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Abstract

Transactional memory (TM) has shown potential to simplify the task of
writing concurrent programs. TM shifts the burden of managing concurrency
from the programmer to the TM algorithm. The correctness of TM algo-
rithms is generally proved manually. The goal of this thesis is to provide the
mathematical and software tools to automatically verify TM algorithms under
realistic memory models.

Our first contribution is to develop a mathematical framework to cap-
ture the behavior of TM algorithms and the required correctness properties.
We consider the safety property of opacity and the liveness properties of ob-
struction freedom and livelock freedom. We build a specification language of
opacity. We build a framework to express hardware relaxed memory models.
We develop a new high-level language, Relaxed Memory Language (RML), for
expressing concurrent algorithms with a hardware-level atomicity of instruc-
tions, whose semantics is parametrized by various relaxed memory models. We
express TM algorithms like TL2, DSTM, and McRT STM in our framework.

The verification of TM algorithms is difficult because of the unbounded
number, length, and delay of concurrent transactions and the unbounded size
of the memory. The second contribution of the thesis is to identify structural
properties of TM algorithms which allow us to reduce the unbounded verifica-
tion problem to a language-inclusion check between two finite state systems.
We show that common TM algorithms satisfy these structural properties.

The third contribution of the thesis is our tool FOIL for model checking
TM algorithms. FOIL takes as input the RML description of a TM algorithm
and the description of a memory model. FOIL uses the operational semantics
of RML to compute the language of the TM algorithm for two threads and
two variables. FOIL then checks whether the language of the TM algorithm is
included in the specification language of opacity. FOIL automatically deter-
mines the locations of fences, which if inserted, ensure the correctness of the
TM algorithm under the given memory model. We use FOIL to verify DSTM,
TL2, and McRT STM under the memory models of sequential consistency,
total store order, partial store order, and relaxed memory order.
Keywords: Concurrency, Transactional memories, Semantics, Specification,
Software verification, Model checking, Relaxed memory models.
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Résumé

Les Mémoires Transactionnelles (MT) ont démontré un grand potentiel
pour simplifier l’écriture de programmes concurrents. Les MT évitent aux pro-
grammeurs de se préoccuper de la concurrence, qui est gérée au niveau des
algorithmes de MT elles-mêmes. La correction des algorithmes de MT est
généralement prouvée manuellement. Le but de cette thèse est de donner des
outils à la fois mathématiques et logiciels pour vérifier par model checking les
algorithmes de MT supposant un modèle de mémoire faible.

Notre première contribution est de développer des outils mathématiques
pour exprimer le comportement des algorithmes de MT et les propriétés de
correction requises. Nous nous intéressons à la fois à des propriétés de sûreté,
comme l’opacité, et de vivacité, comme la non-obstruction et l’abscence de
livelock. De plus, nous construisons un outil logiciel pour exprimer les modèles
mémoires matériels dits faibles. Nous développons un nouveau langage de
haut niveau, RML, pour exprimer les algorithmes concurrents avec un niveau
matériel d’atomicité des instructions, et dont la sémantique est paramétrée par
de nombreux modèles mémoires faibles. Nous exprimons les algorithmes MT
comme TL2, DSTM et McRT SRT dans notre nouveau langage, RML.

La vérification des algorithmes de MT est difficile à cause du nombre illimité
de transactions concurrentes, de la durée et des délais non-bornés d’une tran-
sactions et de la taille non-bornée de la mémoire. La deuxième contribution de
cette thèse est d’identifier les propriétés des algorithmes MT qui permettent de
réduire le problème de vérification d’un modèle infini au problème d’inclusion
de langage de deux machines d’états finies. Nous montrons que les algorithmes
de MT usuels satisfont ces propriétés.

La troisième contribution de cette thèse est notre outil FOIL pour la
vérification par model checking des algorithmes de MT. FOIL prend comme
entrée la description RML d’un algorithme de MT et le description du modèle
mémoire. FOIL utilise la sémantique opérationnelle de RML pour calculer le
langage de l’algorithme de MT pour deux fils d’exécution et deux variables.
FOIL contrôle ensuite si le langage de l’algorithme de MT est inclus ou non
dans le langage de la spécification. FOIL détermine automatiquement les em-
placements des barrières, qui, si elles sont insérées, assure la correction de
l’algorithme de MT dans le modèle mémoire donné. Nous utilisons FOIL pour
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vérifier les algorithmes DSTM, TL2 et McRT STM dans des modèles mémoires
à cohérence séquentielle, ordre total des écritures, ordre partiel des écritures
et ordre mémoire affaibli.
Mots clés : Concurrence, mémoire transactionnelle, sémantique, spécification,
vérification de logiciels, model checking, modèles mémoires faibles.
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Introduction 1
Over the last fifty years, the transistor density on a chip has doubled every two
years. This phenomenon is widely known as the Moore’s law [Moo65]. The
exponential increase in transistor density has also resulted in an exponential
increase in microprocessor clock rates, memory capacity, and similar capabili-
ties of digital electronic devices. Moore’s law is expected to continue to hold
in the near future. However, higher clock rates have been accompanied by a
much higher power consumption and heat dissipation, as these are cubic func-
tions of the clock rate [FH05]. Around five years ago, the microprocessor clock
rate hit the heat wall: the heat dissipation would damage the processor on
increasing the clock rate further. Since then, the clock rates of a microproces-
sor have not scaled proportionately with the transistor density. This, in turn,
led to the saturation of the performance of a uniprocessor. An alternative to
increase the computation power proportionately with the transistor density is
to build multiple processor cores in a single chip, where the cores run at lower
clock rates. Lower clock rates result in lower power consumption and lower
heat dissipation. Moreover, lower clock rates reduce the design complexity of
a microprocessor.

However, to exponentially scale up the speed of a program using a multi-
core, it becomes crucial to exploit the computation power of all cores simulta-
neously. This requires the program to be parallel. A parallel program is one
written to exploit the potential of a parallel computing resource like a mul-
tiprocessor or a cluster of processors. The research in parallel programs has
been driven by high performance computing for the last few decades. How-
ever, the use of parallel programming has been limited to expert programmers.
To achieve the full potential offered by multicore processors, we require suit-
able programming infrastructures and tools that make parallel programming
accessible to mainstream programmers.

1



2 Introduction

1.1 Parallel Programming

Parallel programming poses several challenges to the programmer. First of
all, a programmer needs to identify computations that can be executed si-
multaneously. Secondly, a parallel program often requires concurrent access to
underlying shared data. To prevent inconsistencies due to concurrent accesses,
a parallel program requires precise synchronization. The performance of a par-
allel program depends on how the program handles concurrency. Concurrency
makes parallel programs hard to write, and even harder to verify. Convention-
ally, concurrency relies on blocking synchronization primitives like locks and
semaphores. These synchronization primitives often pose a trade-off between
performance and programming effort. While coarse-grained locking is easy to
reason about and prove correct, it does not often harness the computation
power of a multicore efficiently. On the other hand, fine-grained locking yields
an efficient program, but is a challenge to use correctly. Errors in using these
synchronization techniques can result in unexpected data races, deadlocks, and
livelocks. Moreover, concurrency leads to behaviors that are exponential in the
number of threads, which makes errors hard to find or reproduce.

Other means of managing concurrency in parallel programs include non-
blocking synchronization. Non-blocking algorithms use hardware provided
atomic read-modify-write operations, and avoid the problems associated with
locks or semaphores. However, non-blocking algorithms are extremely hard to
design and to prove correct.

These problems with the current mechanisms to handle synchronization
lead us to the question: can we provide a programming paradigm that ensures
correctness of a parallel program, and at the same time, yields good perfor-
mance. Transactional memory (TM) is one proposal that holds high potential
to serve this requirement.

1.2 Transactional Memories

The idea of TM is inspired by the notion of database transactions. Trans-
actional memory was first introduced by Herlihy and Moss [HM93] in multi-
processor design. Later Shavit and Touitou [ST95] introduced software trans-
actional memory (STM), a software-based variant of the concept.

The basic notion of the execution of a TM is a transaction: a sequence of
memory instructions that satisfies the following three properties: atomicity,
isolation, and consistency. Atomicity ensures that either all or none of the
effects of a transaction are visible. Isolation ensures that the intermediate state
of a transaction is never visible to other transactions. Consistency ensures that
the memory remains in a consistent state before a transaction starts, and after
a transaction is over. TM are based on optimistic concurrency. That is, they
allow speculative execution of transactions. If a transaction commits, all its
effects are visible to other transactions. If a transaction aborts, none of the
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effects are visible, and the transaction may be retried. An extensive overview
of TM can be found in Larus et al. [LR07].

A decade after TM was invented, Harris and Fraser [HF03] proposed that
the notion of a transaction can be used as a language level construct for syn-
chronization in parallel programs. The runtime uses a TM implementation to
execute a block of code, marked as atomic, as a transaction. This gave TM the
potential to serve as an important paradigm to handle concurrency in parallel
programs. Examples of programs with atomic blocks are shown in Figure 1.1.
TM alleviates the difficulties of parallel programming. Although a program-
mer still needs to identify the parallelizable components in a program, a TM
guarantees that these components are executed in parallel correctly, and with
good performance.

1.3 TM Implementations

The success of transactional memories as a programming paradigm is evident
from the plethora of TM implementations available today. TM have been
implemented in hardware, software, and as a hybrid of hardware and software.

Hardware TM

TM was initially proposed by Herlihy and Moss [HM93] as a hardware mecha-
nism. Most hardware TM (HTM) [MBM+06, HWC+04] rely on a modification
to the cache coherence protocol to achieve atomicity of transactions. Proposals
to exploit HTM [RG02] to implement conventional lock based critical sections
also exist. HTM offer good performance, but suffer from the following draw-
backs. Firstly, HTM require architectural changes to hardware and require the
TM algorithm to be embedded in hardware. This makes HTM an expensive
and inflexible option. Secondly, most HTM only support bounded transactions
that can fit the on-chip resources. Although proposals [AAK+05, RHL05] ex-
ist in the literature to avoid this limitation, the design complexity of these
proposals is significant.

Software TM

The limitations of HTM make STM a compelling choice to implement TM.
Although the first STM was proposed by Shavit et al. [ST95] in 1995, STM
gained popularity in 2003, when Herlihy et al. [HLMS03] proposed DSTM,
and Harris et al. [HF03] proposed to use TM to provide transactions as a
language level construct for synchronization in parallel programs. Since then,
many STM [HLMS03, DSS06, SATH+06, FH07, MM07, RFF06] have been
proposed. Software provides the flexibility to design and test new sophisticated
TM algorithms. So, unlike HTM, STM widely differ in their protocols, and
make an interesting verification problem. However, STM do not perform as
well as HTM due to runtime overhead and bookkeeping in software.
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Hybrid TM

Research has also focused on hybrid approaches [DFL+06, KCH+06], where
transactions are first tried in the hardware component. If the transaction ex-
hausts the resources available, it is retried in software. Thus, hybrid TM
aims to provide the benefits of both HTM and STM. Sun’s Rock proces-
sor [DLMN09], the first commercial processor with hardware support for trans-
actions, is designed to be a hybrid TM.

Apart from the infrastructure of implementation, TM can also be classified
on the basis of conflict detection and version management in their algorithms.
Two transactions are in conflict if they access the same data, and at least one
of the transactions writes. As TM rely on speculative execution, transactions
are prone to conflict with each other. The conflict detection protocol varies
in different TM algorithms. While some TM algorithms detect conflicts as
soon as they happen, other TM algorithms detect conflicts when transactions
commit.

As a running transaction has a possibility to abort, different versions of
the data have to be managed at the same time: one version for recording the
changes made to the data by the transaction, another to hold the original
value of the data. Different TM algorithms differ in the way they manage
the versions. A deferred update TM algorithm creates a local copy of all data
written in a transaction, and uses this local copy to update the global data at
the time of commit. On the other hand, a direct update TM algorithm updates
the global data during the execution of a transaction and maintains a local
copy of the original data to restore the global data upon an abort. A deferred
update TM algorithm is also known as lazy update or redo log TM algorithm.
A direct update TM algorithm is also known as eager update or undo log TM
algorithm.

1.4 Correctness in TM

As a TM algorithm promises proper synchronization in a parallel program
to the programmer, correctness is an important issue in TM algorithms. A
TM algorithm is correct if it ensures correctness for all programs. Precisely
because a TM algorithm encapsulates the difficulty of handling concurrency,
the potential of subtle errors is enormous. This makes verification of TM
algorithms an important candidate for formal methods. We now look at the
safety and liveness properties expected in TM algorithms.

1.4.1 Safety

The correctness properties in TM build upon the correctness notions of database
transactions. The most common correctness requirement in databases is se-
rializability [Pap79] which requires that committed transactions appear to
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initially x = y = z = 0 in every case

Thread 1 Thread 2
atomic {

x := 1
x := 2 atomic {

} r := x
}

(a) Can r = 1?

Thread 1 Thread 2
atomic {

x := 1
x := 2 atomic {
} z := x− y
atomic { }

y := 2
}

(b) Can z < 0?

Thread 1 Thread 2
atomic {

x := 1 atomic {
y := 1 r1 := x

} r2 := y
r3 := 1/(r1 − r2 − 1)

}

(c) Can thread 2 perform a division by 0?

Figure 1.1: Examples of programs with transactions

be sequential. Strict serializability further requires that the order of non-
overlapping transactions is preserved. However, it was observed [DSS06, HLMS03]
that strict serializability is not sufficient for memory transactions. It is im-
portant that even aborted transactions do not observe an inconsistent state
of the memory, as this could lead to unexpected side effects like infinite loops
or array bound violations. This has led a strong notion of correctness in TM,
referred to as opacity [GK08]. Opacity requires that all transactions appear to
execute sequentially. This prevents aborting transactions from reading incon-
sistent values. Most of the TM implementations [HLMS03, DSS06, SATH+06,
FH07, MM07] indeed claim to satisfy opacity.

Figure 1.1 illustrates the three safety properties: serializability, strict seri-
alizability, and opacity. In Figure 1.1(a), thread 2 cannot observe the value of
x as 1 under the correctness properties of serializability, strict serializability,
and opacity. This is because all three correctness properties require the basic
principle of isolation and atomicity of transactions. Consider Figure 1.1(b).
Strict serializability and opacity require that if thread 2 observes the value of
y as 2, then thread 2 observes the value of x as 2. That is, strict serializabil-
ity and opacity require that the effect of transactions is visible in the order
the transactions appear. Consider Figure 1.1(c). As serializability and strict
serializability do not pose any restrictions on aborted transactions, it is pos-
sible that an aborted transaction views an inconsistent state by reading x as
1 and y as 0. Note that this might result in a division by zero by an aborting
transaction which might crash the whole program. Opacity requires that even
aborting transactions view consistent state. Thus, a division by zero error is
not possible if the TM satisfies opacity.

1.4.2 Liveness

Early TM algorithms provided nonblocking progress guarantees. Below, we
discuss liveness properties that provide nonblocking progress guarantees:
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• The weakest nonblocking progress guarantee is known as obstruction
freedom. A TM implementation is obstruction free if every transaction is
guaranteed to commit as long as no other transaction makes a step. Note
that obstruction freedom does not guarantee whether any transaction
will commit if more than one transaction take steps. In other words, a
TM implementation may livelock even if it is obstruction free.

• A TM implementation is livelock free if some transaction is guaranteed
to commit in a finite number of steps. Livelock freedom implies obstruc-
tion freedom. But, a TM implementation that is livelock free does not
guarantee that every transaction will commit.

• A TM implementation is wait free if every transaction is guaranteed
to commit in a finite number of steps. Wait freedom implies livelock
freedom.

The most efficient TM implementations today rely on locks. Thus, they
fail to guarantee even obstruction freedom, the weakest non-blocking progress
guarantee. Weaker progress guarantees [GK09] have also been defined in the
framework of TM implementations.

1.5 Relaxed Memory Models

The correctness of a program depends on the infrastructure on which it runs.
The same holds for TM algorithms. To ensure correctness, it is important to
understand the behavior of TM algorithms on commercial processors. Proces-
sors, for reasons of performance, do not guarantee that the instructions in a
program are executed in program order. Rather, processors specify a memory
model [AG96] that specifies the set of allowed behaviors of memory accesses.

For example, the memory model sequential consistency specifies that a
multiprocessor executes the instructions of a thread in program order. On the
other hand, the memory model total store order specifies that a multiproces-
sor may relax the order of a store followed by a load to a different address,
by delaying stores using a store buffer. In principle, a memory model offers a
tradeoff between transparency to the programmer and flexibility to the hard-
ware to optimize performance. Sequential consistency is the most stringent
memory model, and thus the most intuitive to the programmer. But, most of
the available multiprocessors do not support sequential consistency for reasons
of performance.

The problem of synchronization in parallel programs becomes harder under
relaxed memory models: apart from the interleavings of different threads, one
needs to consider the possible reorderings of instructions within each thread.
To illustrate the point, we give some examples of memory models. We give a
parallel program and describe the outcomes under different relaxed memory
models.
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Examples of memory models

Thread 1 Thread 2 O1 : r1 = 1, r2 = 1, r3 = 1, r4 = 1
O2 : r1 = 0, r2 = 0, r3 = 0, r4 = 0
O3 : r1 = 1, r2 = 1, r3 = 0, r4 = 0
O4 : r1 = 1, r2 = 1, r3 = 2, r4 = 2

x1 := 1 x2 := 1
y1 := 1 y2 := 1
r1 := y2
r3 := x2

r2 := y1
r4 := x1

x1 := 2 x2 := 2

Initially : x1 = y1 = x2 = y2 = 0

Figure 1.2: The outcomes of a parallel program under different memory models

• Sequential consistency (SC) does not allow any pair of instructions to be
reordered.

• Total store order (TSO) relaxes the order of a store followed by a load
to a different address. But, the order of stores cannot be changed. TSO
allows a load that follows a store to the same address to be eliminated.

• Partial store order (PSO) is similar to TSO, but further relaxes the order
of stores.

• Relaxed memory order (RMO) relaxes the order of instructions even more
than PSO, by allowing to reorder all memory instructions to different
addresses.

Figure 1.2 illustrates a parallel program with two threads that distinguishes
between the different memory models in terms of the possible outcomes. Out-
come O1 is allowed by SC, while other outcomes are not. Outcomes O1 and
O2 are allowed by TSO. Outcomes O1, O2, and O3 are allowed by PSO. All
outcomes O1, O2, O3, and O4 are allowed by RMO.

Although most commercial multiprocessors use a relaxed memory model,
TM algorithms published in the literature assume sequentially consistent be-
havior. The relaxations introduce a scope of errors when TM algorithms are
executed on relaxed memory models. Typically, TM designers use fences to
ensure a strict ordering of memory operations. As fences hurt performance,
TM designers want to use fences only when necessary for correctness.

To illustrate the point, we consider the code fragments of the commit and
the read procedures of a typical timestamp-based TM like TL2 [DSS06] in
Figure 1.3. Assume that at the start of a transaction, t1 and t2 are set to the
global timestamp ts. The commit procedure updates the timestamp ts before
it updates the variables to be written. The read procedure first reads the
timestamp, followed by the read of the variable, followed by a second read of
the timestamp. The read is successful only if the two timestamps are equal. A
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. . .
update global timestamp ts
for each variable v in write set

update value of v

. . .
t1 := ts
if (t1 6= t2) then abort
read value of v
t2 := ts

if (t1 6= t2) then abort

txRead :
txCommit :

. . .

Figure 1.3: Sample code fragments of commit and read procedures of a TM

crucial question is, given the memory model, which fences are required to keep
the STM correct. On a memory model like sequential consistency [Lam79] or
total store order [WG94], the code fragment in Figure 1.3 is correct without
fences. On the other hand, on memory models that relax store order, like
partial store order [WG94], we need to add a store fence after the timestamp
update in the commit procedure. For even more relaxed memory models that
may swap independent loads, like relaxed memory order [WG94], as well as
the Java memory model [MPA05], we need more fences, namely, load fences
in the read procedure. But the question is how many? Do we need to ensure
that the read of v is between the two reads of ts, and thus put two fences?
The answer is no. To ensure correctness, we just need one fence and guarantee
that the second read of ts comes after the read of v.

1.6 Problem Statement

This thesis develops a formalism and a verification tool to answer the question:
does a TM algorithm ensure a given safety or liveness property on a given
memory model? If not, can the TM algorithm use fences to ensure the property
under the memory model?

1.6.1 Challenges

This problem translates into three main challenges as described below.

Formalization

Although TM have been built and implemented since almost two decades, there
is little work in the direction of formalizing the properties of TM. The challenge
lies in mapping a given transactional program, as written by a programmer,
to the set of instruction sequences (called histories) as issued by a TM on
the processors with a given relaxed memory model. This requires to take
into account, the state of each transaction in the TM, the interaction between
different transactions, and the behavior of the scheduler. Intuitively, a TM
algorithm is correct if for all transactional programs, all histories produced by
the TM are correct.
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Correctness specification

We consider opacity as our safety correctness criterion. While opacity has
been formally defined, verification requires to check whether a history satisfies
opacity or not. Thus, we need to build a specification that captures the set of
all histories that satisfy opacity. We find it non-trivial to build a specification
that can be used to efficiently verify TM algorithms.

Verification

The formal framework and the correctness specification lay the groundwork for
verification. However, there remain two challenges in verification. First of all,
with an unbounded number of threads and variables, the state space of a TM
algorithm is unbounded. So, we need to either reduce the problem to a finite
number of threads and variables, or use infinite state verification. Secondly,
even with a small number of threads and variables, there is a high level of non-
determinism due to multiple threads and the relaxed memory model. Building
an automated tool to capture state spaces of such magnitude is challenging.

1.6.2 Our approach

We tackle the above challenges in two steps. In the first step, we ignore the
challenges posed by hardware level atomicity and relaxed memory models. We
assume atomicity of a coarse grained alphabet of instructions. This step aims
to provide an intuition of the verification technique without delving into the
complications introduced by real hardware. We develop a formalism for TM
algorithms and correctness properties of TM. We obtain a transition system
corresponding to a TM algorithm. The set of histories produced by the TM
algorithm corresponds to the language of the transition system. At first, we
restrict ourselves to checking the correctness of a TM algorithm with a finite
number of threads and variables. To do this, we first describe the correctness
property as a finite state specification, and then check that the language of the
TM algorithm is included in the specification. We build nondeterministic and
deterministic transition systems (specifications) corresponding to the safety
property of opacity. It is easy to show that the nondeterministic specification
is indeed the set of all correct histories. But, to check that the language of the
TM algorithm is included in the nondeterministic specification, we would need
to determinize the specification. The large size of the nondeterministic specifi-
cation makes determinization infeasible. Instead, we manually create a deter-
ministic specification for the correctness property and use automated tools to
establish the equivalence of nondeterministic and deterministic specifications.
The deterministic specification allows us to easily check the correctness of a
TM algorithm. We reduce the problem of verification of TM algorithms with
an unbounded number of threads and variables, to verifying TM algorithms
with two threads and two variables. This reduction relies on structural proper-
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ties of TM algorithms. We express two phase locking, TL2, and DSTM in our
framework, and show that these TM algorithms indeed satisfy the structural
properties. Then, we prove opacity of the TM algorithms by checking that the
language of the TM algorithms is contained in that of the deterministic TM
specification. We also verify the liveness properties of TM algorithms. The
first step indeed solves the verification problem at an abstraction.

In the second step, we address the complications in verification introduced
by modeling TM algorithms at the level of atomicity provided by hardware, un-
der relaxed memory models. We build a formalism for relaxed memory models.
We express memory models as a function of hardware memory instructions,
that is, loads and stores to 32 bit words. We describe various relaxed memory
models, such as total store order (TSO), partial store order (PSO), and re-
laxed memory order (RMO) in our formalism. The reason for choosing these
memory models is to capture different levels of relaxations allowed by different
multiprocessors. Then, we build a new language, Relaxed Memory Language
(RML), with a hardware-level of atomicity, whose semantics is parametrized
by a relaxed memory model. We describe different TM algorithms in RML.
We develop a new tool FOIL1 to verify the safety and liveness of three different
TM algorithms under different memory models. While we choose opacity as
the safety criterion, using FOIL we can also verify other safety properties such
as strict serializability that can be specified in our formalism. FOIL proves
the opacity of the considered TM algorithms under sequential consistency and
TSO. As the original TM algorithms have no fences, FOIL generates coun-
terexamples to opacity for the TM algorithms under further relaxed memory
models (PSO and RMO), and automatically inserts fences within the RML de-
scription of the TM algorithms that are required (depending upon the memory
model) to ensure opacity. We observe that FOIL inserts fences in a pragmatic
manner, as all fences it inserts match those in the manually optimized official
implementations of the considered TM algorithms. Our verification leads to
an interesting observation that many TM algorithms are sensitive to the order
of loads and stores, but neither to the order of a store followed by a load, nor
to store buffering. In other words, all TM algorithms we consider are opaque
under TSO without any fences.

1.7 Generalizing the Notion of Opacity

The verification technique built in this thesis checks correctness of pure trans-
actional programs. This technique would suffice if a program could execute
all operations on shared data within transactions, and apply non-transactional
operations only to thread-local data. In practice, however, not all operations
on shared data can be wrapped in transactions. For example, a programmer
may wish to make shared data local to a thread, operate non-transactionally

1Foil is a fencing weapon. Our tool inserts fences in the TM algorithm to make the TM
algorithm correct.
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Thread 1 Thread 2

atomic {
x := 1
y := 1 r1 := x
} r2 := y

Figure 1.4: Can r1 = 1 and r2 = 0? It depends on the memory model (initially
x = y = 0).

upon it for a while, and make it shared again [MBS+08, SMDS07]. It is
thus not surprising to see a large body of research dedicated to exploring
the various models of interaction between transactions and non-transactional
code [ABHI08, DS09, GMP06, SMDS07, MBL06, MG08], and building TM
implementations based on those models [SMAT+07, MBS+08].

The interaction between transactions and non-transactional operations has
been defined using a notion of strong atomicity [MBL06, LR07] in the lit-
erature. The intuition behind strong atomicity is that transactions execute
atomically with respect to other transactions and non-transactional opera-
tions. Unfortunately, strong atomicity has not been formally defined. This
has led to multiple interpretations [SDMS08]. Consider, for example, the exe-
cution depicted in Figure 1.4 (adapted from Grossman et al. [GMP06]). The
transaction executed by thread 1 updates variables x and y. Thread 2 reads
the variables x and y non-transactionally. Is it possible that thread 2 reads
x as 0 and y as 1? According to the definition by Martin et al. [MBL06],
strong atomicity allows this result. But, according to the definition of strong
atomicity by Larus et al. [LR07], this result is not allowed. The ambiguity
in this definition can be attributed to an implicit assumption on the interac-
tion between non-transactional operations, which in turn, depends upon the
underlying memory model [AG96]. While Martin et al. [MBL06] assume a
relaxed memory model that allows to reorder independent reads (for example,
RMO [WG94]), Larus et al. [LR07] assume a sequentially consistent memory
model.

We claim that while a TM can be implemented in a way to ensure opacity
for transactions, there is little one can do (on a given platform or run-time
environment) to change the underlying memory model. Hence, it is desirable to
define opacity parametrized by a memory model. This thesis provides a general
formal framework for describing the interactions between transactions and non-
transactional operations. We consider opacity as a correctness condition for
transactions, and parametrize it by a memory model.



12 Introduction

1.8 Related Work

This thesis builds upon and improves the existing formalisms for TM and
relaxed memory models. Moreover, this thesis presents a new verification tool
for TM algorithms. We describe some existing related work in these directions.

1.8.1 Formalisms for transactional memories

While a lot of work has been carried out in the direction of developing fast and
efficient transactional memories, there is limited research in the direction of
formalizing correctness properties of TM. Scott [Sco06] was the first to provide
a formal semantics for STM. However, his correctness criterion requires the
order of commits to be preserved. Most of the popular STM algorithms, for
example TL2 [DSS06], do not preserve the order of conflicts. Guerraoui and
Kapalka [GK08] define opacity to precisely capture the safety aspect of STM
and highlighted the subtle differences with database transactions.

The interaction of transactions with non-transactional operations has been
widely studied. The study was pioneered by Grossman et al. [GMP06], where
the authors raised several issues that need to be tackled in order to create TM
implementations that handle non-transactional operations properly. The au-
thors express the correctness property using sample executions, and thus the
property lacks a formal specification. Work by Scott et al. [SDMS08] focuses
on providing a set of rules that should hold irrespective of the memory model.
This work is restricted to memory models that do not allow out-of-thin-air
values. Menon et al. [MBS+08] define correctness by mapping transactions
to critical sections, thus providing an intuitive definition of single global lock
atomicity. Type systems and operational semantics for transactional programs
with non-transactional accesses have been proposed by Abadi et al. [ABHI08]
and Grossman et al. [MG08]. We provide a formal specification of the correct-
ness property in the presence of relaxed memory models.

1.8.2 Formalisms for relaxed memory models

Adve et al. [AG96] provide a detailed description of hardware relaxed memory
models. Language level memory models have been developed for Java [MPA05]
and C++ [BA08]. Various formalisms for memory models have been proposed
in the literature [BP09, BMS08, GHS09, SJMvP07, SSN+09]. Most of these
formalisms provide an axiomatic definition of memory models. Architectural
manuals [WG94, Sit02] also describe memory models in an axiomatic style.
Operational semantics of relaxed memory models were developed by Petri et
al. [BP09]. Their formalism captures write-to-read/write reordering used in
memory models like TSO and PSO. Moreover, the formalism allows thread
creation. However, it cannot express read-to-read/write relaxations found in
memory models like RMO.
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Verification based on axiomatic memory model specifications relies on con-
straint solving (like SAT solvers) to validate execution traces. As our tool
is based on explicit state model checking, we find it more intuitive to de-
fine an operational semantics of relaxed memory models. Our operational
semantics handles write-to-read/write and read-to-read/write relaxations, but
cannot handle thread creation.

For the definition of parametrized opacity, we use an axiomatic definition
of memory models. Most of the existing formalisms for memory models are
tailored to capture the intricacies of specific memory models. We build a
general formalism, with the focus on classification of memory models on the
basis of reordering of instructions they allow.

1.8.3 Verification tools

Many tools for verification have been built in the last several years. Model
checkers like BLAST [BHJM07] and SLAM [BR02] verify properties of sequen-
tial programs. Model checkers like Zing [AQR+04], SPIN [Hol97], KISS [QW04],
and CHESS [QR05, MQB+08] are developed for verification of concurrent pro-
grams. These tools are built to detect races in concurrent programs. However,
TM algorithms, by design, often consist of benign races. Moreover, these
tools assume a sequentially consistent memory model, and miss out a whole
range of interleavings that arise due to the reorderings of the instructions of
a thread allowed by a relaxed memory model. Verification of concurrent data
types has been attempted with theorem proving [CGLM06, VHHS06]. These
methods require a manual tedious proof construction, and assume sequential
consistency.

