
On Depth-bounded Message Passing SystemsThomas A. Henzinger, Thomas Wies, and Damien Zu�ereyEPFL Shool of Computer and Communiation Sienes, SwitzerlandAbstrat. We explore the border between deidability and undeidabil-ity of veri�ation problems related to message passing systems that admitunbounded reation of threads and name mobility. Inspired by use asesin real-life programs we introdue the notion of depth-bounded messagepassing systems. A on�guration of a message passing system an be rep-resented as a graph. In a depth-bounded system the length of the longestayli path in eah reahable on�guration is bounded by a onstant.While the general reahability problem for depth-bounded systems isundeidable, we prove that ontrol reahability is deidable. In our de-idability proof we show that depth-bounded systems are well-struturedtransition systems to whih a forward algorithm for the overing probleman be applied.1 IntrodutionWe study the boundary between deidability and undeidability of veri�ationproblems related to message passing systems. In partiular, we are interested insystems that use the ator model [2, 3, 9, 23, 40℄ for asynhronous message pass-ing. Our motivation stems from the inreased pratial importane of ators. Theator model is now the preferred or only available onurreny mehanism in var-ious modern programming languages, suh as Sala [37℄ and Erlang [7℄, andis beoming popular among pratiing programmers. For instane, the Twittermiroblogging servie now uses Sala ators [38℄.In the ator model the only omputation entity is the ator. An ator anreeive messages from, respetively send messages to other ators. The sent mes-sages are stored in an unordered bu�er that is owned by the reeiving ator. Eahtime an ator proesses a message in its bu�er it an loally deide to� reate �nitely many new ators,� send �nitely many messages to ators that it knows� and hange its behavior as to how the next message is proessed.Here knowing another ator means that the reipient of a message was eitherreated by the sending ator or its name was previously sent to the sendingator. In this paper we onsider the more generi setting of the asynhronous
π-alulus [8, 24℄ where one speaks about threads ommuniating via hannelsrather than ators with bu�ers. However, for inreased vividness we will for nowstay in the terminology of ators.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147954062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyOne an think of the on�guration of an ator system as a graph [25℄. Theverties in the graph orrespond to ators and messages. Edges between vertiesindiate whether an ator knows the name of another ator, whether a messageis in the bu�er of an ator, and whether a message arries the name of anator. We refer to these graphs as ommuniation topologies. In priniple, theommuniation topologies an enode arbitrary data strutures (e.g., the tape ofa Turing mahine) beause their size is not bounded and edges an dynamiallyhange during exeution. In general, most problems related to veri�ation ofsuh systems are therefore undeidable [30℄.In pratie, programming languages that support ators inorporate the a-tor model in the form of an extension to a sequential ore language [7℄ or alibrary for a ore language that provides other onurreny mehanisms [22,41℄.Given this ore language, programmers tend to use ators in a rather restritiveform, despite of their intrinsi omputational power. Complex data struturesare enoded in the loal state of the individual ators rather than the globalommuniation topology. The ommuniation topologies that are reahable inthe exeutions of real programs therefore have a rather simple shape. This raisesthe question whether one an de�ne a behavioral lass of ator systems by re-striting the shape of the reahable ommuniation topologies suh that ertainveri�ation problems beome deidable. Yet, this lass should still over a sig-ni�ant portion of the use ases that programmers atually are about. In thispaper we identify suh a behavioral lass of message passing systems.Depth-bounded systems. Using the graph-theoreti notion of tree-depth [36℄ wede�ne the new lass of depth-bounded message passing systems. Formally, thetree-depth of a graph is the height of a minimal tree whose losure ontains thegraph. In a depth-bounded system the tree-depth of all reahable ommunia-tion topologies is bounded by a onstant. Intuitively, this ondition bounds thelength of the maximal ayli path in eah reahable ommuniation topology.Depth-bounded systems still allow name mobility via messages and unboundedreation of both ators and messages. This lass therefore overs many interest-ing use ases of message passing onurreny suh as lient-server and onsumer-produer ommuniation with an unbounded number of lients/produers, andmaster-worker load balaning.While the general reahability problem for depth-bounded systems is unde-idable, this lass is still an interesting target for automated veri�ation. Themain tehnial ontribution of this paper is a proof of deidability of the ontrolreahability problem for depth-bounded systems. Intuitively, ontrol reahabil-ity onerns the veri�ation of safety properties that are loally observable by asingle ator. This problem subsumes many interesting veri�ation problems thatour in pratie. In our deidability proof we apply a speial ase of Kruskal'stree theorem [19,28℄ to show that depth-bounded systems indue well-struturedtransition systems (WSTS) [1, 18℄. We then show that the overing problem forthese systems an be deided using the expand, enlarge, and hek algorithmfor WSTSs [20℄. Interestingly, unlike the standard bakward algorithms for the



On Depth-bounded Message Passing Systems 3overing problem of WSTSs, this forward algorithm terminates even if the boundof the system is not known a priori.2 Motivating ExampleWe now present a typial example of a depth-bounded system. Our exampleis a publish/subsribe servie that provides an interfae between publishers ofontent (organized into �nitely many ategories) and subsribers to whih thisontent is distributed (depending on the ategory they are enlisted to). Figure 1shows an ator-based implementation of this servie in Sala-like pseudo ode.Sala ators are sublasses of the Ator trait. The behavior of an ator isspei�ed by the method at. This method is alled impliitly when the atoris started. Reeiving a message is done by alling reat. The method reatimpliitly stores a referene to the sender of the reeived message in the �eldsealed abstrat lass Categoryase objet Cat1 extends Category...ase objet CatN extends Categoryase objet Listase lass Categories(ats: Set[Category℄)...lass Server extends Ator {def loop(enl: Map[Category,Set[Ator℄℄){val ats = Set(Cat1,...,CatN)reat {ase List => {reply(Categories(ats))reat {ase Subsribe() =>loop(enl +  -> (enl() + sender))}}ase Unsubsribe() =>loop(enl() +  -> (enl() - sender))ase Publish => {reply(Who)reat {ase Credential =>if (*) {reply(Categories(ats))reat {ase Content() =>enl().forall( _ ! Content())loop(enl)}} else {reply(Deny)loop(enl)}}}}}override def at() = loop({_ => EmptySet})}

lass Subsriber(server: Ator) extends Ator {def loop(at: Category): Unit = {if (*) {reat {ase Content() =>if ( != at) error("...")...}} else {server ! Unsubsribe(at)exit('normal)}}override def at(): Unit = {server ! Listreat {ase Categories(ats) =>val at = ats.hooseloop(at)}}}lass Publisher(server: Ator) extends Ator {override def at(): Unit = {server ! Publishreat {ase Who =>reply(Credential)reat {ase Categories(ats) =>val  = ats.hoosereply(Content())if (*) at() else exit('normal)ase Deny => exit('badCredential)}}}}Fig. 1. Sala pseudo ode for the publish/subsribe servie



4 Thomas A. Henzinger, Thomas Wies, and Damien Zu�erey

Fig. 2. A reahable on�guration of the publish/subsribe serviesender. To send a message, we onsider methods ! and reply. The statementa ! m sends a message m to the reipient a; reply(m) is a shorthand for sender ! m.The implementation of the servie uses a lient/server arhiteture. Thereare three kinds of ators: the server, the subsriber lients, and the publisherlients. In addition we assume an ator that models an environment whih non-deterministially generates new subsribers and publishers.The system works as follows. Subsribers �rst request a list of available at-egories by sending a List message to the server. Upon reeption of List, theserver sends bak the list of ategories. The subsriber then hooses one ategoryand enlists itself by sending the appropriate Subsribemessage to the server. Foreah ategory the server keeps trak of the set of enlisted subsribers. Wheneverit reeives a Subsribemessage the server adds the sender to the orrespondingset. After subsription with the server the subsriber waits for inoming ontentmessages or may hoose to unsubsribe by sending an Unsubsribe message.The protool for the publishers is similar. A publisher initiates the ommuni-ation with the server by sending a Publish message. The server then asks thepublisher for its redentials and may deny the publisher's request if the reden-tials are not trustworthy. If however the server aepts the redentials then itasks the publisher for the ategory where it intends to publish. The server thenforwards the reeived ontent to all subsribers of the orresponding ategory.Figure 2 illustrates a reahable on�guration of the publish/subsribe servie.Notie the star-like shape with the server in the enter. A tree of minimal heightthat overlays this on�guration is rooted at the server. This tree has height 3and, thus, the tree-depth of this on�guration is 3. In fat the tree-depth of anyreahable on�guration of this system is bounded by 3. Therefore, the system isdepth-bounded. Note, however, that the size of the reahable on�gurations isnot bounded. Both the number of subsribers and publishers, as well as the num-ber of messages in the bu�ers of subsribers and the server an grow arbitrarilylarge.An interesting property of our servie that we would like to verify is whethersubsribers only reeive ontent messages of ategories they are enlisted to. This



