-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

On Depth-bounded Message Passing Systems

Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

EPFL School of Computer and Communication Sciences, Switzerland

Abstract. We explore the border between decidability and undecidabil-
ity of verification problems related to message passing systems that admit
unbounded creation of threads and name mobility. Inspired by use cases
in real-life programs we introduce the notion of depth-bounded message
passing systems. A configuration of a message passing system can be rep-
resented as a graph. In a depth-bounded system the length of the longest
acyclic path in each reachable configuration is bounded by a constant.
While the general reachability problem for depth-bounded systems is
undecidable, we prove that control reachability is decidable. In our de-
cidability proof we show that depth-bounded systems are well-structured
transition systems to which a forward algorithm for the covering problem
can be applied.

1 Introduction

We study the boundary between decidability and undecidability of verification
problems related to message passing systems. In particular, we are interested in
systems that use the actor model [2,3,9,23,40] for asynchronous message pass-
ing. Our motivation stems from the increased practical importance of actors. The
actor model is now the preferred or only available concurrency mechanism in var-
ious modern programming languages, such as SCALA [37] and ERLANG [7], and
is becoming popular among practicing programmers. For instance, the TWITTER
microblogging service now uses SCALA actors [38].

In the actor model the only computation entity is the actor. An actor can
receive messages from, respectively send messages to other actors. The sent mes-
sages are stored in an unordered buffer that is owned by the receiving actor. Each
time an actor processes a message in its buffer it can locally decide to

— create finitely many new actors,
— send finitely many messages to actors that it knows
— and change its behavior as to how the next message is processed.

Here knowing another actor means that the recipient of a message was either
created by the sending actor or its name was previously sent to the sending
actor. In this paper we consider the more generic setting of the asynchronous
m-calculus [8,24] where one speaks about threads communicating via channels
rather than actors with buffers. However, for increased vividness we will for now
stay in the terminology of actors.

https://core.ac.uk/display/147954062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

One can think of the configuration of an actor system as a graph [25]. The
vertices in the graph correspond to actors and messages. Edges between vertices
indicate whether an actor knows the name of another actor, whether a message
is in the buffer of an actor, and whether a message carries the name of an
actor. We refer to these graphs as communication topologies. In principle, the
communication topologies can encode arbitrary data structures (e.g., the tape of
a Turing machine) because their size is not bounded and edges can dynamically
change during execution. In general, most problems related to verification of
such systems are therefore undecidable [30].

In practice, programming languages that support actors incorporate the ac-
tor model in the form of an extension to a sequential core language [7] or a
library for a core language that provides other concurrency mechanisms [22,41].
Given this core language, programmers tend to use actors in a rather restrictive
form, despite of their intrinsic computational power. Complex data structures
are encoded in the local state of the individual actors rather than the global
communication topology. The communication topologies that are reachable in
the executions of real programs therefore have a rather simple shape. This raises
the question whether one can define a behavioral class of actor systems by re-
stricting the shape of the reachable communication topologies such that certain
verification problems become decidable. Yet, this class should still cover a sig-
nificant portion of the use cases that programmers actually care about. In this
paper we identify such a behavioral class of message passing systems.

Depth-bounded systems. Using the graph-theoretic notion of tree-depth [36] we
define the new class of depth-bounded message passing systems. Formally, the
tree-depth of a graph is the height of a minimal tree whose closure contains the
graph. In a depth-bounded system the tree-depth of all reachable communica-
tion topologies is bounded by a constant. Intuitively, this condition bounds the
length of the maximal acyclic path in each reachable communication topology.
Depth-bounded systems still allow name mobility via messages and unbounded
creation of both actors and messages. This class therefore covers many interest-
ing use cases of message passing concurrency such as client-server and consumer-
producer communication with an unbounded number of clients/producers, and
master-worker load balancing.

While the general reachability problem for depth-bounded systems is unde-
cidable, this class is still an interesting target for automated verification. The
main technical contribution of this paper is a proof of decidability of the control
reachability problem for depth-bounded systems. Intuitively, control reachabil-
ity concerns the verification of safety properties that are locally observable by a
single actor. This problem subsumes many interesting verification problems that
occur in practice. In our decidability proof we apply a special case of Kruskal’s
tree theorem [19,28] to show that depth-bounded systems induce well-structured
transition systems (WSTS) [1,18]. We then show that the covering problem for
these systems can be decided using the expand, enlarge, and check algorithm
for WSTSs [20]. Interestingly, unlike the standard backward algorithms for the

On Depth-bounded Message Passing Systems 3

covering problem of WSTSs, this forward algorithm terminates even if the bound
of the system is not known a priori.

2 Motivating Example

We now present a typical example of a depth-bounded system. Our example
is a publish/subscribe service that provides an interface between publishers of
content (organized into finitely many categories) and subscribers to which this
content is distributed (depending on the category they are enlisted to). Figure 1
shows an actor-based implementation of this service in SCALA-like pseudo code.

SCALA actors are subclasses of the Actor trait. The behavior of an actor is
specified by the method act. This method is called implicitly when the actor
is started. Receiving a message is done by calling react. The method react
implicitly stores a reference to the sender of the received message in the field

sealed abstract class Category class Subscriber(server: Actor) extends Actor {
case object Catl extends Category def loop(cat: Category): Unit = {
s if (%) {
case object CatN extends Category react {
case object List case Content(c) =>
case class Categories(cats: Set[Categoryl) if (c != cat) error("...")
class Server extends Actor { ¥
def loop(enl: Map[Category,Set[Actor]]){ } else {
val cats = Set(Catl,...,CatN) server ! Unsubscribe(cat)
react { exit(’normal)
case List => { }
reply(Categories(cats)) 3
react {
case Subscribe(c) => override def act(): Unit = {
loop(enl + ¢ -> (enl(c) + sender)) server ! List
¥ react {
} case Categories(cats) =>
case Unsubscribe(c) => val cat = cats.choose
loop(enl(c) + ¢ -> (enl(c) - sender)) loop(cat)
case Publish => { }
reply (Who) }
react { }
case Credential =>
if (%) { class Publisher(server: Actor) extends Actor {
reply(Categories(cats)) override def act(): Unit = {
react { server ! Publish
case Content(c) => react {
enl(c).forall(_ ! Content(c)) case Who =>
loop(enl) reply(Credential)
react {
} else { case Categories(cats) =>
reply (Deny) val ¢ = cats.choose
loop (enl) reply(Content (c))
} if (%) act() else exit(’normal)
¥ case Deny => exit(’badCredential)
} }
} }
} }
override def act() = loop({_ => EmptySet}) }
}

Fig. 1. ScALA pseudo code for the publish/subscribe service

4 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

ENY

Content(Cat1) =rqa?

Publisher

Fig. 2. A reachable configuration of the publish/subscribe service

sender. To send a message, we consider methods ! and reply. The statement
a ! msends a message m to the recipient a; reply (m) is a shorthand for sender ! m.

The implementation of the service uses a client/server architecture. There
are three kinds of actors: the server, the subscriber clients, and the publisher
clients. In addition we assume an actor that models an environment which non-
deterministically generates new subscribers and publishers.

The system works as follows. Subscribers first request a list of available cat-
egories by sending a List message to the server. Upon reception of List, the
server sends back the list of categories. The subscriber then chooses one category
and enlists itself by sending the appropriate Subscribe message to the server. For
each category the server keeps track of the set of enlisted subscribers. Whenever
it receives a Subscribe message the server adds the sender to the corresponding
set. After subscription with the server the subscriber waits for incoming content
messages or may choose to unsubscribe by sending an Unsubscribe message.

The protocol for the publishers is similar. A publisher initiates the communi-
cation with the server by sending a Publish message. The server then asks the
publisher for its credentials and may deny the publisher’s request if the creden-
tials are not trustworthy. If however the server accepts the credentials then it
asks the publisher for the category where it intends to publish. The server then
forwards the received content to all subscribers of the corresponding category.

Figure 2 illustrates a reachable configuration of the publish/subscribe service.
Notice the star-like shape with the server in the center. A tree of minimal height
that overlays this configuration is rooted at the server. This tree has height 3
and, thus, the tree-depth of this configuration is 3. In fact the tree-depth of any
reachable configuration of this system is bounded by 3. Therefore, the system is
depth-bounded. Note, however, that the size of the reachable configurations is
not bounded. Both the number of subscribers and publishers, as well as the num-
ber of messages in the buffers of subscribers and the server can grow arbitrarily
large.

An interesting property of our service that we would like to verify is whether
subscribers only receive content messages of categories they are enlisted to. This

On Depth-bounded Message Passing Systems 5

property is equivalent to the question whether the method error in the class
Subscriber is ever called. The result presented in this paper implies that check-
ing such properties is decidable for depth-bounded message passing systems.

