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Abstract. The block cipher MMB was designed by Daemen, Govaerts
and Vandewalle, in 1993, as an alternative to the IDEA block cipher. We
exploit and describe unusual properties of the modular multiplication
in ZZ232−1, which lead to a differential attack on the full 6-round MMB
cipher (both versions 1.0 and 2.0). Further contributions of this paper
include detailed square and linear cryptanalysis of MMB. Concerning
differential cryptanalysis (DC), we can break the full MMB with 2118

chosen plaintexts, 295.91 6-round MMB encryptions and 264 counters,
effectively bypassing the cipher’s countermeasures against DC. For the
square attack, we can recover the 128-bit user key for 4-round MMB
with 234 chosen plaintexts, 2126.32 4-round encryptions and 264 mem-
ory blocks. Concerning linear cryptanalysis, we present a key-recovery
attack on 3-round MMB requiring 2114.56 known-plaintexts and 2126 en-
cryptions. Moreover, we detail a ciphertext-only attack on 2-round MMB
using 293.6 ciphertexts and 293.6 parity computations. These attacks do
not depend on weak-key or weak-subkey assumptions, and are thus in-
dependent of the key schedule algorithm.

Keywords: MMB block cipher, differential cryptanalysis, square cryptanaly-
sis, linear cryptanalysis, modular multiplication.

1 Introduction

The block cipher MMB (Modular Multiplication Based) block cipher [4] was
designed by Daemen, Govaerts and Vandewalle in 1993, and its main innovation
was the use of cyclic multiplication in the ring ZZ2n−1, where n is the word
size of the cipher. All internal operations of MMB are on n-bit words. The
designers suggested n = 32, leading to the ring ZZ232−1. MMB is an iterated
cipher, composed of six rounds. MMB was proposed as an alternative to the
IDEA block cipher [8]. MMB has been designed particularly to resist differential
cryptanalysis [6]. This paper presents differential, square and linear cryptanalysis
of the MMB cipher. Previous cryptanalysis of MMB was a related-key attack and
only applied to MMB version 1.0, according to [6]. In order to resist the related-
key attack, MMB version 2.0 was proposed by revising only the key schedule
algorithm. As far as we know, there is no previous attack on MMB version 2.0.
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However, our attacks are independent of the key schedule algorithm, so they can
be applied to both versions 1.0 and 2.0.

In this paper, firstly we present differential cryptanalysis of the full 6-round
MMB. Five-round differential characteristics have been identified, and we can
recover the 128-bit user key with 2118 chosen plaintexts (CP), 295.91 6-round
MMB encryptions and 264 memory blocks. Secondly, we investigate the square
attack on reduced-round MMB. We distinguished a new word type: X word,
based on which we have found 2.75-round square distinguishers and applied the
square attack to 4-round MMB. We can recover the 128-bit user key with 234

CP, 2126.32 4-round encryptions and 264 memory blocks. Thirdly, we apply linear
cryptanalysis to reduced-round MMB. We identified two linear approximations
with bias 2−55.78 for 3-round MMB and recover one-bit subkey information for
3-round MMB with 2114.56 known plaintexts (KP) and equivalent parity com-
putations; then recover 128-bit key for 3-round MMB with 2114.56 KP and 2126

3-round MMB encryptions. Moreover, we can attack 2-round MMB with 293.6

ciphertexts only (CO). From our attacks, particularly concerning differential
cryptanalysis, we disprove the claims of the designers that MMB can resist DC.

The paper is organized as follows. Sec. 2 describes the MMB cipher. Sect. 3
presents the differential attack on the full MMB, and Sect. 4 details a square
attack on a 4-round MMB. The linear attack on reduced-round MMB is provided
in Sect. 5. Sect. 6 concludes the paper.

2 Description of the MMB Block Cipher

The MMB block cipher has a Substitution-Permutation Network (SPN) struc-
ture and operates on 128-bit text blocks, uses a 128-bit key, and iterates six
rounds. One round of MMB consists of four transformations [6]:

– σ[kj ]: exclusive-or each data word with the j-th round subkey kj . Formally,

σ[kj ](a0, a1, a2, a3) = (a0 ⊕ kj0, a1 ⊕ kj1, a2 ⊕ kj2, a3 ⊕ kj3),

where ⊕ denotes bitwise exclusive-or, ai, k
j
i ∈ ZZ232 , for 0 ≤ i ≤ 3. The

σ[kj ] operation is an involution, and is the only key-dependent operation in
a round.

– γ: modular multiplication of each data word with fixed 32-bit constants Gi,

γ(a0, a1, a2, a3) = (a0 ⊗G0, a1 ⊗G1, a2 ⊗G2, a3 ⊗G3),

where a ⊗ b = a ∗ b mod (232 − 1), G0 = 025F1CDBx, G1 = 2 ⊗ G0 =
04BE39B6x,G2 = 8⊗G0 = 12F8E6D8x, andG3 = 128⊗G0 = 2F8E6D81x
which can be efficiently computed since (A ∗ 2x) mod (232 − 1) = (A ≪
x) mod (232 − 1). There is a wrap-around effect in multiplication modulo
232 − 1, since 232 ≡ 1 mod (232 − 1), which means that the bits at the
(32 + i)-th LSB position are shifted to the i-th LSB position. This effect is
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similar to the multiplication operation modulo 216 + 1 in IDEA. As cited in
[6], the ⊗ operation can be expressed as:

a⊗ b = a ∗ b mod (232 − 1) = (a ∗ b mod 232 + ba ∗ b
232
c) mod (232 − 1).

Notice that γ is invertible but is not an involution. Each 32-bit multiplication
can be interpreted as a huge 32 × 32-bit S-box, since one of the operands
in the multiplication is always fixed. There are two fixed points for any Gi:
0⊗Gi = 0, and (232 − 1)⊗Gi = 232 − 1.

– η: a data-dependent transformation operating on two out of the four input
words (a0, a1, a2, a3):

η(a0, a1, a2, a3) = (a0 ⊕ (lsb(a0) ∗ δ), a1, a2, a3 ⊕ ((1⊕ lsb(a3)) ∗ δ)),

where ’lsb’ denotes the least significant bit, and δ = 2aaaaaaax; η is an
involution and a non-linear operation. η is used to resist the propagation of
the differential characteristics with probability 1.

– θ: the only diffusion operation in MMB. Formally,

θ(a0, a1, a2, a3) = (a3 ⊕ a0 ⊕ a1, a0 ⊕ a1 ⊕ a2, a1 ⊕ a2 ⊕ a3, a2 ⊕ a3 ⊕ a0),

where ai ∈ ZZ232 , with 0 ≤ i ≤ 3. θ is an involution and has branch number
four (see [11]).

There are two pairs of operations that can be interchanged: (θ, σ[kj ]) and (η,
σ[kj ]). In each case, the key kj is transformed into an equivalent key θ(kj) or
η(kj), respectively.

The j-th (full) round transformation of MMB can be denoted:

ρ[kj ](X) = θ ◦ η ◦ γ ◦ σ[kj ](X) = θ(η(γ(σ[kj ](X)))) . (1)

The full MMB encryption of a plaintext P can be denoted:

MMB(P ) = σ[k6] ◦ ρ[k5] ◦ ρ[k4] ◦ ρ[k3] ◦ ρ[k2] ◦ ρ[k1] ◦ ρ[k0](P ) , (2)

where σ[k6] is the output transformation or post-whitening operation.
In the original key schedule of MMB version 1.0, the first round subkey

is simply the 128-bit user key K = (k0, k1, k2, k3). Successive subkeys use K
rotated by 32 bits to the left. So, for instance, (k1, k2, k3, k0), (k2, k3, k0, k1) and
so forth. A redesigned key-schedule to avoid related-key attacks has led to a
tweaked cipher called MMB version 2.0 [6] in which a constant value is xored to
the leftmost 32-bit subkey word after each rotation.

3 Differential Cryptanalysis of the Full MMB

Differential cryptanalysis (DC) [3] exploits the propagation of particular differ-
ences of plaintext pairs across a cipher, to certain differences of the resultant
ciphertext pairs. The designers of MMB claimed that an important design cri-
terion was resistance against DC in [4], but we break the full MMB using DC.
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3.1 Differential Characteristics for MMB

The main component in the round function of MMB responsible for the con-
fusion property (according to C. Shannon) is γ. Thus, for the cryptanalyst it
is very important to minimize the number of active multiplications in order to
maximize the probability of the differential characteristics. The possible distri-
butions of active modular multiplications are listed in Table 2. In the leftmost
column, the input difference is said to cause (denoted with an arrow, 1r→) the
given output difference after one round. The second column shows the number
of active multiplications. The rightmost column shows the restrictions on the
output difference of active multiplications, which account for η. Due to θ, the
output differences from the active multiplications in one round all have to be
equal. For each row in Table 2, we denote the input difference as ∆ij , (0 ≤ j ≤ 3)
and the output difference as ∆o.

In order to identify 2-round characteristics for MMB with the highest prob-
ability, we only consider two active multiplications per round. An important
property for the modular multiplication operation γ has been described in [6]

Rp(0̄
γ→ 0̄) = 1,

where 0̄ = 232 − 1 = ffffffffx. This property means that the differential
characteristic 0̄

γ→ 0̄ holds with probability 1, leading to the following 2-round
characteristic with probability 1:

(0, 0̄, 0̄, 0)
σ[k0]→ (0, 0̄, 0̄, 0)

γ→ (0, 0̄, 0̄, 0)
η→ (0, 0̄, 0̄, 0) θ→ (0̄, 0, 0, 0̄)

σ[k1]→ (0̄, 0, 0, 0̄)
γ→ (0̄, 0, 0, 0̄)

η→ (0̄⊕ δ, 0, 0, 0̄⊕ δ) θ→ (0, 0̄⊕ δ, 0̄⊕ δ, 0).

Then, we further extend the 2-round characteristic by two rounds above it and
one round below it. For the lower round, the following differential characteristic
needs to be determined:

(0, 0̄⊕ δ, 0̄⊕ δ, 0)
σ[k2]→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)

γ→ (0, α1, α2, 0).

We identified the characteristics 0̄⊕δ G1→ fcfbdfffx and 0̄⊕δ G2→ f3ef7fffx,
both of which have probability about 2−18. With them, we construct a 3-round
differential characteristic with probability 2−36 as follows:

(0, 0̄, 0̄, 0) 1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)
σ[ki]→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)

γ→ (0, fcfbdfffx, f3ef7fffx, 0)
η→ (0, fcfbdfffx, f3ef7fffx, 0)

θ→ (fcfbdfffx, 0f14a000x, 0f14a000x, f3ef7fffx).

For the upper round, the following differential characteristic needs to be
determined:

(β0, 0, 0, β3)
σ[ki]→ (β0, 0, 0, β3)

γ→ (0̄⊕ δ, 0, 0, 0̄⊕ δ) η→ (0̄, 0, 0, 0̄) θ→

(0, 0̄, 0̄, 0) 1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0) 1r→
(fcfbdfffx, 0f14a000x, 0f14a000x, f3ef7fffx).
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In order to further extend the above 4-round characteristic by one round
above it, we only consider the cases β0 = β3. In this way, we identified the
characteristics a7cfdf7fx

G0→ 0̄⊕δ and a7cfdf7fx
G3→ 0̄⊕δ, both with probability

about 2−21. So, a 4-round characteristic with probability 2−42 · 2−36 = 2−78

has been constructed. Then, we further extend the 4-round characteristic. The
following characteristic needs to be determined,

(0, ξ1, ξ2, 0)
σ[ki]→ (0, ξ1, ξ2, 0)

γ→ (0, a7cfdf7fx, a7cfdf7fx, 0)
η→ (0, a7cfdf7fx, a7cfdf7fx, 0) θ→ (a7cfdf7fx, 0, 0, a7cfdf7fx)

1r→ (0, 0̄, 0̄, 0) 1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)
1r→ (fcfbdfffx, 0f14a000x, 0f14a000x, f3ef7fffx).

We identified the characteristics 9bd3fdf7x
G1→ a7cfdf7fx and e6f4ff7dx

G2→
a7cfdf7fx, both with probability about 2−14. With them, we construct a 5-round
characteristic with probability 2−28 · 2−78 = 2−106 as follows:

(0, 9bd3fdf7x, e6f4ff7dx, 0) 1r→ (a7cfdf7fx, 0, 0, a7cfdf7fx) (3)
1r→ (0, 0̄, 0̄, 0) 1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)

1r→ (fcfbdfffx, 0f14a000x, 0f14a000x, f3ef7fffx).

With the 5-round characteristic in (3), we cannot attack the full 6-round
MMB because the S/N is too small. In order to increase the S/N, we found
another 5-round differential characteristic with probability 2−110 as follows:

(0, 9bd3fdf7x, e6f4ff7dx, 0) 1r→ (a7cfdf7fx, 0, 0, a7cfdf7fx) 1r→ (0, 0̄, 0̄, 0)
1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0) 1r→ (40404040x, 0, 0, 40404040x), (4)

where the characteristics 0̄ ⊕ δ
G1→ 40404040x and 0̄ ⊕ δ

G2→ 40404040x have
probability about 2−20. Although the probability of (4) is lower than that of
(3), the ratio of the counted to all pairs of ciphertext decreases prominently.
Therefore we use (4) to attack the full 6-round MMB cipher.

The 6-round MMB encryption of a plaintext P is depicted in (2). In order to
decrease the time complexity, we move σ[k6] to the front of θ in the 6th round;
σ[k6] will be transformed to σ[k6′], where k6

0
′ = k6

0 ⊕k6
1 ⊕k6

3; k6
1
′ = k6

0 ⊕k6
1 ⊕k6

2;
k6
2
′ = k6

1 ⊕ k6
2 ⊕ k6

3 and k6
3
′ = k6

0 ⊕ k6
2 ⊕ k6

3. Thus, we will recover the equivalent
subkey k6′.

3.2 Attack Algorithm

We choose 254 structures of 264 chosen plaintexts each. In each structure, the
second and third words of the plaintext can together take 264 possible values.
There are 263 plaintext pairs with the difference (0, 9bd3fdf7x, e6f4ff7dx, 0) in
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each structure. So, the total number of pairs in 254 structures is 254 · 263 = 2117.
The differential characteristic has probability 2−110, so the number of the right
pairs is 2117 · 2−110 = 27 = 128. For each structure, there are about 263 pairs of
plaintexts to be considered in total.

Since the output difference of the 5th round for a right pair is (40404040x, 0,
0, 40404040x), the difference of the ciphertext pairs should be (α ⊕ β, α, β, α ⊕
β), with α, β ∈ ZZ232 , so we can use this to discard wrong pairs. Thus, about
263 · 2−64 = 2−1 candidates for the right pairs remain from each structure.

The input difference of the 6th round is (40404040x, 0, 0, 40404040x). We
found that the numbers of possible output difference values given the input
difference 40404040x for the modular multiplication G0 or G3 is 6738641/232 =
2−9.32, so about 2−1 · 2−18.64 = 2−19.64 candidates for the right pairs remain for
each structure. The total number of remaining pairs in all the 254 structures is
254 · 2−19.64 = 234.36.

For each remaining ciphertext pair (C0, C1, C2, C3) and (C0
′, C1

′, C2
′, C3

′),
we guess the equivalent subkey words k6

0
′ and k6

3
′, and the total number of

guessed subkey bits is 64. Then, calculate ξ0 = (G−1
0 ⊗ (η(C0 ⊕ C1 ⊕ C3 ⊕

k6
0
′))) ⊕ (G−1

0 ⊗ (η(C0
′ ⊕ C1

′ ⊕ C3
′ ⊕ k6

0
′))) and ξ3 = (G−1

3 ⊗ (η(C0 ⊕ C2 ⊕
C3 ⊕ k6

3
′)))⊕ (G−1

3 ⊗ (η(C0
′ ⊕ C2

′ ⊕ C3
′ ⊕ k6

3
′))). If both ξ0 and ξ3 are equal to

40404040x, the counter corresponding to (k6
0
′
, k6

3
′) will be incremented by one.

For G0 and G3 with the inputxor 40404040x and any given outputxor, there
will be at most 217 pairs, so the maximum count per counted pair of the subkey
words will be 217 · 217 = 234.

In our attack, the signal-to-noise ratio is computed as follows:

S/N = p·2k
α·β = 2−110·264

2−64−18.64·234 = 22.64 = 6.23.

The success probability is computed as follows[1]:

Ps =
∫∞
−
√
µS/N−Φ−1(1−2−a)√

S/N+1

Φ(x)dx = 0.99999999,

where a = 64 is the number of subkey bits involved in the decryption and µ is
the number of right pairs which can be obtained µ = p ·N = 2−110 · 2117 = 128.
With probability 0.99999999 the right key can be recovered.

The attack needs 2118 CP and 235.36 ·264 ·2 = 2100.36 modular multiplications,
which is no more than 2100.36/4 = 298.36 1-round MMB encryptions, equivalent
to 298.36/6 = 295.91 6-round MMB encryptions. The memory requirements are
about 264 64-bit counters. The remaining 64-bit equivalent subkey k6

1
′ and k6

2
′

can be recovered by exhaustive search with about 264 6-round MMB encryptions.
Finally, the 128-bit user key can be derived. In all, the data complexity is 2118

CP, the time complexity is 295.91 6-round MMB encryptions and the memory
requirements are 264 64-bit blocks.
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4 Square Analysis of MMB

MMB is a word-oriented cipher. More precisely, it operates on neatly partitioned
32-bit words. This wordwise behavior motivates our square analysis. Our attacks
use Λ-sets of 232 CP. We use the terminology of [7].

4.1 Square Distinguisher

Due to the special property for modular multiplication, we discovered a new
word type: X word, which can propagate across γ. The X word is very useful
for us to identify four chains of Λ-sets, each of which represents a 2.75-round
square distinguisher if we consider every round transformation σ, γ, η and θ as
a fraction of 0.25 of a (full) round.

– (A,C,C,C) 1r→ (A,A,C,A) 1r→ (X,B,B,E)
σ[k2]→ (X,B,B,E)

γ→ (X, ?, ?, E)
η→ (B, ?, ?, E),

– (C,A,C,C) 1r→ (A,A,A,C) 1r→ (B,B,E,B)
σ[k2]→ (B,B,E,B)

γ→ (?, ?, E, ?)
η→ (?, ?, E, ?),

– (C,C,A,C) 1r→ (C,A,A,A) 1r→ (B,E,B,B)
σ[k2]→ (B,E,B,B)

γ→ (?, E, ?, ?)
η→ (?, E, ?, ?),

– (C,C,C,A) 1r→ (A,C,A,A) 1r→ (E,B,B,X)
σ[k2]→ (E,B,B,X)

γ→ (E, ?, ?, X)
η→ (E, ?, ?, B),

where ’A’ indicates an active word; ’C’ denotes a passive (or constant) word; ’B’
denotes a balanced word, that is, the xor sum of whose contents gives zero; ’X’
denotes another special balanced word in which any value x and ¬x appear the
same number of times; ’E’ denotes a special balanced word in which each value
appears an even number of times [2]; ’?’ indicates that the xor sum of the 32-bit
in that word is an unpredictable value. The proofs of the propagation of Λ-sets
can be found in Appendix A.

4.2 Square Attack on 4-round MMB

With any of the above square distinguishers, the key-recovery attack on 4-round
MMB can be applied.

Consider the square distinguisher (A,C,C,C) 1r→ (A,A,C,A) 1r→ (X,B,B,E)
σ[k2]→ (X,B,B,E)

γ→ (X, ?, ?, E)
η→ (B, ?, ?, E). A full 4-round MMB consists of

σ[k4] ◦ θ ◦ η ◦ γ ◦ σ[k3] ◦ θ ◦ η ◦ γ ◦ σ[k2] ◦ θ ◦ η ◦ γ ◦ σ[k1] ◦ θ ◦ η ◦ γ ◦ σ[k0].

We aim at recovering k4 by partial decryption. We also move σ[k4] across θ. We
denote the modified key as k4′. Further, we can remove θ because it is invertible
and key independent.

The attack procedure is as follows:
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– Step 1: Choose 232 plaintexts (x, c10, c2
0, c3

0), x ∈ ZZ232 , c10, c2
0 and c30 are

constants.
– Step 2: Guess the 32-bit words k4

0
′, k4

1
′ and k4

3
′ of k4′. Apply the inverse

of η and γ, xor the three words to obtain a new word. If the new word is
balanced, save the subkey value. On average, 264 subkey values are saved.

– Step 3: for i := 1 to 3 do
• Step 3.1: Choose a new group of 232 plaintexts (x, c1i, c2i, c3i), x ∈ ZZ232 ,
c1
i, c2

i and c3
i are constants.

• Step 3.2: For each saved subkey value, apply the inverse of η and γ, xor
the three words to obtain the new word. If the new word is not balanced,
delete the subkey value.

– Step 4: The remaining subkey value should be the right subkey with high
probability.

The total number of guessed subkey bits is 96, only one Λ-set cannot identify the
right subkey; on average, 264 wrong guesses also satisfy the balanced property.
So, we choose different constant values of the later three words in plaintexts to
construct four Λ-sets. We expect any wrong subkey value to satisfy the balanced
property with probability 2−32, but, the right subkey value must satisfy the
balanced property always.

In total, the complexity is about (296 + 264 + 232 + 1) · 232 = 2128 1.25-round
decryptions; 234 CP, and memory of 264 96-bit counters. For the third word
of k4′, we can recover it by exhaustive search. In total, the time complexity is
2128 · 1.25 + 6 · 232 = 2128.32 1-round decryptions, or equivalently, 2128.32/4 =
2126.32 full 4-round MMB encryptions. The data complexity will be 234 CP. The
memory complexity is 264 text blocks.

5 Linear Attacks on MMB

Linear cryptanalysis typically works in a known-plaintext or ciphertext-only set-
ting (in the latter, assuming the plaintext is ASCII text), and its origin dates
back to the works of Matsui on DES [9, 10].

5.1 Linear Approximations for MMB

In MMB, the main non-linear operation that limits the effectiveness of linear
approximations is the multiplication in ZZ232−1, namely γ. Let Mi = (mi0, mi1,
mi2, mi3) and Mo = (mo0 ,mo1, mo2, mo3) denote the linear input mask and the
linear output mask of γ, respectively. Any nonzero mij (and moj), for 0 ≤ j ≤ 3,
represents an active multiplication.

As in the differential cryptanalysis in Sect.3, the possible distributions for
active multiplications in linear approximation are listed in Table 3. mo and
mij , (0 ≤ j ≤ 3) represent the input mask and the output mask, respectively.
Besides the γ component, η is also non-linear. To avoid the effect of η on linear
approximations, it is necessary to guarantee that the output mask mo for the
active Gi satisfies mo · δ = 0, where · is the dot product.
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We recall the rotational invariant property [5] of multiplication modulo 232−1,

a⊗ (x << k) = (a⊗ x) << k.

The linear approximation for one multiplication can be used to obtain the linear
approximation for the other three multiplications. The bias ε for mi1

G1→ mo and
the bias ε′ for mi1 ≪ 2 G2→ mo will be equal. In particular, with the rotational
property, for mi = 0̄ and mo = 0̄, the biases for the linear approximation of mul-
tiplication for all Gi are equal (to 2−12.0897). But, the mask 0̄ is not appropriate
concerning η. The corresponding bias for a one-round linear approximation is
zero because 0̄ · δ = 1.

In order to construct multi-round linear approximations, the output masks
for different active multiplications must be equal. From the experiments of dif-
ferent masks for Gi, we conjecture that the linear approximations for modular
multiplication with maximum bias have the following forms:

mmmmmmmmx
Gi→ nnnnnnnnx,

m0m1m0m1m0m1m0m1x
Gi→ n0n1n0n1n0n1n0n1x,

m0m1m2m3m4m5m6m7x
Gi→ m0m1m2m3m4m5m6m7x,

(5)

where m,n,mi, ni ∈ ZZ24 , 0 ≤ i ≤ 7. The probability for the above linear re-
lations with the maximum bias decreases gradually. We have only searched the
first two linear approximations in (5). The last linear relation needs too large a
test space, so we have not searched it.

Linear Approximations for Modulo Multiplication:

The best linear approximations we identified have bias 2−8.8 for each Gi, and
some of them are

3c3c3c3cx
G0→ 0f0f0f0fx, 3c3c3c3cx

G1→ 1e1e1e1ex,
3c3c3c3cx

G2→ 78787878x, 3c3c3c3cx
G3→ 87878787x.

Based on the above linear approximations for Gi, one-round linear approxima-
tions with only one active multiplication can be obtained with bias 2−8.8.

Two-Round Linear Approximations:

Two-round linear approximations can be obtained with only two active modular
multiplications in each round. For active G0 and G2, for instance

(mi0, 0,mi2, 0) 1r→ (m2, 0,m2, 0) 1r→ (m3, 0,m3, 0), (6)

where mi0, mi2, m2 and m3 are independent 32-bit masks, and 1r means 1-
round linear approximation. The following local approximations are required:
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mi0
G0→ m2, mi2

G2→ m2 and m2
Gj→ m3 for j ∈ {0, 2} with nonzero bias. The

maximum bias we identified was 2−36.82 for 2-round linear approximation:

(1b1b1b1bx, 0, 63636363x, 0) 1r→ (6c6c6c6cx, 0, 6c6c6c6cx, 0)
1r→ (72727272x, 0, 72727272x, 0),

(7)

where the linear approximations for G0 and G2 are

1b1b1b1bx
G0→ 6c6c6c6cx, ε = 2−9.40; 63636363x

G2→ 6c6c6c6cx, ε = 2−9.40;
6c6c6c6cx

G0→ 72727272x, ε = 2−9.78; 6c6c6c6cx
G2→ 72727272x, ε = 2−11.24.

In addition, we identified 2-round linear approximation for active G1 and G3

as follows:
(0,mi1, 0,mi3) 1r→ (0,m2, 0,m2) 1r→ (0,m3, 0,m3). (8)

We identified the maximum bias 2−36.95 for 2-round linear approximation as
follows:

(0, 99999999x, 0, 66666666x) 1r→ (0x, 33333333x, 0, 33333333x)
1r→ (0, 66666666x, 0, 66666666x),

(9)

where the linear approximations for G1 and G3 are

99999999x
G1→ 33333333x, ε = 2−9.56; 66666666x

G3→ 33333333x, ε = 2−9.56;
33333333x

G1→ 66666666x, ε = 2−9.56; 33333333x
G3→ 66666666x, ε = 2−11.27.

Three-Round Linear Approximations:

We found the 3-round linear approximation for active G0 and G2 as follows:

(d8d8d8d8x, 0, 1b1b1b1bx, 0) 1r→ (63636363x, 0, 63636363x, 0)
1r→ (36363636x, 0x, 36363636x, 0x) 1r→ (63636363x, 0, 63636363x, 0),

where the linear approximations for G0 and G2 are

d8d8d8d8x
G0→ 63636363x, ε = 2−9.40; 1b1b1b1bx

G2→ 63636363x, ε = 2−9.40;
63636363x

G0→ 36363636x, ε = 2−13.76; 63636363x
G2→ 36363636x, ε = 2−10.56;

36363636x
G0→ 63636363x, ε = 2−13.76; 36363636x

G2→ 63636363x, ε = 2−10.56.

The bias for the 3-round linear approximation is 2−9.40·2−13.76·2−10.56·2+5 =
2−62.44. Moreover, if G1 and G3 are active, we identified two linear approxi-
mations for 3-round MMB with the maximum bias 2−55.78 as follows:

(0x, 99999999x, 0x, 66666666x) 1r→ (0x, 33333333x, 0x, 33333333x)
1r→ (0x, 66666666x, 0x, 66666666x) 1r→ (0x, 33333333x, 0x, 33333333x),

(10)
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(0, 33333333x, 0, ccccccccx) 1r→ (0, 66666666x, 0, 66666666x)
1r→ (0, 33333333x, 0, 33333333x) 1r→ (0, 66666666x, 0, 66666666x),

(11)

where the linear approximations for G1 and G3 are

99999999x
G1→ 33333333x, ε = 2−9.56; 66666666x

G3→ 33333333x, ε = 2−9.56;
33333333x

G1→ 66666666x, ε = 2−9.56; 33333333x
G3→ 66666666x, ε = 2−11.27;

66666666x
G1→ 33333333x, ε = 2−11.27; ccccccccx

G3→ 66666666x, ε = 2−9.56.

The bias for the two 3-round linear approximations is 2−9.56·2−9.56·2−11.27·2+5 =
2−55.78.

In Appendix B, we list a linear approximation for four rounds, but whose
bias is too low for an effective attack.

5.2 Linear Attack on Reduced-Round MMB

Known Plaintext Linear Attack:

With the 3-round linear approximation in (10), a linear relation involving some
plaintext bits, ciphertext bits and subkey bits can be derived. Using Algorithm
1 in [9], we can deduce the XOR value for the subkey bits involved in the linear
relation. So, we can recover one bit of key information from 3-round MMB using
8 · (2−55.78)−2 = 2114.56 KP and equivalent parity computations. Further, we
can use the 3-round linear approximation in (11) to recover another one bit of
key information from 3-round MMB. In all, two bits of key information can be
recovered. For this step, the time complexity is 2115.56 parity computations. The
remaining 126-bit subkey can be obtained by exhaustive search with about 2126

3-round encryptions. In all, we can recover 128-bit key for 3-round MMB with
2114.56 known plaintexts and 2126 3-round encryptions.

Ciphertext-Only Linear Attack:

If the plaintexts are ASCII, then particular bitmasks involving only the most
significant bit of each plaintext byte may allow a ciphertext-only (CO) linear
attack on MMB. This is a more attractive attack setting than the conventional
known-plaintext (KP) setting, since an opponent only needs ciphertext blocks.
For MMB, we have identified 2-round linear relations with bitmasks that involve
only the most significant bits of bytes in plaintext blocks. The linear relation with
active G0 and G2 is identified as follows:

(80808080x, 0, 80808080x, 0) 1r→ (65656565x, 0, 65656565x, 0)
1r→ (1e1e1e1ex, 0, 1e1e1e1ex, 0),

(12)

where the linear approximations for G0 and G2 are 80808080x
G0→ 65656565x,

with ε = 2−15.74; 80808080x
G2→ 65656565x, with ε = 2−8.85; 65656565x

G0→
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1e1e1e1ex, with ε = 2−15.57; 65656565x
G2→ 1e1e1e1ex, with ε = 2−11.54. The

bias for relation (12) is 2−15.74−8.85−15.57−11.54+3 = 2−48.70. The linear relation
with active G1 and G3 is identified as follows:

(0x, 80808080x, 0x, 80808080x) 1r→ (0x, 59595959x, 0x, 59595959x)
1r→ (0x, 74747474x, 0x, 74747474x),

(13)

where the linear approximations for G1 and G3 are 80808080x
G1→ 59595959x,

with ε = 2−8.85; 80808080x
G3→ 59595959x, with ε = 2−16.83; 59595959x

G1→
74747474x, with ε = 2−11.85; 59595959x

G3→ 74747474x, with ε = 2−10.77. The
bias for relation (13) is 2−8.85−16.83−11.85−10.77+3 = 2−45.30. This bias only leads
to a distinguishing attack on 2-round MMB, with 8 · (2−45.30))−2 = 293.60 CO,
and equivalent number of parity computations.

6 Conclusions

This paper described the first detailed differential, square and linear attacks on
versions 1.0 and 2.0 of the MMB block cipher, a design by Daemen, Govaerts
and Vandewalle, dated from 1993, as an alternative to the IDEA block cipher.
For differential cryptanalysis, the characteristic 0̄

γ→ 0̄ with probability 1 is the
key point towards successful attack of the full MMB cipher. For square attack,
the identical property of 0̄

γ→ 0̄ leads us to identify a new word type, the X
word, which is relevant to identify 2.75-round square distinguishers. Without
it, only 2-round square distinguishers can be found. For linear cryptanalysis,
although the designers did not claim resistance of the MMB cipher against linear
cryptanalysis, it is interesting that we were able to find better differential attacks
than linear attacks.

A summary of our attacks is in Table 1. We have presented both distinguishing-
from-random and key-recovery attacks on the full and reduced-round MMB ci-
pher. Our attacks apply equally well to MMB version 2.0 [6], which only differs
from the original MMB in the key schedule algorithm, designed to avoid related-
key attacks.

An unusual property of the θ and γ layers of MMB under a square attack
is described in Appendix C. This attack demonstrates the importance of the η
layer in MMB, in order to resist square attacks.
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Table 1. Summary of attacks on MMB.

#Rounds Time Data Memory Type

2 293.6 PC 293.6 CO — LC, DR
3 2114.56 PC 2114.56 KP — LC, DR
3 2126 EN 2114.56 KP — LC, KR
4 2126.32 EN 234 CP 264 SC, KR
6 295.91 EN 2118 CP 264 DC, KR

PC: number of parity computations; EN: number of encryptions;
LC, DR: Linear Distinguishing Attack;
LC, KR: Key-recovery Attack with Linear Cryptanalysis;
DC, KR: Key-recovery Attack with Differential Cryptanalysis;
SC, KR: Key-recovery Attack with Square Cryptanalysis.
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Table 2. One-round differential characteristics for MMB: ∆ij(0 ≤ j ≤ 3), and ∆o are
nonzero 32-bit xor difference values.

input difference
1r→ output difference # active multiplications restriction on ∆o

(∆i0, 0, 0, 0)
1r→ (∆o,∆o, 0,∆o) 1 lsb(∆o)=0

(0,∆i1, 0, 0)
1r→ (∆o,∆o,∆o, 0) 1 —

(0, 0,∆i2, 0)
1r→ (0,∆o,∆o,∆o) 1 —

(0, 0, 0,∆i3)
1r→ (∆o, 0,∆o,∆o) 1 lsb(∆o)=0

(∆i0,∆i1, 0, 0)
1r→ (0, 0,∆o,∆o) 2 lsb(∆o)=0

(∆i0, 0,∆i2, 0)
1r→ (∆o, 0,∆o, 0) 2 lsb(∆o)=0

(∆i0, 0, 0,∆i3)
1r→ (0,∆o,∆o, 0) 2 lsb(∆o)=0

(0,∆i1,∆i2, 0)
1r→ (∆o, 0, 0,∆o) 2 —

(0,∆i1, 0,∆i3)
1r→ (0,∆o, 0,∆o) 2 lsb(∆o)=0

(0, 0,∆i2,∆i3)
1r→ (∆o,∆o, 0, 0) 2 lsb(∆o)=0

(∆i0,∆i1,∆i2, 0)
1r→ (0,∆o, 0, 0) 3 lsb(∆o)=0

(∆i0,∆i1, 0,∆i3)
1r→ (∆o, 0, 0, 0) 3 lsb(∆o)=0

(∆i0, 0,∆i2,∆i3)
1r→ (0, 0, 0,∆o) 3 lsb(∆o)=0

(0,∆i1,∆i2,∆i3)
1r→ (0, 0,∆o, 0) 3 lsb(∆o)=0

(∆i0,∆i1,∆i2,∆i3)
1r→ (∆o,∆o,∆o,∆o) 4 lsb(∆o)=0

Table 3. One-round linear relations for MMB: mij(0 ≤ j ≤ 3), and mo are nonzero
32-bit masks.

input mask
1r→ output mask #active multiplications restriction on mo

(mi0, 0, 0, 0)
1r→ (mo,mo, 0,mo) 1 mo · δ = 0

(0,mi, 0, 0)
1r→ (mo,mo,mo, 0) 1 —

(0, 0,mi, 0)
1r→ (0,mo,mo,mo) 1 —

(0, 0, 0,mi)
1r→ (mo, 0,mo,mo) 1 mo · δ = 0

(mi0,mi1, 0, 0)
1r→ (0, 0,mo,mo) 2 mo · δ = 0

(mi0, 0,mi2, 0)
1r→ (mo, 0,mo, 0) 2 mo · δ = 0

(mi0, 0, 0,mi3)
1r→ (0,mo,mo, 0) 2 mo · δ = 0

(0,mi1,mi2, 0)
1r→ (mo, 0, 0,mo) 2 —

(0,mi1, 0,mi3)
1r→ (0,mo, 0,mo) 2 mo · δ = 0

(0, 0,mi2,mi3)
1r→ (mo,mo, 0, 0) 2 mo · δ = 0

(mi0,mi1,mi2, 0)
1r→ (0,mo, 0, 0) 3 mo · δ = 0

(mi0,mi1, 0,mi3)
1r→ (mo, 0, 0, 0) 3 mo · δ = 0

(mi0, 0,mi2,mi3)
1r→ (0, 0, 0,mo) 3 mo · δ = 0

(0,mi1,mi2,mi3)
1r→ (0, 0,mo, 0) 3 mo · δ = 0

(mi0,mi1,mi2,mi3)
1r→ (mo,mo,mo,mo) 4 mo · δ = 0
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A Proofs of Square Distinguishers

A.1.Proof of the First Distinguisher:

For the first distinguisher, we denote each word after η in the first round as
S(v); S is the status for the word, such as A, B, E and X, and v represents the
variable; the first distinguisher can be written as

(A,C,C,C)
σ[k0]→ (A,C,C,C)

γ→ (A,C,C,C)
η→ (A(x), C(c1), C(c2), C(c3))

θ→ (A(x⊕ c1 ⊕ c3), A(x⊕ c1 ⊕ c2), C(c1 ⊕ c2 ⊕ c3), A(x⊕ c2 ⊕ c3))
σ[k1]→ (A(x⊕ c1 ⊕ c3 ⊕ k1

0), A(x⊕ c1 ⊕ c2 ⊕ k1
1), C(c1 ⊕ c2 ⊕ c3 ⊕ k1

2),
A(x⊕ c2 ⊕ c3 ⊕ k1

3))
γ→ (A(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1

0)), A(G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1
1)),

C(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1
2)), A(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)))
η→ (A(η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1

0))), A(G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1
1)),

C(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1
2)), A(η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3))))
θ→ (X(y0), B(y1), B(y2), E(y3))
σ[k2]→ (X(y0 ⊕ k2

0), B(y1 ⊕ k2
1), B(y2 ⊕ k2

2), E(y3 ⊕ k2
3))

γ→ (X(z0), ?(z1), ?(z2), E(z3))
η→ (B(u0), ?(u1), ?(u2), E(u3)).

In the above transitions, the first output word of η in the first round is an A
word and the other three output words are constants, so we denote them as the
variables x, c1, c2 and c3, respectively. In addition, η only affects the output
of the first and the last words. We denote the four status variables after the
operation of θ in the second round as yi(0 ≤ i ≤ 3), the four words after γ in
the third round as zi(0 ≤ i ≤ 3), and the four words after η in the third round
as ui(0 ≤ i ≤ 3). The square distinguisher can be proved in three steps.

1. Prove that y0 is X, y3 is E and both y1 and y2 are B words.
2. Prove that z0 is an X word and z3 is an E word.
3. Prove that u0 is a B word and u3 is an E word.

Step 1: Prove that y0 is X, y3 is E and both y1 and y2 are B words:

We extend yi as follows:

y0 = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ (G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1

1))⊕
η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)), (14)

y1 = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ (G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1

1))⊕
(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2)), (15)

y2 = (G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1
1))⊕ (G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2))⊕
η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)), (16)
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y3 = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ (G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2))⊕
η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)). (17)

In (14)–(17), x is a variable of an A word, so the input x and ¬x must appear
once each. Then, we have

y0(x)⊕ y0(¬x) = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ η(G0 ⊗ (¬x⊕ c1 ⊕ c3 ⊕ k1

0))
⊕(G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1

1))⊕ (G1 ⊗ (¬x⊕ c1 ⊕ c2 ⊕ k1
1))

⊕η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1
3))⊕ η(G3 ⊗ (¬x⊕ c2 ⊕ c3 ⊕ k1

3)).

Due to

Gi ⊗ (¬x⊕ c) = Gi ⊗ (0̄⊕ x⊕ c) = Gi ⊗ (0̄⊕ (x⊕ c))
= Gi ⊗ (0̄− (x⊕ c)) = (Gi ⊗ 0̄)−Gi ⊗ (x⊕ c)
= 0̄−Gi ⊗ (x⊕ c) = 0̄⊕Gi ⊗ (x⊕ c) = ¬(Gi ⊗ (x⊕ c))

(18)

and

η(w)⊕ η(¬w) = δ ⊕ 0̄ = d5555555x, (19)

we obtain

y0(x)⊕ y0(¬x) = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ η(¬(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1

0)))
⊕(G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1

1))⊕ ¬(G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1
1))

⊕η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1
3))⊕ η(¬(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)))
= d5555555x ⊕ 0̄⊕ d5555555x = 0̄.

We derive y0(x) = ¬y0(¬x). As a variable of an A word, both x and ¬x must
appear once each. So, y0(x) and y0(¬x) = ¬y0(x) must appear just as often.
There are 231 pairs of (x,¬x), so there are 231 pairs of (y0,¬y0), which means
that the xor sum of 232 y0 is zero (equal to 231 times of the xor sum of 0̄).
Therefore, y0 is an X word.

y3(x)⊕ y3(¬x) = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ η(G0 ⊗ (¬x⊕ c1 ⊕ c3 ⊕ k1

0))
⊕(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2))⊕ (G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1
2))

⊕η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1
3))⊕ η(G3 ⊗ (¬x⊕ c2 ⊕ c3 ⊕ k1

3))
= d5555555x ⊕ d5555555x = 0

We obtain y3(x) = y3(¬x), i.e. any value of y3 will appear an even number of
times, so y3 is an E word.

y1(x)⊕ y1(¬x) = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0)))⊕ η(G0 ⊗ (¬x⊕ c1 ⊕ c3 ⊕ k1

0)))
⊕(G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1

1))⊕ (G1 ⊗ (¬x⊕ c1 ⊕ c2 ⊕ k1
1))

⊕(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1
2))⊕ (G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2))
= d5555555x ⊕ 0̄ = δ

We cannot assure that y1 and ¬y1 appear at the same time, so y1 is not an X
word. But, 231 pairs of (x,¬x) result in the xor sum of 232 y1 is zero (equal to
231 times of the xor sum of δ). So, y1 is a B word. In this way, we can prove y2
is also a B word.
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Step 2: Prove that z0 is an X word and z3 is an E word:

We extend yi as the following equations,

z0 = G0 ⊗ (y0 ⊕ k2
0), z1 = G1 ⊗ (y1 ⊕ k2

1),
z2 = G2 ⊗ (y2 ⊕ k2

2), z3 = G3 ⊗ (y3 ⊕ k2
3).

We have proved y0 is an X word which means that y0 and ¬y0 must appear at
the same time. From (18), G0 ⊗ (y0 ⊕ k2

0) = ¬G0 ⊗ (¬y0 ⊕ k2
0), we can obtain

z0(y0) = ¬z0(¬y0), which means any value of z0 and ¬z0 will appear at the same
time. So z0 is also an X word.

In addition, y3 is an E word which means that any value of y3 will appear
an even number of times and results any value of z3 will appear an even number
of times too. Thus, z3 should be an E word, too. Because y1 and y2 are B
words, and B words cannot usually cross γ, so the status for z1 and z2 cannot
be decided.

Step 3: Prove that u0 is a B word and u3 is an E word:

We extend ui as the following u0 = η(z0), u1 = η(z1) = z1, u2 = η(z2) = z2,
u3 = η(z3). Recall that z0 is an X word, which means that any value of z0 and
¬z0 will appear at the same time. From (19), u0(z0) ⊕ u0(¬z0) = d5555555x.
There are 231 pairs of (u0(z0), u0(¬z0)). So, the xor sum of 232 u0 is zero (equal
to 231 times of the xor sum for d5555555x). Therefore, u0 is a B word but not
an X word. Since z3 is an E word, it follows that any value of u3(z3) will appear
even times. So, u3 is an E word. After θ in the third round, the balanced property
will be destroyed in all four words.

A.2.Proof of the other three Distinguishers:

The proof of the other three distinguishers is similar to the above proof for the
first distinguisher.

B Four-Round Linear Approximation

We have identified a 4-round linear relation with bias 23·(−9.56−11.27)−9.56·2+7 =
2−74.61 which is given as follows:

(0x, 99999999x, 0x, 66666666x) 1r→ (0x, 33333333x, 0x, 33333333x)
1r→ (0x, 66666666x, 0x, 66666666x) 1r→ (0x, 33333333x, 0x, 33333333x)
1r→ (0x, 66666666x, 0x, 66666666x).

C A note on the θ ◦ γ ◦ σ layer

Consider a modified MMB cipher whose round structure does not include η (call
it MMB−η, read “MMB minus η”), that is, a full round consists of only θ ◦γ ◦σ.
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We have verified very peculiar Λ-set propagations in MMB−η, such as (A, C,
C, C) 1r→ (A,A,C,A) 1r→ (X,E,E,E) 1r→ (X,X,E,X) 1r→ (X,E,E,E). After the
fourth round, the patterns (X,X,E,X) and (X,E,E,E) alternate, that is, bal-
anced Λ-sets propagate indefinitely (for an arbitrary number of rounds).
This unusual behavior can be explained similarly to that of other patterns in
Sect. 4. We concluded that

– this property does not depend on the round subkeys, or on the user key or
even on the key schedule;

– this property is independent of the particular permutation used in the initial
A word, or the constants used in the C words;

– it highlights the importance of the η layer (a data-dependent, nonlinear
operation) in the security of the original MMB against square attacks, since
its presence destroys the propagation of balanced Λ-sets after 2.75 rounds;

– the above distinguish-from-random attack applies to an arbitary number of
rounds of MMB-η and costs only 232 CP, an equivalent number of encryptions
and negligible memory.
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