On Depth-bounded Message Passing Systems 5property is equivalent to the question whether the method error in the lassSubsriber is ever alled. The result presented in this paper implies that hek-ing suh properties is deidable for depth-bounded message passing systems.3 PreliminariesWe �rst �x the syntax and semantis of our version of the asynhronous π-alulus and brie�y introdue well-strutured transition systems.3.1 Asynhronous π-alulusWe onsider systems of reursive equations in the polyadi asynhronous π-alulus that have a spei� normal form due to Amadio and Meyssonnier [5℄.Assume a ountable in�nite set of names with typial elements x, y and aountable in�nite set of proess identi�ers with typial elements A, B. We assumethat eah name and identi�er has an assoiated arity in N. We denote by x a(possibly empty) vetor over names and denote by [x/y] a substitution on names.Proess terms P are omposed of the unit proess 0, parameterized proessidenti�ers A(x), and the standard operations of message reation x(y), inputpre�x x(y).P , parallel omposition P | Q, and name generation (νx). Hereby,the parameter vetors must respet the arities of names and identi�ers. We allthe terms of the form x(x) messages and the terms of the form A(x) threads.We write Π in order to denote indexed parallel omposition and we write (νx)for (νx1) . . . (νxn) where x = x1, . . . , xn. An ourrene of a name x in a proessterm P is alled free if it is not below a (νx) or an input pre�x y(x). We denote by
fn(P ) the set of all free ourring names in P . We say that P is losed if fn(P ) =
∅. We denote by P ≡ Q the usual ongruene relation on proess terms, i.e., Pis syntatially equal to Q up to renaming and reordering of generated names,elimination of units, and assoiativity and ommutativity of parallel omposition.A on�guration is a losed proess term of the following normalized form

(νx)(Π
i∈I

xi(xi) | Π
j∈J

Aj(xj))where x only ontains names that atually our. Note that any proess terman be rewritten into a ongruent on�guration.A proess P is a pair (I, E) where I is an initial on�guration and E is a �niteset of parametri equations A(x) = P suh that (1) every proess identi�er in
P is de�ned by exatly one equation in E and (2) fn(P ) ⊆ {x}. We assume thatall equations in E have the following normal form:

A(x) = x(x′).(νx
′′)(Π

i∈I
xi(xi) | Π

j∈J
Aj(xj)) (1)Ator systems as π-alulus proesses. We an enode ator systems using π-alulus proesses. A on�guration of an ator system is similar to a proesson�guration: it onsists of ators with their assoiated behavior and messages



6 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereythat are stored in the bu�ers of these ators. We an therefore easily enodeators using threads. Unlike in the general π-alulus where a thread an re-eive messages from any hannel whose name it knows, ators an only reeivemessages from their private bu�ers, i.e., every message has a unique reeiver. Inour enoding an ator is therefore a thread of the form A(xI ; xO) whose param-eters are divided into input/output parameters xI and output parameters xO.The names in xI an be used for both sending and reeiving messages whilethe names in xO an only be used for sending messages. For eah pair of ators
A(xI ; xO) and B(yI ; yO) in a on�guration, the names xI and yI are disjoint,i.e., the i/o parameters enode the private bu�ers of ators. We all the aboverestritions on on�gurations the unique reeiver ondition [4℄. The preservationof the unique reeiver ondition is guaranteed by the ator equations that de�nethe possible behaviors of ators. Ator equations are of the following form:
A(xI ; xO) = Σ

j∈J
xj(xj).Bj(xI ; xjO)where for all j ∈ J, xj ∈ {xI}

B(xI ; xO) = (νyI)( Π
j∈J

xj(xj) | Π
k∈K

Ak(ykI , ykO) | A(xI ; x
′
O))where {yI} =

⋃

k∈K

{ykI} and for all k, k′ ∈ K, {ykI} ∩ {yk′I} = ∅We divide the proess identi�ers that are used to desribe ators into two ate-gories: reeiving states A(xI ; xO) and dispathing states B(xI ; xO). The equa-tions for the reeiving states speify how an ator proesses a reeived message.Hereby, the external hoie operator Σ is used to di�erentiate how a reeivedmessage is dispathed, depending on the kind of the message. The equations forthe dispathing states speify the atual behaviors of the ators: upon reep-tion of a message an ator an send �nitely many new messages xj(xj) to otherknown ators, reate �nitely many new ators Ak(ykI , ykO), and ontinue itsown omputation in a new reeiving state A(xI ; x
′
O). Again we assume that thefree names ouring on the right-hand sides of ator equations are ontained inthe list of parameters on the orresponding left-hand sides.Note that ator equations an be normalized to equations of the form (1)(potentially by introduing additional proess identi�ers and equations). In par-tiular, the external hoie operator an be eliminated (see, e.g., [35℄).An ator system is a proess whose initial on�guration obeys the uniquereeiver ondition and whose equations are the normalizations of ator equations.Operational semantis. Given a proess P = (I, E), we de�ne a transition rela-tion →E on on�gurations that aptures the usual π-alulus redution rules asfollows. Let P and Q be on�gurations then we have P →E Q if and only if thefollowing onditions hold:1. P ≡ (νu)(A(v) | w(w) | P ′),2. the de�ning equation of A in E is of the form A(x) = x(x′).(νx

′′)(Q′),3. σ = [v/x, w/x
′, y/x

′′] where y are fresh names



On Depth-bounded Message Passing Systems 74. σ(x) = w5. Q ≡ (νu, y)(P ′ | σ(Q′)).We denote by →∗
E the re�exive transitive losure of the relation →E . We say thata on�guration P is reahable in proess P if and only if I →∗

E P . Finally, wedenote by Reach(P) the set of all reahable on�gurations of proess P .Reahability and ontrol reahability. We onsider two problems related to theveri�ation of ator systems. The reahability problem and the more restritiveontrol reahability problem.De�nition 1 (Reahability problem).Given a proess P and a on�guration
P . The reahability problem is to deide whether P is reahable in P.De�nition 2 (Control reahability problem). Given a proess (I, E) and aproess identi�er A. The ontrol reahability problem is to deide whether thereexists a on�guration P of the form P ≡ (νx)(A(y) | Q) suh that P is reahablein P.3.2 Well-Strutured Transition Systems (WSTS)We brie�y reall the relevant theory of well-strutured transition systems [1,15,16, 18℄.Well-quasi-ordering. A pair (X,≤) of a set X and a binary relation ≤ on X isalled well-quasi-ordered set (wqo) if and only if (1) ≤ is a quasi-ordering (i.e.,re�exive and transitive) and (2) any in�nite sequene x0, x1, x2, . . . of elementsfrom X ontains an inreasing pair xi ≤ xj with i < j.Let (X,≤) be a well-quasi-ordered set. A set I ⊆ X is alled upward-losedif for any pair x, y suh that y ≥ x, x ∈ I implies y ∈ I. Similarly, I is alleddownward-losed if for any pair x, y suh that y ≤ x, x ∈ I implies y ∈ I. Theupward-losure of Y ⊆ X is de�ned as ↑ Y = { x | ∃y ∈ Y. x ≥ y }. Correspond-ingly, we denote by ↓ Y the downward-losure of Y .Well-strutured transition system. A well-strutured transition systems (WSTS)is a transition system T = (S, s0,→,≤) where S is a set of on�gurations, s0 ∈ San initial on�guration,→⊆ S×S a transition relation, and ≤ ⊆ S×S a relationsatisfying the following two onditions: (well-quasi-ordering) ≤ is a well-quasi-ordering on S; and (ompatibility) ≤ is upward ompatible with respet to →,i.e., for all s1, s2, t1 suh that s1 ≤ t1 and s1 → s2, there exists t2 suh that
t1 →∗ t2 and s2 ≤ t2.Given a well-strutured transition system (S, s0,→,≤) we de�ne the funtion
Pred that maps a set of on�gurations C ⊆ S to the set of its diret predeessors,and the funtion Post that maps C to its diret suessors

Pred(C)
def

= { s ∈ S | ∃s′ ∈ C. s → s′ }

Post(C)
def

= { s′ ∈ S | ∃s ∈ C. s → s′ } .



