Given a permutation that already contains hurdles, we cbalteft with another tough situation.
Suppose every component is a hurdle and that ther@ @rgof them (there exist unoriented components
of size three). There are an exponential number of ways tgentrese hurdles. It is clear that each
combination of merges yields a new set of oriented invessiarthe end, it is not clear as to whether
an exponential search of these combinations in necessaffjceSit to say that hurdles are very rare in
practice, as confirmed by a theorem of Caprara [24, 80].

4.1.6 Experimental Results

We improved the MGR heuristic using maximum independento§etommuting/noninterfering in-
versions. Given three genomés, G, and G3, we define the median score of a genoido be
d(G,G1) + d(G,Gs) + d(G, Gs), whered(G, G;) is the distance between genofeandG;. To find
the genome that minimizes the median score, the new medigr shooses the maximum independent
set of inversions which bringS; closer to bothz, andGs. The algorithm will then iteratively carry on
maximum independent set of inversions in the three genomi@gthe maximum sets are empty. At the
end of this procedure, the three given genomes are transtbtmpotentially three new genomes, and
we report the one with the lowest median score as the resuléstian.

To assess the speed and accuracy of this new solver, we itastetj the the same datasets of Arndt
and Tang [7]. The datasets were generated by assigningehgtidpermutation on the internal node,
and then the three leaves were created by applying reamamgeevents along each edge respectively.
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There are two factors governing the number of events on edgd: éhe number of total evolutionary
events and the tree shape. The total number of events wassiiarige o0 to 140, and three tree shapes
were used: trees with almost equal length edges, i.e., tleeaithree edges ar@ : 1 : 1); trees with
one edge a bit longer than the other two, i.e., of réio 1 : 1); trees with one edge much longer than
the other two, i.e., of rati¢3 : 1 : 1). We compared the new method to Caprara’s median solvert(exac
but slow), MGR and Arndt’s solver. For each combination afapaeters, ten trees were generated and
the average results were reported.

Tables 4.1 and 4.2 show the median score found by each methddlables 4.3 and 4.4 show the
time used by each method. We found from these tables thatetvenmethod not only runs faster than
MGR, but also returns more accurate medians. When the datase difficult ¢ > 120), the new
method is abou20 ~ 30 times faster than MGR. Compared to Arndt's method, the ndwesds about
3 ~ 100 times faster with & ~ 2% sacrifice of accuracy.

We believe with some small amount of extra computation, tei@cy of our new solver can be
further improved. The three new genomes obtained when #retsstops actually form a new instance
of median problem. We applied Caprara’s solver to these sewal{er) median problems for all the
testings and found that the scores were improved for mossocaben- < 100-the median scores are
almost the same as applying Caprara’s solver to the origigian problems. However, fer> 120,
the new median instances were still very difficult and none alale to finish. These results suggest that
a better method should be developed to handle the new mexitamces.

(2:1:1) (2:1:1) (3:1:1)
r=80 r=100 r=80 r=100 r=80 r=100
Score lower bound 86.2 104.2 89.4 105.8 85.7 101.3
Caprara’s median score 87.9 107.6 91.4 109.8 88.0 105.2
Arndt’s median score 88.2 109.5 91.8 111.4 89.1 106.7
MGR median score 90.3 113.7 94.3 116.8 89.8 110.0
New method’s median score  89.1 111.8 92.6 114.1 90.0 108.1

Table 4.1: Comparison of median scores+for 100.

(1:1:2) (2:1:1) (3:1:1)
r=120 r=140 r=120 r=140 r=120 r=140
Score lower bound 116.1 123.5 116.1 122.7 110.3 117.6
Caprara’s median score N/A N/A N/A N/A N/A N/A
Arndt’s median score 125.8 135.3 124.5 134.7 117.9 127.0
MER median score 132.9 143.6 131.4 142.8 123.6 135.1
New method’s median score 127.9 139.5 126.9 138.5 120.6 130.1

Table 4.2: Comparison of median scores/#a¢ 120. N/A indicates a method cannot finish.

4.1.7 Conclusions

There were two algorithms introduced, one that computesxmuen set of commuting inversions and
one that computes a maximum set of noninterfering invessidrhe former has a worst case running
time of O(n?) while the latter runs, under certain detectable conditiom§)(n?) time when the circle
graph recognition algorithm of Spinrad [72] is used. Wharsthconditions aren’t met, we show that the
problem can be decomposed so that only certain subprobleguire exponential work (in the size of
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(1:1:2) (2:1:1) (3:1:1)
r=80 r=100 r=80 r=100 r=80 r=100
Caprara’s time 3.6 12876 57.2 31387 4.3 6908
Arndt’s time 324 551 123 409 1.6 9.3
MGER time 11.2 51.9 11.6 78.2 10.3 35
New method’s time| 3.3 5.3 4.1 8.4 4.6 9.1

Table 4.3: Comparison of running time for< 100 (in seconds).

(2:1:1) (2:1:1) (3:1:1)
r=120 r=140 r=120 r=140 r=120 r=140
Caprara’s time > 172880 | > 172880 | > 172880 | > 172880 | > 172880 | > 172880
Arndt’s time 1485 1187 673 453 30 226
MERtime 271.6 560.1 237.8 626.9 135.3 385.4
New method’s time| 13.8 19.7 11.1 21.3 9.2 12.4

Table 4.4: Comparison of running time fer> 120 (in seconds).

the subproblem). Let us comment that due to the intersestigm described in Section 4.1.4, the more
sequences we are comparing, the sparser the intersectikelysto be. We expect this to contribute to
lower running times in practice.

The work of Arndt et al. [7] has shown that the MGR-style skdr medians can be improved by
the use of a more deliberate choice of inversions during iclsedVe expect the algorithms presented
to continue those improvements to provide fast and accunattod for large genomes. The MGR-
style objective function has also been formalized as a bdarca maximum signature. While we have
shown some relationships of sets of noninterfering ineasito signatures, and signatures to medians,
we show in the next section a direct application of our narieting inversion algorithm to signature
computation.
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4.2 Inversion Signatures

The study of evolution is a study of patterns of change, kaa af conservation, the latter being typically
easier to detect and characterize. Moreover, elementeie@isacross many species were probably
present in their last common ancestor and preserved thiselghtion pressures, so that these conserved
elements probably play a major role in the fithess of the asgas Biologists have long studied patterns
of conservation in DNA sequences: first pairwise sequemagssity in large databases (as in the widely
used FASTA [62] and BLAST [5]), then multiple sequence afigamts and phylogenetic reconstruction,
and finally the reconstruction of ancestral sequences, emuawof enquiry that has seen much activity of
late (see, e.g., [52]). Recently, researchers have algedt® look for characteristic patterns of change
across a collection of species—an example beingltb&riminating subsequence$ Angelovet al. [6].

All of these efforts aim at recovering what one could tegemomic signatures-subsequences that best
characterize the evolutionary history of the given grouprganisms.

As more genomes are fully sequenced, interest in recomisigucomplete ancestral genomes has
grown; Pevzner’s group, for instance, has published eixtelgson the topic in the context of vertebrate
genomes (see, e.g., [18, 17]), as has a group headed by etaasdl Miller [53]. However, while re-
arrangements such as inversions, transpositions, ti@iglos, and others are complex and powerful
operations, our models for them remain poorly parametegrinéen reduced to the simplest case of
uniform distributions. Under such models, reconstructibmancestral genomes for organisms that ex-
hibit significant divergence (in contrast to mammals or exantebrates) remains poor, mostly due to the
enormous number of equally “good” evolutionary scenarity B5]. It is therefore natural to turn once
again to genomic signatures, this time formulated in terfrs r@arrangement (rather than a sequence
evolution) model.

In this section we introduce a measure of similarity definethvieen two genomesith respect to a
third. The key idea is the introduction of the third genome, whitdwes us to take into consideration the
evolutionary paths from the two genomes under study to ting, tthus basing our measure of similarity
on the evolutionary history of the two genomes rather thahgua their current configuration. Naturally,
these evolutionary paths are not unique under current re@ael thus a number of ancestral states can
be reached on the way from the two genomes under study to itldegnome. We call these states
rearrangement signatureand further distinguish those that are farthest from thel ti)gnome (the most
recent, as viewed from the perspective of our two genomesruwstddy) agnaximum rearrangement
signatures Although the concepts introduced here apply to any regaent operation, we study
these signatures under the operation of inversion, the ocomstonly used rearrangement operation in
work to date [58]. We show that maximum signatures carry mofdrmation about ancestral genomes
and that they can often be computed within a reasonable a@mbtime in spite of the very large search
space. We use simulations under a wide variety of condittorghow that the maximum signatures
pinpoint the true ancestral genome, either recoveringtiight or producing one very close to it, and to
show that these signatures can be used to reconstructleghialogenies, all using a polynomial-time
heuristic that runs much faster than a full exhaustive $earc

4.2.1 Notation and Definitions

Remember thatg, 71, ..., 7y forms anedit scenariofrom m to =, if for all 7;, 0 < i < d, we have
d(m;, mi41) = 1; each inversion applied along this path is then deemedditninversion Take each
m; to be a vertex and link two vertices with an edge whenever tieesponding permutations occur
consecutively on an edit scenario. This graph representstiliporder with relation “is part of an edit
scenario from”. We call this thedit partial order, or EPO. We denote the EPO betweep andr,; as
EPOy,(mq) ofr EPO,,(m). So if we havers = (2-1-3) andm = (1 2 3), then an edit scenario between
them might visit permutations, = (-2 -1 -3) andr; = (-2 -1 3) before reaching,. Figure 4.6 shows
the EPOsfor (21-3)and (2 3 1).
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Figure 4.6: The union of the edit partial orders for {(-2 3 1), (2 -1 -3} and7 = (1 2 3). The signature
graph forP is highlighted in bold.