Dynamic tools [FF09, EQT07, FFY08, FF04] for verifying atomicity and
race freedom in concurrent programs have also been built. Manovit et al. [MHC+06]
used testing to find errors in TM implementations. Elmas et al. [ETQ05] have
built tools for runtime verification of concurrent data types. The motivation
for dynamic tools is to check the correctness of a computation at runtime,
and throw an exception in case of error. Dynamic tools can find errors in
a TM algorithm only when the TM algorithm is used to execute a transac-
tional program. Dynamic tools cannot be used to establish the correctness of
a TM algorithm, that is, to check whether the TM algorithm is correct for all
programs. However, as static analysis is tricky for real TM implementations,
we believe that dynamic tools can be useful to check correctness properties of
TM implementations at runtime. Instead of the data race specification, the
specification of opacity constructed in this thesis could be used.

Burckhardt et al. [BAM06, BAM07] developed CheckFence, a static veri-
fication tool for concurrent C programs under relaxed memory models. The
tool requires as input a bounded test program (a finite sequence of operations)
for a concurrent data type and uses a SAT solver to check the consistency and
report if any fences are required. However, CheckFence cannot automatically
introduce fences. We use the structural properties of TM, which allow us to
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consider a maximal program on two threads and two variables in order to gen-
eralize the result to all programs with any number of threads and variables. We
model the correctness problem as a relation between transition systems. More-
over, our tool, FOIL, automatically inserts fences. Padua et al. [LP01, FLM03]
developed mechanisms to ensure sequential consistency under relaxed mem-
ory models. However, conservatively putting fences into TM implementations
to guarantee sequential consistency would badly hurt TM performance. TM
programmers put fences only where necessary. Gopalakrishnan et al. [GYS04]
developed a verification tool for checking memory orderings for small programs.

Recent work has addressed verification in the context of transactional mem-
ories. Tasiran [Tas08] verified the correctness of the Bartok STM. The author
manually proves the correctness of the Bartok STM algorithm, and uses asser-
tions in the Bartok STM implementation to ensure that the implementation
refines the algorithm. This work is orthogonal to ours, as we focus on au-
tomated techniques to prove the correctness of TM algorithms. Cohen et
al. [CPZ08] model checked STM applied to programs with a small number of
threads and variables, against the strong correctness property of Scott [Sco06].
Further, they studied safety properties in situations where transactional code
has to interact with non-transactional accesses.

1.9 Organization of the Thesis

Chapter 2 presents a preliminary formalism of TM algorithms, and specifica-
tions for opacity. The chapter presents a language Simple, followed by exam-
ples of TM algorithms in the language. Chapter 3 presents results of model
checking safety and liveness of TM algorithms for a finite number of threads
and variables. Then, the chapter presents structural properties of TM algo-
rithms that extend the verification results to an arbitrary number of threads
and variables. These two chapters simplify and extend the formalism and the
verification technique we presented at PLDI 2008 [GHJS08] and CONCUR
2008 [GHS08].

Chapter 4 builds upon the preliminary formalism. It presents a formalism
and examples of memory models. The chapter presents the syntax and oper-
ational semantics of our language RML, followed by examples of different TM
algorithms expressed in RML. Chapter 5 presents our tool FOIL to verify opac-
ity of different TM algorithms under different relaxed memory models. Then,
we show that the structural properties of TM algorithms hold at this low level
of atomicity. These two chapters are based on our work presented at CAV
2009 [GHS09]. Chapter 6 extends the notion of opacity to mixed transactional
code by introducing parametrized opacity. Chapter 7 concludes the thesis and
discusses directions for future work.
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The motivation of the preliminary formalism is to explain our verification tech-
nique for TM algorithms without the complications introduced by hardware
level atomicity and relaxed memory models. Our preliminary approach tackles
the problem of verifying TM algorithms at a level of abstraction by making
certain assumptions. We assume a level of atomicity higher than that pro-
vided by the hardware. We assume that the instructions of a thread execute
in program order. We restrict our verification to deferred update TM algo-
rithms, that is, to TM algorithms which update global memory on a commit.
Moreover, we assume that all writes are committed atomically.

2.1 Transactional Programs

Let V = {1, . . . , k} be a set of transactional variables. Let T = {1, . . . , n} be a
set of threads. Let the set C of transactional commands be ({txrd , txwr}×V )∪
{txend}. These commands correspond to a read or write of a transactional
variable, and to the end of a transaction.

Depending upon the underlying TM, the execution of these commands
may correspond to a sequence of instructions in our abstraction. For example,
a read of a transactional variable may require to check the consistency of
the variable by first reading a version number. Similarly, a transaction end
may require to validate the variables read, followed by copying many variables
from a thread-local buffer to global memory. Moreover, the semantics of the
txwr and the txend commands depend on the underlying TM. For example,
a (txwr , v) command does not alter the value of v in a deferred update TM,
whereas it does in a direct update TM. On the other hand, an txend command
may alter transactional variables in a deferred update TM, and not in a direct
update TM. In this chapter, we assume that a (txwr , v) command does not alter

15
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the value of v globally, which restricts the verification technique to deferred
update TM algorithms.

We consider transactional programs as our basic sequential unit of compu-
tation. We express transactional programs as infinite binary trees on trans-
actional commands, which makes the representation independent of specific
control flow statements, such as exceptions for handling aborts of transactions.
Our definition restricts us to purely transactional code, as every command is
part of some transaction. For every command of a thread, we define two suc-
cessor commands, one if the command is successfully executed, and another if
the command fails due to an abort of the transaction. Note that this definition
allows us to capture different retry mechanisms of TM, e.g., retry the same
transaction until it succeeds, or try another transaction after an abort. We
use a set of transactional programs to define a multithreaded transactional
program. A transactional program θ is an infinite binary tree θ : B∗ → C. Let
Θ be the set of all transactional programs. A (multithreaded) transactional
program prog : T → Θ is a function from the set of threads to the set of trans-
actional programs. Let Progs be the set of all multithreaded transactional
programs.

2.2 Transactional Memories

We characterize a TM by the sequences of memory instructions the TM can
produce. We call a sequence of instructions a history.

2.2.1 Histories

In order to reason about the correctness of TM, the history must contain, apart
from the sequence of memory instructions that capture the reads and writes of
transactional variables in the program, the information of when transactions
finish. This is because the correctness of a TM depends on the sequence of
reads and writes issued to transactional variables and the boundaries where
the transactions finish. Let the set In of instructions be ({read,write} × V ).
Let În be In ∪ {commit, abort}.

Let Ôp = În × T be the set of operations. A history h ∈ Ôp
∗

is a finite
sequence of operations. We characterize a TM by the set of finite and infinite
histories it produces. Formally, a transactional memory (TM) Γ is a prefix-

closed subset of Ôp
∗
∪ Ôp

ω
.

2.2.2 Transactions

Given a history h ∈ Ôp
∗
, we define the thread projection h|t of h on thread

t ∈ T as the subsequence of h consisting of all operations op in h such that
op ∈ În × {t}. Given a thread projection h|t = op0 . . . opm of a history h on
thread t, an operation opi is finishing in h|t if opi is a commit or an abort.
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An operation opi is initiating in h|t if opi is the first operation in h|t, or the
previous operation opi−1 is a finishing operation.

Given a thread projection h|t of a history h on thread t, a consecutive
subsequence x = op0 . . . opm of h|t is a transaction of thread t in h if (i) op0

is initiating in h|t, and (ii) opm is either finishing in h|t, or opm is the last
operation in h|t, and (iii) no other operation in x is finishing in h|t. The
transaction x is committing in h if opm is a commit. The transaction x is
aborting in h if opm is an abort. Otherwise, the transaction x is unfinished in
h. We say that a transaction x is finished in h if x is committing or aborting
in h. Given a history h and two transactions x and y in h (possibly of different
threads), we say that x precedes y in h, written as x <h y, if the last operation
of x occurs before the first operation of y in h. A history h is sequential if for
every pair x, y of transactions in h, either x <h y or y <h x.

2.2.3 Safety in TM

We consider the safety property, opacity, for transactional memories. Opacity
builds upon the safety property of strict serializability. Strict serializabil-
ity [Pap79] requires that the order of conflicting statements from committing
transactions is preserved, and the order of non-overlapping transactions is pre-
served. Opacity [GK08], in addition to strict serializability, requires that even
aborting transactions do not read inconsistent values. The motivation behind
the stricter requirement for aborting transactions in opacity is that in TM,
inconsistent reads may have unexpected side effects, like infinite loops, or ar-
ray bound violations. Although we restrict our attention to read and write
operations, the notion of opacity has been extended to arbitrary operations.

An operation op1 of transaction x and an operation op2 of transaction y
(where x is different from y) conflict in a history h if (i) op1 is a read of some
variable v, and op2 is a commit of a transaction that writes to v, or (ii) op1 and
op2 are both commits of transactions that write to some variable v. Note that
this notion of conflict corresponds to the deferred update semantics [LR07]
in transactional memories, where the writes of a transaction are made global
upon the commit. A history h = op0 . . . opm is strictly equivalent to a history
h′ if (i) for every thread t ∈ T , we have h|t = h′|t, and (ii) for every pair
opi, opj of operations in h, if opi and opj conflict and i < j, then opi occurs
before opj in h′, and (iii) for every pair x, y of transactions in h, where x is a
committing or an aborting transaction, if x <h y, then it is not the case that
y <h′ x.

We define the safety property opacity π ⊆ Ôp
∗

as the set of histories h
such that there exists a sequential history h′, where h′ is strictly equivalent to
h. Although we do not use the property of strict serializability, we define it
to illustrate the formalism. We define a function com : Ôp

∗
→ Ôp

∗
such that

for all histories h ∈ Ôp
∗
, the history com(h) is the subsequence of h which

consists of every operation in h that is a part of a committing transaction. We
define the safety property strict serializability πss ⊆ Ôp

∗
as the set of histories
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h such that there exists a sequential history h′, where h′ is strictly equivalent
to com(h). We note that π ⊆ πss , that is, if a history is opaque, then it is
strictly serializable.

2.2.4 Liveness in TM

We formalize two different notions of liveness, obstruction freedom and live-
lock freedom, as discussed in the TM literature. A third notion, wait free-
dom [Her91], implies livelock freedom. Since we will show that none of our
TM examples satisfy livelock freedom, they do not satisfy wait freedom either.

We consider infinite histories in Ôp
ω
. An infinite history h̄ ∈ Ôp

ω
is ob-

struction free [HLM03] if for all threads t, if the history h̄ has an infinite
number of aborts of t, then either h̄ has an infinite number of commits of t, or
there are infinitely many operations of some thread u 6= t. Formally, ĥ is ob-
struction free if

∧
t∈T (�♦(abort, t) → �♦((commit, t) ∨

∨
in∈În,u∈T\{t}(in, u))),

where the temporal operation � denotes ‘always’ and the temporal operation
♦ denotes ‘eventually’. Obstruction freedom is a Streett condition [Str82].

An infinite history h̄ ∈ Ôp
ω

is livelock free (often referred to as lock-
free [HLM03, FH07]) if the history has an infinite number of commits, or there
is a thread t such that t has infinitely many operations and finitely many aborts
in ĥ. Formally, ĥ is livelock free if �♦(

∨
t∈T (commit, t))∨

∨
t∈T (�♦(

∨
in∈In(c, t))∧

♦�¬(abort, t)). Note that livelock freedom implies obstruction freedom.

We say that Γ ensures (n, k) opacity if for every finite history h in Γ such
that h has at most n threads and at most k variables, we have h ∈ π. More-
over, Γ ensures opacity if Γ ensures (n, k) opacity for all n and k. A TM Γ
ensures (n, k) obstruction freedom (resp. (n, k) livelock freedom) if every infi-
nite history h̄ ∈ Γ such that h̄ has at most n threads and at most k variables is
obstruction free (resp. livelock free). Moreover, Γ ensures obstruction freedom
(resp. livelock freedom) if Γ ensures (n, k) obstruction freedom (resp. (n, k)
livelock freedom) for all n and k.

2.3 TM Specifications

We capture safety properties of TM using TM specifications. We use the
set of instructions as the alphabet of the TM specification. We also allow a
special ε instruction in the alphabet, which we use in nondeterministic TM
specifications. As we see later, the ε instruction marks the serialization point
of a transaction in a nondeterministic specification.

A TM specification Spec on an alphabet În is a 3-tuple 〈Q, qinit , δ〉, where Q
is a set of states, qinit is the initial state, and δ ⊆ Q× ((În∪{ε})×T )×Q is a
transition relation. A sequence r0 . . . rm in ((În∪{ε})×T )∗ is a run of the TM
specification if there exist states q0 . . . qm+1 in Q such that q0 = qinit , and for
all i such that 0 ≤ i ≤ m, we have (qi, ri, qi+1) ∈ δ. A history h = op0 . . . opk
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corresponds to a run r0 . . . rm if h is the longest subsequence of operations in
Ôp in r0 . . . rm.

The language L of a TM specification is the set of all histories h such that h
corresponds to a run of the TM specification. A TM specification Spec defines
opacity π if L(Spec) = π. A TM specification is deterministic if for every state
q ∈ Q, the following hold: (i) for every operation op ∈ Ôp, there is at most
one state q′ ∈ Q such that (q, op, q′) ∈ δ, and (ii) for every thread t ∈ T , there
is no state q′ ∈ Q such that (q, (ε, t), q′) ∈ δ. Note that for a deterministic TM
specification, the history corresponding to a run is the run itself.

2.3.1 Construction of TM specifications

We now provide both nondeterministic and deterministic TM specifications
for opacity for the alphabet În. First, we give a nondeterministic TM specifi-
cation, and manually prove its correctness. Later, we give a deterministic TM
specification, which we shall use in our verification tool. As our verification
technique requires the specification of opacity for two threads and two vari-
ables, it is sufficient to build a deterministic TM specification for two threads
and two variables. We use an antichain-based tool [WDHR06] to prove that
the language of the deterministic TM specification for two threads and two
variables is indeed equivalent to that of the nondeterministic counterpart.

Our construction of the TM specification for opacity for a finite number
of threads and variables uses a finite number of states. The construction is
non-trivial, as threads may be delayed arbitrarily, and execute an arbitrary
number of transactions, where each transaction may contain arbitrarily many
operations and may be aborted arbitrarily often. The classical approach to
checking whether a history is opaque is to construct a directed graph G =
(V,E), called the conflict graph [Pap79], of the transactions in the history.
The conflict graph captures the precedence of the transactions based on the
conflicts. Given a history h = op0 . . . opn, the transactions in h form the set
V of vertices in the conflict graph. There exists an edge from a vertex v1 to
a vertex v2 if v2 commits or aborts before v1 starts, or an operation opi of
v1 conflicts with an operation opj of v2 and i > j. The conflict graph G is
acyclic if and only if the history h is opaque. We note that the size of this
construction is unbounded. The following parametrized history illustrates the
point: hm =((read, v1), t1), (((write, v1), t2), (commit, t2))

m, (commit, t1). The
number of vertices in the conflict graph of hm is m+ 1. Thus, we cannot aim
to create a finite-state TM specification for opacity using conflict graphs. Note
that it can be similarly shown that conflict graphs for serializability and strict
serializability are unbounded.

The key idea to get around the problem of infinite states is to maintain sets
called prohibited read and write sets for every unfinished transaction. These
sets allow to handle unbounded delay between transactions, as finished trans-
actions store the required information in the state of unfinished transactions.
Once a transaction commits or aborts, we remove the transaction from our
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conflict graph (unlike classical conflict graphs). Thus, we need to store infor-
mation of at most one transaction per thread.

2.3.2 A nondeterministic TM specification for opacity

Nondeterminism allows a natural construction of the TM specification, where
a transaction nondeterministically guesses a serialization point during its life-
time. A branch of the nondeterministic TM specification corresponds to a
specific serialization choice of the transactions, which makes the construction
simple and intuitive, though redundant.

The nondeterministic TM specification Spec for opacity is based on the ob-
servation that every finished transaction should serialize at some point during
its execution. The TM specification Spec makes a nondeterministic guess of
when a transaction serializes. Upon every read and every commit of a trans-
action, Spec checks whether the command can be executed or the transaction
needs to be aborted.

Formally, we define the nondeterministic TM specification for opacity as
the tuple Spec = 〈Q, qinit , δ〉. A state q ∈ Q is a 7-tuple 〈Status , SerStatus,
rs , ws , prs , pws , serp〉, where Status : T → {finished, invalid} is the status,
SerStatus : T → {true, false} is the serialization status, rs : T → 2V is the
read set, ws : T → 2V is the write set, prs : T → 2V is the prohibited
read set, pws : T → 2V is the prohibited write set, and serp : T → 2T is
the serialization predecessor set for the threads. Note that although the state
refers to a thread, we often say “state of a transaction x” for brevity. We mean
the state of the thread t which executes the transaction x. In other words, the
state can be attributed to the unfinished transaction of the thread. Note that
when a transaction of a thread finishes, we say that the next transaction of
the thread is unfinished.

The initial state qinit is 〈Status0, SerStatus0, rs0, ws0, prs0, pws0, serp0〉,
where Status0(t) = finished, and SerStatus0(t) = false, and rs0(t) = ws0(t) =
prs0(t) = pws0(t) = serp0(t) = ∅ for all threads t ∈ T . We express the
transition function δ using the procedure nondetSpec shown in Algorithm 2.1.
For all states q ∈ Q and all operations op ∈ Ôp, the following hold: (i) if
nondetSpec(q, op) =⊥, then there is no state q′ ∈ Q such that (q, op, q′) ∈ δ,
and (ii) if nondetSpec(q, op) = q′ for some state q′ ∈ Q, then (q, op, q′) ∈ δ. We
use this notation of the transition relation of a TM specification in the form
of an algorithm multiple times in this thesis.

Given a state q and a thread t ∈ T , the procedure ResetState(q, t) makes
the following updates: (i) sets Status(t) to finished, (ii) sets SerStatus(t) to
false, (iii) sets rs(t), ws(t), prs(t), and pws(t) to ∅, and (iv) for all threads
u 6= t, removes t from serp(u).
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nondetSpec(〈Status , SerStatus , rs ,ws , prs , pws , serp〉, op)

if op = ((read, v), t) then
rs(t) := rs(t) ∪ {v}
if v ∈ prs(t) then return ⊥
for all threads u 6= t do

if SerStatus(u) = true and t /∈ serp(u) then
if v ∈ ws(u) then

Status(u) := invalid
else

pws(u) := pws(u) ∪ {v}

if op = ((write, v), t) then
if v ∈ pws(t) then

Status(t) := invalid
ws(t) := ws(t) ∪ {v}

Algorithm 2.1: The nondeterministic TM specification for opacity

Construction

We describe the set of histories which are produced by the TM specification.
Let r be a run of the TM specification. Let x be an unfinished transaction
in r. The construction of the nondeterministic TM specification ensures the
following:

Rule 1. The serialization status of x is true in a run r′ = r · op if (i) the serial-
ization status of x in r is true, and op is neither a commit nor an abort
instruction of x, or (ii) op is a serialize of transaction x

Rule 2. A variable v is in the prohibited write set of x if

– there is a committed transaction y in r such that y serializes after
x and y writes or reads v

– there is a transaction y such that x is serialized and y does not
serialize before x and y reads v

Rule 3. A variable v is in the prohibited read set of x if there is a committed
transaction y in r such that y serializes after x and y writes v

Rule 4. The status of a transaction x is invalid in a run r′ = r · op if one of the
following holds:

a. the status of x is invalid in r, and op is not an abort of x, or

b. op is a read of some variable v by another transaction y and x writes
to v and x is serialized and y is not serialized before x, or
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nondetSpec(〈Status , SerStatus , rs ,ws , prs , pws , serp〉, op)

if op = (commit, t) then
if Status(t) = invalid then return ⊥
if SerStatus(t) = false then return ⊥
for all threads u 6= t do

if u ∈ serp(t) then
prs(u) := prs(u) ∪ ws(t)
pws(u) := pws(u) ∪ rs(t) ∪ ws(t)
if (ws(u) ∩ (ws(t) ∪ rs(t)) 6= ∅ then

Status(u) := invalid
ResetState(q, t)

if op = (ε, t) then
if SerStatus(t) = true then return ⊥
else SerStatus(t) := true
serp(t) := {u ∈ T | SerStatus(u) = true}
for all threads u 6= t do

if SerStatus(u) = false then
if rs(u) ∩ ws(t) 6= ∅ then Status(t) := invalid
pws(t) := pws(t) ∪ rs(u)

if op = (abort, t) then
if SerStatus(t) = false then return ⊥
ResetState(q, t)

return 〈Status , SerStatus , rs ,ws , prs , pws , serp〉

continued Algorithm 2.1

c. op is a write of some variable v by x and v belongs to the prohibited
write set of x, or

d. op is the commit of a transaction y and x serializes before y and y
reads or writes v and commits and x writes v, or

e. op is the serialize of x and there is a transaction y which is not
serialized and there exists a variable v such that x writes to v and
y reads v

Rule 5. Given an operation op of x, the run r ·op is a run of the TM specification
Spec if

a. op is a write, or

b. op is a commit and the serialization status of x is true and x is in
status finished, or



2.3. TM Specifications 23

c. op is an abort and the serialization status of x is true, or

d. op is a serialize and the serialization status of x is false, or

e. op is a read of variable v and v is not in the prohibited read set of
x.

Note that a variable is added to the prohibited read or write set of a
transaction x only due to transactions that serialize after x. Similarly, the
status of a transaction x is set to invalid only due to transactions that serialize
after x.

Correctness

We now prove that Algorithm 2.1 indeed provides the language of opacity for
n threads and k variables.

Theorem 2.1. Given a history h on n threads and k variables, h is opaque if
and only if h ∈ L(Spec).

Proof. First, we note that the TM specification Spec for opacity gives the
largest set R of runs such that for every run r ∈ R, for every transaction
x in r, the following conditions are satisfied (C1-C3 are graphically shown in
Figure 2.1):

C1. x does not commit if there exists a transaction y such that x serializes
before y and x writes to v and y reads v

C2. x does not commit if there exists a transaction y such that x serializes
before y and both x and y write to a variable v, and y commits before x
does

C3. x does not read a variable v if there exists a transaction y such that x
serializes before y and y writes to v and commits

C4. x serializes at most once

C5. if x is a finished transaction, then x serializes exactly once

The condition C1 follows from the rules 4.b, 4.d, 4.e, and 5.b. The condition
C2 follows from the rules 2, 4.c, 4.d, and 5.b. The condition C3 follows from
the rules 3 and 5.d. The condition C4 follows from the rules 1 and 5.c.

Let h be opaque. As h is opaque, there is a sequential history hs such that
hs is strictly equivalent to h. Let the transactions in the sequential history hs
be given by the sequence x1 . . . xn of transactions. We claim that there exists
a run r of the TM specification Spec such that h is the corresponding history
of the run r. Consider a run r such that the transactions serialize in the order
x1 . . . xn, and h is the corresponding history of r. As hs is strictly equivalent
to h, we know that for every pair xi, xj of transactions, such that i < j, the
following are not true:
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Figure 2.1: The statements inside ovals are disallowed by the TM specification
for opacity. Each condition shows various cases. The arrows represent different
possible positions for a command to occur in a given condition. We write w for
write, r for read, and c for commit. We write the statement ((w, v), tk) as (w, v)k.
Thread t1 executes transaction x and thread t2 executes transaction y.

• xi reads a variable after xj writes and after xj commits, and

• xi is a committing transaction, and xi writes a variable and xj reads it
before xi commits, and

• xi is a committing transaction, and there exists a variable v such that xi
and xj both write to v, and xj commits before xi commits.

This implies that for all transactions x in the run r, the conditions C1 - C3
hold. Thus, r is a run of the TM specification Spec.

Conversely, let r be a run produced by the nondeterministic TM specifi-
cation Spec. Let h be the corresponding history to the run r. We know from
conditions C4 and C5 that every transaction serializes at most once in the run,
and every finished transaction serializes exactly once in the run. Let hs be a
sequential history such that (i) for all serialized transactions in r (which in-
cludes all finished transactions), the order of transactions in hs is same as the
order of serialization in r, and (ii) all unfinished transactions which have not
serialized in r occur in an arbitrary order after all serialized transactions in hs,
and (iii) for all threads, the thread projection of hs is equivalent to the thread
projection of h. The conditions C1 - C3 guarantee that for every pair opi, opj
of operations in h, if opi and opj conflict and i < j, then opi occurs before opj
in hs. Note that if a transaction x finishes before a transaction y starts in h,
then x serializes before y in r. Thus, for every pair x, y of transactions in h,
if x is a finished transaction and x <h y, then we have x <hs y. Thus, hs is
strictly equivalent to h. Hence, h is opaque.

2.3.3 A deterministic TM specification for opacity

In the nondeterministic TM specification, we consider a particular order of
the serialization of the transactions in a given branch. This allows us to argue
individually for different serialization orders, which in turn, allows us to locally
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Figure 2.2: Analysis for creating a deterministic TM specification for opacity.
The histories are fragmented into transactions of different threads.

reason for every pair of transactions. On the other hand, in a deterministic TM
specification, we have to consider all possible serialization orders at the same
time, which complicates the reasoning and the specification. We first look at
the issues we face in creating a deterministic TM specification for opacity.

Analysis of opacity

Consider the history h = ((write, v1), t2), ((read, v1), t1), ((read, v2), t3),
(commit, t2), ((write, v2), t1), ((read, v1), t3), (commit, t1). The history is
illustrated in Figure 2.2(a). Transaction x has to serialize before y due to
a conflict on v1. Also, z has to serialize after y due to a conflict on v1, and
before x due to a conflict on v2. Note that although z does not commit, opacity
requires that transaction x does not commit. So, h is not opaque.

Consider the history h = ((write, v1), t2), ((read, v1), t1), (commit, t2),
((read, v2), t3), (abort, t3), ((write, v2), t1), (commit, t1). The history is illus-
trated in Figure 2.2(b). Transaction x has to serialize before y due to a conflict
on v1. Transaction z has to serialize after y as they do not overlap in w. Also,
z has to serialize before x due to the conflict on v2. This makes h not opaque.
This shows how a read of an aborting transaction may disallow a commit of
another transaction, for the sake of opacity.

As our verification technique requires the TM specification for two threads
and two variables, we build the deterministic TM specification for only two
threads. This makes the construction simple to express and understand.
The deterministic TM specification for opacity Specd is given by the tuple
〈Q, qinit , δ

d〉. A state q ∈ Q is a 7-tuple 〈Status , rs , ws , prs , pws , wp, sp〉,
where Status : T → {finished, invalid, pending} is the status, rs : T → 2V is
the read set, ws : T → 2V is the write set, prs : T → 2V is the prohibited
read set, pws : T → 2V is the prohibited write set, wp : T → {true, false} tells
whether the other thread is a weak predecessor, and sp : T → {true, false}
tells whether the other thread is a strong predecessor. The initial state qinit
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detSpec(〈Status , rs ,ws , prs , pws ,wp, sp〉, op)

if op = ((read, v), t) then
if v ∈ prs(t) then return ⊥
if v ∈ prs(u) and sp(u) then return ⊥
if Status(t) = finished then

if Status(u) = pending then
if sp(u) then return ⊥
wp(t) := true; sp(t) := true

Status(t) := started
rs(t) := rs(t) ∪ {v}
if v ∈ ws(u) then wp(u) := true
if v ∈ prs(u) then wp(t) := true
if sp(t) then

pws(u) := pws(u) ∪ {v}
if v ∈ ws(u) then Status(u) := invalid

if sp(u) and sp(t) then return ⊥

if op = ((write, v), t) then
if Status(t) = finished then

if Status(u) = pending then
if sp(u) then return ⊥
wp(t) := true; sp(t) := true

Status(t) := started
ws(t) := ws(t) ∪ {v}
if v ∈ pws(t) then Status(t) := invalid
if v ∈ rs(u) then

wp(t) := true
if sp(u) then Status(t) := invalid

if v ∈ pws(u) then wp(t) := true
if sp(u) and sp(t) then return ⊥

Algorithm 2.2: The deterministic TM specification for opacity

is 〈Status0, rs0, ws0, prs0, pws0, wp0, sp0〉, where Status0(t) = finished, and
rs0(t) = ws0(t) = prs0(t) = pws0(t) = ∅, and wp0(t) = sp0(t) = false for both
threads. The transition relation δd is obtained using the procedure detSpec
shown in algorithm 2.2. The notation of detSpec is similar to that of the
procedure nondetSpec. The thread t refers to the thread taking the step,
and the thread u refers to the other thread. Given a state q, the procedure
ResetState(q, t) makes the following updates: (i) sets Status(t) to finished, (ii)
sets rs(t), ws(t), prs(t), and pws(t) to ∅, and (iii) sets wp(t), wp(u), and sp(u)
to false.
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detSpec(〈Status , rs ,ws , prs , pws ,wp, sp〉, op)

if op = (commit, t) then
if Status(t) = invalid then return ⊥
if wp(t) or sp(t) then

if wp(u) then Status(u) := invalid
sp(t) := true
if ws(t) ∩ ws(u) 6= ∅ then Status(u) := invalid
if Status(u) 6= invalid then Status(u) = pending
prs(u) := prs(u) ∪ prs(t) ∪ ws(t)
pws(u) := pws(u) ∪ pws(t) ∪ rs(t) ∪ ws(t)

if sp(u) and sp(t) then return ⊥
ResetState(q, t)

if op = (abort, t) then ResetState(q, t)
return 〈Status , rs ,ws , prs , pws ,wp, sp〉

continued Algorithm 2.2

Correctness

We implement the algorithms to build nondeterministic and deterministic TM
specifications for two threads and two variables. We observe that the nonde-
terministic TM specification presented is too large to be automatically deter-
minized. However, the deterministic TM specification we present turns out to
be much smaller in size. Using an antichain-based tool [WDHR06], we estab-
lish that for two threads and two variables, the language of the deterministic
TM specification for opacity is equivalent to the language of the nondetermin-
istic TM specification for opacity.

The deterministic TM specification Specd has 2272 states, while the nonde-
terministic TM specification Spec consists of 9202 states. The antichain-based
tool can prove the equivalences within ten seconds. This leads us to the fol-
lowing theorem.

Theorem 2.2. L(Spec) = L(Specd).

This theorem allows us to now use the deterministic TM specification for
model checking TM algorithms.

2.4 TM Algorithms

We now present a formalism to express various TM using TM algorithms.
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l ∈ L
g ∈ G
in ∈ InA
e ::= f(l, . . . , l, g, . . . , g)
s ::= g := e | l := e | if e then s else s

| for all e in E do s | s ; s | skip
p ::= (in : s) | p ; p | for all e in E do p | if e then p else p

Figure 2.3: The syntax of the language Simple

2.4.1 The Simple language

As this chapter assumes an abstraction that provides a high level of atomicity,
we model TM algorithms at that level in our language Simple. We describe a
TM algorithm as sets of global and local variables, an initial valuation, and
programs in our language Simple corresponding to a transactional read or write
of a variable, and the transactional end.

Syntax

A statement in the language Simple can have one or multiple assignments to
global or local variables. These assignments could also depend on the global
and local variables. Every statement in the language Simple executes atomi-
cally. A statement has an associated instruction, which represents the execu-
tion of the statement.

Let G be the set of global variables and L be the set of local variables in
the TM algorithm. Let InA be the set of instructions of the TM algorithm.
The syntax of the language Simple is shown in Figure 2.3.

