
EDF-schedulability of synchronous periodic task systems is coNP-hard

Friedrich Eisenbrand Thomas Rothvoß

Institute of Mathematics

EPFL, Lausanne, Switzerland

{friedrich.eisenbrand,thomas.rothvoss}@epfl.ch

Abstract

In the synchronous periodic task model, a set τ1, . . . , τn

of tasks is given, each releasing jobs of running time
ci with relative deadline di, at each integer multiple
of the period pi. It is a classical result that Earliest
Deadline First (EDF) is an optimal preemptive uni-
processor scheduling policy. For constrained deadlines,
i.e. di ≤ pi, the EDF-schedule is feasible if and only if

∀Q ≥ 0 :

n∑

i=1

(⌊
Q − di

pi

⌋

+ 1

)

· ci ≤ Q.

Though an enormous amount of literature deals with
this topic, the complexity status of this test has
remained unknown. We prove that testing EDF-
schedulability of such a task system is (weakly) coNP-
hard. This solves Problem 2 from the survey “Open
Problems in Real-time Scheduling” by Baruah & Pruhs.
The hardness result is achieved by applying recent re-
sults on inapproximability of Diophantine approxima-
tion.

1 Introduction

Nowadays more and more devices are controlled by
embedded microprocessors, for example in power plants,
car electronics, flight control systems, robotics and
telecommunication systems, see Buttazzo [8] for an
extensive introduction. Since many applications are
safety critical, each task running on such a processor
must produce the output not only correctly but also
on time. Several tasks may run on the same processor
and a Real-time scheduling policy decides which task
should be active in which intervals, to guarantee that
all deadlines are kept.

In the simple, but important periodic task model
a set τ1, . . . , τn of tasks is given, where each τi is an
infinite sequence of jobs, defined by an execution time
ci ∈ Q+, a (relative) deadline di ∈ Q+ and a period
pi ∈ Q+. We assume that the tasks are synchronous,
i.e. there is a time, say 0, at which all tasks release a job
simultaneously. In other words for each i ∈ {1, . . . , n}

and z ∈ Z≥0, a job of running time ci and absolute
deadline z · pi + di is released at z · pi. Furthermore
we assume constrained-deadlines, hence di ≤ pi for each
i ∈ {1, . . . , n}.

We consider preemptive uni-processor schedules, i.e.
at any time a running job may be preempted and
resumed later. As the name suggests, in the Earliest
Deadline First (EDF) policy, at any time that job
from the queue of released and not yet accomplished
jobs is active, whose (absolute) deadline comes next.
The EDF-schedule is provably optimal in this setting,
meaning that if there is a schedule in which all jobs
meet their deadlines, then the EDF-schedule is feasible
as well (see Dertouzos [11]).

The main question of feasibility analysis however
remains: Will each of the infinitely many jobs be
finished in time? First observe, that

⌊
Q − di

pi

⌋

+ 1

is the number of jobs of τi that have both, their release
time and deadline in the interval [0, Q]. Consequently
the quantity

DBF(τi, Q) =

(⌊
Q − di

pi

⌋

+ 1

)

· ci

is the amount of running time that, regardless of the
used scheduling policy, has to be spent on τi in this
interval. More general, the demand bound function

DBF(S, Q) =

n∑

i=1

(⌊
Q − di

pi

⌋

+ 1

)

· ci

gives the running time of all jobs, which have their re-
lease time and deadline in the interval [0, Q]. As a con-
sequence, for feasibility it is necessary, that DBF(S, Q) ≤
Q for all Q ≥ 0. Baruah et al. [5] showed that this con-
dition is in fact sufficient, hence an EDF-schedulability
test is a test which checks validity of the following for-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147954614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0

5

10

15

0 5 10 15

Q

DBF(S, Q)

DBF(τ1, Q)

DBF(τ2, Q)

Figure 1: Constrained deadline task system S = {τ1, τ2}
with τ1 = (2, 3, 4), τ2 = (3, 5, 6), using notation τi =
(ci, di, pi). One has DBF(S, Q) > Q for Q = 11, thus S
is not EDF-schedulable.