We are interested in the intersection of EPOs, which willdytee desired inversion signatures. For
a set ofk + 1 permutations, one of which is the reference permutatioled¢dahelocus aninversion
signatureis the permutation corresponding to a vertex in the int¢ieof thek EPOs from each of the
otherk permutations to the locus.

Definition 4.2.1. The set of alinversion signaturefr permutationsry, . . ., m; with locusny, is
Sp (1, )=V (EPO,,L (m1) N EPOg, (m2)N---NEPO,, (wk)> , whereV (G) denotes the set
of vertices of graplG.

Whenever the context is unambiguous, we shall simply w&ijtg for Sy, (71, ..., 7). Similarly,
the signature graptonzy, ..., 7 with respect tary, is the graphE PO, (1) N EPOy, (m2) N --- N
EPO, (7). Aninversion signaturer; € S;, is thus a permutation that embodies some of the com-
monality between thé& other permutations with respect4g, in the sense that they all possess an edit
scenarios tory, that passes through,. A maximum signaturés a signature irb;, that is as far away
from 7y, (and thus as close to tliieother permutations) as possible.

Definition 4.2.2. The set of almaximum signaturess Sy = {n, € Sy, |forall 7 € Sy, ,d(np,7s) >
d(mp, )}

A maximum inversion signature is thus a permutation thataggnts the “maximum commonality”
between thé&: permutations: it is as close to thespermutations as possible while still being part of all
edit scenarios ta;,. From a biological perspective, this edit scenarios frogrto the signature can be
thought of as the evolution that happened before specjaiidhe pattern of change that thesequences
have in common.

As with the special case for Steiner points calledrtedlian[68], we find it helpful to name the case
with & + 1 = 3. For this case we have two permutations and=p and an ancestor locus, and we
call S;, (74, 7p) the pairwise maximum signature

In Figure 4.6 we have 4 = (2-1-3), 73 = (-2 3 1), andr, = (1 2 3) (theidentity permutation of
length 3). The signature graph is outlined in bold. The digmees in this case are2 -1-3), (-2-13),

(1 2-3), and the trivial signature;, = (1 2 3). The only maximum signature is also the only maximal
signature {2 -1 -3).

4.2.2 Methods

We begin with an investigation of rearrangement-based mansignatures as defined above, then give
procedures for signature-based phylogenetic and ancestomstruction.

Computing Signatures

Definition 4.2.1 can be restated inductively in terms of edi¢narios that move from the locus,
towards the other permutations, . . . , 7. We say that some permutatiarhas acommon edit inversion
r with respect tary, . . ., 7 if we observel(ry, m;) — d(np,rm) = 1forl <i < k.
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Definition 4.2.3. The locusry, is an inversion signature for permutations, . . . , 7. If permutationr
is an inversion signature andis a common edit inversion with respectitq . . . , 7z, thenrz is also an
inversion signature.

Thus, starting at the locus (which is the smallest possiigleasure), one can enumerate all signha-
tures by repeatedly applying every possible common ed#rgign to the current collection of signatures;
maximal signatures are those signatures for which no cometddrinversion exists and maximum sig-
natures are the largest of these maximal signatures fieefatthest away from the locus). Common edit
inversions form the basis for the MGR algorithm of Bourque &gvzner [17], who used a greedy al-
gorithm that picks a single path by always choosing the comatit inversion that provides the largest
number of common edit inversions at the next step.

The signature space is of course very large. In particdl#reitwo permutations of interest are just
one inversion apart, then the space of all signatures caaugghly the same size as the inversion EPO
between one of the permutations and the locus—and that éxpactation, exponentially large in the
pairwise distance. (However, the complexity of finding a imeat signature is unknown at this time.)
We use the greedy heuristic of MGR to construct maximal gigea and show that it often returns
the maximum signature. It is not optimal, however: consttierpermutationg4 = (-4 1-52-6 3),

g = (-4162-53), andr;, = (12345 6). In the signature graph of Figure 4.2.1, vertibes ¢an
be produced by the greedy heuristic are highlighted, nonehath are a maximum signature.

Noninterfering Independent Sets

We introduced noninterfering sets of inversion in Sectidh &#he concept of noninterfering inversions
extends naturally to our framework with a defined ancestor.

Definition 4.2.4. A set of inversions is mutually noninterferingor =4 and g with locusny, if it is
noninterfering forr;, with respect tar4 and also forr;, with respect tor.

Such mutually noninterfering sets form the basis for anogiieedy algorithm: we repeatedly find
and apply tor;, sets of mutually noninterfering inversions until there aome left. Mutually noninter-
fering sets can be found very quickly, so a greedy algoritaseld on this approach runs very fast. We
use this particular greedy heuristic in our experiments.

Signature-Based Tree Reconstruction

Since signatures are just nodes along evolutionary pditég.dan be used as internal nodes in a process
of phylogenetic reconstruction. We begin with a naive athm to illustrate the basic approach.

The idea is to overlay the EPOs from each of the leayes. . , 7, to the locusr;, and construct atree
representative of the resulting structure. Consider thefskese EPOS) = { EPO,, (m;)|1 < i < k};

Figure 4.7: The signature graph fop=(-41-52 -6 3);r=(-416 2-5 3), andr;,=(1 2345 6).
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our algorithm constructs a tree from the current versio® piteratively choosing a node from pairwise
intersections of graphs i@ and updating) to reflect this choice. Specifically, at iteratign

1. select fromD a vertexr that maximizesi(r, s);

2. if the vertex selected in the previous step belongs torttezsections o4, Pg € O, then create
a node in the tree to be the parent of the subtrees repredgniegd and Pp;

3. inOreplaceEPO,, (r4) andEPO,, (mp) with their intersection.

This algorithm yields a tree without internal node labets;duise EPOs are not closed under intersection,
so that a node in the tree may represent two graphs €dirat no longer have a least upper bound.

Our second algorithm overcomes this problem; in additipyieids implicit edit scenarios from the
leaves to the root that join at the internal nodes. In thisrowed version, we maintain the invariant that
elements o) are always EPOs. Thus only the third step of the iteratioffésted, and replaced by the
following:

e in OreplaceEPO;, (m4) andEPO,, (mp) wWith EPO, (7).

Step 1 in each iteration is obviously the computationaltgmsive one; our implementation for this step
uses the MGR heuristic.

DistanceBased Bound on Signature Size

We develop an upper bound based on pairwise distances tasiei@luate our greedy signature methods
in the experimental phase. Denote Ayresp.B, the inversion distance between the locus apdresp.
mp, and by D the inversion distance betweery andng. (Inversions distances can be computed in
linear time [9].) Now consider some arbitrary signatugefor this triple and denote its size, or distance
from the locus, by; Figure 4.8 depicts the situation. As all distances arediditinces, we can write
A —a = B —band, by the triangle inequality, + b > D; combining the two, we get

GZL?—?

with the symmetric version far. Without loss of generality, assurae> B; then we get

d(ﬂL,Ws)ICSA—(

D—i—A—B)
2 b

the desired upper bound.

TA

TL

Figure 4.8: The distances around a signattye
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4.2.3 Results and Discussion

We demonstrate the use of pairwise inversion signaturearfoestral reconstruction and for phyloge-
netic reconstruction through extensive simulations. W §how that, under certain reasonable condi-
tions, maximum signatures coincide with ancestral genanees of the time, then proceed to show that,
under more stringent conditions, maximum signatures aveayncide with ancestral genomes. Since
no polynomial-time algorithm for computing maximum sigmats is known at present, we show that
our heuristics perform well, both in terms of accuracy anghing time, even when applied to larger
genomes (to the size of small prokaryotic genome). Finaléyshow that the signature method use for
phylogenetic reconstruction produces trees comparaldgiafity to neighbor-joining while providing
ancestral reconstructions along the way.