Operational semantics

The semantics of the Simple language are intuitive. Nevertheless, we give the
semantics here for the sake of completeness. Let σG be a valuation of the global
variables, and let σL be a valuation of the local variables for each thread. Note
that dom(σG) = G and dom(σL) = L × T . We define a complete valuation
σ̂ = σG ∪ σL as a valuation of the global variables, and the local variables of
each thread. Let Σ̂ be the set of all complete valuations.

Given a thread t, we have the t-valuation as σ = σG ∪ σtL, where σtL is the
valuation of the local variables of thread t. A t-valuation consists of a valuation
of the global variables, and a valuation of the local variables of thread t. Let
Σ be the set of all t-valuations.

The operational semantics at the level of statements is given as:
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〈skip, σ〉 → σ
〈g := e, σ〉 → σ[g/σ[e]]
〈l := e, σ〉 → σ[l/σ[e]]

〈if e then s1 else s2, σ〉 → 〈s1, σ〉 if σ[e] 6= 0
〈if e then s1 else s2, σ〉 → 〈s2, σ〉 if σ[e] = 0
〈for all e in E do s, σ〉 → 〈e := e1; s; for all e in E \ {e1} do s, σ〉

where e1 ∈ E
〈for all e in ∅ do s, σ〉 → σ where E = ∅

〈s; s′, σ〉 → 〈s′, σ′〉 where 〈s, σ〉 → σ′

The operational semantics at the level of programs is given as follows:

σ[e] 6= 0

〈if e then p1 else p2; p, σ〉
ε−→ 〈p1; p, σ〉 (IF TRUE)

σ[e] = 0

〈if e then p1 else p2; p, σ〉
ε−→ 〈p2; p, σ〉 (IF FALSE)

e1 ∈ E
〈for all e in E do p; p1, σ〉

ε−→ 〈e := e1; p; for all e in E \ {e1} do p; p1, σ〉

(FOR ALL)
E = ∅

〈for all e in E do p; p1, σ〉
ε−→ 〈p1, σ〉 (FOR ALL)

〈s, σ〉 → σ′

〈in : s; p1, σ〉
in−→ 〈p1, σ

′〉 (INSTRUCTION)

Given valuations σ, σ′, programs p, p′, and an instruction in, we say that
〈p, σ〉 produces 〈p′, σ′〉 on instruction in if there exist valuations σ1 . . . σn and
programs p1 . . . pn such that

〈p, σ〉 ε−→ 〈p1, σ1〉
ε−→ . . . 〈pn, σn〉

in−→ 〈p′, σ′〉

2.4.2 Language of a TM algorithm

A state of the TM algorithm consists of a valuation of the global variables,
a valuation of the local variables for each thread, a Simple program to be
executed by each thread, and a location in the transactional program of each
thread. A state z of an TM algorithm is given by 〈σG, σL, pc, txpc〉, where σG is
the valuation of the global variables of the TM algorithm, σL is the valuation
of the local variables for each thread, pc : T → P is a function which represents
the Simple program for each thread, and txpc : T → B∗ represents the location
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in the transactional program for each thread. A TM algorithm A is a 5-tuple
〈pr, pw, pe, σinit

G , σinit
L 〉, where pr, pw, and pe are Simple programs, and σinit

G is the
initial valuation of the global variables, and σinit

L is the initial valuation of the
local variables. For the transactional command (txrd , k), the corresponding
Simple program is pr with v = k. For the transactional command (txwr , k),
the corresponding Simple program is pw with v = k. For the transactional
command xend, the corresponding Simple program is pe.

Let a scheduler α on T be a function α : N → T . Given a sched-
uler α, a transactional program prog, a run of a TM algorithm A is a se-
quence 〈z0, op0〉, . . . 〈zn, opn〉 such that z0 = 〈σinit

G , σinit
L , pcinit , txpcinit〉 where

txpcinit(t) = ε for all threads t ∈ T , and pcinit(t) = prog(t)(ε) for all threads
t ∈ T , and for all j such that 0 ≤ j < n, if zj = 〈σG, σL, pc, txpc〉 and
zj+1 = 〈σ′G, σ′L, pc′, txpc′〉, then the following hold:

1. for the thread t = α(j), we have that 〈pc(t), σ〉 produces 〈p′, σ′〉 on
instruction inj for some Simple program p′, where (a) σ = σG ∪ σtL and
σ′ = σ′G ∪ σ

′t
L, (b) txpc′(t) = txpc(t) · 1 if inj is a read, write, or a commit

instruction, and txpc′(t) = txpc(t) · 0 if inj is an abort instruction, and
txpc′(t) = txpc(t) otherwise, and (c) pc′(t) = p′ if txpc′(t) = txpc(t), and
pc′(t) is the corresponding program of prog(t)(txpc′(t)) otherwise, and (c)
opj = (inj, α(j)), and

2. for all threads t 6= α(j) and all local variables l ∈ L, we have σ
′t
L = σtL,

and pc(t) = pc′(t), and txpc(t) = txpc′(t).

A history h corresponds to a run 〈z0, op0〉, . . . , 〈zn, opn〉 of a TM algorithm

A if h is the longest subsequence of operations of op0 . . . opn in Ôp
∗
. In other

words, a history is obtained by removing the TM specific operations from a
run. The language L(A) of a TM algorithm A is the set of all histories h,
such that h is the corresponding history of a run of the TM algorithm A. A
TM algorithm A defines a TM Γ if the language L(A) of the TM algorithm is
equivalent to the set of all finite histories in the TM Γ.

2.4.3 The transition system of a TM algorithm

TM algorithms often use timestamps or version numbers to manage concur-
rency. These result in global and local variables with an unbounded number
of valuations. To characterize TM algorithms using a finite number of states,
we use boolean predicates over the set of global and local variables. A boolean
predicate pred is defined by the function pred : Σ̂ → B.

A state q of a transition system is given by the pair q = 〈pc, σPreds〉, where
pc : T → P is the program counter for the threads, and σPreds : Preds → B is
a valuation of the set Preds of boolean predicates.

Given a TM algorithm A on global variables G and local variables L, we
define a transition system Ats on a set Preds of boolean predicates by the tuple
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〈Q, qinit , δ〉, where Q is the set of states of the transition system, qinit is the
initial state, and δ ⊆ Q× (InA × T )×Q is the transition relation, such that

• qinit = 〈pcinit , σinit
Preds〉 where σinit

Preds(pred) = pred(σinit
G ∪ σinit

L ) for all predi-
cates pred ∈ Preds, and

• for every two distinct states q1 = 〈pc, σPreds〉 and q2 = 〈pc′, σ′Preds〉 in Q,
either there exists a thread t ∈ T such that pc(t) 6= pc′(t), or there exists
a predicate pred ∈ Preds such that q1(pred) 6= q2(pred), and

• if there exists a run r = 〈z0, op0〉 . . . 〈〈σG, σL, pc, txpc〉, op〉 〈〈σ′G, σ′L, pc′, txpc′〉, op′〉
. . . 〈zn, opn〉 of the TM algorithm A, then (〈pc, σPreds〉, op, 〈pc′, σ′Preds〉) ∈ δ
where σPreds(pred) = pred(σG ∪ σL) and σ′Preds(pred) = pred(σ′G ∪ σ′L) for
all predicates pred ∈ Preds.

A sequence op0 . . . opm in (InA × T )∗ is a run of the transition system of the
TM algorithm if there exist states q0 . . . qm+1 in Q such that q0 = qinit , and

for all i such that 0 ≤ i ≤ m, we have (qi, opi, qi+1) ∈ δ. A history h ∈ Ôp
∗

corresponding to a run r is the longest subsequence of operations in Ôp
∗

in r.
The language L(Ats) of the transition system of a TM algorithm A is the set
of all histories h such that h corresponds to a run of Ats. In fact, the transition
system captures the set of all runs of a TM algorithm, that is, L(Ats) ⊆ L(A).
The motivation behind the set of boolean predicates is to capture the behavior
of a TM algorithm in a finite number of states. We describe how we build
transition systems of TM algorithms in more detail in Chapter 3.

2.5 Examples of TM Algorithms

We describe four TM algorithms. We prove the safety and liveness properties
of these TM algorithms. For ease of understanding, we start with a basic TM
which executes transactions serially, and then move to realistic TM algorithms.
For all TM algorithms, we present the pr, pw, and pe programs in our Simple
language. We also give the initial valuation of the global and local variables. In
all TM algorithms, the value self denotes the number of the thread executing
the algorithm.

2.5.1 Sequential TM

The sequential TM executes the transactions sequentially. There is one global
variable glock such that glock ∈ T ∪ {0}. The initial value of glock is 0.
The set Inseq of instructions is În. The sequential TM algorithm is shown in
Algorithm 2.3.
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program pr :
if glock 6= 0 and glock 6= self then pa
else (read, v) : glock := self

program pw :
if glock 6= 0 and glock 6= self then pa
else (write, v) : glock := self

program pe :
if glock 6= 0 and glock 6= self then pa
else commit : glock := 0

program pa :
abort : skip

Algorithm 2.3: The sequential TM algorithm in Simple

2.5.2 Two phase locking TM

Two phase locking TM (2PL TM) defines a locking protocol per variable. A
thread acquires a shared read lock for a variable when the thread wants to read
the variable. A thread acquires an exclusive write lock for a variable when a
thread wants to write the variable.

The 2PL TM algorithm consists of the global variables wlock and rlock,
where wlock : V → T ∪ {0} represents the write lock, and rlock : V × T →
{true, false} represents the read lock for the variables. The initial value of
wlock is wlock0 where wlock0(v) = 0 for all variables v ∈ V . The initial value
of rlock is rlock0 where rlock0(v, t) = false for all variables v ∈ V and all
threads t ∈ T . The set In2PL of instructions is În. The 2PL TM algorithm is
shown in Algorithm 2.4.

2.5.3 Transactional locking II

Two phase locking requires that a thread locks a variable when it reads
or writes to the variable. This means that a thread may lock a variable for
the whole duration of a transaction. Thus, a transaction wishing to read a
variable may have to wait for the whole duration of a transaction writing to
the variable. Transactional locking II (TL2) [DSS06] improves efficiency by
not requiring threads to lock variables at encounter-time, rather lock them at
commit time. When a transaction writes to a variable, the variable is simply
added to the write set. The locks are obtained just before the commit (lazy
acquire). Then, it is checked, for every variable read, that the current version is
not newer than the version read by the transaction (read set validation). Also,
it is checked that every variable in the read set is not locked by any other
thread. The use of version numbers in TL2 allows efficient read set validation.
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program pr :
if wlock(v) 6= 0 and wlock(v) 6= self then pa
else (read, v) : rlock(v, self) := true

program pw :
if wlock(v) 6= 0 and wlock(v) 6= self then pa
if rlock(v, u) = true for some thread u 6= self then pa
(write, v) : wlock(v) := self

program pe :
commit :
forall v in V do

if wlock(v) = self then wlock(v) := 0
if rlock(v, self) = true then rlock(v, self) := false

program pa :
abort :
forall v in V do

if wlock(v) = self then wlock(v) := 0
if rlock(v, self) = true then rlock(v, self) := false

Algorithm 2.4: The two-phase locking TM algorithm in Simple

As version numbers are integer valued and increase monotonically, TL2 has
an infinite state space even for a finite number of threads and variables. In
Chapter 3, we describe the set of boolean predicates we consider in order to
get a finite state representation of TL2.

The TL2 TM algorithm consists of the global variables lock, clk, and
version, and the local variables wflag, rflag, lver, l, and lclock. The lock
variable is a function lock : V → T ∪ {0}. The clock variable clk ∈ N is a
natural number. The version variable is a function version : V → N. The
write flag and the read flag variables are functions wflag : V → {true, false}
and rflag : V → {true, false}. The local version variable is a function lver :
V → N. The variable l is either 0 or 1. The local clock variable lclock ∈ N is
a natural number. The initial valuation of the variables is as follows: lock is
initially lock0 such that lock0(v) = 0 for all variables v. version is initially
version0 such that version0(v) = 0 for all variables v. clk is initially 0.
wflag is initially wflag0 such that wflag0(v) = false for all variables v. rflag
is initially rflag0 such that rflag0(v) = false for all variables v. lver is initially
lver0 such that lver0(v) = 0 for all variables v. l is initially 0. lclock is initially
0. The set InTL2 of instructions is În∪ ({lock, chklock, validate}×V )∪{start}.
The TL2 TM algorithm is shown in Algorithm 2.5.
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program pr :
if lclock = 0 then

start : lclock := clk

if lock(v) 6= 0 then pa
if clk 6= lclock then pa
(read, v) :
rflag(v) := true
lver(v) := version(v)

program pw :
if lclock = 0 then

start : lclock := clk

(write, v) : wflag(v) := true

program pa :
abort :
forall v in V do

if lock(v) = self then

lock(v) := 0
wflag(v) := false

if rflag(v) = true then

rflag(v) := false
lclock := 0

program pe :
forall v in V do

if wflag(v) = true then

if lock(v) = 0 then

(lock, v) : lock(v) = self

else pa
increment :
clk := clk + 1
lclock := clk

l := 0

forall v in V do

if rflag(v) = true then

(chklock, v) :
if lock(v) 6= 0 then l := 1

(validate, v) :
if version(v) > lver(v) then l := 1

if l = 1 then pa
commit :
forall v in V do

if wflag(v) = true then

lock(v) := 0
wflag(v) := false
version(v) := lclock

if rflag(v) = true then

rflag(v) := false
lclock := 0

Algorithm 2.5: The TL2 TM algorithm in Simple

2.5.4 DSTM

All the above three TM algorithms are based on locks. If a thread has locked
a variable, another thread cannot acquire the lock. Thus, none of the three
algorithms can guarantee nonblocking progress. We shall prove this using our
automated verification tool later. Dynamic software transactional memory
(DSTM) [HLMS03] is a TM algorithm designed such that it guarantees the
nonblocking progress property of obstruction freedom. DSTM is based on the
notion of ownership. Even if a thread owns a variable, another thread may
aggressively acquire ownership from the thread.

The DSTM algorithm consists of the global variables status, owner, and
readset. The status variable is a function status : T → {aborted, finished, invalid},
the owner variable is a function owner : V → T ∪ {0}, and the readset
variable is a function readset : V × T → {true, false}. The initial valua-
tion of these variables are status0, owner0, and readset0 respectively, where
status0(t) = finished for all threads t ∈ T and owner0(v) = 0 for all variables
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program pr :
if status(t) = finished then

(read, v) : readset(v, t) := true
else pa

program pw :
if status(t) = aborted then pa
(own, v) :
u := owner(v)
if u /∈ {0, t} then
status(u) := aborted
forall v′ in V do

if owner(v′) = u then

owner(v′) := 0
owner(v) := t

program pa :
abort :
forall v in V do

readset(v, t) := false

program pe :
if status(t) = finished then

validate :
forall v in V do

if readset(v, t) = true then

u := owner(v)
if u /∈ {0, t} then
status(u) := aborted
forall v′ in V do

if owner(v′) = u then

owner(v′) := 0
else pa
if status(t) = finished then

commit :
forall v in V do

readset(v, t) := false
if owner(v) = t then
owner(v) := 0
forall u in T do

if readset(v, u) = true then

status(u) := invalid
else pa

Algorithm 2.6: The DSTM algorithm in Simple

v ∈ V , and readset0(v, t) = false for all variables v ∈ V and all threads t ∈ T .
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As TM provide a programmer with a flexible programming paradigm, a TM
can involve an arbitrary number of concurrent threads and variables. Thus,
a TM algorithm may have an unbounded number of states (corresponding
to state of every variable for every thread), where every state has an un-
bounded number of transitions (corresponding to read or write for every vari-
able). Moreover, as we saw in the TL2 algorithm, a TM algorithm which uses
integer valued variables, like version numbers or timestamps, for managing
concurrency may have an infinite number of states even for a finite number of
threads and variables.

The TM specifications developed in Chapter 2 show that checking whether
a history is opaque or not requires O(n · |h|) time, where n is the number of
threads, and |h| is the length of the history. This check can be expensive for
TM algorithms, which are highly tuned for performance, rather than precise-
ness. In other words, efficient TM algorithms rely on coarse means to detect
conflicts, and thus often abort even when the history is opaque. These coarse
means of conflict detection turn out to be helpful in our verification technique.
TM algorithms detect conflicts on each variable independently, based on the
interaction of a thread with all other threads. A common technique in checking
correctness of arbitrarily sized systems lies in exploiting the inherent symme-
try of the system [ES96, HQR99]. We develop similar techniques to prove the
correctness of TM for any number of threads and variables.

We prove the correctness of TM algorithms in two parts. First, we establish
the correctness of a TM algorithm for a finite number of threads and variables,
and second, we describe and use the structural properties of TM to prove a
reduction theorem which states that if a TM is correct for the finite number of
threads and variables as established in the first part, then the TM is correct
for an arbitrary number of threads and variables.

37
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3.1 Model Checking Safety

We model check TM with two threads and two variables for opacity. Later, in
Theorem 3.2 we show that if a TM Γ guarantees opacity for two threads and
two variables, then Γ guarantees opacity for an arbitrary number of threads
and variables.

3.1.1 Obtaining a suitable transition system

We now verify the opacity of the TM algorithms presented in the previous
chapter. For each TM algorithm, we give a set of suitable boolean predicates
such that the transition system of the TM algorithm has a finite number of
states. We check whether the language of the transition system of the TM
algorithm is included in the language of the deterministic TM specification for
opacity. We then check whether the transition system obtained in this manner
is deterministic. If so, we know that our verification is sound and complete. If
the transition system obtained is nondeterministic, our verification technique
would be sound but incomplete: if we find that L(Ats) ⊆ L(Spec), then the TM
algorithm A guarantees opacity, but if L(Ats) 6⊆ L(Spec), we cannot say that
the TM algorithm A does not guarantee opacity. In this case, we need to check
that the counterexample to opacity on the transition system is indeed a coun-
terexample on the TM algorithm. We manually refine the transition system by
changing the set of boolean predicates until we prove that the TM algorithm
is opaque, or obtain a counterexample to opacity of the TM algorithm.

The TM algorithms, sequential, 2PL, and DSTM, consist of finite-valued
global and local variables. For these algorithms, the set of boolean predi-
cates is simply the set of valuations for these variables. For the sequential
TM algorithm, the set of boolean predicates is {glock = t | t ∈ T ∪ {0}}.
For the two phase locking TM algorithm, the set of boolean predicates is
{wlock(v) = t | v ∈ V, t ∈ T ∪ {0}} ∪ {rlock(v, t) | v ∈ V, t ∈ T}.
For the DSTM algorithm, the set of boolean predicates is {status(t) = s |
t ∈ T, s ∈ {aborted, finished, invalid}} ∪ {owner(v) = t | v ∈ V, t ∈ T} ∪
{readset(v, t) | v ∈ V, t ∈ T}. The TM algorithm TL2 contains version
numbers and clock variables which are integer valued. So, for TL2 we con-
sider the boolean predicates as follows: {lock(v) = t | v ∈ V, t ∈ T ∪ {0}}
∪ {(wflag(v), t) | v ∈ V, t ∈ T} ∪ {(rflag(v), t) | v ∈ V, t ∈ T} ∪ {(clk =
lclock(t)) | t ∈ T} ∪ {(version(v) = (lver(v), t) | v ∈ V, t ∈ T} With the
given boolean predicates for each TM algorithm, we construct the transition
system Ats for each TM algorithm.

3.1.2 Results

We now check the opacity of different TM by checking whether the language
L(Ats) of the transition system Ats is included in the language L(Specd) of the
deterministic TM specification Specd of opacity. We find that the transition
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Table 3.1: Time for verifying opacity of TM algorithms using language inclusion.
The experiments are performed on a dual core 2.8 GHz PC with 2 GB RAM. In
case the language inclusion holds, we write YES followed by the time required
for finding it. Otherwise, we write NO followed by the counterexample produced,
followed by the time required to find the counterexample. (write, v2)1 denotes a
write to variable v2 by thread 1.

TM Size L(Ats) ⊆ L(Spec)

seq 3 YES, 0.01s
2PL 99 YES, 0.01s
dstm 1846 YES, 0.13s
TL2 21568 YES, 2.4s

mod TL2 17520 NO, h1, 8s

Counterexamples

h1 (write, v2)1, (write, v1)2, (read, v2)2, (read, v1)1, commit2, commit1

system of each TM algorithm is deterministic. Table 3.1 shows our results and
leads to the following theorem.

Theorem 3.1. The sequential TM, two-phase locking TM, TL2 and DSTM
ensure opacity for two threads and two variables.

3.1.3 Ordering in TL2

Our tool discovered a subtle point in TL2. In the description of the published
TL2 algorithm, we found the order of two operations, validating the read set
(validate), and checking whether a variable in the read set is locked (chklock),
ambiguous. We reordered the statements corresponding to the instructions
chklock and validate. We call this new TM algorithm as the modified TL2 TM
algorithm. We found that the language of the transition system of the TL2
algorithm is not included in the language of the TM specification for opacity.
We obtain a counterexample which is also a counterexample of the TL2 TM
algorithm. In the published TL2 algorithm, the authors maintain the version
number and the lock bit of every variable in the same memory word. This
ensures that the two operations chklock and validate execute atomically, and
thus they can be executed in any order. Our experiments discover that the
correctness of TL2 is based on the subtle fact that either the version number
and the lock bit have to be accessed atomically, or validate has to occur after
chklock.

Note that this observation motivates the importance of verifying the cor-
rectness of TM algorithms under relaxed memory models. Although the pro-
grammer first performs a chklock followed by a validate in the TM algorithm,
it is possible that a relaxed memory model reorders the two checks.
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3.2 Model Checking Liveness

We use the formalism of TM algorithms to verify liveness properties of TM. We
define a loop l in a TM algorithm A as a finite history opm . . . opn such that
there exists a run 〈z0, op0〉 . . . 〈zm, opm〉 . . . 〈zn, opn〉 of A such that zm = zn.
Similarly, we define a loop in the transition system of a TM algorithm.

Note that we defined obstruction freedom using a Streett condition in Chap-
ter 2 as

∧
t∈T (�♦(abort, t)→ �♦((commit, t) ∨

∨
in∈În,u∈T\{t}(in, u))).

Every history h that is not obstruction free violates at least one of the
conjuncts of the Streett condition stated above. Each conjunct (Streett pair)
corresponds to one thread. A history h can violate the condition for thread t,
only if h has from some point on only statements of t. Note that in this case
h trivially satisfies the Streett pairs for other threads. This fact allows us to
use a simple model checking procedure, even though obstruction freedom is
formally a Streett condition.

In particular, a TM defined by a TM algorithm A ensures obstruction
freedom iff there is no loop l in A such that all statements in l are from the
same thread, and l contains no commit, and l contains an abort. Similarly,
a TM ensures livelock freedom iff there is no loop l in A such l contains no
commit, and every thread that has a statement in l, has an abort in l.

Liveness verification results

We built a verification tool to check obstruction freedom and livelock freedom
properties of TM algorithms. Our tool provides a platform for TM designers
to check which liveness properties are ensured. If the liveness property fails,
then the tool provides feedback in the form of a history that represents a
counterexample. Our results are shown in Table 3.2.

We give the description of the TM algorithms and the boolean predicates
for each TM algorithm as input to our model checking tool. To check obstruc-
tion freedom, our tool tries to find a history h = op0 . . . opn of the transition
system of the TM algorithm such that there exists a suffix h′ of h such that
all operations in h′ are from the same thread, and h′ has no commit, and h′

has an abort, and h′ is a loop in the transition system. If the tool finds such
a history, the tool checks that h′ is also a loop of the TM algorithm. If so, the
loop is a counterexample to obstruction freedom. If the tool does not find a
loop, we know that the TM ensures obstruction freedom. Similarly, to check
livelock freedom, our tool tries to find a loop l in the TM transition system
such that there is no commit in l, and every thread that has a statement in
l, has an abort in l. If our tool finds a loop l in the transition system of the
TM algorithm, such that l is not a loop in the TM algorithm, then we need to
manually refine the transition system, until we prove that the TM algorithm
satisfies the required liveness property, or find a loop in the transition system
which is also a loop in the TM algorithm.
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Table 3.2: Time for verifying liveness of TM algorithms. The experiments are
performed on a dual core 2.66GHz desktop PC with 2 GB RAM. The notation
is similar to Table 3.1. The time denotes the time required to prove a liveness
property or find a counterexample. The counterexamples obtained are of the form
a · bω. We write the loop b here.

TM Obstruction freedom Livelock freedom

seq NO, h1, 0.1s NO, h1, 0.1s
2PL NO, h1, 0.1s NO, h1, 0.1s
dstm YES, 2s NO, h2, 0.2s
TL2 NO, h1, 0.4s NO, h1, 0.4s

Counterexamples

h1 abort1

h2 (own, v1)1, (own, v1)2, abort1, abort2

3.3 Extending the Verification Results

We now reduce the problem of verifying opacity of a TM algorithm with an
arbitrary number of threads and variables to verifying opacity of the TM al-
gorithm with two threads and two variables.

3.3.1 Properties of TM algorithms

To reduce the verification problem of TM algorithms to a finite number of
threads and variables, we reason about TM algorithms in terms of the following
properties.

• A TM algorithm A is abort isolated if for every history h ∈ L(A), for
every aborted transaction x in h, if an instruction in of x changes the
value of a global variable g and a transaction y observes the value of g
before x aborts, then y aborts in the step of observing g.

• A TM algorithm is pending isolated if for every history h, for every
pending transaction x in h, if an instruction in of x changes the value of
a global variable g and a transaction y observes the value of g before x
finishes, then y aborts.

These two properties restrict the aborting and pending transactions in a
TM. These properties require that if an aborting or a pending transaction
change the global state, then that change is not visible to committing
transactions. We shall later use these properties to remove the aborting
and pending transactions from a history.

• A TM algorithm is conflict commutative if for every history h where the
execution of a transactional command c1 by thread t overlaps with the



42 Preliminary Verification

execution of a transactional command c2 by thread u, if c1 consists of an
instructions in1 and in3, and c2 consists of instructions in2 and in4 such
that in1 occurs before in2 in h and they conflict, and h = h1in4in3h2, then
h′ = h1in3in4h2 is also a history in the language of the TM algorithm.

3.3.2 Checking properties of example TM algorithms

We shall now informally explain why the TM algorithms we considered are
abort isolated, pending isolated, and conflict commutative.

Sequential TM

Let us consider the sequential TM algorithm. It is definitely one of the most
basic TM algorithms that allows multiple threads to commit transactions.
The sequential TM algorithm consists of n + 1 states, where n is the number
of threads. We now provide the intuition why the sequential TM algorithm
satisfies the above definitions.

Abort isolated. The thread t aborts in a transition if some other thread u 6= t
holds the global lock, that is, glock = u. An aborting transaction does not
modify the global variable glock, and thus the sequential TM algorithm is
abort isolated.

Pending isolated. The thread t is pending if t holds the global lock, that is,
glock = t. Every thread u 6= t aborts if it observes glock = t. Thus, the
sequential TM algorithm is pending isolated.

Conflict commutative. Every command in the sequential TM executes within a
single instruction. Thus, the sequential TM algorithm is conflict commutative.

Two phase locking TM

The sequential TM algorithm is extremely coarse-grained. No two threads
can execute transactions at the same time. The two phase locking TM is a
relatively fine-grained locking scheme which allows multiple transactions exe-
cuting on different variables to run concurrently. We now show that the two
phase locking TM satisfies the required definitions.

Abort and pending isolated. An aborted transaction can change the state of
the variables in intermediate steps in two phase locking TM. The states which
differ from the initial state are when the aborted transaction x of a thread t
sets wlock(v) = t and when it sets rlock(v, t) = true. Note that a thread u
observes the state if u wants to read or write v. In this case, u aborts. Thus,
the two phase locking TM is abort isolated. By a similar argument as for abort
isolation, two phase locking TM is pending isolated.

Conflict commutative. A read command consists of obtaining a read lock fol-
lowed by performing the actual read. A commit command consists of releasing
all locks, followed by the commit. Note that a read command cannot be con-
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current with a conflicting commit. Similarly, two conflicting commits cannot
be concurrent.

Transactional locking II

TL2 differs from two phase locking protocol in two ways: write locks are
acquired at commit time instead of encounter time, and reads use version
numbers to validate, rather than acquiring read locks. We explain why TL2
satisfies the required properties.
Abort and pending isolated. The TL2 algorithm changes the global state on
a lock instruction, and the commit instruction. An intermediate state change
by an aborting transaction can be observed by another transaction y only if
y attempts to access the lock held by x. However, in that case, y aborts.
Similarly, TL2 is pending isolated.
Conflict commutative. As the read step is considered atomic, it cannot over-
lap with a conflicting commit. Two conflicting commits cannot overlap as
they both require to lock the variable. Thus, the TL2 algorithm is conflict
commutative.

DSTM

We show that the required properties hold for DSTM.
Abort and pending isolated. An aborted or a pending transaction does not
change the state in DSTM. Thus, DSTM is abort and pending isolated.
Conflict commutative. As the read consists of a single instruction, it cannot
be concurrent with a commit instruction. Moreover, two commits cannot be
concurrent as they both own the variable they write to. Hence, DSTM is
conflict commutative.

3.3.3 Structural properties of TM

We now present four structural properties of TM algorithms. We then use
these properties to prove the reduction theorem for opacity. We use the above
definitions to show that the TM algorithms, sequential TM, two-phase locking
TM, DSTM, and TL2 TM, satisfy these structural properties. Note that the
properties are sufficient (and not necessary) conditions for the reduction theo-
rem to hold. Let Γ be a transactional memory and let A be the corresponding
TM algorithm. Let h be a history in Γ.

P1 Transaction projection

We define the transaction projection of h on X ′ ⊆ X as the subsequence of
h that contains every statement of all transactions in X ′. The property P1
states that the transaction projection of h on X ′ is in Γ, where X ′ contains all
committed transactions and no aborted transactions.
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We should note that, however, we cannot project away a subset of the
aborted transactions. This is because removing an aborted transaction may
allow another aborted transaction to commit.

Lemma 3.1. If a TM algorithm A is abort isolated and pending isolated, then
the TM Γ satisfies transaction projection.

Proof. Consider an arbitrary history h ∈ L(A). We can divide the history h
into subsequences h1 . . . hn, where for all i, all statements in hi are committing,
aborting, or pending. As the TM algorithm is abort isolated, we can remove
the subsequences from h1 . . . hn which are aborting. Moreover, as the TM
algorithm is pending isolated, we can remove a subset of the subsequences
which are pending. Hence, we get a new history h′ such that all statements in
h′ belong to committed or pending transactions, and h′ ∈ L(A).

P2 Thread renaming

For non-overlapping transactions, the TM is oblivious to the identity of the
thread executing the transaction. The property P2 states that if (i) h has no
aborting transactions, and (ii) there exist two threads u and t such that for all
committing transactions x of u and y of v in the history h, either x <w y or
y <w x, then the history h′ obtained by renaming all transactions of thread u
to be from thread t is in Γ. We note that for all TM algorithms discussed, the
programs pr, pw, and pe and the initial state z init do not distinguish between
the threads. Thus, the TM algorithms we consider satisfy the thread renaming
property.

