
On Depth-bounded Message Passing SystemsThomas A. Henzinger, Thomas Wies, and Damien Zu�ereyEPFL S
hool of Computer and Communi
ation S
ien
es, SwitzerlandAbstra
t. We explore the border between de
idability and unde
idabil-ity of veri�
ation problems related to message passing systems that admitunbounded 
reation of threads and name mobility. Inspired by use 
asesin real-life programs we introdu
e the notion of depth-bounded messagepassing systems. A 
on�guration of a message passing system 
an be rep-resented as a graph. In a depth-bounded system the length of the longesta
y
li
 path in ea
h rea
hable 
on�guration is bounded by a 
onstant.While the general rea
hability problem for depth-bounded systems isunde
idable, we prove that 
ontrol rea
hability is de
idable. In our de-
idability proof we show that depth-bounded systems are well-stru
turedtransition systems to whi
h a forward algorithm for the 
overing problem
an be applied.1 Introdu
tionWe study the boundary between de
idability and unde
idability of veri�
ationproblems related to message passing systems. In parti
ular, we are interested insystems that use the a
tor model [2, 3, 9, 23, 40℄ for asyn
hronous message pass-ing. Our motivation stems from the in
reased pra
ti
al importan
e of a
tors. Thea
tor model is now the preferred or only available 
on
urren
y me
hanism in var-ious modern programming languages, su
h as S
ala [37℄ and Erlang [7℄, andis be
oming popular among pra
ti
ing programmers. For instan
e, the Twittermi
roblogging servi
e now uses S
ala a
tors [38℄.In the a
tor model the only 
omputation entity is the a
tor. An a
tor 
anre
eive messages from, respe
tively send messages to other a
tors. The sent mes-sages are stored in an unordered bu�er that is owned by the re
eiving a
tor. Ea
htime an a
tor pro
esses a message in its bu�er it 
an lo
ally de
ide to� 
reate �nitely many new a
tors,� send �nitely many messages to a
tors that it knows� and 
hange its behavior as to how the next message is pro
essed.Here knowing another a
tor means that the re
ipient of a message was either
reated by the sending a
tor or its name was previously sent to the sendinga
tor. In this paper we 
onsider the more generi
 setting of the asyn
hronous
π-
al
ulus [8, 24℄ where one speaks about threads 
ommuni
ating via 
hannelsrather than a
tors with bu�ers. However, for in
reased vividness we will for nowstay in the terminology of a
tors.
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2 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyOne 
an think of the 
on�guration of an a
tor system as a graph [25℄. Theverti
es in the graph 
orrespond to a
tors and messages. Edges between verti
esindi
ate whether an a
tor knows the name of another a
tor, whether a messageis in the bu�er of an a
tor, and whether a message 
arries the name of ana
tor. We refer to these graphs as 
ommuni
ation topologies. In prin
iple, the
ommuni
ation topologies 
an en
ode arbitrary data stru
tures (e.g., the tape ofa Turing ma
hine) be
ause their size is not bounded and edges 
an dynami
ally
hange during exe
ution. In general, most problems related to veri�
ation ofsu
h systems are therefore unde
idable [30℄.In pra
ti
e, programming languages that support a
tors in
orporate the a
-tor model in the form of an extension to a sequential 
ore language [7℄ or alibrary for a 
ore language that provides other 
on
urren
y me
hanisms [22,41℄.Given this 
ore language, programmers tend to use a
tors in a rather restri
tiveform, despite of their intrinsi
 
omputational power. Complex data stru
turesare en
oded in the lo
al state of the individual a
tors rather than the global
ommuni
ation topology. The 
ommuni
ation topologies that are rea
hable inthe exe
utions of real programs therefore have a rather simple shape. This raisesthe question whether one 
an de�ne a behavioral 
lass of a
tor systems by re-stri
ting the shape of the rea
hable 
ommuni
ation topologies su
h that 
ertainveri�
ation problems be
ome de
idable. Yet, this 
lass should still 
over a sig-ni�
ant portion of the use 
ases that programmers a
tually 
are about. In thispaper we identify su
h a behavioral 
lass of message passing systems.Depth-bounded systems. Using the graph-theoreti
 notion of tree-depth [36℄ wede�ne the new 
lass of depth-bounded message passing systems. Formally, thetree-depth of a graph is the height of a minimal tree whose 
losure 
ontains thegraph. In a depth-bounded system the tree-depth of all rea
hable 
ommuni
a-tion topologies is bounded by a 
onstant. Intuitively, this 
ondition bounds thelength of the maximal a
y
li
 path in ea
h rea
hable 
ommuni
ation topology.Depth-bounded systems still allow name mobility via messages and unbounded
reation of both a
tors and messages. This 
lass therefore 
overs many interest-ing use 
ases of message passing 
on
urren
y su
h as 
lient-server and 
onsumer-produ
er 
ommuni
ation with an unbounded number of 
lients/produ
ers, andmaster-worker load balan
ing.While the general rea
hability problem for depth-bounded systems is unde-
idable, this 
lass is still an interesting target for automated veri�
ation. Themain te
hni
al 
ontribution of this paper is a proof of de
idability of the 
ontrolrea
hability problem for depth-bounded systems. Intuitively, 
ontrol rea
habil-ity 
on
erns the veri�
ation of safety properties that are lo
ally observable by asingle a
tor. This problem subsumes many interesting veri�
ation problems thato

ur in pra
ti
e. In our de
idability proof we apply a spe
ial 
ase of Kruskal'stree theorem [19,28℄ to show that depth-bounded systems indu
e well-stru
turedtransition systems (WSTS) [1, 18℄. We then show that the 
overing problem forthese systems 
an be de
ided using the expand, enlarge, and 
he
k algorithmfor WSTSs [20℄. Interestingly, unlike the standard ba
kward algorithms for the



On Depth-bounded Message Passing Systems 3
overing problem of WSTSs, this forward algorithm terminates even if the boundof the system is not known a priori.2 Motivating ExampleWe now present a typi
al example of a depth-bounded system. Our exampleis a publish/subs
ribe servi
e that provides an interfa
e between publishers of
ontent (organized into �nitely many 
ategories) and subs
ribers to whi
h this
ontent is distributed (depending on the 
ategory they are enlisted to). Figure 1shows an a
tor-based implementation of this servi
e in S
ala-like pseudo 
ode.S
ala a
tors are sub
lasses of the A
tor trait. The behavior of an a
tor isspe
i�ed by the method a
t. This method is 
alled impli
itly when the a
toris started. Re
eiving a message is done by 
alling rea
t. The method rea
timpli
itly stores a referen
e to the sender of the re
eived message in the �eldsealed abstra
t 
lass Category
ase obje
t Cat1 extends Category...
ase obje
t CatN extends Category
ase obje
t List
ase 
lass Categories(
ats: Set[Category℄)...
lass Server extends A
tor {def loop(enl: Map[Category,Set[A
tor℄℄){val 
ats = Set(Cat1,...,CatN)rea
t {
ase List => {reply(Categories(
ats))rea
t {
ase Subs
ribe(
) =>loop(enl + 
 -> (enl(
) + sender))}}
ase Unsubs
ribe(
) =>loop(enl(
) + 
 -> (enl(
) - sender))
ase Publish => {reply(Who)rea
t {
ase Credential =>if (*) {reply(Categories(
ats))rea
t {
ase Content(
) =>enl(
).forall( _ ! Content(
))loop(enl)}} else {reply(Deny)loop(enl)}}}}}override def a
t() = loop({_ => EmptySet})}