Maximum Signatures as Ancestral Genomes

Our experiments for ancestral reconstruction simply uptets of genomes generated from an ancestral
genome by generating three evolutionary paths, using ratydohosen inversions. The locations of
these inversions is distributed uniformly at random, beirtlkengths are distributed according to one of
two possible distributions: uniform and normal. The lersgtfithe edges from the ancestor to the three
leaves are chosen in both a balanced manner and severaldskemaers. All of our experiments used
1,000 repetitions unless stated otherwise and the resekgpted show averages over these 1,000 tests.

We present most of our results in the form of tables. Tablesrdugh 6 group columns by the
percentage of the length of the longest simulated gatin the triplet. For instance, column two of
Table 4.5 shows the percentage of true ancestors that an@wit5 x |P| inversions away from a
maximum signature (in this case, no more than one inversi@y &#ecauseéP| is no greater thas for
any row of column two). The rows in these cases are labeletidgdge length as a percentage of the
genome size.

The first set of tables apply to triplets where all edges hagesame length (that is, the same number
of random inversions). Table 4.5, for normally distribuiadersion lengths, shows that the simulated
ancestor is a maximum signature most of the time, even wheretblutionary rates are extremely
high. When the rates are already high 10% of the genome si2é,d the true ancestral genomes are
maximum signatures. The table also shows that (the lastdws aside) the true ancestor is within 2
inversions from a maximum signature more than 90% of the.tifable 4.6 shows similar, but slightly
weaker results for uniformly distributed inversion lergth

The next set of tables examines the influence of the size oj¢heme. Table 4.7 shows that the
accuracy scales well. In addition, we tested genomes ofl€i@ethe results are shown in Table 4.8.

Table 4.5: Percentage of the time that the true ancestor iax@mm signature, under normally dis-
tributed inversion lengths on genomes of size- 30.

# of ops as % of | P|
% of n 0 <15% <20% <50%
10 97 97 97 100
15 93 93 93 100
20 84 84 93 100
25 78 88 88 100
29 68 83 93 100
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Table 4.6: Percentage of the time that the true ancestor igx@mm signature, under uniformly dis-
tributed inversion lengths on genomes of size: 30.

# of ops as % of | P|
% of n 0 <15% <20% <50%
10 94 94 94 99
15 87 87 87 100
20 69 69 84 100
25 53 73 73 100
29 36 58 77 100

Table 4.7: Percentage of the time that the true ancestor iaximmm signature as a function of the
genome size, for simulated edge lengths efx 0.1.

% of | P|
n | 0 <15% <20% <50%
30| 97 97 97 100
3596 96 96 100
40 || 95 95 95 100
45 | 95 95 95 100
50|94 94 98 100
551 95 95 98 100
6091 91 97 100
65 || 93 93 98 100
70191 96 96 100
75| 86 92 92 100

Table 4.8: Percentage of the time the true ancestor is a noaxigignature, under normally distributed
inversion lengths on genomes of size= 100.

# of ops as % of | P|
% ofn 0 <5% <10% <15% <20% <50%
5 95 95 95 95 99 100
8 91 91 91 97 99 100
10 90 90 100 100 100 100
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Table 4.9: Percentage of the time that the true ancestor exaimm (method 1) or maximal (methods
2 and 3) signature, under normally distributed inversiorgths on genomes of size= 30. Method 1
finds a maximum signature by exhaustive search; method Zhseseedy Bourque-like approach; and
method 3 uses the approach based on maximum sets of noeiirtgrinversions.

# of ops as % of | P|

%ofn | Method|| 0 <15% <20% <50%
1 97 97 97 100

10 2 97 97 97 100

3 96 96 96 99

1 93 93 93 100

15 2 93 93 93 100

3 89 89 89 100

1 84 84 93 100

20 2 83 83 92 100

3 76 76 85 100

1 78 88 88 100

25 2 76 86 86 100

3 67 77 77 100

1 68 83 93 100

29 2 66 81 89 100

3 57 69 76 100

Computing Maximal Signatures

The exhaustive algorithm rapidly reaches its limits: fongmes of size 100 with edge lengths of 10,
computations already take on the order of hours instead wofites. Table 4.8 shows favorable results
for exhaustive computation of maximum signatures on suctomes. We now proceed to compare
these results with those of our new maximal signature dlyos. Under most circumstances, the true
ancestor is found by such maximal signature computations.

Table 4.9 shows that the Bourque-like approach and the appiomased on noninterfering inversions
fare well with respect to the exhaustive search, the lat@puing off first. Table 4.10 shows results for
the two greedy methods on genomes of Si2@. For reasonable rates of evolution (10% or less per
edge), we again see that the true ancestor is found most tifrthe

Finally, we tested on genomes of more realistic sizes, batside usually considered forbidding for
ancestral inference—up to 1,000 genes. With 50 random epentedge the Bourque-like computations
take just under 30 minutes, while for 80 random events thiey teader 2 hours. The accuracy remains
very high: in 99% of the 380 trials with 50 random events pegeedhe signature returned is within
5 inversions of the true ancestor, while in 66% of thesedritlle signature returned is in fact the true
ancestor. The approach based on noninterfering inverssobyg far the fastest, taking under a half a
minute for each of these trials, even with 80 random eventegge. Using 50 random inversions per
edge, we found that 97% of the 1000 trials gave an ancestbinabt inversions of the true ancestor,
while 57% gave the true ancestor. With 80 events per edge g@l&an ancestor within 8 inversions of
the true ancestor, while 15% gave the true ancestor.

The largest genomes we tested had size 2000 (corresporaismgall bacterial genomes, for in-
stance) and 100 operations per edge, and 5000 (correspotwdihe genomes of free-living bacteria
such as E. coli) with 250 operations per edge. All trials gawsgnature within 10 inversions of the
true ancestor, while 90% gave one within 4 inversions, alhimg in under 2 minutes per trial for size
2000 and 4 minutes per trial for size 5000. These speeds armeusly higher than methods such as
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Table 4.10: Percentage of the time that the true ancestomiaxdmal signature, under normally dis-
tributed inversion lengths on genomes of size 100. Method 2 uses the greedy Bourque-like approach
while method 3 uses the approach based on maximum sets ottedearing inversions.

# of ops as % of | P|

% of n Method|| 0 <5% <10% <15% <20% <50%
5 2 95 95 95 95 99 100

3 94 94 94 94 98 100

8 2 90 90 90 97 99 100

3 86 86 86 92 94 100

10 2 85 85 94 97 100 100

3 7777 85 87 98 100

15 2 68 68 92 98 100 100

3 54 54 73 90 98 100

20 2 43 63 89 98 100 100

3 28 41 74 90 98 100

Table 4.11: Percentage of the time that the true ancestomaximal signature, under normally dis-
tributed inversion lengths on genomes of size- 50. Edge length$ (to a child) and- (to an ancestor)
vary from 5 to2a while a = 5 (number of inversions to the other child). Each entry shdwesixhaustive
method to the left of the Bourque-like method.

c
b 5 7 10 12
5194 94,92 91|87 87|- 82
7190 90|88 88|82 82| - 79

10|/ 88 88|84 83|80 80|- 73

1218 8683 83| — 76— 66

MGR or median-based reconstructions, yet the accuracgdsmalich higher. Thus, by focusing on the
characteristic (shared) patterns of inversions, we are t@blvin on two fronts at once, mostly because
we avoid the confusion and long explorations associatel mviiltiple reconverging paths.

Skewed Trees

The true ancestor will not always be equidistant from thedsaand the locus. While large amounts
of skew can sometimes move an ancestor farther from a maxisigmature, the true ancestor usually
remains very close to a maximum signature.

We call the number of random inversions from the locus to the ancestor and the humber of
random inversions from the true ancestor to each of the $saamdb. We fix a to be 10% of the total
length and vary: andb from values equal ta up to 2.5 times:. Table 4.11 shows that for genomes of
size50, the true ancestor is a maximum signature in most cases andlthost as often it is a maximal
signature found by the Bourque-like greedy method. Our mari signature method appears slightly
more robust to skew on one of the child branches as opposé@woa the branch to the locus.

Tree Reconstruction

We simulated evolution over 300 trees to test our signabased tree reconstruction method. We found
that our method (using the Bourque-like signatures foriefficy) reconstructs the true topology most of
the time and that any error remains very small. The trees wanstructed using the birth-death model
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Figure 4.9: The size of the generated trees.

and the mean of the normally distributed edge lengths wasd/énom 5 to 9 operations with a standard
deviation varying from 2 to 3. The mean of the normally dizited inversion lengths was varied from
8 to 30 with a standard deviations varying from 5 to 10. Theegated trees have from 5 to 24 taxa and
are distributed as shown in Figure 4.9.