8 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyDe�nition 3 (Covering Problem). Given a WSTS (S, s0,→,≤) and a on-�guration t ∈ S, the overing problem is to deide whether there exists a on�g-uration t′ ∈ S suh that s0 →∗ t′ and t ≤ t′.4 Depth-bounded SystemsWe now formally de�ne depth-bounded systems. First we give a general behav-ioral de�nition of suh systems in terms of their reahable on�gurations. Wethen desribe a syntati riterion on the de�ning equations of proesses thatensures depth-boundedness.4.1 A Behavioral Notion of Depth-bounded SystemsWe start by making formal our notion of ommuniation topologies of π-aluluson�gurations.Communiation topology. We use standard notation for direted and undiretedgraphs. A direted labelled graph over a �nite set of labels L is a tuple (G, lv, le)where G is a direted graph, lv : V (G) → L is a vertex labelling funtion, and
le : V (G) × V (G) → L is an edge labelling funtion.Let P = (I, E) be a proess. Let further n be the maximal arity of all vetorsof names ourring in I and E , and let A be the set of all proess identi�ersourring in I, E . De�ne a set of labels L

def

= {0, . . . , n} ∪ A ∪ {•} where • isdistint from all proess identi�ers. Let P be a on�guration of proess P of theform
(νx)(Πi∈Ixi(xi) | Πj∈JAj(xj))where x = x1, . . . , xm, and the index sets {1..m}, I, and J are disjoint. Thefuntion ct maps P to a direted labelled graph over L as follows: the graphonsists of verties orresponding to threads, messages, and names ourringin the on�guration. Eah thread vertex is labelled by the proess identi�er ofthe orresponding thread in the on�guration. There are edges between threadverties and name verties indiating that one of the names in the parametervetor of the thread is the name assoiated with that name vertex. Similarly,we have edges between message verties and name verties. Formally, ct(P ) is agraph ((V, E), lv, le) where� V is a union of disjoint sets of verties {vi}i∈I , {vj}j∈J

and {v1, . . . , vm},� E = { (vh, vk) | h ∈ J ∪ I ∧ 1 ≤ k ≤ m ∧ xhr
= xk for some 1 ≤ r ≤ n }∪

{ (vi, vk) | i ∈ I ∧ 1 ≤ k ≤ m ∧ xi = xk }� lv(vk) =

{

Ak if k ∈ J

• otherwise� le(vh, vk) =

{

r if h ∈ I ∪ J ∧ 1 ≤ k ≤ m ∧ xhr
= xk

0 if h ∈ I ∧ 1 ≤ k ≤ m ∧ xi = xkWe all ct(P ) the ommuniation topology of on�guration P .



On Depth-bounded Message Passing Systems 9Tree-depth. The key ingredient for de�ning depth-bounded systems is the notionof the tree-depth of a graph [36℄.A tree T is an undireted graph suh that every pair of distint verties in
T is onneted by exatly one path. A rooted tree is a tree with a dediatedroot vertex. A rooted forest is a disjoint union of rooted trees. The height of avertex v in a rooted forest F , denoted height(F, v), is the number of verties onthe path from the root (of the tree to whih v belongs) to v. The height of F isthe maximal height of the verties in F . Let v, w be verties of F and let T bethe tree in F to whih y belongs. The vertex x is an anestor of vertex y in F ,denoted x � y, if x belongs to the path linking y and the root of T . The losure
clos(F ) of a rooted forest F is the graph onsisting of the verties of F and theedge set { {x, y} | x � y, x 6= y }.De�nition 4 (Tree-depth). The tree-depth td(G) of an undireted graph Gis the minimum height of all rooted forests F suh that G ⊆ clos(F ).The tree-depth td(G) of a direted labelled graph G = ((V, E), lv, le) isthe tree-depth of the indued undireted graph with verties V and edge set
{{v1, v2} | (v1, v2) ∈ E}. The tree-depth of a on�guration is the tree-depthof its ommuniation topology. Finally, we say that a set of on�gurations Cis depth-bounded if there exists k ∈ N suh that all on�gurations P ∈ C havetree-depth at most k.De�nition 5 (Depth-bounded proess). A proess P is alled depth-bound-ed if its set of reahable on�gurations Reach(P) is depth-bounded.4.2 A Syntati Notion of Depth-bounded SystemsWhile the question whether a given proess is depth-bounded is itself undeid-able, one an identify simple syntati onditions on the de�ning equations ofthe proess that guarantee depth-boundedness and that are often satis�ed inpratie. We now desribe one suh syntati ondition.We restrit ourself to proesses that satisfy the unique reeiver ondition (f.Setion 3.1) suh as ator systems. In order to enfore bounded tree-depth ofsuh systems, we need to restrit the reation of new threads and their assoiatedmailboxes. If the system allows to reate and arbitrarily link threads then itstree-depth is unbounded. The following syntati riterion limits the maximalsize of the hains of threads and assoiated mailbox hannels in the reahableommuniation topologies.Our syntati riterion for depth-boundedness only restrits the de�ningequations of the system. The initial on�guration is unonstrained. Assume thatall proess identi�ers used in equations of the system are divided into levels 0 to
n. The �rst restrition on the de�ning equations of the system is that threadswith proess identi�ers of level i an reate only threads with proess identi�ersthat are at least on level i + 1. If the system did not allow name mobility viamessages, this restrition would impose a tree-like shape on the reahable om-muniation topologies with threads of level 0 at the roots. In order to prevent



10 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyhaining threads beyond the parent-hild relation, we also restrit the name mo-bility appropriately. We partition the names that eah thread knows into threeategories private, asending, and desending. The names of the thread's ownmailboxes are the private names of the thread. If a thread sends a name to athread of higher level, the reeiving thread onsiders the sent name as a de-sending name. Conversely, a name sent to a thread of smaller or equal levelis onsidered as an asending name by the reeiving thread. The restrition onname mobility are then as follows. A thread an send a private name to anyother thread it knows. An asending name an only be forwarded to threads ofhigher levels, respetively, desending names only to threads of lower levels.The systems that obey the restritions desribed above are depth-bounded.The reason for depth-boundedness is that in a reahable ommuniation topol-ogy of suh a system, every path between two threads of the same level goes overthe private name of a ommon anestor of lower level. Sine the anestor threadsthemselves have �nitely many private names, and sine the level of anestors isbounded by 0, the length of any ayli path in the ommuniation topology isbounded. Note that the maximal depth of the reahable ommuniation topolo-gies does not only depend on the maximal level of the proess identi�ers, butalso on the number of free parameters of the proess identi�ers and the shape ofthe ommuniation topology of the initial on�guration.5 Deidability of the Control Reahability ProblemWe now ome to the main tehnial result of this paper. We show that the on-trol reahability problem is deidable for depth-bounded proesses. The ontrolreahability problem for proesses an be rephrased as a overing problem withrespet to the following natural quasi-ordering ≤ on on�gurations: let P and
Q be on�gurations then P ≤ Q if and only if Q orresponds to P extended bysome proess term Q′, formally, if P ≡ (νx)P ′ then there exist y and Q′ suhthat

Q ≡ (νy, x)(P ′ | Q′)In the remainder of this setion we will prove that depth-bounded systems arewell-strutured transition systems for the quasi-ordering ≤ and that they areamenable to a forward analysis that deides the overing problem. The proofsfor all the statements made in this setion an be found in Appendix A.5.1 Depth-bounded Systems are Well-struturedFirst, it is easy to prove that ≤ is indeed a quasi-ordering on on�gurations andupward ompatible with respet to π-alulus redutions.Proposition 6. The relation ≤ is a quasi-ordering on on�gurations.Proposition 7. Let P be a proess. Then ≤ is upward ompatible with respetto the transition relation of P.



On Depth-bounded Message Passing Systems 11It remains to show that ≤ is also a well-quasi-ordering on depth-bounded setsof on�gurations. For this purpose we enode on�gurations into labelled trees.The absene of in�nite anti-hains over depth-bounded on�gurations then fol-lows from a variation of Kruskal's tree theorem [28℄ that is due to Friedman [19℄.First, it is instrutive to understand the impliations of P ≤ Q on the un-derlying ommuniation topologies. Given two labelled graphs G1 and G2, wesay G1 is (isomorphi to) a subgraph of G2, written G1 →֒ G2, i� there exists aninjetive label-preserving homomorphism from G1 to G2.Lemma 8. Let P and Q be on�gurations. Then P ≤ Q i� ct(P ) →֒ ct(Q).Tree enoding of on�gurations. A labelled rooted tree over a �nite set of labels
L is a pair (T, l) where T is a rooted tree and l : V (T ) → L a vertex labellingfuntion. We extend the relation →֒ to rooted labelled trees, as expeted, andwe say that a tree T1 is a subtree of tree T2 whenever T1 →֒ T2 holds. In thefollowing we �x a �nite set of labels L. Let Lk be the set of all isomorphismlasses of direted labelled graphs G over labels L∪ (L×{1..k}) suh that G hasat most k verties. Clearly, sine L is �nite, Lk is �nite.Given a direted labelled graph G over labels L that has tree-depth at most
k, we an onstrut a labelled rooted tree (T, l) over the set of labels Lk from
G as follows. First, let F be a rooted forest of minimal height whose losureontains the undireted graph indued by G. The rooted tree T is onstrutedfrom the forest F by extending F with a fresh root vertex r that has edges toall the roots of the trees in F . The labelling funtion l is de�ned as follows. Let
v ∈ V (T ) be a vertex in T . If v = r then l(r) is the empty graph. Otherwise vis a vertex in F (and thus in G). Let P be the subgraph of G that is indued bythe verties on the path from v to the root (of the tree in F to whih v belongs).Now onstrut a graph Ph from P by adding to the label of eah vertex of P itsheight in F . Then l(v) is the isomorphism lass of Ph. Sine G has tree-depth atmost k, Ph ∈ Lk. Thus, l is well-de�ned. Let Treesk be the funtion mapping alabelled direted graph G of tree-depth at most k to the set of all labelled rootedtrees over Lk that an be onstruted from G as desribed above. Furthermore,let treek be a funtion mapping eah suh G to some tree in Treesk(G).Lemma 9. Let k ∈ N and T1, T2 be trees in rng(treek). If T1 is a subtree of T2then G1 →֒ G2 for all G1 ∈ tree