lass Subs
riber(server: A
tor) extends A
tor {def loop(
at: Category): Unit = {if (*) {rea
t {
ase Content(
) =>if (
 != 
at) error("...")...}} else {server ! Unsubs
ribe(
at)exit('normal)}}override def a
t(): Unit = {server ! Listrea
t {
ase Categories(
ats) =>val 
at = 
ats.
hooseloop(
at)}}}
lass Publisher(server: A
tor) extends A
tor {override def a
t(): Unit = {server ! Publishrea
t {
ase Who =>reply(Credential)rea
t {
ase Categories(
ats) =>val 
 = 
ats.
hoosereply(Content(
))if (*) a
t() else exit('normal)
ase Deny => exit('badCredential)}}}}Fig. 1. S
ala pseudo 
ode for the publish/subs
ribe servi
e
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Fig. 2. A rea
hable 
on�guration of the publish/subs
ribe servi
esender. To send a message, we 
onsider methods ! and reply. The statementa ! m sends a message m to the re
ipient a; reply(m) is a shorthand for sender ! m.The implementation of the servi
e uses a 
lient/server ar
hite
ture. Thereare three kinds of a
tors: the server, the subs
riber 
lients, and the publisher
lients. In addition we assume an a
tor that models an environment whi
h non-deterministi
ally generates new subs
ribers and publishers.The system works as follows. Subs
ribers �rst request a list of available 
at-egories by sending a List message to the server. Upon re
eption of List, theserver sends ba
k the list of 
ategories. The subs
riber then 
hooses one 
ategoryand enlists itself by sending the appropriate Subs
ribemessage to the server. Forea
h 
ategory the server keeps tra
k of the set of enlisted subs
ribers. Wheneverit re
eives a Subs
ribemessage the server adds the sender to the 
orrespondingset. After subs
ription with the server the subs
riber waits for in
oming 
ontentmessages or may 
hoose to unsubs
ribe by sending an Unsubs
ribe message.The proto
ol for the publishers is similar. A publisher initiates the 
ommuni-
ation with the server by sending a Publish message. The server then asks thepublisher for its 
redentials and may deny the publisher's request if the 
reden-tials are not trustworthy. If however the server a

epts the 
redentials then itasks the publisher for the 
ategory where it intends to publish. The server thenforwards the re
eived 
ontent to all subs
ribers of the 
orresponding 
ategory.Figure 2 illustrates a rea
hable 
on�guration of the publish/subs
ribe servi
e.Noti
e the star-like shape with the server in the 
enter. A tree of minimal heightthat overlays this 
on�guration is rooted at the server. This tree has height 3and, thus, the tree-depth of this 
on�guration is 3. In fa
t the tree-depth of anyrea
hable 
on�guration of this system is bounded by 3. Therefore, the system isdepth-bounded. Note, however, that the size of the rea
hable 
on�gurations isnot bounded. Both the number of subs
ribers and publishers, as well as the num-ber of messages in the bu�ers of subs
ribers and the server 
an grow arbitrarilylarge.An interesting property of our servi
e that we would like to verify is whethersubs
ribers only re
eive 
ontent messages of 
ategories they are enlisted to. This



On Depth-bounded Message Passing Systems 5property is equivalent to the question whether the method error in the 
lassSubs
riber is ever 
alled. The result presented in this paper implies that 
he
k-ing su
h properties is de
idable for depth-bounded message passing systems.3 PreliminariesWe �rst �x the syntax and semanti
s of our version of the asyn
hronous π-
al
ulus and brie�y introdu
e well-stru
tured transition systems.3.1 Asyn
hronous π-
al
ulusWe 
onsider systems of re
ursive equations in the polyadi
 asyn
hronous π-
al
ulus that have a spe
i�
 normal form due to Amadio and Meyssonnier [5℄.Assume a 
ountable in�nite set of names with typi
al elements x, y and a
ountable in�nite set of pro
ess identi�ers with typi
al elements A, B. We assumethat ea
h name and identi�er has an asso
iated arity in N. We denote by x a(possibly empty) ve
tor over names and denote by [x/y] a substitution on names.Pro
ess terms P are 
omposed of the unit pro
ess 0, parameterized pro
essidenti�ers A(x), and the standard operations of message 
reation x(y), inputpre�x x(y).P , parallel 
omposition P | Q, and name generation (νx). Hereby,the parameter ve
tors must respe
t the arities of names and identi�ers. We 
allthe terms of the form x(x) messages and the terms of the form A(x) threads.We write Π in order to denote indexed parallel 
omposition and we write (νx)for (νx1) . . . (νxn) where x = x1, . . . , xn. An o

urren
e of a name x in a pro
essterm P is 
alled free if it is not below a (νx) or an input pre�x y(x). We denote by
fn(P ) the set of all free o

urring names in P . We say that P is 
losed if fn(P ) =
∅. We denote by P ≡ Q the usual 
ongruen
e relation on pro
ess terms, i.e., Pis synta
ti
ally equal to Q up to renaming and reordering of generated names,elimination of units, and asso
iativity and 
ommutativity of parallel 
omposition.A 
on�guration is a 
losed pro
ess term of the following normalized form

(νx)(Π
i∈I

xi(xi) | Π
j∈J

Aj(xj))where x only 
ontains names that a
tually o

ur. Note that any pro
ess term
an be rewritten into a 
ongruent 
on�guration.A pro
ess P is a pair (I, E) where I is an initial 
on�guration and E is a �niteset of parametri
 equations A(x) = P su
h that (1) every pro
ess identi�er in
P is de�ned by exa
tly one equation in E and (2) fn(P ) ⊆ {x}. We assume thatall equations in E have the following normal form:

A(x) = x(x′).(νx
′′)(Π

i∈I
xi(xi) | Π

j∈J
Aj(xj)) (1)A
tor systems as π-
al
ulus pro
esses. We 
an en
ode a
tor systems using π-
al
ulus pro
esses. A 
on�guration of an a
tor system is similar to a pro
ess
on�guration: it 
onsists of a
tors with their asso
iated behavior and messages



6 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereythat are stored in the bu�ers of these a
tors. We 
an therefore easily en
odea
tors using threads. Unlike in the general π-
al
ulus where a thread 
an re-
eive messages from any 
hannel whose name it knows, a
tors 
an only re
eivemessages from their private bu�ers, i.e., every message has a unique re
eiver. Inour en
oding an a
tor is therefore a thread of the form A(xI ; xO) whose param-eters are divided into input/output parameters xI and output parameters xO.The names in xI 
an be used for both sending and re
eiving messages whilethe names in xO 
an only be used for sending messages. For ea
h pair of a
tors
A(xI ; xO) and B(yI ; yO) in a 
on�guration, the names xI and yI are disjoint,i.e., the i/o parameters en
ode the private bu�ers of a
tors. We 
all the aboverestri
tions on 
on�gurations the unique re
eiver 
ondition [4℄. The preservationof the unique re
eiver 
ondition is guaranteed by the a
tor equations that de�nethe possible behaviors of a
tors. A
tor equations are of the following form:
A(xI ; xO) = Σ