Two methods were used for choosing a locus. The first methed e true root of the tree given
by the simulation (an ideal method not available in practafecourse), while the second method used
a random leaf as the locus. With the true root as the locus,owedf that 94% of the trees were re-
constructed perfectly, while 16 of the 17 remaining treed &adRobinson-Foulds error of 2, giving an
average RF error of 0.15. With a random leaf as the locus, weddhat 85% of the trees were recon-
structed perfectly, while 28 of the 45 remaining trees ha&Bkrerror of 2 and 11 of the last 27 had an
RF error of 4, giving an average RF error of 0.5.

Using the true root as the locus demonstrates that the [s@rsignature contain a great deal of
information about the phylogeny. Using a random leaf asdbad demonstrates that such information
remains recoverable even when the choice of locus is anpifeend usually far from ideal), justifying
our initial claim that comparing two genomes with resped third tremendously enriches what can be
had from a direct pairwise comparison. (As an example, titegtswere not properly reconstructed by
the neighbor-joining method, which uses strictly pairnésenparisons, were commonly reconstructed
correctly by our signature-based method.) Our tests folgg@netic reconstruction are obviously of
limited scope, meant to exemplify the usefulness of the otkthther than provide a full evaluation; and
the method itself is subject to many obvious improvemengsi€b ways to choose a locus, usingvay
signatures rather than pairwise ones to support a top-deesnstruction method, etc.)

Tightness of the Upper Bound

Finally, we present experimental results suggesting tbaupper bound is on average very tight and
then use the bound to show that the greedy signatures, usaddestral reconstruction of genomes too
large for the exhaustive computation, are indeed close t@dmum signature. Since the computed
ancestor is bracketed within this bound, our results imipat the maximum signature is very close to
the true ancestor with high probability.

The upper bound was computed for each trial in Table 4.5. Boh @f the sets of 1000 trials,
the average difference between the upper bound and the miaxsignature was 0.029, 0.073, 0.176,
0.27, and 0.327 for trials with 10, 15, 20, 25, and 29 percespectively. For the length-dependent
data from Table 4.7, the average difference stays betw@®21 @nd 0.082. Table 4.12 indicates similar
performance for experiments run on skewed triplets. Ths fesm Table 4.10 give average differences
from 0.024 up to 1.375 for the Bourque-like method and déffeses from 0.048 up to 2.228 for the
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Table 4.12: The average difference between the upper bowhtha computed signatures with normally
distributed inversion lengths and genomes of size- 50. Edge lengths (to a child) andc (to an
ancestor) vary from 5 tBa while a = 5 (number of inversions to the other child). Each entry shdwes t
exhaustive method to the left of the Bourque-like method.

C

b 5 7 10 12

5 || 0.053 0.053| 0.080 0.081] 0.138 0.143 — 0.176
7 || 0.106 0.106| 0.114 0.114] 0.173 0.173) — 0.224
10 || 0.097 0.098 0.165 0.167| 0.203 0.203] — 0.290
12|/ 0.131 0.132] 0.158 0.158 - 0.279| — 0.359

noninterfering inversions method. Only 1 of the tests froam@mes of size 1000 did not match the
upper bound for the greedy method.

4.2.4 Conclusions

In any study of evolutionary changes, the challenge is ttingjgish global patterns from a background
of many local changes—or, to put it another way, to find comatibes among many equally plausible
evolutionary paths that lead to the same modern organism.haVe proposed an approach to this
problem that focuses on intermediate states along sucls patthe setting of a speciation event and
seeks to return the last (most recent) states from which dqmetbies of organisms could still have been
derived. This approach offers multiple benefits: the foausntermediate states translates readily into
one on ancestral reconstruction; the study of paths goiraygin a fork (the speciation event) stresses
the role of evolutionary history rather than just final stand the search for the most recent states that
are part of the fork naturally separates common evolutipohanges (prior to the fork) from individual
variations (subsequent to the fork). Although finding suignatures appears hard, we gave an efficient
heuristic that does very well through an extensive rangdrmfilations. Our signatures are based on
inversions, since inversions are the best studied of thewsgenomic rearrangements to date, but the
concept readily extends to any other rearrangement operatifamily of such operations.
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Chapter 5

Sorting By Inversions in O(n logn) Time

(This is joint work with Vaibhav Rajan and Yu Lin)

In 1992 Sankoff posed two fundamental questions aboutsises: given two signed permutations,
what is the smallest number of inversions required to tansfone permutation into the other and what
is a scenario of inversions implementing this transfororaft5]. The first problem is thus to compute
an edit distance, where the edit operation is the invergiom;second is to return an edit scenario—a
problem usually known as “sorting,” since a simple re-indgxcan turn one of the permutations into
the identity. Many years of work were needed to ascertairctimplexity of each of these problems.
The breakthrough came in 1995, when Hannenhalli and Peyzoeided a polynomial-time algorithm
to solve both problems. (In contrast, in 1997, Caprara [2®jxed that both problems were NP-hard
if phrased in terms of unsigned permutations.) The runnimg for both problems has been steadily
reduced over the years. In 2001, Bader et. al. gave an opiimeal-time algorithm to compute the edit
distance [8]; and in 2004, Tannier and Sagot, building onathek of Kaplan and Verbin [46], gave an
O(n+/nlogn) algorithm to produce a sorting scenario. Remaining openttasjuestion of whether
signed permutations can be sorted by inversior@(inlog n) time.

In this chapter, we give a qualified positive answer to thissjon by describing two new algorithms
for sorting signed permutations by inversions. The firstiaralomized algorithm that runs in guaran-
teedO(n log n) time, but may fail; successive restarts reduce the prababil failure, but we cannot
guarantee that every permutation will be sorted with higbbpbility with a finite number of restarts,
so that it is not a true Las Vegas algorithm. (Indeed, we gifaaly of permutations that cannot be
sorted by this algorithm regardless of the number of res)athe other is a deterministic algorithm that
always sorts the permutation and rungifn logn + kn) time, wherek is the number of successive
“corrections” (detailed in Section 5.4) that must be apphe value, incidentally, that appears not to be
related to the edit distance, although it is bounded by it.gMe a family of permutations for which
is ©(n) (the worst case value fdf) and thus for which our sorting algorithm will run in quadeaime.
However, we present the results of very extensive expetatien showing that the expected value and
the standard deviation @f are small constants (less than 1), independent eb that the running time
of the algorithm is, with high probabilityp) (n log n). Thus we conclude (but do not prove) that almost
all permutations can be sorted in optind(n log n) time.

5.1 Preliminaries
In this chapter we assume that every permutation efements is framed by elemerit@ndn + 1. In
this way we consider each permutation to be linear, notiag ¢ach linear permutation corresponds to

n+1 circular permutations (of length+ 1), which are equivalent in terms of the scenarios of inversio
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used to sort them. Thepanof an inversiorp(i, j) is the closed interval on the natural numbggrg| and
two spangsi, j| and[k, [] overlapif and only if eitheri < k andk < jork <iandj < .

We remind you that two adjacent elementsandm; 1 for 0 < i < n + 1, form anadjacency An
adjacency is amon-breakpointf and only if we haver;; — m; = 1, otherwise it is éreakpoint An
oriented pair (m;,7;), in a permutation is a pair of integers with opposite signshshatr; + 7; =
+1. The inversion induced by an oriented pgir, 7;), called anoriented inversionis p(i, j — 1) for
m;+7; = +1,andp(i + 1, j) for m; 4+ m; = —1. An oriented inversion always creates a non-breakpoint;
we say that ithealsthe breakpoint (or breakpoints—there could be two) to whighelements of the
oriented pair belonged before the inversion.

We refer you to Definition 2.1.2 of rmamed common intervgFCl), and the paragraph following
that for definitions ofgood andbad componentsAn inversion is said to bensafeif it creates a bad
component, otherwise it safe

A permutation ispositive if it is not the identity permutation and every element isifios. A
positive permutation indicates the existence of at leastb@d component. Any permutation containing
bad components can be transformed to another permuta@ébmdies not contain any bad component
in linear time [8]. Thus, in the algorithms we describe, wsuamse that the input permutation does not
contain any bad components.

5.2 Background: Data Structures for Permutations

To implement an algorithm for sorting by inversions, we naethta structure for handling permutations
that supports two basic operations: (i) choose an oriemggtsion, and (ii) perform an inversion.

We now describe the data structure of Kaplan and Verbin [4&] stores a permutation in linear
space and allows us to perform an inversion in logarithmmieti The structure is a splay tree, in which
the nodes are ordered by the indices of the permutation, avithadditional flag maintained at each
node.