mula

∀Q ≥ 0 :
n∑

i=1

(⌊
Q − di

pi

⌋

+ 1

)

· ci ≤ Q,

see Figure 1 for an illustration.
Much effort has been spent on developing sufficient

polynomial or exact pseudo-polynomial time tests for
EDF-schedulability of periodic tasks, see [2, 3, 5, 9,
12]. But none of the algorithms suggested in these
papers was able to decide EDF-schedulability on a unit
speed processor correctly and in polynomial time for
all instances. The question whether EDF-schedulability
can be decided in polynomial time is stated as a major
open problem in the survey of Baruah & Pruhs [6]
on open problems in Real-time scheduling. We settle
the complexity status of testing EDF-schedulability by
proving the following theorem.

Theorem 1.1. Given a set S = {τ1, . . . , τn} of syn-
chronous, periodic, constrained-deadline tasks defined
by rational numbers 0 ≤ ci ≤ di ≤ pi, it is (weakly)
coNP-hard to decide, whether S is EDF-schedulable,
i.e. testing the condition

∀Q ≥ 0 :
n∑

i=1

(⌊
Q − di

pi

⌋

+ 1

)

· ci ≤ Q,

is (weakly) coNP-hard. This holds even if di = pi for
i = 1, . . . , n − 1.

This, together with the result in [5] implies the following
corollary.

Corollary 1.1. Given a set S = {τ1, . . . , τn} of spo-
radic tasks with worst-case execution time ci, relative

deadline di and minimum inter-arrival time pi it is
(weakly) coNP-hard to determine, whether the EDF-
schedule of S is feasible.

Related work. One approach to obtain algorithms to
test EDF-feasibility lies in bounding the interval, in
which the demand bound function has to be evaluated.
Let u =

∑n
i=1

ci

pi
be the utilization of a task system.

Given that S is not EDF-schedulable, the smallest
Q > 0, certifying the infeasibility must have

Q <
u

1 − u
max

i=1,...,n
{pi − di},

see e.g. [4, 17]. This admits a pseudo-polynomial time
algorithm for the feasibility test, if the utilization of S
is bounded by 1 − ε for some constant ε > 0.

Albers & Slomka [1] gave an FPTAS for approxi-
mating the speed of a processor, needed to make the
EDF-schedule of S feasible. Their algorithm is also in-
terpreted as follows. It either asserts that the tasks are
feasible, or it asserts that the tasks are infeasible on
a processor of speed 1 − ε. A similar result was also
provided in the setting of fixed priority scheduling [15].
See [8] for more details on fixed priority scheduling poli-
cies and [9, 2, 12, 21] for further approaches to feasibil-
ity analyzes of EDF-schedules. Recently, Bonifaci et
al. [7] extended the result of Albers & Slomka to the
case of multiprocessor scheduling with migration. The
algorithm asserts that a set of tasks is feasible on m
speed-(2− 1/m + ε) machines or infeasible on m speed-
1 machines.

In a popular special case, the tasks have implicit-
deadlines, i.e. di = pi for all i. In that case the
condition DBF(S, Q) ≤ Q has only to evaluated at
Q = scm(p1, . . . , pn) and the set is EDF-schedulable
if and only if the utilization is bounded by 1, see Liu
& Layland [19]. In other words, the EDF-schedulability
in this special case is decidable in polynomial time. If
the tasks may be asynchronous, i.e. each task has on
offset ai, such that jobs are released at z · pi + ai, then
testing the feasibility is strongly coNP-hard [18]. This
even holds if the utilization of the system is bounded
from above by an arbitrarily small constant.

In the sporadic task model neither release times nor
running times are predetermined. There, ci denotes the
worst-case execution time and pi denotes the minimum
inter-arrival time. But the worst-case is attained in
a synchronous arrival sequence, that is when all tasks
release jobs at time 0, all jobs fully use the worst-case
execution time ci and jobs arrive as early as permissible,
see Baruah, Mok & Rosier [5]. In other words, the
sporadic task system is EDF-schedulable if and only if
this is true for the corresponding synchronous periodic
task system.

2 Diophantine approximation

The EDF-schedulability test contains only one single
unknown variable Q. This is unusual for NP/coNP-
hard problems and helps us to narrow down the search
for NP/coNP-hard remote relatives. The relative that
we found helpful for problems in Real-time scheduling
is Diophantine approximation, a problem in the field
of algorithmic number theory (see e.g. [20]). Roughly
speaking, there the objective is to replace a number or a
vector, by another number or vector which is very close
to the original, but less complex in terms of fractionality.

More precisely, a sequence α1, . . . , αn of rational
numbers together with a bound N ∈ N and an error
bound ε ∈ Q+ is given. One has to decide whether

(2.1) ∃Q ∈ {1, . . . , N} : max
i=1,...,n

| ⌊Qαi⌉ − Qαi| ≤ ε,

where ⌊x⌉ is the integer closest to x ∈ R. In a seminal
work, Lagarias [16] has shown, that testing (2.1) is NP-
hard. This was later extended by Rössner & Seifert [22]
and Chen & Meng [10] to inapproximability results.
In [13], the authors of this paper applied these results
to show that response-time computation of tasks in
a Rate-monotonic schedule is NP-hard (under Turing
reductions), where tasks with smaller period always
preempt that of larger period.

The EDF-schedulability test uses a rounding opera-
tion, where one replaces a rational by the closest integer
which is equal or smaller, i.e, one rounds down. In Dio-
phantine approximation, one rounds up or down to the
nearest integer. The variant of Diophantine approxima-
tion, where one has to round up is called directed Dio-
phantine approximation (DDA). Recently the authors
of this paper provided the following hardness result for
directed Diophantine approximation.

Theorem 2.1. (Hardness of DDAρ [14]) There is
a constant c > 0, such that the following Directed Dio-
phantine Approximation problem (DDAρ) with gap pa-
rameter ρ = ⌊nc/ log log n⌋ is NP-hard: Given numbers
α1, . . . , αn ∈ Q, a bound N ∈ N and an error bound
ε ∈ Q+ as input, distinguish the following cases

• Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} :
maxi=1,...,n(⌈Qαi⌉ − Qαi) ≤ ε

• No : ∄Q ∈ {1, . . . , ρ · N} :
maxi=1,...,n(⌈Qαi⌉ − Qαi) ≤ 2n · ε

Note that the union of the Yes and No cases does not
represent all possible inputs. But there is a polynomial
time reduction, taking the input of an NP-complete
problem, say a SAT clause C, and yielding a DDAρ

instance respecting the Yes-case if C is satisfiable and

the No-case otherwise. See, e.g., [23, 24] for more
details on gap reductions.

Despite of some similarities between DDAρ and
EDF-schedulability, we still observe crucial differences:

1. DDAρ contains a ceiling instead of a floor opera-
tion.

2. The number Q is restricted to be integer.

3. The approximation error is measured with ‖ · ‖∞-
norm instead of ‖ · ‖1-norm.

4. For DDAρ, one has a bound N on the number Q.

We can easily eliminate the first difference by observing
that ⌈Qαi⌉−Qαi = Q·(−αi)−⌊Q(−αi)⌋. Consequently
replacing the numbers by their negatives, we obtain a
DDAρ problem with a floor operation. By adding a
sufficiently large integer z and using Q(αi+z)−⌊Q(αi+
z)⌋ = Qαi − ⌊Qαi⌋ for Q ∈ N we may then make the
αi’s positive. We conclude that given α1, . . . , αn ∈ Q+,
N ∈ N and ε ∈ Q+, it is NP-hard to distinguish

• Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} :
maxi=1,...,n(Qαi − ⌊Qαi⌋) ≤ ε

• No : ∄Q ∈ {1, . . . , ρ · N} :
maxi=1,...,n(Qαi − ⌊Qαi⌋) ≤ 2n · ε

for ρ = ⌊nc/ log log n⌋. In a next step, we introduce a
variant of directed Diophantine approximation which
incorporates differences (2) & (3). We use the notation
[α, β] to denote the set of real numbers [α, β] = {x ∈
R : α ≤ x ≤ β}.

Theorem 2.2. (Hardness of DDA∗
ρ) There exists a

constant c > 0, such that the following DDA∗
ρ problem

with gap parameter ρ = ⌊nc/ log log n⌋ is NP-hard: Given
numbers α1, . . . , αn ∈ Q+, weights w1, . . . , wn ∈ Q+, a
bound N ∈ N and an error bound ε ∈ Q+, distinguish

• Yes : ∃Q ∈ [⌈N/2⌉, N] :
∑n

i=0 wi(Qαi−⌊Qαi⌋) ≤ ε

• No : ∄Q ∈ [1, ρ ·N] :
∑n

i=0 wi(Qαi −⌊Qαi⌋) ≤ ρ · ε

Proof. We reduce DDAρ to DDA∗
ρ. For this pur-

pose let (α1, . . . , αn; N ; ε) be the given DDAρ instance
(with rounding down and αi > 0 for all i). Since
the αi’s are rational numbers, we can write them as
αi = ai

bi
with pairwise co-prime integers ai, bi ∈ N.

Our DDA∗
ρ instance consists of the same numbers

α1, . . . , αn, equipped with unit weights w1 = · · · =
wn = 1. Furthermore we choose the same bound N ,
but a different error bound ε′ = n · ε and we add
one more number α0 = 1 with a very high weight of
w0 = 2 · max{ai : i = 1, . . . , n} · ε · ρ · n. Intuitively

the weight w0 is large enough, such that any reasonable
DDA∗

ρ solution Q of this instance must be an integer.
It suffices to show the following implications:

• Yes :
∃Q ∈ {⌈N/2⌉, . . . , N} : max

i=1,...,n
(Qαi − ⌊Qαi⌋) ≤ ε

⇒ ∃Q ∈ [⌈N/2⌉, N] :
∑n

i=0 wi(Qαi − ⌊Qαi⌋) ≤ ε′

• No :
∄Q ∈ {1, . . . , ρ ·N} : max

i=1,...,n
(Qαi − ⌊Qαi⌋) ≤ 2n · ε

⇒ ∄Q ∈ [1, ρ · N] :
∑n

i=0 wi(Qαi − ⌊Qαi⌋) ≤ ρ · ε′

Yes-case: Clearly Yes instances for DDAρ are mapped
to Yes instances of DDA∗

ρ by simply using the same
solution Q. This is the case since given a Q ∈
{⌈N/2⌉, . . . , N} that matches the conditions of the Yes
case for DDAρ, one has

n∑

i=0

wi(Qαi − ⌊Qαi⌋)

= w0 · (Q − ⌊Q⌋)
︸ ︷︷ ︸

=0

+

n∑

i=1

1 · (Qαi − ⌊Qαi⌋)
︸ ︷︷ ︸

≤ε

≤ n · ε

= ε′.

No-case: Now suppose that we have a Q ∈ [1, ρ ·
N] with

∑n
i=0 wi(Qαi − ⌊Qαi⌋) ≤ ρ · ε′ = ρ · n ·

ε. Decrease Q continuously until Qαj ∈ Z for at
least one j ∈ {0, . . . , n}. This can only decrease
the approximation error since ⌊Qαi⌋ remains invariant
for all i ∈ {0, . . . , n}. Furthermore Q will never be
decreased below 1 since α0 = 1. If Q is then an integer,
we are done since

max
i=1,...,n

(Qαi − ⌊Qαi⌋) ≤

n∑

i=0

wi(Qαi − ⌊Qαi⌋)

≤ ρ · n · ε

≤ 2nε

for n large enough. Now suppose that Q is not integer.
Then we may write Qαj = Q

aj

bj
=: z ∈ Z for some

j ∈ {1, . . . , n}, thus Q =
zbj

aj
∈ Z 1

aj
. We write Q = y

aj

where y is integer but not a multiple of aj (since Q /∈ Z).
Hence

Q − ⌊Q⌋ =
y

aj
−

⌊Q⌋aj

aj
= (y − ⌊Q⌋aj)
︸ ︷︷ ︸

≥1

·
1

aj
≥

1

aj

where we use that y − ⌊Q⌋aj is a non-negative integer
but y − ⌊Q⌋aj 6= 0. We obtain

n∑

i=0

wi(Qαi−⌊Qαi⌋) ≥ w0 ·(Q−⌊Q⌋) ≥ w0 ·
1

aj
> ρ ·n ·ε

by the choice of w0. This contradiction yields that
Q ∈ N and the claim follows.

3 Hardness of EDF-schedulability

In this section we will see that the NP-hard problem
DDA∗

ρ is close enough to the EDF-schedulability con-
dition to admit a direct reduction. To achieve this,
Yes (No, resp.) instances for DDA∗

ρ are mapped to
No (Yes, resp.) instances of EDF-schedulability. Intu-
itively this is done as follows: Suppose we are given a
DDA∗

ρ instance (α1, . . . , αn; w1, . . . , wn; N ; ε). The first
idea is to create implicit-deadline tasks τ1, . . . , τn with
pi = di = 1

αi
. Then we have

⌊
Q − di

pi

⌋

+ 1 = ⌊Qαi⌋

hence a Q that maximizes DBF(S, Q)/Q, minimizes the
approximation error. On the other hand we need to
forbid Q with Q ≫ N . For this purpose we add a
special task τ0 which has a deadline of N/2 and a suf-
ficiently large period (we may imagine p0 = ∞). Then
the quantity DBF(τ0, Q)/Q contributes significantly to
DBF(S, Q)/Q only if Q is of order N .

Theorem 3.1. Given an instance of DDA∗
ρ consist-

ing of rational numbers α1, . . . , αn ∈ Q+, weights
w1, . . . , wn ∈ Q+, a bound N ∈ N≥2 and an error bound
ε > 0, we can find in polynomial time a constrained-
deadline task system S consisting of n + 1 tasks such
that

• Yes: ∃Q ∈ [⌈N/2⌉, N] :
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤
ε ⇒ S not EDF-schedulable

• No: ∄Q ∈ [⌈N/2⌉, 3N] :
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤
3ε ⇒ S EDF-schedulable

Furthermore n tasks in S have implicit-deadlines.

Proof. A set of tasks is EDF-schedulable on a processor
of speed β > 0 if and only if the tasks with running times
scaled by 1

β are feasible on a unit speed processor. Thus
we may assume to have an oracle for the test

∀Q ≥ 0 :

n∑

i=1

(⌊
Q − di

pi

⌋

+ 1

)

· ci ≤ β · Q

Let N ∈ N, α1, . . . , αn, w1, . . . , wn ∈ Q+, ε > 0 be the
DDA∗

ρ instance. We choose a constrained-deadline task
system S consisting of n + 1 tasks

τi = (ci, di, pi) =

(

wi,
1

αi
,

1

αi

)

∀i = 1, . . . , n

τ0 = (c0, d0, p0) = (3ε, ⌈N/2⌉, 12N)

and processor speed

β =
ε

N
+

n∑

i=1

wiαi

which just slightly exceeds the utilization.

Yes-case: Suppose that we have a Q ∈ [⌈N/2⌉, N] with
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ ε. Then

DBF({τ0, . . . , τn}, Q)

= DBF(τ0, Q) +

n∑

i=1

(⌊
Q − di

pi

⌋

+ 1

)

ci

= 3ε +

n∑

i=1

⌊Qαi⌋wi

(∗)

≥ 3ε +

((
n∑

i=1

Qαiwi

)

− ε

)

= 2ε + Q
n∑

i=1

αiwi

(∗∗)
> Q ·

(

ε

N
+

n∑

i=1

αiwi

)

︸ ︷︷ ︸

=β

= βQ

Here we use
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ ε in (∗) and
Q ≤ N < 2N in (∗∗). Thus the task system S is not
EDF-schedulable (on a processor of speed β).

No-case: Next we assume that S is not EDF-
schedulable. Then there exists a Q > 0 such that
DBF({τ0, . . . , τn}, Q) > βQ. We need to show that
Q ∈ [⌈N/2⌉, 3N] and

∑n
i=1 wi(Qαi − ⌊Qαi⌋) ≤ 3ε.

Observe that using the definition of β and ⌊Qαi⌋ ≤
Qαi, one has

DBF(τ0, Q) = DBF(S, Q) − DBF({τ1, . . . , τn}, Q)

> βQ −

n∑

i=1

⌊Qαi⌋wi

≥ βQ − Q

n∑

i=1

αiwi

= βQ − Q

(

ε

N
+

n∑

i=1

αiwi

)

︸ ︷︷ ︸

=β

+Q
ε

N

= Q
ε

N

Since τ0 has its first deadline at d0 = ⌈N/2⌉ and
DBF(τ0, Q) > 0 we must have Q ≥ ⌈N/2⌉. Suppose

for contradiction that already the second deadline of τ0

occurred before Q, i.e. Q ≥ p0 = 12N . Then

DBF(τ0, Q) ≤ c0 ·

⌈
Q

p0

⌉

≤ 2 · 3ε ·
Q

12N
< Q

ε

N
,

leading to a contradiction. Hence, till time Q exactly
one deadline of τ0 has passed, thus DBF(τ0, Q) = 3ε. But
we already inferred the bound DBF(τ0, Q) > Q ε

N , thus
even Q < 3N . Finally

n∑

i=1

wi(Qαi − ⌊Qαi⌋)

= Q

n∑

i=1

αiwi

︸ ︷︷ ︸

<β

−(DBF(S, Q) − DBF(τ0, Q))

≤ Qβ − DBF(S, Q)
︸ ︷︷ ︸

<0

+3ε

≤ 3ε

and the claim follows.

Theorem 1.1 follows by combining Theorem 2.2 and 3.1,
with ρ = 4.

4 Open problems

We obtained that testing EDF-schedulability of syn-
chronous periodic tasks is coNP-hard. Nevertheless the
starting point of the reduction is a problem that admits
pseudo-polynomial time algorithms. Furthermore the
utilization of the task system constructed in the reduc-
tion might be extremely close to 1. Hence we believe
that the following statements are true:

Conjecture 1. There is a pseudo-polynomial time al-
gorithm for testing EDF-schedulability of synchronous
constrained-deadline systems.

Note that till now such an algorithm is only known
if 1/(1 − u) is bounded by a polynomial in the input
length (again u :=

∑n
i=1

ci

pi
).

Conjecture 2. For every fixed ε > 0, EDF-
schedulability of a synchronous constrained-deadline
task system τ1, . . . , τn can be decided in polynomial time
if u ≤ 1 − ε.

References

[1] K. Albers and F. Slomka, An event stream driven

approximation for the analysis of real-time systems, in
ECRTS, IEEE Computer Society, 2004, pp. 187–195.

[2] , Efficient feasibility analysis for real-time sys-

tems with EDF scheduling, in DATE, IEEE Computer
Society, 2005, pp. 492–497.

[3] S. K. Baruah, D. Chen, S. Gorinsky, and A. K.
Mok, Generalized multiframe tasks, Real-Time Sys-
tems, 17 (1999), pp. 5–22.

[4] S. K. Baruah and J. Goossens, Scheduling real-

time tasks: Algorithms and complexity, in Handbook
of Scheduling — Algorithms, Models, and Performance
Analysis, J. Y.-T. Leung, ed., Chapman & Hall/CRC,
2004, ch. 28.

[5] S. K. Baruah, A. K. Mok, and L. E. Rosier, Pre-

emptively scheduling hard-real-time sporadic tasks on

one processor, in IEEE Real-Time Systems Sympo-
sium, 1990, pp. 182–190.

[6] S. K. Baruah and K. Pruhs, Open problems in real-

time scheduling, To appear in: Journal of Scheduling,
(2009).

[7] V. Bonifaci, A. Marchetti-Spaccamela, and
S. Stiller, A constant-approximate feasibility test

for multiprocessor real-time scheduling, in ESA,
D. Halperin and K. Mehlhorn, eds., vol. 5193 of Lecture
Notes in Computer Science, Springer, 2008, pp. 210–
221.

[8] G. Buttazzo, Hard Real-Time Computing Systems:

Predictable Scheduling Algorithms and Applications,
Kluwer Academic Publishers, Boston, USA, 2000.

[9] S. Chakraborty, S. Künzli, and L. Thiele, Ap-

proximate schedulability analysis, in IEEE Real-Time
Systems Symposium, 2002, pp. 159–168.

[10] W. Chen and J. Meng, An improved lower bound

for approximating shortest integer relation in l∞ norm

(SIR∞), Information Processing Letters, 101 (2007),
pp. 174–179.

[11] M. L. Dertouzos, Control robotics: The procedural

control of physical processes, in IFIP Congress, 1974,
pp. 807–813.

[12] U. C. Devi, An improved schedulability test for unipro-

cessor periodic task systems, in ECRTS, IEEE Com-
puter Society, 2003, p. 23.

[13] F. Eisenbrand and T. Rothvoß, Static-priority

Real-time Scheduling: Response Time Computation

is NP-hard, in IEEE Real-Time Systems Symposium
(RTSS), 2008.

[14] F. Eisenbrand and T. Rothvoß, New hardness

results for diophantine approximation, in 12-th In-
ternational Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX
2009), LNCS, Springer, 2009.

[15] N. Fisher and S. K. Baruah, A fully polynomial-

time approximation scheme for feasibility analysis in

static-priority systems with arbitrary relative deadlines,
in ECRTS ’05: Proceedings of the 17th Euromicro Con-
ference on Real-Time Systems (ECRTS’05), Washing-
ton, DC, USA, 2005, IEEE Computer Society, pp. 117–
126.

[16] J. C. Lagarias, The computational complexity of

simultaneous Diophantine approximation problems,

SIAM Journal on Computing, 14 (1985), pp. 196–209.
[17] J. Leung, Handbook of Scheduling: Algorithms, Mod-

els, and Performance Analysis, CRC Press, Inc., Boca
Raton, FL, USA, 2004.

[18] J. Y.-T. Leung and M. L. Merrill, A note on pre-

emptive scheduling of periodic, real-time tasks, Infor-
mation Processing Letters, 11 (1980), pp. 115–118.

[19] C. L. Liu and J. W. Layland, Scheduling algorithms

for multiprogramming in a hard-real-time environment,
Journal of the Association for Computing Machinery,
20 (1973), pp. 46–61.

[20] I. Niven, H. S. Zuckerman, and H. L. Mont-
gomery, An introduction to the theory of numbers,
John Wiley & Sons Inc., New York, fifth ed., 1991.

[21] R. Pellizzoni and G. Lipari, A new sufficient feasi-

bility test for asynchronous real-time periodic task sets,
in ECRTS, IEEE Computer Society, 2004, pp. 204–211.

[22] C. Rössner and J. P. Seifert, Approximating good

simultaneous Diophantine approximations is almost

NP-hard, in Mathematical foundations of computer
science 1996 (Cracow), vol. 1113 of Lecture Notes in
Comput. Sci., Springer, Berlin, 1996, pp. 494–505.

[23] V. V. Vazirani, Approximation algorithms, Springer-
Verlag, Berlin, 2001.

[24] I. Wegener, Complexity theory, Springer-Verlag,
Berlin, 2005. Exploring the limits of efficient al-
gorithms, Translated from the German by Randall
Pruim.

