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ABSTRACT

Recognition of brain states and subject’s intention from elec-
troencephalogram (EEG) is a challenging problem for brain-
computer interaction. Signals recorded from each of EEG
electrodes represent noisy spatio-temporal overlapping of
activity arising from very diverse brain regions. However,
un-mixing methods such as Cortical Current Density (CCD)
can be used for estimating activity of different brain re-
gions. These methods not only improve spatial resolution
but also signal to noise ratio, hence the classifiers com-
puted using this activity may ameliorate recognition perfor-
mances. However, these methods lead to a multiplied num-
ber of channels, leading to the question – “How to choose
relevant and discriminant channels from a large number of
channels?”. In the current paper we present a channel se-
lection method and discuss its application to the recognition
of anticipation related potentials from surface EEG chan-
nels and CCD estimated cortical potentials. We compare
the classification accuracies with previously reported per-
formances obtained using Cz electrode potentials of 9 sub-
jects (3 experienced + 6 naı̈ve). As hypothesised, we ob-
served improvements for most subjects with channel selec-
tion method applied to CCD activity as compared to surface-
EEG channels and baseline performances. This improve-
ment is particularly significant for subjects who are naı̈ve
and did not show a clear pattern on ERP grand averages.

1. INTRODUCTION

Recognition of subject’s intention on single trials from elec-
troencephalogram (EEG) for brain-computer interaction is a
challenging problem. EEG represents noisy spatio-temporal
overlapping of activity arising from very diverse brain re-
gions, i.e., a single scalp electrode picks up the mixed tem-
poral activity of myriads of neurons at very different brain
areas. Previous studies show that un-mixing methods are
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likely to improve the signal to noise ratio (SNR) which helps
in computing reliable classifiers [1, 2, 3]. Cortical Current
Density (CCD) inverse method is one such a method based
on distributed linear inverse estimation of a dipole activ-
ity whose orientation is assumed to be perpendicular to a
small triangular patch of cortical mantle [2, 4, 5]. However,
un-mixing leads to a multiplied number of channels (dipole
activities) leading to the question –“How to chose relevant
and discriminant channels from a large number of available
channels?”. In the current paper we present our channel
selection method based on discriminability of features and
discuss its application to the recognition of anticipation re-
lated potentials from surface EEG and CCD estimated cor-
tical activity.

Anticipation is a cognitive state of a subject, reflecting
expectation of future events based on past events. In EEG
this state appears mainly as an increasing negativity under
the site of vertex electrode (Cz) which can be interpreted
as pre-activation of neural substrates involved in executing
actions on the occurrence of events in future [6, 7, 8]. In
our previous studies, we argued that single trial recognition
of anticipation related potentials can be exploited for Brain-
Computer Interaction (BCI) [9, 10], and in a recent pilot ex-
periment we demonstated a prototype of anticipation based
BCI (aBCI) [11]. These studies were based on features
computed using activity of the Cz electrode alone. How-
ever, as the negativity spreads around central electrodes,
features of these potentials can be observed from the sig-
nals of surrounding electrodes which may carry discrim-
inable features that could be useful for improving classifi-
cation performance. In addition, the potentials of all the
electrodes can be used to un-mix the cortical dipole activ-
ity and a specific subset of the dipole activity can be used
for calculating more reliable classifiers. However, for calcu-
lating classifiers using surface EEG or cortical activity, we
need a systematic procedure for choosing channels which
are the most discriminant.

In the current paper we explore features selected from
surface EEG channels as well as from CCD estimated cor-
tical activity, and compare classification accuracies to base-
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line accuracies achieved with Cz electrode features. The
current paper is organized as follows–In section 2 we in-
troduce the experimental paradigm to record anticipation
related potentials as well as the pre-processing applied to
EEG signals. In the same section we describe EEG grand
averages showing the presence of anticipation related fea-
tures in electrodes apart from Cz. In section 3 we briefly
describe CCD inverse method and present cortical localiza-
tion of anticipation related potentials. In the same section,
we present feature selection and a channel selection method
and classification technique used in the current study. In
section 4 we compare the accuracies achieved with the ap-
plication of channel selection to surface EEG channels and
CCD estimated cortical activity to the baseline accuracy ob-
tained with single electrode features. Finally, in section 5
we discuss the results.

2. EXPERIMENT

To record anticipation related potentials we have used a clas-
sical Contingent Negative Variation (CNV) paradigm [8, 7].
In this paradigm a warning stimulus (S1) predicts the ap-
pearance of an imperative stimulus (S2) in a fixed inter-
stimulus-interval (ISI). For simulating anticipatory and non-
anticipatory behaviors we used a CNV paradigm with rele-
vant (GO) and irrelevant (NOGO) conditions ( See Fig. 1
for the CNV paradigm used in the current study and refer
[10] for more details).

(a) (b)

Fig. 1. The CNV experimental setup. An warning stimulus
(S1) at time t = 0s is displayed and then an imperative stim-
ulus (S2) with a red dot on the screen is presented with ISI of
4s. (a) the GO condition is represented by a green flash for
S1 and subjects are instructed to anticipate and press a but-
ton as soon as S2 is presented. (b) the NOGO condition is
represented S1 by a yellow dot. The subjects are instructed
to do nothing for this condition.

2.1. Data acquisition and prepossessing

The EEG signals were acquired for 9 subjects using 32 (sub-
jects 4, 5 and 9) or 64 (remaining 6 subjects) electrodes ac-
cording to the 10/20 international system with a sampling
rate of 512Hz in 4 sessions with 50 trials in each session
with equi-probable GO and NOGO conditions. Raw EEG
signals were first spatially filtered by using a common av-
erage reference (CAR), then filtered using a low-pass filter

with cut off frequency of 15Hz. The trials were extracted
and separated into GO and NOGO trials using S1 as the
reference with [-1.0 5.0]s as total trial interval. Baseline is
computed using window of [-1 0]s.

2.2. ERP grand averages
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Fig. 2. ERP grand average of 6 subjects for GO and NOGO
conditions at different electrode sites (reported for 64 elec-
trode EEG setup; Similar observations are made for 32 elec-
trode setup)

The EEG grand averages as computed over subjects for
GO and NOGO conditions show clear differences (see Fig.
2). An evoked response due to S1 is observed in around
0.3s to 0.4s, in both conditions. The potential at Cz dur-
ing GO condition is composed of an early peak around 1s
and a late peak between 3.5s and 4.0s which is consistent
with previous studies [7]. Both components are atributed
to alertness and expectancy with motor preparation as an
extra component in the late peak. Although both compo-
nents are discriminable at the Cz electrode activity, the early
and late components are also visible in other electrodes (see
Fig. 2). The early component is prominently discriminable
in the fronto-central electrodes (Fz, FCz, and Cz), which is
likely due to subject’s attentiveness to the warning stimuli
[7]; while the late component is prominent in the central
(C1, C2, C3, C4, FCz, Cz and CPz) which is likely due to
subjects’ motor preparation [7]. It is worth noting that the
subjects considered in the current study were naı̈ve except
for subjects 1, 2 and 5 who had a little experience with the
protocol. From the grand averages of each subject’s poten-
tials at Cz electrode as shown in the Fig. 3, it is also clear
that each individual has a different evolution of CNV po-
tential and is more discriminable from the NOGO condition
for the experienced subjects than for the naı̈ve subjects.
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Fig. 3. The ERP grand averages computed for potentials at
Cz electrode separately for 9 subjects (solid green line for
the GO condition and broken line for the NOGO condition).

3. METHODS

In this section we introduce briefly the CCD inverse method
followed by channel selection method to obtain the most
discriminable channels and the classification method used
in the current study.

3.1. Estimated cortical activity

EEG signals represent the noisy spatio-temporal overlap-
ping of activity arising from very diverse brain regions, i.e.,
a single scalp electrode picks up the mixed temporal activ-
ity of myriads of neurons at very different brain areas. Un-
mixing methods are likely to improve the signal to noise
ratio (SNR) which could help in computing reliable clas-
sifiers. These methods are under determined and lead to
non-unique solutions. However, using constraints based on
biophysical properties of the neural tissue and a head model
lead to a unique and realistic solution.

The CCD inverse method is based on distributed linear
inverse estimation of a dipole activity whose orientation is
assumed to be perpendicular to a small triangular patch of
cortical mantle. The shape of the cortical mantle is divided
into 3013 triangular patches (vortices) and is obtained us-
ing an average head model. Since this estimation is based
on weighted minimum-norm, it forces the dipoles to com-
prehend the recorded EEG signals with minimum energy
without penalizing the deeper sources (see [2, 4, 5] for more
details).

Fig. 4 shows topographic representations of the ERP
grand averages of the estimated cortical activity using CCD
inverse method for GO and NOGO conditions at the early

(a)

Fig. 4. Topographic maps of the estimated cortical activity
for GO and NOGO trials obtained using the CCD inverse
of EEG grand averges (computed using EEG of six subjects
recorded with 64 electrode configuration; we removed outer
electrodes, that are prone to artifacts, in computing CCD
inverse matrix) shown at the time of early-peak (time 1.0 s)
and of late-peak (at time 3.5 s) of the CNV potential (the
orientation of the nose is to the bottom)

peak and late peak timings. It can be observed that the
negativity of the dipoles increases in the fronto-central and
centro-parietal areas in both hemispheres. The early com-
ponent appears in the fronto-central areas and, as time pro-
gresses, the negativity spreads over central and centro-parietal
areas. This observation reinforces the idea that the activity
due to anticipatory behavior is not focused in one area and
the use of features computed from the activity from mul-
tiple sources is likely to improve the classification accura-
cies. However, the projection of surface EEG channel data
to CCD estimated dipole activity results in a dramatic in-
crease in the number of available channels. This leads to
the problem of choosing the most discriminable channels
among all the available channels.

In this following subsections we address the question–
“Given the signals from a large number of channels, how to
choose the best K channels for calculating classifiers?”. To
address it we first perform feature selection as explained in
the following paragraphs.

3.2. Feature selection

Since the CNV potential exhibits a slowly increasing neg-
ativity, it is usually characterized by its slope [12, 7]. In
the current paper instead of the slope alone, we propose
to use higher order features such as coefficients of least
square estimated polynomial (αi; ṽCz = α0 +α1t

1 + . . .+



αnt
n). Each trial is then described by the feature vector

s = [α0 α1 α2 . . . αn]T . To find the best polynomial or-
der (n) for a given subject we first explore orders in the
range 1, 2 ... 6 and compare the channel discriminant power
(ρc) using Cz electrode activity as follows (note thats, n = 1
means that the signal is approximated with a line and fea-
tures are the slope and the offset of the line).

For a given feature, f (polynomial coefficient in our
case), in a two-class scenario the ρ is calculated as the por-
tion of samples lying in the non overlapping zones between
boundaries of each class. Being f1 and f2 are features for
each class, ρ is given by,

ρ(f) =
ηf1 + ηf2

Nt1 +Nt2
(1)

where, ηf1 and ηf2 are the number of discriminant samples
of each class located in non-overlapping zones, given by,

ηf1 =
Nt1∑
i=1

(1(sf1(i) > max(sf2))+1(sf1(i) < min(sf2)))

(2)

ηf2 =
Nt2∑
i=1

(1(sf2(i) > max(sf1))+1(sf2(i) < min(sf1)))

(3)
where, Nt1 and Nt2 are number of trials of each class,
sf1 and sf2 are vectors of feature f of class 1 and 2. And
min(sfk) and max(sfk) defines the boundaries of feature
distribution of kth class, and 1(x) is function defined by

1(x) =

{
1 if x is true
0 otherwise

(4)

The ρ is a value in [0 1], represents non-overlapping region
in the sample distribution of that feature for the two classes.
If ρ = 0, it means the distributions are fully overlapped and
ρ = 1 means no overlap (see [3] for more details). The
above formula is devised with the assumption that the fea-
tures follow unimodal distribution. However, we pruned the
feature set to remove the outliers from the distribution with
a confidence interval of [µ− 1.77.σ;µ+1.77.σ] (this range
is chosen arbitrarily). The discriminant power of the chan-
nel, ρc, is computed as the mean ρ of all the features (co-
efficients). The best polynomial order for a given subject is
chosen based on the highest ρc computed using the Cz elec-
trode alone. Once the best order is selected for a subject it
is kept constant for the next step where we chose the best
channels.

3.3. Channel selection

The channel selection in the case of EEG refers to choos-
ing best K channels from 21 or 41 electrodes for the 32 and
64 electrode setup respectively (we removed the peripheral

electrodes to avoid artifacts). The channel selection in the
case of CCD vortices is choosing the best K channels from
3013 vortices. For both cases we compute ρc for each chan-
nel using the best polynomial order obtained in the previous
step. We sort the channels based on the ρc value and then
chose channels that have ρc in the range of [ (100−P ).ρc

100 ρc].
For example if the highest ρc is 0.8 and if P = 10% then we
choose the channels whose ρc are in the range of [0.72 0.8]
for building the classifier.

3.4. Classification

Once the best K channels are chosen based on the chan-
nel selection procedure as explained above, we train a lin-
ear discriminant analysis (LDA) classifier [13]. The fea-
ture vector is the concatenation of the coefficients of the
best polynomial approximation for the selected channels.
We treat the features as independent (i.e., we constrained
to diagonal covariance matrices in finding projection matrix
for LDA) to avoid the problem of over-fitting which arises
due to large number of features compared to the number of
trials. We then compare classification accuracies obtained
with different values of P . The results of this comparison
are explained in detail in the next section.

4. RESULTS

Since the subjects were informed to press a button on the
arrival of S2 (i.e., after 4 s) as explained in the section 2, we
computed features using potentials recorded up to 3.5 s after
the onset of S1 so as to avoid any movement related poten-
tial that could contaminate the anticipation process [7]. To
asses the generalization capabilities over time, we used the
first three sessions as training data and the last session as
test data. This way of splitting EEG data yields a better un-
biased estimate of the generalization capabilities of a classi-
fier than, e.g., one-leave-out due to non-stationarity of brain
signals. In following paragraphs we compare the classifica-
tion accuracies of channel selection method applied to EEG
electrodes and CCD estimated cortical activity to baseline
accuracies.

Firstly, we computed the baseline accuracies using the
best order given by the feature selection method explained
in the section 3.2 using the potentials recorded using Cz
electrode. Table. 1 shows the best orders and correspond-
ing baseline accuracies. For most of the subjects the best
order is 1 (i.e. using slope and offset as features). Although
the baseline accuracies for most of the subjects are close
to chance level, for subjects 1, 2 and 5 (with some experi-
ence with protocol) the classification accuracies are 69.4%,
81.6% and 65.3% respectively, are far from chance level.

Secondly, we applied channel selection method as ex-
plained in section 3.3 to EEG electrodes and computed clas-



Table 1. Baseline performances : The best order and test
accuracies using the features of Cz electrode features.

Subject Best order Accuracy (%)
1 1 69.39
2 1 81.63
3 1 41.67
4 1 42.00
5 1 65.31
6 1 50.00
7 1 48.00
8 1 45.83
9 3 44.00

sifiers for different values of P . We compare the classifica-
tion accuracies with baseline accuracies separately for each
subject in Fig. 5. As it can be seen from the figure, for
six subjects (3, 4, 6, 7, 8 and 9) this method significantly
improved the accuracies compared to the baseline. How-
ever, for the remaining subjects the accuracies are close to
the baseline. The number of selected channels, K, for each
subject for different values of P are shown in Fig. 6. The
number of channels increase exponentially after a certain
value of P for most of the subjects. However, for subject
5 the selected channels does not vary and stays at one and
is Cz electrode. This is due to the reason that Cz electrode
for this particular subject is far better discriminable than any
other electrode.

Thirdly, we applied channel selection method to CCD
estimated cortical activity and obtained classification accu-
racies for different values of P as shown in the Fig. 5. From
the figure it is evident that for all the subjects except sub-
ject 2 and 8 there is a significant improvement with CCD
method compared to the baseline accuracies. This improve-
ment is particularly significant for the subjects 3, 4, 6, 7
and 9 who have not produced a clear CNV potential on the
grand averages (see Fig. 3) and the baseline accuracies are
close to chance level. The channel selection method ap-
plied to CCD vortices lead to better accuracies for most of
the subjects (except subject 2 and 8) in comparison to EEG
electrodes. The number of selected vortices as function of
P is exponential for all the subjects (see Fig. 6).

5. DISCUSSION

Signals recorded using surface EEG is a noisy spatio-temporal
mixture of cortical sources. Un-mixing methods based on
biophysical properties can be used for improving not only
spatial resolution but also SNR which can be helpful for
computing classifiers for BCI. Previous studies reported im-
provement in classification accuracies with the use of linear
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Fig. 5. Comparison of classification accuracies obtained for
Cz electrode features with that of channel selection for EEG
electrodes and CCD vertexes for different thresholds of P
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Fig. 6. Number of channels selected (K) for EEG (blue line
with squares) and CCD (red line with triangles) for different
thresholds of P

inverse methods for the classification mental imagery [1, 2]
and cognitive states [3]. In the current paper we studied the
use of CCD inverse method for the recognition of anticipa-
tion related potentials which are shown to be exploited for
BCI [9, 10, 11]. One of the challenges in working with es-



timated cortical potentials is that the number of available
channels get multiplied drastically and a method for choos-
ing a subset of them for calculating classifiers is essential.
In the current paper we address this issue by using a channel
selection scheme that selects channels with most discrimi-
nant power. We tested this scheme with surface EEG chan-
nels (21 or 41 channels) as well as CCD estimated cortical
activity (3013 channels).

Comparing the accuracies obtained with the EEG chan-
nel selection to baseline accuracies obtained with Cz elec-
trode potentials we observe that for most subjects there is
an improvement (except for three subjects), suggesting that
using multi-electrode features may lead to more robust clas-
sifiers. Furthermore, the use of the CCD inverse method
results in a significant improvement over baseline for most
subjects. This improvement is particularly significant for
the subjects whose baseline accuracy is close to chance level
(see Fig. 5) and the CNV potential on ERP grand aver-
ages is not so clear (see Fig. 3). The variation in accuracy
across the subjects is likely due to the fact that subjects 1, 2
and 5 are slightly experienced with the protocol beforehand
whereas the other subjects are completely naı̈ve. The CCD
vortex selection based classification outperforms the EEG
electrode selection for most of the subjects suggesting that
the CCD inverse method improves SNR leading to better
discriminable features than EEG.

Recently it has been demonstrated on-line operation of
a BCI system using CCD inverse technique [2]. It was fea-
sible due to the fact that most of the computation is per-
formed during offline stage and on-line processing requires
just one matrix multiplication. Presented results show that
for some subjects, CCD-based classification performance is
at least as good as classifiers based on a single electrode
(Cz). Moreover, it has been hypothesized that experience
allows subjects to better modulate these signals [9, 11, 12].
Taking this into account, we can devise a scheme were clas-
sification is initially based on inverse solutions, and if sig-
nals are observed to have a better separability (e.g. through
subject training), the BCI can switch to a lighter Cz feature-
based classifier.
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