To perform an inversiop(i, j) between (and including) indicesandj, indexi — 1 is splayed and
the right subtree of the root is split from the root yieldindgpeesl-; and7x; whereT.; (1%;) contains
all elements with indices less than (greater than or eqyal tdext, index;j is splayed iril>; and again
the right subtree is split from its root yielding subtrégs, andT%.; whereT, ; contains all elements
with indices greater thaj andT,.., contains the elements of the permutation that have to besede
Finally, there are three subtre€s,;, T, andTs ;. Now, actually reversing the elements’p., can
take ©(n) time since©(n) elements could be reversed in a single inversion. To achagerithmic
time complexity a lazy approach is takentezersedlag is maintained in each node, which if turned on
indicates that the subtree rooted at the node is reversesindtead of immediately reversing a subtree,
we just set its reversed flag. During an inversion the reditag of the root ofl’,..,, is flipped andl’; is
joined toT;., to getT<;. This is achieved by making;.., the right child of the root of;, which still
contains the element at indéx 1, yielding the tred/< ;. T, is then joined td. ; by splayingj in T},
after whichT, ; is made the right child of the root daf<;, yielding the final tree which represents the
permutation after the inversion. Since the only operatiat takes more than constant time is the splay
and since splaying takes amortized logarithmic time [7ALheinversion takes amortized logarithmic
time.

A tree could have several reversed flags, but the invariaimteiaed is that an in-order traversal
modified by the reversed flags yields the permutation. Sodd tiee permutation one would traverse a
reversed subtree in reverse order while flipping signs ohelds read. Nested reversed flags cancel in
the sense that a reversed flag on a node within a reverse@asuintiplies that the inner subtree (rooted
at that node) is not reversed. Thus, a subtree rooted at aisoeleersed if and only if there is an odd
number of reversed flags in the path from the root to the naaduging the node).

When a scenario of inversions is performed, reversed flaggeanested to arbitrarily deep levels.
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We can push the flag down a traversed path in the tree, by fighim sign of the element in the node,
exchanging the left and right subtrees, and flipping thersmgeflags in both children. The reversed flag
of a leaf is cleared by just flipping its sign. Pushing down g tizkes constant time per node so the
logarithmic time complexity of splaying is maintained. Bygling down the flags in the splay path we
ensure that the three subtrees creaied,(7;.., andT ;) reflect the changes made in all the previous
inversions.

This is exactly the data structure described in [46]; it camdle a scenario of inversions in
O(dlogn) time. The data structure maintains only the state of the petion at each step (in a lazy
way). However it does not maintain information about omehpairs, nor could it do so efficiently, as a
single inversion could change the orientatioredh) pairs. Indeed, using this data structure to maintain
the information necessary to choose an oriented invergieach step would increase the running time
by a factor ofn.

To overcome this problem both Kaplan and Verbin [46], angrl@nnier and Sagot [87], used a two-
level version of the data structure in which a permutatiostased in linear blocks of siz@(/nlogn)
each. Corresponding to each block is a splay tree that niradnitaformation about all oriented pairs
(mi, ;) such that eitherr; or 7 is in the block. Performing an inversion while maintainimgormation
about all oriented pairs take3(y/nlogn) time and choosing an inversion at each sorting step takes
O(log n) time, so that the total time complexity of their algorithrs€Ji(n+/n logn).

In order to run inD(n log n) time, these algorithms need to be able to choose an oriemtecsion in
logarithmic time and thus information to identify such irsiens must also be maintained in logarithmic
time through an inversion.

5.3 Our Algorithm

Instead of addressing the data structure (by designing adadéavstructure that can somehow process
O(n) new pair orientations in logarithmic time), we address the guestion of identifying an oriented
inversion. Our key contribution is that we need not maintaformation abougll oriented inversions
for every permutation at each sorting step—a couple sufficedst cases.

5.3.1 MAX inversions

Definition 5.3.1. Let (;, 7;) be an oriented pair in a permutation and tet be the negative element in
the pair. The oriented inversion corresponding(ig, ;) is a MAX inversion if 7; has the maximum
value of all negative elements in the permutation. The pajrz;) is called theMAX pair of the
permutation.

For example the MAX inversion in the permutatioh5-3 1-6 2-7) is p(4, 6), corresponding to
the oriented paif2, -3), and the MAX inversion in the permutatidd 3 -1-4) is p(1, 3), corresponding
to the oriented paif0, -1). We maintain information about only the MAX inversions irftiata structure
and correspondingly perform a MAX inversion in each sorstgp. The result is algorithm MAX.
Algorithm 1 MAX

1: while there exists a negative element in the permutation
2:  Find index of maximum negative element

3:  Find index ofr; = |7;| — 1.

4:  Perform inversion corresponding to oriented faif, ;).
5: end while

Because any permutation that contains a negative elematdine a MAX inversion and because any
scenario of oriented safe inversions is optimal [42], we @amclude as follows.
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Lemma 5.3.2. In the absence of unsafe MAX inversions at any sorting stgprithm MAX produces
an optimal sorting scenario.

Algorithm MAX fails to sort only when it is “stuck” at an allgsitive permutation that is not the
identity, which happens when a MAX inversion was unsafe. (@&l with unsafe inversions in the next
section.) The same arguments hatdtatis mutandisf we choose an oriented pair with the minimum
negative element, yielding another algorithm, algorithdiNMCombining the two strategies and picking
one at random at each step gives us a randomized algoritigoritaim RAND.

Algorithm 2 RAND
while there exists a negative element in the permutadion
randomly select either MAX or MIN
if MAX then
Find index of maximum negative element
Find index ofr; = |7;| — 1.
Perform inversion corresponding to oriented faif, 7).
else ifMIN then
Find index of minimum negative elemen.
Find index ofr; = |7 | + 1.
Perform inversion corresponding to oriented gaif, ;).
end if
end while

5.3.2 Maintaining information through an inversion

We now show how to maintain information about the maximumatigg element of a permutation
through an inversion using the splay tree data structure.d®geribe the process for MAX, but the
obvious analog works for MIN.

Let the maximum negative element of a subtieed X,,.,, be the element in the subtree that has the
maximum value among all negative elements in the subtree.nfihimum positive elemenf\/ I N,,,,
of a subtree is defined similarly. These values are storedéh aeode of the splay tree. Note that the
M AX,., of the root node is the maximum negative element of the peatiom, that is, the negative
element of the MAX pair of the permutation. TA¢AX,,., of a node is the maximum of the following
three: theM AX,,., of the left subtree, thé/ AX,,, of the right subtree, and the element in the node
if the element is negative. Also notice that whenever thensad flag of a node is turned oW, A X,
and M IN,,s are swapped. Therefore pushing down a reversed flag appigeswap to the children,
unless there is a cancellation of flags.

A splay operation performs a series of rotations based osttheture of the tree and the index being
gueried. Each rotation changes at most three edges of aatedraubtree while maintaining the binary
search tree propertyd AX,,., can be recalculated for only the subtree that is affectedaRthat to
perform an inversiom(i, j) the splay tree is split into three subtrees which are regbafter the reversed
flag has been set for one of the trees. The valug/of.X,,., can be kept for each of the subtrees in the
process by simply checking the children of the root aftehesmeration.

By maintaining the\/ AX,,., values in this fashion, one can maintain the invariant thedf AX,,.,
of the root node is the maximum negative element of the pextiomt through any scenario of inversions.
Since calculatingV/ AX,,., takesO(1) time per node, these modifications do not alter the time com-
plexity of the data structure.

Lemma 5.3.3. For any (signed) permutation of size there exists a data structure that handles an
inversion inO(log n) time while maintaining information about the maximum nigatlement of the
permutation.
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5.3.3 Finding the MAX pair

We now describe how to obtain the elements of the MAX pair iraqutation using the modified data
structure described above.

First the maximum negative element of the permutation iatkxt. If the element in a node is not
equal to theM AX,,., of the node then/ AX,,., of the node lies in either the left subtree or the right
subtree of the node. Therefore starting at the root one catogo the tree looking for the maximum
negative element. Reversed flags must be pushed down alemmath to ensure that/ AX,,., values
are updated and the correct path is followed.

To find the second element of the MAX pair, a lookup vector ahters (ofn elements) maps each
element to the node that contains the element. These poiitarot change throughout the computation
and enable constant-time lookup of the node containingebersl element of the MAX pair.

5.3.4 Finding the indices of the MAX inversion

In absence of reversed flags, the indices of the MAX inversemmbe obtained directly from the current
location of the nodes corresponding to the MAX pair. Howegthex presence of a reversed flag indicates
nodes that have outdated indices, forcing additional woretrieve the correct indices.

The index of a node (with respect to the current state of thepition) can be calculated using the
index of the parent node and the sizes of the left and rightrse. Thus the current index of a node
can be calculated whenever the reversed flag is pushed downitfr The size of the subtree rooted at
a node is easily maintained. If the node is a right child, titeindex is one more than the sum of its
parent’s index and the size of the left subtree. If the nodelédt child, then its index is one less than
the difference of its parent’s index and the size of the righitree. The index of the root is just the size
of its left subtree. Thus starting at the root, as the revkfisgis are pushed down along any path in the
tree, the current indices can be calculated.