−1
k (T1) and G2 ∈ tree

−1
k (T2).Let T be a rooted tree and x, y ∈ V (T ) two verties. The in�mum of x and

y, denoted x inf y, is the vertex z ∈ V (T ) with the greatest height suh that
z � x and z � y. Given rooted trees T1 and T2, a funtion ϕ is an inf-preservingembedding from T1 into T2 i� (1) ϕ : V (T1) → V (T2) is injetive, and (2) forall x, y ∈ V (T1), ϕ(x inf y) = ϕ(x) inf ϕ(y). An embedding between two rootedlabelled trees over the same set of labels is label-preserving i� it maps vertiesto verties with the same label. The inf and label-preserving embeddings induea well-quasi-ordering on labelled trees. In partiular, we have the following.Theorem 10 (Friedman [19℄). Let T1, T2, . . . be an in�nite sequene of la-belled trees over a �nite set of labels L. Then there exist i < j and an inf andlabel-preserving embedding from Ti to Tj.



12 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyClearly, if a tree is a subtree of another tree then there exists an inf andlabel preserving embedding between these trees. For trees that result from thetree enoding of on�gurations the onverse holds, too. Verties of di�erent lev-els of suh trees have always di�erent labels. Thus, an inf and label-preservingembedding between suh trees also preserves anteedene of verties.Lemma 11. Let k ∈ N and T1, T2 be trees in rng(treek). Then the following twoproperties are equivalent1. there exists an inf and label-preserving embedding from T1 to T22. T1 is a subtree of T2.Given a �nite set of proess identi�ers PI , let C(PI , k) be the set of allon�gurations over PI that have tree-depth at most k. From Proposition 6,Theorem 10, and Lemmas 8, 9, and 11 now follows that eah C(PI , k) is well-quasi-ordered.Proposition 12. Let k ∈ N and PI be a �nite set of proess identi�ers. Then
(C(PI , k),≤) is a well-quasi-ordered set.Theorem 13. Let P = (I, E) be a depth-bounded proess of bound k and let
PI be the proess identi�ers appearing in I, E. Then for all k′ ≥ k, the tuple
(C(PI , k′), I,→E ,≤) is a well-strutured transition system.The standard algorithm for deiding the overing problem for WSTS is asfollows. Starting from the on�guration t that is to be overed one omputesthe upward losure ↑ Pred∗(↑ t) of the bakward-reahable on�gurations of
t and then heks whether this set ontains the initial on�guration. The well-quasi-ordering ensures that the bakward analysis terminates. While the forward-reahable on�gurations of a depth-bounded system have bounded tree-depth,this is not neessarily the ase for the bakward-reahable on�gurations. Thus,the set of bakward-reahable on�gurations might not be well-quasi-ordered.Using a bakward algorithm we an therefore only deide the overing problemfor depth-bounded systems whose bound is known a priori. In the following weshow that there exists a forward algorithm that overomes this limitation.5.2 A Forward Algorithm for the Covering ProblemThe idea of a forward algorithm for solving the overing problem of a WSTSis to ompute the over ↓ Post∗(↓ s0) of the initial on�guration s0 and thenhek whether this set ontains the on�guration to be overed. A well-knownexample of suh an algorithm is the Karp and Miller algorithm [27℄ for Petrinets. Finding forward algorithms for WSTS is more ompliated than �ndingbakward algorithms. In order to e�etively ompute the over, one needs to�nd a ompletion of the wqo set that ontains all the limits of downward-losedsets. A formal haraterization of these ompletions of wqo sets has been givenin [20℄ and [17℄.



On Depth-bounded Message Passing Systems 13Adequate domain of limits. An adequate domain of limits (ADL) [20℄ for a well-quasi-ordered set (X,≤) is a tuple (Y,⊑, γ) where Y is a set disjoint from X ; (L1)the map γ : Y ∪X → 2X is suh that γ(z) is downward-losed for all z ∈ X ∪Y ,and γ(x) =↓ {x} for all x ∈ X ; (L2) there is a limit point ⊤ ∈ Y suh that
γ(⊤) = X ; (L3) z ⊑ z′ if and only if γ(z) ⊆ γ(z′); and (L4) for any downward-losed set D of X , there is a �nite subset E ⊆ Y ∪X suh that γ(E) = D, where
γ is extended to sets as expeted: γ(E) =

⋃

z∈E γ(z). A weak adequate domainof limits (WADL) [17℄ for (X,≤) is a a tuple (Y,⊑, γ) satisfying (L1),(L3), and(L4). Note that any weak adequate domain of limits an be extended to anadequate domain of limits.A WSTS (X, x0,→,≤) and an adequate domain of limits (Y,⊑, γ) are e�e-tive [20℄ if the following onditions are satis�ed: (E1) X and Y are reursivelyenumerable; (E2) for any x1, x2 ∈ X , one an deide whether x1 → x2; (E3) forany z ∈ X ∪ Y and for any �nite subset Z ⊆ X ∪ Y , one an deide whether
Post(γ(z)) ⊆ γ(Z); and (E4) for any �nite subsets Z1, Z2 ⊆ X ∪ Y , one andeide whether γ(Z1) ⊆ γ(Z2). The expand, enlarge, and hek algorithm pre-sented in [20℄ deides the overing problem for e�etive well-strutured transitionsystems with an adequate domain of limits.Theorem 14 (Geeraerts et al. [20℄). There exists an algorithm to deide theovering problem for e�etive WSTSs with an adequate domain of limits.Extended proess terms. We now desribe an e�etive adequate domain of limitsfor depth-bounded on�gurations. In order to �nitely represent the limits ofin�nite downward-losed sets of on�gurations we need to be able to expressthat ertain subterms in a on�guration an be repliated arbitrarily often. Anatural solution to this problem is to extend proess terms with the repliationoperator ! that is used as a reursion primitive in the standard de�nition of the
π-alulus [31,32℄. Instead of using repliation to express reursion, we use it toe�etively represent in�nite sets of on�gurations.An extended proess term is onstruted from the operations of standard pro-ess terms de�ned in Setion 3.1 and the repliation operation !P . We extend theongruene relation ≡ from proess terms to extended proess terms by addingthe axiom !P ≡ (P | !P ). Using this extended ongruene relation we arry overthe de�nitions of the transition relations of proesses and the quasi-ordering
≤ from proess terms to extended proess terms. We then de�ne the denota-tion γ(P ) of an extended proess term P as its downward losure restrited tonon-extended proess terms:

γ(P ) = {P ′ | P ′ on�guration and P ′ ≤ P }The quasi-ordering⊑ on extended proess terms that is required for the adequatedomain of limits is de�ned by ondition (L3).Finkel and Goubault-Larreq haraterize the minimal andidates for theWADLs of a wqo set X in terms of its ideal ompletion [17, Proposition 3.3℄.