3 Preliminaries

We first fix the syntax and semantics of our version of the asynchronous -
calculus and briefly introduce well-structured transition systems.

3.1 Asynchronous mw-calculus

We consider systems of recursive equations in the polyadic asynchronous -
calculus that have a specific normal form due to Amadio and Meyssonnier [5].
Assume a countable infinite set of names with typical elements x,y and a
countable infinite set of process identifiers with typical elements A, B. We assume
that each name and identifier has an associated arity in N. We denote by x a
(possibly empty) vector over names and denote by [x/y] a substitution on names.
Process terms P are composed of the unit process 0, parameterized process
identifiers A(x), and the standard operations of message creation Z(y), input
prefix z(y).P, parallel composition P | @, and name generation (vx). Hereby,
the parameter vectors must respect the arities of names and identifiers. We call
the terms of the form Z(x) messages and the terms of the form A(x) threads.
We write II in order to denote indexed parallel composition and we write (va)
for (va1)...(va,) where € = x1,...,2,. An occurrence of a name x in a process
term P is called free if it is not below a (vx) or an input prefix y(x). We denote by
fn(P) the set of all free occurring names in P. We say that P is closed if fn(P) =
(). We denote by P = (Q the usual congruence relation on process terms, i.e., P
is syntactically equal to @ up to renaming and reordering of generated names,
elimination of units, and associativity and commutativity of parallel composition.
A configuration is a closed process term of the following normalized form

(Vw)(ilg] Ti(zi) | jg] Aj(zy))

where x only contains names that actually occur. Note that any process term
can be rewritten into a congruent configuration.

A process P is a pair (I,€) where I is an initial configuration and £ is a finite
set of parametric equations A(x) = P such that (1) every process identifier in
P is defined by exactly one equation in £ and (2) fn(P) C {x}. We assume that
all equations in &€ have the following normal form:

Ax) = x(@').(va") (U zi(2:) | H A;(z;)) (1)
el jeJ
Actor systems as mw-calculus processes. We can encode actor systems using -

calculus processes. A configuration of an actor system is similar to a process
configuration: it consists of actors with their associated behavior and messages

6 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

that are stored in the buffers of these actors. We can therefore easily encode
actors using threads. Unlike in the general m-calculus where a thread can re-
ceive messages from any channel whose name it knows, actors can only receive
messages from their private buffers, i.e., every message has a unique receiver. In
our encoding an actor is therefore a thread of the form A(x;;xo) whose param-
eters are divided into input/output parameters x; and output parameters xo.
The names in x; can be used for both sending and receiving messages while
the names in o can only be used for sending messages. For each pair of actors
A(xr;x0) and B(yr;yo) in a configuration, the names x; and y; are disjoint,
i.e., the i/o parameters encode the private buffers of actors. We call the above
restrictions on configurations the unique receiver condition [4]. The preservation
of the unique receiver condition is guaranteed by the actor equations that define
the possible behaviors of actors. Actor equations are of the following form:

Alxr;zo) = EJ zj(x;).Bj(zr;xjo)

where for all j € J,z; € {x}
Blariwo) = (yn) (1L 75(e) | T Axlynr,yio) | Alwri)

where {y;} = U {ypr} andfor all k, k" € K,{yxr} N{ywi} =0
keK

We divide the process identifiers that are used to describe actors into two cate-
gories: receiving states A(xy; xo) and dispatching states B(xr;xo). The equa-
tions for the receiving states specify how an actor processes a received message.
Hereby, the external choice operator X is used to differentiate how a received
message is dispatched, depending on the kind of the message. The equations for
the dispatching states specify the actual behaviors of the actors: upon recep-
tion of a message an actor can send finitely many new messages Z;(x;) to other
known actors, create finitely many new actors Ag(yxr,Yxo), and continue its
own computation in a new receiving state A(xr;). Again we assume that the
free names occuring on the right-hand sides of actor equations are contained in
the list of parameters on the corresponding left-hand sides.

Note that actor equations can be normalized to equations of the form (1)
(potentially by introducing additional process identifiers and equations). In par-
ticular, the external choice operator can be eliminated (see, e.g., [35]).

An actor system is a process whose initial configuration obeys the unique
receiver condition and whose equations are the normalizations of actor equations.

Operational semantics. Given a process P = (I,€), we define a transition rela-
tion —¢ on configurations that captures the usual m-calculus reduction rules as
follows. Let P and @ be configurations then we have P —¢ @ if and only if the
following conditions hold:

1. P=(vu)(A(v) | w(w) | P),
2. the defining equation of A in & is of the form A(x) = z(z').(va")(Q’),
3. 0 =[v/x,w/x’,y/x"] where y are fresh names

On Depth-bounded Message Passing Systems 7

4 o(zx)=w

5. Q= (vu,y)(P' | o(Q)).

We denote by —¢ the reflexive transitive closure of the relation —¢. We say that
a configuration P is reachable in process P if and only if I —% P. Finally, we
denote by Reach(P) the set of all reachable configurations of process P.

Reachability and control reachability. We consider two problems related to the
verification of actor systems. The reachability problem and the more restrictive
control reachability problem.

Definition 1 (Reachability problem). Given a process P and a configuration
P. The reachability problem is to decide whether P is reachable in P.

Definition 2 (Control reachability problem). Given a process (I,€) and a
process identifier A. The control reachability problem is to decide whether there
exists a configuration P of the form P = (vx)(A(y) | Q) such that P is reachable
in P.

3.2 Well-Structured Transition Systems (WSTS)

We briefly recall the relevant theory of well-structured transition systems [1,15,
16,18].

Well-quasi-ordering. A pair (X, <) of a set X and a binary relation < on X is
called well-quasi-ordered set (wqo) if and only if (1) < is a quasi-ordering (i.e.,
reflexive and transitive) and (2) any infinite sequence g, z1, Z2, ... of elements
from X contains an increasing pair x; < x; with 7 < j.

Let (X, <) be a well-quasi-ordered set. A set I C X is called upward-closed
if for any pair x,y such that y > x, x € I implies y € I. Similarly, I is called
downward-closed if for any pair x,y such that y < z, x € I implies y € I. The
upward-closure of Y C X is defined as 1Y = {z | 3y € Y. 2 > y }. Correspond-
ingly, we denote by | Y the downward-closure of Y.

Well-structured transition system. A well-structured transition systems (WSTS)
is a transition system T' = (.S, sg, —, <) where S is a set of configurations, so € S
an initial configuration, »C S x S a transition relation, and < C Sx .S a relation
satisfying the following two conditions: (well-quasi-ordering) < is a well-quasi-
ordering on S; and (compatibility) < is upward compatible with respect to —,
i.e., for all s, s9,t; such that sy < t; and s; — s, there exists ¢ such that
tl —* tQ and S9 S tg.

Given a well-structured transition system (.5, so, —, <) we define the function
Pred that maps a set of configurations C' C S to the set of its direct predecessors,
and the function Post that maps C to its direct successors

Pred(C) ={sc S|3s' € C.5s — '}
Post(C)={s' €S |3secC.s—s} .

8 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

Definition 3 (Covering Problem). Given a WSTS (S, so, —, <) and a con-
figuration t € S, the covering problem is to decide whether there exists a config-
uration t' € S such that so —*t' and t <t'.

4 Depth-bounded Systems

We now formally define depth-bounded systems. First we give a general behav-
ioral definition of such systems in terms of their reachable configurations. We
then describe a syntactic criterion on the defining equations of processes that
ensures depth-boundedness.

4.1 A Behavioral Notion of Depth-bounded Systems

We start by making formal our notion of communication topologies of 7-calculus
configurations.

Communication topology. We use standard notation for directed and undirected
graphs. A directed labelled graph over a finite set of labels L is a tuple (G, l,,l.)
where G is a directed graph, I, : V(G) — L is a vertex labelling function, and
le : V(G) x V(G) — L is an edge labelling function.

Let P = (1,£) be a process. Let further n be the maximal arity of all vectors
of names occurring in I and &, and let A be the set of all process identifiers
occurring in I,&. Define a set of labels L = {0,...,n} U AU {e} where o is
distinct from all process identifiers. Let P be a configuration of process P of the
form

(ve)(ierTi(x:) | jes Aj(x;))

where © = x1,...,%,, and the index sets {1..m}, I, and J are disjoint. The
function ct maps P to a directed labelled graph over L as follows: the graph
consists of vertices corresponding to threads, messages, and names occurring
in the configuration. Each thread vertex is labelled by the process identifier of
the corresponding thread in the configuration. There are edges between thread
vertices and name vertices indicating that one of the names in the parameter
vector of the thread is the name associated with that name vertex. Similarly,
we have edges between message vertices and name vertices. Formally, ct(P) is a
graph ((V, E),l,,l.) where

— V' is a union of disjoint sets of vertices {vi};c;, {vj},;c; and {vi,...,vm},

= E={(vno) [heJUI A1T<k<m A zp, =w forsome 1 <r<n}U
{(v,vp) i€ N1 <k<m A z; =x1 }

(o) A, ifkeJ
(o) =
b ° otherwise

L) r ifhelUJ AN1<k<m A zp, =xi
e(vp,vE) =
o T 0 ifhel AN1<k<m A z; =ap

We call ct(P) the communication topology of configuration P.

On Depth-bounded Message Passing Systems 9

Tree-depth. The key ingredient for defining depth-bounded systems is the notion
of the tree-depth of a graph [36].

A tree T is an undirected graph such that every pair of distinct vertices in
T is connected by exactly one path. A rooted tree is a tree with a dedicated
root vertex. A rooted forest is a disjoint union of rooted trees. The height of a
vertex v in a rooted forest F, denoted height(F,v), is the number of vertices on
the path from the root (of the tree to which v belongs) to v. The height of F is
the maximal height of the vertices in F'. Let v, w be vertices of F' and let T be
the tree in F' to which y belongs. The vertex x is an ancestor of vertex y in F,
denoted x < y, if belongs to the path linking y and the root of T'. The closure
clos(F) of a rooted forest F' is the graph consisting of the vertices of F' and the

edge set {{z,y} |z 2y,z #y}.

Definition 4 (Tree-depth). The tree-depth td(G) of an undirected graph G
is the minimum height of all rooted forests F' such that G C clos(F).

The tree-depth td(G) of a directed labelled graph G = ((V, E),ly,l.) is
the tree-depth of the induced undirected graph with vertices V' and edge set
{{v1,v2} | (v1,v2) € E}. The tree-depth of a configuration is the tree-depth
of its communication topology. Finally, we say that a set of configurations C
is depth-bounded if there exists k € N such that all configurations P € C have
tree-depth at most k.

Definition 5 (Depth-bounded process). A process P is called depth-bound-
ed if its set of reachable configurations Reach(P) is depth-bounded.

4.2 A Syntactic Notion of Depth-bounded Systems

While the question whether a given process is depth-bounded is itself undecid-
able, one can identify simple syntactic conditions on the defining equations of
the process that guarantee depth-boundedness and that are often satisfied in
practice. We now describe one such syntactic condition.

We restrict ourself to processes that satisfy the unique receiver condition (cf.
Section 3.1) such as actor systems. In order to enforce bounded tree-depth of
such systems, we need to restrict the creation of new threads and their associated
mailboxes. If the system allows to create and arbitrarily link threads then its
tree-depth is unbounded. The following syntactic criterion limits the maximal
size of the chains of threads and associated mailbox channels in the reachable
communication topologies.

Our syntactic criterion for depth-boundedness only restricts the defining
equations of the system. The initial configuration is unconstrained. Assume that
all process identifiers used in equations of the system are divided into levels 0 to
n. The first restriction on the defining equations of the system is that threads
with process identifiers of level ¢ can create only threads with process identifiers
that are at least on level ¢ + 1. If the system did not allow name mobility via
messages, this restriction would impose a tree-like shape on the reachable com-
munication topologies with threads of level 0 at the roots. In order to prevent

10 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

chaining threads beyond the parent-child relation, we also restrict the name mo-
bility appropriately. We partition the names that each thread knows into three
categories private, ascending, and descending. The names of the thread’s own
mailboxes are the private names of the thread. If a thread sends a name to a
thread of higher level, the receiving thread considers the sent name as a de-
scending name. Conversely, a name sent to a thread of smaller or equal level
is considered as an ascending name by the receiving thread. The restriction on
name mobility are then as follows. A thread can send a private name to any
other thread it knows. An ascending name can only be forwarded to threads of
higher levels, respectively, descending names only to threads of lower levels.

The systems that obey the restrictions described above are depth-bounded.
The reason for depth-boundedness is that in a reachable communication topol-
ogy of such a system, every path between two threads of the same level goes over
the private name of a common ancestor of lower level. Since the ancestor threads
themselves have finitely many private names, and since the level of ancestors is
bounded by 0, the length of any acyclic path in the communication topology is
bounded. Note that the maximal depth of the reachable communication topolo-
gies does not only depend on the maximal level of the process identifiers, but
also on the number of free parameters of the process identifiers and the shape of
the communication topology of the initial configuration.

5 Decidability of the Control Reachability Problem

We now come to the main technical result of this paper. We show that the con-
trol reachability problem is decidable for depth-bounded processes. The control
reachability problem for processes can be rephrased as a covering problem with
respect to the following natural quasi-ordering < on configurations: let P and
@ be configurations then P < @ if and only if @) corresponds to P extended by
some process term Q’, formally, if P = (vx)P’ then there exist y and Q' such
that

Q=(vy,=)(P'| Q)

In the remainder of this section we will prove that depth-bounded systems are
well-structured transition systems for the quasi-ordering < and that they are
amenable to a forward analysis that decides the covering problem. The proofs
for all the statements made in this section can be found in Appendix A.

5.1 Depth-bounded Systems are Well-structured

First, it is easy to prove that < is indeed a quasi-ordering on configurations and
upward compatible with respect to m-calculus reductions.

Proposition 6. The relation < is a quasi-ordering on configurations.

Proposition 7. Let P be a process. Then < is upward compatible with respect
to the transition relation of P.

On Depth-bounded Message Passing Systems 11

It remains to show that < is also a well-quasi-ordering on depth-bounded sets
of configurations. For this purpose we encode configurations into labelled trees.
The absence of infinite anti-chains over depth-bounded configurations then fol-
lows from a variation of Kruskal’s tree theorem [28] that is due to Friedman [19].

First, it is instructive to understand the implications of P < @ on the un-
derlying communication topologies. Given two labelled graphs G; and Go, we
say (1 is (isomorphic to) a subgraph of G, written G; — G, iff there exists an
injective label-preserving homomorphism from G; to Ga.

Lemma 8. Let P and Q be configurations. Then P < @Q iff ct(P) — ct(Q).

Tree encoding of configurations. A labelled rooted tree over a finite set of labels
L is a pair (T,1) where T is a rooted tree and [: V(T') — L a vertex labelling
function. We extend the relation < to rooted labelled trees, as expected, and
we say that a tree T) is a subtree of tree T whenever T — T5 holds. In the
following we fix a finite set of labels L. Let Ly be the set of all isomorphism
classes of directed labelled graphs G over labels LU (L x {1..k}) such that G has
at most k vertices. Clearly, since L is finite, Ly is finite.

Given a directed labelled graph G over labels L that has tree-depth at most
k, we can construct a labelled rooted tree (T,1) over the set of labels Ly from
G as follows. First, let I’ be a rooted forest of minimal height whose closure
contains the undirected graph induced by G. The rooted tree T' is constructed
from the forest F' by extending F' with a fresh root vertex r that has edges to
all the roots of the trees in F. The labelling function [is defined as follows. Let
v € V(T) be a vertex in T. If v = r then [(r) is the empty graph. Otherwise v
is a vertex in F' (and thus in G). Let P be the subgraph of G that is induced by
the vertices on the path from v to the root (of the tree in F to which v belongs).
Now construct a graph Pj, from P by adding to the label of each vertex of P its
height in F. Then I(v) is the isomorphism class of P. Since G has tree-depth at
most k, P, € Li. Thus, [is well-defined. Let Treesy be the function mapping a
labelled directed graph G of tree-depth at most & to the set of all labelled rooted
trees over Ly that can be constructed from G as described above. Furthermore,
let treey, be a function mapping each such G to some tree in Trees(G).

Lemma 9. Let k € N and T, T be trees in rng(treey). If Th is a subtree of Ts
then G1 — G2 for all Gy € tree, ' (Ty) and G € tree; ' (T3).

Let T be a rooted tree and z,y € V(T) two vertices. The infimum of = and
y, denoted xinfy, is the vertex z € V(T) with the greatest height such that
z =z and z < y. Given rooted trees 77 and T3, a function ¢ is an inf-preserving
embedding from T3 into Ty iff (1) ¢ : V(T1) — V(T») is injective, and (2) for
all z,y € V(T1), ¢(xzinfy) = p(x)inf p(y). An embedding between two rooted
labelled trees over the same set of labels is label-preserving iff it maps vertices
to vertices with the same label. The inf and label-preserving embeddings induce
a well-quasi-ordering on labelled trees. In particular, we have the following.

Theorem 10 (Friedman [19]). Let T1,Ts,... be an infinite sequence of la-
belled trees over a finite set of labels L. Then there exist i < j and an inf and
label-preserving embedding from T; to T}.

12 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

Clearly, if a tree is a subtree of another tree then there exists an inf and
label preserving embedding between these trees. For trees that result from the
tree encoding of configurations the converse holds, too. Vertices of different lev-
els of such trees have always different labels. Thus, an inf and label-preserving
embedding between such trees also preserves antecedence of vertices.

Lemma 11. Let k € N and Ty, Ts be trees in rng(treey). Then the following two
properties are equivalent

1. there exists an inf and label-preserving embedding from Ty to Tb
2. Ty is a subtree of Ts.

Given a finite set of process identifiers PI, let C(PI,k) be the set of all
configurations over PI that have tree-depth at most k. From Proposition 6,
Theorem 10, and Lemmas 8, 9, and 11 now follows that each C(PI, k) is well-
quasi-ordered.

Proposition 12. Let k € N and PI be a finite set of process identifiers. Then
(C(PI,k),<) is a well-quasi-ordered set.

Theorem 13. Let P = (I,£) be a depth-bounded process of bound k and let
PI be the process identifiers appearing in I,E. Then for all k' > k, the tuple
(C(PI,K'),I,—¢,<) is a well-structured transition system.

The standard algorithm for deciding the covering problem for WSTS is as
follows. Starting from the configuration ¢ that is to be covered one computes
the upward closure T Pred*(1 t) of the backward-reachable configurations of
t and then checks whether this set contains the initial configuration. The well-
quasi-ordering ensures that the backward analysis terminates. While the forward-
reachable configurations of a depth-bounded system have bounded tree-depth,
this is not necessarily the case for the backward-reachable configurations. Thus,
the set of backward-reachable configurations might not be well-quasi-ordered.
Using a backward algorithm we can therefore only decide the covering problem
for depth-bounded systems whose bound is known a priori. In the following we
show that there exists a forward algorithm that overcomes this limitation.

5.2 A Forward Algorithm for the Covering Problem

The idea of a forward algorithm for solving the covering problem of a WSTS
is to compute the cover | Post™(] so) of the initial configuration sy and then
check whether this set contains the configuration to be covered. A well-known
example of such an algorithm is the Karp and Miller algorithm [27] for Petri
nets. Finding forward algorithms for WSTS is more complicated than finding
backward algorithms. In order to effectively compute the cover, one needs to
find a completion of the wqo set that contains all the limits of downward-closed
sets. A formal characterization of these completions of wqo sets has been given
in [20] and [17].

On Depth-bounded Message Passing Systems 13

Adequate domain of limits. An adequate domain of limits (ADL) [20] for a well-
quasi-ordered set (X, <) is a tuple (Y, C,) where Y is a set disjoint from X; (L1)
the map v : Y UX — 2% is such that v(z) is downward-closed for all z € XUY,
and vy(z) =] {«} for all x € X; (L2) there is a limit point T € Y such that
~(T) = X; (L3) z C 2’ if and only if y(z) C v(2’); and (L4) for any downward-
closed set D of X, there is a finite subset £ C Y UX such that v(E) = D, where
7 is extended to sets as expected: y(E) = |J,cp7(2)- A weak adequate domain
of limits (WADL) [17] for (X, <) is a a tuple (Y, C,~) satisfying (L1),(L3), and
(L4). Note that any weak adequate domain of limits can be extended to an
adequate domain of limits.

A WSTS (X, zg, —, <) and an adequate domain of limits (Y,C,) are effec-
tive [20] if the following conditions are satisfied: (E1) X and Y are recursively
enumerable; (E2) for any z1, 22 € X, one can decide whether z; — x2; (E3) for
any z € X UY and for any finite subset Z C X UY, one can decide whether
Post(y(z)) € v(Z); and (E4) for any finite subsets Z;,Z> C X UY, one can
decide whether v(Z;) C v(Z3). The expand, enlarge, and check algorithm pre-
sented in [20] decides the covering problem for effective well-structured transition
systems with an adequate domain of limits.

Theorem 14 (Geeraerts et al. [20]). There exists an algorithm to decide the
covering problem for effective WSTSs with an adequate domain of limits.

Extended process terms. We now describe an effective adequate domain of limits
for depth-bounded configurations. In order to finitely represent the limits of
infinite downward-closed sets of configurations we need to be able to express
that certain subterms in a configuration can be replicated arbitrarily often. A
natural solution to this problem is to extend process terms with the replication
operator ! that is used as a recursion primitive in the standard definition of the
m-calculus [31,32]. Instead of using replication to express recursion, we use it to
effectively represent infinite sets of configurations.

An extended process term is constructed from the operations of standard pro-
cess terms defined in Section 3.1 and the replication operation !P. We extend the
congruence relation = from process terms to extended process terms by adding
the axiom !P = (P |!P). Using this extended congruence relation we carry over
the definitions of the transition relations of processes and the quasi-ordering
< from process terms to extended process terms. We then define the denota-
tion v(P) of an extended process term P as its downward closure restricted to
non-extended process terms:

y(P) = {P"| P’ configuration and P’ < P}

The quasi-ordering C on extended process terms that is required for the adequate
domain of limits is defined by condition (L3).

Finkel and Goubault-Larrecq characterize the minimal candidates for the
WADLSs of a wqo set X in terms of its ideal completion [17, Proposition 3.3].

14 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

This means that the set of all downward-closed directed subsets' of X form
a WADL for X. Extended process terms are the ideal completions of sets of
depth-bounded process terms.

Proposition 15. The directed downward-closed sets of depth-bounded configu-
rations are exactly the denotations of extended process terms.

For proving that a downward-closed directed set of depth-bounded configu-
rations D is the denotation of an extended process term, we use the fact that
D contains a chain of process terms whose tree encodings form a chain of trees
7T ordered by the subtree relation. The trees 7 are again well-quasi-ordered.
From 7 one can then construct a hedge automaton A [10, Chapter 8] whose tree
language L£(A) is both large and small in 7, i.e., the downward closure of the
configurations obtained by reversing the tree encoding operation on the trees in
L(A) is the set D. From the automaton .4 one can then easily construct the ex-
tended process term. The inverse direction also uses the construction of a hedge
automaton. For proof details see Appendix A.

Let PI be a finite set of process identifiers. We denote by L(PI, k) the set
of all extended process terms over PI such that the elements of L(PI, k) denote
sets of k-bounded configurations in C(PI, k), and L(PI, k) itself does not contain
the configurations in C(PI, k).

Proposition 16. Let k € N and let PI be a finite sets of process identifiers.
Then (L(PI,k),C,v) is a weak adequate domain of limits for the well-quasi-
ordered set (C(PI,k),<).

It remains to argue that the WSTSs induced by depth-bounded processes
together with their WADLs of extended process terms are effective. The condi-
tions (E1) and (E2) are clearly satisfied. Also given an extended process term z
we can compute a finite set of extended process terms denoting Post(y(z)). Note
further that Proposition 16 implies that for any finite subsets Z1, Zo C L(PI, k),
v(Z1) C v(Z3) holds if and only if for all z; € Z; there exists zo € Z3 such
that v(z1) C v(z2). The inclusion problem ~(z1) C ~(z2) can be reduced to
the language inclusion problem for deterministic hedge automata, which is de-
cidable. For this purpose, one computes deterministic hedge automata from the
finitely many tree encodings of the configurations of z; and 22 and then checks
whether the language of some automaton of z; is included in the language of
some automaton of zo. Thus conditions (E3) and (E4) are also satisfied.

Finally, let us explain why the expand, enlarge, and check algorithm [20]
terminates on depth-bounded systems even if the bound of the system is not
known a priori. The idea of the algorithm is to simultaneously enumerate two
infinite increasing chains. The first chain Xy C X7 ... is a sequence of finite
subsets of X that contains all reachable configurations of the analyzed system.
The second chain Yy C Y7 C ... is a sequence of finite subsets of Y that contains

LA directed set D for a quasi-ordered set X is a nonempty subset of X such that each
pair of points z,y € D has a common upper bound in D.

On Depth-bounded Message Passing Systems 15

all limits Y. In each iteration 4 the algorithm computes an under and an over-
approximation of the analyzed system for the current pair (X;,Y;) of elements
in the chain. This approximations are such that the under-approximation is
guaranteed to detect that ¢ can be covered if X; contains a path to a covering
state. The over-approximation is guaranteed to detect that ¢ can not be covered
if Y; can express | Post™(] sp) and this set does not cover ¢. The conditions on
the chains ensure that one of the two conditions eventually holds for some ¢ € N.

For deciding the covering problem of depth-bounded systems we can now
simply enumerate the sets C(PI) = J, oy C(PI, k) and L(PI) = J,cn L(PI, k).
Then in each iteration of the algorithm the pair (X;,Y;) is contained in some
(C(PI,k),L(PI,k)) and the conditions on the chains for termination of the al-
gorithm are still satisfied.

Theorem 17. The covering problem is decidable for the well-structured transi-
tion systems induced by depth-bounded processes.

Corollary 18. The control reachability problem is decidable for depth-bounded
processes.

6 Undecidability of the Reachability Problem

We will now prove that the general reachability problem for depth-bounded
systems is undecidable. For this purpopse we reduce the reachability problem for
reset nets to the reachability problem in a depth-bounded system that satisfies
the unique receiver condition [4,5]. The problem of reachability for reset nets is
undecidable [6,14]. In the following, we assume familiarity with Petri nets and
their semantics. For a formal definition of reset nets see, e.g., [6,14].

Reset nets are Petri nets which have, in addition to the standard arcs that
connect places and transitions, special reset arcs. A reset arc between a place
and a transition “flushes” the place when the transition fires, i.e., it removes
all tokens from the place in a single operation. We can simulate a reset net
using a depth-bounded system with a single thread whose parameters are names
corresponding to the places in the net. Tokens in places are modeled by messages
sent to the corresponding names. The firing of a transition of the net is simulated
by receiving messages from the respective names of places in the preset of the
transition (token consumption) and sending messages to the respective names
of places in the postset of the transition (token generation). A reset arc can be
modeled by generating a fresh name for the flushed place and assigning this name
to the corresponding parameter of the thread. The old name that was previously
assigned to this parameter becomes dead and pending messages can no longer
be received. This process is similar to a flush of a place in a reset net [5].

Theorem 19. The reachability problem for depth-bounded processes is undecid-
able.

16 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

7 Further Related Work

We now discuss further related work in the verification of w-calculus processes
and the analysis of well-structured transition systems.

The control reachability problem for the w-calculus has been studied in
[5,11,33,42]. The approaches taken in [33,42] consider only finitary systems
that impose a bound on the number of threads that can be dynamically cre-
ated. Delzanno [11] considers an abstraction-based approach that applies to the
full asynchronous 7-calculus. This approach is sound but in general incomplete.
More closely related to our work is [5] which considers input-bounded systems, a
syntactically defined fragment of the asynchronous w-calculus that allows name
creation and name mobility and has similar theoretical properties as depth-
bounded systems (control reachability is decidable, general reachability is not).
Input-bounded systems and depth-bounded systems are incomparable. Unlike
depth-bounded systems, input-bounded systems cannot truly model the dynamic
creation of an unbounded set of threads by a given thread such that all of these
threads remain active and communicate. Because of such restrictions, input-
bounded systems are less interesting from a practical point of view. Conversely,
input-bounded systems are not depth-bounded because they enable the creation
of unbounded chains of inactive threads. We suspect that there is a relaxation of
the depth-boundedness condition that subsumes both fragments and for which
control-reachability is still decidable.

There is a significant body of work on well-structured transition systems [1,
18]. The well-quasi-ordering on trees that is given by Kruskal’s tree theorem
has been used, e.g., for the analysis of tree pattern rewriting systems for XML
documents [21] and for the analysis of biological systems [12]. However, in both
cases the configurations of the underlying well-structured transition systems are
directly given by trees rather than general graphs. More closely related to our
work is the application of the graph minor theorem [39] in the context of graph
rewriting systems [26]. Graph minors are homomorphisms that induce a well-
quasi-ordering on graphs. However, the graph minor order is not upward com-
patible with respect to the m-calculus semantics. Therefore, this approach is not
applicable in our context. We restrict ourself to a specific class of compatible
graph minors, namely, subgraph isomorphisms and a specific class of graphs,
namely, graphs of bounded tree-depth. The concept of depth-boundedness eas-
ily generalizes from the analysis of w-calculus processes to the analysis of graph
rewriting systems that are naturally ordered by subgraph isomorphism.

8 Conclusion

We identified the novel class of depth-bounded message passing systems. The
key ingredient for the definition of this class is the graph-theoretic notion of
tree-depth. Depth-bounded systems cover many practical use cases of message
passing with dynamic creation of threads and name mobility. By proving that the
control reachability problem for depth-bounded systems is decidable we showed
that this class is also amenable to automated verification.

On Depth-bounded Message Passing Systems 17

The question whether a given message passing system is depth-bounded is of

independent theoretical interest and an intriguing problem for future research.

References

1.

2.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In LICS, pages 313-321, 1996.

G. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
PhD thesis, MIT CSAIL, 1986.

G. Agha and P. Thati. An algebraic theory of actors and its application to a simple
object-based language. In Essays in Memory of Ole-Johan Dahl, pages 26-57, 2004.
R. M. Amadio. On modelling mobility. Theor. Comput. Sci., 240(1):147-176, 2000.
R. M. Amadio and C. Meyssonnier. On decidability of the control reachability
problem in the asynchronous pi-calculus. Nord. J. Comput., 9(1):70-101, 2002.
T. Araki and T. Kasami. Some decision problems related to the reachability prob-
lem for petri nets. Theor. Comput. Sci., 3(1):85-104, 1976.

J. Armstrong. A history of Erlang. In B. G. Ryder and B. Hailpern, editors,
HOPL, pages 1-26. ACM, 2007.

G. Boudol. Asynchrony and the pi-calculus. Technical report, INRITA Report 1702,
INRIA, Sophia Antipolis, 1992.

W. Clinger. Foundations of Actor Semantics. PhD thesis, MIT CSAIL, 1981.

. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Léding, S. Tison,

and M. Tommasi. Tree Automata Techniques and Applications. Available from:
http://tata.gforge.inria.fr/, 2008. release November, 18th 2008.

G. Delzanno. A symbolic procedure for control reachability in the asynchronous
pi-calculus: Extended abstract. Electr. Notes Theor. Comput. Sci., 98:21-33, 2004.
G. Delzanno and L. Begin. A biologically inspired model with fusion and clonation
of membranes. In UC, pages 64-82, 2008.

R. Diestel. Relating Subsets of a Poset, and a Partition Theorem for WQOs. Order,
18(3):275-279, 2001.

C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability and
undecidability. In K. G. Larsen, S. Skyum, and G. Winskel, editors, ICALP, volume
1443 of Lecture Notes in Computer Science, pages 103-115. Springer, 1998.

A. Finkel. A Generalization of the Procedure of Karp and Miller to Well Structured
Transition Systems. In T. Ottmann, editor, ICALP, volume 267 of Lecture Notes
in Computer Science, pages 499-508. Springer, 1987.

A. Finkel. Reduction and covering of infinite reachability trees. Inf. Comput.,
89(2):144-179, 1990.

A. Finkel and J. Goubault-Larrecq. Forward Analysis for WSTS, Part I: Comple-
tions. In STACS, volume 09001 of Dagstuhl Seminar Proceedings, pages 433—444,
2009.

A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63-92, 2001.

H. M. Friedman. Internal finite tree embeddings. In Reflections on the foundations
of mathematics, volume 15 of Lecture Notes in Logic, pages 60-91. Association for
Symbolic Logic, 2002.

G. Geeraerts, J.-F. Raskin, and L. V. Begin. Expand, enlarge and check: New
algorithms for the coverability problem of wsts. J. Comput. Syst. Sci., 72(1):180—
203, 2006.

18

21

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

B. Genest, A. Muscholl, O. Serre, and M. Zeitoun. Tree pattern rewriting systems.
In ATVA, pages 332-346, 2008.

P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci., 410(2-3):202-220, 20009.

C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for
artificial intelligence. In IJCAI pages 235—245, 1973.

K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
ECOOP, pages 133-147, 1991.

D. Janssens, M. Lens, and G. Rozenberg. Computation graphs for actor grammars.
J. Comput. Syst. Sci., 46(1):60-90, 1993.

S. Joshi and B. Konig. Applying the graph minor theorem to the verification of
graph transformation systems. In CAV, pages 214226, 2008.

R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. Syst. Sci.,
3(2):147-195, 1969.

J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions on the American Mathematical Society, 95(2):210-225, 1960.

R. Laver. On Fraiss¢’s Order Type Conjecture. Ann. of Math., 93(1):89-111, 1971.
R. Milner. Functions as processes. Mathematical Structures in Computer Science,
2(2):119-141, 1992.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i. Inf.
Comput., 100(1):1-40, 1992.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, ii. Inf.
Comput., 100(1):41-77, 1992.

U. Montanari and M. Pistore. Checking bisimilarity for finitary pi-calculus. In
CONCUR, pages 42-56, 1995.

C. S. J. A. Nash-Williams. On better-quasi-ordering transfinite sequences. Proc.
Camb. Phil. Soc., 64:273-290, 1968.

U. Nestmann and B. C. Pierce. Decoding choice encodings. Inf. Comput., 163(1):1-
59, 2000.

J. Nesetfil and P. O. de Mendez. Tree-depth, subgraph coloring and homomorphism
bounds. Fur. J. Comb., 27(6):1022-1041, 2006.

M. Odersky. The scala experiment - can we provide better language support for
component systems? In APLAS, page 364, 2004.

R. Pointer. kestrel - small, scalable message queue daemon. http://robey.lag.
net/2008/11/27/scarling-to-kestrel.html.

N. Robertson and P. D. Seymour. Graph Minors. XX. Wagner’s conjecture. Journal
of Combinatorial Theory, 90(2):234-357, 2004.

M. Sirjani, M. M. Jaghoori, C. Baier, and F. Arbab. Compositional semantics of
an actor-based language using constraint automata. In COORDINATION, volume
4038 of LNCS, pages 281-297, 2006.

S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for java. In ECOOP,
volume 5142 of LNCS, pages 104—-128. Springer, 2008.

P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A logical encoding of the pi-
calculus: Model checking mobile processes using tabled resolution. In VMCAI,
pages 116-131, 2003.

On Depth-bounded Message Passing Systems 19

A Additional Proofs

A.1 Proof of Proposition 6

Proposition 6. The relation < is a quasi-ordering on configurations.

Proof. Let P = (va)P’. Then by definition of the congruence relation on process
terms we have P = (va)(P’ | 0). Thus < is reflexive.

For proving that < is transitive, let P, @, R be configurations of the form
P = (vx)P, Q = (vy)Q’, and R = (vz)R/, and assume P < @ and Q < R.
Then we have @ = (vy’,x)(P’' | Q") and R = (vz’,y)(Q' | R”). We can rewrite
Ras (vz',y’,x)(P'| Q" | R"). Thus, we have P < R. O

A.2 Proof of Proposition 7

Proposition 7. Let P be a process. Then < is upward compatible with respect
to the transition relation of P.

Proof. Let P = (I,€) and P, R be configurations of P with P = (vu)P’ and
P < R, ie. Ris of the form R = (vz,u)(P’' | R). Further, let Q be a configu-
ration such that P —¢ @. From the definition of —¢ follows that there is some
process identifier A and defining equation A(xz) = x(x').(v2”)(Q’) in & such
that P is of the refined form P = (vu)(A(v) | w(w) | P”) and Q is of the form
Q = (vu,y)(P" | 0(Q")), where y are fresh names and o the proper substitution.
It follows that R is of the refined form R = (vz,u)(A(v) | w(w) | P” | R'). Now
define S = (vz,u,y)(P" | (Q’) | R'). Then we have R —»¢ Sand Q < S. [

A.3 Proof of Lemma 8

Lemma 8. Let P and Q be configurations. Then P < @Q iff ct(P) — ct(Q).

Proof. The “=" direction follows immediately from the definitions of ct, <, and
—. For the “<” direction assume ct(P) — ct(Q) and assume that P has the
form P = (vv)P’. We construct names y and a process term @’ from ct(Q) such
that @ = (vy,x)(P' | Q). Let ct(Q) = (V, E,l). First, partition the vertices V'
and edges F into pairs of disjoint sets V; and V&, respectively, F; and F, such
that (Vi1, E1) is the subgraph of ct(Q) to which ct(P) is isomorphic. Partition
Vi further into sets Vi ; and Vj, such that V; , contains the vertices from V;
that have incoming edges and V; , all other vertices of V. Similarly, partition
V, into Va2 ; and V. The vertices Vi ; are isomorphic to the vertices in ct(P)
that correspond to the names x, and the vertices V; , are isomorphic to the
vertices in ct(P) that correspond to the messages and threads in P’. We can
now choose a fresh name y for each vertex in V5 ; and define y as the vector over
these fresh names. Then @Q’ is the parallel composition of messages and threads

20 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

with messages corresponding to vertices v € V, such that [(v) = e, threads
corresponding to vertices v € V, , that are labelled by the corresponding process
identifier, and names chosen according to the names associated with vertices in
V1,: U Va; that are connected to the vertices v with edges in Eb. O

A.4 Proof of Lemma 9

Lemma 9. Let k € N and Ty, T be trees in rng(treey). If Ty is a subtree of Ts
then Gy — Gy for all Gy € tree; ' (T1) and G € tree,, ' (T»).

Proof. If Ty is a subtree of T then there exists a label-preserving injective
homomorphism o7 : V(T1) — V(T2) between Ty and T». Let G; € tree,;l(Tl)
and G € tree; ' (G2). Note that the vertices of T} are exactly the vertices of Gy
except for the added root vertex. The same is true for 75 and G5. What is more,
w7 maps the root of T} to the root of Ty and vertices of Gy to vertices of Gs.
Thus, we can define g : V(G1) — V(G2), the restriction of o7 to vertices in
G respectively Go. We will now show that g is an injective label-preserving
homomorphism from G to Gs.

The fact that ¢ is injective immediately follows from the fact that @
is injective. For proving that ¢g is a homomorphism, let vy, w; be vertices in
V(G1) such that there exists an edge (vi,w1) € E(G;) with label £. Since G is
contained in the closure of the forest that is used to construct 77, we conclude
that v1 < w; or w; = v holds in T7. Without loss of generality assume that
v1 =< w; holds. Let h,, = height(T1,v1) and h,,, = height(T7,w;). Let further
P be the subgraph of G; with the extended vertex labels that is induced by the
vertices on the path from r to w, as described in the construction of treey. From
v1 < wy follows v1 € V(P1). Hence, there exists an edge (vi,w1) € E(P;) with
label £. Now, let v2 = @@ (v1) and wy = pg(wy). Since T} is a subtree of Ty and
o1 preserves adjacency, we know that va < wq holds in Ty and height (75, v2) =
h.,, respectively, height(T5, we) = hy,. Let Py be the subgraph of G2 induced
by the vertices on the path from the root of T5 to ws, again, with the extended
labels as for P;. Since P; and P, are representatives of the isomorphism classes
that serve as labels for wy in 77 and w9 in 75, and since 7 preserves labels, we
know that P; and P, are isomorphic. Hence, there is an edge (v',w’) € E(Py)
with label ¢ such that v; has the same label in P; as v’ in P, respectively,
wy the same label as w’. Since the second component of the extended vertex
label corresponds to the height of the vertex in the respective tree, we conclude
hy, = height(Ts,v’) and h,,, = height(T, w’). The height of a vertex in a path
of a tree uniquely determines the vertex. Thus, we have v/ = vy and w’ = ws,
since both vy and ws are in P,. Therefore g is a homomorphism.

We already proved implicitly that ¢g preserves edge labels. The proof that
pq also preserves the vertex labelling follows a similar argumentation. O

On Depth-bounded Message Passing Systems 21

A.5 Proof of Lemma 11

Lemma 11. Let k € N and T1,T> be trees in rng(treei). Then the following two
properties are equivalent

1. there exists an inf and label-preserving embedding from Ty to Tb
2. T is a subtree of T5.

Proof. Let ¢ be an inf and label-preserving embedding from T3 to 7T5. Note that
by definition of treey, a label of a vertex v € V(T') for a tree T' € rng(treey) de-
pends on the path from the root of the tree to v. Thus, if two vertices v; € V(11)
and ve € V(T3) have the same label then they also have the same height. Since ¢
is label-preserving, we deduce that ¢ maps vertices in T3 to vertices in T3 of the
same height. From this and the second property of inf-preserving follows that
adjacency is preserved by the embedding. Since 77,75 are trees, non-adjacency is
also preserved (because the path between any two vertices is unique). Therefore
T, is a subtree of T5. O

A.6 Proof of Proposition 12

Proposition 12. Let k € N and PI be a finite set of process identifiers. Then
(C(PI,k),<) is a well-quasi-ordered set.

Proof. Proposition 6 states that < is a quasi-ordering for arbitrary configu-
rations. It remains to show that < has no infinite antichains in C. Thus, let
Py, P, ... be an infinite sequence of configuration in C. Let L be the set of all
labels used in ct(P) for the configurations P € C. Since the configurations in
C range over finitely many process identifiers, L is finite. From the fact that
C is depth-bounded follows that there exists some £ € N such that for all
i € N, ct(F;) has tree-depth at most k. Thus, we can define the infinite sequence
treeg (ct(Py)), treeg(ct(P2)),. .. of labelled trees over the finite set of labels Ly.
From Theorem 10 follows that there exists ¢ < j and an inf and label-preserving
embedding from treey(ct(F;)) to treeg(ct(P;)). From Lemma 11 and Lemma 9
follows that ct(F;) is a subgraph of ct(P;). Finally, from Lemma 8 follows that
P; < P;. Hence, (C, <) is a well-quasi-ordered set. O

A.7 Proof of Proposition 15

Before we prove Proposition 15, we recall some properties of well-quasi-orderings
and better-quasi-orderings [34], and define hedge automata.

Finite partitions of well-quasi-ordered sets. Let (X, <) be a well-quasi-ordered
set. We extend the ordering < to an ordering < on subsets of X as expected: for
Y1,Ys C X, we have Y7 < Y5 iff for all y; € Y7 there exists yo € Y5 if 41 < yo.
For Y C X wecall Y C X large in Y iff Y < Y. Conversely, we call Y’ small
inYif Y <Y.Asubset Y C X of X is called irreducible if for any Y7,Ys C Y,
Y <YiUY; impliesY <YjorY <Y5.

22 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

Proposition 20 (Diestel [13]). Let (X, <) be a well-quasi-ordered set. Then
for any countable Y C X the following are equivalent:

1. Y is irreducible
2. 'Y contains a chain C such that Y < C
3. Y is directed

Theorem 21 (Diestel [13]). If (X, <) is a well-quasi-ordered set then X can
be partitioned into finitely many irreducible subsets.

We call a partition P C 2% of a well-quasi-ordered set (X, <) an infinite
chain partition if and only if (1) P is finite and (2) for all Y € P, either YV is a
singleton or Y contains an infinite chain C such that Y < C.

Proposition 22. If (X, <) is a countable well-quasi-ordered set then there exists
an infinite chain partition of X.

Proof. We can construct an infinite chain partition P of X recursively using the
following procedure: according to Theorem 21, X can be partitioned into finitely
many irreducible subsets Y7, ...,Y,. By Proposition 20, for each 1 < < n,Y;
contains a chain C; with Y; < C;. For each 1 < ¢ < n, check if Y; contains an
infinite chain with this property. If it does then add Y; to P. Otherwise pick one
finite chain C; with Y; < C;. Since Cj is finite it contains a greatest element y;.
Then let Z; = {y €Y; | yi <y} be the set of elements in Y; that are equivalent
to y; wrt. the quasi-ordering <. Since Y; contains no infinite chains that are
large in Y;, the set Z; is finite. Then add all singletons {z} with z € Z; to P and
recursively apply the above procedure on the well-quasi-ordered set (V; — Z;, <).
Clearly, if this procedure terminates then the resulting set P is an infinite chain
partition of X. Thus, assume that the procedure does not terminate. Then the
algorithm constructs a strictly decreasing infinite sequence Y7 O Yy D ... of
subsets of Y with Y; — Y41 > Yiy1 — Y4 for all ¢ € N. Define Z; = Y; — Y11
then each Z; is nonempty, i.e. we can choose z; € Z; for each i € N such that we
get an infinite descending chain z; > 25 > ... of elements in X. This contradicts
the fact that < is well-founded. O

Better-quasi-orderings. Let < be a quasi-ordering on a set X then define the
quasi-ordering <; on subsets of X as follows: for Y7,Y> C X, we have Y7 <; Y5
iff there exists an injection ¢ : Y7 — Y5 such that for all y1 € Y1, ¢(y1) < y2. We
are interested in wqo sets (X, <) whose powerset is again a wqo with respect
to <;. For this purpose we consider Nash-William’s better-quasi-orderings [34].
Better-quasi-orderings are particular well-behaved well-quasi-orderings. Unlike
well-quasi-orderings, they are closed under the powerset construction. The formal
definition of better-quasi-ordering (bqo) is rather technical and not required for
understanding our proof of Proposition 15. We therefore refer to [34] for the
actual definition of bqo sets. In the following, we only state the properties of
bqo sets that we will need in our proof.

On Depth-bounded Message Passing Systems 23

Proposition 23. Let (X, <) be a bgo then

1. (X,<) is a wqo
2. (2%,<4) is a bgo
3. every Y C X is a bgo with respect to the restriction of < to Y.

Properties 1 and 2 are proved in [34]. Property 3 immediately follows from
the definition of better-quasi-orderings.

Laver [29] proved a generalization of Kruskal’s tree theorem stating that
countable trees labelled by a bqgo are a bgo under inf-preserving embedding.
Similar to Friedman’s special case of Kruskal’s tree theorem, we get the following
special case of Laver’s theorem.

Theorem 24. The set of all countable rooted labelled trees over a finite set of
labels is a bgo with respect to inf and label-preserving embedding.

Hedge automata. Finally, we introduce our version of hedge automata [10, Chap-
ter 8]. A (nondeterministic) finite hedge automaton A over a finite alphabet X
is a tuple (Q, X, Qs, A) where @ is a finite set of states, @y C Q is a set of final
states, and A is a finite set of transition rules of the following form:

a(R) — q

where a € X, g € @, and R C Q* is a regular language over Q. These languages
R occuring in the transition rules are called horizontal languages.

A run of A on a rooted labelled tree T' with vertex label function ! : V(T') —
X is a vertex label function r : V(T') — @ such that for each vertex v €
V(T) with a = I(v) and ¢ = r(v) there is a transition rule a(R) — ¢ with
r(v1)...7(v,) € R where vy, ..., v, are the immediate successors of v in 7. In
particular, to apply a rule to a leaf, the empty word € has to be in the horizontal
language of the rule R.

A rooted labelled tree T is accepted by A if there is a run r of A on T such
that r labels the root of T by a final state. The language L(A) of A is the set of
all rooted labelled trees over X' that are accepted by A.

We now have all the necessary ingredients for proving Proposition 15.

Proposition 15. The directed downward-closed sets of depth-bounded configu-
rations are exactly the denotations of extended process terms.

Proof. We first prove that every directed downward-closed set of depth-bounded
configurations is the denotation of an extended process term. For this purpose,
let D = (P;)ien be such a family of configurations and let & be the maximal
tree-depth of all configurations in D. Choose some Q¢ € D with tree-depth k.
Using Qo construct an ascending chain D’ = (Q;);en as follows: for each i € N
choose Q; € D such that P, < Q; and Q;_1 < @Q;. Such @Q; exists for each
1 € N since D is directed and, by induction,);_1 € D. Then by construction
(1) D =] D’ and (2) all elements in D’ have tree-depth k. Let (G;);en be the

24 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

family of directed labelled graphs G; = ct(Q;). Now for each ¢ € N choose a tree
T; € Treesi(G;) such that the family 7 = (T;);en is an ascending chain with
respect to the subtree relation. Such a family exists because the G; are ordered
by subgraph isomorphism and all G; have the same tree-depth. Without loss of
generality we assume that the vertex sets of all graphs G; are pairwise disjoint.

Let V = U,en V(T3), E = U;en E(T3), and let [be the union of all the vertex
labelling functions of the labelled trees T;. The height of the vertices in the trees
T; range from 1 to k + 1. For a node = € V of height h > 1 we denote by
parent(v) € V the parent of v in the tree T; to which v belongs. Similarly, for
a node v € V we denote by Children(v) the set of all vertices that are direct
successors of v in the tree to which v belongs. We extend the functions parent
to sets of vertices, as expected. Furthermore, let T'(v) be the subtree rooted in
v of the tree T; to which v belongs. For all 1 < h < k 4+ 1, let V}, be the set of
all vertices in V' that have height h. For all h we extend the relation — from
labelled rooted trees to vertices in Vj, as expected: for all v,w € Vj, v — w
iff T'(v) — T'(w). From Theorem 24, Property 3 of Proposition 23, and the fact
that on the tree encodings the relation < coincides with inf and label-preserving
embedding, follows that for all h, (V},, <) is a bqo.

We will now construct a finite hedge automaton A from the family of trees
7T whose language is both small and large in 7. For this purpose we define an
equivalence relation on each V}, that partitions V}, into finitely many equivalence
classes. These equivalence classes serve as the states of the automaton.

For each i € N fix some injective label-preserving homomorphism ¢; : V(T;) —
V(T;41) and denote by ¢y; ; the composition ¢; 1 0---0¢; if j > i and the iden-
tify function id if j = 4. Then define an equivalence relation ~ on V' as follows:
for all v; € V(T;) and v; € V(T})

s ST and ¢y; j)(vi) = vj or
virv o > j and ¢4 (vj) = v;

Now, recursively define an equivalence relation ~; on V} for each 1 < h <
k + 1 as follows: for h = 1 we simply have v ~; w for all v,w € V;. In order to
define ~}, for h > 1 we need some intermediate definitions. Given an equivalence
class U in the quotient of V},_1 wrt. ~p,_1, let Children(U) be the set of equiv-
alence classes ¢ in the quotient V},/. such that some v € ¥ has a parent in U.
Since (Vj, <) is a bqo, and Children(U) C 2"+, it follows from Proposition 23
that (Children(U), 1) is also a bqo and thus a wqo. Furthermore, Children(U)
is countable. Thus, by Proposition 22 there exists an infinite chain partition
of Children(U). For each U, choose one such infinite chain partition P(U) of
Children(U). Then for v,w € V}, we have: v ~, w iff there exists U € Vj,_1/~, _,
such that (1) parent(v), parent(w) € U and (2) there is P € P(U) such that
v,we|JP.

We can easily prove by induction on h that ~j is indeed an equivalence
relation on V}, and that ~ partitions V}, into finitely many equivalence classes.
Furthermore, one can easily prove the following properties: let U € V},/~, then

1. all v € U have the same label

On Depth-bounded Message Passing Systems 25

2. U is directed with respect to —
3. if h =1 then U contains exactly the root vertices of all the trees T;
4. if h > 1 then parent(U) C U’ for some U’ € V},_1/~, _, and
(a) either all vertices in U’ have at most one child in U or
(b) every v € U is contained in a proper infinite chain C C U and for every
finite subset V' C U there exists v’ € U’ such that V' <3 Children(v')NU.

Now let ~ be the union of all the relations ~j,. Then ~ is an equivalence relation
on V that partitions V into finitely many equivalence classes. For an equivalence
class U € V/~, let C(U) be the set of all equivalence classes that contain children
of vertices in U. Furthermore, let [(U) be the unique label of all vertices in U,
and let m(U) denote 1 if every parent of a vertex v € U has at most one child
in U and, otherwise, let m(U) denote the symbol +. Then define a finite hedge
automaton A = (Q, X, Qy, A) as follows:

*Q:V/:
~ Y=L
7Qf:V1/:

— A consists of transition rules of the following form for each U € V//~
o LU)U U T S U CU) = (U, U}
o [(U)(e) = U if C(U) =0.

Let Ty be a tree labelled by Ly and r a run of A on Tyy. We show by induction
on the height of Ty that if r(w) = U for the root w of Tyy then there exists v € U
such that Ty — T'(v).

If h = 1 then Ty consists of a single root vertex w that is a leaf. Then the
transition rule in A used to label w in r is of the form I(U)(e) — U. Thus, by
construction of A all trees T'(v) for vertices v € U consist of the single leaf vertex
v labeled by [(U), i.e., Ty — T'(v) for all v € U.

If b > 1 then the transition rule in A used to label w must have the form

o)™ ---uyt) = U
with C(U) ={Ux,...,U,} and m; = m(U;) for all 1 <i < n. Let
Tia,o Ty T, T,

be the subtrees of Ty rooted at the children of w such that r labels the root of
each tree T; ; by U;. These trees have height h — 1 and r is a run of 4 on each
of these trees. Thus, by induction hypothesis there exist vertices

V11,501, €UL ... Un 1,0, Unp, €Uy

with T;; — T(v;;) for all 1 < ¢ < n, 1 < j < r;. If two vertices v; ; and

vy j» coincide then we must have ¢ = ¢’. Thus, r; > 1 and m(U;) = +, i.e., by

construction of A, there are vertices in U that have more than one child in U;.

Then U; satisfies property 4.(b) of the relations ~, i.e., U; contains a proper
!

infinite chain C' with v; ; € C. Hence, we can choose two vertices v; ;, v}, ;, € C

26 Thomas A. Henzinger, Thomas Wies, and Damien Zufferey

that are (1) distinct, (2) disjoint from all other v; j, and (3) satisfy T; ; — T'(v; ;)
and T; j < T'(vj ;). Therefore, without loss of generality assume that all the
v;,; are distinct. Now for any 1 < ¢ < n we can find v; € U such that

{'Ui,ly . 7vi17“i} —1 Chzldren(vz) N Uz

Namely, if 7, = 1 then v; = parent(v;1) and if 7, > 1 then such v; exists
by property 4.(b). Now, using the fact that U is directed we can inductively
construct an upper bound v € U of all the v; with respect to the wqo <. Then
we have by construction:

{V11s- ULy s Un1see vy Unr, b <1 Children(v)

We conclude that Children(w) <1 Children(v) and i(v) = I[(U), i.e., Ty — T(v),
which concludes the induction proof.
From the proved statement follows

VI'e LA)FieN: T—T, (2)

Using a similar inductive proof we can show that for all equivalence classes
U € V/~ and v € U there exists a tree Ty and a run r of A on Ty such that
T(v) — Ty. From this follows

VieNIT € L(A): T; — T 3)

Note that by construction of A4 the tree encoding operation can be reversed
on the trees in £(A). Let D 4 be the corresponding set of configurations. From
Properties (2) and (3) follows that D = | D’ = |D 4. From A we can now easily
construct an extended process term E whose denotation is the downward closure
of D 4. It follows that D = |D 4 = ~(E).

For proving the other direction of the proposition we start from an extended
process term E. Then from F we can again easily construct a finite hedge au-
tomaton A of the same form as above, such that the tree encoding operation can
be reversed on all trees accepted by A and the downward-closure of the resulting
configurations D 4 coincides with «(E). Using a simple pumping argument on
the hedge automaton A we can show that for every two trees T1,To € L(A)
there exists a tree T' € L(A) such that Ty — T and T, — T. Tt follows that D 4
is directed and thus y(E).

O

A.8 Proof of Theorem 19

Theorem 19. The reachability problem for depth-bounded processes is undecid-
able.

On Depth-bounded Message Passing Systems 27

Proof. Let N = (Pl,T, F, My) be a reset net with places PI, transitions T, flow
function F' : (Pl x T) U (T x Pl) — NU PIl, and initial marking M, given by
a multiset over Pl. We build a depth-bounded process P that simulates the
transitions of V. In each reachable configuration of P there is only one thread
P(z). This thread simulates a linearized execution of the reset net N. Each of
the r places in IV simply corresponds to a channel at a dedicated position in
T =2x,...,%.. We use a dedicated process identifier Ay that indicates that the
thread in the given configuration of P is stable and can fire the next transition
of N. Let 6 be the function that maps a name vector x of length » and a place
p € Pl to the name in x at the position dedicated to p. If a place p has n tokens
in a marking M then the corresponding configuration has n messages of the form
O(x,p)(). Thus, the initial configuration I of P is given by:

(va)(Ao(z)]

I 5@

For encoding the transitions of N we further assume process identifiers A; for
every transition ¢t € T that indicate whether the thread has consumed all tokens
of places in the preset of ¢ according to the flow function F' and is now ready
to produce all the tokens in the postset of ¢. Finally, we have auxiliary process
identifiers of the form A), Ay py and A4, A,y that are used for the
linearization of token consumption and generation. Let ¢t € T and let ot =
{p1,...,pn}- For encoding the consumption of all tokens when ¢ is fired we have
the following equations in P: for each p; if F(¢,p;) = k € N is a normal arc we
have for all 1 <i <n and 0 < j < k equations

A(Pi,t,j) (:1]‘) = 9(.’1), pi)()'A(Pi,t,j—i-l)

where A, 1.0y = Ao, A, 1,00 = Ap,_1 1) for i > 1 and, similarly, A, x) = As,
and A, 45y = A1) for @ > 1. If instead F(t,p;) = p; is a reset arc, we have
an equation

A (@) = @) (Ap,o (@1, 71,9, T541))

where 0(x, p;) = x; and A,) = Ap,,+ = Ag. Similarly we have equations for all
te =qi,...,qn that produce new tokens for each ¢; by sending F'(¢, p;) messages
to the channel associated with ¢;.

Note that the number of threads in each reachable configuration of P is con-
stant. Since the communication topologies of configurations are bipartite graphs
of vertices for names and vertices of threads, it follows that the tree-depth of all
reachable configurations of P is bounded. In particular, the dead names resulting
from the simulation of fired transitions with reset arcs are disconnected from the
single thread vertex and, thus, do not increase the tree-depth.

A marking M of N and a configuration C = (vax)(Ag(x)|P) of P are equiv-
alent iff for each p € M there is a corresponding message 6(x,p)() in P. By
construction, a marking of N is reachable in N iff an equivalent configuration
is reachable in P. Thus, it follows from [6] that the reachability problem for
depth-bounded systems is undecidable. (I