As one traverses the tree from the root searching for themmaxi negative element, the indices are
recalculated. After the node corresponding to the secosmieait in the MAX pair is found using the
lookup vector, its updated index can be retrieved by trangrgp to the root (using parent pointers) and
returning down the same path, pushing down the reverseddtatysecalculating indices at each node.

5.3.5 Putting it all together

The previous subsections detail all the steps for perfagnairMAX inversion. The time complexity
of each of these steps is easy to analyze. Pushing down teeseelflag take6)(1) time per node.
Thus, finding the maximum negative element and its updataelxinakesO(logn) time. Finding the
other element of the MAX pair take3(1) time and obtaining its updated index tak@glog n) time.
Therefore the complexity of finding the two indices (st@@nd3 in algorithm MAX) is O(log n). For
each inversion, maintainingy/ AX,,.y, M INpos, MINyeq, andM AX,, in the nodes take®(1) time
during split and join operations, aii( 1) time for each rotation in the two splays. Therefore perfoigni
the inversion in steg of algorithm MAX takesO(log n) time. So we have proved:

Theorem 5.3.4. For any signed permutation of size a data structure exists that

e allows checking whether there exists an oriented inversian(1) time,

e allows performing a MAX (or MIN) inversion, while maintaigi the permutation, irD(logn)
time,

e and is of size)(n).
Theorem 5.3.5. In the absence of unsafe inversions at any sorting stepyithgo MAX produces an
optimal sorting scenario il (n log n) time.
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5.4 Bypassing Bad Components

We saw that algorithms MAX and RAND can get stuck at a posjeemutation by choosing an unsafe
inversion. We offer two strategies for recovery.

5.4.1 Randomized restarts

For algorithm RAND we can simply restart the computationihgphat a better outcome is met in
the next run. Indeed, the experiments from Section 5.5 shaiy for most permutations, this simple
approach suffices. However, this approach cannot alwaysgmrmutation as there exists a family of
permutations that it cannot handle. For instance, take ¢n@ytation (3 $4-2): both MAX and MIN
inversions are unsafe because they yield the same posdiveupation (3 1 2 4); this small example can
be extended to any length by appending the requisite nunilparsitive elements.

5.4.2 Recovering from an unsafe inversion: Tannier and Sags approach

Tannier and Sagot [87] introduced a powerful approach fdlirign unsafe inversions and augmenting
the sorting scenario till it is optimal. They noticed thaisicomputationally difficult to detect an unsafe
inversion as it is applied; but it is of course trivial to findtdhat one has occurred when the process is
stuck at a positive permutation. Their approach is thostmortem their algorithm traces the sorting
process back to the most recent unsafe inversion and ingertsr more oriented inversions before the
unsafe one without invalidating the already computed siegis (this ensures that the sorting scenario
grows in every trace-back phase.) After the trace-backsdhiing process continues from the state of the
permutation just before the unsafe inversion. The new #was that are inserted are chosen such that
the bad component created by the previous unsafe invessiumlonger created and so, the (previously)
unsafe inversion and all the inversions that followed it barapplied again.

They use theoverlap graph[45] to keep track of the remaining breakpoints (and whetirenot
they are oriented). Using the overlap graph they can find thst mecent unsafe inversion, find and
insert more inversions before the unsafe one, and contiotmg without invalidating the inversions
that have been applied after the most recent unsafe inndi&1d. However, the process may have to be
repeated, as, even after augmenting the sorting scertagioatgorithm may again get stuck at a positive
permutation.

5.4.3 Recovering from an unsafe inversion: Our approach

We use a similar idea, but do not maintain the full overlagpbraas it is too expensive to maintain.
Denote byp; the first positive permutation at which the algorithm getscktand byp; the i*" such
positive permutation. Recovering from a positive perniatep; involves three steps: finding the most
recent unsafe inversiom;, finding and inserting two new oriented inversions befereand appending
inversions without invalidating those oriented inversidhat had been applied aftey. We describe
each of these steps in turn.

Finding the most recent unsafe inversion:

In the trace-back phase, startingpatwe undo the inversions that have been done so far in order to
find the most recent unsafe inversipn Thus, each inversion undone joins two cycles and an unsafe
inversion is an inversion that, when undone, creates a gowghonent from bad component(s). Denote
by 7 - S andr - p the result of applying the inversions from the scenario @éisionsS and the single
inversionp to the permutationr, respectively.Undoingthe inversionp in 7 - p refers to performing

onm - p which yieldsz, and undoing the inversiorts = p1, po, ..., p, in 7 - S refers to performing the
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inversions ofS in the reverse order which yields- S - S~! = 7. The scenario of inversions on input
permutationt that results in the positive permutatippis denoted bys;, sop; = 7 - S;. Let B(r) be
the set of bad components in permutation

Remark 5.4.1. When undoing inversions frof}, the most recent unsafe inversipnis the first inver-
sion met that turns an element Bfp;) from bad to good.

Findingu; is not trivial because framed intervals can be nested. Fongle the positive permutation
(23674589 101) has two components: the one framed by thécitfiphme elements 0 and 11, and
the nested component framed by the elements 3 and 8. Undwéniguersionp(2,7) will leave both
bad components intact despite the fact that it occurs witterframe elements of the larger component.
Thus, in the trace-back phas&2, 7) cannot be an unsafe inversion. However, undoing the irvessi
w(5,7) and u(4,5) will make the inner component good and so these two invessibad they been
the most recent inversion performed, would have also besafenThe following remark characterizes
undoing an unsafe inversion in terms of the component3(in ).

Remark 5.4.2. An inversion is the most recent unsafe inversigrif and only if it is the most recent
inversion to change the indices of a proper nonempty suldstiiecelements from some component in

B(p:).

The trace-back algorithm is thus as follows: start undoimgitversion scenari§;, checking after
each inversion whether there exist componentB {p;) with both changed and unchanged indices and
stop when an unsafe inversion is found. We describe how thiddy keeping an ancillary splay tree
where nodes represent adjacencies in the permutatiorr thirepermutation elements.

The heart of the problem deals with how non-breakpointsractewith the undoing of unsafe in-
versions. We present a labeling of the ancillary tree so timatsafety check can be carried out by a
constant-time comparison on the two adjacencies brokembiyersion. Each adjacency has a la-
bel indicating the innermost overlying component alonghvatsecond label that is non-null only for
non-breakpoints. For a given component, each group of catige non-breakpoints (ignoring nested
components) gets a unique second label. Thus an inversimades only a fraction of the elements
of a component if and only if both broken adjacencies arelémbas non-breakpoints with the same
component and non-breakpoint labels.

In the example, the permutation (236 7 45 8 9 10 1) has compdaiesl X for adjacencies (0,2),
(2,3), (8,9), (9,10), (10,1), and (1,11), and componengllabfor the others. The non-breakpoint labels
are the same for (2,3), (8,9), and (9,10), but different leetw(6,7) and (4,5). Inversion(2,7) acts
upon non-breakpoints with the same pair of labels whilersiea 1.(5,7) acts upon non-breakpoints
with different component labels and4, 5) acts upon non-breakpoints with different non-breakpoint
labels.

We can list the endpoints of the components of a permutatioimear time [8, 12]. A simple
traversal of the permutation, keeping one stack for eacdtl,lahn perform the node labeling described
above. Thus the setup of the ancillary tree can be don@(im) time. LetS1; be the scenario of
inversions applied beforg; in S; andS2; be the scenario of inversions applied aftdr;, (including p;)
in S;. Each safe inversion i82; that is undone will cosO(logn) time so the total cost for finding a
most recent unsafe inversionGgn + |S2;|logn).

Inserting oriented inversions before the unsafe inversion

Recall thau; is the most recent unsafe inversion in the scengyid’ heorem 3 in Tannier, Bergeron, and
Sagot [86] shows that there always exists two oriented siwesr1; andv2; that can be applied before
the inversiory; in .S;. According to [86], inversiong1; andv2; must have the following properties:

¢ the span of/1; overlaps the span qf;, and
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e either the span af2; overlaps the span ofl; and does not overlap the span.gf or the span of
v2; overlaps the span ¢f; and does not overlap the spanu.df.

In the following we show how to find al; andv2; with these properties in time proportional to the size
of the bad component that we created.

Lemma 5.4.3. Given an unsafe oriented inversipn and the bad componehtof sizem created by,
one can always find, i®(m) time, inversions/1; andv2; such thatS1; - v1; - v2; - u; is a valid scenario
of oriented inversions.