14 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyThis means that the set of all downward-losed direted subsets1 of X forma WADL for X . Extended proess terms are the ideal ompletions of sets ofdepth-bounded proess terms.Proposition 15. The direted downward-losed sets of depth-bounded on�gu-rations are exatly the denotations of extended proess terms.For proving that a downward-losed direted set of depth-bounded on�gu-rations D is the denotation of an extended proess term, we use the fat that
D ontains a hain of proess terms whose tree enodings form a hain of trees
T ordered by the subtree relation. The trees T are again well-quasi-ordered.From T one an then onstrut a hedge automaton A [10, Chapter 8℄ whose treelanguage L(A) is both large and small in T , i.e., the downward losure of theon�gurations obtained by reversing the tree enoding operation on the trees in
L(A) is the set D. From the automaton A one an then easily onstrut the ex-tended proess term. The inverse diretion also uses the onstrution of a hedgeautomaton. For proof details see Appendix A.Let PI be a �nite set of proess identi�ers. We denote by L(PI , k) the setof all extended proess terms over PI suh that the elements of L(PI , k) denotesets of k-bounded on�gurations in C(PI , k), and L(PI , k) itself does not ontainthe on�gurations in C(PI , k).Proposition 16. Let k ∈ N and let PI be a �nite sets of proess identi�ers.Then (L(PI , k),⊑, γ) is a weak adequate domain of limits for the well-quasi-ordered set (C(PI , k),≤).It remains to argue that the WSTSs indued by depth-bounded proessestogether with their WADLs of extended proess terms are e�etive. The ondi-tions (E1) and (E2) are learly satis�ed. Also given an extended proess term zwe an ompute a �nite set of extended proess terms denoting Post(γ(z)). Notefurther that Proposition 16 implies that for any �nite subsets Z1, Z2 ⊆ L(PI , k),
γ(Z1) ⊆ γ(Z2) holds if and only if for all z1 ∈ Z1 there exists z2 ∈ Z2 suhthat γ(z1) ⊆ γ(z2). The inlusion problem γ(z1) ⊆ γ(z2) an be redued tothe language inlusion problem for deterministi hedge automata, whih is de-idable. For this purpose, one omputes deterministi hedge automata from the�nitely many tree enodings of the on�gurations of z1 and z2 and then hekswhether the language of some automaton of z1 is inluded in the language ofsome automaton of z2. Thus onditions (E3) and (E4) are also satis�ed.Finally, let us explain why the expand, enlarge, and hek algorithm [20℄terminates on depth-bounded systems even if the bound of the system is notknown a priori. The idea of the algorithm is to simultaneously enumerate twoin�nite inreasing hains. The �rst hain X0 ⊆ X1 . . . is a sequene of �nitesubsets of X that ontains all reahable on�gurations of the analyzed system.The seond hain Y0 ⊆ Y1 ⊆ . . . is a sequene of �nite subsets of Y that ontains1 A direted set D for a quasi-ordered set X is a nonempty subset of X suh that eahpair of points x, y ∈ D has a ommon upper bound in D.



On Depth-bounded Message Passing Systems 15all limits Y . In eah iteration i the algorithm omputes an under and an over-approximation of the analyzed system for the urrent pair (Xi, Yi) of elementsin the hain. This approximations are suh that the under-approximation isguaranteed to detet that t an be overed if Xi ontains a path to a overingstate. The over-approximation is guaranteed to detet that t an not be overedif Yi an express ↓ Post∗(↓ s0) and this set does not over t. The onditions onthe hains ensure that one of the two onditions eventually holds for some i ∈ N.For deiding the overing problem of depth-bounded systems we an nowsimply enumerate the sets C(PI ) =
⋃

k∈N
C(PI , k) and L(PI ) =

⋃

k∈N
L(PI , k).Then in eah iteration of the algorithm the pair (Xi, Yi) is ontained in some

(C(PI , k),L(PI , k)) and the onditions on the hains for termination of the al-gorithm are still satis�ed.Theorem 17. The overing problem is deidable for the well-strutured transi-tion systems indued by depth-bounded proesses.Corollary 18. The ontrol reahability problem is deidable for depth-boundedproesses.6 Undeidability of the Reahability ProblemWe will now prove that the general reahability problem for depth-boundedsystems is undeidable. For this purpopse we redue the reahability problem forreset nets to the reahability problem in a depth-bounded system that satis�esthe unique reeiver ondition [4,5℄. The problem of reahability for reset nets isundeidable [6, 14℄. In the following, we assume familiarity with Petri nets andtheir semantis. For a formal de�nition of reset nets see, e.g., [6, 14℄.Reset nets are Petri nets whih have, in addition to the standard ars thatonnet plaes and transitions, speial reset ars. A reset ar between a plaeand a transition ��ushes� the plae when the transition �res, i.e., it removesall tokens from the plae in a single operation. We an simulate a reset netusing a depth-bounded system with a single thread whose parameters are namesorresponding to the plaes in the net. Tokens in plaes are modeled by messagessent to the orresponding names. The �ring of a transition of the net is simulatedby reeiving messages from the respetive names of plaes in the preset of thetransition (token onsumption) and sending messages to the respetive namesof plaes in the postset of the transition (token generation). A reset ar an bemodeled by generating a fresh name for the �ushed plae and assigning this nameto the orresponding parameter of the thread. The old name that was previouslyassigned to this parameter beomes dead and pending messages an no longerbe reeived. This proess is similar to a �ush of a plae in a reset net [5℄.Theorem 19. The reahability problem for depth-bounded proesses is undeid-able.



16 Thomas A. Henzinger, Thomas Wies, and Damien Zu�erey7 Further Related WorkWe now disuss further related work in the veri�ation of π-alulus proessesand the analysis of well-strutured transition systems.The ontrol reahability problem for the π-alulus has been studied in[5, 11, 33, 42℄. The approahes taken in [33, 42℄ onsider only �nitary systemsthat impose a bound on the number of threads that an be dynamially re-ated. Delzanno [11℄ onsiders an abstration-based approah that applies to thefull asynhronous π-alulus. This approah is sound but in general inomplete.More losely related to our work is [5℄ whih onsiders input-bounded systems, asyntatially de�ned fragment of the asynhronous π-alulus that allows namereation and name mobility and has similar theoretial properties as depth-bounded systems (ontrol reahability is deidable, general reahability is not).Input-bounded systems and depth-bounded systems are inomparable. Unlikedepth-bounded systems, input-bounded systems annot truly model the dynamireation of an unbounded set of threads by a given thread suh that all of thesethreads remain ative and ommuniate. Beause of suh restritions, input-bounded systems are less interesting from a pratial point of view. Conversely,input-bounded systems are not depth-bounded beause they enable the reationof unbounded hains of inative threads. We suspet that there is a relaxation ofthe depth-boundedness ondition that subsumes both fragments and for whihontrol-reahability is still deidable.There is a signi�ant body of work on well-strutured transition systems [1,18℄. The well-quasi-ordering on trees that is given by Kruskal's tree theoremhas been used, e.g., for the analysis of tree pattern rewriting systems for XMLdouments [21℄ and for the analysis of biologial systems [12℄. However, in bothases the on�gurations of the underlying well-strutured transition systems arediretly given by trees rather than general graphs. More losely related to ourwork is the appliation of the graph minor theorem [39℄ in the ontext of graphrewriting systems [26℄. Graph minors are homomorphisms that indue a well-quasi-ordering on graphs. However, the graph minor order is not upward om-patible with respet to the π-alulus semantis. Therefore, this approah is notappliable in our ontext. We restrit ourself to a spei� lass of ompatiblegraph minors, namely, subgraph isomorphisms and a spei� lass of graphs,namely, graphs of bounded tree-depth. The onept of depth-boundedness eas-ily generalizes from the analysis of π-alulus proesses to the analysis of graphrewriting systems that are naturally ordered by subgraph isomorphism.8 ConlusionWe identi�ed the novel lass of depth-bounded message passing systems. Thekey ingredient for the de�nition of this lass is the graph-theoreti notion oftree-depth. Depth-bounded systems over many pratial use ases of messagepassing with dynami reation of threads and name mobility. By proving that theontrol reahability problem for depth-bounded systems is deidable we showedthat this lass is also amenable to automated veri�ation.
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On Depth-bounded Message Passing Systems 19A Additional ProofsA.1 Proof of Proposition 6Proposition 6. The relation ≤ is a quasi-ordering on on�gurations.Proof. Let P ≡ (νx)P ′. Then by de�nition of the ongruene relation on proessterms we have P ≡ (νx)(P ′ | 0). Thus ≤ is re�exive.For proving that ≤ is transitive, let P, Q, R be on�gurations of the form
P ≡ (νx)P ′, Q ≡ (νy)Q′, and R ≡ (νz)R′, and assume P ≤ Q and Q ≤ R.Then we have Q ≡ (νy

′, x)(P ′ | Q′′) and R ≡ (νz
′, y)(Q′ | R′′). We an rewrite

R as (νz
′, y′, x)(P ′ | Q′′ | R′′). Thus, we have P ≤ R. �A.2 Proof of Proposition 7Proposition 7. Let P be a proess. Then ≤ is upward ompatible with respetto the transition relation of P.Proof. Let P = (I, E) and P, R be on�gurations of P with P ≡ (νu)P ′ and

P ≤ R, i.e., R is of the form R ≡ (νz, u)(P ′ | R′). Further, let Q be a on�gu-ration suh that P →E Q. From the de�nition of →E follows that there is someproess identi�er A and de�ning equation A(x) = x(x′).(νx
′′)(Q′) in E suhthat P is of the re�ned form P ≡ (νu)(A(v) | w(w) | P ′′) and Q is of the form