P3 Variable projection

If a transaction can commit, then removing all statements that involve some
particular variables does not cause the transaction to abort. We define the
variable projection of h on V ′ ⊆ V as the subsequence of h that contains all
commit and abort statements, and all read and write statements to variables
in V ′. The property P3 states that if h has no aborting transactions, then for
all V ′ ⊆ V , the variable projection of h on V ′ is in Γ. A TM satisfies variable
projection if reading or writing a variable does not remove a conflict on other
variables. All TM we discussed (sequential TM, two phase locking TM, TL2,
and DSTM) satisfy P3 as they track every variable accessed by every thread
independently.

P4 Monotonicity

The most important property which allows to reduce the verification property
is the monotonicity in TM. Monotonicity states that if a history is allowed by
the TM, then more sequential forms of the history are also allowed. Formally,
let F ⊆ Ôp

∗
be the set of opaque histories with all committed and exactly one
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unfinished transaction. We define a function seq : F → 2F such that if h2 ∈
seq(h1), then h2 is sequential and strictly equivalent to h1. The monotonicity
property for opacity states that if h = h′ · op, where h′ ∈ F , and op is not
an abort, and op is an operation of the unfinished transaction in h′, then for
every history h2 ∈ seq(h′), the history h2 ·op is a finite prefix of a history in Γ.

Lemma 3.2. If the TM algorithm A is conflict commutative, then the TM Γ
is monotonic.

Proof. Consider a history h = h′ ·op produced by the TM algorithm. We want
to prove that if h′ is opaque and h′ consists of all committed and exactly one
unfinished transaction, then h′ can be sequentialized. We consider the history
h′. For every pair of conflicting operations, we use conflict commutativity to
sequentialize the corresponding commands. As h′ is opaque, sequentializing the
commands gives a sequential history such that the state of the TM algorithm
after the sequential version of h′ is equivalent to the state of the TM algorithm
after h′. Thus, h′ ·op is produced by the TM algorithm. Thus, Γ is monotonic.

3.3.4 The reduction theorem

Based on the above four structural properties, we now prove that the problem
of verifying TM algorithms with an arbitrary number of threads and variables
can be reduced to verifying TM algorithms with two threads and two variables.

Theorem 3.2. If a TM Γ ensures (2, 2) opacity and satisfies the properties
P1, P2, P3, and P4, then Γ ensures opacity.

Proof. The proof is by contradiction. Let h ∈ Γ be not opaque. Let hp be the
longest finite prefix of h such that hp is opaque and let h1 = hp · op, where
op = (in, t) is an operation of transaction x. Let X be the set of committed
transactions in hp. By property P1, there exists a history h2 generated by
projecting h1 to X ∪ {x} such that h2 ∈ Γ. We note that h2 = h′p · op and
h′p is opaque and h2 is not opaque. So, using property P4, there exists a
history h′′p ∈ seq(h′p) such that the history h3 = h′′p · op is in Γ. In h3 only one
transaction, x, does not execute sequentially. Using property P2, we rename
the threads for the transactions in h3. We let all transactions except x to be
executed by thread u. Let this renaming give history h4. We note that the
last statement of x is a commitor a read of a variable. As h4 is not opaque,
we know (by the definition of conflict) that one of the following holds: (i)
op1 = ((read, v1), t) and op2 = ((read, v2), t) are global reads of transaction x
such that some transaction y of thread u writes to v1 and some transaction
y′ of u with y′ = y or y <h4 y

′ writes to v2 and both commit between op1

and op2, (note that y and y′ cannot overlap due to the structure of h4,) or (ii)
op1 = ((read, v1), t) is a global read of transaction x such that some transaction
y of thread u writes to v1 and commits after op1, and there is a committing
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transaction y′ with y′ = y or y <h4 y′ which has a command (read, v2) or
(write, v2), and x also writes to v2. (Note that v1 may be same as v2). Let h5

be a variable projection of h4 on {v1, v2}. We know that h5 is in Γ, by property
P3. Also, we note that h5 is not opaque. As we know that all histories h ∈ Γ
on two threads and two variables are opacity, we get a contradiction.

3.4 Reducing the Liveness Verification Problem

We now present a reduction theorem that proves that it is sufficient to verify
obstruction freedom of an opaque TM on histories with two threads and one
variable to generalize the result to all histories. As we saw that none of our
TM algorithms is livelock free, we do not build a reduction theorem for livelock
freedom.

Theorem 3.3. If an opaque TM Γ ensures (2, 1) obstruction freedom and
satisfies the properties P1-P4, then Γ ensures obstruction freedom.

Proof. Let h̄ ∈ Γ be a history such that h̄ is not obstruction free. As h̄ is not
obstruction free, we note that h̄ can be written in the form h1 · h̄2, such that (i)
no unfinished transaction in h1 has a statement in h̄2, and (ii) all statements
in h̄2 are from the same thread, and (iii) there is no commit instruction in
h̄2. First, we use the property P3 (variable projection) and claim that there
exists a history h1 · h̄3 ∈ Γ, such that h̄3 accesses at most one variable. We
now use the property of transactional projection and claim that there exists a
history h4 · h̄3 ∈ Γ such that h4 has no aborting transactions and at most one
pending transaction. Using the fact that the TM Γ satisfies opacity, we use the
monotonicity property to claim that h5 · h̄3 ∈ Γ such that h5 is sequential and
h5 is strictly equivalent to h4. Using the property of variable projection again,
we claim that there exists a history h6 · h̄3 ∈ Γ such that h6 is the variable
projection of h5 on v. Using thread symmetry, we can rename all transactions
in h6 to be from the same thread u, and thus obtain a history h7 · h̄3 ∈ Γ. Note
that h7 · h̄3 is a history on 2 threads and 1 variable and is not obstruction-free,
which leads to a contradiction.

Theorem 3.4. DSTM ensures obstruction freedom but does not ensure livelock
freedom. The sequential TM, two-phase locking TM, and TL2 do not ensure
obstruction freedom.

3.4.1 Discussion

We believe that the structural properties are easier to prove than manually
proving the opacity of the TM algorithms. This is because the structural
properties can be established by arguing about the protocol of a single thread
for checking if the TM algorithm is abort isolated or pending isolated, or for
checking if the TM algorithm satisfies the thread symmetry or the variable
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projection property. Moreover, to check conflict commutative property, we
need to locally reason about the interaction of two atomic instructions. On
the other hand, reasoning about the correctness of a TM algorithm requires
us to reason for the whole TM algorithm. We believe that the proofs in this
chapter can largely be automated.

At this point, we hope the reader has an understanding of our verification
technique: our formalism to express TM algorithms, our TM specifications,
and the structural properties of TM. Now, we delve into intricate issues. We
now consider the set of instructions to be hardware instructions. We use a
language RML instead of the language Simple, to capture the effect of mem-
ory models. The semantics of RML allow to reorder and eliminate memory
instructions. Based on RML, we develop a tool FOIL, which allows us to verify
the results obtained in this chapter at hardware-level atomicity under various
relaxed memory models.





The Formalism 4
The preliminary formalism and the verification approach assumed that the
high-level transactional commands like read, write, commit, and abort execute
atomically and in a sequentially consistent manner. Verification of a TM at
this level of abstraction leaves much room for errors in a realistic setting.
For our verification to be useful, we need to prove correctness of TM on real
hardware with relaxed memory models. Moreover, the assumption that the
write command to a variable does not update the variable globally (the writes
are flushed at commit time) cannot model direct update TM.

We revise the framework developed in Chapter 2 for verifying TM algo-
rithms on relaxed memory models at hardware level atomicity. This requires
us to revisit the formalism and describe the instructions which are guaranteed
to be atomic by the hardware. Then, we present our language, Relaxed Mem-
ory Language (RML), which allows to describe TM algorithms at hardware
level atomicity and to capture their behavior under relaxed memory models.

4.1 Framework

We first present a general formalism to express hardware memory instructions.
We formalize memory models which describe the interaction between memory
instructions. Then, we define opacity at the fine-grained level of atomicity, and
represent it using a TM specification. We retain the model of transactional
programs developed in Chapter 2.

4.1.1 Memory instructions

Let Addr be a set of memory addresses. Let In be the set of memory instruc-
tions that are executed atomically by the hardware. We define the set In as

49
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follows, where a ∈ Addr :

In ::= 〈load a〉 | 〈store a〉 | 〈cas a〉

We use the 〈cas a〉 instruction as a generic read-modify-write instruction.

4.1.2 Memory models

A memory model is a function M : In × In → {N ,E ,Y }. For all instruc-
tions in1, in2 ∈ In, when in1 is immediately followed by in2, we have: (i) if
M (in1, in2) = N , then M imposes a strict order between in1 and in2, (ii) if
M (in1, in2) = E , then M allows to eliminate the instruction in2, and (iii) if
M (in1, in2) = Y , then M allows to reorder in1 and in2. The case (ii) allows us
to model store load forwarding using store buffers, and the case (iii) allows us to
model reordering of instructions. Our formalism can capture many hardware
memory models. But, our formalism cannot capture some common compiler
optimizations like irrelevant read elimination, and thus disallows many soft-
ware memory models (like the Java memory model [MPA05]). We specify
different memory models in our framework. These memory models are chosen
to illustrate different levels of relaxations generally provided by the hardware.
Let M be the set of all memory models.

Sequential consistency

Sequential consistency does not allow any pair of instructions to be reordered.
Sequential consistency [Lam79] is specified by the memory model Msc. We
have Msc(in1, in2) = N for all instructions in1, in2 ∈ In.

Total store order

Total store order (TSO) relaxes the order of a store followed by a load to a
different address. But, TSO enforces a strict order on the stores (and hence
the name). TSO allows a load which follows a store to the same address to
be eliminated. TSO [WG94] is given by the memory model Mtso such that for
all memory instructions in1, in2 ∈ In, (i) if in1 = 〈store a〉 and in2 = 〈load a′〉
such that a 6= a′, then Mtso(in1, in2) = Y , (ii) if in1 ∈ {〈store a〉, 〈cas a〉} and
in2 = 〈load a〉, then Mtso(in1, in2) = E , (iii) else Mtso(in1, in2) = N .

Partial store order

Partial store order (PSO) is similar to TSO, but further relaxes the order of
stores. PSO [WG94] is specified by Mpso, such that for all memory instructions
in1, in2 ∈ In, (i) if in1 = 〈store a〉 and in2 ∈ {〈load a′〉, 〈store a′〉, 〈cas a′〉} such
that a 6= a′, then Mpso(in1, in2) = Y , (ii) if in1 ∈ {〈store a〉, 〈cas a〉} and
in2 = 〈load a〉, then Mpso(in1, in2) = E , (iii) else Mpso(in1, in2) = N .
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Relaxed memory order

Relaxed memory order (RMO) relaxes the order of instructions even more
than PSO. RMO allows to reorder a load with a following load or store to a
different address. RMO [WG94] is specified by Mrmo, such that for all memory
instructions in1, in2 ∈ In, (i) if in1 ∈ {〈load a〉, 〈store a〉, 〈cas a〉} and in2 ∈
{〈load a′〉, 〈store a′〉, 〈cas a′〉} such that a 6= a′, then Mrmo(in1, in2) = Y , (ii) if
in1 ∈ {〈store a〉, 〈cas a〉} and in2 = 〈load a〉, then Mrmo(in1, in2) = E , (iii) else
Mrmo(in1, in2) = N . Note that at the level of instruction streams, we do not
capture control/data dependence. Rather, we allow RMO to reorder any pair
of instructions.

4.1.3 Histories

In order to reason about opacity in TM at hardware level atomicity, the history
must contain, apart from the sequence of memory instructions that capture
the loads and stores to transactional variables in the program, the following
information: (i) when transactions finish (captured with commit and abort
instructions), (ii) when a read command finishes (captured with rfin instruc-
tion), and (iii) rollback of stores to transactional variables in V (captured with
rollback a). The commit and abort instructions are needed to reason about the
serialization of transactions. The rfin instruction is needed in formalizing opac-
ity. For example, rfin allows to distinguish the point in time where a variable
is loaded from the point where the value loaded is used. The rollback instruc-
tion is used in direct update TM to undo a store to a variable. We define
În = InV ∪ (rollback× V ) ∪ {rfin, commit, abort}, where InV ⊆ In is the set of
memory instructions to the transactional variables V .

Based on the set În of instructions defined above, we can use the framework
developed in Chapter 2 to define operations, histories, and transactions.

We characterize a TM by the set of histories (sequences of memory instruc-
tions) the TM produces for a given memory model. Formally, a transactional

memory is a function Γ : M→ 2Ôp
∗∪Ôp

ω

.

4.1.4 Correctness in TM

We present the formalism of safety properties of a TM again, as it has subtle
differences from the formalism developed in Chapter 2. A correctness property
π is a subset of Ôp

∗
. It is natural to require that a TM is correct for all

programs on a specific memory model. This is because a TM may be optimized
for performance for a specific memory model, while it could be incorrect on
weaker models. That is, different implementation versions may be designed for
different memory models. A TM Γ is correct for a property π under a memory
model M if we have Γ(M ) ⊆ π.

We now define opacity for the new fine grained alphabet. At the hardware
level of atomicity, we distinguish the point where a variable is loaded from the



52 The Formalism

point where the read is determined as finished (using the rfin instruction). We
thus need to define opacity carefully. Basically, we do not want to say that a
history violates opacity if it loads an inconsistent value but does not use it.

4.1.5 Discussion on opacity

For the feasibility of the verification problem, we restrict the notion of opacity
with two assumptions. We describe the assumptions and justify them be-
low. Both assumptions restrict the scope of direct update TM allowed by our
formalism. However, our assumptions do not restrict the deferred update TM.

Firstly, we assume that if a store of a transactional variable rolls back some
time later, then the store should not be observed by a read and should not
be overwritten by another store. In other words, we assume that a direct
update TM algorithm uses exclusive locks for the variables being written. If
a TM does not satisfy this assumption, we cannot verify whether the TM is
correct. Moreover, a rollback instruction does not precede a store instruction,
as a rollback instruction undoes the effect of a store instruction. Also, by the
property of isolation and atomicity, aborted transactions do not change the
value of transactional variables. We formalize our assumption as a notion of
well-formedness of histories. Given a transactional variable v, we define the
variable projection h|v of a history h on v as the longest subsequence of loads,
stores, rollbacks, and compare-and-swaps to the variable v. We say that a
load of a transaction variable by thread t is used in a history h if the load is
immediately succeeded by an rfin statement in h|t. Given a history h, we define
usedloads(h) as the longest subsequence of h such that all loads of transaction
variables in usedloads(h) are used. Given a history h and two transactions x
and y in h (possibly of different threads), we say that x precedes y in h, written
as x <h y, if the last statement of x occurs before the first statement of y in
h. A history h is sequential if for every pair x, y of transactions in h, either
x <h y or y <h x. We say that a store or a compare-and-swap instruction in
to variable v in transaction x is final in a history h if there does not exist a
rollback instruction to v after in in x.

We say that a history h is well-formed if for all transactions x, (i) if x
consists of a rollback instruction in to a variable v, then x consists of a store
instruction to v before in, (ii) if x is an aborted transaction, then x does not
consist of any final stores, and (iii) a non-final store to some variable v in x
in h|v is not immediately followed by a compare-and-swap, a used load, or a
store to v. This assumption is valid as all direct update TM algorithms we
know of rely on locking protocols.

Secondly, we consider a prefix closed subset of opacity as our correctness no-
tion. The justification is that all prefixes of a history produced by a TM should
be correct. For example, the history h = ((read, v1), 1), (rfin, 1), ((read, v2), 2),
(rfin, 2), ((write, v2), 1), ((write, v1), 1) is not opaque by the standard definition
of opacity. Now let h be suffixed by ((rollback, v2), 1) ((rollback, v1), 2) to get
history h′. We note that h′ is opaque, as all operations of thread 1 may pre-



4.2. TM Specifications for Opacity 53

cede all operations of thread 2. Note that the reason that opacity is not prefix
closed are the rollback instructions. Intuitively, a rollback operation may re-
move conflicts from a conflict graph, and thus remove a cycle which might exist
in a prefix of the history. We do not know of a TM algorithm which produces
histories like h. All direct update TM we know rely on a locking protocol and
hence satisfy the two assumptions. If a TM algorithm does not satisfy one of
the two assumptions, we say that the TM algorithm is incorrect.

An operation op1 = (in1, t) of transaction x and an operation op2 = (in2, u)
of transaction y (where x is different from y) conflict in a history h if

• in1 is a load, a final compare-and-swap, or a final store instruction to
some transactional variable v and in2 is a final store instruction to v in
h

• in1 and in2 are final store instructions to some transactional variable v

A history h = op0 . . . opm is strictly equivalent to a history h′ if (i) for every
thread t ∈ T , we have h|t = h′|t, and (ii) for every pair opi, opj of operations
in h, if opi and opj conflict and i < j, then opi occurs before opj in h′, and
(iii) for every pair x, y of transactions in h, where x is a finished transaction,
if x <h y, then it is not the case that y <h′ x.

We define opacity as the set of all well-formed histories h such that there
exists a sequential history h′, where h′ is strictly equivalent to usedloads(h).

A TM specification for opacity at a coarse-grained alphabet of read, write,
commit, and abort instructions was developed in Chapter 2. To verify the TM
algorithms at the hardware low-level atomicity, we build TM specifications for
opacity with the new alphabet În = InV ∪ (rollback×V )∪{rfin, commit, abort}.

4.2 TM Specifications for Opacity

Developing a TM specification at the hardware level atomicity is challenging
due to the following reasons:

• A commit is not atomic in our revised formalism. A commit may con-
sist of multiple store instructions. As soon as a transaction stores, and
some other transaction loads the value or overwrites the value, the first
transaction cannot abort anymore.

• There is a distinction between the point when a variable is read and
when the read is declared as finished. Although a transaction reads an
inconsistent value, the history may still be opaque. But, if a transaction
finishes the read of an inconsistent value, the history is not opaque.

• Stores may roll back in direct update systems. For example, if a trans-
action has rolled back its store, then it could appear as if the store was
never performed.
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As we use the specification for two threads and two variables (owing to
the reduction theorem), we develop the TM specification for opacity for two
threads. This allows us to keep the specification simple. We first develop a
nondeterministic TM specification for opacity. As in Chapter 2, we manually
prove the correctness of the nondeterministic TM specification.

4.2.1 A nondeterministic TM specification

We define the nondeterministic TM specification for opacity Spec for two
threads as the tuple 〈Q, qinit , δ〉. A state q ∈ Q is a 10-tuple 〈Status , SerStatus ,
rs , ws , urs, prs , pws , wp, rp, serp〉, where Status : T → {finished, abortsure,
commitsure} is the status, SerStatus : T → {true, false} is the serialization sta-
tus, rs : T → 2V is the read set, ws : T → 2V is the write set, urs : T → {⊥}∪V
is the unfinished read variable, prs : T → 2V is the prohibited read set,
pws : T → 2V is the prohibited write set, wp : T → {true, false} is the
write predecessor flag, rp : T → {true, false} is the read predecessor flag, and
serp : T → {true, false} is the serialization predecessor flag for the threads.
The initial state qinit = 〈Status0, SerStatus0, rs0, ws0, urs0, prs0, pws0, wp0,
rp0, serp0〉, where Status0(t) = finished, SerStatus0(t) = false, urs0(t) =⊥,
wp0(t) = rp0(t) = serp0(t) = false, and rs0(t) = ws0(t) = prs0(t) = pws0(t) =
∅ for both threads. The transition relation is obtained using Algorithm 4.1.
The thread t refers to the thread taking the step, and the thread u refers to
the other thread. Given a state q, the procedure ResetState(q, t) makes the
following updates: (i) sets Status(t) to finished, (ii) sets SerStatus(t) to false,
(iii) sets urs(t) to ⊥, (iv) sets rs(t), ws(t), prs(t), and pws(t) to ∅, and (v) sets
rp(t), wp(t), rp(u), wp(u), and serp(u) to false.

Construction

We describe the rules that govern the set of runs that are produced by the
nondeterministic TM specification. Let r be a run of the TM specification
Spec. Let x be the unfinished transaction of a thread, and let y be the unfin-
ished transaction of the other thread in the run r. The nondeterministic TM
specification ensures the following:

Rule 1. A variable v is in the prohibited write set of x if there is a committed
transaction z in r such that z serializes after x and z has a final store or
a finished read of v

Rule 2. A variable v is in the prohibited read set of x if there is a committed
transaction z in r such that z serializes after x and z has a final store
of v

Rule 3. The serialization status of x is true in a run r′ = r · op if

a. the serialization status of x in r is true, and op is not a commit or
an abort of x, or
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nondetTMSpec(〈Status , SerStatus , rs ,ws , urs, prs , pws ,wp, rp, serp〉, op)

if op = ((store, v), t) then
if Status(t) = abortsure then return ⊥
if urs(t) 6=⊥ then return ⊥
if v ∈ pws(t) then return ⊥
ws(t) := ws(t) ∪ {v}
if v ∈ ws(u) then

if serp(u) then return ⊥ else serp(t) := true
if Status(u) = abortsure then return ⊥
if wp(u) then return ⊥
if Status(u) = finished then

Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then

rs(u) := rs(u) ∪ {v}
if v ∈ rs(u) then

if serp(u) then return ⊥ else serp(t) := true
if v ∈ urs(u) then

if serp(u) then
Status(u) := abortsure; urs(u) :=⊥

rp(t) := true

Algorithm 4.1: The nondeterministic TM specification for fine grained opacity

b. op is a serialize of transaction x

Rule 4. The status of x is commitsure in a run r′ = r · op if

a. the status of x is commitsure in r and op is not a commit

b. the status of x is finished in r and op is a store to v by y and x
stores to v in r

c. the status of x is finished in r and the status of y is commitsure and
x stores to v in r and op is a load of v by y

d. the status of x is finished in r and x stores to v and later y loads v
in r and op is a finish of the load of v by y

Rule 5. The status of x is abortsure in a run r′ = r · op if the status of x is not
commitsure in r and one of the following holds:

a. op is a store of a variable v by y and y serializes before x and x has
an unused load of v in r

b. op is a load of a variable v by x such that y stores to v in the run
r and y serializes after x

c. op is a rollback of v by y and x loads v after y stores to v in r

d. op is a rollback of v by x and x stores to v in r
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nondetTMSpec(〈Status , SerStatus , rs ,ws , urs, prs , pws ,wp, rp, serp〉, op)

if op = ((load, v), t) then
if Status(t) = abortsure then return ⊥
if urs(t) 6=⊥ then return ⊥
if v ∈ prs(t) then

if Status(t) = commitsure then return ⊥
Status(t) := abortsure

urs(t) := v
if Status(t) = commitsure then rs(t) := rs(t) ∪ {v}
if v ∈ ws(u) then

if Status(t) = commitsure then
if serp(u) then return ⊥ else serp(t) := true
if Status(u) = abortsure then return ⊥
if wp(u) then return ⊥
if Status(u) = finished then

Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then

rs(u) := rs(u) ∪ {v}
else

wp(t) := true
if serp(u) then

Status(t) := abortsure; urs(t) :=⊥

Continued Algorithm 4.1

e. op is a serialize of x and y is unserialized and there exists a variable
v such that y stores to v and x loads v after y stores to v

f. op is a load of a variable v by x and v is in the prohibited read set
of x

Rule 6. The serialization predecessor serp of x is true in run r′ = r · op if:

a. the serialization predecessor of x is true in r and op is not a commit
or an abort of transaction y

b. op is a store of v by transaction x and y stores to v in r

c. op is a store of v by x and y has a used load of v in r

d. op is a store of v by x and the status of y is commitsure and y loads
v

e. op is a load of v by x and the status of x is commitsure in r and y
stores to v in r

f. op is a serialize of transaction y and the serialization status of x is
false
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nondetTMSpec(〈Status , SerStatus , rs ,ws , urs, prs , pws ,wp, rp, serp〉, op)

if op = (rollback, v), t) then
if Status(t) = commitsure then return ⊥
if v /∈ ws(t) then return ⊥
if wp(u) then

Status(u) := abortsure; urs(u) :=⊥
ws(t) := ws(t) \ {v}
Status(t) := abortsure; urs(t) :=⊥

if op = (rfin, t) then
if urs(t) =⊥ then return ⊥ else v := urs(t)
if Status(t) = abortsure then return ⊥
rs(t) := rs(t) ∪ {v}; urs(t) :=⊥
if wp(t) then

if serp(u) then return ⊥ else serp(t) := true
if Status(u) = abortsure then return ⊥
if wp(u) then return ⊥
if Status(u) = finished then

Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then

rs(u) := rs(u) ∪ {v}
if rp(u) then

if serp(t) then return ⊥ else serp(u) := true

Continued Algorithm 4.1

g. op is a finish of a read by transaction x and y stores to v in r, and
later x loads v in r

h. op is a finish of a read by transaction y and y loads v in r, and later
x stores to v in r

Rule 7. The serialization predecessor of the transaction following x in the thread
of x is true in a run r′ = r · op if op is a commit or abort of x and the
serialization status of y is true

Rule 8. Given a run r produced by Spec and an operation op of transaction x,
the run r′ = r · op is produced by Spec if the following hold:

a. if the status of x is abortsure, then op is an abort, a rollback, or a
serialize

b. if op is a store of v, then x has no unused load in r and v is not in
the prohibited write set of x
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nondetTMSpec(〈Status , SerStatus , rs ,ws , urs, prs , pws ,wp, rp, serp〉, op)

if op = (ε, t) then
if SerStatus(t) = true then return ⊥
SerStatus(t) := true
if SerStatus(u) = false then

if serp(t) then return ⊥
serp(u) := true
if wp(t) = true then

Status(t) := abortsure; urs(t) :=⊥

if op = (commit, t) then
if SerStatus(t) 6= true then return ⊥
if Status(t) = abortsure then return ⊥
if urs(t) 6=⊥ then return ⊥
if rp(t) then

if serp(u) = true then
Status(u) := abortsure; urs(u) :=⊥

if serp(t) then
prs(u) := prs(u) ∪ ws(t) ∪ prs(t)
pws(u) := pws(u) ∪ ws(t) ∪ rs(t) ∪ pws(t)

ResetState(t)
if SerStatus(u) then serp(t) := true

if op = (abort, t) then
if SerStatus(t) = false then return ⊥
if ws(t) 6= ∅ then return ⊥
ResetState(t)
if SerStatus(u) = true then serp(t) := true

return 〈Status,SerStatus, rs,ws, urs, prs, pws,wp, rp, serp〉

Continued Algorithm 4.1

c. if op is a rollback of v, then the status of x is not commitsure and x
stores to v in r

d. if op is a load of v, then x has no unused load in r

e. if op is a load of v and v is in the prohibited read set of x, then
status of x is not commitsure

f. if op is a finish of a read, then there is an unused load by x and the
status of x is not abortsure in r

g. if op is a commit, then the serialization status of x is true and all
loads by x in r are used

h. if op is an abort, then there does not exist a variable v such that x
stores to v and x does not rollback v in r
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Figure 4.1: The operations inside ovals are disallowed by the TM specification for
opacity. An arrow represents different possible positions for a command to occur
in a given condition. We write s for store, l for load, c for commit, b for rollback,
and f for rfin. We write the operation ((s, v), t) as (s, v)t. Thread t executes
transaction x and thread u executes transaction y. For conditions C1-C5, the
transaction y must serialize before x. For condition C6, the transaction x must
serialize before y. For condition C3, y must commit in every extension of the
run. For condition C4, x must commit in every extension of the run. Conditions
C3a and C4a pertain to the nondeterministic TM specification for opacity without
rollbacks, as described in the appendix.

i. if op is an abort, then the serialization status of x is true

j. if op is a serialize, then the serialization status of x is false

k. if the serialization predecessor of x is true, then the serialization
predecessor of y is false in r′

Using the above rules of construction, we now prove the correctness of the
nondeterministic TM specification for opacity.

Correctness

Theorem 4.1. Given a history h on 2 threads and k variables, h is opaque if
and only if h ∈ L(Spec).

Proof. We say that a transaction x must serialize before a transaction y in a
run r if one of the following holds:

• x and y have final stores to a variable v and y stores to v after x stores
to v

• the serialize of x occurs before the serialize of y in r

• x stores to v and y has a used load of v, where y loads v after x stores
to v

• x has a used load of v and y stores v, where x loads v before y stores to
v
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Note that from rule 4, 8.c, and 8.h, a transaction x that stores to a variable
v must commit in every extension of r if one of the following holds:

• there exists a transaction y such that y stores to v after x stores to v
and before x rolls back

• there exists a transaction y such that y loads v after x stores to v, and
the read of v is finished by y

• there exists a transaction y such that y must commit, and y loads v after
x stores to v

Note that for two unfinished transactions x, y in a run r, if y must serialize
before x, then the serialization predecessor of x is true in r.

Now, we note that the TM specification Spec for opacity gives the largest
set R of runs such that for every run r produced by the TM specification, for
every transaction x in r, the following conditions hold (conditions C1-C6 are
graphically shown in Figure 4.1):

C1. x does not store to a variable v if there exists a transaction y such that y
must serialize after x and y stores to v and y does not rollback its store
to v (from rules 1, 6.b, and 8.k)

C2. x does not store to a variable v if there exists a transaction y such that
y must serialize after x and y has a used load of v (from rules 1, 6.c, and
8.k)

C3. x does not store to a variable v if there exists a transaction y such that y
must serialize after x and y has a load of v and y must commit in every
extension of r (from rules 1, 6.d, and 8.k)

C4. x does not load a variable v if there exists a transaction y such that y
must serialize after x and y stores to v and x must serialize in every
extension of r (from rules 2, 6.e, 8.e, and 8.k)

C5. x does not finish the read of a variable v if there exists a transaction y
such that y must serialize after x and y stores to v before x loads v (from
rules 2, 5.b, 5.f, 6.g, 8.f, and 8.k)

C6. x does not finish the read of a variable v if there exists a transaction y
such that y must serialize before x and y stores to v after x loads v (from
rules 5.a, 6.h, and 8.f)

C7. x serializes at most once (from rules 3 and 8.j)

C8. if x is a finished transaction, then x serializes exactly once (from rules 3,
8.g, 8.i, and 8.j)
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C9. x contains a rollback of v only if the transaction consists of a store to v
before the rollback (from rule 8.c)

C10. after a rollback of a variable v in x, the only possible instruction in x is
a rollback of another variable or a serialize or an abort (from rules 5.d
and 8.a)

C11. if x is an aborting transaction, then every aborted transaction rollbacks
all the stores before aborting (from rule 8.h)

C12. x does not serialize if there exists a transaction y such that y is unseri-
alized and y must serialize before x (from rules 6.f and 8.k)

Let h be an opaque history on 2 threads and k variables. As h is opaque,
there is a sequential history hs such that hs is strictly equivalent to h. Let the
transactions in the sequential history hs be given by the sequence x1 . . . xn of
transactions. We claim that there exists a run r of the TM specification Spec
such that h is the corresponding history of r. As hs is strictly equivalent to
h, we know that for every pair xi, xj of transactions in h such that i < j, the
following are not true:

• xi loads v after a final store to v by xj, and xi finishes the read

• xi is a committing transaction and xi loads v after a final store by xj to
v

• xi and xj have a final store to v and xi stores to v after xj stores to v

• xi stores to v and xj loads v before the store to v, and the read of v is
finished by xj

These conditions are equivalent to the conditions C1-C6. Moreover, h is
well-formed. This is equivalent to the conditions C9-C11. Thus, we know
that there exists a run r of the TM specification Spec, where the order of
serialization of transactions is the same as x1 . . . xn.