Proof. We proceed by finding orientedl; andv2; with the properties listed above. A bad component
could have been created in one of three ways whemas applied. Without loss of generality we ignore
the symmetric counterpart to the first case below (both dahappen at once). We also ighore the
inverted versions of each case where the hurdle createdhhasegative elements. This leaves us with
three cases to consider.

o (£mg...tltxy . . FXg FMp ... T XK 1. " Xgpl TMpq] .- ETY)

where the braced inversion creates the bad component
b=+l+z) .. . txstTs41 ... TTp_1FT.

o (£mp...tl+xy ... +X] “Xp_1 ... "Xp41 FXp .. X1 Tr. L ET,)

where the braced inversion creates the bad component
b=+l+z; .. . txtapy ..t txy o FTp T

e The third case is the same as the first, except that one or madredmponents are created which
span the internal component
HExy . trgtrgyy .. Frp_qtr.

For the first case, writd, = +l+zq...+z; andR = -r-x;_1...-xs41 and examine the substrings
L andR. Since the componertt, ..., r) is a bad component, there must exist an elemémtZ. such
that eithert 4+ 1 ort — 1 is negative and not i.. Assumeuw is the first such element we encounter by
scanning fromt! to +z5. We locate the rightmost(w — 1) or —=(w + 1) in R by scanning from-z 41

to —r. Now, there are two possibilities.

1. The rightmost element is(w —1). We havew > [+ 1 and thugw, - (w — 1)) is an oriented pair;
consequently, there exists an oriented inversian, which is different fromu;. Now consider
the position of those elements with absolute values betyesaah including)l andw — 1. Lety
be the element with the smallest value that does not appéiae teft ofw in L (such an element
must exist becauskis to the left ofw butw — 1 is in R). Thusy — 1 must appear to the left of
w in L. Not thaty cannot be inR, as this would contradict the fact thatis the leftmost element
in L with —=(w 4+ 1) or —=(w — 1) in R. Thusy must be inL and to the right ofv. After applying
v1;, we will have the oriented paiy — 1, -y), and consequently, another oriented inversian
Notice that the span afl; overlaps the span qf; and the span af2; overlaps the span ofl;
but not that ofy;.

2. The rightmost element is(w +1). Note that(w, - (w+ 1)) is an oriented pair, so that there exists
an oriented inversiowv1,. This inversion must be different from; as otherwisel, would a bad
component in itself. Now we examine the substring to thetrajhw in L. Let z be the element
with the largest absolute value in that substring. Congigefollowing two cases:

(a) The absolute value afis less thanv: we consider the elements with absolute values in the
interval [/, z]. Lety be the element with the largest absolute valud in| that appears to
the left of w (such an element must exist because to the left ofw but z is to the right
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of win L). y + 1 cannot be inR, as this would contradict the fact thatis the leftmost
element inL with - (w +1) or -(w — 1) in R. Thusy + 1 must be inL and to the right ofv.
After applyingr1;, we will have the oriented paily, -(y + 1)), and consequently, another
oriented inversion 2;. Notice that the span af1; overlaps the span ¢f; and the span of
v2; overlaps the span ofl; but not that ofu;.

(b) The absolute value afis larger thanv + 1: We consider the elements with absolute values
in [z,7]. Lety be the element with the largest absolute valug jm] that appears to the left
of —(w + 1) in R (such an element must exist becauds to the left of-(w + 1) in R but
zisin L). y — 1 cannot be to the left ofv in L, as this would contradict the fact thatis
the leftmost element ik with —(w + 1) or —(w — 1) in R. Thusy — 1 must be either to the
right of w in L or to the right of-(w + 1) in R. If y — 1 is to the right ofw in L, the oriented
pair (-(y — 1), y) defines the oriented inversiar2;. Notice that the spans ofl; andv2;
overlap the span qi; butv1; andv2; do not overlap. Ify — 1 is to the right of-(w + 1) in
R, after applying/1;, we will have the oriented pait;, - (y — 1)), and consequently, another
oriented inversion/2;. In this case the span ofl; overlaps the span gf; and the span of
v2; overlaps the span ofl; but not that ofu;.

For the second case (where the span of the unsafe invergsigraper subset of the span of the bad com-
ponent), writeL = +l+zq...tx;, M = —x,_1...~x;y1 andR = —r-xp_1 ... ~xs41. In substrings.
andR, there must exist one elemensuch that-(¢ + 1) or —(¢ — 1) is in M and the inversion induced
by this pair is notu;. Thus, the oriented pait, - (¢t — 1)) or (¢, (¢ + 1)) defines the oriented inversion
v1;. Sincev1; is different fromy;, there will be some negative elements after applyihg assume that
the maximum negative element among themgs Thus,y — 1 must be positive and the oriented pair
(-y,+(y — 1)) defines the other oriented inversio®;. It is easy to verify that these inversions have the
required properties.

For the third case, if the innermost component is also bad Wecan find the two new inversions
using the first case. If it is good, then we find the inversiosiagithe logic of the second case.

The linear-time complexity can be achieved by using a lookegtor that maps each element to
its index in the permutation. (This is created in the begigrand maintained throughout the sorting
process.) Thus, for the first case, with a single scah,afe can findw and-(w — 1) and with another
scan of elements betweéandw — 1 in the lookup vector, the pai(y — 1), -y). The other cases can
be analyzed similarly. Note that in no case do we need to staelament that is not a part 6f Thus
the inversions/1; andv2; can be found irO(m) time. O

Appending inversions to the sorting scenario:

To reiterate, after we get the permutatign= = - S1; we apply the scenariol; - v2; - u; ong;. Now
we would like to ensure that some scenario of inversishee append after; does not invalidate the
scenariaS2; (i.e. S1;-v1;-v2; - p;- S, - S2; is a valid scenario of oriented inversions). G&llr) the set

of good components for a permutatienA slight extension to the proof of Theorem 3 from [86] shows
the following:

Lemma 5.4.4. The set of good componer@g; - 1) is identical toG(q; - v1; - v2; - ;).

This tells us that inversions associated wAth will be part of distinct components i) - v1; - v2; - ji;
and that these components will be exactly as they atg in;. So any scenario of inversiorts will
only heal breakpoints on components other than thosg pf

We continue by showing how to compute &f ensuring that we only work on the components of
G(q;- ). We achieve this by renaming the permutatipim the following way. By definitiong; - 1; has
at least one bad component createdubylong with a possibly nonempty s€f(¢; - 1;) The inversions
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that sort the components 6f(qg; - 11;) correspond exactly to the scenafi@;. Thus, our desired scenario
S! of inversions should only displace (if at all) such compdsemithout affecting their structure.

Say there is a componeatof lengthm with left frame element. The canonical formé of ¢ is a
permutation of lengthn with ¢[i] = c[i] — 1+ 1, 1 < i < m, wherep|i] denotes théth element of a
permutatiorp. Componentg andd are said to bstructurally equivalentf and only if we have? = d.

Lemma 5.4.5. Letg; be a permutation without a bad component andbe an inversion such that - 1;
has at least one bad component and a set of good compo@éunits ;.;). There exists @, where any
scenarioS; that sortsq; to the identity, when applied tg;, will result in a permutation whose only
components are those ®(g; - 14;).

Proof. Rename the permutatiap - 11; such that all breakpoints from componentgi(y; - 11;) become
non-breakpoints and then ungg to getg,. Note that this renaming leaves one structurally equitalen
bad component in place of each bad component, so that thenirgpés unique. An inversion scenario
that sortsy; to the identity heals all breakpoints from the bad companeny; - 1;; moreover, it does not
act upon any adjacency or heal any breakpoint from compereni(q; - 1;) due to the nesting property
of FCls. O

For example, take; = (236 74-8-5-9 10-1) andu; = u(6,7). Nowg; - n;is (23674589
10-1), so thatG(q; - u;) is comprised of the components framed by the pair (of fraremehts) (0,11)
and the pair (8,10)g; - i1; is renamed t@; - u; = (1256 34789 10), yielding, = (1256 3-7-48
9 10). The sorting scenaris = (p(3,6), p(3,4), p(4, 7)) for ¢, can be applied tg; to get (234567
8-910-1).

Lemma 5.4.6. Given a permutation with a set of bad componeni3(p), permutationp’ that has one
structurally equivalent bad component in place of eaeh B(p) and only non-breakpoints everywhere
else, can be constructed in linear time.

Proof. If an adjacency is not part of a bad component then label it @wihull value; otherwise label
it by the bad component of which it is part of. Also label adjacies with the left and right endpoints
of each component, which can be done in linear time [8, 12].ugéa stackz, the top of which we
denote bytop(R). Perform the following steps until the end of the permutai®reached, i.e., until we
havei = n.

1. p[0] = 0,4 = 1.

2. Label each element|:] with the valuep'[: — 1] + 1, incrementing: until the adjacency(i — 1]
pli]) corresponds to a bad component.

