KIMM - IIS - EPFL Joint Workshop

Low-temperature thick-film materials systems for electronic and sensor applications

Thomas Maeder EPFL-Lausanne & Sensile Technologies

Claudio Grimaldi EPFL-Lausanne

Sonia Vionnet-Menot EPFL-Lausanne

Caroline Jacq EPFL-Lausanne

Hansu Birol EPFL-Lausanne

Peter Ryser EPFL-Lausanne

Sigfrid Strässler EPFL-Lausanne & Sensile Technologies

Low-temperature thick-film nanomaterials for electronics applications

Thomas Maeder EPFL-Lausanne & Sensile Technologies

Claudio Grimaldi EPFL-Lausanne

Sonia Vionnet-Menot EPFL-Lausanne

Caroline Jacq EPFL-Lausanne

Hansu Birol EPFL-Lausanne

Peter Ryser EPFL-Lausanne

Sigfrid Strässler EPFL-Lausanne & Sensile Technologies

Summary

- → Thick-film technology
- → Thick-film (piezo)resistors
- → Benefits of systems with a low firing temperature
- → The (piezo)transport properties of low-temperature thick-film resistors
- → Stabilisation of low-temperature dielectrics
- Demonstrators
- → Conclusions & outlook

Overview of thick-film technology 1/3

Paste

Screen

Screen printing

Overview of thick-film technology 2/3

Drying (typ. 150°C 10')

Firing (typ. 850°C 10')

Laser trimming

Overview of thick-film technology 3/3

Médical
Multichip module (23 couches)

Aviation Led pour Cockpit

Instrumentation Sonde active

Grand public
Périphérique d'ordinateur

<u>Radur</u> Module hyper fréquence

Millicare Module mémoire

<u>Automobile</u> Contrôleur depuissance

Exemple de packaging

Thick-film circuits

Thick-film firing process

- Debinding (burnout of organics)
- Sintering
- Further reactions (crystallisation, etc.)

Thick-film materials types

- Conductors
- Resistors
- Dielectrics
- Protective layers: glasses & polymers
- Glues & sealing glasses
- Gas-sensitive ceramics: SnO₂,ZnO, Fe₂O₃,...
- Chemical electrodes: Pt, Au, RuO₂, ...
- SOFC electrodes: Ni, (La,Sr,...)(Mn, Cr, Fe)O_{3-δ}
- Piezo / pyroelectric ceramics: PZT,PMN, KNN,...
- Phosphors: sulfides, ...
- Electron sources: MgO, ...
- Field emitters: nanotubes, carbides, borides, ...

Thick-film resistors 1/4 - introduction

- Random dispersions of conducting nanoparticles in insulating matrix
- Insulating phase: typ. PbO·SiO₂·B₂O₃ glass
- Conducting phase: typ. RuO₂, Pb₂Ru₂O₆, Bi₂Ru₂O₇
- Densification by liquid-phase sintering
- Further particle-glass interactions

Thick film resistors 2/4 - composition & microstructure

Thick-film resistors 3/4 - electrical transport

 V_M = total volume of conducting particles

 V_G = total volume of insulating grains

$$x = \frac{V_M}{V_M + V_G} \longrightarrow$$

volume fraction of the conducting phase

P. F. Carcia, , A. Suna, and W. D. Childers, J. Appl. Phys. **54**, 6002 (1983)

M. Tamborin, S. Piccinini, M. Prudenziati, and B. Morten, Sensors and Actuators A **58**, 159 (1997)

- → According to the value of x, TFRs can be good or bad conductors
- → below a critical concentration x_c, TFRs become insulators
- \rightarrow x_c depends upon the particular TFR
- \rightarrow for $x \rightarrow x_c$ the resistance follows a power law of the form

$$R \cong R_0(x-x_c)^{-t}$$

which indicates percolative behavior

Thick-film resistors 4/4 - piezoresistivity

The piezoresistive effect is the change of resistivity ρ upon a mechanical applied strain ϵ :

$$R_i = R_i^0 + R_i^0 \sum_j K_{ij} \varepsilon_j$$

$$K_{ij} = \frac{d \ln(R_i)}{d \epsilon_j} \cong \frac{\Delta R_i}{\epsilon_j R_i}$$