Conversely, let r be a run produced by the nondeterministic TM specifi-
cation Spec. Let h be the corresponding history to the run r. We know from
conditions C7 and C8 that every transaction serializes at most once in the run,
and every finished transaction serializes exactly once in the run. Let hs be a
sequential history such that (i) a transaction x appears before a transaction y
in hs if x must serialize before y in r, (ii) all other transactions appear in an
arbitrary order later in r, and (iii) for all threads, the thread projection of hs
is equivalent to the thread projection of h. The conditions C1 - C6 guarantee
that for every pair opi, opj of operations in h if opi and opj conflict and i < j,
then opi occurs before opj in hs. Note that the order of serialization in r re-
spects the real time order of the transactions in h, that is, if a transaction x
finishes before a transaction y starts, then x serializes before y in r. Thus, hs
is strictly equivalent to h. Hence, every history in L(Spec) is opaque.
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detTMSpec(〈Status , rs ,ws , urs, prs , pws , hp,wp, rp, sp〉, op)

if op = ((store, v), t) then
if Status(t) = abortsure then return ⊥
if urs(t) 6=⊥ then return ⊥
if v ∈ pws(t) then return ⊥
ws(t) := ws(t) ∪ {v}
if Status(t) = finished then

if Status(u) = pending then hp(t) := true
if Status(u) = commitsurepending then sp(t) := true
Status(t) := started

if v ∈ ws(u) then
if wp(u) or hp(u) then return ⊥
if Status(u) = abortsure then return ⊥
if Status(u) = commitimpossible then return ⊥
if Status(u) = pending then

Status(u) := commitsurepending
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

if Status(u) = started then
Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

sp(t) := true
if v ∈ rs(u) then

sp(t) := true
if wp(u) then Status(u) := abortsure; urs(u) := ∅

if v ∈ urs(u) then
rp(t) := true
if sp(u) or hp(u) or wp(u) then

Status(u) := abortsure; urs(u) :=⊥
if sp(u) and sp(t) then return ⊥

Algorithm 4.2: The deterministic TM specification for fine grained opacity

4.2.2 A deterministic TM specification

We define the deterministic TM specification for opacity Specd for two
threads as the tuple 〈Q, qinit , δ〉. A state q ∈ Q is a 10-tuple 〈Status , rs ,
ws , urs, prs , pws , hp, wp, rp, sp〉, where Status : T → {finished, pending,
commitsurepending, abortsure, commitsure} is the status, rs : T → 2V is the
read set, ws : T → 2V is the write set, urs : T → {⊥} ∪ V is the unfin-
ished read set, prs : T → 2V is the prohibited read set, pws : T → 2V is
the prohibited write set, hp : T → {true, false} is the hidden predecessor
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detTMSpec(〈Status , rs ,ws , urs, prs , pws , hp,wp, rp, sp〉, op)

if op = (rollback, v), t) then
if Status(t) ∈ {commitsure, commitsurepending} then return ⊥
if v /∈ ws(t) then return ⊥
if wp(u) then

Status(u) := abortsure; urs(u) :=⊥
ws(t) := ws(t) \ {v}
Status(t) := abortsure; urs(t) :=⊥

if op = (rfin, t) then
if urs(t) =⊥ then return ⊥
v := urs(t)
if v ∈ prs(t) and Status(t) = commitimpossible then return ⊥
rs(t) := rs(t) ∪ {v}; urs(t) =⊥
if rp(u) then sp(u) := true
if Status(t) = pending or Status(t) = commitsurepending then

sp(u) := true
if wp(t) then

if Status(u) ∈ {abortsure, commitimpossible} then return ⊥
if Status(u) = pending then

Status(u) := commitsurepending
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

if Status(u) = started then
Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

sp(t) := true
if sp(u) and sp(t) then return ⊥

continued Algorithm 4.2

(to due a transaction already committed) flag, wp : T → {true, false} is the
write predecessor flag, rp : T → {true, false} is the read predecessor flag, and
sp : T → {true, false} is the strong predecessor flag for the threads. The ini-
tial state qinit = 〈Status0, rs0, ws0, urs0, prs0, pws0, hp0, wp0, rp0, sp0〉, where
Status0(t) = finished, urs0(t) =⊥, hp0(t) = wp0(t) = rp0(t) = sp0(t) = false,
and rs0(t) = ws0(t) = prs0(t) = pws0(t) = ∅ for both threads. The transition
relation of the deterministic TM specification is obtained using Algorithm 4.2.
Given a state q, the procedure ResetState(q, t) makes the following updates:
(i) sets Status(t) to finished, (ii) sets urs(t) to ⊥, (iii) sets rs(t), ws(t), prs(t),
and pws(t) to ∅, (iv) sets hp(t), rp(t), wp(t), hp(u), rp(u), wp(u), and sp(u)



64 The Formalism

detTMSpec(〈Status , rs ,ws , urs, prs , pws , hp,wp, rp, sp〉, op)

if op = ((load, v), t) then
if Status(t) = abortsure then return ⊥
if urs(t) 6=⊥ then return ⊥
if Status(t) = finished then

if Status(u) = pending then hp(t) := true
if Status(u) = commitsurepending then sp(t) := true
Status(t) := started

if v ∈ prs(t) then
if Status(t) ∈ {commitsure, commitsurepending} then return ⊥
Status(t) := commitimpossible

urs(t) := v
if Status(t) ∈ {commitsure, commitsurepending} then rs(t) := rs(t) ∪ {v}
if v ∈ ws(u) then

if Status(t) ∈ {commitsure, commitsurepending} then
rs(t) := rs(t) ∪ {v}
if Status(u) ∈ abortsure, commitimpossible} then return ⊥

if Status(u) = pending then
Status(u) := commitsurepending
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

if Status(u) = started then
Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

sp(t) := true
else

wp(t) := true
if sp(u) then

Status(t) := abortsure; urs(t) :=⊥
if sp(u) and sp(t) then return ⊥

continued Algorithm 4.2

to false. As in the nondeterministic TM specification, t refers to the thread
taking the step, and u refers to the other thread.

Correctness

We use an antichain based tool [WDHR06] to prove that for two threads and
two variables, the language of the deterministic TM specification is equivalent
to the language of the nondeterministic TM specification. The nondetermin-
istic TM specification has 155’000 states, while the deterministic TM specifi-
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detTMSpec(〈Status , rs ,ws , urs, prs , pws , hp,wp, rp, sp〉, op)

if op = (commit, t) then
if Status(t) ∈ {abortsure, commitimpossible} then return ⊥
if urs(t) 6=⊥ then return ⊥
if hp(t) then

if sp(u) then
if urs(u) 6=⊥ then

Status(u) := abortsure; urs(u) := ∅
else Status(u) = commitimpossible

if hp(t) or rp(t) or sp(t) then
if Status(u) = started then Status(u) = pending
if Status(u) = commitsure then Status(u) = commitsurepending
prs(u) := prs(u) ∪ ws(t) ∪ prs(t)
pws(u) := pws(u) ∪ ws(t) ∪ rs(t) ∪ pws(t)

if sp(u) and sp(t) then return ⊥
ResetState(t)

if op = (abort, t) then
if ws(t) 6= ∅ then return ⊥
ResetState(t)

return 〈Status , rs ,ws , urs, prs , pws , hp,wp, rp, sp〉

continued Algorithm 4.2

cation has 46’000 states. The execution time for checking equivalence of the
two specifications using the antichain based tool [WDHR06] on an Opteron
machine with 2.66 GHz processors and 16 GB RAM is around two hours.
This high execution time is mostly due to the high memory consumption. The
check consumes around 15 GB RAM, and thus most of the time is spent in
swapping memory. The process execution time is around ten minutes.

The manual proof for the intuitive nondeterministic TM specification and
the automated language equivalence check with the deterministic TM specifi-
cation allow us to claim that the deterministic TM specification accepts exactly
the set of opaque histories.

4.3 Relaxed Memory Language

We introduce a high-level language, RML, to express TM algorithms with
hardware-level atomicity on relaxed memory models. The key idea behind the
design of RML is to have a semantics parametrized by the underlying memory
model. To capture a relaxed memory model, RML defers a statement until the
statement is forced to execute due to a fence, and RML reorders or eliminates
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l ::= lv | la[idx ]
g ::= gv | ga[idx ]
e ::= f(l, . . . , l, idx , . . . , idx )
c ::= f(idx , . . . , idx )
tm stmt ::= rfin | commit | abort
mem stmt ::= g := e | l := g | l := e | idx :=c | l := cas(g, e, e)

| rollback g := e
fence ::= stfence | ldfence
p ::= mem stmt | tm stmt | fence | p ; p

| if e then p else p | while e do p

Figure 4.2: The syntax of the language RML

deferred statements according to the memory model. We describe below the
syntax and semantics of RML.

4.3.1 Syntax

To describe TM algorithms in RML, we use local and global integer-valued lo-
cations, which are either variables or arrays. We also have a set of array index
variables. The syntax of RML is given in Figure 4.2. A memory statement
(denoted by mem stmt) in RML models an instruction that executes atomi-
cally on the hardware. It can, for instance, be a store or a load of a global
variable. Moreover, the TM specific statements are denoted by tm stmt , and
fence statements are denoted by fence. Let SM be the set of memory state-
ments, Stm be the set of TM specific statements, and SF be the set of fence
statements in RML. Let P be the set of RML programs.

4.3.2 Semantics

Intuitively, capturing a relaxed memory model requires us to defer statements
across following statements, unless the memory model guarantees an order-
ing. So, RML maintains as part of the state, a queue of statements whose
execution has been deferred. When a statement with a memory instruction is
encountered, RML inserts the statement in the queue of deferred statements.
However, the relaxations allowed by the memory model allow to insert the
statement at multiple places in the queue. Thus, we obtain multiple transi-
tions from the original state on a statement with a memory instruction, where
each destination state differs only in the queue of deferred statements. When
RML encounters a store (resp. load) fence, RML dequeues statements for execu-
tion, until the queue has no store (resp. load) instructions. We now formalize
the semantics of RML.

Let G and L be the set of global and local addresses respectively. Let
Idx ⊆ L be the set of local index addresses. Consider a particular thread
t. Let σ : G ∪ L → N be a valuation of the global addresses, and the local
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Table 4.1: The formal definitions of the functions γ, lw , and lr for a statement
s in a valuation σ

Statement s γ(s, σ) lw(s, σ) lr(s, σ)
g := e 〈store [[g]]σ〉 ∅ lvars(e, σ)
l := g 〈load [[g]]σ〉 {[[l]]σ} ∅
l := e skip {[[l]]σ} lvars(e, σ)

l := cas(g, e1, e2) 〈cas [[g]]σ〉 {[[l]]σ} lvars(e1, σ) ∪ lvars(e2, σ)
rollback g := e 〈store [[g]]σ〉 ∅ lvars(e, σ)

idx := c skip {[[idx ]]σ} lvars(c, σ)

addresses of thread t. Let Σ be the set of all valuations. Note that the syntax
of RML is defined in a way that the value of an index variable idx may not
depend on the queue of deferred statements. Given a global location g and a
valuation σ, we write [[g]]σ ∈ G to denote the global address represented by g
in valuation σ. Similarly, we write [[l]]σ ∈ L\Idx (resp. [[idx ]]σ ∈ Idx ) to denote
the local address (resp. local index address) represented by a local location l
(resp. index variable idx ) in valuation σ.

Let γ : SM × Σ → In ∪ {skip} be a mapping function for memory state-
ments, which for a given memory statement and a valuation, gives the gener-
ated hardware instruction or the skip instruction if no hardware instruction is
generated. For example, we have γ(g := e, σ) = 〈store [[g]]σ〉 in valuation σ,
as the statement g := e causes a store to the global address represented by g
in valuation σ. The statement rollback g := e is physically a store instruction,
as a rollback undoes the effect of a previous store instruction. We define a
local-variables function lvars such that given an expression e and a valuation
σ, we have lvars(e, σ) as the smallest set of local addresses in L such that if
the location l (resp. index variable idx ) appears in e, then the address [[l]]σ is
in lvars(e, σ) (resp. [[idx ]]σ is in lvars(e, σ)). We define a write-locals function
lw : SM × Σ → 2L and a read-locals function lr : SM × Σ → 2L to obtain the
written and read local addresses in a statement respectively. Table 4.1 gives
the formal definitions of the functions γ, lw , and lr .

We now describe when two memory statements can be reordered in a given
valuation under a given memory model. Let M be the set of all memory
models. Let R : SM×SM×Σ×M→ {true, false} be a reordering function such
that R(s1, s2, σ,M ) = true if the following conditions hold: (i) either γ(s1, σ) =
skip or γ(s2, σ) = skip, or M (γ(s1, σ), γ(s2, σ)) = Y , (ii) lw(s1, σ)∩ lr(s2, σ) =
∅, (iii) lw(s1, σ)∩lw(s2, σ) = ∅, and (iv) lr(s1, σ)∩lw(s2, σ) = ∅. Here, the first
condition restricts reorderings to those allowed by the memory model, and the
remaining conditions check for data dependence between the statements. To
defer memory statements and execute them in as many ways as possible, we
define a model-dependent enqueue function. This function takes as input the
current valuation, the current sequence of deferred statements, a statement to
defer, and a memory model, and produces the set of new possible sequences of
deferred statements. We define the enqueue function Enq : S∗M×SM×Σ×M→
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2S
∗
M such that given a sequence d = s1 . . . sn of memory statements, a statement

s, a valuation σ, and a memory model M , the function Enq(d, s, σ,M ) is the
largest set such that (i) s1 . . . sk ·s ·sk+1 . . . sn ∈ Enq(d, s, σ,M ) if for all i such
that k < i ≤ n, we have R(si, s, σ,M ) = true, and (ii) if s is of the form l := g,
then s1 . . . sk · (l := e) · sk+1 . . . sn ∈ Enq(d, s, σ,M ) if for all i with k < i ≤ n,
we have R(si, s, σ,M ) = true, and M (γ(sk, σ), γ(s, σ)) = E where (a) if sk is
g := f , then e = f , (b) if sk is m := g or m := cas(g, e1, e2), then e = m.
Note that the definition of the reordering function restricts the reordering of
control and data-dependent statements. Thus, our model of RMO slightly
differs from the definition of the RMO model in the sense that we impose an
order on control dependent load instructions. Similarly, the enqueue function
restricts the elimination of only load instructions. While this is sufficient to
model many hardware memory models, we cannot capture coalesced stores or
redundant store elimination.

Given a valuation σ, a program p, and a sequence d of deferred state-
ments, we define a predicate allowDequeue(σ, d, p) to be true if (i) p is of
the form (while e do p1; p

′) or (if e then p1 else p2; p
′) for some pro-

grams p1, p2, p
′ ∈ P , and there exists a memory statement s in d such that

lw(s, σ)∩ lvars(e, σ) 6= ∅, or (ii) p is a store fence and there exists a statement
s of the form g := l or l := cas(g, e, e) in d, or (iii) p is a load fence and there
exists a statement s of the form l := g or l := cas(g, e, e) in d.

Conditionals and loops

When an RML program reaches a condition or a loop, it requires the condition
to be evaluated. RML first checks whether the local variables appearing in the
condition are modified in any deferred statement in the queue. If this is not
the case, the execution is governed by the following rules.

σ[e] 6= 0 allowDequeue(σ, d, p) = false
p = if e then p1 else p2; p

′

〈p, σ, d〉 ε−→ 〈p1; p
′, σ, d〉 (IF TRUE)

σ[e] = 0 allowDequeue(σ, d, p) = false
p = if e then p1 else p2; p

′

〈p, σ, d〉 ε−→ 〈p2; p, σ, d〉
(IF FALSE)

σ[e] 6= 0 allowDequeue(σ, d, p) = false
p = while e do p1; p

′

〈p, σ, d〉 ε−→ 〈p1; p, σ, d〉
(WHILE TRUE)
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σ[e] = 0 allowDequeue(σ, d, p) = false
p = while e do p1; p

′

〈p, σ, d〉 ε−→ 〈p′, σ, d〉 (WHILE FALSE)

Index variable update

As the value of an index variable does not depend on the deferred statements,
it is straightforward to modify the valuation according to the variable update.

〈idx := c; p, σ, d〉 ε−→ 〈p, σ[idx/c], d〉
(INDEX)

Fences

When an RML program encounters a store (resp. load) fence, we ensure that
there is no store or cas (resp. load or cas) instruction in the queue of deferred
statements.

allowDequeue(σ, d, stfence) = false

〈stfence; p, σ, d〉 ε−→ 〈p, σ, d〉 (STORE FENCE)

allowDequeue(σ, d, ldfence) = false

〈ldfence; p, σ, d〉 ε−→ 〈p, σ, d〉 (LOAD FENCE)

TM specific

A commit and an abort instruction behave like store fences. This is to avoid
instructions of two transactions from the same thread to interleave with each
other. Moreover, an rfin instruction behaves like a load fence. This ensures
that during the transactional read of a variable, the variable is loaded before
the read is declared as finished.

s ∈ {commit, abort}
allowDequeue(σ, d, stfence) = false

〈s; p, σ, d〉 s−→ 〈p, σ, d〉 (TRANSACTION END)

allowDequeue(σ, d, ldfence) = false

〈rfin; p, σ, d〉 rfin−→ 〈p, σ, d〉 (READ FINISH)
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Enqueue

When RML encounters a memory instruction in the form of a load, store,
compare-and-swap, or rollback instruction, RML enqueues the statement into
the queue of deferred statements. Then, RML nondeterministically shuffles the
statement in the queue according to the relaxations allowed by the underlying
memory model M .

d′ ∈ Enq(d, s, σ,M )
s ∈ {g := e, l := g, l := e, l := cas(g, e1, e2), rollback g := e}

〈s; p, σ, d〉 ε−→ 〈p, σ, d′〉 (ENQUEUE)

Dequeue

A statement is executed by RML only under the circumstances that the value
of the conditional variable depends on the contents on the queue, or RML
reaches a store (resp. load) fence, and there is a store (resp. load) instruction
in the queue. In this case, the first statement in the queue is dequeued, and the
effect of the statement is made to the global and local variables as required.

allowDequeue(σ, d, p1) = true
σ[g] = c d = (l := g) · d′

〈p1; p, σ, d〉
〈load [[g]]σ〉−−−−−−→ 〈p1; p, σ[l/c], d′〉

(DEQUEUE LOAD)

allowDequeue(σ, d, p1) = true
σ[e] = c d = (g := e) · d′

〈p1; p, σ, d〉
〈store [[g]]σ〉−−−−−−→ 〈p1; p, σ[g/c], d′〉

(DEQUEUE STORE)

allowDequeue(σ, d, p1) = true
σ[g] = c σ[e1] 6= c d = (l := cas(g, e1, e2)) · d′

〈p1; p, σ, d〉
〈load [[g]]σ〉−−−−−−→ 〈p1; p, σ[l/c], d′〉

(DEQUEUE CAS FAILURE)
allowDequeue(σ, d, p1) = true

σ[g] = σ[e1] = c σ[e2] = c′ d = (l := cas(g, e1, e2) · d′

〈p1; p, σ, d〉
〈cas [[g]]σ〉−−−−−→ 〈p1; p, σ[g/c′][l/c], d′〉

(DEQUEUE CAS SUCCESS)
allowDequeue(σ, d, p1) = true

σ[e] = c d = (l := e) · d′

〈p1; p, σ, d〉
ε−→ 〈p1; p, σ[l/c], d′〉 (DEQUEUE LOCAL)
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initially, X1 := 0, X2 := 0, Y1 := 0, Y2 := 0

r1 := 0, r2 := 0, r3 := 0, r4 := 0

if id = 0 if id = 1

X1 := 0 X2 := 0

Y1 := 0 Y2 := 0

r1 := Y2 ‖ r2 := Y1

r3 := X2 r4 := X1

X1 := 2 X2 := 2

Figure 4.3: An example of an RML program

allowDequeue(σ, d, p1) = true
σ[e] = c d = (rollback g := e) · d′

〈p1; p, σ, d〉
rollback[[g]]σ−−−−−−→ 〈p1; p, σ[g/c], d′〉

(DEQUEUE ROLLBACK)

4.3.3 Example execution in RML

Consider the RML program shown in Figure 4.3. This example was presented
in the introduction to relaxed memory models in Chapter 1. We discuss the
operation of RML under different memory models.

• Sequential consistency does not allow any reorderings. The example gen-
erates 247 states1.

There are seven possible valuations for the tuple 〈 r1, r2, r3, r4 〉 of vari-
ables: 〈1, 0, 2, 0〉, 〈1, 0, 1, 0〉, 〈1, 1, 2, 1〉, 〈1, 1, 1, 1〉, 〈1, 1, 1, 2〉, 〈0, 1, 0, 1〉,
〈0, 1, 0, 2〉.

• Total store order allows to reorder a store followed by a read of a different
variable, and also allows to eliminate a read of a variable following a
store to the same variable. The example generates 943 states. Apart
from the valuations allowed in sequential consistency, TSO allows one
more valuation for 〈 r1, r2, r3, r4 〉: 〈0, 0, 0, 0〉.

• Partial store order further allows to reorder stores of different variables.
The example generates 3382 states. Apart from the valuations allowed in
TSO, PSO allows seven more valuation for 〈 r1, r2, r3, r4 〉: 〈1, 0, 0, 0〉,
〈1, 1, 0, 1〉, 〈1, 1, 0, 2〉, 〈1, 1, 2, 0〉, 〈1, 1, 1, 0〉, 〈1, 1, 0, 0〉, 〈0, 1, 0, 0〉.

• Relaxed memory order further allows to reorder loads and a load fol-
lowed by a store to a different variable. The example generates 26596
states. Apart from the valuations allowed in PSO, RMO allows one more
valuation: 〈1, 1, 2, 2〉.

1In this example, we define a state as a valuation of the global and local variables, the
program counters, and the deferred statements for each thread.
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We indeed produce these outcomes using our automated tool FOIL which
we present in the next chapter. Some of the outcomes in the above examples
are hard to reason about manually. That shows the importance of automated
tools to reason about outcomes under relaxed memory models.

4.4 TM Algorithms in RML

Similar to the way we expressed TM algorithms in our language Simple, we
now express TM algorithms in RML. A state of a TM algorithm now captures,
apart from the global and local valuations, the program counters, and the
transactional program counters, the set of deferred statements per thread. So,
a state z of the TM algorithm now becomes a 5-tuple 〈σG, σL, pc, txpc, D〉,
where D(t) is the set of deferred statements of thread t in the state z . We can
now extend the formalism developed in Section 2.4.2 to describe a run and a
corresponding history. However, as the semantics of RML are parametrized by
a memory model, the set of runs produced by a TM algorithm depends on the
underlying memory model. Hence, the language of the TM algorithm depends
on the memory model. The language L(A,M) of a TM algorithm A under a
memory model M is the set of histories h such that h is the corresponding
history of a run of A under the memory model M . A TM algorithm A is safe
for property π under a memory model M if every history in the language of A
under M is included in π.

We now describe three TM algorithms, DSTM, TL2, and McRT-STM in
RML. We present the RML programs pr, pw, and pe for each TM algorithm.
We also give the initial valuation of the variables of the TM algorithm. We
use the notation owner[V] to denote that owner is an array of size V . All TM
algorithms also consist of a program pa which corresponds to the abort of the
transaction.

TL2

Algorithm 4.3 shows four RML programs: pr (read), pw (write), pe (end), and
pa (abort). The program pa can be called from within pr, pw, and pe. The
global variables are lock[V], version[V], g[V], and clk. The local variables are
rs[V], ws[V], lver[V], lclock, c, and l. The index variables are u and v. self
denotes the thread number of the executing thread. The initial valuation of all
variables is 0. The array g[V] of global variables corresponds to the addresses
of the transactional variables V .

Comparing against the description of TL2 in the language Simple, we find
that the program pe requires many atomic steps to complete, which increases
the possible interleavings, and thus makes verification more challenging.
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01 program pa :
02 u := 0

03 while u < V do

04 u := u + 1;
05 if owner[u] = self then

06 owner[u] := 0;
07 rs[u] := 0; ws[u] := 0

08 lclock := 0

09 abort

01 program pw :
02 if lclock = 0 then

03 lclock := clk;
04 ws[v] := 1;

01 program pr :
02 if lclock = 0 then

03 lclock := clk;
04 if ws[v] = 0 then

05 l := owner[v];
06 if l 6= 0 then pa
07 l := g[v];
08 lver[v] := version[v];
09 if lclock 6= lver[v] then pa
10 rs[v] := 1;
11 rfin

01 program pe :
02 u := 0;
03 while u < V do

04 u := u + 1;
05 if (ws[u] = 1) then
06 l := cas(owner[u], 0, self);
07 if l 6= self then pa
08 l := 0;
09 while l 6= lclock + 1 do

10 lclock := clk

11 l := cas(clk, lclock, lclock + 1);
12 u := 0;
13 while u < V do

14 u := u + 1;
15 if rs[u] = 1 then

16 rs[u] := 0;
17 l := owner[u];
18 c := version[u];
19 if c 6= lver[u] then pa
20 if l 6= 0 then pa
21 u := 0;
22 while u < V do

23 u := u + 1;
24 if ws[u] = 1 then

25 version[u] := lclock;
26 g[u] := l;
27 u := 0;
28 while u < V do

29 u := u + 1;
30 if ws[u] = 1 then

31 owner[u] := 0;
32 ws[u] := 0;
33 lclock := 0;
34 commit

Algorithm 4.3: The TL2 algorithm in RML

DSTM

The global variables are txr[V]. The local variables are rs[V], v, k, l, m, t, and
u. All variables are initialized to 0. DSTM consists of structures which can
be implemented using a sequence of addresses. We use these structures and
slightly modify the DSTM algorithm to avoid dynamic memory allocation. We
express the programs pr, pw, and pe of DSTM in RML in Algorithm 4.4.
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01 program pa :
02 u := 0;
03 while u < V do

04 u := u + 1;
05 l := cas(txr[v].tid, self, aborTx)
06 abort

01 program pr :
02 pw
03 rfin

01 program pe :
02 u := 0;
03 while u < V do

04 u := u + 1;
05 l := cas(txr.tid[v], self, commTx)
06 commit

01 program pw :
02 k := 0

03 l := txr[v]; t := l.tid
04 if t 6= self then

05 while k 6= l do

06 k := 0

07 m.tid := self

08 if t.status = 1 then

09 m.oldv := l.newv
10 m.newv := l.newv
11 if t.status = 2 then

12 m.oldv := l.oldv
13 m.newv := l.oldv
14 if t.status = 0 then

15 k := cas(t.status, 0, 2)
16 if k = 0 then

17 m.oldv := l.oldv
18 m.newv := l.oldv
19 k := cas(txr[v], l, m)

Algorithm 4.4: The DSTM algorithm in RML

McRT STM

McRT STM [SATH+06] is an STM proposal from Intel. It significantly differs
from the previous two TM we discussed, due to the fact that McRT STM is
a direct update TM. In fact, McRT STM is similar to the two phase locking
TM presented in Chapter 2. The difference lies in the time of when the stores
are made. While the two phase locking TM updated the global memory on a
commit, McRT STM updates the global memory during the write command.
The global variables are owner[V] and g[V]. The local variables are rs[V], l, m,
u, and v. All variables are initialized to 0. The array g[V] of global variables
corresponds to the addresses of the transactional variables V . McRT STM is
presented in RML in Algorithm 4.5.
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01 program pa :
02 u := 0;
03 while u < V do

04 u := u + 1;
05 l := owner[u];
06 if l = self then

07 rollback[v];
08 owner[v] := 0;
09 rs[v] := 0

10 abort

01 program pw :
02 l := owner[v];
03 if l 6= self then

04 if l 6= 0 then pa
05 l := cas(owner[v], 0, self);
06 if l 6= self then pa
07 g[v] := l

01 program pr :
02 if (rs[v] 6= 1) then
03 l := owner[v];
04 if l 6= self and l 6= 0 then

05 if l < R then pa
06 else

07 m := cas(owner[v], l, l + 1);
08 if m 6= l + 1 then pa
09 rs[v] := 1

10 l := g[v]
11 rfin

01 procedure pe :
02 v := 0;
03 while v < V do

04 v := v + 1;
05 if rs[v] = 1 then

06 l := 0; m := 0

07 while (l− 1 6= m)
08 l := owner[v];
09 m := cas(owner[v], l, l− 1);
10 rs[v] := 0

11 else

12 if owner[v] = self then

13 owner[v] := 0

14 commit

Algorithm 4.5: The McRT-STM algorithm in RML
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We shall first verify the correctness of TM algorithms for a finite number of
threads and variables. We check whether the TM algorithms are opaque for
two threads and two variables. Also, we verify that DSTM is obstruction
free for two threads and one variable. Later in this chapter, we extend the
structural properties discussed in Chapter 3 to the fine-grained formalism.

5.1 The FOIL Tool

We developed a stateful explicit-state model checker, FOIL, that takes as in-
put the RML description of a TM algorithm A, a memory model M , and a
correctness property π, and checks whether A is correct with two threads and
two variables for π under the memory model M . FOIL uses the RML semantics
with respect to the memory model M to compute the state space of the TM
algorithm A, and checks inclusion within the correctness property π. FOIL
builds on the fly, the product of the transition system for A and the TM spec-
ification for π. In our case, we let the correctness criterion be opacity. If a
TM algorithm A is not opaque for a memory model M , FOIL automatically

A is correct under M for π

FOIL
Memory model M

Correctness property π

A with ldfence at locations l1, l2
and stfence at locations l3, l4
is correct under M for π

No fences can be added to make
A correct under M for π

TM algorithm A in RML

Figure 5.1: A schematic of FOIL

77
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Table 5.1: Time for checking the opacity of TM algorithms under sequential
consistency on a 2.8 GHz PC with 2 GB RAM. The time is divided into time tg
needed to generate the language of the TM algorithm from the RML description,
and time ti needed to check inclusion within the property of opacity.

TM algo-
rithm A

Number of
states

A is
opaque?

tg ti

TL2 1888674 Yes 581s 1.1s
DSTM 3060158 Yes 1327s 2.3s

McRT STM 479234 Yes 265s 0.9s

inserts fences within the RML representation of A in order to make A opaque.
FOIL succeeds if it is indeed possible to make A opaque solely with the use of
fences. In this case, FOIL reports a possible set of missing fences. FOIL fails if
inserting fences cannot make A opaque. In this case, FOIL produces a shortest
counterexample to opacity under sequential consistency.1 We used FOIL to
check the opacity of DSTM, TL2, and McRT STM under different memory
models.

5.2 Results

We first present the results we obtained from FOIL. Then, we provide some
implementation details which make FOIL work.