j∈J
xj(xj).Bj(xI ; xjO)where for all j ∈ J, xj ∈ {xI}

B(xI ; xO) = (νyI)( Π
j∈J

xj(xj) | Π
k∈K

Ak(ykI , ykO) | A(xI ; x
′
O))where {yI} =

⋃

k∈K

{ykI} and for all k, k′ ∈ K, {ykI} ∩ {yk′I} = ∅We divide the pro
ess identi�ers that are used to des
ribe a
tors into two 
ate-gories: re
eiving states A(xI ; xO) and dispat
hing states B(xI ; xO). The equa-tions for the re
eiving states spe
ify how an a
tor pro
esses a re
eived message.Hereby, the external 
hoi
e operator Σ is used to di�erentiate how a re
eivedmessage is dispat
hed, depending on the kind of the message. The equations forthe dispat
hing states spe
ify the a
tual behaviors of the a
tors: upon re
ep-tion of a message an a
tor 
an send �nitely many new messages xj(xj) to otherknown a
tors, 
reate �nitely many new a
tors Ak(ykI , ykO), and 
ontinue itsown 
omputation in a new re
eiving state A(xI ; x
′
O). Again we assume that thefree names o

uring on the right-hand sides of a
tor equations are 
ontained inthe list of parameters on the 
orresponding left-hand sides.Note that a
tor equations 
an be normalized to equations of the form (1)(potentially by introdu
ing additional pro
ess identi�ers and equations). In par-ti
ular, the external 
hoi
e operator 
an be eliminated (see, e.g., [35℄).An a
tor system is a pro
ess whose initial 
on�guration obeys the uniquere
eiver 
ondition and whose equations are the normalizations of a
tor equations.Operational semanti
s. Given a pro
ess P = (I, E), we de�ne a transition rela-tion →E on 
on�gurations that 
aptures the usual π-
al
ulus redu
tion rules asfollows. Let P and Q be 
on�gurations then we have P →E Q if and only if thefollowing 
onditions hold:1. P ≡ (νu)(A(v) | w(w) | P ′),2. the de�ning equation of A in E is of the form A(x) = x(x′).(νx

′′)(Q′),3. σ = [v/x, w/x
′, y/x

′′] where y are fresh names



On Depth-bounded Message Passing Systems 74. σ(x) = w5. Q ≡ (νu, y)(P ′ | σ(Q′)).We denote by →∗
E the re�exive transitive 
losure of the relation →E . We say thata 
on�guration P is rea
hable in pro
ess P if and only if I →∗

E P . Finally, wedenote by Reach(P) the set of all rea
hable 
on�gurations of pro
ess P .Rea
hability and 
ontrol rea
hability. We 
onsider two problems related to theveri�
ation of a
tor systems. The rea
hability problem and the more restri
tive
ontrol rea
hability problem.De�nition 1 (Rea
hability problem).Given a pro
ess P and a 
on�guration
P . The rea
hability problem is to de
ide whether P is rea
hable in P.De�nition 2 (Control rea
hability problem). Given a pro
ess (I, E) and apro
ess identi�er A. The 
ontrol rea
hability problem is to de
ide whether thereexists a 
on�guration P of the form P ≡ (νx)(A(y) | Q) su
h that P is rea
hablein P.3.2 Well-Stru
tured Transition Systems (WSTS)We brie�y re
all the relevant theory of well-stru
tured transition systems [1,15,16, 18℄.Well-quasi-ordering. A pair (X,≤) of a set X and a binary relation ≤ on X is
alled well-quasi-ordered set (wqo) if and only if (1) ≤ is a quasi-ordering (i.e.,re�exive and transitive) and (2) any in�nite sequen
e x0, x1, x2, . . . of elementsfrom X 
ontains an in
reasing pair xi ≤ xj with i < j.Let (X,≤) be a well-quasi-ordered set. A set I ⊆ X is 
alled upward-
losedif for any pair x, y su
h that y ≥ x, x ∈ I implies y ∈ I. Similarly, I is 
alleddownward-
losed if for any pair x, y su
h that y ≤ x, x ∈ I implies y ∈ I. Theupward-
losure of Y ⊆ X is de�ned as ↑ Y = { x | ∃y ∈ Y. x ≥ y }. Correspond-ingly, we denote by ↓ Y the downward-
losure of Y .Well-stru
tured transition system. A well-stru
tured transition systems (WSTS)is a transition system T = (S, s0,→,≤) where S is a set of 
on�gurations, s0 ∈ San initial 
on�guration,→⊆ S×S a transition relation, and ≤ ⊆ S×S a relationsatisfying the following two 
onditions: (well-quasi-ordering) ≤ is a well-quasi-ordering on S; and (
ompatibility) ≤ is upward 
ompatible with respe
t to →,i.e., for all s1, s2, t1 su
h that s1 ≤ t1 and s1 → s2, there exists t2 su
h that
t1 →∗ t2 and s2 ≤ t2.Given a well-stru
tured transition system (S, s0,→,≤) we de�ne the fun
tion
Pred that maps a set of 
on�gurations C ⊆ S to the set of its dire
t prede
essors,and the fun
tion Post that maps C to its dire
t su

essors

Pred(C)
def

= { s ∈ S | ∃s′ ∈ C. s → s′ }

Post(C)
def

= { s′ ∈ S | ∃s ∈ C. s → s′ } .



8 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyDe�nition 3 (Covering Problem). Given a WSTS (S, s0,→,≤) and a 
on-�guration t ∈ S, the 
overing problem is to de
ide whether there exists a 
on�g-uration t′ ∈ S su
h that s0 →∗ t′ and t ≤ t′.4 Depth-bounded SystemsWe now formally de�ne depth-bounded systems. First we give a general behav-ioral de�nition of su
h systems in terms of their rea
hable 
on�gurations. Wethen des
ribe a synta
ti
 
riterion on the de�ning equations of pro
esses thatensures depth-boundedness.4.1 A Behavioral Notion of Depth-bounded SystemsWe start by making formal our notion of 
ommuni
ation topologies of π-
al
ulus
on�gurations.Communi
ation topology. We use standard notation for dire
ted and undire
tedgraphs. A dire
ted labelled graph over a �nite set of labels L is a tuple (G, lv, le)where G is a dire
ted graph, lv : V (G) → L is a vertex labelling fun
tion, and
le : V (G) × V (G) → L is an edge labelling fun
tion.Let P = (I, E) be a pro
ess. Let further n be the maximal arity of all ve
torsof names o

urring in I and E , and let A be the set of all pro
ess identi�erso

urring in I, E . De�ne a set of labels L

def

= {0, . . . , n} ∪ A ∪ {•} where • isdistin
t from all pro
ess identi�ers. Let P be a 
on�guration of pro
ess P of theform
(νx)(Πi∈Ixi(xi) | Πj∈JAj(xj))where x = x1, . . . , xm, and the index sets {1..m}, I, and J are disjoint. Thefun
tion ct maps P to a dire
ted labelled graph over L as follows: the graph
onsists of verti
es 
orresponding to threads, messages, and names o

urringin the 
on�guration. Ea
h thread vertex is labelled by the pro
ess identi�er ofthe 
orresponding thread in the 
on�guration. There are edges between threadverti
es and name verti
es indi
ating that one of the names in the parameterve
tor of the thread is the name asso
iated with that name vertex. Similarly,we have edges between message verti
es and name verti
es. Formally, ct(P ) is agraph ((V, E), lv, le) where� V is a union of disjoint sets of verti
es {vi}i∈I , {vj}j∈J

and {v1, . . . , vm},� E = { (vh, vk) | h ∈ J ∪ I ∧ 1 ≤ k ≤ m ∧ xhr
= xk for some 1 ≤ r ≤ n }∪

{ (vi, vk) | i ∈ I ∧ 1 ≤ k ≤ m ∧ xi = xk }� lv(vk) =

{

Ak if k ∈ J

• otherwise� le(vh, vk) =

{

r if h ∈ I ∪ J ∧ 1 ≤ k ≤ m ∧ xhr
= xk

0 if h ∈ I ∧ 1 ≤ k ≤ m ∧ xi = xkWe 
all ct(P ) the 
ommuni
ation topology of 
on�guration P .