3. If the adjacencyy(i — 1] pl[i]) is a left endpoint, then push onf®the valuep[i — 1] — p/[¢i — 1].
Go to step 4.

4. Do this, incrementing, until an adjacency with a different component label is healc Label
each element'[i| = p[i] — top(R) and if it is a right endpoint, then pop thep(R). Go to step 2.

O

Overall running time analysis:

We call this algorithm, with the recovery phase included, XYRECOVER or RAND-RECOVER,
depending on whether algorithm MAX or algorithm RAND is usadhe forward-sorting phase. If
algorithm MAX or RAND gets stuck at a positive permutatipn we proceed by undoing inversions
until a permutationy; is found such thai; - ; has fewer bad components thgn Finding such ay;
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Table 5.1:The failure rates for MAX, RAND and RAND+RESTART
Length 100 200 500| 1,000| 2,000| 5,000 10,000| 20,000
MAX | 39.5% | 38.9% | 39.0%| 39.1%| 39.3%| 39.3%| 39.3%| 39.2%
RAND | 39.0%| 39.2%| 39.5% | 39.5% | 39.6% | 39.5%| 39.6%| 39.5%
RAND-RESTART | 17.2%| 17.1%| 16.8% | 16.4 % | 16.3%| 16.2% | 16.0% | 16.0 %

Table 5.2:Number of recovery steps)(for MAX-RECOVER: Average and Standard Deviation
Length| 100| 200| 500| 1,000| 2,000| 5,000| 10,000| 20,000
AVE(K) | 0.513| 0.518| 0.522| 0.524| 0.524| 0.525| 0.524| 0.525

SD(k) | 0.765| 0.770| 0.772| 0.774| 0.773| 0.775| 0.774| 0.777

and y; alone takesD(n + |S2;|logn) time. The inversions undone in this step are not discarded as
they can be applied after inserting at least two more ingassi Notice that each inversion undone in
the trace-back must be done or undone on a splay tree at mesttimes and tha#2; and.S2; for any

two p; andp;, i # 7, will be disjoint. Thus theD(n logn) term describes the amount of time spent for
undoing inversions over the entire course of the algoritiichjast a linear amount of work beyond that
must be done in each recovery phase.

Theorem 5.4.7.The running time of MAX-RECOVER or RAND-RECOVER(is log n + kn) where
k is the total number of unsafe inversions performed in therétigm.

In Section 5.5 we show strong empirical evidence that, odoanpermutations of length, the
average value and standard deviatiot ®émain constant (abo%t) even as: grows very large, leading
us to conjecture that these algorithms sort almost all pttions inO(n log n) time. In the worst case,
however, RAND-RECOVER and MAX-RECOVER can uén?) time, as in the following family of
permutations: build a permutation of lengttby starting with the identity permutation of lengthmod
5 as the first block, followed by /5 copies of the block(: + 3)(i +1)-(i +4)-(i + 2)(i + 5), each of
which shares its first element with the last element of thegating block.

5.5 Experimental Results

We present experimental results for algorithms MAX, RANDAKIRECOVER and RAND-RECOVER.
All of the experiments are on random permutations of lerigth 200, 500, 1000, 2000, 5000, 10, 000
and20, 000. For each length, we tested our algorithmslof00, 000 permutations.

Table 5.1 lists the failure rates for algorithm MAX and aligom RAND. Algorithm MAX and
algorithm RAND produce a full sorting scenario with freqagi61%. We also include the failure rates
for RAND-RESTART: the simple heuristic that runs RAND on thput permutation a second time if it
fails to sort at the first attempt. The failure rate for RANIERTART reduces ta6% (= 0.39 x 0.39),
which suggests that the two runs are independent with regpéute failure rate.

Tables 5.2 and 5.3 summarize the details of the number oveegsteps k, that we observe in
algorithms MAX-RECOVER and RAND-RECOVER. The average eadund the standard deviation of
k remain constant as grows. Figure 5.1 shows the distribution /ofor MAX-RECOVER on random
permutations of length0, 000. This figure is representative of the observed distribufamthe other
lengths as well. The similarity to the inverse exponentigction suggests that the upper bound for the
average value of is a constant.
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Figure 5.1: The distribution df for MAX-RECOVER on random permutations of lengtf, 000.

Table 5.3:Number of recovery steps)for RAND-RECOVER: Average and Standard Deviation
Length| 100| 200| 500 1,000| 2,000| 5,000| 10,000| 20,000
AVE(K) | 0.485| 0.489| 0.492| 0.493| 0.495| 0.495| 0.495| 0.499

SD(K) | 0.690| 0.694 | 0.697| 0.697| 0.698| 0.698| 0.698| 0.699

5.6 Conclusions

We have given two new algorithms for sorting signed perntatby inversions, one a fast heuristic
that works on most permutations, the other a determinifgmrithm that sorts all permutations and takes
O(nlogn) time on almost all of them. We have given the results of vetgmsive experimentation to
confirm these claims. We have thus taken a major step towdidal aesolution of the sorting problem:
we believe tools presented here will eventually lead to @fptieat we can sort most permutations in
O(nlogn) time. Future work may also include design of an algorithmealdvith the few remaining
permutations that require more time.
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Chapter 6

Conclusion

We have described improvements in three main areasmiparative genomicggenomic distances in
the presence of duplicate genes, ancestral genome inégramd the classical problem of sorting signed
permutations by inversions. Behind all of the work in thetfivgo areas is the simplifying assumption
that certain hard-to-compare pairs of genomes are rarelgugrtered. In Chapter 2 we confirmed the
validity of this assumption by showing that hurdles andrig$es occur in permutations with probability
O(n~2) and ©(n~1%) respectively. This finished the fundamental work that wastetd by Alberto
Caprara [24] ten years ago.

Foundational work for computing evolutionary distancesMeen genomes with unequal and du-
plicated gene content was presented in Chapter 3. In aatestrsetting where only one of the two
genomes being compared contains duplicated genes we gaygpeoximation algorithm with constant
error bound. We expect that this bound may be improved byrdgweg the dichotomy between the
number of cycles and the number of deletiobst do not address this here. We also found nontrivial
but detectable conditions under which we can compute themaim evolutionary distance between two
genomes. In the process we built a machinery that faciitateeduction showing almost every known
problent related to distance minimization with duplicate genesg¢hdefine in Section 3.2.1) to be
NP-Hard.

The methodology of the aforementioned approximation dlgor was extended to be used in the
general setting — where inversions, deletions, and uncesdr (duplicating) insertions — were con-
sidered. We found through simulation studies that thisresite tracked the true evolutionary distance
quite well, and that simulated trees that evolved througtstipposed model could be reconstructed very
accurately. Further, on the one real dataset we tried — ttaselaof 13 bacteria from Earnest-DeYoung
[31] with genome sizes ranging from 1,000 to over 5,000 gamelsgene families of up to 70 members
— we reconstructed the true (accepted by the biologists)ahmost exactly.

In the process of computing these distances, we alwayseceeatapping from the genes of some
family in one genome to those from the same family in anotfidris mapping is of particular inter-
est because it can give insight into the evolutionary retetip of two genes; the most parsimonious
assignment of duplicate genes could indicate which gengsated during some duplication event.
Sometimes such genes are calfegsitional homologsinformation of this sort may be instrumental in
identifying orthologybetween genes [38, 4]. Future work must draw this conneti@tvween positional
homologs and orthology, as well as reconcile the relatipnbketween positional homology and gene
function.

'For example, take the permutatiods= (1 2 3 4) andB = (5 3 4 3 -1 -2). If the first 3 ofB is chosen then there are 2
deletions and 2 inversions necessary but choosing the @&;amhile increasing the number of inversions by 2, redubes t
number of deletions necessary. We conjecture that undereimosmstances any assignment would be within three halizes
the optimal.

2The result does not apply to problems that concern genoménbgédoubling [34].
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In Chapter 4 we showed that there are certain conditionsrumdieh ancestral gene sequences can
be reliably reconstructed. But the questions surroundimgstral reconstruction seem to be numerous,
the most striking of which are: if ancestral sequences caimfieered, what will biologists find most
interesting about these sequences; can knowing the agicestjuence give insight into the regulatory
interdependence of a group of genes; and if some full seg@secennot be reconstructed, what other
approximations can we settle for? Computational methogle baly started to scratch the surface in
this field.

Finally, we gave important steps towards a resolution ofstiting by inversions problem. In par-
ticular, we showed how to find an oriented inversion in camistiane while maintaining a data structure
first applied in this context by Kaplan and Verbin. We alsovgéd that we can recover from an unsafe
inversion in linear time without disturbing already comguliinversions, all without the knowledge of
the overlap graph. Both pave the way for many avenues thatreveusrently exploring to finalize an
algorithm that provably runs i®(n log n) time for almost all permutations.
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