5.2.1 Sequential consistency

We first model check the TM algorithms for opacity on a sequentially consis-
tent memory model. We find that all of DSTM, TL2, and McRT STM are
opaque. The state space obtained for these TM algorithms is large as it covers
every possible interleaving, where the level of atomicity is that of the hard-
ware. Table 5.1 lists the number of states of different TM algorithms with
the verification results under sequential consistency. The usefulness of FOIL is
demonstrated by the size of the state spaces it can handle.

5.2.2 Relaxed memory models

Next, we model check the TM algorithms on the following relaxed memory
models: TSO, PSO, and RMO. We find that TL2 and McRT STM are not
opaque for PSO and RMO. FOIL gives counterexamples to opacity. We let FOIL
insert fences automatically until the TM algorithms are opaque under different
memory models. Table 5.2 lists the number and location of fences inserted

1Note that if a TM algorithm A cannot be made opaque with fences under some memory
model M , then A is not opaque even under sequential consistency.
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Table 5.2: Counterexamples generated for opacity, and the type and location of
fences required to remove all counterexamples on different relaxed memory models.
We list the statement number after which the fence has to be inserted in the RML
program.

STM TSO PSO RMO

TL2 No fences w1, stfence: pe, 26 w1, stfence: pe, 26
w3, ldfence: pe, 17
w4, ldfence: pr, 07

DSTM No fences No fences No fences
McRT STM No fences w2, stfence: pa, 07 w2, stfence: pa, 07

Counterexamples

w1 : (〈load v1〉, t1), (〈rfin〉, t1), (〈store v1〉, t2), (〈store v1〉, t1)
w2 : (〈store v1〉, t1), (〈load v2〉, t2), (〈rfin〉, t2), (〈load v1〉, t2), (〈rfin〉, t2),
(〈rollback v1〉, t1)
w3 : (〈load v1〉, t1), (〈rfin〉, t1), (〈load v2〉, t2), (〈rfin〉, t2), (〈store v1〉, t2),
(〈store v2〉, t1)
w4 : (〈load v1〉, t1), (〈rfin〉, t1), (〈store v1〉, t2), (〈load v1〉, t1), (〈rfin〉, t1)

by FOIL to make the various TM algorithms opaque under various memory
models. Note that the counterexamples shown in the table are projected to the
loads, stores, and rollbacks of the transactional variables, and rfin instructions.
We omit the original long counterexamples (containing for example, a sequence
of loads and stores of locks and version numbers) for brevity.

Currently, TM designers use intuition to place fences, as lack of fences
risks correctness, and too many fences hamper performance. As FOIL takes as
input a memory model, it makes it easy to customize a TM implementation
according to the relaxations allowed by the memory model. Although FOIL
is not guaranteed to put the minimal number of fences, we found that FOIL
indeed inserts the same fences as those in the official TM implementations.

5.2.3 Analysis

We note that reordering a store followed by a load, and reading own write early
(due to store buffers) does not create a problem in the TM we have studied.
This is evident from the fact that all TM are correct under the TSO memory
model without any fences. On the other hand, relaxing the order of stores
or loads can be disastrous for the correctness of a TM. This is because most
TM use version numbers or locks to control access. For example, a reading
thread first checks that the variable is unlocked and then reads the variable.
A writing thread first updates the variable and then unlocks it. Reversing the
order of writes or reads renders the TM incorrect.
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5.2.4 Model checking liveness

We saw in Chapter 3 that the TL2 algorithm does not ensure obstruction
freedom with two threads and one variable. Intuitively, proving that a TM
algorithm does not satisfy a liveness property at a coarse-grained alphabet is
sufficient to prove that the TM algorithm does not satisfy the liveness prop-
erty at a finer-grained alphabet. This is because we can create a schedule in
such a way that the TM algorithm takes steps at the coarse-grained alphabet.
However, to prove the result formally, we model check TL2 at the finer-grained
level of atomicity.

We model check DSTM, TL2, and McRT STM for obstruction freedom
using our tool FOIL under relaxed memory models. For each TM algorithm,
we put in the required fences (as obtained in the previous section) in order to
make the TM algorithm opaque under the given memory model. We observe
that McRT STM and TL2 do not satisfy obstruction freedom. We also observe
that for two threads and one variable, DSTM satisfies obstruction freedom at
hardware level atomicity under the memory models, sequential consistency,
TSO, PSO, and RMO. With the result that DSTM satisfies opacity, we can
extend our reduction theorem for liveness discussed in Chapter 3 to prove that
DSTM ensures obstruction freedom.

5.3 Implementation Details

We implemented FOIL in OCaml. FOIL supports two modes: generating the
state space of a TM algorithm and finding a counterexample history on-the-
fly. We found it important to allow both modes in FOIL due to the following
reason. The state spaces of the TM algorithms are very large. Checking for
a counterexample on the fly requires to build the product automaton. The
state space of the product automaton could be as large as the product of the
state spaces of the TM algorithm and the TM specification. The size of the
transition system of the TM algorithms is, on average, a million states under
sequential consistency. The size is much bigger under highly relaxed memory
models. The size of the deterministic TM specification is around 46’000 states.
We found it impossible, with modest computing resources, to construct the
whole product automaton or the transition system of a TM algorithm under a
highly relaxed memory model using FOIL. However, FOIL could construct the
transition system of the TM algorithms under sequential consistency. We then
use a lightweight language inclusion tool to check whether the language of the
TM algorithm is included in the language of the TM specification.

5.3.1 Generating the state space

We obtain the transition relation of a TM algorithm using Algorithm 5.1.
Intuitively, the algorithm finds all states reachable from the initial state, and
outputs the transition system. How FOIL handles relaxed memory models, is
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generateTransitionSystem(A)

frontier := {qinit}
Q := frontier
while frontier 6= ∅

pick and remove a state q from frontier
T := findnext(A, q)
δ := δ ∪ T
let Q′ be the set of destination states in T
add the set Q \Q′ of states to frontier
Q := Q ∪Q′

output δ

Algorithm 5.1: Obtaining the transition system of a TM algorithm

findCounterexample(A, Spec)

frontier := {(qinit , pinit)}
path(qinit , pinit) := ε
Q := frontier
while frontier 6= ∅

pick and remove a state (q, p) from frontier
T := findnext(A, q)
for each transition (q, op, q′) ∈ T do

if op ∈ Ôp then
if there exists a state p1 ∈ P such that (p, op, p1) ∈ δp then
p′ := p1 such that (p, op, p1) ∈ δp

else
report counterexample path(q, p) · op

else p′ := p
if (q′, p′) /∈ Q then

add (q′, p′) to Q
add (q′, p′) to frontier
path(q′, p′) = path(q, p) · op

report no counterexample found

Algorithm 5.2: Obtaining a counterexample to opacity on-the-fly

hidden beneath the findnext procedure. The findnext procedure takes as input
a TM algorithm and a state q of the TM algorithm, and gives all transitions
in the TM algorithm from the state q.
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5.3.2 Finding a counterexample

Although the state space generation mode of FOIL gives the transition system
for the TM algorithms under sequential consistency, the mode cannot produce
the transition system for the TM algorithms under relaxed memory models.
This is because the state space of a TM algorithm under a relaxed memory
model can be too large to explore with modest computation speed and memory.
However, many histories produced under these memory models may not even
satisfy opacity. To handle this situation, we use on-the-fly verification. FOIL
maintains the product automaton of the transition system of the TM algorithm
and the TM specification, and tries to find counterexamples early. FOIL uses
Algorithm 5.2 to construct the product automaton and find a counterexample
to opacity. We represent the deterministic TM specification for opacity as
Spec = 〈P, pinit , δp〉.

We find this procedure highly successful, because counterexamples of opac-
ity tend to be short. On observing a counterexample, FOIL suggests the loca-
tion of a fence which might make the TM algorithm correct under the given
relaxed memory model. On inserting the fence, the number of interleavings
decreases, and thus the size of the state space decreases. We run FOIL in this
mode until it takes a few minutes to find a counterexample. After that, we run
FOIL in the state space generation mode. Once we obtain the state space of
the TM algorithm, we can use our lightweight language inclusion tool to check
whether the language of the TM algorithm is included in the specification.
The interesting part is how the two modes help each other. It is not possible
to reach our goal with either of the modes. The state space generation mode
fails to generate the state space of a TM algorithm under a highly relaxed
memory model due to the large number of interleavings. The counterexample
finder mode fails to finish due to the large size of the product automaton even
under sequential consistency.

5.3.3 Counterexample analysis

Our tool FOIL automatically inserts fences. However, FOIL does not ensure
that the number of fences it inserts is minimal. We describe how FOIL chooses
the place where the fence needs to be inserted.

Recall that when FOIL encounters a statement s with a memory instruction
in of thread t, FOIL adds the instruction in the queue d = s0 . . . sn of deferred
statements of thread t according to the given memory model. If FOIL inserts
the memory instruction in the middle of the queue to obtain d′ = s0 . . . si ·
s · si+1 . . . sn, FOIL tags the statement s in the queue with the string sn ·
sn−1 . . . si+1. When FOIL reports a counterexample, we search for the last
statement with a reordering tag in the counterexample. Let the tag be s1 . . . sk.
We attribute the error to the reordering allowed by sk. So, we insert a fence
after the statement sk. The inserted fence is a store (resp. load) fence if sk is
a store (resp. load) instruction.
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5.4 Structural Properties

We extend the structural properties discussed in Chapter 3. Our analysis that
the TM algorithms, TL2 and DSTM, at coarse-grained atomicity are abort
isolated and pending isolated can be extended to the fine-grained atomicity
framework as described below. These definitions depend only on the instruc-
tions of a single thread, and thus, relaxing the memory model does not break
these properties. However, we cannot prove that the TM algorithm McRT
STM is abort isolated. This is because McRT STM is a direct update TM,
which writes to memory during the transaction. Thus, a state change by a
thread in the TM algorithm can be observed by other threads. The structural
properties P2 (thread symmetry) and P3 (variable projection) do not depend
on the level of atomicity, and thus can be directly extended to the hardware
level atomicity.

DSTM

DSTM relies on a notion of ownership. If a transaction wants to read or write a
variable, it first atomically sets the transaction record of the variable to itself.
If another transaction wants to access the same variable, it first sets the status
of the owner transaction to aborted, and reads the old value of the variable.

Abort and pending isolation. An aborting or pending transaction in DSTM
changes the global valuation by changing the status of other transactions to
aborted. All other changes are not observable to committed transactions.

Conflict commutative. DSTM uses encounter-time ownership for both reads
and writes. Thus, if a transaction loads a variable before another transaction
stores to the same variable, then all instructions of the txrd command can
appear before all instructions of the txwr command.

TL2

Abort and pending isolation. An aborting transaction x in TL2 can hold a
lock and change the value of the global timestamps. If another transaction
y observes that x holds the lock for some variable, y aborts. Similarly, if y
observes an increment of the global timestamp by x during a read, y aborts.
A similar argument holds for pending isolation.

Conflict commutative. To prove that TL2 is conflict commutative at fine-
grained atomicity, we need to consider the relaxed memory model. It turns out
that the TL2 algorithm (shown in Algorithm 4.3) is not conflict-commutative
under some relaxed memory models. This is because if a txend command
overlaps with a txrd command, such that the store instruction in the txend
command appears before the load instruction in the txrd command, it may not
be possible to move all instructions corresponding to the txrd command after
all instructions of the txend command. This problem goes away if we insert
some fences in the RML program of the TL2 algorithm. We observe that
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once FOIL inserts the required fences, TL2 is indeed conflict commutative.
Consider a txrd command overlapping with a conflicting txend command. If
the transactional variable is loaded in txrd before the variable is stored in
txend , then all instructions of the txrd command can be moved above all
instructions of the txend command (otherwise the reading transaction must
abort). Similarly, if the txend commands of two transactions x and y overlap,
if x stores to the transactional variable before y, then all instructions in the
txend command of x can be moved above all instructions of the txend command
of y.



Parametrized Opacity 6
The formal definition of opacity has allowed for a clear understanding of the
behavior of pure transactional programs. Also, it allowed the verification tech-
niques as described in the previous chapters. Unfortunately, the semantics of
the interaction of transactions with non-transactional code has not been for-
mally defined. This chapter formalizes this interaction.

We provide a general formal framework for describing the interactions be-
tween transactions and non-transactional operations. We consider opacity as a
correctness condition for transactions, and parametrize it by a memory model.
We claim that while a TM can be implemented in a way to ensure opacity
for transactions, there is little one can do (on a given platform or run-time
environment) to change the underlying memory model. Hence, it is desirable
to define opacity parametrized by a memory model. Moreover, we want the
definition of parametrized opacity to be implementation-agnostic (like opac-
ity), so that it allows for transactional objects with semantics richer than that
of simple read-write variables. This could help describing, for example, TM
that implement transactional boosting [HK08] or similar techniques.

We present a definition of a memory model which is general enough to
capture a variety of memory models. Intuitively, we formalize a memory model
as a function which, depending upon the sequence of operations, gives the set
of possible orders of operations. Our formalism can capture common memory
models like TSO, PSO, RMO [WG94], and Alpha [Sit02]. Moreover, we allow
different processes to observe different order of operations, which allows us
to capture memory models with non-atomic stores, like IA-32 [Int06]. We
classify memory models on the basis of the possible reorderings of operations
they allow.

Our formalization of parametrized opacity is guided by the following intu-
ition:

85
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initially x = y = z = 0 in every case

Thread 1 Thread 2
atomic {

x := 1
x := 2 atomic {

} z := x− y
atomic { }

y := 2
}

(a) Can z < 0?

Thread 1 Thread 2

x := 1 r1 := y
y := 1 r2 := x

(b) Can r1 = 1 and r2 = 0?

Thread 1 Thread 2
atomic { z := x

x := 1
x := 2
}
atomic {

r1 := z
r2 := z
}

(c) Can z = 1 or r1 6= r2?

Figure 6.1: Motivating examples for the definition of parametrized opacity

1. Opacity for transactions. Whatever the memory model is, executions
that are purely transactional must ensure opacity. Indeed, the semantics
of transactions should be intuitive and strong—in the end, we want TM
to be as easy to use as coarse-grained locking. For example, consider
Figure 6.1(a). Thread 2 should observe x as 0 or 2, because the interme-
diate state of a transaction (x = 1) is not visible to other transactions.
Also, y can be observed as 0 or 2. Moreover, y can be observed as 2
only if x is observed as 2, because the effect of transactions is visible in
real-time order. Thus, the possible values of z are 0 and 2. Note that
even if thread 2 aborts, opacity requires that z is 0 or 2.

2. Efficiency of non-transactional operations. Executions that are purely
non-transactional have to adhere to the given memory model. In partic-
ular, parametrized opacity should not strengthen the semantics of non-
transactional operations. The motivation here is to avoid a framework
that would inherently require non-transactional operations to be instru-
mented with additional memory fences or software barriers, even for very
weak memory models. For example, in Figure 6.1(b), a memory model
may relax the order of write operations in Thread 1 or the read opera-
tions in Thread 2, resulting in r1 = 1 and r2 = 0.

3. Isolation of transactions from non-transactional operations. Transac-
tions should appear, both to other transactions and non-transactional
operations, as if they were executed instantaneously. In particular, isola-
tion of transactions should be respected, regardless of the memory model.
That is, first, the intermediate computations of transactions, or updates
by aborted transactions, should never be visible to non-transactional
operations, and, second, the non-transactional operations concurrent to
a transaction should appear as if they happened before or after this
transaction. For example, in Figure 6.1(c), Thread 2 cannot observe an
intermediate state of a transaction, and thus z 6= 1. Moreover, the ef-
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fect of a non-transactional operation cannot show up in the middle of a
transaction. Thus, r1 = r2.

Note that opacity parametrized by sequential consistency gives the notion
of strong atomicity as proposed by Larus et al. [LR07]. On the other hand,
parametrized opacity for a relaxed memory model like RMO matches the no-
tion of strong atomicity given by Martin et al. [MBL06].

In practice, TM implementations that guarantee strong atomicity require
that non-transactional operations, instead of accessing memory directly, ad-
here to an access protocol as defined by the TM implementation. This mod-
ification of the semantics of non-transactional operations is known as instru-
mentation. For example, Tabatabai et al. [SMAT+07] propose a TM imple-
mentation, where the non-transactional read and write operations follow the
locking discipline as done by the transactions. The formal definition of opacity
parametrized by a memory model allows us to theoretically analyze the cost
of creating TM implementations that guarantee parametrized opacity. While
parametrized opacity is the intuitive correctness property for transactional
programs with non-transactional operations, we show that, without instru-
mentation, it cannot be achieved on most memory models. Even for the small
class of idealized memory models, where parametrized opacity can be achieved
without instrumentation, we show that a TM implementation must use expen-
sive read-modify-write operations for each object modified by a transaction.

Next, we focus on TM implementations that instrument non-transactional
write operations, without any instrumentation for non-transactional read op-
erations. We start with a basic result which shows that for a class of memory
models which allows to reorder independent reads, it is possible to achieve
parametrized opacity without instrumenting the read operations, and treating
every non-transactional write as a transaction in itself. Note that this might
not provide a practical solution, as we do not want a non-transactional oper-
ation to carry the overhead associated with a transaction. Moreover, we want
non-transactional operations to finish in bounded time, while a transaction,
in general, may take arbitrarily long to finish. The next question we ask is
whether we can obtain parametrized opacity for a class of memory models
with constant-time instrumentation on the writes. We show that for a class
of memory models which allows to reorder a read of a variable following a
read or write of another variable (like Alpha [Sit02]), it is indeed possible
to achieve parametrized opacity with constant-time instrumentation for non-
transactional write operations. We also discuss how to adapt the constant-time
write instrumentation solution for memory models which do not allow to re-
order data-dependent reads (like RMO [WG94] and Java [MPA05]).

Using our theoretical framework, we examine existing TM implementations
that guarantee parametrized opacity. TM implementations in the literature
that satisfy strong atomicity [SMAT+07], in fact, satisfy parametrized opacity
with respect to sequential consistency. We observe that a TM implementation
can be designed to be more efficient, if it is to satisfy opacity parametrized
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by a weaker memory model. We extract the key practical ideas from our
proofs which shall help to design more efficient TM implementations which
guarantee opacity parametrized by relaxed memory models. We also show that
our theoretical framework can be used to specify weaker notions of correctness.
As an example, we formalize single global lock atomicity (SGLA) [GMP06,
LR07, MBS+08]. Moreover, we show that the impossibility results we obtain
for parametrized opacity do not hold for SGLA.

6.1 Preliminaries

We first describe a framework of a shared memory system consisting of shared
objects and operations on those objects. The previous chapters consider single-
version opacity, which allowed us to ignore the values of the variables read and
written. In general, opacity allows multiple versions for all variables, which
requires us to track the values read and written in each operation.

Operations. Let Obj denote a set of shared objects. We consider a shared-
memory system consisting of a set P of processes, which communicate by
executing commands on (shared) objects. Let C be a set of commands on
shared objects, where arguments and return values are treated as part of a
command. For example, in a system that supports only reading and writing
of shared (natural number) variables, we have C = {rd, wr} × N. We define
operations Op ⊆ C ×Obj as the set of all allowed command-object pairs.

Besides operations that issue commands on shared objects, every process
in P can execute the following special operations: start to start a new trans-
action, operation commit to commit a transaction, and abort to abort a trans-
action. Let Ôp = Op ∪ {start, commit, abort}.

Histories. We define an operation instance as (op, p, k), where op ∈ Ôp is
an operation, p ∈ P is a process which issues the operation, and k ∈ N is a
natural number representing the identifier of the operation instance.

A history h ∈ (Ôp × P × N)∗ is a sequence of operation instances, such
that for every pair (op, p, i), (op′, p′, j) of operation instances in h, we have
i 6= j. Intuitively, we want each operation instance in a history to have a
unique identifier. For a natural number k, when we say “operation k”, we
mean “operation instance with identifier k”, i.e., the element of h of the form
(op, p, k), where o ∈ Ôp and p ∈ P .

A transaction of a process p is a subsequence (op1, p, i1) . . . (opn, p, in) of
a history h such that (i) op1 is a start operation, (ii) either operation in is the
last operation instance of p in h, or we have opn ∈ {commit, abort}, and (iii) all
operations op2, . . . , opn−1 belong to set Op.

A transaction T is committed (resp. aborted) in a history h if the last
operation instance of T has a commit operation (resp. an abort operation). A
transaction T is completed if T is committed or aborted.
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Given a history h and a natural number k, we say that operation k is
transactional in h if operation k is part of a transaction in h. Otherwise,
operation k is said to be non-transactional. We assume that every history h is
well-formed : that is, every non-transactional operation in h belongs to set Op.
Intuitively, well-formedness of a history requires that every commit and abort
of a transaction matches with a corresponding start, and there are no nested
transactions. We denote by H the set of all histories.

Given a history h, we define the real-time partial order relation ≺h⊂ N×N
of the operation identifiers in h, such that for two natural numbers i and j, we
have i ≺h j if:

1. operations i and j belong to transactions T and T ′, respectively, where
T is completed in h and the last operation instance of T precedes the
first operation instance of T ′ in h, or

2. operation i precedes operation j in h, both operations are executed by
the same process, and at least one of those operation instances is trans-
actional.

For example, consider the history h illustrated in Figure 6.2(a). The trans-
action of process p1 finishes before the transaction of process p3 starts. The
precedence relation ≺h consists of elements (1, 2), (5, 7), and (1, 9). On the
other hand, (1, 6) and (6, 9) are not in ≺h.

Object semantics. We use the concept of a sequential specification [HW90,
Wei89] to describe the semantics of objects. Given an object x ∈ Obj , we
define the semantics [[x]] ⊆ C∗ as the set of all sequences of commands on x
that could be generated by a single process accessing x.

For example, let x be a shared variable that supports only the commands
to read and write its value (with initial value 0). Then, [[x]] is a subset of ({rd,
wr} ×N)∗, such that, for every sequence c1 . . . cn in [[x]], and for all i, v ∈ N, if
ci = (rd, v) then either (a) the latest write operation preceding ci in c1 . . . cn is
(wr, v), or (b) v = 0 and no write operation precedes ci in c1 . . . cn.

Sequential histories. We say that a history h is sequential if, for every
transaction T in h, every operation instance between the start operation in-
stance of T and the last operation instance of T in h is a part of T . That
is, intuitively, no transaction T overlaps with another transaction or with any
non-transactional operation in h.

We say that a sequential history s respects a partial or a total order ≺⊆
N × N if, for every pair (i, j), if i ≺ j then operation i precedes operation j
in s.

Let s be a sequential history. We denote by s|x the longest subsequence
of all commands invoked on object x in s. We say that s is legal if for every
object x, we have s|x ∈ [[x]].
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p1 p2 p3

((wr, 1, x), 1)
((start), 2)

((rd, 1, y), 3)
((wr, 1, y), 4)
((commit), 5)

((rd, v, x), 6)
((start), 7)
((commit), 8)
((rd, v′, x), 9)

(a) History h

Every history is read top to bottom.
Notation: (wr, 1, x), 4) under a column
marked with process p stands for the
operation instance (((wr, 1), x), p, 4).

p1 p2 p3

((wr, 1, x), 1)
((start), 2)
((wr, 1, y), 4)
((commit), 5)

((rd, 1, y), 3)
((rd, v, x), 6)

((start), 7)
((commit), 8)
((rd, v′, x), 9)

(b) Sequential history s1

p1 p2 p3

((rd, v, x), 6)
((wr, 1, x), 1)
((start), 2)
((wr, 1, y), 4)
((commit), 5)

((rd, 1, y), 3)
((start), 7)
((commit), 8)
((rd, v′, x), 9)

(c) Sequential history s2

Figure 6.2: Examples of histories and sequential histories

We denote by visible(s) the longest subsequence of s that does not contain
any operation instance of a non-committed transaction T , except if the T is not
followed in s by any other transaction or non-transactional operation instance.
We say that an operation k in s is legal in s if history visible(s′) is legal, where
s′ is the prefix of s that ends with operation k.

Two examples of sequential histories are given in Figure 6.2(b) and Fig-
ure 6.2(c). Note that s1 and s2 respect ≺h (where h is the history shown in
Figure 6.2(a)). History s1 is legal if v = v′ = 1. Similarly, s2 is legal if v = 0
and v′ = 1.

6.2 Parametrized Opacity

We first formalize a memory model in our framework. Then, we define opacity
parametrized by a memory model.

6.2.1 Memory models

The operational semantics of memory models defined in the previous chap-
ter do not capture memory models which allow non-atomic stores and those
which allow out-of-thin-air values. This chapter defines memory models using
an axiomatic approach in order to capture a vast range of memory models that
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occur in practice. We formalize a memory model as a transformation followed
by per-process reordering of the history. The reordering function is defined
in such a way that it allows different processes to have different views of the
history, similar to the formalism by Sarkar et al. [SSN+09]. The transforma-
tion function allows us to have complex operations at the level of the history,
which may need a sequence of operations at the level of the implementation.
Moreover, the transformation function allows us to capture memory models
which do not provide out-of-thin-air guarantees (e.g., in languages like C/C++
for unsynchronized code).

We define a process view v : P → 2N×N as a function such that v(p) is a
partial order on the set of natural numbers for every process p ∈ P . Let V be
the set of all process views. A memory model is a pair M = (τ, R), where

• τ : Op→ Op∗ is a transformation function that maps an operation to a
sequence of operations, and

• R : H → 2V is a reordering function that maps a history to a set of
process views.

Intuitively, τ maps every operation to its internal representation (e.g., in hard-
ware or a run-time environment). For instance, a write to a 64-bit memory
word might be, on some systems, executed as two writes to its 32-bit parts.
Moreover, if a memory model does not give out-of-thin-air guarantees, τ can
map every write to a special havoc operation followed by the write. A read
which follows the havoc operation and precedes the write operation can return
any value. A process view allows different processes to observe different or-
ders of operations in a given history. This can capture memory models, like
IA-32 [Int06] which allow non-atomic stores.

If h is a well-formed history, then τ(h) denotes a well-formed history ob-
tained from h by replacing every operation instance (op, pj, k) of h with a
sequence (op1, pj, k1), . . ., (opm, pj, km), where τ(op) = op1, . . ., opm and
k1, . . . , km ∈ N. (Note that identifiers of operation instances of τ(h) can be
arbitrary, as long as they are unique.)

Well-formed memory models. A transformation function τ is well-formed
if for every well-formed, sequential and legal history s, sequence τ(s) is also
a well-formed, sequential, and legal history. Intuitively, a transformation is
well-formed if it does not change the semantics of transactional operations.

A reordering function R is well-formed if for every history h ∈ H, for every
view v ∈ R(h), for every process p ∈ P : (i) if (i, j) ∈ v(p), then operations
i and j are non-transactional in h, (ii) if (i, j) ∈ v(p), then i precedes j in h,
and (iii) if (i, j) ∈ v(p), then (j, i) /∈ v(p′) for all processes p′ ∈ P . Intuitively,
condition (i) requires that a reordering function can impose an order only on
non-transactional operations, condition (ii) requires that a view does not force
a process to observe operations of some process in out of program order, and
condition (iii) requires that a view should not force two processes to observe
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operations to occur in different orders. A memory model M = (τ, R) is well-
formed if τ and R are well-formed. All memory models we know of are indeed
well-formed.

Capturing dependence of operations. Often, a memory model [MPA05,
WG94] allows to reorder operations unless the latter operation is control-
dependent or data-dependent on the former operation. We need to distinguish
dependent reads from independent reads in our framework to capture these
memory models. We can capture these dependencies in our framework using
additional commands: {cdrd, ddrd, cdwr, ddwr} × N× 2N. For example, an op-
eration instance (op, p, k) in h with op = ((cdrd, v, {k1, . . . , kn}), x) denotes a
read operation which is control-dependent on operations k1 . . . kn in h. Well-
formedness of a history with control and data dependent operations requires
that if an operation k is dependent on k1 . . . kn in h, then all operations k1 . . . kn
precede k in h.

6.2.2 Examples of memory models

We now give examples of memory models for histories on read and write oper-
ations on shared variables. We first define an identity transformation function
τI such that τI(op) = op for every operation op ∈ Op. We say that a view v is
identical across processes, if v(p) = v(p′) for all processes p, p′ ∈ P .

• Sequential consistency requires that the order of operations of a process
in a history is preserved in every view, and all processes view an identical
order of operations of different processes. Formally, Msc = (τI , Rsc) such
that for all histories h, we have v ∈ Rsc(h) if (a) v is identical across pro-
cesses, and (b) for every process p ∈ P , for every pair (op1, p, i), (op2, p, j)
of operations such that operation i precedes operation j in h, we have
(i, j) ∈ v(p).

• Total store order allows a write operation to forward the value of a vari-
able to a following read operation, and allows to reorder a write op-
eration followed by a read operation to a different variable. Formally,
the memory model Mtso = (τI , Rtso) such that for all histories h, we
have v ∈ Rtso(h) if (a) v is identical across processes, and (b) for ev-
ery process p, for every pair (op1, p, i), (op2, p, j) of operations such that
operation i precedes operation j in h, we have (i, j) ∈ v(p) if one of
following conditions holds:

– op2 is a write operation1,

– op1 and op2 are to the same object x, or

1We use the term “write operation” (resp. “read operation”) as a general term for a
simple write or a control/data dependent write (resp. read).
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– op1 is a read operation of the form (rd, v, x)2 such that (wr, v, x) is
the last preceding write operation to x by process p in h.

The intuition for the last case is to allow two read operations to different
variables to reorder if the first read obtains the value from a store buffer.

• Relaxed memory order allows to reorder read and write operations to
different variables, unless the first operation is a read, and the second
operation is either a write control/data-dependent on the first opera-
tion, or a read data-dependent on the first operation. RMO is specified
by the memory model Mrmo = (τI , Rrmo) such that for all histories h, we
have v ∈ Rrmo(h) if (a) v is identical across processes, and (b) for every
process p, for every pair (op1, p, i), (op2, p, j) of operations such that op-
eration i precedes operation j in h, we have (i, j) ∈ v(p) if one of the
following conditions holds:

– op1 and op2 are to the same object x,

– op1 is a read of a variable x and op2 = ((cdwr, v,K), y) or op2 =
((ddwr, v,K), x) for some v ∈ V and K ⊆ N such that i ∈ K, or

– op1 is a read of a variable x and op2 = ((ddrd, v,K), y) for some
v ∈ V and K ⊆ N such that i ∈ K.

• Junk-SC is a memory model we describe here to show how memory
models that allow junk (out-of-thin-air) values can be expressed in our
formalism. Junk-SC requires sequential consistency, but if there exist a
read and a write to a variable, such that they are not real-time ordered
with respect to each other, then the read can observe any junk value. We
denote Junk-SC as Mjunk = (τ, Rsc), where τ is given as: τ(wr, v, x) =
havoc(x) · (wr, v, x) and τ(op) = op otherwise.

Classes of memory models. We now present a classification of memory
models on the basis of reorderings they allow. We build the following four
classes depending upon the restrictions posed by the memory model.

1. We first describe the class Mrr which represents the read-read restrictive
memory models. We let Mrr = M i

rr ∪M c
rr ∪Md

rr , where:

M i
rr is the set of memory models M = (τI , R) such that for all histories

h, for all i, j ∈ N, if operation i is a read operation to x and operation
j is a read operation to y such that x 6= y, and both operations i, j are
by process p, then for all view orders v ∈ R(h), for all p′ ∈ P , we have
(i, j) ∈ v(p′).