Q ≡ (νu, y)(P ′′ | σ(Q′)), where y are fresh names and σ the proper substitution.It follows that R is of the re�ned form R ≡ (νz, u)(A(v) | w(w) | P ′′ | R′). Nowde�ne S
def

= (νz, u, y)(P ′′ | σ(Q′) | R′). Then we have R →E S and Q ≤ S. �A.3 Proof of Lemma 8Lemma 8. Let P and Q be on�gurations. Then P ≤ Q i� ct(P ) →֒ ct(Q).Proof. The �⇒� diretion follows immediately from the de�nitions of ct, ≤, and
→֒. For the �⇐� diretion assume ct(P ) →֒ ct(Q) and assume that P has theform P = (νv)P ′. We onstrut names y and a proess term Q′ from ct(Q) suhthat Q ≡ (νy, x)(P ′ | Q′). Let ct(Q) = (V, E, l). First, partition the verties Vand edges E into pairs of disjoint sets V1 and V2, respetively, E1 and E2 suhthat (V1, E1) is the subgraph of ct(Q) to whih ct(P ) is isomorphi. Partition
V1 further into sets V1,i and V1,o suh that V1,o ontains the verties from V1that have inoming edges and V1,o all other verties of V1. Similarly, partition
V2 into V2,i and V2,o. The verties V1,i are isomorphi to the verties in ct(P )that orrespond to the names x, and the verties V1,o are isomorphi to theverties in ct(P ) that orrespond to the messages and threads in P ′. We annow hoose a fresh name y for eah vertex in V2,i and de�ne y as the vetor overthese fresh names. Then Q′ is the parallel omposition of messages and threads



20 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereywith messages orresponding to verties v ∈ V2,o suh that l(v) = •, threadsorresponding to verties v ∈ V2,o that are labelled by the orresponding proessidenti�er, and names hosen aording to the names assoiated with verties in
V1,i ∪ V2,i that are onneted to the verties v with edges in E2. �A.4 Proof of Lemma 9Lemma 9. Let k ∈ N and T1, T2 be trees in rng(treek). If T1 is a subtree of T2then G1 →֒ G2 for all G1 ∈ tree

−1
k (T1) and G2 ∈ tree

−1
k (T2).Proof. If T1 is a subtree of T2 then there exists a label-preserving injetivehomomorphism ϕT : V (T1) → V (T2) between T1 and T2. Let G1 ∈ tree

−1
k (T1)and G2 ∈ tree

−1
k (G2). Note that the verties of T1 are exatly the verties of G1exept for the added root vertex. The same is true for T2 and G2. What is more,

ϕT maps the root of T1 to the root of T2 and verties of G1 to verties of G2.Thus, we an de�ne ϕG : V (G1) → V (G2), the restrition of ϕT to verties in
G1 respetively G2. We will now show that ϕG is an injetive label-preservinghomomorphism from G1 to G2.The fat that ϕG is injetive immediately follows from the fat that ϕTis injetive. For proving that ϕG is a homomorphism, let v1, w1 be verties in
V (G1) suh that there exists an edge (v1, w1) ∈ E(G1) with label ℓ. Sine G1 isontained in the losure of the forest that is used to onstrut T1, we onludethat v1 � w1 or w1 � v1 holds in T1. Without loss of generality assume that
v1 � w1 holds. Let hv1

= height(T1, v1) and hw1
= height(T1, w1). Let further

P1 be the subgraph of G1 with the extended vertex labels that is indued by theverties on the path from r to w, as desribed in the onstrution of treek. From
v1 � w1 follows v1 ∈ V (P1). Hene, there exists an edge (v1, w1) ∈ E(P1) withlabel ℓ. Now, let v2 = ϕG(v1) and w2 = ϕG(w1). Sine T1 is a subtree of T2 and
ϕT preserves adjaeny, we know that v2 � w2 holds in T2 and height(T2, v2) =
hv1

, respetively, height(T2, w2) = hw1
. Let P2 be the subgraph of G2 induedby the verties on the path from the root of T2 to w2, again, with the extendedlabels as for P1. Sine P1 and P2 are representatives of the isomorphism lassesthat serve as labels for w1 in T1 and w2 in T2, and sine ϕT preserves labels, weknow that P1 and P2 are isomorphi. Hene, there is an edge (v′, w′) ∈ E(P2)with label ℓ suh that v1 has the same label in P1 as v′ in P2, respetively,

w1 the same label as w′. Sine the seond omponent of the extended vertexlabel orresponds to the height of the vertex in the respetive tree, we onlude
hv1

= height(T2, v
′) and hw1

= height(T2, w
′). The height of a vertex in a pathof a tree uniquely determines the vertex. Thus, we have v′ = v2 and w′ = w2,sine both v2 and w2 are in P2. Therefore ϕG is a homomorphism.We already proved impliitly that ϕG preserves edge labels. The proof that

ϕG also preserves the vertex labelling follows a similar argumentation. �



On Depth-bounded Message Passing Systems 21A.5 Proof of Lemma 11Lemma 11. Let k ∈ N and T1, T2 be trees in rng(treek). Then the following twoproperties are equivalent1. there exists an inf and label-preserving embedding from T1 to T22. T1 is a subtree of T2.Proof. Let ϕ be an inf and label-preserving embedding from T1 to T2. Note thatby de�nition of treek, a label of a vertex v ∈ V (T ) for a tree T ∈ rng(treek) de-pends on the path from the root of the tree to v. Thus, if two verties v1 ∈ V (T1)and v2 ∈ V (T2) have the same label then they also have the same height. Sine ϕis label-preserving, we dedue that ϕ maps verties in T1 to verties in T2 of thesame height. From this and the seond property of inf-preserving follows thatadjaeny is preserved by the embedding. Sine T1, T2 are trees, non-adjaeny isalso preserved (beause the path between any two verties is unique). Therefore
T1 is a subtree of T2. �A.6 Proof of Proposition 12Proposition 12. Let k ∈ N and PI be a �nite set of proess identi�ers. Then
(C(PI , k),≤) is a well-quasi-ordered set.Proof. Proposition 6 states that ≤ is a quasi-ordering for arbitrary on�gu-rations. It remains to show that ≤ has no in�nite antihains in C. Thus, let
P1, P2, . . . be an in�nite sequene of on�guration in C. Let L be the set of alllabels used in ct(P ) for the on�gurations P ∈ C. Sine the on�gurations in
C range over �nitely many proess identi�ers, L is �nite. From the fat that
C is depth-bounded follows that there exists some k ∈ N suh that for all
i ∈ N, ct(Pi) has tree-depth at most k. Thus, we an de�ne the in�nite sequene
treek(ct(P1)), treek(ct(P2)), . . . of labelled trees over the �nite set of labels Lk.From Theorem 10 follows that there exists i < j and an inf and label-preservingembedding from treek(ct(Pi)) to treek(ct(Pj)). From Lemma 11 and Lemma 9follows that ct(Pi) is a subgraph of ct(Pj). Finally, from Lemma 8 follows that
Pi ≤ Pj . Hene, (C,≤) is a well-quasi-ordered set. �A.7 Proof of Proposition 15Before we prove Proposition 15, we reall some properties of well-quasi-orderingsand better-quasi-orderings [34℄, and de�ne hedge automata.Finite partitions of well-quasi-ordered sets. Let (X,≤) be a well-quasi-orderedset. We extend the ordering ≤ to an ordering ≤ on subsets of X as expeted: for
Y1, Y2 ⊆ X , we have Y1 ≤ Y2 i� for all y1 ∈ Y1 there exists y2 ∈ Y2 if y1 ≤ y2.For Y ⊆ X we all Y ′ ⊆ X large in Y i� Y ≤ Y ′. Conversely, we all Y ′ smallin Y if Y ′ ≤ Y . A subset Y ⊆ X of X is alled irreduible if for any Y1, Y2 ⊆ Y ,
Y ≤ Y1 ∪ Y2 implies Y ≤ Y1 or Y ≤ Y2.