 $K_{xx}=K_L$: longitudinal gauge factor

 K_{vx} = K_T : transverse gauge factor

cantilever beam

$$K = \frac{\Delta R}{\epsilon R} = \frac{\Delta \rho}{\epsilon \rho} + \text{geometric contribution}$$

The piezoresistive factor

$$\Gamma = \Delta \rho / \rho \epsilon$$

can be as high as $\Gamma \approx 30$

Thick-film resistors (TFRs): standard firing conditions

- ☐ Temperature: 850°C peak too high for many substrates
- □ Environment: air strongly oxidising conditions
- □ Substrate: alumina very inert, ca. 7 ppm/K

Thick-film resistors (TFRs): stability

- → 10 kOhm compositions:
 - DP 2041 = standard
 - ESL 3114 = 630°C firing, for porcelain enamelled steel
 - ESL 3414 = 850°C, high gauge factor
- → Poor stability of ESL 3414
- → Good stability of ESL 3114

Vionnet & al., 2004

N = furnace cool after firing
T = quenched after firing

Thick-film resistors (TFRs): high piezoresistive response

Jacq & al., 2004

- → Design response on alumina : 0.3%
- → Ultra high response possible: > 5%!
- Not practical: rapid oxidation of Ti & Ti alloys above 600°C - need ≤ 600°C system!

Applications: piezoresistive force & pressure sensors

Applications: low-temperature thick-films

- ☐ High heat dissipation electronics AIN*, AI
- ☐ Heaters steels*, Al

* Commercially available

- ☐ Rugged & inexpensive force & pressure sensors metals
- ☐ Electronics on displays glass
- ☐ (Electronics on polymer PCB, etc.)

Thick-film pressure sensor on steel, Huba Control DT 510

LED on glass thick-film circuit

Applications: a knee force sensor

- ☐ Two sides with 3 independent sensing bridges / side
- ☐ Measurement of force & XY position on each side
- Determination of force and moments
- ☐ Steel sensing body

Applications: temperature limitations and their causes

Substrate	Max. temp. [°C]	Limiting factor	
glass	550650	deformation	
Al alloys	500630	melting	
stainless steel	500650*	softening	
martensitic steel	ca. 700	transformation	
tool steel & Ti	ca. 600	oxidation	
polymer	ca. 300	decomposition	

→ Systems in the 500…650°C range are interesting!

^{*} For high performance

Steel - issues

- ✓ Oxidation most stainless steels have sufficient oxidation resistance for the standard thick-film process.
- ? Adherence of dielectric many commercial dielectric compositions available Co as adhesion promoter. Low-temperature systems?
- ! Softening the effect of cold work and/or heat treatment are essentially lost!
- ! Martensitic transformation disruptive volume change => cracking of dielectric!

Steel - issues - softening at high temperature

Température de revenu °C / Temperatura de revenido en °C

Annealing temperature [C]

→ 600...650°C = the limit for retention of high strength

Steel - issues - martensitic transformation

M = martensite

F = ferrite

A = austenite

- → Must avoid disruptive martensitic transformation!
- → Work below 700°C!

Steel - current thick-film pressure sensors

Dérive/signal à 40 bar après formage à 240 bar (600MPa)

- ☐ Sufficient for rugged low-precision sensors
- ☐ High precision not possible due to softening

Low temperature - current status

- □ Resistors : 625°C nominal firing temperature (ESL 3114) somewhat too high
- ☐ Conductors : commercially available at < 500°C
- ☐ Glasses : low-melting point glasses available, but :
- Glasses are not stable ⇒ infiltration of conductors & resistors
- □ Need for better low-temp. resistors & dielectrics!

Resistors - studied glass compositions

2-5% Al₂O₃ added to inhibit crystallisation

- 1. PbO-SiO₂-B₂O₃, by weight 75–15–10%
- 2. Standard (850°C firing): 60–25–15%
- 4Pbo·sio₂ 3. Also often used: 60–15–25%
 - 4. PbO-SiO₂ only:
 - 5. Future work (<600°C): 85–5–10% (TCE!)