M c
rr is the set of memory models M = (τI , R) such that for all histories

h, for all i, j ∈ N, if operation i is a read operation to x and operation

2Throughout the paper, for ease of readability, we write ((rd, v), x) as (rd, v, x) and
((wr, v), x) as (wr, v, x).
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j is of the form (((cdrd, v,K), y), p, j) for some v and K ⊆ N such that
x 6= y and i ∈ K, and both operations i, j are by process p, then for all
view orders v ∈ R(h), for all p′ ∈ P , we have (i, j) ∈ v(p′).

Md
rr is the set of memory models M = (τI , R) such that for all histories

h, for all i, j ∈ N, if operation i is a read operation to x and operation
j is of the form (((ddrd, v,K), y), p, j) for some v and K ⊆ N such that
x 6= y and i ∈ K, and both operations i, j are by process p, then for all
view orders v ∈ R(h), for all p′ ∈ P , we have (i, j) ∈ v(p′).

Intuitively, M i
rr restricts the order of read operations to different vari-

ables. M c
rr (resp. Md

rr) restricts the order of read operations to different
variables if the second read is control (resp. data) dependent on the first
read. Note that if a memory model M is in M i

rr , then M ∈ M c
rr and

M ∈Md
rr .

2. We define the class of read-write restrictive memory models as Mrw =
M i

rw ∪M c
rw ∪Md

rw , where:

M i
rw is the set of memory models M = (τI , R) such that for all histories

h, for all i, j ∈ N, if operation i is a read operation to x and operation
j is a write operation to y such that x 6= y, and both operations i, j are
by process p, then for all view orders v ∈ R(h), for all p′ ∈ P , we have
(i, j) ∈ v(p′).

M c
rw is the set of memory models M = (τI , R) such that for all histories

h, for all i, j ∈ N, if operation i is a read operation to x and operation
j is of the form (((cdwr, v,K), y), p, j) for some v and K ⊆ N such that
x 6= y and i ∈ K, and both operations i, j are by process p, then for all
view orders v ∈ R(h), for all p′ ∈ P , we have (i, j) ∈ v(p′).

Md
rw is the set of memory models M = (τI , R) such that for all histories

h, for all i, j ∈ N, if operation i is a read operation to x and operation
j is of the form (((ddwr, v,K), y), p, j) for some v and K ⊆ N such that
x 6= y and i ∈ K, and both operations i, j are by process p, then for all
view orders v ∈ R(h), for all p′ ∈ P , we have (i, j) ∈ v(p′).

3. We define the class of write-read restrictive memory models as Mwr ,
where M = (τI , R) belongs to Mwr if for all histories h, for all i, j ∈ N, if
operation i is a write operation to x and operation j is a read operation
to y such that x 6= y, and both operations i, j are by process p, then for
all view orders v ∈ R(h), for all p′ ∈ P , we have (i, j) ∈ v(p′).

4. We define the class of write-write restrictive memory models as Mww ,
where M = (τI , R) belongs to Mww if for all histories h, for all i, j ∈ N, if
operations i and j are write operations to x and y such that x 6= y, and
both operations i, j are by process p, then for all view orders v ∈ R(h),
for all p′ ∈ P , we have (i, j) ∈ v(p′).

We classify some well-known memory models in these classes.
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• SC memory model Msc is in M i
rr ∩M i

rw ∩Mwr ∩Mww .

• TSO memory model Mtso is in M i
rr ∩M i

rw ∩Mww and Mtso /∈Mwr .

• Partial store order (PSO) memory model Mpso is in M i
rr ∩ M i

rw and
Mpso /∈Mww ∪Mwr .

• Relaxed memory order (RMO) Mrmo is in Md
rr ∩Mrw and Mrmo /∈Mww ∪

Mwr . Moreover, note that Mrmo /∈M i
rr and Mrmo /∈M i

rw .

• Alpha memory model Mα is in Mrw and Mα /∈Mrr ∪Mwr ∪Mww .

Note that these classes do not impose any restrictions on views of different
processes, and thus memory models which allow non-atomic stores (like IA-
32 [Int06]) can also be classified under these classes. For example, the IA-32
memory model has a similar classification as TSO.

6.2.3 Parametrized opacity

We now define the notion of parametrized opacity, i.e., opacity parametrized
by a given memory model M . Recall that, intuitively, parametrized opacity
requires that (1) every transaction appears as if it took place instantaneously
between its first and last operation, and (2) non-transactional operations en-
sure the requirements specified by the given memory model.

We say that a history h ensures opacity parametrized by a memory model
M = (τ, R), if there exists a total order� on the set of transactional operations
in h and a process view v ∈ R(τ(h)), such that, for every process p ∈ P , there
exists a sequential history s that satisfies the following conditions:

1. s is a permutation of τ(h),

2. s respects relation � ∪ ≺h ∪ v(p), and

3. every operation is legal in s.

For example, the history h shown in Figure 6.2(a) is parametrized opaque
with respect to memory model Msc if v = 1. This is because: (a) operation 3
reads the value of y as 1 which is written by the transaction of process p1, (b)
operation 1 writes x as 1 before the transaction, and (c) SC requires that p2

reads x after y. Moreover, h is parametrized opaque with respect to memory
model Mrmo if v = 0 or v = 1. This is because RMO allows to reorder reads
of different variables. h is parametrized opaque with respect to Mjunk if v = 1
for the same reasons as for Msc. But note that if operation 3 read y as 0, then
opacity parametrized by Mjunk allows operation 6 to read any value v ∈ N.
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p1 p2

((., start), 1)
(〈cas g, 0, 1〉, 1)

((., (rd, 1, x)), 2)
((/, start), 1)

((〈load x, 1〉), 2)
((., (wr, 1, x)), 3)

((/, (rd, 1, x)), 2)
((〈store ax, 1〉, 3)
((/, (wr, 1, x)), 3)
((., commit), 4)
(〈store g, 0〉, 4)
((/, commit), 4)

(a) Trace r

The trace and the histories are read
top to bottom.
Trace notation: (in, k) under column p
represents the instruction instance
(in, p, k).
History notation: (wr, 1, x), 4) under
a column marked with process p
stands for the operation instance
(((wr, 1), x), p, 4).

p1 p2

(start, 1)
((rd, 1, x), 2)

((wr, 1, x), 3)
(commit, 4)

(b) History h1

p1 p2

((rd, 1, x), 2)
(start, 1)
((wr, 1, x), 3)
(commit, 4)

(c) History h2

Figure 6.3: An example of a trace and corresponding histories. Notation: (in, k)
under column p represents the instruction instance (in, p, k)

6.3 TM Implementations

In this section, we define a TM implementation I, and when a given TM
implementation ensures opacity parametrized by a given memory model M .
Intuitively, I ensures opacity parametrized by M if every history generated
by I ensures opacity parametrized by M . We thus need to define precisely
which histories are generated by a given TM implementation.

Instructions. We start by defining hardware primitives that a TM imple-
mentation is allowed to use. Let Addr be a set of memory addresses. We
define the set In of instructions as follows, where a ∈ Addr and v, v′ ∈ N:

In ::= 〈load a, v〉 | 〈store a, v〉 | 〈cas a, v, v′〉

We call the store and CAS instructions as update instructions. An opera-
tion of a history corresponds to a sequence of instructions. To know the begin
and end points of an operation at the level of hardware, we use two special
instructions, . and /, for each operation. For every operation op ∈ Ôp, we de-
note the invocation (instruction) of op as (., op), and the response (instruction)
of op as (/, op). Let În = In ∪ ({., /} × Ôp).

Traces. We define an instruction instance as (in, p, k), where in ∈ În is an
instruction, p ∈ P is the process that issues the instance, and k ∈ N is an
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operation identifier. Every instruction instance (in, p, k) is said to correspond
to operation k.

A trace r ∈ (În × P × N)∗ is a sequence of instruction instances. Let
k ∈ N be an operation identifier. A complete operation trace of operation k
is a sequence of the form ((., op), p, k) (in1, p, k) . . . (inm, p, k) ((/, op), p, k),
where p ∈ P is a process, op ∈ Ôp is an operation, and in1 . . . inm ∈ In are
instructions. An incomplete operation trace of operation k is a sequence of
the form ((., op), p, k) (in1, p, k) . . . (inm, p, k), where p ∈ P , op ∈ Ôp, and
in1 . . . inm ∈ In.

Let r be a trace. Given a process p ∈ P , we denote by r|p the longest
subsequence of instruction instances in r issued by process p. We assume that
every trace r satisfies the following property: for every process p ∈ P , the
sequence r|p is a sequence of complete operation traces, possibly ending with
an incomplete operation trace. We say that a history h corresponds to a trace r
if:

1. Given any natural number k, an operation k is in h if and only if there
is an instruction instance that corresponds to operation k in r, and

2. Operation k occurs before operation j if some instruction instance that
corresponds to operation k occurs in r before some instruction instance
that corresponds to operation j.

Intuitively, a history h that corresponds to a trace r represents the logical order
of operations in r. If we assigned a point in time to every instruction in r, and
every operation in h, then every operation (op, k) in h must be somewhere in
between the corresponding invocation instruction ((., op), p, k)) and response
instruction ((/, op), p, k) in r.

For example, consider the trace r shown in Figure 6.3(a). In r, the start
operation issues a CAS instruction to address g to change the value from 0
to 1, and the commit instruction stores value 0 to g. Histories h1 and h2 are
two examples of histories that correspond to r.

A trace r is well-formed if every history h corresponding to r is well-formed.
We assume that every trace is well-formed.

Let r be a trace, and p be a process. A transaction T of p in r is a
sequence in r|p of the form ((., start), p, k) (in1, p, k1) . . . (inm, p, km), where
the following conditions are satisfied:

• inm ∈ {(/, commit), (/, abort)}, or (inm, p, km) is the last instruction in-
stance of rp, and

• for all j s.t. 1 ≤ j < m, we have inj /∈ {(., start),(/, commit), (/, abort)}

Moreover, T is committed (resp. aborted) if the last instruction instance in T
is a response of a commit (resp. abort) operation.

An instance ((., op), p, k) of an invocation is said to be transactional in a
trace r if it belongs to some transaction in r. Otherwise, the instance is said to
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be non-transactional. For example, consider the trace r shown in Figure 6.3(a).
The (single) invocation instance of process p2 is non-transactional, while all
invocation instances of process p1 are transactional in r.

TM implementations. A TM implementation I = 〈IT , IN〉 is a pair, where
IT : Ôp → 2In∗ is the implementation for transactional operations, and IN :
Op→ 2In∗ is the implementation for non-transactional operations.

Let I = 〈IT , IN〉 be a TM implementation. We say that a complete opera-
tion trace ((., op), p, k) (in1, p, k) . . . (inm, p, k) ((/, op), p, k) is transactionally
(resp. non-transactionally) generated by I, if sequence in1 . . . inm is in IT (op)
(resp. in IN(op)). We say that an incomplete operation trace ((., op), p, k)
(in1, p, k) . . . (inm, p, k) is transactionally (resp. non-transactionally) generated
by I, if sequence in1 . . . inm is a prefix of some element in IT (op) (resp. in IN(op)).

Given a trace r and a TM implementation I, we say that r is generated
by I if for every transactional (resp. non-transactional) operation k in r, the
complete or incomplete operation trace of operation k in r is transactionally
(resp. non-transactionally) generated by I.

Instrumentation. We say that a TM implementation I = 〈IT , IN〉 is unin-
strumented if for every variable x, we have IN(rd, v, x) = {〈load ax, v〉} and
IN(wr, v, x) = {〈store ax, v〉}, where ax is the address of variable x. Otherwise,
the TM implementation is instrumented. Note that these terms refer only to
the implementation of non-transactional operations.

Languages. We define the language L(I) of a TM implementation as the
set of all traces generated by a TM implementation. We define that a TM
implementation I guarantees opacity parametrized by a memory model M if,
for every trace r ∈ L(I), there is a history h that corresponds to r such that
h ensures opacity parametrized by M .

Note that our definition of a trace does not require that after an instruction
of the form 〈store ax, v〉, the subsequent load of ax is of the form 〈load ax, v〉.
Indeed, the underlying hardware may execute a relaxed memory model (which,
in principle, may be different from the programmer’s memory model at the level
of operations). For example, a programmer may wish to guarantee opacity
parametrized by sequential consistency on a hardware with memory model
RMO. But for the sake of simplicity, in the following sections, we assume
that the underlying hardware guarantees a strong memory model equivalent
to linearizability, that is, every instruction is executed to completion when it
is issued. Note that our impossibility results hold even when the underlying
hardware executes a weaker memory model. Moreover, we assume that a
transaction does not have the information of other concurrent transactions.
So, a transaction cannot tell whether it is running in isolation, or concurrently
with other transactions.
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6.4 Achieving Parametrized Opacity

We use our framework to investigate the inherent cost of achieving opacity
parametrized by a memory model.

6.4.1 Uninstrumented TM implementations

We first study uninstrumented TM implementations. We show that for most
of the practical memory models, uninstrumented TM implementations cannot
achieve parametrized opacity. Moreover, we show that even to achieve opacity
parametrized by very relaxed memory models, it is required that transactional
write operations are implemented as expensive compare-and-swap instructions.

We start with a lemma which states that if a committed transaction consists
of a write operation, then the transaction must consist of a store or a compare-
and-swap instruction. We assume that there are no other transactions running
in the duration of the committed transaction.

Lemma 6.1. For every memory model M , an uninstrumented TM implemen-
tation I guarantees parametrized opacity only if for all traces r ∈ L(I), for
every committing transaction T in r, if there is an operation (wr, v, x) in T ,
then the transaction T in r consists of an update instruction to ax with value v.

Proof. Let the value of ax be initially 0. Consider a trace r with a single process
p: (., start), . . .. (/, start), (., (wr, v, x)), . . ., (/, (wr, v, x)), (., commit), . . .,
(/, commit), (., (rd, v′, x)), 〈load ax, v

′〉, (/, (rd, v′, x)). Let T be the committed
transaction of process p in r. We observe that T consists of an operation
op1 = (wr, v, x). Let r consist of a non-transactional operation op2 = (rd, v′, x),
such that the invocation of op2 occurs after the last instruction of T , that
is, the response of the commit operation. As the TM implementation I is
uninstrumented, we have IN(rd, v′, x) = {〈load ax, v

′〉}. Note that as r has a
single process, there is only one history h corresponding to r. By definition
of ≺h, we know that op1 ≺h op2. Thus, to guarantee parametrized opacity,
we must have v = v′. Thus, T must issue an update instruction to ax with
value v.

Using the above lemma, we now prove that for memory models which
restrict the order of some pair of read or write operations to different variables,
parametrized opacity cannot be achieved.

Theorem 6.1. Given a memory model M such that M ∈ (Mrr ∪ Mrw ∪
Mwr ∪Mww), there does not exist an uninstrumented TM implementation that
guarantees opacity parametrized with respect to M .

Proof. We prove the theorem in four parts, where each part corresponds to one
of the cases of ordering restrictions between read and write operations. In every
case, we construct a trace r with two processes p1 and p2, where p1 executes
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p1 p2

(., start)
. . .

(/, start)
(., (wr, v1, x))
. . .

(/, (wr, v1, x))
(., (wr, v2, y))
. . .

(/, (wr, v2, y))
(., commit)
. . .
〈update ax, v1〉
. . .

(., (rd, v3, x))
〈load ax, v3〉
(/, (rd, v3, x))
(., (rd, v4, y))
〈load ay, v4〉
(/, (rd, v4, y))

〈update ay, v2〉
. . .

(/, commit)

An 〈update a, v〉 instruction denotes a
store or a successful cas instruction to
address a with value v. We omit the
instruction identifiers. We use . . . as a
shorthand for a sequence of instructions.

Figure 6.4: The trace r constructed in Theorem 1, Case 1

a transaction T , and p2 issues non-transactional (and possibly transactional)
operations in such a way that for every history corresponding to r, there is
no sequential history s which respects the restriction posed by the memory
model, and at the same time, every operation in s is legal. In every case, ax
and ay are initialized to 0.

Case 1. Let M ∈ Mrr . That is, M does not allow to reorder two read
operations to different variables. The trace r is shown in Figure 6.4. Let T
consist of operations (wr, v1, x) and (wr, v2, y). From Lemma 1, we know that
T updates addresses ax and ay with values v1 and v2 respectively. Without
loss of generality, we assume that ax is updated before ay.

3 Let the trace r
consist of two non-transactional operations (rd, v3, x) and (rd, v4, y) issued by
process p2 (with identifiers j and k respectively). As I is uninstrumented, the
non-transactional read operations are implemented as load instructions. Let
the two load instructions 〈load ax, v3〉 and 〈load ay, v4〉 of process p2 execute
between the updates of ax and ay. Thus, we have v3 = v1 and v4 = 0. Note that
if T is an aborted transaction in r, then there is no history h corresponding to

3Figure 6.4 shows the updates as part of the commit operation. In general, the updates
can happen anywhere during the transaction, but always as two separate instructions.
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p1 p2

(., start)
. . .

(/, start)
(., (rd, v1, x))
. . .

(/, (rd, v1, x))
(., (wr, v2, y))
. . .

(/, (wr, v2, y))
(., commit)
. . .

(., (wr, v3, x))
〈store ax, v3〉
(/, (wr, v3, x))
(., (rd, 0, y))
〈load ay, 0〉
(/, (rd, 0, y))

〈update ay, v2〉
. . .

(/, commit)

(a) Case 2

p1 p2

(., start)
. . .

(/, start)
(., (wr, v1, x))
. . .

(/, (wr, v1, x))
(., (wr, v2, y))
. . .

(/, (wr, v2, y))
(., commit)
. . .
〈update ax, v〉

(., (rd, v3, x)
〈load ax, v3〉
(/, (rd, v3, x)
(., (wr, v4, y))
〈store ay, v4〉
(/, (wr, v4, y))
((., (wr, 0, y))
〈store ay, 0〉
((/, (wr, 0, y))

〈update ay, v〉
. . .

(/, commit)
(., start)
. . .
(/, commit)
(., (rd, v5, x))
〈load ax, v5〉
(/, (rd, v5, x))
(., (rd, v6, y))
〈load ay, v6〉
(/, (rd, v6, y))

(b) Case 3

Figure 6.5: Traces r constructed in Theorem 1, Case 2 and 3

r such that h satisfies opacity parametrized by M . This is because operation
j observes the update to ax. Thus, let T be a committed transaction in r.
Consider an arbitrary history h corresponding to r. By definition of Mrr ,
every view function v ∈ R(h) requires that (j, k) ∈ v(p) for all p ∈ P . On
the other hand, legality requires operation j to appear after T , and operation
k to appear before T . Thus, there does not exist a sequential history which
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satisfies conditions 2 and 3 at the same time.

Case 2. Let M ∈ Mwr . That is, M does not allow to reorder a write
followed by a read operation to a different variable. The trace r is shown in
Figure 6.5(a). Let T consist of operations op1 = (rd, v1, x) and op2 = (wr, v2, y).
From Lemma 1, we know that T updates address ay with value v2. Let r
consist of two non-transactional operations of p2 in the order (wr, v3, x) (with
identifier j) followed by (rd, 0, y) (with identifier k), such that v3 6= v1. As I
is uninstrumented, p2 executes 〈store ax, v3〉 followed by 〈load ay, 0〉. Let these
two instructions execute after the response of op1 and immediately before the
update of ay by process p1.

4 Note that as p2 does not change the value of ay,
the use of CAS instruction by p1 to update ay will be successful. Moreover, the
key point to note here is that once p1 updates ay with value v2, the transaction
T cannot abort. This is because r can be extended to trace r′, where a non-
transactional read by process p2 executes 〈load ay, v2〉. If T is an aborted
transaction, then no history corresponding to r′ is parametrized opaque with
respect to M . Thus, T is a committed transaction. Consider an arbitrary
history h corresponding to r. Legality requires that operation k occurs before
T and operation j occurs after T . By definition of Mwr , every view v ∈ R(h)
requires that (j, k) ∈ v(p) for all p ∈ P . Thus, h does not ensure opacity
parametrized by M .

Case 3. Let M ∈ Mrw . That is, M does not allow to reorder a read fol-
lowed by a write operation to a different variable. The trace r is shown in Fig-
ure 6.5(b). Let T consist of operations op1 = (wr, v1, x) and op2 = (wr, v2, y).
From Lemma 1, we know that T updates addresses ax and ay with values
v3 and v4. Without loss of generality, we assume that ax is updated before
ay. Process p2 issues the following operations non-transactionally in the order:
(rd, v3, x), (wr, v4, y), (wr, 0, y). As I is uninstrumented, these three operations
are executed as: 〈load ax, v3〉, 〈store ay, v4〉, and 〈store ay, 0〉. Let r be such
that these three instructions occur immediately before the update of ay with
value v2. As p2 changes and restores the value of ay to 0, process p1 does not
observe the change, and thus, the update of ay with value v2 is successful.
As in case 2, T cannot be an aborting transaction, once T updates ay. We
now extend r as follows: after the response of the commit operation of T ,
let p2 execute a transaction T ′ followed by two non-transactional operations:
(rd, v5, x), (rd, v6, y). Note that v5 = v1 and v6 = v2. Consider an arbitrary
history h corresponding to r. Legality requires that the first non-transactional
read by process p2 occurs after T , and the two non-transactional writes of
p2 occur before T . This contradicts the expected view order for a memory
model M ∈ Mrw . Thus, the history h does not ensure opacity parametrized
by M . Note that T cannot update ay with value 0 due to the following ar-
gument: consider a trace r′ which is identical to r, except that in r′, process
p2 does not issue the two non-transactional writes. At the point where p1

4For simplicity, we assume that the transaction loads the value of ax before the response
of op1. The argument holds in general, as the value of ax is loaded before the update of ay.
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updates ay, it cannot observe a difference from trace r (as process p2 uses
two store instructions for the non-transactional write operations). Consider
an arbitrary history h corresponding to r′. Legality requires that the last two
non-transactional operations by p2 see value v1 and v2. Thus, p1 cannot update
ay to 0 in transaction T .
Case 4. Let M ∈ Mww . That is, M does not allow to reorder two write
operations to different variables. The trace r is similar to the one for case
3, shown in Figure 6.5(b), except that p1 has two read operations, and the
first operation of p2 is a write instead of a read operation. Let T consist of
four operations: (rd, v1, x), (rd, v2, y), (wr, v3, x) and (wr, v4, y). As in case 3, we
know that T updates addresses ax and ay with values v3 and v4, and we assume
that ax is updated before ay. Let the trace r consist of three non-transactional
operations of process p2 in the order (wr, v5, x), (wr, v6, y), (wr, 0, y). As I
is uninstrumented, the non-transactional write operations are implemented as
store instructions. Let the three store instructions: 〈store ax, v5〉, 〈store ay, v6〉,
and 〈store ay, 0〉 by process p2 occur immediately before the update of ay with
value v4 by process p1 in trace r. As in case 2, T cannot be an aborting
transaction, after it updates ay. We can extend the trace r exactly as in case 3
now, and show a contradiction between the legality and the view order required
by a memory model M ∈Mww . Thus, for every history h corresponding to r,
we know that h does not ensure opacity parametrized by M .

We saw in the classification of memory models (Section 3.2) that most
of the practical memory models do restrict some order of operations. Thus,
Theorem 1 gives an intuition that without instrumentation, it is not possible
to achieve opacity parametrized by practical memory models. We now show
that for an idealized memory model, which allows reordering all operations
to different variables, achieving parametrized opacity is still expensive: a TM
implementation must use cas instruction within a transaction to update every
variable which is read and written by the transaction.

Theorem 6.2. For a memory model M , an uninstrumented TM implementa-
tion I guarantees parametrized opacity with respect to M only if for all traces
r ∈ L(I), for all variables x, if a committed transaction T consists of oper-
ations (rd, v, x) and (wr, v′, x), then T consists of a 〈cas x, v, v′〉 instruction.

Proof. Consider a trace r with two processes p1 and p2 as shown in Figure 6.6.
Let T be a transaction of process p1 in r, such that T consists of operations
(rd, v, x) and (wr, v′, x). By Lemma 1, we know that T updates ax with value v′

using either a store or a compare-and-swap instruction. Suppose T changes the
value of ax using a store instruction. Let r consist of two non-transactional op-
erations (wr, v1, x) followed by (rd, v2, x) of process p2. As I is uninstrumented,
we know that a read operation is implemented as a load, and a write as a store.
Consider the trace r where 〈store ax, v1〉 instruction of process p2 occurs im-
mediately before 〈store ax, v

′〉 instruction of process p1 and the instruction
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p1 p2

(., start)
. . .

(/, start)
(., (rd, v, x))
. . .

(/, (rd, v, x))
(., (wr, v′, x))
. . .

(/, (wr, v′, x))
(., commit)
. . .

(., (wr, v1, x)
〈store ax, v1〉
(/, (wr, v1, x)

〈store ax, v
′〉

(., (rd, v2, x)
〈load ax, v2〉
(/, (rd, v2, x)

. . .
(/, commit)

(., start)
. . .
(/, commit)
(., (rd, v3, x))
〈load ax, v3〉
(/, (rd, v3, x))

Figure 6.6: The trace r constructed in Theorem 2

〈load x, v2〉 occurs immediately after 〈store x, v′〉. Thus, we get v2 = v′. For a
corresponding history of r to be parametrized opaque with respect to M , the
transaction T has to be a committed transaction. After the response of the
commit of T , let there be an empty transaction T ′ of process p2 in r followed
by a non-transactional read of x, with a load instruction 〈load x, v3〉. Note
that we have v3 = v′. We argue that irrespective of the memory model M ,
there does not exist a history h corresponding to r such that h ensures opacity
parametrized by M . This is because the operation (wr, v1, x) of process p2 can
appear neither before T (as the read of v in T returns 0), nor after T (as the
read after T ′ returns v′). Thus, an uninstrumented TM implementation has
to use a cas instruction to update a variable in a transaction T , if T consists
of both read and write operations to T .

Now, we establish a complementary result to Theorem 1. We show that
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On transaction start:
lg := g
while (lg 6= p) do
〈cas g, lg, p〉
lg := g

endwhile
return

On transaction write of x with value v′:
issue a transactional read of x
if ∃v · (x, v) ∈ writeset(p) then

update (x, v) to (x, v′) in writeset(p)
return

endif
add (x, v) to writeset(p)

On transaction read of x:
if ∃v · (x, v) ∈ readset(p) then

return v
endif
〈load ax, v〉
add (x, v) to readset(p)
return v

On transaction abort:
empty readset(p)
empty writeset(p)

On transaction commit:
while writeset(p) is not empty

pick and remove (x, v′) from writeset(p)
pick and remove (x, v) from readset(p)
〈cas x, v, v′〉

endwhile
empty readset(p)
〈store g, 0〉
return

Figure 6.7: A global lock based TM implementation

with an idealized memory model which relaxes the order of all operations
to different variables, it is possible to obtain parametrized opacity with an
uninstrumented TM implementation.

Theorem 6.3. Given a memory model M /∈ (Mrr ∪Mrw ∪Mwr ∪Mww), there
exists an uninstrumented TM implementation which guarantees parametrized
opacity with respect to M .

Proof. Consider an uninstrumented global lock based TM implementation I
described in pseudo code in Figure 6.7. I acquires a global lock g during the
start of each transaction, and releases the lock (using 〈store g, 0〉) immediately
before the response of the commit or abort of the transaction. Moreover, for
every variable x, every transaction T loads the value vx of ax only at the
first read or write operation to x within T (if such an operation exists in
T ), and if T writes to x, then I uses a CAS instruction to update ax in T .
Consider an arbitrary trace r ∈ L(I). Consider a history h corresponding
to the trace r obtained by choosing the following logical points of execution
of an operation within an operation trace: start operation at the successful
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cas instruction, commit and abort operations at 〈store g, 0〉 instruction, every
non-transactional read at the load instruction, every non-transactional write at
the store instruction, and every transactional read or write at its invocation.
First, we note that the history h obtained is such that for every pair T, T ′

of transactions in h, either T ≺h T ′ or T ′ ≺h T . Now, consider a variable
x and a transaction T in h. Let k1 . . . kn be a sequence of non-transactional
operation instances to x in h, which occur between the first and last operations
of the transaction T . We create a sequential history s from h by repeating the
following two steps for all variables:
Step 1. Consider a non-transactional write operation ki for some 1 ≤ i ≤ n. If
there is no load or cas of x in T after the store instruction with identifier ki in
r, we place all operations ki . . . kn after the transaction T in s. For all other
non-transactional write operations ki, we place all operations k1 . . . ki before
the transaction T in s. We now have no non-transactional write operation to
x between the first and last operations of T .
Step 2. For all remaining non-transactional read operations op, we place op
before T in s if the load instruction corresponding to op precedes the update
to x by T in r, and after T otherwise.

Note that as the memory model freely allows to reorder instructions to
independent variables, we can move operations of different variables freely
with respect to each other. Moreover, the two steps do not change the order
of non-transactional operations of a process to a variable.

6.4.2 Instrumented TM implementations

In practice, TM implementations use instrumentation of non-transactional op-
erations to achieve parametrized opacity. We now investigate instrumented
TM implementations. Generally, a history contains more read operations
than write operations. So, it is worthwhile to study whether we can achieve
parametrized opacity by just instrumenting the non-transactional write oper-
ations and leaving the non-transactional read operations uninstrumented.

We first show that it is indeed possible to achieve parametrized opacity with
uninstrumented reads for a class of memory models that allow to reorder read
operations. The construction implements non-transactional write operations
as single operation transactions.

Theorem 6.4. There exists a TM implementation with uninstrumented reads
that guarantees parametrized opacity for memory models M /∈Mrr .

Proof. Consider a global lock based TM implementation I that treats trans-
actional operations as in the proof of Theorem 3, and shown in Figure 6.7.
Moreover, I implements a non-transactional write operation (wr, x, v) as: ac-
quire the global lock g using cas (as in transaction start), followed by the
instruction 〈store x, v〉, followed by 〈store g, 0〉. Intuitively, I treats every
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non-transactional write operation as a transaction in itself. I implements
non-transactional read operations as load instructions (no instrumentation).

Consider an arbitrary trace r ∈ L(I). Note that there exists a history h
corresponding to r (obtained using the logical points as in Theorem 3) such
that no non-transactional write occurs between the first and last operation of a
transaction, and for every pair T, T ′ of transactions, either T ≺h T ′ or T ′ ≺h T .
Consider a variable x. Given a transaction T in h, let k1 . . . kn be the identifiers
of non-transactional read operation instances in h, which occur between the
first and last operation of the transaction T . We create a sequential history
s from h as in Theorem 3: for all non-transactional read operations op to x,
we place op before T in s if the load instruction corresponding to op precedes
the cas instruction to x by T in r, and after T otherwise. Note that as the
memory model freely allows to reorder read operations to different variables,
we can move reads of different variables freely with respect to each other.

Note that this construction implements non-transactional write operations
using a cas instruction to acquire locks. Thus, a non-transactional write oper-
ation is implemented in an expensive manner. Moreover, a non-transactional
write may may take an arbitrarily long time to complete in this construction.
Formally speaking, we have (〈load g, 0〉)∗ ∈ IN(op) if op is a write operation.
We would like to create a TM implementation with inexpensive instrumenta-
tion.