22 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyProposition 20 (Diestel [13℄). Let (X,≤) be a well-quasi-ordered set. Thenfor any ountable Y ⊆ X the following are equivalent:1. Y is irreduible2. Y ontains a hain C suh that Y ≤ C3. Y is diretedTheorem 21 (Diestel [13℄). If (X,≤) is a well-quasi-ordered set then X anbe partitioned into �nitely many irreduible subsets.We all a partition P ⊆ 2X of a well-quasi-ordered set (X,≤) an in�nitehain partition if and only if (1) P is �nite and (2) for all Y ∈ P , either Y is asingleton or Y ontains an in�nite hain C suh that Y ≤ C.Proposition 22. If (X,≤) is a ountable well-quasi-ordered set then there existsan in�nite hain partition of X.Proof. We an onstrut an in�nite hain partition P of X reursively using thefollowing proedure: aording to Theorem 21, X an be partitioned into �nitelymany irreduible subsets Y1, . . . , Yn. By Proposition 20, for eah 1 ≤ i ≤ n, Yiontains a hain Ci with Yi ≤ Ci. For eah 1 ≤ i ≤ n, hek if Yi ontains anin�nite hain with this property. If it does then add Yi to P . Otherwise pik one�nite hain Ci with Yi ≤ Ci. Sine Ci is �nite it ontains a greatest element yi.Then let Zi = { y ∈ Yi | yi ≤ y } be the set of elements in Yi that are equivalentto yi wrt. the quasi-ordering ≤. Sine Yi ontains no in�nite hains that arelarge in Yi, the set Zi is �nite. Then add all singletons {z} with z ∈ Zi to P andreursively apply the above proedure on the well-quasi-ordered set (Yi −Zi,≤).Clearly, if this proedure terminates then the resulting set P is an in�nite hainpartition of X . Thus, assume that the proedure does not terminate. Then thealgorithm onstruts a stritly dereasing in�nite sequene Y1 ⊇ Y2 ⊇ . . . ofsubsets of Y with Yi − Yi+1 > Yi+1 − Yi+2 for all i ∈ N. De�ne Zi = Yi − Yi+1then eah Zi is nonempty, i.e. we an hoose zi ∈ Zi for eah i ∈ N suh that weget an in�nite desending hain z1 > z2 > . . . of elements in X . This ontraditsthe fat that ≤ is well-founded. �Better-quasi-orderings. Let ≤ be a quasi-ordering on a set X then de�ne thequasi-ordering ≤1 on subsets of X as follows: for Y1, Y2 ⊆ X , we have Y1 ≤1 Y2i� there exists an injetion φ : Y1 → Y2 suh that for all y1 ∈ Y1, φ(y1) ≤ y2. Weare interested in wqo sets (X,≤) whose powerset is again a wqo with respetto ≤1. For this purpose we onsider Nash-William's better-quasi-orderings [34℄.Better-quasi-orderings are partiular well-behaved well-quasi-orderings. Unlikewell-quasi-orderings, they are losed under the powerset onstrution. The formalde�nition of better-quasi-ordering (bqo) is rather tehnial and not required forunderstanding our proof of Proposition 15. We therefore refer to [34℄ for theatual de�nition of bqo sets. In the following, we only state the properties ofbqo sets that we will need in our proof.



On Depth-bounded Message Passing Systems 23Proposition 23. Let (X,≤) be a bqo then1. (X,≤) is a wqo2. (2X ,≤1) is a bqo3. every Y ⊆ X is a bqo with respet to the restrition of ≤ to Y .Properties 1 and 2 are proved in [34℄. Property 3 immediately follows fromthe de�nition of better-quasi-orderings.Laver [29℄ proved a generalization of Kruskal's tree theorem stating thatountable trees labelled by a bqo are a bqo under inf-preserving embedding.Similar to Friedman's speial ase of Kruskal's tree theorem, we get the followingspeial ase of Laver's theorem.Theorem 24. The set of all ountable rooted labelled trees over a �nite set oflabels is a bqo with respet to inf and label-preserving embedding.Hedge automata. Finally, we introdue our version of hedge automata [10, Chap-ter 8℄. A (nondeterministi) �nite hedge automaton A over a �nite alphabet Σis a tuple (Q, Σ, Qf , ∆) where Q is a �nite set of states, Qf ⊆ Q is a set of �nalstates, and ∆ is a �nite set of transition rules of the following form:
a(R) → qwhere a ∈ Σ, q ∈ Q, and R ⊆ Q∗ is a regular language over Q. These languages

R ouring in the transition rules are alled horizontal languages.A run of A on a rooted labelled tree T with vertex label funtion l : V (T ) →
Σ is a vertex label funtion r : V (T ) → Q suh that for eah vertex v ∈
V (T ) with a = l(v) and q = r(v) there is a transition rule a(R) → q with
r(v1) . . . r(vn) ∈ R where v1, . . . , vn are the immediate suessors of v in T . Inpartiular, to apply a rule to a leaf, the empty word ǫ has to be in the horizontallanguage of the rule R.A rooted labelled tree T is aepted by A if there is a run r of A on T suhthat r labels the root of T by a �nal state. The language L(A) of A is the set ofall rooted labelled trees over Σ that are aepted by A.We now have all the neessary ingredients for proving Proposition 15.Proposition 15. The direted downward-losed sets of depth-bounded on�gu-rations are exatly the denotations of extended proess terms.Proof. We �rst prove that every direted downward-losed set of depth-boundedon�gurations is the denotation of an extended proess term. For this purpose,let D = (Pi)i∈N be suh a family of on�gurations and let k be the maximaltree-depth of all on�gurations in D. Choose some Q0 ∈ D with tree-depth k.Using Q0 onstrut an asending hain D′ = (Qi)i∈N as follows: for eah i ∈ Nhoose Qi ∈ D suh that Pi ≤ Qi and Qi−1 ≤ Qi. Suh Qi exists for eah
i ∈ N sine D is direted and, by indution, Qi−1 ∈ D. Then by onstrution(1) D =↓ D′ and (2) all elements in D′ have tree-depth k. Let (Gi)i∈N be the



24 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyfamily of direted labelled graphs Gi = ct(Qi). Now for eah i ∈ N hoose a tree
Ti ∈ Treesk(Gi) suh that the family T = (Ti)i∈N is an asending hain withrespet to the subtree relation. Suh a family exists beause the Gi are orderedby subgraph isomorphism and all Gi have the same tree-depth. Without loss ofgenerality we assume that the vertex sets of all graphs Gi are pairwise disjoint.Let V =

⋃

i∈N
V (Ti), E =

⋃

i∈N
E(Ti), and let l be the union of all the vertexlabelling funtions of the labelled trees Ti. The height of the verties in the trees

Ti range from 1 to k + 1. For a node x ∈ V of height h > 1 we denote by
parent(v) ∈ V the parent of v in the tree Ti to whih v belongs. Similarly, fora node v ∈ V we denote by Children(v) the set of all verties that are diretsuessors of v in the tree to whih v belongs. We extend the funtions parentto sets of verties, as expeted. Furthermore, let T (v) be the subtree rooted in
v of the tree Ti to whih v belongs. For all 1 ≤ h ≤ k + 1, let Vh be the set ofall verties in V that have height h. For all h we extend the relation →֒ fromlabelled rooted trees to verties in Vh as expeted: for all v, w ∈ Vh, v →֒ wi� T (v) →֒ T (w). From Theorem 24, Property 3 of Proposition 23, and the fatthat on the tree enodings the relation →֒ oinides with inf and label-preservingembedding, follows that for all h, (Vh, →֒) is a bqo.We will now onstrut a �nite hedge automaton A from the family of trees
T whose language is both small and large in T . For this purpose we de�ne anequivalene relation on eah Vh that partitions Vh into �nitely many equivalenelasses. These equivalene lasses serve as the states of the automaton.For eah i ∈ N �x some injetive label-preserving homomorphism φi : V (Ti) →
V (Ti+1) and denote by φ[i,j] the omposition φj−1 ◦ · · ·◦φi if j > i and the iden-tify funtion id if j = i. Then de�ne an equivalene relation ∼ on V as follows:for all vi ∈ V (Ti) and vj ∈ V (Tj)

vi ∼ vj i� i ≤ j and φ[i,j](vi) = vj or
i ≥ j and φ[j,i](vj) = viNow, reursively de�ne an equivalene relation ≃h on Vh for eah 1 ≤ h ≤

k + 1 as follows: for h = 1 we simply have v ≃1 w for all v, w ∈ V1. In order tode�ne ≃h for h > 1 we need some intermediate de�nitions. Given an equivalenelass U in the quotient of Vh−1 wrt. ≃h−1, let Children(U) be the set of equiv-alene lasses ṽ in the quotient Vh/∼ suh that some v ∈ ṽ has a parent in U .Sine (Vh, →֒) is a bqo, and Children(U) ⊆ 2Vh , it follows from Proposition 23that (Children(U), →֒1) is also a bqo and thus a wqo. Furthermore, Children(U)is ountable. Thus, by Proposition 22 there exists an in�nite hain partitionof Children(U). For eah U , hoose one suh in�nite hain partition P(U) of
Children(U). Then for v, w ∈ Vh we have: v ≃h w i� there exists U ∈ Vh−1/≃h−1suh that (1) parent(v), parent(w) ∈ U and (2) there is P ∈ P(U) suh that
v, w ∈