Preparation of RuO₂-based low-temperature TFRs

- Metallic phase: RuO_2 particles with diameter Φ =400 nm and Φ =40 nm
- Insulating phase: PbO (75% wt) -B₂O₃ (10% wt)-SiO₂ (15% wt)
- 2% of Al₂O₃ added to avoid possible crystallization
- Glass softening temperature Ts=460°C
- Organic vehicles: terpineol & ethyl cellulose
- Firing cycle: drying phase (10 min at 150 °C), plateau at various T_f for 15 min
- Firing temperature: 525 to 675°C

Effects of firing temperature T_f

The firing temperature T_f has important effects on TFRs transport properties

- → At moderate RuO₂ concentration x the resistivity displays a maximum
- → at low x the resistivity is monotonous
- → at very high T_f the resistivity is weak x dependent

- → At low T_f there is a clear percolative behavior
- → as T_f increases, the critical volume fraction x_c shift to lower values
- → at very high T_f there is no evidence of percolative transition (weak x dependence)

Microstructure & phases

- → X-ray analysis does not show extra peaks associated to possible formation of Pb₂Ru₂O₆
- overfired samples (T_f=700 °C for 1h) display the same x-ray reflection peaks
- → there is no evidence for variation of the conducting phase concentration with T_f

Low T_f

the initial RuO₂ clusters are wetted by the glassy phase

x_c is given mainly by the large RuO₂ clusters

the glass starts to penetrate inside the clusters separating the original RuO₂ particles

Intermediate T_f

the initial RuO₂ clusters are completely dissolved in the glass

the percolation threshold is given by the small RuO₂ particles rather than the large RuO₂ clusters

x_c is decreased

High T_f

the glass viscosity is so low that RuO₂ particles may concentrate in the bottom of the TFR (precipitation)

in this case the conducting phase is macroscopically inhomogeneous

Percolation properties

T_f and RuO₂ grain size affect also the percolation properties of TFRs

Percolation properties

- The critical behavior is observed for various conductor-insulator composites
- → about 50% of the measured exponents t are close to t=2 that is the value predicted by conventional percolation theory
- deviations from t=2 indicate nonuniversal behavior of transport
- → TFRs may have t=2 or t>2 depending on the fabrication procedures
- → The origin of non-universal behavior (t>2) is not fully understood

- → The effect of strain is linear and symmetric
- there is no evidence of false signals due to possible cracks or other strain faults
- \rightarrow as the RuO₂ concentration x lowers, the resistivity change $\Delta \rho / \rho$ increases
- → the piezoresistive factor

$$\Gamma = d \ln(\rho)/d\epsilon$$

can be extracted from the linear fits of $\Delta\rho/\rho$ versus ϵ

- \rightarrow With the exception of the 400nm T_f=525°C series, the piezoresistive factor Γ increases monotonously as x decreases
- \rightarrow Γ appears to **diverge** at the same critical concentration \mathbf{x}_c for which $\rho \rightarrow \infty$

It appears that there is a **correlation** between diverging Γ and non-universal behavior of transport (t>2)

The divergence of Γ at x_c could be maybe due to a strain effect on x

$$\Gamma = \frac{d \ln(\rho)}{d\epsilon} = \Gamma_0 + A t x/(x-x_c) = K_1 + K_2/(x-x_c)$$

- → The fits to the 40 nm series are bad
- → it is not clear why the 400 nm T_f=525 °C series should not diverge
- \rightarrow x is just a measure of the inter-grain junctions, if $dx/d\epsilon \neq 0$ then an applied strain would break the junctions... but the variation of resistivity is linear in ϵ
- → a different explanation should be sought

RuO₂ TFRs are tunneling-percolation systems: current flows through the sample via tunneling hopping between RuO₂ adjacent particles

I. Balberg *et al.*, Int. J. Modern Phys. B **18**, 2091 (2004)

- At high metal concentrations the conducting particles form a cluster of touching elements
- there is a first (geometrical) percolative transition when the cluster of touching particles do no longer span the entire sample
- at lower concentrations, current flows via inter-particle tunneling
- there is a second (lower) percolation transition of tunneling junctions

The tunneling-percolation theory predicts that the DC exponent t depends on the mean tunneling distance a and the tunneling decay ξ

$$t = 2$$
 if $\upsilon + 2a/\xi < 2$ I. Balberg, Phys. Rev. Lett. **59**, 1305 (1987)

where v = 0.88 is the correlation length exponent (a geometrical quantity)

An applied strain ε affects the tunneling distance $a \rightarrow a(1+\varepsilon)$

$$\rho = \rho_0 (x-x_c)^{-t}$$

$$\Gamma = \frac{d \ln(\rho)}{d\epsilon} = \Gamma_0 - (dt/d\epsilon) \ln(x-x_c)$$

A1: 400 nm, T_f=525 °C

A2 : 400 nm, T_f =600 °C

B1:40 nm, T_f=550 °C

B2:40 nm, T_f =600 °C

	A1	A2	B1	B2
Xc	0.0745	0.0670	0.0626	0.0525
t	2.15	3.84	3.17	3.15
Γ_0	5.5±1.5	-8.8±1.6	-15.3±3	-19.3±2.4
dt/dε	-0.2±0.4	5.4±0.5	8.7±0.9	11.0±0.7

- → The tunneling-percolation theory explains why when t> 2 the piezoresistivity diverges at x_c
- the logarithmic divergence fits well with the experimental data
- → Monte Carlo calculations confirm that $\Gamma_0 \propto -dt/d\epsilon$

Resulting understanding of TFR physics

- → Besides their applicative advantages, low-temperature systems allow better isolation of physical properties
- → Transport properties of TFRs are strongly affected by fabrication variables such as the firing temperature T_f and conductor volume concentration x
- → The percolating behavior of TFRs depends upon T_f (the critical concentration x_c lowers as T_f is enhanced)
- → TFRs may display non-universal behavior of critical transport
- → For non-universal TFRs, the piezoresistivity response diverges at x_c
- → The tunneling-percolation theory provides a consistent explanation of the piezoresistive divergence

Dielectrics: stabilisation by TiO₂

PbO (glass) +
$$TiO_2$$
 (nano grains) \implies PbTiO₃

Stabilisation by:

- 1. Pb depletion in glass and
- 2. increase in filler volume

Dielectrics: stabilisation by TiO₂

Dielectrics: stabilisation by SiO₂

glass +
$$SiO_2$$
 \implies SiO_2 - rich glass

- \Box Stabilisation by SiO₂ enriched skeleton
- ☐ Effet on resistors?
- ☐ Could use inside resistors?

Dielectrics: effect on resistors

- Resistors on steel + enamel vs. alumina
- Strong reaction on enamel
- Alteration of properties

Thermal expansion matching: substrate materials

- Wide range of coefficients of thermal expansion (CTEs)
- Difficult to design generic systems

Thermal expansion matching: glass + TiO₂

- For low CTE values
- PbTiO₃: CTE < 0 near room temperature

Thermal expansion matching: glass + SiO₂

- Little reaction: very wide range of CTE values possible due to different forms of SiO₂
- Fully reacted: OK for alumina, float glass & Ti

Application: prototype hot plate on Al

Low-temperature conductor on glass-TiO₂ dielectric

Application: prototype load cell on Al

Single resistor fired onto Al beam at 575°C

Application: prototype load cell on Al

Application: glass sealing of microreactor

- Alumina or glass module bonded to glass plate
- Channel walls: thick-film dielectric
- Seal: glass thick-film
- Improvement of chemical resistance and refire stability by using reactive TiO₂ filler in dielectric & seal

Conclusions

- → Low-temperature (firing at 500...600°C) thick-film system needed for applications on glass, steel, Al and Ti alloys
- → Low-temperature resistors studied
 - Understanding of piezotransport properties
 - Achieved good piezoresistors (GF≈15) below 600°C
- → First low-temperature dielectrics: glass stabilised by Al₂O₃, SiO₂ or TiO₂
- Temperature compatibility achieved with glass, steel, Ti and some Al alloys
- Demonstrator force sensor on Al!

Outlook

→ Resistors

- Now trying 500°C minimum in lead borosilicate system
- Understanding of TCR, glass composition & additives
- Understanding of (in)stability temperature & voltage

→ Low-temperature dielectrics

- Combining stabilisation & expansion matching
- Understanding & achieving chemical compatibility with resistors
- → **Processing**: controlling debinding at low temperatures
- → Materials: other materials than Pb-based glass (toxic) & RuO₂ (expensive)?