Given a TM implementation I, we say that a non-transactional write oper-
ation has constant-time instrumentation in I if there exists a constant c such
that for every operation op ∈ (wr × Obj × N), every instruction sequence in
IN(op) has length at most c. We now prove an interesting result, where we
present a TM implementation, with no instrumentation on reads and constant-
time instrumentation on writes, which guarantees opacity parametrized by a
memory models that allow reordering read/write followed by a read of a dif-
ferent variable.

Theorem 6.5. There exists a TM implementation I with constant-time in-
strumentation of writes and no instrumentation of reads such that I guarantees
opacity parametrized by a memory model M , where M /∈Mrr ∪Mwr .

Proof. We build a TM implementation I which uses a global lock to execute
transactions (as in Theorem 3 and 4). Moreover, I uses a version number
per process. When a process p issues a non-transactional write operation, p
increments its version number, and writes the value, the process id, and the
version number using a store instruction. I does not use instrumentation for
non-transactional read operations. Now, we prove that I guarantees opacity
parametrized by M , where M /∈Mrr ∪Mwr .

Consider an arbitrary trace r ∈ L(I). Consider a history h corresponding
to the trace r obtained by choosing the logical points as in Theorem 3. We
know that for every two transactions T, T ′ in h, we have T ≺h T ′ or T ′ ≺h T .
Consider an arbitrary transaction T in h and a variable x. Let k1 . . . km be
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the identifiers of the non-transactional operations to x that occur between
the first and last operation of T in h. Note that as I uses cas instruction
for variables which are written in a transaction, no non-transactional write
to x stores to ax between a load and an update of ax in T . We thus can
obtain a sequential history from h by repeating the following for all variables
x and for all transactions in h: for a non-transactional operation ki to x such
that operation ki occurs between the start and end of transaction T , if the
corresponding store (or load) to ax occurs after the update of ax in T , we
place operation ki after T in s, otherwise we place ki before T in s. We place
remaining non-transactional read operations before T . Note that it cannot
happen that the corresponding store of a non-transactional write operation ki
to ax occurs after a load and before an update to ax.

If a process issues non-transactional reads of x and y, such that their corre-
sponding loads occur between the updates by a transaction, we need to reorder
the non-transactional reads for legality. Thus, we want M /∈ Mrr . Similarly,
note that if a process issues a non-transactional write of x followed by a read
of y, such that the corresponding store to ax and load of ay occur between
the updates to ax and ay, we need to reorder the non-transactional accesses
for legality. Thus, we want M /∈ Mwr . But interestingly, we built I in such a
way that it first adds all variables to be updated in the writeset. Only then, I
starts updating the variables using cas instruction. Hence, if a process issues
a non-transactional read which loads a value updated by T , we know that
every following non-transactional write can also occur after T . Thus, we do
not require that M /∈Mrw . Similarly, if a process issues two non-transactional
writes, then we know that either both the writes occur before T or after T .
This implies that I guarantees parametrized opacity even for memory models
which restrict the order of a read/write followed by a write to a different vari-
able, but allow reordering read/write followed by a read to a different variable.

Relaxed memory models like Alpha [Sit02] are neither in Mrr , nor in
Mwr . So, this construction provides an inexpensive way to guarantee opac-
ity parametrized by memory models like Alpha. Moreover, memory models
like RMO and Java are in Md

rr , that is, they do not allow data dependent
reads to reorder. But, these memory models do allow independent reads or
control-dependent reads to reorder. This implies that if we use special syn-
chronization for data-dependent reads, we can use the result of Theorem 5 for
a vast class of memory models.5

5In practice, memory models like Java enforce strict ordering of operations marked with
the volatile keyword. Indeed, these volatile accesses have to be treated differently than
simple non-transactional accesses. For example, a volatile access may be considered as a
single operation transaction.
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Thread 1 Thread 2

atomic {
r1 := x x := 1
y := r1 y := 2
}

Figure 6.8: For memory models that reorder writes to different variables, the
transaction of thread 1 does not have to abort even if the update of y fails.

6.5 Discussion

We first discuss the practical implications of our work. Then, we discuss how
our framework can be extended to formalize weaker notions of correctness, like
single global lock atomicity.

6.5.1 Impact on practical TM implementations

The core contribution of our theoretical framework is to provide TM designers
with a correctness property that exploits the inherent relaxations of the un-
derlying memory model. For example, most memory models, like TSO, PSO,
RMO [WG94], Alpha [Sit02], and Java [MPA05] allow to reorder a write op-
eration followed by a read/write operation. On the other hand, the only TM
implementation [SMAT+07] we know of which guarantees strong atomicity, in-
deed guarantees opacity parametrized by sequential consistency. Given that a
programmer expects behavior of non-transactional operations within the scope
of behaviors under the given memory model, one can build a more efficient
implementation which guarantees opacity with respect to the programmer’s
memory model.

We now discuss the construction we used in Theorems 3 and 5. We use
global locks for transactions in the construction for the sake of simplicity.
But the central idea of the construction, given below, can be extended to
practical lazy-versioning TM implementations which often rely on some form
of two-phased locking. The idea is that for many memory models, it is not
necessary for a transaction to successfully update all variables it writes, if
there is a concurrent non-transactional write. For example, in Theorem 5, if
a transaction observes that a non-transactional operation has written a new
value, then the transaction’s cas operation fails, but the transaction can still
commit. We illustrate this idea in Figure 6.8. Consider a memory model which
allows to reorder write operations. Let the non-transactional write operations
be implemented in constant-time as in Theorem 5. We observe that even if the
update of y by the transaction fails, the transaction does not need to abort.
This is because, it can appear that the non-transactional write to y happens
immediately after the transaction finishes. This sounds counterintuitive to the
general belief that transactions must be atomic, and thus, appear to perform
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their updates completely. We suggest that the non-transactional operations,
although isolated from transactions from a programmer’s point of view, can
be used to mask updates of transactions.

Using our theoretical framework, we also observe that no matter what the
given memory model M is, if a TM implementation allows a transaction to up-
date the value of an address ax more than once, then the TM implementation
needs to instrument read operations in order of guarantee opacity parametrized
by M . This is because a load of ax (corresponding to a non-transactional oper-
ation), if sandwiched between the two updates of ax, can observe the interme-
diate state of a transaction. This is also known as dirty reads in the literature.
This implies that TM implementations, like McRT STM [SATH+06], which
use eager-versioning must instrument non-transactional reads.

6.5.2 Weaker notions of correctness

Apart from the intuitive strong correctness property, parametrized opacity,
which requires that transactions be isolated from other transactions and non-
transactional operations, weaker notions of correctness have also been consid-
ered in the literature. Some claim that transactions should behave as global
locks, thus isolating transactions from other transactions, but not from non-
transactional operations. This yields the correctness property called single
global lock atomicity (SGLA). We now formalize SGLA and show that SGLA
is strictly weaker than parametrized opacity for every memory model M . We
also show that the impossibility result given in Theorem 1 for parametrized
opacity does not hold for SGLA.

SGLA. We slightly modify the framework we developed in Section 6.1 and
6.2. SGLA requires a weaker notion of sequential history, where transactions
execute sequentially, but non-transactional operations may be concurrent with
transactions. A history h is transactionally sequential if for every transaction
T in h, every operation instance between the start operation instance of T and
the last operation instance of T in h is either an operation instance of T , or a
non-transactional operation instance.

The behavior of locks in terms of reorderings with other operations of
the process depends upon the memory model. Thus, we cannot enforce a
strict ordering between non-transactional operations and following or preced-
ing transactions. Instead of defining a precedence relation between operations
in a history using ≺h, we now define the partial order using the memory model.
Recall that when we talk of a memory model for parametrized opacity, a view
does not enforce an order on start, commit, and abort operations. Whereas,
when we formalize SGLA, a start operation has the memory model semantics
of a lock operation, whereas commit and abort operations have the memory
model semantics of an unlock operation. Thus, a memory model for SGLA
can be seen as an extension of a memory model for parametrized opacity.
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We say that a history h ensures SGLA parametrized by a memory model
M = (τ, R), if there exists an ordering function v ∈ R(τ(h)), such that, for
every process p ∈ P , there exists a transactionally sequential history s such
that

1. s is a permutation of τ(h)

2. s respects the total order v(p), and

3. every operation in legal in s.

Note that the general definition of a memory model for SGLA may allow
counterintuitive results, when a non-transactional access following a transac-
tion is allowed to precede the transaction in a view, or two processes may
view two transactions to execute in different orders. Based on this intuition,
in the framework for SGLA, we define that M ′ = (τ, R′) is a well-formed ex-
tension of M = (τ, R) if: (i) for every history h, for every view v ∈ R′(h),
for every pair (op, p1, i), (op′, p2, j) of operation instances such that op and op′

belong to {start,commit,abort}, for all processes p, p′ ∈ P , if (i, j) ∈ v(p), then
(i, j) ∈ v(p′), (ii) for every history h and for every process p ∈ P , if a non-
transactional operation j of p precedes a transaction T of p in h, then there
exists a v ∈ R(h), such that for every process p′ ∈ P , we have (k, j) ∈ v, where
operation k is the start operation of transaction T . (iii) for every history h
and for every process p ∈ P , if a non-transactional operation j of p precedes
a transaction T of p in h, then there does not exist v ∈ R(h), such that for
some process p′ ∈ P , we have (k, j) ∈ v, where operation k is the commit or
abort operation of transaction T .

Theorem 6.6. Given a history h and a memory model M , if h ensures opacity
parametrized by M , then h ensures SGLA with respect to M ′, where M ′ is a
well-formed extension of M .

Proof idea. Consider a history h. As h ensures opacity parametrized by M ,
we know that there exists a view function v ∈ R(h) such that for every pro-
cess p ∈ P , there exists a sequential history s such that s satisfies the three
requirements for parametrized opacity. Now, we note that a sequential history
is, by definition, transactionally sequential. Moreover, as s respects the partial
order � ∪ ≺h, we know that s respects the view function v′ ∈ R′(h), where
the order of a transactional operation with respect to all other operations of
a process is maintained in v′. We know that such a v′ exists, as M ′ is a well-
formed extension of M . This implies that h ensures SGLA with respect to
M ′.

Theorem 6.7. Given a memory model M , there exists an uninstrumented
TM implementation that guarantees SGLA parametrized by M .
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Proof idea. Consider an uninstrumented TM implementation I which executes
every transaction using a global lock as shown in Figure 6.7 and explained in
Theorem 3. Consider an arbitrary trace r ∈ L(I). Note that there exists a
history h corresponding to r (as explained in Theorem 3) such that for every
pair T, T ′ of transactions, either T ≺h T ′ or T ′ ≺h T . This means that h is
transactionally sequential. Moreover, every operation in h is legal. Thus, h
ensures SGLA parametrized by M .
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We present a summary of the thesis, followed by an analysis of the contribu-
tions and directions for future work.

7.1 Summary

This thesis presented a formalism and a verification methodology to check the
correctness of TM algorithms. The cornerstones of the thesis are the follow-
ing: a specification of opacity, a language whose semantics is parametrized by
relaxed memory models, structural properties of TM algorithms, and an auto-
mated verification tool. The verification technique presented in this thesis aims
to bridge the gap between reasoning about the correctness of TM algorithms
as described in the literature, typically in high-level pseudo-code assuming a
coarse-grained atomicity and sequential consistency, and the correctness of TM
algorithms on actual multiprocessors.

This thesis also extends the notion of opacity to non-transactional opera-
tions. We present a definition of opacity parametrized by a memory model.
Intuitively, parametrized opacity requires two things. Firstly, transactions are
isolated from other transactions and non-transactional operations. Secondly,
the behavior of non-transactional operations is governed by the underlying
memory model. We used our formalism to prove several results on achieving
parametrized opacity with instrumented or uninstrumented TM implemen-
tations under different memory models. In particular, we show that for most
memory models, parametrized opacity cannot be achieved without instrument-
ing non-transactional operations.

113
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7.2 In Retrospect: Lessons Learned

This thesis started with the goal of verifying safety and liveness properties of
TM algorithms.

The first important lesson is the importance of a precise formulation in ap-
proaching the problem. TM algorithms use different techniques for managing
concurrency efficiently. Building a framework that captures different TM algo-
rithms is time-consuming, but rewarding. A proper framework is indispensable
to pose a precise verification problem.

The second important lesson learned in this thesis is the benefit from com-
bining different techniques. For example, consider the TM specifications for
opacity. The deterministic TM specifications are hard to construct, and even
harder to prove correct. On the other hand, nondeterministic TM specifica-
tions are easy to construct and prove correct. However, to check language-
inclusion efficiently, we need a deterministic TM specification. The large size
of the nondeterministic TM specification does not leave determinization as a
feasible option. Constructing both TM specifications, proving the correctness
of one manually, and checking language equivalence to establish the equiva-
lence of the two specifications, are the three steps that allow us to build a
useful specification and prove it correct. A second important combination of
techniques is the combination of manual proof techniques and model checking.
While model checking is highly automated and certainly useful for a small
number of threads and variables, it is often handicapped for infinite-state sys-
tems. This thesis extends the correctness of TM algorithms to an unbounded
number of threads and variables using manual proof techniques.

Another important lesson learned is the importance of generality and sim-
plicity. Formalisms and definitions should be general and simple. Our defini-
tion of TM algorithms, parametrized opacity, and memory models in Chapter 6
follow this principle. Our formalism of parametrized opacity, though simple,
allows us to draw general observations. For example, our results about achiev-
ing opacity using instrumentation hold for all memory models that fall in the
reordering based classification.

Another important part of the thesis is the implementation of the tool
FOIL. Many optimizations were required to make FOIL work. Some of these
optimizations were based on interesting insights. For example, in our scope
of TM algorithms, the local variables can be divided into two sets: one set
contains the variables which can be influenced, directly or indirectly, by global
variables, and another set contains the variables which cannot. This segrega-
tion allows us to optimize the execution of statements involving the second
set of local variables: they need not be enqueued into the queue of deferred
statements, and can be directly executed. It is always helpful to design and im-
plement a verification tool with the problem statement in mind. For example,
the motivation behind the two modes of FOIL was that the counterexamples
to opacity are always short. We would also like to mention our fence insertion
technique. While simple, it is very useful for our purposes. Although we can-
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not formally prove that the number of fences inserted is small, the technique
indeed gives a practically acceptable number of fences in our experiments. The
lesson learned is that simple observations may yield fruitful outcomes.

7.3 Future Directions

The thesis offers many possibilities for future work to make the verification
technique more general and more automated. Moreover, while working on
this thesis, we came across many interesting formalization and verification
problems.

Verification of mixed transactional programs

We can use the correctness property of parametrized opacity to verify mixed
transactional programs. However, we do not expect the structural properties
to hold in the presence of non-transactional operations. It is an interesting
research problem to find alternatives to reduce the infinite-state verification to
a finite state space for mixed transactional programs.

Efficient TM implementations for parametrized opacity

TM implementations which satisfy strong atomicity [ATLM+06] satisfy opac-
ity parametrized with respect to sequential consistency. This thesis showed
that relaxing the memory model might help in creating more efficient TM
implementations. One research direction is to instrument non-transactional
writes and modify existing efficient TM implementations to create TM im-
plementations which guarantee opacity parametrized with respect to weaker
memory models.

Formalizing complex memory models

The semantics of RML capture different reorderings allowed in different mem-
ory models. However, they capture neither control/data dependent reordering,
nor non-atomic stores. Extending RML to handle control/data dependent re-
ordering is a straightforward extension of the current semantics: for every
deferred queue, we maintain a predicate p which depends on the control struc-
ture of the program. If p holds at some point later in program execution,
then the queue is considered, otherwise the queue is discarded. An interesting
and challenging direction of research is to develop formal operational seman-
tics for memory models like PowerPC [Fre05], IA-32, and IA-64 [Int06], which
allow non-atomicity of stores. Also, verifying TM algorithms under software
memory models like Java and C++ requires an operational semantics of soft-
ware memory models. Defining an operational semantics of software memory
models remains a daunting challenge due to the variety of optimizations they
allow.
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Verification of TM implementations

This thesis presents a verification technique for TM algorithms. It abstracts
away the complications introduced in implementing the TM algorithms. Ver-
ification of TM implementations is an interesting problem. One possibility is
to use dynamic tools [FF09, FFY08] to check that the sequence of memory
accesses in a TM implementation satisfies the correctness property of opacity.
Another alternative [Tas08] for static analysis of TM implementations is to
check that a TM implementation refines a TM algorithm.

Automatic proofs for structural properties

We manually prove that the TM algorithms satisfy structural properties. It
is an interesting direction to attempt to automate these proofs. Another in-
teresting direction of research is to extend the structural properties to general
concurrent systems, and search for techniques to reduce verification problems
to a small number of threads and variables.



TM Specifications for
Opacity Without
Rollbacks A
We construct the TM specifications for fine grained opacity under the as-
sumption that transactions do not rollback. These TM specifications aid in
understanding the more complicated TM specifications presented in Chapter 4,
where transactions are allowed to rollback.

A.1 A Nondeterministic TM Specification

The set of states and the initial state of the nondeterministic TM specification
for opacity without rollbacks are the same as those of the nondeterministic
TM specification for opacity with rollbacks as described in Chapter 4. The
transition relation is obtained using Algorithm A.1. The thread t refers to
the thread taking the step, and the thread u refers to the other thread. The
definition of the procedure ResetState(q, t) is given in Section 4.2.1.

Construction

The state of a thread can be attributed to the unfinished transaction of the
thread. We describe the set of runs that are produced by the TM specification.
Let r be a run of the TM specification Spec. Let x be the unfinished transaction
of a thread, and let y be the unfinished transaction of the other thread in the
run r. The nondeterministic TM specification ensures the following:

Rule 1. A variable v is in the prohibited write set of x if there is a committed
transaction z in r such that z serializes after x and z has a final store or
a finished read of v

117
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nondetTMSpec(〈Status , SerStatus , rs ,ws , urs, prs , pws ,wp, rp, serp〉, op)

if op = ((store, v), t) then
if Status(t) = abortsure then return ⊥
if urs(t) 6=⊥ or v ∈ pws(t) then return ⊥
ws(t) := ws(t) ∪ {v}; Status(t) := commitsure
if v ∈ ws(u) then

if serp(u) then return ⊥ else serp(t) := true
if v ∈ rs(u) then

if serp(u) then return ⊥ else serp(t) := true
if v ∈ urs(u) then

if serp(u) then Status(u) := abortsure
rp(t) := true

if op = ((load, v), t) then
if urs(t) 6=⊥ or Status(t) = abortsure then return ⊥
if v ∈ prs(t) then

if Status(t) = commitsure then return ⊥ else Status(t) := abortsure
urs(t) := v
if Status(t) = commitsure then rs(t) := rs(t) ∪ {v}
if v ∈ ws(u) then

if Status(t) = commitsure then
if serp(u) then return ⊥ else serp(t) := true

else
wp(t) := true
if serp(u) then Status(t) := abortsure

Algorithm A.1: The nondeterministic TM specification for fine grained opacity
without rollbacks

Rule 2. A variable v is in the prohibited read set of x if there is a committed
transaction z in r such that z serializes after x and z has a final store
of v

Rule 3. The serialization status of x is true in a run r′ = r · op if

a. the serialization status of x in r is true, and op is not a commit or
an abort of x, or

b. op is a serialize command of transaction x

Rule 4. The status of a transaction x is commitsure in a run r′ = r · op if

a. the status of x is commitsure in r and op is not a commit

b. the status of x is finished in r and op is a store by x

Rule 5. The status of a transaction x is abortsure in a run r′ = r ·op if the status
of x is not commitsure in r and one of the following holds:
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nondetTMSpec(〈Status , SerStatus , rs ,ws , urs, prs , pws ,wp, rp, serp〉, op)

if op = (rfin, t) then
if urs(t) =⊥ or Status(t) = abortsure then return ⊥
v := urs(t)
rs(t) := rs(t) ∪ {v}; urs(t) :=⊥
if wp(t) then

if serp(u) then return ⊥ else serp(t) := true
if rp(u) then

if serp(t) then return ⊥ else serp(u) := true

if op = (ε, t) then
if SerStatus(t) = true then return ⊥ else SerStatus(t) := true
if SerStatus(u) = false then

if serp(t) then return ⊥ else serp(u) := true
if wp(t) then Status(t) := abortsure

if op = (commit, t) then
if Status(t) = abortsure then return ⊥
if SerStatus(t) 6= true or urs(t) 6=⊥ then return ⊥
if rp(t) and serp(u) then Status(u) := abortsure
if serp(t) then

prs(u) := prs(u) ∪ ws(t) ∪ prs(t)
pws(u) := pws(u) ∪ ws(t) ∪ rs(t) ∪ pws(t)

ResetState(t)
if SerStatus(u) then serp(t) := true

if op = (abort, t) then
if SerStatus(t) = false then return ⊥
if ws(t) 6= ∅ then return ⊥
ResetState(t)
if SerStatus(u) then serp(t) := true

return 〈Status,SerStatus, rs,ws, urs, prs, pws,wp, rp, serp〉

Continued Algorithm A.1

a. op is a store of a variable v by y and y serializes before x and x has
an unused load of v in r

b. op is a load of a variable v by x such that y stores to v in the run
r and y serializes after x

c. op is a serialize of x and y is unserialized and there exists a variable
v such that y stores to v and x loads v after y stores to v

d. op is a load of a variable v by x and v is in the prohibited read set
of x
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Rule 6. The serialization predecessor serp of x is true in run r′ = r · op if:

a. the serialization predecessor of x is true in r and op is not a commit
or an abort of transaction y

b. op is a store of v by transaction x and y stores to v in r

c. op is a store of v by x and y has a used load of v in r

d. op is a store of v by x and the status of y is commitsure and y loads
v

e. op is a load of v by x and the status of x is commitsure in r and y
stores to v in r

f. op is a serialize of transaction y and the serialization status of x is
false

g. op is a finish of a read by transaction x and y stores to v in r, and
later x loads v in r

h. op is a finish of a read by transaction y and y loads v in r, and later
x stores to v in r

Rule 7. The serialization predecessor of the transaction following x in the thread
of x is true in a run r′ = r · op if op is a commit or abort of x and the
serialization status of y is true

Rule 8. Given a run r produced by Spec and an operation op of transaction x,
the run r′ = r · op is produced by Spec if the following hold:

a. if the status of x is abortsure, then op is an abort or a serialize

b. if op is a store of v, then x has no unused load in r and v is not in
the prohibited write set of x

c. if op is a load of v, then x has no unused load in r

d. if op is a load of v and v is in the prohibited read set of x, then
status of x is not commitsure

e. if op is a finish of a read, then there is an unused load of v by x and
the status of x is not abortsure in r

f. if op is a commit, then the serialization status of x is true and all
loads by x in r are used

g. if op is an abort, then there does not exist a variable v such that x
stores to v and x does not rollback v in r

h. if op is an abort, then the serialization status of x is true

i. if op is a serialize, then the serialization status of x is false

j. if the serialization predecessor of x is true, then the serialization
predecessor of y is false in r′
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Correctness

Theorem A.1. Given a history h on n threads and k variables such that h
does not contain rollback instructions, h is opaque if and only if h ∈ L(Spec).

Proof. We say that a transaction x must serialize before a transaction y in a
run r if one of the following holds:

• x and y both store to a variable v and x stores before y stores

• the serialize of x occurs before the serialize of y in r

• x stores to v and y has a used load of v, where y loads v after x stores
to v

• x has a used load of v and y stores v, where x loads v before y stores to
v

Note that for two unfinished transactions x, y in a run r, if y must serialize
before x, then the serialization predecessor of x is true in r.

Now, we note that the TM specification Spec for opacity gives the largest
set R of runs such that for every run r produced by the TM specification,
for every transaction x in r, the following points hold (conditions C1-C6 are
graphically shown in Figure 4.1):

C1. x does not store to a variable v if there exists a transaction y such that
y must serialize after x and y stores to v (from rules 1, 6.b, and 8.j)

C2. x does not store to a variable v if there exists a transaction y such that
y must serialize after x and y has a used load of v (from rules 1, 6.c, and
8.j)

C3a. x does not store to a variable v if there exists a transaction y such that
y must serialize after x and y has a load of v and y stores to a variable
v′ (from rules 1, 4.b, 6.d, and 8.j)

C4a. x does not load a variable v if x has written to some variable v′ and
there is a transaction y such that y must serialize after x and y stores to
v (from rules 2, 4.b, 6.e, and 8.j)

C5. x does not finish the read of a variable v if there exists a transaction y
such that y must serialize after x and y stores to v before x loads v (from
rules 2, 5.b, 6.g, and 8.j)

C6. x does not finish the read of a variable v if there exists a transaction y
such that y must serialize before x and y stores to v after x loads v (from
rules 5.a, 6.h, and 8.j)

C7. x serializes at most once (from rules 3 and 8.i)
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C8. if x is a finished transaction, then x serializes exactly once (from rules 3,
8.f, 8.h, and 8.i)

C9. x does not serialize if there exists a transaction y such that y is unseri-
alized and y must serialize before x (from rules 6.f and 8.j)

Let h be an opaque history. As h is opaque, there is a sequential history hs
such that hs is strictly equivalent to h. Let the transactions in the sequential
history hs be given by the sequence x1 . . . xn of transactions. We claim that
there exists a run r of the TM specification Spec such that h is the correspond-
ing history of r. As hs is strictly equivalent to h, we know that for every pair
xi, xj of transactions in h such that i < j, the following are not true:

• xi loads v after a store to v by xj, and xi finishes the read

• xi is a committing transaction and xi loads v after a store by xj to v

• xi and xj have a store to v and xi stores to v after xj stores to v

• xi stores to v and xj loads v before the store to v, and the read of v is
finished by xj

As these conditions are equivalent to the conditions C1-C6, we know that
there exists a run r of the TM specification Spec, where the order of serializa-
tion of transactions is the same as x1 . . . xn.

Conversely, let r be a run produced by the nondeterministic TM specifi-
cation Spec. Let h be the corresponding history to the run r. We know that
every transaction serializes at most once in the run. Let hs be a sequential
history such that (i) a transaction x appears before a transaction y in hs if x
must serialize before y in r, (ii) all other transactions appear in an arbitrary
order later in r, and (iii) for all threads, the thread projection of hs is equiva-
lent to the thread projection of h. The conditions C1 - C6 guarantee that for
every pair opi, opj of operations in h if opi and opj conflict and i < j, then
opi occurs before opj in hs. Note that the order of serialization in r respects
the real time order of the transactions in h, that is, if a transaction x finishes
before a transaction y starts, then x serializes before y in r. Thus, hs is strictly
equivalent to h. Hence, every history in L(Spec) is opaque.

A.2 A Deterministic TM specification

The set of states and the initial state of the deterministic TM specifica-
tion for opacity without rollbacks are the same as those of the deterministic
TM specification for opacity with rollbacks as described in Chapter 4. The
transition relation is obtained using Algorithm A.2. The thread t refers to
the thread taking the step, and the thread u refers to the other thread. The
definition of the procedure ResetState(q, t) is given in Section 4.2.2.



A.2. A Deterministic TM specification 123

detTMSpec(〈Status , rs ,ws , urs, prs , pws , hp,wp, rp, sp〉, op)

if op = ((store, v), t) then
if urs(t) 6=⊥ or v ∈ pws(t) then return ⊥
ws(t) := ws(t) ∪ {v}
if Status(t) = finished then

if Status(u) = pending then hp(t) := true
if Status(u) = commitsurepending then sp(t) := true
Status(t) := started

if Status(t) = pending then Status(t) := commitsurepending
if Status(t) = started then Status(t) := commitsure
if v ∈ ws(u) then

if hp(u) or wp(u) then return ⊥
if Status(u) = abortsure then return ⊥ else sp(t) := true

if v ∈ rs(u) then
sp(t) := true
if wp(u) then Status(u) := abortsure

if v ∈ urs(u) then
rp(t) := true
if sp(u) or hp(u) or wp(u) then Status(u) := abortsure

if sp(u) and sp(t) then return ⊥

Algorithm A.2: The deterministic TM specification for fine grained opacity with-
out rollbacks

Correctness

We use an antichain based tool [WDHR06] to prove that for two threads and
two variables, the language of the deterministic TM specification for opac-
ity with no rollbacks is equivalent to the language of the nondeterministic
counterpart. The nondeterministic TM specification has around 72’000 states,
while the deterministic TM specification has around 15’000 states. The execu-
tion time for checking equivalence of the two specifications using the antichain
based tool [WDHR06] on an Opteron machine with eight 2.66 GHz processors
and 16 GB RAM is around 40 seconds.

Based on the manual proof of correctness for the nondeterministic TM
specification and the language equivalence check of the deterministic TM spec-
ification with respect to the nondeterministic counterpart, we claim that the
deterministic TM specification accepts exactly the set of opaque histories with
no rollbacks.
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detTMSpec(〈Status , rs ,ws , urs, prs , pws , hp,wp, rp, sp〉, op)

if op = ((load, v), t) then
if urs(t) 6=⊥ then return ⊥
if v ∈ prs(t) then

if Status(t) = commitsure then return ⊥
if Status(t) = commitsurepending then return ⊥
Status(t) := abortsure

urs(t) := v
if Status(t) = finished then

if Status(u) = pending then hp(t) := true
if Status(u) = commitsurepending then sp(t) := true
Status(t) := started

if Status(t) = commitsure or Status(t) = commitsurepending then
rs(t) := rs(t) ∪ {v}

if v ∈ ws(u) then
if Status(t) = commitsure or Status(t) = commitsurepending then

sp(t) := true
else

wp(t) := true
if sp(u) then Status(u) := abortsure

if sp(u) and sp(t) then return ⊥

continued Algorithm A.2
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detTMSpec(〈Status , rs ,ws , urs, prs , pws , hp,wp, rp, sp〉, op)

if op = (rfin, t) then
if urs(t) =⊥ or Status(t) = abortsure then return ⊥
v := urs(t)
rs(t) := rs(t) ∪ {v}; urs(t) =⊥
if Status(t) = pending then sp(u) := true
if Status(t) = commitsurepending then sp(u) := true
if rp(u) then sp(u) := true
if wp(t) then

if Status(u) = abortsure then return ⊥
sp(u) := true

if sp(u) and sp(t) then return ⊥

if op = (commit, t) then
if urs(t) 6=⊥ then return ⊥
if hp(t) then

if sp(u) then
if urs(u) 6=⊥ then Status(u) := abortsure

else Status(u) := abortsure
if hp(t) or rp(t) or sp(t) then

if Status(u) = started then Status(u) = pending
if Status(u) = commitsure then Status(u) = commitsurepending
prs(u) := prs(u) ∪ ws(t) ∪ prs(t)
pws(u) := pws(u) ∪ ws(t) ∪ rs(t) ∪ pws(t)

if sp(u) and sp(t) then return ⊥
ResetState(t)

if op = (abort, t) then
if ws(t) 6= ∅ then return ⊥
ResetState(t)

return 〈Status , rs ,ws , urs, prs , pws , hp,wp, rp, sp〉

continued Algorithm A.2
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