⋃

P .We an easily prove by indution on h that ≃h is indeed an equivalenerelation on Vh and that ≃h partitions Vh into �nitely many equivalene lasses.Furthermore, one an easily prove the following properties: let U ∈ Vh/≃h
then1. all v ∈ U have the same label



On Depth-bounded Message Passing Systems 252. U is direted with respet to →֒3. if h = 1 then U ontains exatly the root verties of all the trees Ti4. if h > 1 then parent(U) ⊆ U ′ for some U ′ ∈ Vh−1/≃h−1
and(a) either all verties in U ′ have at most one hild in U or(b) every v ∈ U is ontained in a proper in�nite hain C ⊆ U and for every�nite subset V ⊆ U there exists v′ ∈ U ′ suh that V →֒1 Children(v′)∩U .Now let ≃ be the union of all the relations ≃h. Then ≃ is an equivalene relationon V that partitions V into �nitely many equivalene lasses. For an equivalenelass U ∈ V/≃, let C(U) be the set of all equivalene lasses that ontain hildrenof verties in U . Furthermore, let l(U) be the unique label of all verties in U ,and let m(U) denote 1 if every parent of a vertex v ∈ U has at most one hildin U and, otherwise, let m(U) denote the symbol +. Then de�ne a �nite hedgeautomaton A = (Q, Σ, Qf , ∆) as follows:� Q = V/≃� Σ = Lk.� Qf = V1/≃� ∆ onsists of transition rules of the following form for eah U ∈ V/≃

• l(U)(U
m(U1)
1 · · ·U

m(Un)
n ) → U if C(U) = {U1, . . . , Un}

• l(U)(ǫ) → U if C(U) = ∅.Let TU be a tree labelled by Lk and r a run of A on TU . We show by indutionon the height of TU that if r(w) = U for the root w of TU then there exists v ∈ Usuh that TU →֒ T (v).If h = 1 then TU onsists of a single root vertex w that is a leaf. Then thetransition rule in ∆ used to label w in r is of the form l(U)(ǫ) → U . Thus, byonstrution of A all trees T (v) for verties v ∈ U onsist of the single leaf vertex
v labeled by l(U), i.e., TU →֒ T (v) for all v ∈ U .If h > 1 then the transition rule in ∆ used to label w must have the form

l(U)(Um1

1 · · ·Umn

n ) → Uwith C(U) = {U1, . . . , Un} and mi = m(Ui) for all 1 ≤ i ≤ n. Let
T1,1, . . . , T1,r1

, . . . , Tn,1, . . . , Tn,rnbe the subtrees of TU rooted at the hildren of w suh that r labels the root ofeah tree Ti,j by Ui. These trees have height h − 1 and r is a run of A on eahof these trees. Thus, by indution hypothesis there exist verties
v1,1, . . . , v1,r1

∈ U1 . . . vn,1, . . . , vn,rn
∈ Unwith Ti,j →֒ T (vi,j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ ri. If two verties vi,j and

vi′,j′ oinide then we must have i = i′. Thus, ri > 1 and m(Ui) = +, i.e., byonstrution of A, there are verties in U that have more than one hild in Ui.Then Ui satis�es property 4.(b) of the relations ≃h, i.e., Ui ontains a properin�nite hain C with vi,j ∈ C. Hene, we an hoose two verties v′i,j , v
′
i′,j′ ∈ C



26 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereythat are (1) distint, (2) disjoint from all other vi,j , and (3) satisfy Ti,j →֒ T (v′i,j)and Ti,j →֒ T (v′i′,j′). Therefore, without loss of generality assume that all the
vi,j are distint. Now for any 1 ≤ i ≤ n we an �nd vi ∈ U suh that

{vi,1, . . . , vi,ri
} →֒1 Children(vi) ∩ UiNamely, if ri = 1 then vi = parent(vi,1) and if ri > 1 then suh vi existsby property 4.(b). Now, using the fat that U is direted we an indutivelyonstrut an upper bound v ∈ U of all the vi with respet to the wqo →֒. Thenwe have by onstrution:

{v1,1, . . . , v1,r1
, . . . , vn,1, . . . , vn,rn

} →֒1 Children(v)We onlude that Children(w) →֒1 Children(v) and l(v) = l(U), i.e., TU →֒ T (v),whih onludes the indution proof.From the proved statement follows
∀T ∈ L(A)∃i ∈ N : T →֒ Ti (2)Using a similar indutive proof we an show that for all equivalene lasses

U ∈ V/≃ and v ∈ U there exists a tree TU and a run r of A on TU suh that
T (v) →֒ TU . From this follows

∀i ∈ N ∃T ∈ L(A) : Ti →֒ T (3)Note that by onstrution of A the tree enoding operation an be reversedon the trees in L(A). Let DA be the orresponding set of on�gurations. FromProperties (2) and (3) follows that D = ↓D′ = ↓DA. From A we an now easilyonstrut an extended proess term E whose denotation is the downward losureof DA. It follows that D = ↓DA = γ(E).For proving the other diretion of the proposition we start from an extendedproess term E. Then from E we an again easily onstrut a �nite hedge au-tomaton A of the same form as above, suh that the tree enoding operation anbe reversed on all trees aepted by A and the downward-losure of the resultingon�gurations DA oinides with γ(E). Using a simple pumping argument onthe hedge automaton A we an show that for every two trees T1, T2 ∈ L(A)there exists a tree T ∈ L(A) suh that T1 →֒ T and T2 →֒ T . It follows that DAis direted and thus γ(E).
�A.8 Proof of Theorem 19Theorem 19. The reahability problem for depth-bounded proesses is undeid-able.



On Depth-bounded Message Passing Systems 27Proof. Let N = (Pl , T, F, M0) be a reset net with plaes Pl , transitions T , �owfuntion F : (Pl × T ) ∪ (T × Pl ) → N ∪ Pl , and initial marking M0 given bya multiset over Pl . We build a depth-bounded proess P that simulates thetransitions of N . In eah reahable on�guration of P there is only one thread
P (x). This thread simulates a linearized exeution of the reset net N . Eah ofthe r plaes in N simply orresponds to a hannel at a dediated position in
x = x1, . . . , xr. We use a dediated proess identi�er A0 that indiates that thethread in the given on�guration of P is stable and an �re the next transitionof N . Let θ be the funtion that maps a name vetor x of length r and a plae
p ∈ Pl to the name in x at the position dediated to p. If a plae p has n tokensin a marking M then the orresponding on�guration has n messages of the form
θ(x, p)(). Thus, the initial on�guration I of P is given by:

(νx)(A0(x)| Π
p∈M0

θ(x, p)())For enoding the transitions of N we further assume proess identi�ers At forevery transition t ∈ T that indiate whether the thread has onsumed all tokensof plaes in the preset of t aording to the �ow funtion F and is now readyto produe all the tokens in the postset of t. Finally, we have auxiliary proessidenti�ers of the form A(t,p,i), A(t,p) and A(p,t,i), A(p,t) that are used for thelinearization of token onsumption and generation. Let t ∈ T and let •t =
{p1, . . . , pn}. For enoding the onsumption of all tokens when t is �red we havethe following equations in P : for eah pi if F (t, pi) = k ∈ N is a normal ar wehave for all 1 ≤ i ≤ n and 0 ≤ j ≤ k equations

A(pi,t,j)(x) = θ(x, pi)().A(pi,t,j+1)where A(p0,t,0) = A0, A(pi,t,0) = A(pi−1,t) for i > 1 and, similarly, A(pn,t,k) = At,and A(pi,t,k) = A(pi,t) for i > 1. If instead F (t, pi) = pi is a reset ar, we havean equation
A(pi−1,t)(x) = (ν(y))(A(pi,t)(x1, . . . , xj−1, y, xj+1))where θ(x, pi) = xj and A(p0,t) = Apn,t = A0. Similarly we have equations for all

t• = q1, . . . , qm that produe new tokens for eah qi by sending F (t, pi) messagesto the hannel assoiated with qi.Note that the number of threads in eah reahable on�guration of P is on-stant. Sine the ommuniation topologies of on�gurations are bipartite graphsof verties for names and verties of threads, it follows that the tree-depth of allreahable on�gurations of P is bounded. In partiular, the dead names resultingfrom the simulation of �red transitions with reset ars are disonneted from thesingle thread vertex and, thus, do not inrease the tree-depth.A marking M of N and a on�guration C = (νx)(A0(x)|P ) of P are equiv-alent i� for eah p ∈ M there is a orresponding message θ(x, p)() in P . Byonstrution, a marking of N is reahable in N i� an equivalent on�gurationis reahable in P . Thus, it follows from [6℄ that the reahability problem fordepth-bounded systems is undeidable. �


