
Malicious Traffic Detection in Local Networks with Snort

Löıc Etienne / EPFL - SSC

Abstract

Snort is an open source Network Intrusion Detection System

combining the benefits of signature, protocol and anomaly

based inspection and is considered to be the most widely de-

ployed IDS/IPS technology worldwide. However, Snort’s de-

ployment in a large corporate network poses different prob-

lems in terms of performance or rule selection. This pa-

per proposes different improvements to the Snort Security

Platform: the use of another library is proposed to signifi-

cantly improve the amount of traffic that can be analyzed,

and Snort’s multithreading possibilities are explored. A new

rule classification has been devised, and rulesets suited to

large corporate networks are proposed. The use of Oinkmas-

ter has been tested and documented to seamlessly update

Snort’s rules.

1 Introduction

This paper will explore how Snort, an open source Net-
work Intrusion Detection System, can be used to secure
and monitor such a very large corporate network.

This thesis will start by a brief tour of horizon of net-
work security in Chapters 3 and 4; Chapters 5 and 6 will
present Snort’s functionalities and rule system. It will
show that Snort’s default classification is inadequate for
large network rule selection.

Chapter 7 will present findings concerning commonly
available rules, starting with rules related to CERN poli-
cies. A solution to improve Emule detection when Skype
is present is proposed. Rules that significantly improve
the detection of infected and compromized devices at
CERN are also proposed.

Chapter 8 will introduce a tool to handle rule up-
dates, and Chapter 9 will suggest possible performance
improvements to the Snort platform.

2 About CERN

2.1 CERN

CERN, the European Organization for Nuclear Research,
is the largest particle physics laboratory in the world.

Commonly referred to as the birthplace of the world-
wide web, it currently hosts scientists from some 580 in-
stitutes and counts 20 European member states.

CERN’s missions are Research, Technology, Collabo-
ration, and Education [1].

2.2 CERN Public Network

The CERN Public Network offers a great playground for
any IDS system.

CERN hosts more than 10’000 visitors each year, most
of whom bring their own, unmanaged and/or unpatched,

personal computers. CERN hosts many conferences, and
many students from universities all around the world.

With scientists representing more than 80 countries,
network and web traffic span across the whole Internet.

The CERN Public Network is liberal, and there are
few restrictions on the network usage. The network is
heterogenous, and contains mainly Windows (XP, Vista,
2000, Seven), Linux (Scientific Linux CERN, Ubuntu,
Debian, Redhat), and Mac OS (9, 10.4, 10.5) computers,
but also hosts more exotic devices such as tablet PCs,
mobile phones, and other various devices. As all the de-
vices are registered, the CERN public network provides
an easy way to interact and cross-check data with the
corresponding users.

Table 1 shows a typical distribution of network traffic
on a sample of 1.5 million packets. This table provides
interesting results, because they significantly differ from
what could be found in a typical enterprise, where most
people have never heard the term of SSH for example.

#Protocol % of traffic
TCP 93 %
UDP 6 %
Other 1 %
SSH 26 %

HTTP 12 %
SSL 2 %
X11 1 %

SMTP < 1 %
Other 59 %

Tab. 1: Protocol breakdown of traffic sample

The IDS typically sees 600Mbits/s on average, and
more than 1Gbit/s during peak hours.

With such a broad variety of devices, origins, and
amount of traffic, this network offers a perfect frame-
work for IDS tuning. Clearly, naive approaches such as
blocking all non-http traffic would be unacceptable in
this context.

3 Network Traffic Analysis as Part of an
IDS System

3.1 IDS

An Intrusion Detection System (or IDS) is composed of
software and/or hardware designed to detect unwanted
attempts of accessing, manipulating, and/or disabling of
computer systems. An IDS is used to detect several types
of malicious behaviors that can compromize the security
and trust of a computers system. These threats are vari-
ous, and include network attacks against vulnerable ser-
vices, data driven attacks on applications, host based at-
tacks such as privilege escalation, unauthorized accesses,
or malware (viruses, worms) [2].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147954213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4 State of the Art - From Raw Packet Capture to Advanced Detection Mechanisms 2

Terminology

False positive: A false positive is defined by an incorrect
result of a test which erroneously detects something
when in fact it is not present. In an IDS, it typically
consists in detecting a network threat which is in
fact non-existent.

Intrusion: Any set of actions that compromise the in-
tegrity, confidentiality or availability of a resource.

Attack: An attempt to bypass security controls on a
computer. May precede an intrusion.

Signature: Network traffic is examined for preconfig-
ured and predetermined patterns known as signa-
tures. Many attacks or threats today have dis-
tinct signatures. Good security practice requires a
database of known signatures to be constantly up-
dated to mitigate emerging threats.

Alert: Event generated when a signature matches traffic
activity.

Noise: Amount of unneeded, unwanted, or false-positive
alerts; masking or reducing the number of real alerts.

Structure of an IDS An IDS is typically composed of
three main parts: a sensor, an engine, and a console.

The sensor’s main task is to analyze all the data ac-
cording to some configuration data, and create events
accordingly. The engine records events logged by the
sensors in a database, and uses a system of rules to gen-
erate alerts from security events received. The console
monitors events and alerts, and allows to interact with
the latter.

In many cases, the three components are combined in a
simple device or appliance. A more detailed explanation
of the components can be found in [3].

Different Types of IDS There are two main types of
IDS working at different points in the infrastructure:

Network IDS (NIDS): The NIDS scans all network traf-
fic that is fed to it. The NIDS typically functions in
the same way as an antivirus software: every single
packet is scanned for patterns which may indicate a
problem.

Host-based IDS (HIDS): HIDS are typically installed on
every host. HIDS are more platform specific, and are
focused on the target computer. HIDS can capture
all the traffic generated by a host, which a NIDS
typically cannot do in a switched network. HIDS
are not necessarily traffic based, but also look at the
system’s state.

4 State of the Art - From Raw Packet
Capture to Advanced Detection
Mechanisms

Network Traffic Analysis can be performed in many
different ways. Here is a list of the features that charac-
terizes network traffic. Each of these features is part of
the OSI model [4].

• Source & Destination IPs: Provide the source and
destination addresses of every packet.

• Protocol: The transport protocol. Typically TCP
or UDP.

• Source & Destination Ports: Complete the source
and destination addresses.

• Size: The size of the packets.

• Flags: Whether the packet has some flag bits set.
These could be: urgent, SYN, ACK, FIN, ...

• Payload: The data itself, that will be delivered to
the application running on destination address and
port.

Each of these features can provide valuable informa-
tion for a NIDS. Today, many corporate switches can
export raw data, NetFlow, sFlow or similar data. Net-
Flow data contains Source and Destination IP and port,
and the amount of traffic transferred per flow.

On a higher level, it is also possible to analyze the
payload of every packet. However this requires a full
understanding of the protocols by the analyzer, as well
as a full access to the traffic, which is not easily scalable.

NetFlow is an embedded instrumentation within Cisco
IOS Software to characterize network operation. It gives
the administrators the tools to understand who, what,
when, where, and how network traffic is flowing.

Data is collected directly by switches, and can be ex-
ported to a reporting server. A flow is a n-tuple1, usually
identified by the source and destination IPs and ports,
the protocol, and the unilateral number of bytes trans-
ferred.

This data can then be aggregated and analyzed to de-
tect unwanted or malicious behavior. One could, for
example, count the number of SMTP servers (destina-
tion port 25), the number of peers, or the number of
SSH servers contacted by any host to detect misbehav-
ing hosts (sending spam mail, using P2P, or doing ssh
scans).

A worm detection system based on netflow data is pro-
posed in [5].

High Level Analysis With this technique, the payload
of every single packet is inspected. This requires much
more resources than NetFlow based inspection tech-
niques, as all packets have to be opened up to the 7th
layer of the OSI model to be analyzed. However, this
is obviously much more useful, as it can detect proto-
cols running on any ports, as well as any byte pattern
regardless of the underlying protocol.

Snort is an open source NIDS software [6]. Combining
the benefits of signature, protocol and anomaly based
inspection Snort is the most widely deployed IDS/IPS
technology worldwide. It is able to perform “high level
analysis” on all the traffic flowing through its sensor.

Snort is available in two different version: Snort itself,
and the Snort Security Platform (Snort SP). Snort SP
is an extension of Snort, using the same engine, but al-
lowing much more options, such as multithreading, an

1 n depending on the version

5 Snort in a Large Corporate Network 3

interactive shell, and performance improvements. Snort
SP is still in early beta phase, and is very likely to im-
prove its performance before the final release.

This paper will focus on the SnortSP-3.0.0b2, as there
were stability problems with the latest beta (SnortSP-
3.0.0b3).

Figure 1 presents the software architecture. SnortSP
is designed to act as an “operating system” for packet-
based network security applications, providing common
functionality that all programs need.

From a developers point of view, SnortSP is what gath-
ers data and handles any evasive techniques or other
conditions that occur in suspicious and malicious traf-
fic. SnortSP normalizes the data and then provides this
cleaned up high level data to the engines for inspection.

Snort SP includes a new command line interface
backed by the LUA embeddable programming language.
This language allows to extend Snort functionalities with
a new scripting language [7].

The engines are analysis modules that plug into Snort
SP. Multiple engines can run simultaneously on the same
traffic, in the same Snort SP instance.

The great advantage of this platform, is that it gives
the opportunity to run multiple analyzers in parallel,
thus increasing significantly the amount of traffic that
can be analyzed. This will be presented in Chapter 9.1.

Fig. 1: The architecture of the Snort SP Platform [8]

Snort SP is shipped with the “Standard” Snort as en-
gine. Snort engine is configured by giving it “rules”.
Each rule is a set of “what to look for” and “what to do
when it is found”. There can be hundreds of rules run in
parallel in each Snort analyzer.

Snort is able to analyze traffic up to the seventh layer of
the OSI model, by extracting and rebuilding application
sessions of known protocols. It uses the libpcap library
to locally access data on any network Interface.

Machine Learning could be seen as the future of IDS.
It takes another approach towards traffic analysis. By
trying to learn the expected traffic patterns, it generates
an alert if some traffic is classified as unexpected. This is
still an area of ongoing research, and real-world solution
based on this technology are only starting to emerge [9].

One of the drawbacks of this solution is that every
unexpected traffic or unexpected exchange of information
will generate an alert. This solution could be efficient for
small, well-defined networks, but are likely to do more
harm than good in a large heterogenous network.

An excellent tour of horizon in this field can be found
in [10]. Recent work attempts to bound the number of
false alarms while optimizing the correct results [11].

5 Snort in a Large Corporate Network

5.1 Deployment

Sensor location is important. Typically, a good entry
point is at the border between the LAN and the Internet.
Placing Snort at this strategic point, allows the analy-
sis of all traffic coming in and out of the local network.
For this study, the Snort sensor was placed between the
CERN Public Network and the Internet.

This is a compromize, because it does not allow to
scan inside-to-inside traffic. Such an analysis could be
performed for example using sflow (which is a statisti-
cal Netflow), or dumping all unauthorized traffic at the
switch level.

It is also important to define what to detect with Snort.
As Snort rules are able to detect anything in the traffic,
it is important to clearly define the needs.

Is it enough to detect compromized hosts? Are there
policies that need to be enforced? Is it useful to record
all incoming attacks towards the network?

Those are all questions that need to be answered before
deploying Snort rules.

5.2 Snort Rules

5.2.1 Sources

Snort being able to deploy any kind of rule, Snort rules
are not included with the software. However, there are
different sources for finding and deploying rules:

Vulnerability Research Team (VRT) These are the
“official” Snort rules. They are provided by sourcefire
and are updated on a weekly basis by the Sourcefire VRT.

Emerging Threats (ET) Emerging threats rules are an
open source community based project. This set is the
fastest moving and most diverse Snort set of rules. The
rules are updated several times per day.

Community rules These rules are created by the Snort
community. There are very few rules, and the last release
is from 2007 for Snort 2.4. Most of the threats they detect
are already implemented in ET or VRT.

Homemade rules and others These are the rules, cre-
ated and maintained locally, according to the specific
needs of the network. There also may be other rules out
there. For specific and other “unique” threats, search
engines may provide more specific rules, but it is needed
to know what to look for. Recently, the Internet Storm
Center (ISC) [12] started publishing rules when new 0-
day exploits2 emerged.

2 exploitation of unpatched software vulnerabilities

6 Snort Rules 4

5.3 Existing Classification Schemes

In March 2009, VRT and ET rules combined counted
more than 22’500 unique signatures. Several attempts
have been proposed by their editors to classify them.
Snort currently proposes the following classification
schemes:

5.3.1 Splitting in Files

Signatures are split in different files. File name range
from a specific protocol (ie. smtp.rules) to whole meta-
classes of rules (ie. policy.rules). Even if this classifi-
cation is useful in some cases, most of the time it only
gives a hint of what is detected by the contained rules.
A good example of this classification are the p2p.rules
files, which only contain rules detecting the use of P2P
software on the network, and can pretty much be de-
ployed untouched when the use of P2P software needs to
be detected.

However, most of the time, this classification lacks de-
tails and formalization. There are for example 5’814 sig-
natures in the netbios.rules file. These signatures are not
classified, and range from alerting when a network share
is accessed (which can be normal behavior), to successful
Denial of Service attacks (which may indicate that a host
has been compromized).

This classification method is not enough to success-
fully find a set of rules worth deploying among the 22’500
available rules.

5.3.2 Classtype

To help further with this classification, Snort develop-
ers also propose a “classtype” parameter for each of the
rules. This is a good idea, but there are many rules that
are missclassified.

Table 2 shows this classification for the netbios.rules
example.

Classification
3157 protocol-command-decode
2631 attempted-admin
15 attempted-dos
7 attempted-recon
2 unsuccessful-user
1 bad-unknown
1 attempted-user

Tab. 2: Classtypes for the netbios.rules file

Most of the messages are cryptic (is a “string detect”
a problem, or how bad is a “successful-recon-limited” for
example), and Snort developers provided a very short
description of each of the classtypes. This classification
is presented as Appendix A.1.

It was impossible to generate an ideal ruleset using this
classification. Even with the help of Appendix A.1, it is
still difficult to make a match between the requirements
(Section 5.1) and all the available rules.

Therefore another classification is needed.

5.4 Ideal Situation

In a perfect world, the network administrator should be
able to choose what to enable according to his needs.
To do that, the network administrator needs to perfectly
know the environment.

Such knowledge include: What services are running on
which computers, the operating system running on each
computer, and the expected amount of traffic for each
host and towards which destination.

This knowledge allows for a better tweaking of the
NIDS, where signatures can be enabled only for the hosts
where they are needed, and therefore significantly re-
duces the noise.

If such knowledge is attainable in a small company
running only a few homogenous hosts, it is clearly not the
case in large networks such as the CERN Public Network,
where users come and go all year long with their own
random hosts.

5.5 Performance Problem

Another fact that should be taken into account is that
Snort will only be able to handle a limited amount of
traffic, depending on the number and kind of rules de-
ployed.

Therefore there needs to be a tradeoff between the
number and kind of rules deployed, and the amount of
traffic that is analyzed.

So the main question is “How to choose and optimize
Snort’s rules?”. An attempted answer is provided in
Chapters 6 and 7.

6 Snort Rules

6.1 Introduction

Chapter 5 quickly presented the problem of dealing with
Snort rules. This chapter will try to present the differ-
ent caracteristics of the rules that should be evaluated,
and propose a new classification that corresponds to the
CERN needs.

6.2 Definition

A Snort rule can be defined by many parameters. A rule
is composed of two distinct parts: the rule header, and
the rule options.

The rule header contains the rules action, protocol,
source and destination IP addresses and netmasks, and
the source and destination ports information. The rule
option section contains alert messages and information
on which parts of the packet should be inspected to de-
termine if the rule action should be taken. Here is a
sample rule:

alert tcp any any -> 10.0.0.0/24 80 \
(content:"|00 00 00 00|"; depth: 8; \
msg:"bad bytes"; sid:1234)

This rule will trigger an alert if four null bytes are
found on the first eight bytes of all traffic sent to port 80
to the 10.0.0.0/24 network. The rule unique ID is 1234,
and the alert message is “bad bytes”. Rules are pow-
erful, and there are many possibilities: It is possible to
look for bytes at specific position, within range of other

6 Snort Rules 5

bytes, or to count the number of occurences of a match
before alerting. It is also possible to use Perl Compat-
ible Regular Expressions (PCREs) on the data, and to
limit the search to specific bytes. All these options are
presented in detail in [13].

For a rule to trigger an alert, all the elements contained
in the rule options need to be true. These elements are
checked sequentially. If the first one is false, then the
others will not be checked. Therefore the order of the
arguments is very important to optimize rules.

6.3 Metrics

Metrics that should be evaluated for each set of rules
include the following.

6.3.1 Threat level

In this paper, the threats are split in three categories:

Category 1: “Compromized” These are the most im-
portant incidents. They include compromized hosts,
hosts infected by viruses or malwares, or users perform-
ing illegal actions. Each incident should be detected and
acted upon.

Category 2: “Policy Violations” When a user does not
comply to the policies, an alert will be triggered by this
set of rules. Typical examples are Peer-to-Peer (P2P)
and Internet Relay Chat (IRC) rules.

Category 3: “Targeted Attacks, Scans, and others”
Potential attacks fall into this category, even if unsuc-
cessful. They do not mean that a host has been compro-
mized. Incoming viruses and other incoming malwares
will be classified here. They provide some information
on the network activity, but do not necessarily require
any action.

The direction of these alerts is important, because out-
going scans and attacks could indicate that a local host
has been compromized, whereas incoming scans and at-
tacks only indicate a current event for which not much
can be done.

6.3.2 Resource Consumption

Each rule (or set of rules) should be analyzed for resource
consumption. Performance is a critical factor with such a
high network load. This factor will probably be difficult
to evaluate given the type/amount of traffic. Example of
solutions are:

• Compare CPU load;

• Compare percentage of traffic analyzed;

• Usage of Snort “Rule Profiling” (Chapter 9.3).

For such an evaluation to give conclusive results, rules
should be evaluated with similar amount/quality of traf-
fic.

6.3.3 Complexity

For each rule (or set of rules), the benefits should be
evaluated. If the ratio of false positives for a rule is too
high, then it may not be that useful. In-depth analysis
of the rule and some interaction with the end-users are
needed to properly evaluate this.

Rule complexity is mostly based on the number of
bytes checked in the traffic; the more specific the better.
Rules checking very few bytes are expected to generate a
lot of false positives with a high amount of traffic. How-
ever it also depends on the bytes themselves: Checking
for a long and common string will trigger more false pos-
itives than checking for a few, unusual bytes.

6.3.4 Dependencies

A clear understanding of the different protocols may help
reduce the number of rules. For example it may be use-
less to catch the request and the reply, when a reply
always comes from a request.

A tool is proposed in Appendix E.2 to help identify
these dependencies by comparing the sets of IPs triggered
by each rule.

There are often many rules related to a specific proto-
col / event, and it is often enough to detect the initial
connection message instead of capturing all messages ex-
changes.

6.3.5 Policies & Recommandations

Each set of rules should be compared to the company
policies and recommandations to evaluate their benefits.
Why bother detecting normal and allowed traffic?

6.4 Classification

Using Snort’s proposed classification (Chapter 5.3), and
after an extended work on the rule sets (sampling them,
analyzing them, deploying them and analyzing the re-
sults) the following classification scheme is proposed [14].

6.4.1 Compromized

This category contains all signatures that detect a suc-
cessful exploit, or that indicate that a host has been com-
promized.

The following rule sets contain rules that fall into
this category: attack-responses.rules, backdoor.rules,
ddos.rules, emerging-attack response.rules, emerging-
virus.rules, virus.rules.

This proposed category only detects hosts compro-
mized or running malware that could potentially lead a
remote attacker to take control of it by opening a back-
door or stealing passwords. Adwares and other badwares
are not included, and were put into the third category.

6.4.2 Policy

This category contains all signatures that help detecting
P2P and IRC, which are disallowed at CERN.

The following rule sets contain rules that fall into this
category: p2p.rules, emerging-p2p.rules, and local.rules.

The last one, local.rules, contains additional home-
made rules to detect IRC usage.

7 Snort Rules Evaluation 6

The P2P sets contain signatures to detect all kind of
traffic, and there are some rules that need to be disabled
before this set gives usable results.

6.4.3 Attacks and others

Other source files fall into this large category. There are
other policies such as Instant Messenging (IM), informa-
tion about incoming attacks towards CERN, or sets to
detect hosts running adware and other badware.

This last set was initially part of the “compromized”
category, but due to the very large amount of devices
running adware (during one day, the sensor detected 35
IPs running “Fun Web Products”, and about the same
number of IPs running a dozen of other adwares. Given
that adware do not pose a threat per se, the related rules
were disabled.

7 Snort Rules Evaluation

After the initial classification of the files, all sets of rules
were thoroughly evaluated. Each of them was deployed
and analyzed according to the metrics defined in Chap-
ter 6.3. The CERN Public Network is ideal for such
an analysis, because it provides means to interact and
cross check with the users, and offers a great variety of
devices and network traffic. With the large number of
users bringing their own unmanaged laptops, there are a
lot of infected devices helping to tweak the IDS.

7.1 CERN Policies

7.1.1 Peer-to-Peer

Introduction This paragraph will present the findings
concerning P2P detection using Snort rules.

The first big surprise here was the amount of different
protocols seen in the traffic. It seems that even if Bit-
torrent is the dominant P2P network, many users still
rely on old and less wide-spread protocols. Many foreign
users were detected using localized P2P software, with
names unknown to most Europeans.

Snort’s efficiency in detecting these protocols varies
from case to case. Some P2P protocols are very easily
recognizable, while others trigger too many false positives
to provide useful data regarding P2P usage at CERN.

The rules ET and VRT both provide a file called
p2p.rules containing all kind of rules detecting P2P traf-
fic. Table 3 summarizes the content of these two files. All
of these protocols were seen at CERN in a one-month
time period. The “Others” rules detect 13 other file-
sharing protocols, out of which six were seen at CERN
over that same period. Over a year, this number would
probably increase significantly.

Protocol # rules % of rules
Emule 26 29

Bittorrent 13 15
Napster 9 10
Gnutella 5 5
KaZaA 5 5
Skype 5 5
Others 28 31

Tab. 3: P2P Rules summary

Skype is without doubts the most popular VoIP ap-
plication currently used on the Internet. It uses its
own proprietary protocols, and all traffic is encrypted.
Skype’s understanding and detection has been the sub-
ject of many research papers in the last few years [15]
[16] [17].

[18] concluded that Skype was made by clever people,
that they made a good use of cryptography, and that
Skype is incompatible with traffic monitoring and IDS
systems. This fact has been confirmed in this paper.

At CERN, Skype is used daily by more than 1’000
hosts and users are required to run it on a specific port
in order to avoid being affected by corresponding IDS
alerts.

Being encrypted and having its first bytes serving as
sequence number [18], Skype traffic is likely, after enough
time, to generate alerts on all Snort rules based on only
few bytes.

There are many rules triggering Skype alerts, and it
seems that keeping only rule 5998 is sufficient to reduce
the noise while keeping enough information to detect
Skype usage. This result was attained by running the
tool presented as Appendix E.2.

Rule 5998 detects Skype logins, which are mandatory.
This login process is periodically repeated, so keeping
only this rule also allows to record the timeframe of
Skype’s usage.

Emule is the file sharing protocol having the most rules
in VRT and ET. However it also is the most difficult to
detect file sharing protocol. With all rules based on two
or four bytes, it has the weakest rules.

Emule rules pose problem on many levels; they are
weak and computationally expensive: Most of them only
check for patterns of two bytes in all UDP traffic. With
random traffic, a two bytes pattern triggers an alert every
65’536 packet on average. With more than 100’000 IP
packets per second going through the IDS during the
day, this clearly poses a problem. Analyzing all traffic
for small patterns, they also are quite computationally
expensive. The two most time consuming P2P rules are
2003322 and 2003321. According to Snort’s performance
profiling tool, each of them requires ten times more CPU
time than other P2P rules.

With its default configuration and all Emule rules ac-
tive, there were more than 230 devices detected as run-
ning Emule during a day. Almost all of those were also
detected running Skype. An in-depth analysis of the
alerts showed that the very large majority of Emule alerts
were in fact generated by legit Skype traffic. Table 4
quickly presents the number of Emule alerts seen on the
Skype port, and on other ports for 15 randomly selected
hosts. More than 75% of the Emule alerts seem to be
triggered by Skype. In almost all cases, a detailed anal-
ysis of the 25 remaining percents led to the conclusion
that it was Skype running on an arbitrary port.

A Python tool was developed to try to find some pat-
terns in the alerts. The idea was to find a subset of all
the rules that successfully detected Emule traffic while
keeping False Positives to a minimum.

While the perfect subset was not found, there was one
rule that was almost always present in Emule traffic and
did not seem to trigger too many false positives: 2001298
(presented below). This rule triggers on E2DK Server
Status Request messages. The Emule protocol states

7 Snort Rules Evaluation 7

Host Alerts on Skype port On other port
1 17 0
2 16 0
3 0 11
4 19 0
5 41 0
6 0 10
7 18 0
8 15 0
9 10 0
10 12 0
11 15 0
12 0 27
13 0 6
14 22 0
15 9 0

Tab. 4: Number of Emule alerts on different ports. More
than 75% of Emule alerts seem to be triggered
by Skype.

that each Client should regularly send this message to
stay in sync with the server [19].

alert udp $HOME_NET any -> $EXTERNAL_NET 4660:4799
(msg:"ET P2P eDonkey Server Status Request";
content:"|e3 96|"; offset: 0; depth: 2; classtype:
policy-violation; sid: 2001298; rev:6;)

Rule 2001298 can even be improved by specifying the
packet size to reduce the server load. The proposed mod-
ification is the following (Oinkmaster format, see chap-
ter 8):

modifysid 2001298 "content:"|"dsize:6; content:"

There has been no case of false positive reported since
Emule detection is based on this rule and this rule only,
however a few true positives may have been missed. This
rule only triggers on a port range, and if a user always
connects to a server running outside of this port range
or only uses the decentralized version of the protocol, it
will remain undetected. However it is currently accepted
at CERN to miss a few true positives, than to get a large
number of false positives.

Bittorrent With 13 different rules, the Bittorrent pro-
tocol is well covered. There are all sorts of rules covering
the entire possibilities of the network (DHT, tracker con-
nection, transfers, User-Agents). This set was producing
tens of thousands of alerts every day.

Running a home-made tool (Appendix E.2), a few de-
pendencies between the rules have been found, and have
allowed to considerably reduce the number of alerts. The
most conclusive example is the following: At CERN, rule
2000334 trigger 20 times more alerts than rule 2181,
but 2000334 is never seen without 2181, therefore it is
enough to keep 2181 to cover the threat.

As a side note, it should be mentioned than most of
todays Bittorrent clients support the use of protocol en-
cryption. Usage of encryption renders inefficient all the
rules based on peer to peer traffic, and therefore allow
Bittorrent traffic to go through undetected.

A client connected to a https tracker, with protocol
encryption enabled, and DHT disabled, cannot be de-
tected by Snort. Such a configuration will be probably
be common in a few months / years, rendering Snort
inefficient to detect Bittorrent traffic. However this is
not yet the case, and these rules detect users using this
software every day.

A brief note on the future Most protocols are currently
undergoing similar changes which will make them much
more difficult to detect. Most of the current protocols
now offer an “encrypted” mode, in which all packets are
encrypted, and therefore no longer contain easily recog-
nizable patterns.

When these changes become common, and the default
configuration of P2P software enables them, it will be
much more difficult to detect P2P using byte patterns
in traffic. Other approaches such as machine learning or
analysis of netflow data will probably give better results
(see Chapter 4).

7.1.2 IRC

IRC is not allowed at CERN, due to its potential misuse
in Botnets. Even if the use of IRC can be legit, IRC
software is regularly used by attackers as part of under-
ground networks for unauthorised access to computers.

Every instance of the IRC protocol should trigger a
Snort alert. However, enforcing this policy is difficult,
because many websites integrate chat applets based on
the IRC protocol, triggering unneeded alerts.

Instead of using the provided IRC rules, CERN has
written its own set of rules to detect IRC. This includes
“pass” rules for several known & valid websites with em-
bedded IRC.

CERN IRC rules are available as Appendix A.3.
The CERN IRC rules being complete and detecting

every IRC protocol message, all other IRC rules have
been disabled at CERN. There was no need to get more
than one alert per message. Known malware using IRC
to communicate should be detected by the CERN IRC
signatures.

7.1.3 Other Policies

There are many other policies a company may try to
enforce, and Snort has rules for most of them. However
they were not part of this study. Most of them can be
found in the rule files listed in Table 6 in Appendix A.2

7.2 Compromized

7.2.1 Definition

This set of rules was designed to detect compromized
hosts or hosts infected by viruses or malware.

The set was initially containing the rule files listed in
table 7 (Appendix A.2) [14].

7.2.2 Redefinition

Not compromized Threats detected by spyware-
put.rules and emerging-malware.rules do not really fit
into this category. These two files contain signature de-
tecting adware and other badware, but this kind of soft-
ware, even if very annoying for the end-user, do not in-
dicate a “compromized” device. These files were quickly
disabled due to the very large amount of hosts running
such software. These sets may be reenabled in the future
if usage of such software becomes a problem.

7 Snort Rules Evaluation 8

Shellcode Another file that was entirely disabled after
some research is shellcode.rules. Most of the rules con-
tained in this file were triggering regular alerts for many
different hosts, and the amount of false positives it was
generating was deemed excessive. Most of the rules in
this file looked for specific binary pattern that may indi-
cate a successful exploit. However, most of the byte pat-
terns it was looking for were always regularly contained
in legit files.

A quick example that can be easily checked is rule
1394, which looks for a series of 31 consecutive ’A’s
(NOOP, byte value 0x41) in all traffic. Even if very spe-
cific, it seems that this string is used in many JPEG
images to align the data and fill fields with placeholder
data. A check was run against a web gallery, and out of
the 1900 JPEG pictures it contained, 40 contained this
specific pattern. So there are probably millions of legit
images triggering this specific alert around the web.

Similar checks were conducted with the other shell-
code.rules rules, and the results were always the same:
there were normal files triggering alerts. Therefore this
file was disabled.

7.2.3 Modifications done to the Set

Deploying the remaining set of files untouched triggers
many alerts due to rules not complex enough and/or un-
needed alerts.

This section will summarize the changes done to these
files to optimize them for CERN environment. The mod-
ification details can be found as Appendix B.1.

Some rules were disabled because of their resource con-
sumption, some because of their lack of complexity (they
were triggering too many false positives), and others be-
cause they did not provide any useful results at CERN.

The process of selection was an iterative process. All
of the rules were deployed, and all alerts were manually
looked at and analyzed. All rules that were not meeting
the requirements were disabled, and the new set was re-
deployed. This process was repeated until the fraction
of false positives or unwanted alerts compared to real
threats was acceptable.

All of these modifications are detailed as Ap-
pendix B.1, and are available in Oinkmaster format as
Appendix C.2.

7.2.4 The Resulting Set

After these modifications, the resulting set is composed
of 1’660 different rules suited for the CERN Public Net-
work. Over 24 hours, Snort SP beta 2 is able to analyze
more than 90% of the traffic on average, and more than
60% during peak hours.

In one month, 38 of those rules triggered 592 alerts re-
lated to confirmed security incidents. The worst perform-
ing rules of the remaining set are listed as Appendix B.2.

Most of the incidents detected triggered alerts repeat-
edly until the cases were closed. This confirmed the fact
that it was not critical to analyze all traffic, because the
alerts were likely to repeat themselves after some time.

Interestingly, 96% of those alerts were generated by
Emerging Threats rules, and only 4% were generated by
VRT rules. The set being the most productive was ET
TROJAN, and there were very few alerts from the attack-
response sets.

One probable explanation of these differences is that
ET is community driven, whereas VRT rules are written
by a team of Sourcefire experts. Being internationally
spread, the community is probably much more efficient
in writing rules detecting all kind of threats they have
seen on their network, while Sourcefire team focuses on
known exploits based on security bulletins. This doesn’t
mean that ET rules are better, but that they seem to be
more oriented on detecting malware, whereas VRT rules
seem to be more oriented on detecting known exploited
vulnerabilites.

7.3 Attacks

7.3.1 Introduction

This set of rule tries to group all rules indicating that an
attack is in progress. As any other big organization or
company, the main problem with this set is that CERN
is constantly under attack, and therefore there are con-
stantly hundreds of alerts triggered by Snort.

Snort’s attack coverage is very wide. There are rules
aimed at detecting specific vulnerabilities, rules analyz-
ing abnormal use of a protocol, rules detecting brute force
attempts, rules detecting abnormal traffic, etc. Table 8
of Appendix A.2 lists all the files initially included in this
set.

While incoming attacks are known and taken care of,
outgoing attacks are much more interesting and could
indicate compromized hosts.

To generate such a set, a program was written to “re-
verse” rules, so that they would consider the CERN Pub-
lic Network as the potential source of attacks.

Both attack sets (normal and reversed) were deployed,
and the same iterative process was started. Each alert
was analyzed and the source rule disabled in case of false
positive or unwanted alert.

However the amount of alerts was huge3, and after
three weeks of intensive sorting and processing the idea
was abandoned (see details in the next sections).

The number of alerts had been considerably reduced,
but in the three weeks these sets have been running, no
useful alert had been seen.

The list of modifications done to this set is proposed
as Appendix B.3.

7.3.2 Normal attacks

Deploying these files gave unusable results due to the
large amount of alerts.

The most interesting thing to notice is that the vast
majority of these alerts are informational, and not very
useful in an environment such as the CERN. Such alerts
include: ping of Windows hosts, access to the Google
calendar service, data posted to a web form, link sent
via MSN. These are only a few examples of informational
alerts detected by this set.

There also are a lot of rules detecting known vulnera-
bilities, often of more than five years old. Interestingly, a
lot of them trigger a lot of alerts on normal traffic. CERN
mail servers, for example, were constantly triggering six
different “overflow attemps” on perfectly normal traffic.

3 more than 2’000’000 alerts per day, not counting rule 2001022
which was triggering 50’000 alerts per second

7 Snort Rules Evaluation 9

Having a timestamp on the rules could allow to easily
deactivate old and deprecated rules. Unfortunately this
field does not yet exists.

There also are a lot of rules targeted at specific web
servers and applications. However for these rules to
be useful, it is mandatory to know which webserver
runs which operating system, and which webserver hosts
which web application. This knowledge is difficult to
have in a very large network with hundreds of web
servers, and blindly enabling everything creates way too
many false positives or unwanted alerts.

Snort also offer some DDOS rules detecting brute
force attemps, scans, or blind large scale attacks against
the network, but there are other means to detect these
threats (Chapter 4).

Another interesting fact is that there are hundreds of
rules detecting perfectly harmless and normal traffic and
classified as “attempts”. The most noticeable rules do-
ing this are the “ping” rules. There are tens of rules
detecting all kind of pings. One quick example is the
rule 480, which is labeled ”ICMP ping speedera”, which
is triggered by normal windows update behavior.

In a network of reasonable size these rules could pro-
vide useful information about incoming attacks. They
just seem to be not fit to be used at CERN.

7.3.3 Reversed attacks

Using reverse attack rules did not really give more conclu-
sive results. There were a lot of unforeseen consequences.
The main results for this set are given below.

Web attacks There are eight rule files targeted at web
attaks, each being specific to a web server, to a specific
type of traffic, or to known web vulnerabilities.

All of the web alerts seen with the reversed set were
legitimate. The main problem with those were the search
engines. Request containing potentially malicious strings
were always triggered by legitimate users querying search
engines.

To illustrate this with a very simple example, imagine
that a user is trying to insert something in a database.
This user is very likely to query google for “INSERT
INTO (...)”. This query will be posted in the URL via
the GET method, and Snort’s SQL injection rules will
think this is an injection attempt, and trigger an alert.

The inefficiency of these reversed web rules seems to be
mainly due to the search engines. One could imagine to
create exceptions for all the known search engines IPs,
but unfortunately there is no such list and there will
probably never be. Even if it existed, the list would be
too long for Snort; Snort being slow to process IP lists
in rules.

There were also a lot of rules triggering when a user ac-
cesses a potentially dangerous directory such as /cgi-bin
or /viewtopic.php. Obviously a lot of websites meet these
requirements on the web, therefore generating unwanted
alerts.

Specific protocols attacks The reverse rules analyzing
the SMTP, POP, IMAP, FTP, and other protocols did
not give more conclusive results. For example, the only
hosts triggering SMTP attack alerts were CERN mail
servers, which were obviously not attacking anyone.

In one day, there were more than 80 IPs “attacking”
the IMAP protocol, 90 “attacking” the POP protocol,
and 38 “attacking” the FTP protocol.

A sample of these alerts was chosen and studied, and
there was no confirmed case of attack. All these alerts
seemed to have been triggered by perfectly standard soft-
ware and traffic.

7.3.4 Rule Scoring

In order to improve the selection of rules, a new strategy
was devised to try to sort the rules and keep only the
interesting alerts.

The idea was to compute a “rule score” depending on
each rule complexity, classtype, and specificities. If the
rule score was above a threshold, then the rule would be
kept, and if it was below the rule would be dismissed.

Here are the different factors that were measured by
the rule analyzer:

• The number of bytes it is checking. The more the
better.

• The placement of these bytes. Looking for a byte at
a specific position is obviously better than looking
for a byte anywhere in a packet.

• The number of ports concerned by the rule. The
more specific the better.

• The packet size. If the rule specifies a packet size, it
is obviously better than checking all traffic.

• Penalty for certain classtypes. Certain very specific
rules are only classified as “not-suspicious” or “icmp-
event”. To dismiss them as well some keywords were
associated a penalty value to dismiss them.

• Other features, such as flowbits, or PCREs, which
both improve a rule.

After some trial and error process while trying to find
the ideal weights for the different parameters, it seemed
that there was no direct correlation between complexity
of a rule and its usefulness.

Starting again from scratch, by putting all the weights
to 0 except the “content” score, thus reducing signifi-
cantly the dimension space of the problem, traffic was
gathered and alerts analyzed. Figure 2 presents the num-
ber of alerts opposed to the complexity of the rules trig-
gering alerts over a day. There seem to be no direct re-
lation between the complexity of a rule and the number
of alerts it triggers.

Figure 3 presents the the number of CERN IPs trig-
gering a rule opposed to the complexity (the score) of
the rules. Here again, there seem to be no direct rela-
tion between the number of IPs triggered by a rule and
its complexity. Also, this plot does not reflect the “use-
fulness” of the rules. Rules with high scores that could
be selected by this process were mainly unneeded and
informational rules.

As there seemed to be no direct correlation between
the score of a rule and its efficiency/usefulness, this idea
was abandoned too.

The python code computing the scores is joined as Ap-
pendix E.1.

8 Rules Management 10

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

80000 

90000 

100000 

0  2  4  6  8  10  12  14  16  18  20 

N
um

be
r 
of
 a
le
rt
s 

Rule score 

Number of alerts vs. score 

Fig. 2: Number of alerts vs score

0 

50 

100 

150 

200 

250 

300 

350 

400 

0  2  4  6  8  10  12  14  16  18  20 

N
um

be
r 
of
 C
ER

N
 IP

s 

Rule score 

Number of CERN IPs vs. score 

Fig. 3: Number of IPs vs score

7.3.5 Finally

As a good candidate set was not found for attack and
reversed attack rules, the opposite approach was chosen
for them. All attack rule was disabled, and only very few
selected ones were finally enabled.

In June 2009, there were many new 0-day exploits
that were discovered. Specific signatures detecting them
quickly became available, and they were deployed.

To achieve good results in detecting attacks, it is rec-
ommended to know beforehand which attacks to look for,
and deploy the corresponding rules accordingly.

7.4 Conclusions of the Evaluation

There are many different rules and not all are as useful
as they seem.

The performance of a rule depends on how well it is
written. Some rules have a very large impact on the
traffic drop statistics, and they resource consuming rules
are not always the expected ones.

In a large corporate network with unmanaged hosts,
there will be a lot of unexpected traffic and protocols
detected.

Due to its encryption, Skype really poses a problem
in a large corporate network, where it triggers many un-
related alerts. It chooses a port randomly and sends
random traffic to it. This random traffic, given enough
time, will always trigger rules with low complexity.

Emule/ED2K is impossible to properly detect with the
default rules when Skype is also present on the network.
Most of Emule rules are not complex enough to be useful.

Rules cannot be deployed as they are and require mod-
ifications before being useful. There are rules that need
to be modified to suit the environment, and other that

need to be disabled. Deploying untouched rules produces
way too many alerts to give useful results.

A set of rules detecting compromized and infected
hosts has been proposed and tested thoroughly on the
CERN Public Network.

It was much more difficult to obtain a clean set de-
tecting attacks, either incoming or outgoing. Without
knowing exactly what to look for, attack rules are too
noisy to be useful.

There seem to be no correlation between a rule com-
plexity and its usefulness. A tool was written to evaluate
the rules based on their content, but the correct balance
of weights has not been found to successfully use this tool
to generate the wished ruleset.

8 Rules Management

8.1 The Problem

It has been seen that there are many different sources for
finding rules that are regularly updated, and that rules
cannot be deployed as they are. Many rules need to
be disabled or modified by hand before they can be de-
ployed, and these modifications have to be re-done every
time a new ruleset becomes available.

So there is a need to properly handle the new set re-
leases while keeping the specific modifications done to
the sets.

8.2 Existing Tools

There are different tools available to help network ad-
ministrators with their Snort sensor’s administration.

The most noteworthy is Oinkmaster [20]. Oinkmaster
is a very powerful Perl script that can do almost every-
thing from a configuration file. Rules can be disabled,
enabled, modified, added and deleted. The tool takes one
or more untouched rule sets from the Internet, modifies
it according to the configuration file, and generates a rule
set that can be instantly deployed. The main advantage
of using such a tool instead of disabling the rules one by
one by hand, is that when a new set is available from the
source, there is no need to re-apply all the modifications
to this new set. The script does it automatically.

A sample Oinkmaster configuration file is proposed
as Appendix C.2. It takes as input the VRT and
ET sets (5.2.1); discards all the files classified as non-
compromized or non-policy; disables rules that were trig-
gering false positives at CERN or that were too resource
consuming, modifies a few rules to increase their per-
formance or comply with CERN needs; and generates
output files containing only rules of the “compromized”
category, and the rules related to the CERN policies.

A few other tools worth mentioning are “Dumb Pig”
[21], that parses a snort rule-set, and depending on com-
mand line options, and recommends “fixes” for unper-
fect Snort rules, and “Pulled Pork” [22], which is a very
promising replacement for Oinkmaster.

Dumb Pig can provide useful information on home-
made or poorly written rules. It does a meta-analysis
of the rules, to detect if they include all the necessary
information that a rule should contain. It will propose
fixes if it finds incoherences. However, given that rules
are written by experts and checked by the community, its
usefulness for commonly available rules is very limited.

9 Snort Optimizations 11

Pulled Pork, on the other hand, provides moreless the
same functionalities as Oinkmaster. However it is still in
an early development phase; the project began in May
2009. Therefore this tool was not evaluated in this paper.
Oinkmaster still remains the reference tool in this area.

8.3 Update Process

With the help of Oinkmaster, the update process is
simple. The user only has to download the two rules
sets tarballs from VRT and Emerging Threats, and run
Oinkmaster on those sets.

The Oinkmaster configuration file is relatively easy to
follow. It starts by defining where to find the rule sets,
and then lists all the modifications that have to be done
to these sets. The script is then called with two parame-
ters, the location of the configuration file, and the output
directory where it should put the final rules.

With the appropriate openings in the firewall,
Oinkmaster could even automatically download the lat-
est tarballs via HTTP, FTP, or even SSH.

After its run, Oinkmaster provides a short summary
of the rules that were added/deleted/modified since the
last update that can easily be reviewed by hand.

A sample report is included as Appendix C.1
The whole process could be put in a cron job and run

automatically every day or week.

8.4 Oinkmaster Configuration

Here is a short description of Oinkmaster’s most common
options. Its configuration file is split in three different
parts. The first part starts by defining where to find the
rules tarballs and some other constants. The second tells
Oinkmaster which files are irrelevant in those tarballs,
and the last part applies modifications to the remaining
rules.

For this last part, there are a few statements that need
to be known:

disablesid:
This is the most common. It completely disables a
rule that is by default enabled in the tarballs.

enablesid:
This can enable some rules that are by default dis-
abled in the tarballs.

modifysid:
This one offers the greatest flexibility, and allows to
do pretty much anything with the rules. The stan-
dard syntax is modifysid 1234 ”foo” | ”bar”. This
will replace foo with bar in rule 1234. Complex regu-
lar expressions can be used in these statements. It is
important to note that this modification is applied
only once for each rule. For a modification to be
applied twice on a rule (to remove a keyword for ex-
ample), it is needed to duplicate the statement (ie.
with modifysid 1234,1234).

localsid:
This one marks a rule as “modified locally”. If a
new version of the rule is downloaded, it will not be
enabled, and the old one will be kept unharmed.

To reverse all the alert rules, for example, the following
statements can be used:

modifysid * "^alert (\S+) (\S+) (\S+) (\S+) (\S+)" | \
"alert ${1} ${5} ${3} ${4} ${2}"
modifysid * "msg(\s?):\"" | "msg:\"REVERSED "

This will switch the local and remote addresses, and
change to message alert to reflect the change.

Once the configuration file is complete, there are two
parameters that need to be passed to Oinkmaster to ex-
ecute the update process:

-C
This will tell Oinkmaster where to find the config-
uration file. If it is omitted Oinkmaster will try to
use /etc/oinkmaster.conf.

-o
The ouput directory. This is followed by the path
where the rules are to be put.

The aforementioned functionalities make Oinkmaster
an efficient and flexible tool to manage Snort rules.

9 Snort Optimizations

9.1 Using Snort SP: Multiple Analyzers

Snort SP claims to be much more performant than its
predecessor due to multithreading. However, by default,
Snort SP does not take full advantage of this possibility.

The Snort SP platform is built with three different lay-
ers, the source, the engine, and the analyzers (see Chap-
ter 4). The source is responsible for capturing the traffic,
and handing it to the engine. The engine preprocesses
the traffic, and gives it to the analyzers, which, only then,
will try to match the traffic with the enabled rules.

Due to the very large amount of traffic seen at CERN’s
Public Network, one analyzer is not enough to try and
match all the wanted rules with every pre-processed
packet. A proposed optimization is to split the rules in
different analyzers, so that each of them is able to handle
the flow of traffic and work on the traffic in parallel.

This is done by modifying the LUA configuration file
in such a way that multiple analyzers are created, and
attached to the engine. Each analyzer has its own con-
figuration file, telling it what rules should be enabled.

The benefits of such a configuration are obvious, the
amount of traffic that can be analyzed increases signifi-
cantly with each new analyzer. With most high-end pro-
cessors having now 16 cores, this architecture allows up
to 14 analyzers (one thread per core).

The only disadvantage is that this has to be done man-
ually and that Snort can not automatically split the rules
in an optimal way. It also adds some overhead to the
analysis.

An example configuration script is provided as Ap-
pendix D.1

Unfortunately, there is no documentation on those pos-
sibilities at the time of this writing.

9.2 Libpcap Modification

As seen in 9.1, there is only one thread in Snort SP that
captures the traffic and feeds the Snort SP engine.

To capture the traffic, Snort relies on the libpcap li-
brary [23]. Before Snort can access the data, it has to
be copied many times between the NIC, the kernel, and

9 Snort Optimizations 12

Snort. On a high speed network, this consumes a lot of
CPU cycles.

To vastly improve the packet capture performance, the
default libpcap library can be replaced by another version
radically changing the way data is passed around before
entering the Snort engine.

Phil Wood’s libpcap [24] takes full advantage of the
Linux kernel options, and uses a MMAP ring buffer.
With this new library, the data is immediately copied
from the NIC to some memory space where Snort can
access it. The use of this library greatly reduces the
number of packets dropped.

To install Snort SP with this new libpcap the following
steps are needed: Download and compile the new libp-
cap (there is no need to install it); and then build the
Snort SP platform (not the analyzer) with the follow-
ing flags: –with-libpcap-libraries=/path/to/pcap/ –with-
libpcap-includes=/path/to/pcap/

9.2.1 Tests

The idea of improving the packet capture performance
came from a simple observation: At CERN, during peak
hours, on our test platform, even with no rule active and
no preprocessor in Snort, around 10% of the traffic was
reported as “dropped”. Enabling the basic preprocessors
increased this number to 15-20%.

The test platform is a custom built computer with a 16
core Intel Xeon E5472 with 16GB of RAM running 32-bit
Scientific Linux CERN 5 (SLC5) [25], which is based on
RedHat Enterprise Linux 5, and an Intel 10Gbit/s card
to capture traffic.

Extended tests have been done concerning this modi-
fication.

For the first one, there were no Snort rules active, and
only the “Stream 5” and the “http inspect” preproces-
sors were enabled with their default configuration.

The plots in Figures 4 and 5 show the difference
in packet loss before and after the modification. The
amount of traffic was similar during the two experiments,
but the percentage of dropped packets was not. We can
see that when the number of captured packets exceeds
6M/minute, the default libpcap in unable to handle the
traffic and starts loosing packets. The amount of pack-
ets dropped seems to be proportional to the traffic. With
the “ringed” libpcap Snort seems unaffected (or at least
less affected) by peaks in traffic. The CPU usage also
dropped from around 170% to around 135% with the
new library (it is more than 100% because of the multi-
threading on a multicore system).

To further check the improvements, the same experi-
ment was conducted deploying some rules. The deployed
rules are the “untouched” sets from VRT and Emerging
Threats. Figure 6 show the percentage of packet loss per
default set. We see a clear improvement in performance
with this new library. Here again the amount of traffic
was similar during the two experiments, and in all cases
but one the results are significantly better with the new
libpcap.

9.3 Snort Performance Profiling

To better understand Snort rules, the developers pro-
vided a very useful option: the performance profiling
tool.

50000000 

55000000 

60000000 

65000000 

70000000 

75000000 

80000000 

85000000 

90000000 

95000000 

100000000 

09
:5
2 

10
:0
2 

10
:1
2 

10
:2
2 

10
:3
2 

10
:4
2 

10
:5
2 

11
:0
2 

11
:1
2 

11
:2
2 

11
:3
2 

11
:4
2 

11
:5
2 

12
:0
2 

12
:1
2 

12
:2
2 

12
:3
2 

12
:4
2 

12
:5
2 

13
:0
2 

13
:1
2 

13
:2
2 

13
:3
3 

13
:4
3 

13
:5
3 

14
:0
3 

14
:1
3 

14
:2
3 

14
:3
3 

14
:4
3 

14
:5
3 

15
:0
3 

15
:1
3 

15
:2
3 

15
:3
3 

15
:4
3 

15
:5
3 

16
:0
3 

16
:1
2 

16
:2
2 

16
:3
2 

16
:4
2 

16
:5
2 

17
:0
2 

17
:1
2 

17
:1
2 

17
:2
2 

# packets / 10 min  

Day 1 ‐ New libpcap  Day 2 ‐ Default libpcap 

Fig. 4: Amount of traffic for the two measurements.
Note that no data was collected between 11:42 and

12:32 on day 1.

0 

5 

10 

15 

20 

25 

30 

35 

09
:5
2 

10
:0
2 

10
:1
2 

10
:2
2 

10
:3
2 

10
:4
2 

10
:5
2 

11
:0
2 

11
:1
2 

11
:2
2 

11
:3
2 

11
:4
2 

11
:5
2 

12
:0
2 

12
:1
2 

12
:2
2 

12
:3
2 

12
:4
2 

12
:5
2 

13
:0
2 

13
:1
2 

13
:2
2 

13
:3
3 

13
:4
3 

13
:5
3 

14
:0
3 

14
:1
3 

14
:2
3 

14
:3
3 

14
:4
3 

14
:5
3 

15
:0
3 

15
:1
3 

15
:2
3 

15
:3
3 

15
:4
3 

15
:5
3 

16
:0
3 

16
:1
2 

16
:2
2 

16
:3
2 

16
:4
2 

16
:5
2 

17
:0
2 

17
:1
2 

17
:1
2 

17
:2
2 

% packet drop per libpcap 

Day 1 ‐ New libpcap  Day 2 ‐ Default libpcap 

Fig. 5: % of packet drop for each libpcap

0 

5 

10 

15 

20 

25 

30 

35 

dn
s.
ru
le
s 

rs
er
vi
ce
s.
ru
le
s 

po
rn
.r
ul
es
 

ne
tb
io
s.
ru
le
s 

w
eb

‐c
ol
df
us
io
n.
ru
le
s 

w
eb

‐a
:
ac
ks
.r
ul
es
 

ic
m
p.
ru
le
s 

ex
pl
oi
t.
ru
le
s 

sc
an
.r
ul
es
 

ic
m
p‐
in
fo
.r
ul
es
 

in
fo
.r
ul
es
 

ba
d‐
tr
affi

c.
ru
le
s 

fin
ge
r.r
ul
es
 

ch
at
.r
ul
es
 

w
eb

‐c
gi
.r
ul
es
 

ex
pe

ri
m
en

ta
l.r
ul
es
 

te
ln
et
.r
ul
es
 

ot
he

r‐
id
s.
ru
le
s 

sm
tp
.r
ul
es
 

w
eb

‐c
lie
nt
.r
ul
es
 

im
ap
.r
ul
es
 

lo
ca
l.r
ul
es
 

sp
yw

ar
e‐
pu

t.
ru
le
s 

C
p.
ru
le
s 

w
eb

‐ii
s.
ru
le
s 

dd
os
.r
ul
es
 

m
ul
Dm

ed
ia
.r
ul
es
 

or
ac
le
.r
ul
es
 

rp
c.
ru
le
s 

sq
l.r
ul
es
 

sh
el
lc
od

e.
ru
le
s 

vi
ru
s.
ru
le
s 

po
p3

.r
ul
es
 

w
eb

‐a
cD
ve
x.
ru
le
s 

p2
p.
ru
le
s 

m
ys
ql
.r
ul
es
 

ba
ck
do

or
.r
ul
es
 

po
p2

.r
ul
es
 

a:
ac
k‐
re
sp
on

se
s.
ru
le
s 

do
s.
ru
le
s 

sp
ec
ifi
c‐
th
re
at
s.
ru
le
s 

sn
m
p.
ru
le
s 

vo
ip
.r
ul
es
 

w
eb

‐m
is
c.
ru
le
s 

po
lic
y.
ru
le
s 

co
nt
en

t‐
re
pl
ac
e.
ru
le
s 

F
tp
.r
ul
es
 

w
eb

‐p
hp

.r
ul
es
 

w
eb

‐f
ro
nt
pa
ge
.r
ul
es
 

sc
ad
a.
ru
le
s 

nn
tp
.r
ul
es
 

x1
1.
ru
le
s 

em
er
gi
ng
‐b
ot
cc
.r
ul
es
 

em
er
gi
ng
‐e
xp
lo
it.
ru
le
s 

em
er
gi
ng
‐r
bn

.r
ul
es
 

em
er
gi
ng
‐s
ca
n.
ru
le
s 

em
er
gi
ng
‐t
or
.r
ul
es
 

em
er
gi
ng
‐c
om

pr
om

is
ed

.r
ul
es
 

em
er
gi
ng
‐d
sh
ie
ld
.r
ul
es
 

em
er
gi
ng
‐w
eb

.r
ul
es
 

em
er
gi
ng
‐in

ap
pr
op

ri
at
e.
ru
le
s 

em
er
gi
ng
‐v
ir
us
.r
ul
es
 

em
er
gi
ng
‐e
m
er
gi
ng
.r
ul
es
 

em
er
gi
ng
‐p
2p

.r
ul
es
 

em
er
gi
ng
‐m

al
w
ar
e.
ru
le
s 

em
er
gi
ng
‐d
os
.r
ul
es
 

em
er
gi
ng
‐d
ro
p.
ru
le
s 

em
er
gi
ng
‐w
eb

_s
ql
_i
nj
ec
Do

n.
ru
le
s 

em
er
gi
ng
‐v
oi
p.
ru
le
s 

em
er
gi
ng
‐a
:
ac
k_
re
sp
on

se
.r
ul
es
 

em
er
gi
ng
‐g
am

e.
ru
le
s 

% packet loss per set 

with the New libpcap  with the Default libpcap 

Fig. 6: % of packet drop per set with both libpcap

To use it, Snort and its engine must be built with
the –enable-perfprofiling option. The tool should then
be enabled in the engine configuration file, for example
with config profile rules: print all, sort total ticks. This
will print a list of all the rules that have been checked
at least once during Snort’s run, and sort them by total
CPU time.

This will print some very useful information about the
rules resource consumption when Snort exits. A sam-
ple report is available as Appendix D.2. Snort’s manual
mentions that the output of the performance profiling
module can be printed to a file. However this option did
not seem to work with our Snort SP version.

This option was very useful to evaluate the different
rules, and to find which ones are consuming the most
resources. Strangely, the most expensive rules were not
always the expected ones.

10 Conclusion 13

Running Snort with this option does not seem to sig-
nificantly impact snort performance. In fact no difference
was noticed with and without it.

Here is an exemple of an unexpected expensive rule:

alert tcp $EXTERNAL_NET 1024: -> $HOME_NET 1024: (msg:"ET
TROJAN Beizhu/Womble/Vipdataend Controller Keepalive";
flowbits:isset,ET.vipde; flow:established,from_server; dsize:1;
content:"d"; classtype:trojan-activity; reference:(...);
sid:2008335; rev:6;)

This rule relies on a flowbit, and if the flowbit is set,
then checks if the packet is of size 1, and that the byte is
“d”. This rule was reported as one of the most time con-
suming. A lot of rules with FlowBits showed the same
behavior. It seems that Snort spends a lot of time check-
ing for FlowBits.

A few other things that Snort seems to not like in
terms of CPU time is IP filtering, Perl regular expressions
(PCRE), and sliding windows in all traffic (ie. checking
for a series of bytes anywhere in all packets.

All IP-based rules (rules that were not relying on con-
tent, but only on a list of known remote IPs) performed
very badly on our Snort sensor. This is probably due to
the way Snort analyzes the traffic. The use of netflow
data to do the exact same thing a posteriori seems to
be much more efficient, as Snort can analyze much more
traffic for details that netflow data does not contain.

PCRE on traffic were also slowing considerably the
sensor. A few rules were modified to check for specific
strings before checking the PCREs. Adding checks re-
duced the overall CPU time consumption. It is recom-
mended to always check for the maximum possible spe-
cific strings before checking for PCRE, and to only vali-
date the findings with the PCRE.

An example of a rule that has been modified in this
way is the following:
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"
(...)"; flow:to_server,established; content:"User-Agent\:";
nocase; pcre:"/User-Agent\:[^\n]+DEBUT\.TMP/i"; sid:2003427;
rev:3;)

This rule was running a PCRE check for all web
requests. By simply adding content:“DEBUT.TMP”;
before the PCRE, the load was significantly reduced.
After the modification only packets containing both
strings were checked with the PCRE.

The final rule becomes:
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"
(...)"; flow:to_server,established; content:"User-Agent\:";
nocase; content:‘‘DEBUT.TMP"; nocase;
pcre:"/User-Agent\:[^\n]+DEBUT\.TMP/i"; sid:2003427; rev:3;)

10 Conclusion

This thesis presented Snort SP capabilities as an IDS
in a large corporate network. The two main aspects
of the software configuration were covered in this doc-
ument: The rules and the performance problems. Sev-
eral options to improve Snort’s performance have been
proposed.

The bottleneck on a high-speed network with the de-
fault installation is the packet capture library. A re-
placement has been proposed and its efficiency has been
shown. With its default configuration and no rule active,
our Snort instance was dropping more than 15% of the
traffic. This number was reduced close to zero with the
new library.

To further improve the amount of traffic that can be
analyzed by Snort SP, its ability to use multiple analyzers
on the same traffic has been tested, and it’s efficiency is
undeniable as it allows to multiply the number of rules
deployed without increasing the packet loss ratio.

This paper also addressed different problems that arise
when trying to deal with the rules. There is a clear lack
of classification among all the available rules, and it is
difficult to choose the ones that will be useful in a par-
ticular environment.

An in-depth analysis of all the available rules was done,
and the rules have been re-classified in three main cate-
gories: policies, compromized, and attacks.

For the first two categories, a working set is proposed
and tested on the CERN Public Network. These sets
have been deployed, and have significantly improved the
efficiency at detecting infected hosts, while reducing the
number of false positives.

The problem of the coexistence of Skype and Emule
rules has been addressed and some optimizations to bit-
torrent’s detection have been proposed.

Concerning the attacks, it seems that adapting the
set to a very large environment requires a tremendous
amount of work and extensive knowledge of the network,
which is clearly not possible in a very large and heteroge-
nous corporate network.

Once the rules have been chosen, there is no easy way
to update the rulesets while keeping the changes intact.
To take care of the update process, it is proposed to
use the “Oinkmaster” software, which allows Snort’s ad-
ministrators to easily and seamlessly update their snort
rules.

10.1 Outlook

There is a clear lack of classification in the default rule-
sets available. It has been seen that a better classification
will help many users to get the best out of their Snort
sensor.

An additional field “date” on all the rules would signif-
icantly help on selecting current events rules and dismiss
all the deprecated rules.

Another classification system, such as a tagging sys-
tem, could also help in selecting rules if it were available.

With the correct weights, the rule score system pro-
posed in Chapter 7.3.4 could also be of use. Unfortu-
nately they have not been found.

Another possibilty to improve Snort’s performance
could be to recompile Snort with another optimized com-
piler. Snort is currently built with GCC, but the Intel
compiler has been known to produce faster code on Intel
machines [26].

A Additional Data 14

A Additional Data

A.1 Classtypes

Table 5 presents the default classtypes available in Snort
with their description.

Classtype Description
not-suspicious Not Suspicious Traffic
unknown Unknown Traffic
bad-unknown Potentially Bad Traffic
attempted-recon Attempted Information Leak
successful-recon-limited Information Leak
successful-recon-
largescale

Large Scale Information Leak

attempted-dos Attempted Denial of Service
successful-dos Denial of Service
attempted-user Attempted User Privilege Gain
unsuccessful-user Unsuccessful User Privilege Gain
successful-user Successful User Privilege Gain
attempted-admin Attempted Administrator Privi-

lege Gain
successful-admin Successful Administrator Privi-

lege Gain
rpc-portmap-decode Decode of an RPC Query
shellcode-detect Executable code was detected
string-detect A suspicious string was detected
suspicious-filename-
detect

A suspicious filename was de-
tected

suspicious-login An attempted login using a sus-
picious username was detected

system-call-detect A system call was detected
tcp-connection A TCP connection was detected
trojan-activity A Network Trojan was detected
unusual-client-port-
connection

A client was using an unusual
port

network-scan Detection of a Network Scan
denial-of-service Detection of a Denial of Service

Attack
non-standard-protocol Detection of a non-standard pro-

tocol or event
protocol-command-
decode

Generic Protocol Command De-
code

web-application-
activity

access to a potentially vulnerable
web application

web-application-attack Web Application Attack
misc-activity Misc activity
misc-attack Misc Attack
icmp-event Generic ICMP event
kickass-porn SCORE! Get the lotion!
policy-violation Potential Corporate Privacy Vi-

olation
default-login-attempt Attempt to login by a default

username and password

Tab. 5: Snort’s description of the classtypes

A.2 File mappings

These tables present how the different available files are
split into the three categories: policies, compromized,
and attacks. (Tables 6, 7 and 8)

File
chat.rules
content-replace.rules
policy.rules
porn.rules
voip.rules
multimedia.rules
p2p.rules
chat.rules
emerging-game.rules
emerging-inappropriate.rules
emerging-p2p.rules
emerging-policy.rules

Tab. 6: Files containing policies rules

File
emerging-virus.rules
emerging-malware.rules
emerging-attack response.rules
ddos.rules
virus.rules
backdoor.rules
spyware-put.rules
attack-responses.rules
shellcode.rules

Tab. 7: Files containing compromized rules

File
emerging-exploit.rules
emerging-scan.rules
emerging-web.rules
emerging-dos.rules
emerging-web sql injection.rules
emerging-voip.rules
dns.rules
rservices.rules
web-coldfusion.rules
icmp.rules
exploit.rules
scan.rules
finger.rules
web-cgi.rules
telnet.rules
smtp.rules
web-client.rules
imap.rules
ftp.rules
web-iis.rules
ddos.rules
oracle.rules
rpc.rules
sql.rules
shellcode.rules
pop3.rules
web-activex.rules
mysql.rules
dos.rules
specific-threats.rules
snmp.rules
voip.rules
web-misc.rules
web-php.rules
web-frontpage.rules
scada.rules
nntp.rules

Tab. 8: Files containing attacks rules

A Additional Data 15

A.3 CERN IRC Rules
This file contains all the IRC rules deployed at CERN. They should catch any instance of the IRC protocol, except
for the hosts that have pass rules.

#+##
#
File: cern-irc.rules
#
Description: IRC rules for CERN
#
#-##

define the ports where external IRC servers could run

portvar IRC_PORTS ![25,80,110,119,443,2401,8080]

#+++##
#
IRC detection rules
#
#---##

note: to avoid performance problems, we only check the first 256 bytes

alert tcp any $IRC_PORTS <> any $IRC_PORTS (\
msg:"IRC DCC CHAT command"; \
flow:established; \
content:"PRIVMSG"; offset:0; depth:256; \
pcre:"/^((\x3a[^\x00\x20\r\n]+\x20+)?\w+(\x20[^\x00\r\n]*)?\r?\n)*?(\x3a[^\x00\x20\r\n]+\x20+)?\
PRIVMSG\x20+\S+\x20+\x3a\x01X?DCC\x20+CHAT\x20/is"; \
classtype:policy-violation; \
sid:3584031; rev:4;)

alert tcp any $IRC_PORTS <> any $IRC_PORTS (\
msg:"IRC DCC SEND command"; \
flow:established; \
content:"PRIVMSG"; offset:0; depth:256; \
pcre:"/^((\x3a[^\x00\x20\r\n]+\x20+)?\w+(\x20[^\x00\r\n]*)?\r?\n)*?(\x3a[^\x00\x20\r\n]+\x20+)?\
PRIVMSG\x20+\S+\x20+\x3a\x01X?DCC\x20+SEND\x20/is"; \
classtype:policy-violation; \
sid:3584032; rev:4;)

alert tcp any $IRC_PORTS <> any $IRC_PORTS (\
msg:"IRC CTCP command"; \
flow:established; \
content:"PRIVMSG"; offset:0; depth:256; \
pcre:"/^((\x3a[^\x00\x20\r\n]+\x20+)?\w+(\x20[^\x00\r\n]*)?\r?\n)*?(\x3a[^\x00\x20\r\n]+\x20+)?PRIVMSG\x20+\S+\x20+\x3a\x01/is"; \
classtype:policy-violation; \
sid:3584021; rev:4;)

alert tcp any $IRC_PORTS <> any $IRC_PORTS (\
msg:"IRC CTCP reply"; \
flow:established; \
content:"NOTICE"; offset:0; depth:256; \
pcre:"/^((\x3a[^\x00\x20\r\n]+\x20+)?\w+(\x20[^\x00\r\n]*)?\r?\n)*?(\x3a[^\x00\x20\r\n]+\x20+)?NOTICE\x20+\S+\x20+\x3a\x01/is"; \
classtype:policy-violation; \
sid:3584022; rev:4;)

alert tcp any $IRC_PORTS -> any $IRC_PORTS (\
msg:"IRC NICK command"; \
flow:established; \
content:"NICK"; offset:0; depth:256; \
pcre:"/^((\x3a[^\x00\x20\r\n]+\x20+)?\w+(\x20[^\x00\r\n]*)?\r?\n)*?(\x3a[^\x00\x20\r\n]+\x20+)?NICK\x20/is"; \
classtype:policy-violation; \
sid:3584011; rev:4;)

alert tcp any $IRC_PORTS -> any $IRC_PORTS (\
msg:"IRC JOIN command"; \
flow:established; \
content:"JOIN"; offset:0; depth:256; \
pcre:"/^((\x3a[^\x00\x20\r\n]+\x20+)?\w+(\x20[^\x00\r\n]*)?\r?\n)*?(\x3a[^\x00\x20\r\n]+\x20+)?JOIN\x20/is"; \
classtype:policy-violation; \
sid:3584012; rev:4;)

alert tcp any $IRC_PORTS <> any $IRC_PORTS (\
msg:"IRC PRIVMSG command"; \
flow:established; \
content:"PRIVMSG"; offset:0; depth:256; \
pcre:"/^((\x3a[^\x00\x20\r\n]+\x20+)?\w+(\x20[^\x00\r\n]*)?\r?\n)*?(\x3a[^\x00\x20\r\n]+\x20+)?PRIVMSG\x20/is"; \
classtype:policy-violation; \
sid:3584013; rev:4;)

B Detailed results 16

B Detailed results

B.1 For the “Compromized” set

B.1.1 Simple rules

The following rules were disabled because they were pro-
ducing too many false positives due to their simplicity.
Most of them are not checking enough bytes, and others
are trying to detect common patterns, that are present
in legit traffic.

141 :
checks for ”host” in traffic on one port. Often trig-
gers false positives

152 :
This rule checks for three bytes on two ports. There
has been false positives with linux build computers.

248 :
This one should detect a DDOS tool checking for
“>”. But rsync data has been triggering alerts.

1292 :
Looks for the string “Volume serial number”, which
has 146’000 google results, therefore 146’000 false
positives on the web.

2123 :
Should detect a cmd.exe banner, but has only trig-
gered by e-mails on mail servers.

5321, 5322, 5323 :
These rules should detect the sober worm, however
all the alerts logged were simple TIME protocol to
NIST server, which is legit traffic.

6031, 6033 :
These two rules should detect some trojan, but all
alerts logged were triggered by the GRIDFTP pro-
tocol.

7672 :
This rule looks for the string “connected” on one
port. Often triggers false positives.

8361 :
This should detect the black curse backdoor, which
is a windows trojan, but this rule has been triggered
by 3 linux computers in one day.

10442 :
Same as above, this should detect a windows worm,
but has only detected linux computers. It checks for
5 bytes in all traffic.

2000040 :
This rule detects the string “up.exe” sent to some
ports. This rule triggered two different false posi-
tives at CERN, where the user was uploading files
via FTP. The file “setup.exe” would trigger an alert,
which is of course unwanted.

2003555 :
It should detect Windows malware, but triggers reg-
ularly on clean windows computers. Only checks for
a 6 bytes pattern.

2007594 :
This rule detects User-Agents starting by “Mz”.
There has been false positives with the Symantec
Liveupdate service, and some broadcasting korean
server.

2007711 :
This rule only checks two bytes in UDP traffic.

2007840 :
This rules looks for http traffic with “Shell” as User-
Agent. However in all the cases we detected, this
was triggered by the MSN “Shell” client, which is
no malware.

2007964, 2007963, 2007962 :
These rules are very weak, and look for two very
common bytes in traffic.

2008056 :
This rule checks only two bytes, there has been many
false positives, some come from Apple iDisk service.

2008103, 2008104, 2008105, 2008106, 2008107, 2008108,
2008109, 2008110 :
These rules do not rely on content. All packets on 1
port with a specific size trigger an alert.

2008468, 2008469 :
LDPinch, rule is complex, but many false positives
with known websites.

2008547 :
This rule should detect trojan binaries. However it
triggers also on normal downloads, often from clu-
bic.com.

2009031 :
Should have detected malware, but triggers on some
french ad server.

2009292 :
This rule should detect C&C responses, but it is
triggered instead by axis network cameras.

2009522 :
This rule should detect when a fake gif is passed
many arguments via its URI. However it seems that
all the cases but one that were detected were false
positives.

B.1.2 Unneeded

These rules were disabled because they did not provide
any useful information for CERN.

518, 520, 1444 :
These rules trigger when they detect TFTP traffic.

721 :
This one triggers when it finds file attachments with
bad extension (exe, chm, bat, ...). Such attachments
are rejected by CERN mail servers.

1200 :
Looks for ”Invalid URL” in http traffic.

1201 :
Triggers when a HTTP 403 forbidden reply is re-
ceived. This is not a threat.

B Detailed results 17

12077 :
This looks for c99shell command requests. There
are a lot of incoming requests, but there is no way
to sort between successful and attempted attacks.
The number of false positives outnumbers the real
cases (zero found over one month).

2000345, 2000348, 2000347, 2000352 :
These detect IRC messages on non standard ports
(nick change, join, privmsg, and dns). This is cov-
ered by CERN IRC rules.

2000562 :
Detects file attachments, which are normal.

2001689 :
This rule looks for potential bots scanning for SQL
server. This rule does not report compromized
hosts, and there are hundreds of bots at any time
trying to scan the CERN Public Network from out-
side.

2001795 :
This rule triggers when an IP is sending more than
30 mail per minute towards CERN.

2001920 :
Looks in all SMTP traffic and catches gif.exe in in-
coming mail. But all .exe attachments are rejected
by CERN mail servers.

2002322 :
This rule looks at all incoming MSN messages con-
taining links ending in “.php”. Any link to “in-
dex.php” would trigger an alert.

2002323 :
This rule detects exe files sent via msn.

2002894, 2002892, 2002895, 2001919 :
These rules detect viruses incoming or outgoing via
SMTP. The only IPs triggering these alerts are
CERN mail servers, which already drop incoming
and outgoing viruses.

2003484 :
This rule should be called ”malformed http request”
instead of “virus...”. It is triggered regularely by
linux computers.

2007866 :
This one tries to detect gadu-gadu, which is not a
trojan.

2008221, 2008222 :
And these two detects incoming potential phishing
e-mails.

2008333, 2007774 :
Detects the “swizzor” adware, which is not a trojan.

2008411 :
This rule looks for people sending e-mails with “The
Bat” mail client and having attachments.

2008576 :
Looks for tinype windows executables. Has triggered
many times on legit remote hosts hosting normal
files.

2009345 :
Triggers when a web server replies 401 unauthorized.
This does not mean that a computer has been com-
promized.

2009346 :
This does not report a compromized host. It detects
http bruteforce (many 401 errors during a short pe-
riod).

B.1.3 Resource consuming rules

These rules were commented because they consumed a
lot of resources, and their usefulness was discussable.
The performance was evaluated using Snort’s perfor-
mance profiling tool. Here is the list of the disabled rules
and the reasons:

7101 & 7103 :
Dependant on 7102. No use if 7102 is disabled.

7102 :
It detects a Spyware dated from 2004. And the load
is very high.

7716 :
7715 has been modified to trigger an alert instead.

7761 :
This rule was the winner in times of resource con-
sumption. It tracks a malware dated 2004. Any
antivirus should detect it.

13509 :
13508 is complex enough and has been modified to
trigger an alert to reduce load. Therefore the mod-
ified version of 13508 already covers this threat.

2002031 :
IRC - potential download or upload. IRC is covered
by the CERN rules.

2002032 :
IRC - potential bad command. IRC is covered by
the CERN rules.

2003176 :
Detects a packet of 4 null bytes. The load is very
high, and it detects a mail-spreading worm of 2006.

2003380 :
Looks for a suspicious User-Agent. It checks for
PCRE on all User Agent strings, and the rule is
impossible to modify to improve its performance.

2003427 :
RxToolbar. Very high load and it is only adware, so
no real threat.

2007583 :
Looks for User-Agent “IEbar”. Induces a very high
load.

2008178 :
2008177 is already covering this threat and it is con-
suming too much resources.

2008335 :
2008334 is already covering this threat and it is con-
suming too much resources.

B Detailed results 18

2009026 :
2009025 is already covering this threat and it is con-
suming too much resources.

B.1.4 Modifications Done to the Remaining Rules

There were also a few rules that were modified in order
to increase performance or reduce dependencies. Here is
the summary of the changes.

2003427, 2007583 :
These two signatures were modified in order to in-
crease the system performance. Both signatures
were checking if the packet contained a “User-
Agent”, and if found were trying to match it using
PCRE. Both were modified to also check for the spe-
cific User-Agent before doing the PCRE check. The
additions were respectively “content:’DEBUT.tmp’”
“and “content:’iebar’.

7118 :
This rule is new, and uses a token that Snort SP
beta 2 does not understand: “http header”. It has
been removed from the rule.

This modification will be removed with a new Snort
SP version.

2008335, 2009026, 2003176 :
These rules were modified to improve the perfor-
mance. These 3 rules check for a flowbit, then if
the flowbit is found check that the packet has a cer-
tain size. The order of these two instructions was
reversed.

13508, 7715:
These two rules were modified to produce alerts.
They were initially created to set a flowbit that an-
other rule would check, but these other rules were
disabled to increase performance. These rules are
complex enough, and are reliable enough to create
alerts. The “noalert” keyword was removed from
them.

498 :
This rule checked all traffic for root, uid 0. It was
modified to only trigger an alert on outgoing traffic.

B Detailed results 19

B.2 Worst Performers for the Remaining “Compromized” Set

The results below present the worst performing rules for the “Compromized” remaining rule set. This set is split
in 2 threads using the multiple analyzers modification.

Thread 1:
- emerging-virus.rules

Rule Profile Statistics (all rules)
==

Num SID GID Checks Matches Alerts Microsecs Avg/Check Avg/Match Avg/Nonmatch
=== === === ====== ======= ====== ===== ========= ========= ============

1 2008730 1 1826668853 0 0 105796457 0.1 0.0 0.1
2 2009291 1 629264853 0 0 76022043 0.1 0.0 0.1
3 2007585 1 1134700181 0 0 72686573 0.1 0.0 0.1
4 2003175 1 1303177316 370 0 72206368 0.1 0.1 0.1
5 2008245 1 925971873 285 0 51205263 0.1 0.1 0.1
6 2009081 1 22238944 0 0 34261723 1.5 0.0 1.5
7 2003427 1 22239491 0 0 26843863 1.2 0.0 1.2
8 2008182 1 21506124 0 0 15259640 0.7 0.0 0.7
9 2008452 1 23038075 0 0 14064426 0.6 0.0 0.6

10 2008493 1 21189840 0 0 14006085 0.7 0.0 0.7
11 2008546 1 22878926 0 0 13905275 0.6 0.0 0.6
12 2009450 1 21066530 0 0 13872456 0.7 0.0 0.7
13 2008482 1 23076539 0 0 13841727 0.6 0.0 0.6
14 2008580 1 25073430 0 0 13274268 0.5 0.0 0.5
15 2009351 1 32386660 0 0 12952928 0.4 0.0 0.4
16 2009458 1 22200961 0 0 12910578 0.6 0.0 0.6
17 2009521 1 21902878 0 0 12790560 0.6 0.0 0.6
18 2009299 1 23383335 0 0 12608802 0.5 0.0 0.5
19 2009531 1 21605641 0 0 12608399 0.6 0.0 0.6
20 2008194 1 20425773 0 0 12380037 0.6 0.0 0.6
21 2009300 1 21064288 0 0 11864142 0.6 0.0 0.6
22 2008639 1 20359221 0 0 11850647 0.6 0.0 0.6
23 2009374 1 20860333 0 0 11785922 0.6 0.0 0.6
24 2009519 1 20775807 0 0 11686315 0.6 0.0 0.6
25 2008377 1 21954815 0 0 11645410 0.5 0.0 0.5
26 2008461 1 21950965 0 0 11443947 0.5 0.0 0.5
27 2009389 1 20944548 0 0 11309687 0.5 0.0 0.5
28 2008317 1 21020113 0 0 11262052 0.5 0.0 0.5
29 2009526 1 21320081 0 0 11200685 0.5 0.0 0.5
30 2008329 1 22065578 0 0 11183437 0.5 0.0 0.5

Thread 2:
- ddos.rules
- emerging-attack_response.rules
- virus.rules
- attack-responses.rules
- backdoor.rules

Rule Profile Statistics (all rules)
==

Num SID GID Checks Matches Alerts Microsecs Avg/Check Avg/Match Avg/Nonmatch
=== === === ====== ======= ====== ===== ========= ========= ============

1 7723 1 168413564 0 0 362226779 2.2 0.0 2.2
2 6396 1 22239491 0 0 53247314 2.4 0.0 2.4
3 5320 1 23122000 0 0 46377813 2.0 0.0 2.0
4 12661 1 22239491 0 0 42201974 1.9 0.0 1.9
5 7751 1 348634798 0 0 26308135 0.1 0.0 0.1
6 6140 1 112509659 30505 0 22423457 0.2 0.1 0.2
7 7786 1 125158823 154282 0 18693660 0.1 0.1 0.1
8 6401 1 160723890 0 0 17989233 0.1 0.0 0.1
9 12166 1 169493945 0 0 16930946 0.1 0.0 0.1

10 7067 1 66019574 0 0 14358016 0.2 0.0 0.1
11 6030 1 85784136 302088 0 12031188 0.1 0.1 0.1
12 12146 1 85784136 256202 0 11158196 0.1 0.1 0.1
13 7610 1 70121360 2228 0 10803136 0.2 0.1 0.2
14 6298 1 79796274 0 0 9790261 0.1 0.0 0.1
15 6027 1 50314179 0 0 8375946 0.2 0.0 0.2
16 7693 1 70529642 5 0 8327883 0.1 0.1 0.1
17 7636 1 69094908 0 0 8118030 0.1 0.0 0.1
18 7715 1 189330186 0 0 7710739 0.0 0.0 0.0
19 7606 1 70410947 13650 0 6839717 0.1 0.1 0.1
20 13654 1 21823328 0 0 6768424 0.3 0.0 0.3
21 7072 1 56720486 0 0 6374444 0.1 0.0 0.1
22 13856 1 22239491 0 0 4446687 0.2 0.0 0.2
23 7657 1 33103205 0 0 4246800 0.1 0.0 0.1
24 7612 1 61357304 0 0 4243033 0.1 0.0 0.1
25 13942 1 22730983 0 0 4210179 0.2 0.0 0.2
26 6023 1 22239495 0 0 3990634 0.2 0.0 0.2
27 7077 1 22239702 0 0 3975854 0.2 0.0 0.2
28 7656 1 32477973 820 0 3965702 0.1 0.1 0.1
29 7648 1 20592169 38 0 3068717 0.1 0.1 0.1

B Detailed results 20

B.3 For the “attacks” set

Here a list of all the SIDs that were disabled and the
reason. All rules starting by 7 are the reverse version of
the same number without it.

All the files listed in Table 8 of Appendix A.2 were
initially enabled and the following rules disabled. Rules
are listed in the order they were disabled.

Note that even after having disabled all these rules this
set was still producing a lot of unwanted alerts.

2001022:
Detects fragmented packets... 50000 alert per sec-
ond.

486:
“ICMP Destination Unreachable Communication
with Destination Host is Administratively Prohib-
ited”.

480:
“ICMP ping speedera” This is normal windows up-
date behavior.

8428:
Https traffic with some flags not set. The flags are
probably not set due to Snort’s packet drop.

485:
“ICMP Destination Unreachable Communication
Administratively Prohibited”

882:
URI contains ”Calendar”.

466:
“ICMP L3retriever Ping”. This is apparently nor-
mal with windows

1394:
“AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”
in payload.. should detect shellcode noop, but is
contained in many normal images.

13514:
Triggered when the words “update” and “set” are
present on the same line

2002922:
“ET POLICY VNC Authentication Successful”.
This is allowed at CERN.

2002912, 2002913, 2002914, 2002915, 2002916, 2002917,
2002918, 2002919, 2002920, 2002921, 2002923,
2002924 :
Real VNC stuff, induces high load, and rules are too
targeted.

2001090:
Triggers when javascript is found on a web page but
not enclosed by the appropriate “javascript” tag. In-
duces a very high load.

2001091:
Same for Visual Basic

2001092:
Same for Microsoft Access shell code.

13819:
Triggers when “Accept-Language” is more than 100
bytes. This is often the case.

1852:
Triggers when the file robots.txt is accessed. The
purpose of this file is to be accessed.

2001674:
This rule triggers on “POST” requests containing
“http://”. There has been many false cases.

469:
Triggers on ICMP type 8 (echo request). This is
normal.

11974:
Triggers on all traffic on one port when the size is
smaller than 11 bytes.

823:
Triggers on all “cvweb.cgi” accesses.

2001219:
SSH scan. Can be detected by other means.

2003068:
SSH scan outbound. Can be detected by other
means.

2517:
“IMAP PCT Client Hello overflow attempt” . 16739
alerts were triggered by a perfectly normal xchange
server.

72517:
Same rule reversed.

1042:
Triggers when the string “Translate: F” is in http
requests.

71042:
Same reversed.

2000536, 2000537,2000538, 2000540, 2000543, 2000544,
2000545, 2000546:
Those are NMAP scans. There are too many of
them and not much can be done to prevent them.

2003099:
Triggers when a null byte is found in the URI of a
web request. There were more than 4000 alerts per
day coming from lots of IPs.

72003099:
Same reversed.

483:
Triggers on ICMP traffic containing
“AAAAAAAA”. Cyberkit triggers those alerts.

10995:
SMTP possible BDAT DoS attempt. 3620 alerts on
CERN mail server on one day.

710995:
And its reverse.

B Detailed results 21

13948:
“DNS large number of NXDOMAIN replies - possi-
ble DNS cache poisoning”. Triggers on normal traf-
fic.

72001621:
Potential PHP SQL injection attack. “Potential”.

895:
Triggers when “/redirect” is found in URLs. Why
not?

7895:
Same reversed.

1968, 1998, 1999, 2000, 2229, 72229:
Normal “.php” file access (such as viewtopic.php).

all SIDs having “web-application-activity” as classtype:
They provided no real information about attacks
and were informational.

712007:
“401 Unauthorized” in SIP/2.0 protocol. Many
alerts.

853:
When “/wrap” is contained in url. Lots of normal
web requests.

7853:
Same reversed.

2329:
SQL overflow attempt , checks only 2 bytes on any
ports.

72329:
Same reversed.

2002851:
FTP LIST without login. There are lots of FTPs.

72007873:
Triggers on GET requests for files ending in .exe,
.bat, .dll, ...

1156:
When “////////” is contained in a packet. Re-
ported as ”apache directory disclosure attempt”.

478:
Triggered by ICMP Broadscan Smurf Scanner. Not
much can be done about it.

72002997:
Reversed ET WEB PHP Remote File Inclusion
(monster list http). We don’t really care if an exter-
nal website is potentially vulnerable.

8440:
Too many alerts / IPs to be usable.

72002992, 72002993, 72002994, 72002995:
Triggers on 10 mail connections in 2 minutes outgo-
ing.

11969:
VOIP-SIP inbound 401 unauthorized message.

1288:
“/ vti bin/” request.

78734:
“REVERSED WEB-PHP Pajax arbitrary command
execution attempt” . Triggers on normal traffic with
google servers.

web-misc.rules :
This file contained too many rules not suited for a
large environment.

2006445:
Triggers when “SELECT” and “FROM” were found
in a packet. There were many false positives.

72006445:
Same reversed.

72001087:
Reversed “ET WEB-MISC cross site scripting at-
tempt to execute Javascript code”. No use for re-
mote sites.

web-frontpage.rules:
Mainly alerts related to accesses to some files. Too
many unwanted alerts.

7969:
reversed “WEB-IIS WebDAV file lock attempt”.
This is a normal feature of webdav.

All rules having “access” in their name in all the web*
files:
Access rules did not provide useful information.

Whole sets of rules:

• emerging-web.rules

• emerging-web sql injection.rules

• emerging-voip.rules

• web-coldfusion.rules

• web-cgi.rules

• web-client.rules

• web-iis.rules

• web-activex.rules

• snmp.rules

• voip.rules

• web-misc.rules

• web-php.rules

• web-frontpage.rules

474:
ICMP traffic containing “—00 00 00 00 00 00 00
00—”. Why not?

2002995:
Potential IMAP scan. Can be detected with some
other means.

2006546:
SSH bruteforce. Can be detected with other means.

2006435:
SSH bruteforce. Can be detected with other means.

B Detailed results 22

73072:
Imap status overflow attempt. Always triggered by
legitimate traffic.

2590:
Smtp mail from overflow attempt. Idem.

2183:
“Content transfer encoding” overflow attempt. Al-
ways triggered by legitimate traffic.

713513:
Reversed web traffic containing ”insert * into”. Trig-
gered by search engine requests.

2003:
SQL worm propagation attempt. Triggered by 52
cern machines. No virus found on some of those.
Probably false positives.

2050:
SQL overflow attempt. Checks for one byte in all
packets of size bigger than 100 bytes to port 1434.
Lots of false positives.

72250:
Checks for POP3 user with % at the end. Triggered
by legitimate traffic... (OVH and some physics lab
in Japan)

13512:
Checks for “exec master” SQL in traffic. Lots of
false positives.

13513:
Checks for “insert into” SQL statement in traffic.
Lots of false positives.

713695:
“Reversed Real Helix server 2002 vulnerability”.
This reversed alerts is triggered by legitimate rtsp
akamai servers.

C Rules Management 23

C Rules Management

C.1 Oinkmaster Sample Report

This is report provided by Oinkmaster after a run. It provides a summary of the modifications apported to the
rules: tells you which one have been modified, which ones have been disabled, etc.

It even warns you when a file is added or deleted, so that the changes can be reflected in the snort configuration
file.

This is very useful to merge the local changes apported to the rules, with the new rules provided by different
sources.

[***] Results from Oinkmaster started 20090721 15:52:29 [***]

[+++] Added rules: [+++]

-> Added to backdoor.rules (1):
alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"BACKDOOR Infector.1.x"; flow:established,from_server; content:"WHATISIT";\
metadata:policy balanced-ips drop, policy connectivity-ips drop, policy security-ips drop; reference:arachnids,315;\
reference:cve,1999-0660; reference:nessus,11157; classtype:misc-activity; sid:117; rev:10;)

[///] Modified active rules: [///]

-> Modified active in emerging-attack_response.rules (1):

old: alert tcp any any -> any any (msg:"ET ATTACK_RESPONSE Bindshell2 Decoder Shellcode"; content:"|53 53 53 53 53 43 |";\
content:"|66 53 89|"; distance:0; classtype:shellcode-detect; reference:url,doc.emergingthreats.net/2009246;\
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/ATTACK_RESPONSE/ATTACK_RESPONSE_Common_ShellCode;\
sid:2009246; rev:1;)

new: alert tcp any any -> any any (msg:"ET ATTACK_RESPONSE Bindshell2 Decoder Shellcode"; \
content:"|53 53 53 53 53 43 53 43 53 FF D0 66 68|"; content:"|66 53 89 E1 95 68 A4 1A|"; distance:0;\
classtype:shellcode-detect; reference:url,doc.emergingthreats.net/2009246; \
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/ATTACK_RESPONSE/ATTACK_RESPONSE_Common_ShellCode;\
sid:2009246; rev:2;)

[---] Disabled rules: [---]
None.

[---] Removed rules: [---]

-> Removed from backdoor.rules (1):
alert udp any any -> $HOME_NET 3344 (msg:"A nice rule"; flow:to_server; content:"logged in"; metadata:policy\
security-ips drop; reference:arachnids,83; classtype:misc-activity; sid:234162; rev:6;)

[*] Non-rule line modifications: [*]
None.

[*] Added files: [*]
None.

C.2 Oinkmaster Sample Configuration File

This is the proposed Oinkmaster configuration file. It contains rules detecting compromized hosts, as well as rules
detecting CERN policy violations.

$Id: oinkmaster.conf,v 1.132 2006/02/02 12:05:08 andreas_o Exp $

url = file://snortrules-snapshot-2.8.tar.gz
url = file://emerging.rules.tar.gz

path = /bin:/usr/bin:/usr/local/bin

Files in the archive(s) matching this regular expression will be
checked for changes, and then updated or added if needed.
All other files will be ignored. You can then choose to skip
individual files by specifying the "skipfile" keyword below.
Normally you shouldn’t need to change this one.
update_files = \.rules$|\.config$|\.conf$|\.txt$|\.map$

###
Files to totally skip (i.e. never update or check for changes)
#
Syntax: skipfile filename
or: skipfile filename1, filename2, filename3, ...
###

Ignore local.rules from the rules archive by default since we might
have put some local rules in our own local.rules and we don’t want it
to get overwritten by the empty one from the archive after each
update.
skipfile local.rules
skipfile VRT-License.txt

The file deleted.rules contains rules that have been deleted from
other files, so there is usually no point in updating it.
skipfile deleted.rules

We skip all files except those belonging to the "compromized" set

skipfile bad-traffic.rules
skipfile chat.rules
skipfile content-replace.rules

C Rules Management 24

skipfile dns.rules
skipfile dos.rules
skipfile emerging-botcc-BLOCK.rules
skipfile emerging-botcc.excluded
skipfile emerging-botcc.rules
skipfile emerging-compromised-BLOCK.rules
skipfile emerging-compromised.rules
skipfile emerging-dos.rules
skipfile emerging-drop-BLOCK.rules
skipfile emerging-drop.rules
skipfile emerging-dshield-BLOCK.rules
skipfile emerging-dshield.rules
skipfile emerging-exploit.rules
skipfile emerging-inappropriate.rules
skipfile emerging-malware.rules
skipfile emerging-policy.rules
skipfile emerging-rbn-BLOCK.rules
skipfile emerging-rbn.rules
skipfile emerging-scan.rules
skipfile emerging-sid-msg.map
skipfile emerging-sid-msg.map.txt
skipfile emerging-tor-BLOCK.rules
skipfile emerging-tor.rules
skipfile emerging-voip.rules
skipfile emerging-web.rules
skipfile emerging-web_sql_injection.rules
skipfile emerging.conf
skipfile emerging.rules
skipfile experimental.rules
skipfile exploit.rules
skipfile finger.rules
skipfile ftp.rules
skipfile icmp-info.rules
skipfile icmp.rules
skipfile imap.rules
skipfile info.rules
skipfile misc.rules
skipfile multimedia.rules
skipfile mysql.rules
skipfile netbios.rules
skipfile nntp.rules
skipfile oracle.rules
skipfile other-ids.rules
skipfile policy.rules
skipfile pop2.rules
skipfile pop3.rules
skipfile porn.rules
skipfile rpc.rules
skipfile rservices.rules
skipfile scada.rules
skipfile scan.rules
skipfile shellcode.rules
skipfile smtp.rules
skipfile snmp.rules
skipfile specific-threats.rules
skipfile spyware-put.rules
skipfile sql.rules
skipfile telnet.rules
skipfile tftp.rules
skipfile voip.rules
skipfile web-activex.rules
skipfile web-attacks.rules
skipfile web-cgi.rules
skipfile web-client.rules
skipfile web-coldfusion.rules
skipfile web-frontpage.rules
skipfile web-iis.rules
skipfile web-misc.rules
skipfile web-php.rules
skipfile x11.rules

Also skip snort.conf by default since we don’t want to overwrite our
own snort.conf if we have it in the same directory as the rules. If
you have your own production copy of snort.conf in another directory,
it may be really nice to check for changes in this file though,
especially since variables are sometimes added or modified and
new/old files are included/excluded.
skipfile snortsp.conf

##
SIDs to modify after each update (only for the skilled/stupid/brave).
Don’t use it unless you have to. There is nothing that stops you from
modifying rules in such ways that they become invalid or generally
break things. You have been warned.
If you just want to disable SIDs, please skip this section and have a
look at the "disablesid" keyword below.
#
You may specify multiple modifysid directives for the same SID (they
will be processed in order of appearance), and you may also specify a
list of SIDs on which the substitution should be applied.
If the argument is in the form something.something it’s regarded
as a filename and the substitution will apply on all rules in that

C Rules Management 25

file. The wildcard ("*") can be used to apply the substitution on all
rules regardless of the SID or file. Please avoid using #comments
at the end of modifysid lines, they may confuse the parser in some
situations.
#
Syntax:
modifysid SID "replacethis" | "withthis"
or:
modifysid SID1, SID2, SID3, ... "replacethis" | "withthis"
or:
modifysid file "replacethis" | "withthis"
or:
modifysid * "replacethis" | "withthis"
#
##

#to improve performance
modifysid 2003427 "content:\"User-Agent\\\:\"; nocase;" | "content:\"User-Agent\\\:\"; nocase; content:\"DEBUT.TMP\"; within:10;"
#modifysid 2007583 "content:\"User-Agent\\\:\"; nocase;" | "content:\"User-Agent\\\:\"; nocase; content:\"iebar\"; within:10;"

#http_header not implemented on snortspbeta2
modifysid 7118,7118 "http_header;" | ""

#dsize before flowbit to improve performance
modifysid 2008335 "flowbits:isset,ET.vipde; flow:established,from_server; dsize:1;" | "dsize:1; flowbits:isset,ET.vipde; \
flow:established,from_server;"
modifysid 2009026 "flowbits:isset,ET.vipdataend; flow:established,to_server; dsize:1;" | "dsize:1; flowbits:isset,ET.vipdataend; \
flow:established,to_server;"
modifysid 2003176 "flowbits:isset,BEposs.warezov.challenge; flow:established,from_server; dsize:4;" | "dsize:4; \
flowbits:isset,BEposs.warezov.challenge; flow:established,from_server;"

#the two following statements removes "noalert" from rules that were not producing alerts but only setting flowbits.
#Rules reading the flowbits have been disabled
modifysid 13508 "flowbits:noalert;" | "" #generate an alert, because 13509 has been disabled below
modifysid 7715 "flowbits:noalert;" | "" #generate an alert, 7716 has been disabled because of resource consumption

rule detecting root uid0 in traffic. Modified so that only outgoing triggers an alert
modifysid 498 "any any -> any any" | "\$HOME_NET any -> any any"

##
SIDs that we don’t want to update.
If you for some reason don’t want a specific rule to be updated
(e.g. you made local modifications to it and you never want to
update it and don’t care about changes in the official version), you
can specify a "localsid" statement for it. This means that the old
version of the rule (i.e. the one in the rules file on your
harddrive) is always kept, regardless if the official version has
been updated. Please do not use this feature unless in special
cases as it’s easy to end up with many signatures that aren’t
maintained anymore. See the FAQ for details about this and hints
about better solutions regarding customization of rules.
##

Example to never update SID 1325.
localsid 1325

##
SIDs to enable after each update.
Will simply remove all the leading ’#’ for a specified SID (if it’s
a multi-line rule, the leading ’#’ for all lines are removed.)
These will be processed after all the modifysid and disablesid
statements. Using ’enablesid’ on a rule that is not disabled is a
NOOP.
#
Syntax: enablesid SID
or: enablesid SID1, SID2, SID3, ...
##

Example to enable SID 1325.
enablesid 1325

enablesid 2003427

##
SIDs to comment out, i.e. disable, after each update by placing a
’#’ in front of the rule (if it’s a multi-line rule, it will be put
in front of all lines).
#
Syntax: disablesid SID
or: disablesid SID1, SID2, SID3, ...
##

#Disabled for performance reasons:
disablesid 7101,7103 # gwboy, dependant on 7102
disablesid 7102 # gwboy. spyware from 2004. high load...
#disablesid 7694 #Exception backdoor
#disablesid 7723 #Wollf remote manager
disablesid 7761 # 3x more time consuming than second most consuming rules. track down anal ftp, which dates from 2004. Any antivirus should detect that.
disablesid 13509 # 13508 is complex enough and has been modified to trigger an alert (13509 is the most resource consuming rule)
disablesid 2002031 # IRC - potential DL or UL. IRC should have been detected already
disablesid 2002031 # very high load all packets sometimes with pcre. irc should have been detected sooner
disablesid 2002032 # IRC - potential bad command. idem
disablesid 2003176 # Warezoft trojan - packet of 4 null bytes - very high load - mail-spreading worm of 2006 -> protected

C Rules Management 26

disablesid 2003380 # Suspicious User-Agent - pcre on all UA, difficult to modifysid efficiently
disablesid 2003380 # does pcre on ALL UAs... disabled
disablesid 2003427 # RxToolbar UA - Very high load and only adware
#disablesid 2007583 # iebar spyware. reenabled
disablesid 2008178 # TROJAN Ceckno Keepalive from Controller - covered by 2008177
disablesid 2008335 # 2008334 already covers this threat
disablesid 2009026 # 2009026 already covers this threat

#Disabled because they provide no real useful information
disablesid 221 #TFN probe, attack, not compromized
disablesid 518 # TFTP normal usage
disablesid 520 # TFTP normal usatge
disablesid 721 # File attachments with bad extension (exe chm bat ...)
disablesid 1200 # "Invalid URL" in http
disablesid 1201 # 403 forbidden
disablesid 1444 # TFTP normal usage
disablesid 12077 # c99shell command request. a lot of incoming requests.
disablesid 2000345,2000348,2000347,2000352,2002363 # IRC normal messages, and potential bad command. Should be detected by own IRC rules
disablesid 2000562 # File attachments
disablesid 2001689 # potential bot scanning for sql server. who cares. Only checks traffic on one port with no content...
disablesid 2001795 #more than 30 mail from per minute towards cern
disablesid 2001919 #incoming virus by mail
disablesid 2001920 # disabled because catches gif.exe in incoming mail
disablesid 2002322 # Matched all msn links with php...
disablesid 2002323 #exe file sent via msn
disablesid 2002892 # Virus smtp inbound
disablesid 2002894 # Virus smtp inbound
disablesid 2002895 # Virus smtp outbound, always MX ips
disablesid 2003484 #should be called "malformed http request" instead of virus... triggered by linux machine
disablesid 2007774 # swizzor adware
disablesid 2007866 # gadu-gadu is imo no trojan
disablesid 2008221 #same
disablesid 2008222 #incoming phishing e-mail asprox
disablesid 2008333 # swizzor adware
disablesid 2008411 #mailer the-bat attachment: - useless...
disablesid 2008576 # tinype win executables. remote hosts seem legit.
disablesid 2009345 # 401 unauthorized.
disablesid 2009346 # not a compromized machine. detects http bruteforce (some 401 errors during a short period)

#Disabled because of low complexity, or high FP rate
disablesid 141 # checks for "host" in traffic on 1 port.
disablesid 152 # 3 bytes, 2 ports, lxbuild FP
disablesid 248 #ddos tool checking for > probably rsync data, false positives 08/05
disablesid 1292 #"Volume serial number" 155’000 google results
disablesid 1811 #Many false positives - string "uname" in ssh traffic
disablesid 2123 #cmd.exe banner... triggered by e-mails on MX
disablesid 5321 # Simple TIME protocol to NIST server (should have detected sober)
disablesid 5322 # Simple TIME protocol to NIST server (should have detected sober)
disablesid 5323 # Simple TIME protocol to NIST server (should have detected sober)
disablesid 6031 # FKWP trojan -> Really GRIDFTP
disablesid 6033 # FKWP trojan -> Really GRIDFTP
disablesid 7672 # "connected" on traffic on 1 port
disablesid 7716 # 7715 has been modified to trigger the alert, too much resource consuming
disablesid 8361 #BACKDOOR black curse 4.0 runtime detection - windows trojan - triggered by 3 different linux machines 6 chars out of 6
disablesid 10442 #windows worm detected on linux machine. false positive. only 5 bytes anywhere
disablesid 2000040 # up.exe sent to ftp. FPs
disablesid 2003555 # false positive, linux machine, only 6 bytes
disablesid 2007594 # "User-agent: Mz" -false positives on symantec live update and bbs korean server (mnet.com, cafe.naver.com)
disablesid 2007711 # Only 2 bytes... udp...
disablesid 2007840 # UA: Shell - triggered by MSN shell client
disablesid 2007962 #worse
disablesid 2007963 #idem
disablesid 2007964 #2 bytes OK in 2 bytes packets vipdataend
disablesid 2008056 # idisk.mac.com FP
disablesid 2008103,2008104,2008105,2008106,2008107,2008108,2008109,2008110 # does not rely on content, all packets on 1 port with a specific size
disablesid 2008468,2008469 # LDPinch, too many FPs with known websites
disablesid 2008547 # Trojan Packed Binary - legit download from ftp.clubic triggers alert
disablesid 2009031 #not armitage loader request, but ads.clicmanager.fr...
disablesid 2009292 # c&c response, triggered by axis cameras
disablesid 2009522 # Checkin to fake GIF. too many false positives, long discussion by mail with GoD

#Those are the emule rules that trigger way too many FPs to be useful for CERN when Skype is around.
#Chapter 7 of the thesis explains this in detail.
disablesid 2003316,2003310,2003317,2003308,2003309,2003311,2003312,2003313,2003314,2003315,2003318,2003319,2003320,2003321,2003322,2003323,
disablesid 2003324,2587,2000330,2000332,2000333,2001295,2001296,2001297,2001299
The only emule rule interesting to us is 2001298
enablesid 2001298

#This is a bittorent rule triggering too many unwanted alerts and dependent on another rule (2181)
disablesid 2000334
#This is a bittorrent rule detecting the same machines with less alerts
enablesid 2181

D Improvements to Snort 27

D Improvements to Snort

D.1 Sample Script to Create Mutiple Analyzers

Below is a sample of the configuration file creating two analyzers for a Snort instance.

opttab1={
conf="/opt/snort/etc/snortsp1.conf",
dynamic_engine_lib="(...)",
dynamic_preprocessor_lib_dir="(...)",
l="/opt/snort/log/current"

}
opttab2={
conf="/opt/snort/etc/snortsp2.conf",
dynamic_engine_lib="(...)",
dynamic_preprocessor_lib_dir="(...)",
l="/opt/snort/log/current"

}
function init ()
eng.new("e1")
eng.add_analyzer({
engine=engine_id,
analyzer="a1", order=1,
module=snort_module,
data=opttab1, bpf=""

})
eng.add_analyzer({
engine=engine_id,
analyzer="a2", order=2,
module=snort_module,
data=opttab2, bpf=""

})
end

Upon initialization, Snort SP creates a new engine, named “e1”, and attaches two analyzers. Each having a
separate options array.

D.2 Rule Profiling Sample Report

The following report was obtained by deploying all the P2P rules for a few minutes. The two first Emule rules (that
did not trigger any alert), consumed more resources that all the other rules combined.

Num SID GID Checks Matches Alerts Microsecs Avg/Check Avg/Match Avg/Nonmatch
=== === === ====== ======= ====== ===== ========= ========= ============

1 2003322 1 66774824 0 0 10767116 0.2 0.0 0.2 0
2 2003321 1 66774824 0 0 9232964 0.1 0.0 0.1 0
3 5999 1 7166994 346 0 803038 0.1 1380.8 0.0 0
4 2008595 1 4240390 0 0 539240 0.1 0.0 0.1 0
5 2006379 1 37844 0 0 41184 1.1 0.0 1.1 0
6 5998 1 395476 153 0 38001 0.1 0.1 0.1 0
7 2003310 1 104496 25 0 35600 0.3 0.0 0.3 0
8 2003320 1 112767 22 0 33693 0.3 0.0 0.3 0
9 2003317 1 101584 28 0 33141 0.3 0.0 0.3 0

10 2003319 1 102202 0 0 32280 0.3 0.0 0.3 0
11 2003323 1 130301 0 0 28617 0.2 0.0 0.2 0
12 2003313 1 105045 8 0 28320 0.3 0.0 0.3 0
13 2003315 1 110124 7 0 27923 0.3 0.1 0.3 0
14 2009098 1 105197 0 0 14819 0.1 0.0 0.1 0
15 2003308 1 107289 0 0 13289 0.1 0.0 0.1 0
16 2009099 1 211941 0 0 13223 0.1 0.0 0.1 0
17 2003309 1 107598 0 0 11093 0.1 0.0 0.1 0
18 2003318 1 104127 0 0 8458 0.1 0.0 0.1 0
19 2003311 1 104130 3 0 8367 0.1 0.0 0.1 0
20 2003316 1 104510 1 0 7710 0.1 0.0 0.1 0
21 2003312 1 100854 0 0 6563 0.1 0.0 0.1 0
22 2002814 1 9339 0 0 5774 0.6 0.0 0.6 0
23 5693 1 3157 120 0 4102 1.3 0.1 1.3 0
24 2000333 1 38105 0 0 2080 0.1 0.0 0.1 0
25 2000332 1 38105 0 0 2080 0.1 0.0 0.1 0
26 2008581 1 1304 1286 0 1761 1.4 0.0 95.6 0
27 2008583 1 647 3 0 1615 2.5 0.1 2.5 0
28 3680 1 1218 0 0 1079 0.9 0.0 0.9 0
29 2001185 1 1197 0 0 981 0.8 0.0 0.8 0
30 2008582 1 1291 0 0 954 0.7 0.0 0.7 0
31 12691 1 211 0 0 514 2.4 0.0 2.4 0
32 2000340 1 421 0 0 221 0.5 0.0 0.5 0
33 12211 1 379 0 0 188 0.5 0.0 0.5 0
34 2007727 1 84 2 0 159 1.9 0.1 1.9 0
35 2001299 1 310 0 0 114 0.4 0.0 0.4 0

E Tools 28

E Tools

E.1 Python Script Used to Compute a Rule Score

This script computes a score for each rule contained in the file passed as first argument. A rule will be placed either
in keep.rules or in dismiss.rules, depending on a fixed threshold.

In the below version, only the content is used to compute a general score. This is very easily modifiable with the
different weight on the first lines.

import re
import os
import sys

Regexp for a one-line rule
ruleline = re.compile(’^alert (?P<proto>\S+) (?P<src>\S+) (?P<srcport>\S+) (?P<way>\S+) (?P<dst>\S+) (?P<dstport>\S+) (?P<payload>[^\n]+)’)

We create two output files. One where the kept rules will be put, and one where the dismissed rules will be put
of = open("keep.rules", ’a’)
dismiss = open("dismiss.rules", ’a’)

For each of the input file (given as argument), if it is a line
for line in open(sys.argv[1], "r"):

try:
m = ruleline.match(line)
if m is not None:

Here we define the weights of the different function parameters.
The final score will be the sum of all these weight multiplied by their respective scores

In this version, only the rule content is used
weightClasstype= 0
weightPacketSize= 0
weightNumberOfPorts= 0
weightContent= 1
weightIPs= 0
weightFlowBits = 0
weightMessage = 0
weightPcre = 0

The scores that will multiply with the weights (above). All initialized to 0.
scoreNumberOfPorts = 0 #from 0 (all ports) to 1 (1 port)
scoreContent = 0 #from 0 when no content checked to 20 depending on the sum of bytes + bytes^2/depth, \
#=2 if 1 byte is checked, =2, if 1 byte at specific position, =10 if 10 bytes, =20 if 10 bytes at specific position
scorePacketSize = 0 #from 0 (no size) to 1 (exact size)
scoreIPs = 0 #unimplemented yet
scoreClasstype = 0 #remove unwanted classtypes with negative score
scoreFlowBits = 0 #Increase confidence in rules having flowbit set
scoreMessage = 0 #Reduce confidence when the message contains some keywords
scorePcre = 0 #Increase confidence when a rule has a PCRE

#Split the rule’s payload to get individual elements
payload = (m.group("payload")).replace(" ","").split(’;’)

We start computing scores in the order proposed above

Number of ports. This one was the most difficult to implement due to the large variety of possiblities
in specifying ports. It can be a single port (80), a port range (80:100), an unbounded port range (80:),
a list of ports (80,81), a combination of the above (80-,22), or a variable ($HTTP_PORTS), and all the above negated (!80:100)
The coding is not very nice, because each of the above case was added one by one... But it works.

if m.group(’srcport’) == "any" and m.group(’dstport’) == "any":
scoreNumberOfPorts = 0;
port = "any"

elif m.group(’srcport’) != "any":
port = m.group(’srcport’)

elif m.group(’dstport’) != "any":
port = m.group(’dstport’)

if port.find("!") != -1:
isReversed = 1

else:
isReversed = 0

if re.match(’^[\d]+$’,port)!=None:
scoreNumberOfPorts = 1

elif port.find(",") != -1:
port = port.replace("[","").replace("]","")
nbport=0
ports = port.split(",")
for p in ports:

if p.find(":") != -1:
p2 = p.split(":")
#because rules can be written with :1024 instead of 1:1024
if p2[0] == "":

p2[0] = 1
if p2[1] == "":

p2[1] = 65535
if not isReversed:

nbport += (int(p2[1]) - int(p2[0]))
else:

nbport += 65535-(int(p2[1]) - int(p2[0].strip("!")))
elif re.match(’^[\d]+$’,p)!=None:

nbport += 1

scoreNumberOfPorts = (65535.0 - nbport) / 65535.0

E Tools 29

elif port.find(":") != -1:
port = port.replace("[","").replace("]","")
ports = port.split(":")
#because rules can be written with :1024 instead of 1:1024
if ports[0] == "":

ports[0] = 1
if ports[1] == "":

ports[1] = 65535
if isReversed:

scoreNumberOfPorts = (int(ports[1]) - int(ports[0].strip("!"))) / 65535.0
else:

scoreNumberOfPorts = (65535 - (int(ports[1]) - int(ports[0]))) / 65535.0
elif port.find("$") != -1:#port is a variable from config file, usually HTTP_SERVERS, will round the value to 5 ports

scoreNumberOfPorts = (65535 - 5.0) / 65535.0
print "score ports is ", scoreNumberOfPorts, "(*", weightNumberOfPorts,")"

The score is then computer for the packet size, which is given by: (1518.0-(BIGGEST-SMALLEST))/1518.0;
This gives a score of 1 if the port is specific, 0 if any.

for word in payload:
if word.find("dsize:") != -1:#packet has a size

word = word.split(":")[1]
if word.find("<>") != -1:

numbers = word.split("<>");
scorePacketSize = (1518.0 - (int(numbers[1])-int(numbers[0]))) / 1518.0;

elif word.find("<") != -1:
scorePacketSize = (1518.0 - int(word.strip("<"))) / 1518.0;

elif word.find(">") != -1:
scorePacketSize = (1518.0 - (1518 - int(word.strip(">")))) / 1518.0;

else:
scorePacketSize = 1;

break;
print "score size is", scorePacketSize, "(*",weightPacketSize,")"

The PCRE score. set to 1 if a PCRE is found.
for word in payload:

if word.find("pcre:") != -1:
scorePcre = 1

print "score pcre is",scorePcre*weightPcre

The Flowbits score, set to 1 if a flowbit is read.
for word in payload:

if word.find("flowbits:") != -1:
flowbits = word.split(":")[1].strip("\"")
if flowbits.find("isset,") != -1:

scoreFlowBits = 1
print "score flowbits is", scoreFlowBits*weightFlowBits

The Message score, if "POLICY" is found then the score is set to 1
for word in payload:

if word.find("msg:") != -1:
msg = word.split(":")[1].strip("\"")
if msg.find("POLICY") != -1:

scoreMessage = 1
print "score message is", scoreMessage*weightMessage

And now the big part, the content score. There can be many content statements, each can be followed by a depth.
The total score is given by: Sum (# bytes checked + (# bytes checked ^ 2 / depth)). If 10 bytes are to be found anywhere
in the packet, the score will be 10, if those 10 bytes are at an exact position, the score will be 20.
The score is maxed to 20 at the end.

hasContent = False
length = 0.0
for word in payload:

if word.find("content:") != -1:
#not the first content. If true, then some content already encountered but not summed, so we sum it with no depth.
if hasContent:

scoreContent = scoreContent + length
hasContent = False

content = word.split(":",1)[1].strip("\"").replace("\\","")
length = 0.0
bytes = False #0 = char, 1 = bytes
for char in content:

if char is "|":
bytes = not bytes
continue

if bytes:
length = length + 0.5

else:
length = length + 1.0

hasContent = True
elif word.find("depth:") != -1 and hasContent:

hasContent = False
depth = word.split(":")[1]
scoreContent = scoreContent + length + length * length / int(depth)

if hasContent:
scoreContent = scoreContent + length
hasContent = False

print "Score total content is", scoreContent,
if scoreContent > 20:

scoreContent=20
print "maxing to 20",

print

E Tools 30

And now the Classtype score. If it is mentioned below, the score will be set to 1
for word in payload:

if word.find("classtype:") != -1:
classtype = word.split(":",1)[1]
if classtype.find("web-application-activity") != -1:

scoreClasstype = 1
elif classtype.find("misc-activity") != -1:

scoreClasstype = 1
elif classtype.find("web-application-attack") != -1:

scoreClasstype = 1
elif classtype.find("not-suspicious") != -1:

scoreClasstype = 1
elif classtype.find("icmp-event") != -1:

scoreClasstype = 1
elif classtype.find("suspicious-filename-detect") != -1:

scoreClasstype = 1
print "score Classtype is", scoreClasstype

We get the SID of the current rule
sid = 0
for word in payload:

if word.find("sid:") != -1:
sid = word.split(":",1)[1]

We compute the rule final score
totalScore = weightNumberOfPorts * scoreNumberOfPorts + weightPacketSize * scorePacketSize + weightContent * scoreContent \
+ weightIPs * scoreIPs + weightClasstype * scoreClasstype + weightFlowBits * scoreFlowBits + scoreMessage * weightMessage \
+ weightPcre * scorePcre

We add the score to the rule message for convenience
print "Total Score of the rule is", totalScore
line = line.replace("msg:\"","msg:\" "+str(totalScore)+" ")

We place the rule in one or the other file depending on the score.
In this version, the limit is set to 7, so that 3 bytes at specific position are dismissed, but 4 kept.
if totalScore >= 7:

of.write("#"+str(totalScore)+"\n"+line)
else:

dismiss.write("#"+str(totalScore)+"\n"+line)
except Exception:

print "ErrorLine",line
of.close()
dismiss.close()

E.2 Plot the Rules Dependencies

E.2.1 Script

This scripts opens an alert file. Analyzes all the alerts, and if some rule depends on another links them on the
produced graph.

import re
import os
import gv
import sys

Min number of IPs for considering the set when plotting the dependency graph.
Explained in detail below
MIN_THRESHOLD = 2

These are the two regexp to match alerts. The first one extracts the SID and message, and the second one the IPs, time and ports.

snortline1 = re.compile(’^\[**\] \[(?P<what>\d+):(?P<sid>\d+):(?P<rev>\d+)\] (?P<descr>.+) \[**\]$’)
snortline2 = re.compile(’^\d{2}.\d{2}.\d{2}-\d{2}:\d{2}:\d{2}.\d{6} (?P<ip1>[\d\.]+):(?P<port1>\d+) -> (?P<ip2>[\d\.]+):(?P<port2>\d+)$’)

Various data structures to store alerts, sorted by IP or by SID

Number of alerts per SID
count = dict() # count[sid]

Stores which SIDs triggered alerts for a given IP
perip = dict() #

Stores which IPs triggered alerts for a given SID
persid = dict()

#
name = dict()

Opens the alerts file
for line in open("alert.current", "r"):

m = snortline1.match(line)
if m is not None:

sid = m.group(’sid’)
rev = m.group(’rev’)
descr = m.group(’descr’)

else:
m = snortline2.match(line)

E Tools 31

if m is not None:

At this point, we have the two interesting lines for an alert, and therefore all the necessary data.

We are only interested in IPs belonging to the CERN.
ip1 = m.group(’ip1’)
if not ip1.startswith(’128.141.’) and not ip1.startswith(’137.138.’) and not ip1.startswith(’128.142.’):

ip1 = -1
ip2 = m.group(’ip2’)
if not ip2.startswith(’128.141.’) and not ip2.startswith(’137.138.’) and not ip2.startswith(’128.142.’):

ip2 = -1

port1 = m.group(’port1’)
port2 = m.group(’port2’)
name[sid] = descr

All the variables are set, we can use them !

We start by incrementing the counter for the current SID
if sid not in count:

count[sid] = 0
count[sid] = count[sid]+1;

And for each ip, we store which sids are active
if ip1 != -1:

if ip1 not in perip:
perip[ip1] = set()

perip[ip1].add(sid)
if ip2 != -1:

if ip2 not in perip:
perip[ip2] = set()

perip[ip2].add(sid)

#and for each rule, we store the ips
if sid not in persid:

persid[sid] = set()
if ip1 != -1:

persid[sid].add(ip1)
if ip2 != -1:

persid[sid].add(ip2)

We print the ordered number of alerts per SID
pairs = [(v, k) for (k, v) in count.iteritems()]
pairs.sort()
highestcount = 0
for (k,v) in pairs:

print k,v,name[v]
highestcount = k

This can be used to print all SIDs that each IP triggered
#keys = perip.keys()
#keys.sort()
#for key in keys:
print key,’: ’,
v = sorted(perip[key])
for v2 in v:
print v2,
print

We print the number of IPs triggered by each SID
For some specific SIDs, the list of IPs can be printed. In this case only 2001298 will print details.
print ’Printing number of ips per snort id :’
keys = persid.keys()
keys.sort()
for key in keys:

print key,’: ’,len(persid[key])
if key == ’2001298’:

v = sorted(persid[key])
for v2 in v:

print v2,’,’,
print

And now the big plotting part:
We get the active SIDs
keys = persid.keys()
keys.sort()

We setup the plot
G = gv.digraph(’G’)
N = gv.protonode(G)
E = gv.protoedge(G)

gv.setv(G, ’rankdir’, ’LR’)
gv.setv(G, ’center’, ’true’)
gv.setv(G, ’nodesep’, ’0.05’)
gv.setv(N, ’shape’, ’box’)
gv.setv(N, ’width’, ’0’)
gv.setv(N, ’height’, ’0’)
gv.setv(N, ’margin’, ’.03’)
gv.setv(N, ’fontsize’, ’8’)
gv.setv(N, ’fontname’, ’helvetica’)

E Tools 32

gv.setv(E, ’arrowsize’, ’.4’)

nodes = {}

We check all SID against each other.
If a set of IPs (for a given SID) is a subset of the other (for the other SID)
We create a dependency between the two

This is valid only if there are at least MIN_THRESHOLD IPs. If there are less then we do not plot.

for leftkey in keys:
left = persid[leftkey]
for rightkey in keys:

right = persid[rightkey]
if right <= left and rightkey != leftkey and len(right)>=MIN_THRESHOLD:

nodeName = leftkey
nodeName += name[leftkey]#leftkey
nodeName += ’--’
nodeName += str(count[leftkey])
n = gv.node(G, nodeName)
nodeName = rightkey
nodeName += name[rightkey]#rightkey
nodeName += ’--’
nodeName += str(count[rightkey])
n2 = gv.node(G, nodeName)
gv.edge(n, n2)

We save the file as dev.jpg
gv.layout(G,’dot’)
gv.render(G,’jpeg’,’dev.jpg’)

E.2.2 Sample result

Figure 7 presents a sample plot produced by the above script on P2P rules with CERN alerts. In this example we
can clearly see that on that day Skype rule 5998 is sufficient to detect all Skype instances, as all other Skype rules
depend on it. The same holds for bittorrent traffic, where the set produced by the 2655 alerts of rule 2181 was
more complete than the one produced by the 57452 alerts of rule 2000334. We also see that 2008581 is the best
choice to detect bittorrent’s DHT. The number on the right of the cell is the number of alerts counted for every
SID. There are a few cells that do not have enough data to produce usable results.

E Tools 33

Fig. 7: Dependencies between rules

E Tools 34

References

[1] “CERNs mission.” http://public.web.cern.ch/public/en/About/Mission-en.html, cited June 2009.

[2] “Intrusion detection system.” http://en.wikipedia.org/wiki/Intrusion detection system, cited June 2009.

[3] “Intrusion Detection Systems (IDS).” http://www.windowsecurity.com/articles/Intrusion Detection Systems
IDS Part I network intrusions attack symptoms IDS tasks and IDS architecture.html, cited June 2009.

[4] “OSI model.” http://en.wikipedia.org/wiki/OSI model, cited August 2009.

[5] Y.-T. Chan, C. Shoniregun, and G. Akmayeva, “A netflow based internet-worm detecting system in large
network,” in Digital Information Management, 2008. ICDIM 2008. Third International Conference on, pp. 581–
586, Nov. 2008.

[6] “Snort homepage.” http://www.snort.org, cited July 2009.

[7] “The Programming Language Lua.” http://www.lua.org/about.html, cited June 2009.

[8] “Snort 3.0 Architecture Series Part 2: Changes and Betas.” http://securitysauce.blogspot.com/2008/08/
snort-30-architecture-series-part-2.html, cited August 2009.

[9] P. Garcia-Teodoroa, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez, “Anomaly-based network intrusion
detection: Techniques, systems and challenges,” Computers & Security, vol. 28, pp. 18–28, 2009.

[10] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using machine
learning,” Communications Surveys & Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[11] A. A. Papaioannou, “Non-convex Neyman-Pearson classification,” Master’s thesis, École Polytechnique
Fédérale de Lausanne, 2009.

[12] “Sans internet storm center; cooperative network security community - internet security.” http://isc.sans.org/,
cited july 2009.

[13] “Snort Users Manual.” http://www.snort.org/assets/82/snort manual.pdf, April 2009.

[14] L. Etienne, “A short Snort rulesets analysis,” tech. rep., CERN CERT, 2009.

[15] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, “Revealing skype traffic: when randomness plays
with you,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp. 37–48, 2007.

[16] S. A. Baset and H. G. Schulzrinne, “An analysis of the skype peer-to-peer internet telephony protocol,” in
INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings, pp. 1–11,
2006.

[17] E. Freire, A. Ziviani, and R. Salles, “Detecting skype flows in web traffic,” in Network Operations and Man-
agement Symposium, 2008. NOMS 2008. IEEE, pp. 89–96, April 2008.

[18] F. D. P. Biondi, “Silver Needle in the Skype.” Black Hat Europe’06, Amsterdam, the Netherlands, Mar. 2006.

[19] D. B. Y. Kulbak, “The eMule Protocol Specification.” DANSS, Hebrew University of Jerusalem, Jan. 2005.

[20] “Oinkmaster.” http://oinkmaster.sourceforge.net, cited June 2009.

[21] “Dumbpig - Automated checking for Snort rulesets.” http://leonward.wordpress.com/2009/06/07/
dumbpig-automated-checking-for-snort-rulesets/, cited July 2009.

[22] “Pulled Pork.” http://code.google.com/p/pulledpork/, cited July 2009.

[23] “tcpdump/libpcap public repository.” http://www.tcpdump.org/, cited August 2009.

[24] “Phil Wood’s libpcap.” http://public.lanl.gov/cpw/, cited May 2009.

[25] “Scientific Linux CERN 5.” http://linux.web.cern.ch/linux/scientific5/, cited May 2009.

[26] “Comparing Linux Compilers.” http://www.coyotegulch.com/reviews/linux compilers/index.html, cited Au-
gust 2009.

[27] “CERN in a nutshell.” http://public.web.cern.ch/public/en/About/About-en.html, cited June 2009.

[28] W. Zhenqi and W. Xinyu, “Netflow based intrusion detection system,” MultiMedia and Information Technology,
International Conference on, vol. 0, pp. 825–828, 2008.

http://public.web.cern.ch/public/en/About/Mission-en.html
http://en.wikipedia.org/wiki/Intrusion_detection_system
http://www.windowsecurity.com/articles/Intrusion_Detection_Systems_IDS_Part_I__network_intrusions_attack_symptoms_IDS_tasks_and_IDS_architecture.html
http://www.windowsecurity.com/articles/Intrusion_Detection_Systems_IDS_Part_I__network_intrusions_attack_symptoms_IDS_tasks_and_IDS_architecture.html
http://en.wikipedia.org/wiki/OSI_model
http://www.snort.org
http://www.lua.org/about.html
http://securitysauce.blogspot.com/2008/08/snort-30-architecture-series-part-2.html
http://securitysauce.blogspot.com/2008/08/snort-30-architecture-series-part-2.html
http://isc.sans.org/
http://www.snort.org/assets/82/snort_manual.pdf
http://oinkmaster.sourceforge.net
http://leonward.wordpress.com/2009/06/07/dumbpig-automated-checking-for-snort-rulesets/
http://leonward.wordpress.com/2009/06/07/dumbpig-automated-checking-for-snort-rulesets/
http://code.google.com/p/pulledpork/
http://www.tcpdump.org/
http://public.lanl.gov/cpw/
http://linux.web.cern.ch/linux/scientific5/
http://www.coyotegulch.com/reviews/linux_compilers/index.html
http://public.web.cern.ch/public/en/About/About-en.html

	Introduction
	About CERN
	CERN
	CERN Public Network

	Network Traffic Analysis as Part of an IDS System
	IDS

	State of the Art - From Raw Packet Capture to Advanced Detection Mechanisms
	Snort in a Large Corporate Network
	Deployment
	Snort Rules
	Sources

	Existing Classification Schemes
	Splitting in Files
	Classtype

	Ideal Situation
	Performance Problem

	Snort Rules
	Introduction
	Definition
	Metrics
	Threat level
	Resource Consumption
	Complexity
	Dependencies
	Policies & Recommandations

	Classification
	Compromized
	Policy
	Attacks and others

	Snort Rules Evaluation
	CERN Policies
	Peer-to-Peer
	IRC
	Other Policies

	Compromized
	Definition
	Redefinition
	Modifications done to the Set
	The Resulting Set

	Attacks
	Introduction
	Normal attacks
	Reversed attacks
	Rule Scoring
	Finally

	Conclusions of the Evaluation

	Rules Management
	The Problem
	Existing Tools
	Update Process
	Oinkmaster Configuration

	Snort Optimizations
	Using Snort SP: Multiple Analyzers
	Libpcap Modification
	Tests

	Snort Performance Profiling

	Conclusion
	Outlook

	Additional Data
	Classtypes
	File mappings
	CERN IRC Rules

	Detailed results
	For the ``Compromized" set
	Simple rules
	Unneeded
	Resource consuming rules
	Modifications Done to the Remaining Rules

	Worst Performers for the Remaining ``Compromized" Set
	For the ``attacks" set

	Rules Management
	Oinkmaster Sample Report
	Oinkmaster Sample Configuration File

	Improvements to Snort
	Sample Script to Create Mutiple Analyzers
	Rule Profiling Sample Report

	Tools
	Python Script Used to Compute a Rule Score
	Plot the Rules Dependencies
	Script
	Sample result

	References