On Depth-bounded Message Passing Systems 9Tree-depth. The key ingredient for de�ning depth-bounded systems is the notionof the tree-depth of a graph [36℄.A tree T is an undire
ted graph su
h that every pair of distin
t verti
es in
T is 
onne
ted by exa
tly one path. A rooted tree is a tree with a dedi
atedroot vertex. A rooted forest is a disjoint union of rooted trees. The height of avertex v in a rooted forest F , denoted height(F, v), is the number of verti
es onthe path from the root (of the tree to whi
h v belongs) to v. The height of F isthe maximal height of the verti
es in F . Let v, w be verti
es of F and let T bethe tree in F to whi
h y belongs. The vertex x is an an
estor of vertex y in F ,denoted x � y, if x belongs to the path linking y and the root of T . The 
losure
clos(F ) of a rooted forest F is the graph 
onsisting of the verti
es of F and theedge set { {x, y} | x � y, x 6= y }.De�nition 4 (Tree-depth). The tree-depth td(G) of an undire
ted graph Gis the minimum height of all rooted forests F su
h that G ⊆ clos(F ).The tree-depth td(G) of a dire
ted labelled graph G = ((V, E), lv, le) isthe tree-depth of the indu
ed undire
ted graph with verti
es V and edge set
{{v1, v2} | (v1, v2) ∈ E}. The tree-depth of a 
on�guration is the tree-depthof its 
ommuni
ation topology. Finally, we say that a set of 
on�gurations Cis depth-bounded if there exists k ∈ N su
h that all 
on�gurations P ∈ C havetree-depth at most k.De�nition 5 (Depth-bounded pro
ess). A pro
ess P is 
alled depth-bound-ed if its set of rea
hable 
on�gurations Reach(P) is depth-bounded.4.2 A Synta
ti
 Notion of Depth-bounded SystemsWhile the question whether a given pro
ess is depth-bounded is itself unde
id-able, one 
an identify simple synta
ti
 
onditions on the de�ning equations ofthe pro
ess that guarantee depth-boundedness and that are often satis�ed inpra
ti
e. We now des
ribe one su
h synta
ti
 
ondition.We restri
t ourself to pro
esses that satisfy the unique re
eiver 
ondition (
f.Se
tion 3.1) su
h as a
tor systems. In order to enfor
e bounded tree-depth ofsu
h systems, we need to restri
t the 
reation of new threads and their asso
iatedmailboxes. If the system allows to 
reate and arbitrarily link threads then itstree-depth is unbounded. The following synta
ti
 
riterion limits the maximalsize of the 
hains of threads and asso
iated mailbox 
hannels in the rea
hable
ommuni
ation topologies.Our synta
ti
 
riterion for depth-boundedness only restri
ts the de�ningequations of the system. The initial 
on�guration is un
onstrained. Assume thatall pro
ess identi�ers used in equations of the system are divided into levels 0 to
n. The �rst restri
tion on the de�ning equations of the system is that threadswith pro
ess identi�ers of level i 
an 
reate only threads with pro
ess identi�ersthat are at least on level i + 1. If the system did not allow name mobility viamessages, this restri
tion would impose a tree-like shape on the rea
hable 
om-muni
ation topologies with threads of level 0 at the roots. In order to prevent
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haining threads beyond the parent-
hild relation, we also restri
t the name mo-bility appropriately. We partition the names that ea
h thread knows into three
ategories private, as
ending, and des
ending. The names of the thread's ownmailboxes are the private names of the thread. If a thread sends a name to athread of higher level, the re
eiving thread 
onsiders the sent name as a de-s
ending name. Conversely, a name sent to a thread of smaller or equal levelis 
onsidered as an as
ending name by the re
eiving thread. The restri
tion onname mobility are then as follows. A thread 
an send a private name to anyother thread it knows. An as
ending name 
an only be forwarded to threads ofhigher levels, respe
tively, des
ending names only to threads of lower levels.The systems that obey the restri
tions des
ribed above are depth-bounded.The reason for depth-boundedness is that in a rea
hable 
ommuni
ation topol-ogy of su
h a system, every path between two threads of the same level goes overthe private name of a 
ommon an
estor of lower level. Sin
e the an
estor threadsthemselves have �nitely many private names, and sin
e the level of an
estors isbounded by 0, the length of any a
y
li
 path in the 
ommuni
ation topology isbounded. Note that the maximal depth of the rea
hable 
ommuni
ation topolo-gies does not only depend on the maximal level of the pro
ess identi�ers, butalso on the number of free parameters of the pro
ess identi�ers and the shape ofthe 
ommuni
ation topology of the initial 
on�guration.5 De
idability of the Control Rea
hability ProblemWe now 
ome to the main te
hni
al result of this paper. We show that the 
on-trol rea
hability problem is de
idable for depth-bounded pro
esses. The 
ontrolrea
hability problem for pro
esses 
an be rephrased as a 
overing problem withrespe
t to the following natural quasi-ordering ≤ on 
on�gurations: let P and
Q be 
on�gurations then P ≤ Q if and only if Q 
orresponds to P extended bysome pro
ess term Q′, formally, if P ≡ (νx)P ′ then there exist y and Q′ su
hthat

Q ≡ (νy, x)(P ′ | Q′)In the remainder of this se
tion we will prove that depth-bounded systems arewell-stru
tured transition systems for the quasi-ordering ≤ and that they areamenable to a forward analysis that de
ides the 
overing problem. The proofsfor all the statements made in this se
tion 
an be found in Appendix A.5.1 Depth-bounded Systems are Well-stru
turedFirst, it is easy to prove that ≤ is indeed a quasi-ordering on 
on�gurations andupward 
ompatible with respe
t to π-
al
ulus redu
tions.Proposition 6. The relation ≤ is a quasi-ordering on 
on�gurations.Proposition 7. Let P be a pro
ess. Then ≤ is upward 
ompatible with respe
tto the transition relation of P.



On Depth-bounded Message Passing Systems 11It remains to show that ≤ is also a well-quasi-ordering on depth-bounded setsof 
on�gurations. For this purpose we en
ode 
on�gurations into labelled trees.The absen
e of in�nite anti-
hains over depth-bounded 
on�gurations then fol-lows from a variation of Kruskal's tree theorem [28℄ that is due to Friedman [19℄.First, it is instru
tive to understand the impli
ations of P ≤ Q on the un-derlying 
ommuni
ation topologies. Given two labelled graphs G1 and G2, wesay G1 is (isomorphi
 to) a subgraph of G2, written G1 →֒ G2, i� there exists aninje
tive label-preserving homomorphism from G1 to G2.Lemma 8. Let P and Q be 
on�gurations. Then P ≤ Q i� ct(P ) →֒ ct(Q).Tree en
oding of 
on�gurations. A labelled rooted tree over a �nite set of labels
L is a pair (T, l) where T is a rooted tree and l : V (T ) → L a vertex labellingfun
tion. We extend the relation →֒ to rooted labelled trees, as expe
ted, andwe say that a tree T1 is a subtree of tree T2 whenever T1 →֒ T2 holds. In thefollowing we �x a �nite set of labels L. Let Lk be the set of all isomorphism
lasses of dire
ted labelled graphs G over labels L∪ (L×{1..k}) su
h that G hasat most k verti
es. Clearly, sin
e L is �nite, Lk is �nite.Given a dire
ted labelled graph G over labels L that has tree-depth at most
k, we 
an 
onstru
t a labelled rooted tree (T, l) over the set of labels Lk from
G as follows. First, let F be a rooted forest of minimal height whose 
losure
ontains the undire
ted graph indu
ed by G. The rooted tree T is 
onstru
tedfrom the forest F by extending F with a fresh root vertex r that has edges toall the roots of the trees in F . The labelling fun
tion l is de�ned as follows. Let
v ∈ V (T ) be a vertex in T . If v = r then l(r) is the empty graph. Otherwise vis a vertex in F (and thus in G). Let P be the subgraph of G that is indu
ed bythe verti
es on the path from v to the root (of the tree in F to whi
h v belongs).Now 
onstru
t a graph Ph from P by adding to the label of ea
h vertex of P itsheight in F . Then l(v) is the isomorphism 
lass of Ph. Sin
e G has tree-depth atmost k, Ph ∈ Lk. Thus, l is well-de�ned. Let Treesk be the fun
tion mapping alabelled dire
ted graph G of tree-depth at most k to the set of all labelled rootedtrees over Lk that 
an be 
onstru
ted from G as des
ribed above. Furthermore,let treek be a fun
tion mapping ea
h su
h G to some tree in Treesk(G).Lemma 9. Let k ∈ N and T1, T2 be trees in rng(treek). If T1 is a subtree of T2then G1 →֒ G2 for all G1 ∈ tree

−1
k (T1) and G2 ∈ tree

−1
k (T2).Let T be a rooted tree and x, y ∈ V (T ) two verti
es. The in�mum of x and

y, denoted x inf y, is the vertex z ∈ V (T ) with the greatest height su
h that
z � x and z � y. Given rooted trees T1 and T2, a fun
tion ϕ is an inf-preservingembedding from T1 into T2 i� (1) ϕ : V (T1) → V (T2) is inje
tive, and (2) forall x, y ∈ V (T1), ϕ(x inf y) = ϕ(x) inf ϕ(y). An embedding between two rootedlabelled trees over the same set of labels is label-preserving i� it maps verti
esto verti
es with the same label. The inf and label-preserving embeddings indu
ea well-quasi-ordering on labelled trees. In parti
ular, we have the following.Theorem 10 (Friedman [19℄). Let T1, T2, . . . be an in�nite sequen
e of la-belled trees over a �nite set of labels L. Then there exist i < j and an inf andlabel-preserving embedding from Ti to Tj.



12 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyClearly, if a tree is a subtree of another tree then there exists an inf andlabel preserving embedding between these trees. For trees that result from thetree en
oding of 
on�gurations the 
onverse holds, too. Verti
es of di�erent lev-els of su
h trees have always di�erent labels. Thus, an inf and label-preservingembedding between su
h trees also preserves ante
eden
e of verti
es.Lemma 11. Let k ∈ N and T1, T2 be trees in rng(treek). Then the following twoproperties are equivalent1. there exists an inf and label-preserving embedding from T1 to T22. T1 is a subtree of T2.Given a �nite set of pro
ess identi�ers PI , let C(PI , k) be the set of all
on�gurations over PI that have tree-depth at most k. From Proposition 6,Theorem 10, and Lemmas 8, 9, and 11 now follows that ea
h C(PI , k) is well-quasi-ordered.Proposition 12. Let k ∈ N and PI be a �nite set of pro
ess identi�ers. Then
(C(PI , k),≤) is a well-quasi-ordered set.Theorem 13. Let P = (I, E) be a depth-bounded pro
ess of bound k and let
PI be the pro
ess identi�ers appearing in I, E. Then for all k′ ≥ k, the tuple
(C(PI , k′), I,→E ,≤) is a well-stru
tured transition system.The standard algorithm for de
iding the 
overing problem for WSTS is asfollows. Starting from the 
on�guration t that is to be 
overed one 
omputesthe upward 
losure ↑ Pred∗(↑ t) of the ba
kward-rea
hable 
on�gurations of
t and then 
he
ks whether this set 
ontains the initial 
on�guration. The well-quasi-ordering ensures that the ba
kward analysis terminates. While the forward-rea
hable 
on�gurations of a depth-bounded system have bounded tree-depth,this is not ne
essarily the 
ase for the ba
kward-rea
hable 
on�gurations. Thus,the set of ba
kward-rea
hable 
on�gurations might not be well-quasi-ordered.Using a ba
kward algorithm we 
an therefore only de
ide the 
overing problemfor depth-bounded systems whose bound is known a priori. In the following weshow that there exists a forward algorithm that over
omes this limitation.5.2 A Forward Algorithm for the Covering ProblemThe idea of a forward algorithm for solving the 
overing problem of a WSTSis to 
ompute the 
over ↓ Post∗(↓ s0) of the initial 
on�guration s0 and then
he
k whether this set 
ontains the 
on�guration to be 
overed. A well-knownexample of su
h an algorithm is the Karp and Miller algorithm [27℄ for Petrinets. Finding forward algorithms for WSTS is more 
ompli
ated than �ndingba
kward algorithms. In order to e�e
tively 
ompute the 
over, one needs to�nd a 
ompletion of the wqo set that 
ontains all the limits of downward-
losedsets. A formal 
hara
terization of these 
ompletions of wqo sets has been givenin [20℄ and [17℄.



On Depth-bounded Message Passing Systems 13Adequate domain of limits. An adequate domain of limits (ADL) [20℄ for a well-quasi-ordered set (X,≤) is a tuple (Y,⊑, γ) where Y is a set disjoint from X ; (L1)the map γ : Y ∪X → 2X is su
h that γ(z) is downward-
losed for all z ∈ X ∪Y ,and γ(x) =↓ {x} for all x ∈ X ; (L2) there is a limit point ⊤ ∈ Y su
h that
γ(⊤) = X ; (L3) z ⊑ z′ if and only if γ(z) ⊆ γ(z′); and (L4) for any downward-
losed set D of X , there is a �nite subset E ⊆ Y ∪X su
h that γ(E) = D, where
γ is extended to sets as expe
ted: γ(E) =

⋃

z∈E γ(z). A weak adequate domainof limits (WADL) [17℄ for (X,≤) is a a tuple (Y,⊑, γ) satisfying (L1),(L3), and(L4). Note that any weak adequate domain of limits 
an be extended to anadequate domain of limits.A WSTS (X, x0,→,≤) and an adequate domain of limits (Y,⊑, γ) are e�e
-tive [20℄ if the following 
onditions are satis�ed: (E1) X and Y are re
ursivelyenumerable; (E2) for any x1, x2 ∈ X , one 
an de
ide whether x1 → x2; (E3) forany z ∈ X ∪ Y and for any �nite subset Z ⊆ X ∪ Y , one 
an de
ide whether
Post(γ(z)) ⊆ γ(Z); and (E4) for any �nite subsets Z1, Z2 ⊆ X ∪ Y , one 
ande
ide whether γ(Z1) ⊆ γ(Z2). The expand, enlarge, and 
he
k algorithm pre-sented in [20℄ de
ides the 
overing problem for e�e
tive well-stru
tured transitionsystems with an adequate domain of limits.Theorem 14 (Geeraerts et al. [20℄). There exists an algorithm to de
ide the
overing problem for e�e
tive WSTSs with an adequate domain of limits.Extended pro
ess terms. We now des
ribe an e�e
tive adequate domain of limitsfor depth-bounded 
on�gurations. In order to �nitely represent the limits ofin�nite downward-
losed sets of 
on�gurations we need to be able to expressthat 
ertain subterms in a 
on�guration 
an be repli
ated arbitrarily often. Anatural solution to this problem is to extend pro
ess terms with the repli
ationoperator ! that is used as a re
ursion primitive in the standard de�nition of the
π-
al
ulus [31,32℄. Instead of using repli
ation to express re
ursion, we use it toe�e
tively represent in�nite sets of 
on�gurations.An extended pro
ess term is 
onstru
ted from the operations of standard pro-
ess terms de�ned in Se
tion 3.1 and the repli
ation operation !P . We extend the
ongruen
e relation ≡ from pro
ess terms to extended pro
ess terms by addingthe axiom !P ≡ (P | !P ). Using this extended 
ongruen
e relation we 
arry overthe de�nitions of the transition relations of pro
esses and the quasi-ordering
≤ from pro
ess terms to extended pro
ess terms. We then de�ne the denota-tion γ(P ) of an extended pro
ess term P as its downward 
losure restri
ted tonon-extended pro
ess terms:

γ(P ) = {P ′ | P ′ 
on�guration and P ′ ≤ P }The quasi-ordering⊑ on extended pro
ess terms that is required for the adequatedomain of limits is de�ned by 
ondition (L3).Finkel and Goubault-Larre
q 
hara
terize the minimal 
andidates for theWADLs of a wqo set X in terms of its ideal 
ompletion [17, Proposition 3.3℄.



14 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyThis means that the set of all downward-
losed dire
ted subsets1 of X forma WADL for X . Extended pro
ess terms are the ideal 
ompletions of sets ofdepth-bounded pro
ess terms.Proposition 15. The dire
ted downward-
losed sets of depth-bounded 
on�gu-rations are exa
tly the denotations of extended pro
ess terms.For proving that a downward-
losed dire
ted set of depth-bounded 
on�gu-rations D is the denotation of an extended pro
ess term, we use the fa
t that
D 
ontains a 
hain of pro
ess terms whose tree en
odings form a 
hain of trees
T ordered by the subtree relation. The trees T are again well-quasi-ordered.From T one 
an then 
onstru
t a hedge automaton A [10, Chapter 8℄ whose treelanguage L(A) is both large and small in T , i.e., the downward 
losure of the
on�gurations obtained by reversing the tree en
oding operation on the trees in
L(A) is the set D. From the automaton A one 
an then easily 
onstru
t the ex-tended pro
ess term. The inverse dire
tion also uses the 
onstru
tion of a hedgeautomaton. For proof details see Appendix A.Let PI be a �nite set of pro
ess identi�ers. We denote by L(PI , k) the setof all extended pro
ess terms over PI su
h that the elements of L(PI , k) denotesets of k-bounded 
on�gurations in C(PI , k), and L(PI , k) itself does not 
ontainthe 
on�gurations in C(PI , k).Proposition 16. Let k ∈ N and let PI be a �nite sets of pro
ess identi�ers.Then (L(PI , k),⊑, γ) is a weak adequate domain of limits for the well-quasi-ordered set (C(PI , k),≤).It remains to argue that the WSTSs indu
ed by depth-bounded pro
essestogether with their WADLs of extended pro
ess terms are e�e
tive. The 
ondi-tions (E1) and (E2) are 
learly satis�ed. Also given an extended pro
ess term zwe 
an 
ompute a �nite set of extended pro
ess terms denoting Post(γ(z)). Notefurther that Proposition 16 implies that for any �nite subsets Z1, Z2 ⊆ L(PI , k),
γ(Z1) ⊆ γ(Z2) holds if and only if for all z1 ∈ Z1 there exists z2 ∈ Z2 su
hthat γ(z1) ⊆ γ(z2). The in
lusion problem γ(z1) ⊆ γ(z2) 
an be redu
ed tothe language in
lusion problem for deterministi
 hedge automata, whi
h is de-
idable. For this purpose, one 
omputes deterministi
 hedge automata from the�nitely many tree en
odings of the 
on�gurations of z1 and z2 and then 
he
kswhether the language of some automaton of z1 is in
luded in the language ofsome automaton of z2. Thus 
onditions (E3) and (E4) are also satis�ed.Finally, let us explain why the expand, enlarge, and 
he
k algorithm [20℄terminates on depth-bounded systems even if the bound of the system is notknown a priori. The idea of the algorithm is to simultaneously enumerate twoin�nite in
reasing 
hains. The �rst 
hain X0 ⊆ X1 . . . is a sequen
e of �nitesubsets of X that 
ontains all rea
hable 
on�gurations of the analyzed system.The se
ond 
hain Y0 ⊆ Y1 ⊆ . . . is a sequen
e of �nite subsets of Y that 
ontains1 A dire
ted set D for a quasi-ordered set X is a nonempty subset of X su
h that ea
hpair of points x, y ∈ D has a 
ommon upper bound in D.
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h iteration i the algorithm 
omputes an under and an over-approximation of the analyzed system for the 
urrent pair (Xi, Yi) of elementsin the 
hain. This approximations are su
h that the under-approximation isguaranteed to dete
t that t 
an be 
overed if Xi 
ontains a path to a 
overingstate. The over-approximation is guaranteed to dete
t that t 
an not be 
overedif Yi 
an express ↓ Post∗(↓ s0) and this set does not 
over t. The 
onditions onthe 
hains ensure that one of the two 
onditions eventually holds for some i ∈ N.For de
iding the 
overing problem of depth-bounded systems we 
an nowsimply enumerate the sets C(PI ) =
⋃

k∈N
C(PI , k) and L(PI ) =

⋃

k∈N
L(PI , k).Then in ea
h iteration of the algorithm the pair (Xi, Yi) is 
ontained in some

(C(PI , k),L(PI , k)) and the 
onditions on the 
hains for termination of the al-gorithm are still satis�ed.Theorem 17. The 
overing problem is de
idable for the well-stru
tured transi-tion systems indu
ed by depth-bounded pro
esses.Corollary 18. The 
ontrol rea
hability problem is de
idable for depth-boundedpro
esses.6 Unde
idability of the Rea
hability ProblemWe will now prove that the general rea
hability problem for depth-boundedsystems is unde
idable. For this purpopse we redu
e the rea
hability problem forreset nets to the rea
hability problem in a depth-bounded system that satis�esthe unique re
eiver 
ondition [4,5℄. The problem of rea
hability for reset nets isunde
idable [6, 14℄. In the following, we assume familiarity with Petri nets andtheir semanti
s. For a formal de�nition of reset nets see, e.g., [6, 14℄.Reset nets are Petri nets whi
h have, in addition to the standard ar
s that
onne
t pla
es and transitions, spe
ial reset ar
s. A reset ar
 between a pla
eand a transition ��ushes� the pla
e when the transition �res, i.e., it removesall tokens from the pla
e in a single operation. We 
an simulate a reset netusing a depth-bounded system with a single thread whose parameters are names
orresponding to the pla
es in the net. Tokens in pla
es are modeled by messagessent to the 
orresponding names. The �ring of a transition of the net is simulatedby re
eiving messages from the respe
tive names of pla
es in the preset of thetransition (token 
onsumption) and sending messages to the respe
tive namesof pla
es in the postset of the transition (token generation). A reset ar
 
an bemodeled by generating a fresh name for the �ushed pla
e and assigning this nameto the 
orresponding parameter of the thread. The old name that was previouslyassigned to this parameter be
omes dead and pending messages 
an no longerbe re
eived. This pro
ess is similar to a �ush of a pla
e in a reset net [5℄.Theorem 19. The rea
hability problem for depth-bounded pro
esses is unde
id-able.
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uss further related work in the veri�
ation of π-
al
ulus pro
essesand the analysis of well-stru
tured transition systems.The 
ontrol rea
hability problem for the π-
al
ulus has been studied in[5, 11, 33, 42℄. The approa
hes taken in [33, 42℄ 
onsider only �nitary systemsthat impose a bound on the number of threads that 
an be dynami
ally 
re-ated. Delzanno [11℄ 
onsiders an abstra
tion-based approa
h that applies to thefull asyn
hronous π-
al
ulus. This approa
h is sound but in general in
omplete.More 
losely related to our work is [5℄ whi
h 
onsiders input-bounded systems, asynta
ti
ally de�ned fragment of the asyn
hronous π-
al
ulus that allows name
reation and name mobility and has similar theoreti
al properties as depth-bounded systems (
ontrol rea
hability is de
idable, general rea
hability is not).Input-bounded systems and depth-bounded systems are in
omparable. Unlikedepth-bounded systems, input-bounded systems 
annot truly model the dynami

reation of an unbounded set of threads by a given thread su
h that all of thesethreads remain a
tive and 
ommuni
ate. Be
ause of su
h restri
tions, input-bounded systems are less interesting from a pra
ti
al point of view. Conversely,input-bounded systems are not depth-bounded be
ause they enable the 
reationof unbounded 
hains of ina
tive threads. We suspe
t that there is a relaxation ofthe depth-boundedness 
ondition that subsumes both fragments and for whi
h
ontrol-rea
hability is still de
idable.There is a signi�
ant body of work on well-stru
tured transition systems [1,18℄. The well-quasi-ordering on trees that is given by Kruskal's tree theoremhas been used, e.g., for the analysis of tree pattern rewriting systems for XMLdo
uments [21℄ and for the analysis of biologi
al systems [12℄. However, in both
ases the 
on�gurations of the underlying well-stru
tured transition systems aredire
tly given by trees rather than general graphs. More 
losely related to ourwork is the appli
ation of the graph minor theorem [39℄ in the 
ontext of graphrewriting systems [26℄. Graph minors are homomorphisms that indu
e a well-quasi-ordering on graphs. However, the graph minor order is not upward 
om-patible with respe
t to the π-
al
ulus semanti
s. Therefore, this approa
h is notappli
able in our 
ontext. We restri
t ourself to a spe
i�
 
lass of 
ompatiblegraph minors, namely, subgraph isomorphisms and a spe
i�
 
lass of graphs,namely, graphs of bounded tree-depth. The 
on
ept of depth-boundedness eas-ily generalizes from the analysis of π-
al
ulus pro
esses to the analysis of graphrewriting systems that are naturally ordered by subgraph isomorphism.8 Con
lusionWe identi�ed the novel 
lass of depth-bounded message passing systems. Thekey ingredient for the de�nition of this 
lass is the graph-theoreti
 notion oftree-depth. Depth-bounded systems 
over many pra
ti
al use 
ases of messagepassing with dynami
 
reation of threads and name mobility. By proving that the
ontrol rea
hability problem for depth-bounded systems is de
idable we showedthat this 
lass is also amenable to automated veri�
ation.
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On Depth-bounded Message Passing Systems 19A Additional ProofsA.1 Proof of Proposition 6Proposition 6. The relation ≤ is a quasi-ordering on 
on�gurations.Proof. Let P ≡ (νx)P ′. Then by de�nition of the 
ongruen
e relation on pro
essterms we have P ≡ (νx)(P ′ | 0). Thus ≤ is re�exive.For proving that ≤ is transitive, let P, Q, R be 
on�gurations of the form
P ≡ (νx)P ′, Q ≡ (νy)Q′, and R ≡ (νz)R′, and assume P ≤ Q and Q ≤ R.Then we have Q ≡ (νy

′, x)(P ′ | Q′′) and R ≡ (νz
′, y)(Q′ | R′′). We 
an rewrite

R as (νz
′, y′, x)(P ′ | Q′′ | R′′). Thus, we have P ≤ R. �A.2 Proof of Proposition 7Proposition 7. Let P be a pro
ess. Then ≤ is upward 
ompatible with respe
tto the transition relation of P.Proof. Let P = (I, E) and P, R be 
on�gurations of P with P ≡ (νu)P ′ and

P ≤ R, i.e., R is of the form R ≡ (νz, u)(P ′ | R′). Further, let Q be a 
on�gu-ration su
h that P →E Q. From the de�nition of →E follows that there is somepro
ess identi�er A and de�ning equation A(x) = x(x′).(νx
′′)(Q′) in E su
hthat P is of the re�ned form P ≡ (νu)(A(v) | w(w) | P ′′) and Q is of the form

Q ≡ (νu, y)(P ′′ | σ(Q′)), where y are fresh names and σ the proper substitution.It follows that R is of the re�ned form R ≡ (νz, u)(A(v) | w(w) | P ′′ | R′). Nowde�ne S
def

= (νz, u, y)(P ′′ | σ(Q′) | R′). Then we have R →E S and Q ≤ S. �A.3 Proof of Lemma 8Lemma 8. Let P and Q be 
on�gurations. Then P ≤ Q i� ct(P ) →֒ ct(Q).Proof. The �⇒� dire
tion follows immediately from the de�nitions of ct, ≤, and
→֒. For the �⇐� dire
tion assume ct(P ) →֒ ct(Q) and assume that P has theform P = (νv)P ′. We 
onstru
t names y and a pro
ess term Q′ from ct(Q) su
hthat Q ≡ (νy, x)(P ′ | Q′). Let ct(Q) = (V, E, l). First, partition the verti
es Vand edges E into pairs of disjoint sets V1 and V2, respe
tively, E1 and E2 su
hthat (V1, E1) is the subgraph of ct(Q) to whi
h ct(P ) is isomorphi
. Partition
V1 further into sets V1,i and V1,o su
h that V1,o 
ontains the verti
es from V1that have in
oming edges and V1,o all other verti
es of V1. Similarly, partition
V2 into V2,i and V2,o. The verti
es V1,i are isomorphi
 to the verti
es in ct(P )that 
orrespond to the names x, and the verti
es V1,o are isomorphi
 to theverti
es in ct(P ) that 
orrespond to the messages and threads in P ′. We 
annow 
hoose a fresh name y for ea
h vertex in V2,i and de�ne y as the ve
tor overthese fresh names. Then Q′ is the parallel 
omposition of messages and threads
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orresponding to verti
es v ∈ V2,o su
h that l(v) = •, threads
orresponding to verti
es v ∈ V2,o that are labelled by the 
orresponding pro
essidenti�er, and names 
hosen a

ording to the names asso
iated with verti
es in
V1,i ∪ V2,i that are 
onne
ted to the verti
es v with edges in E2. �A.4 Proof of Lemma 9Lemma 9. Let k ∈ N and T1, T2 be trees in rng(treek). If T1 is a subtree of T2then G1 →֒ G2 for all G1 ∈ tree

−1
k (T1) and G2 ∈ tree

−1
k (T2).Proof. If T1 is a subtree of T2 then there exists a label-preserving inje
tivehomomorphism ϕT : V (T1) → V (T2) between T1 and T2. Let G1 ∈ tree

−1
k (T1)and G2 ∈ tree

−1
k (G2). Note that the verti
es of T1 are exa
tly the verti
es of G1ex
ept for the added root vertex. The same is true for T2 and G2. What is more,

ϕT maps the root of T1 to the root of T2 and verti
es of G1 to verti
es of G2.Thus, we 
an de�ne ϕG : V (G1) → V (G2), the restri
tion of ϕT to verti
es in
G1 respe
tively G2. We will now show that ϕG is an inje
tive label-preservinghomomorphism from G1 to G2.The fa
t that ϕG is inje
tive immediately follows from the fa
t that ϕTis inje
tive. For proving that ϕG is a homomorphism, let v1, w1 be verti
es in
V (G1) su
h that there exists an edge (v1, w1) ∈ E(G1) with label ℓ. Sin
e G1 is
ontained in the 
losure of the forest that is used to 
onstru
t T1, we 
on
ludethat v1 � w1 or w1 � v1 holds in T1. Without loss of generality assume that
v1 � w1 holds. Let hv1

= height(T1, v1) and hw1
= height(T1, w1). Let further

P1 be the subgraph of G1 with the extended vertex labels that is indu
ed by theverti
es on the path from r to w, as des
ribed in the 
onstru
tion of treek. From
v1 � w1 follows v1 ∈ V (P1). Hen
e, there exists an edge (v1, w1) ∈ E(P1) withlabel ℓ. Now, let v2 = ϕG(v1) and w2 = ϕG(w1). Sin
e T1 is a subtree of T2 and
ϕT preserves adja
en
y, we know that v2 � w2 holds in T2 and height(T2, v2) =
hv1

, respe
tively, height(T2, w2) = hw1
. Let P2 be the subgraph of G2 indu
edby the verti
es on the path from the root of T2 to w2, again, with the extendedlabels as for P1. Sin
e P1 and P2 are representatives of the isomorphism 
lassesthat serve as labels for w1 in T1 and w2 in T2, and sin
e ϕT preserves labels, weknow that P1 and P2 are isomorphi
. Hen
e, there is an edge (v′, w′) ∈ E(P2)with label ℓ su
h that v1 has the same label in P1 as v′ in P2, respe
tively,

w1 the same label as w′. Sin
e the se
ond 
omponent of the extended vertexlabel 
orresponds to the height of the vertex in the respe
tive tree, we 
on
lude
hv1

= height(T2, v
′) and hw1

= height(T2, w
′). The height of a vertex in a pathof a tree uniquely determines the vertex. Thus, we have v′ = v2 and w′ = w2,sin
e both v2 and w2 are in P2. Therefore ϕG is a homomorphism.We already proved impli
itly that ϕG preserves edge labels. The proof that

ϕG also preserves the vertex labelling follows a similar argumentation. �



On Depth-bounded Message Passing Systems 21A.5 Proof of Lemma 11Lemma 11. Let k ∈ N and T1, T2 be trees in rng(treek). Then the following twoproperties are equivalent1. there exists an inf and label-preserving embedding from T1 to T22. T1 is a subtree of T2.Proof. Let ϕ be an inf and label-preserving embedding from T1 to T2. Note thatby de�nition of treek, a label of a vertex v ∈ V (T ) for a tree T ∈ rng(treek) de-pends on the path from the root of the tree to v. Thus, if two verti
es v1 ∈ V (T1)and v2 ∈ V (T2) have the same label then they also have the same height. Sin
e ϕis label-preserving, we dedu
e that ϕ maps verti
es in T1 to verti
es in T2 of thesame height. From this and the se
ond property of inf-preserving follows thatadja
en
y is preserved by the embedding. Sin
e T1, T2 are trees, non-adja
en
y isalso preserved (be
ause the path between any two verti
es is unique). Therefore
T1 is a subtree of T2. �A.6 Proof of Proposition 12Proposition 12. Let k ∈ N and PI be a �nite set of pro
ess identi�ers. Then
(C(PI , k),≤) is a well-quasi-ordered set.Proof. Proposition 6 states that ≤ is a quasi-ordering for arbitrary 
on�gu-rations. It remains to show that ≤ has no in�nite anti
hains in C. Thus, let
P1, P2, . . . be an in�nite sequen
e of 
on�guration in C. Let L be the set of alllabels used in ct(P ) for the 
on�gurations P ∈ C. Sin
e the 
on�gurations in
C range over �nitely many pro
ess identi�ers, L is �nite. From the fa
t that
C is depth-bounded follows that there exists some k ∈ N su
h that for all
i ∈ N, ct(Pi) has tree-depth at most k. Thus, we 
an de�ne the in�nite sequen
e
treek(ct(P1)), treek(ct(P2)), . . . of labelled trees over the �nite set of labels Lk.From Theorem 10 follows that there exists i < j and an inf and label-preservingembedding from treek(ct(Pi)) to treek(ct(Pj)). From Lemma 11 and Lemma 9follows that ct(Pi) is a subgraph of ct(Pj). Finally, from Lemma 8 follows that
Pi ≤ Pj . Hen
e, (C,≤) is a well-quasi-ordered set. �A.7 Proof of Proposition 15Before we prove Proposition 15, we re
all some properties of well-quasi-orderingsand better-quasi-orderings [34℄, and de�ne hedge automata.Finite partitions of well-quasi-ordered sets. Let (X,≤) be a well-quasi-orderedset. We extend the ordering ≤ to an ordering ≤ on subsets of X as expe
ted: for
Y1, Y2 ⊆ X , we have Y1 ≤ Y2 i� for all y1 ∈ Y1 there exists y2 ∈ Y2 if y1 ≤ y2.For Y ⊆ X we 
all Y ′ ⊆ X large in Y i� Y ≤ Y ′. Conversely, we 
all Y ′ smallin Y if Y ′ ≤ Y . A subset Y ⊆ X of X is 
alled irredu
ible if for any Y1, Y2 ⊆ Y ,
Y ≤ Y1 ∪ Y2 implies Y ≤ Y1 or Y ≤ Y2.



22 Thomas A. Henzinger, Thomas Wies, and Damien Zu�ereyProposition 20 (Diestel [13℄). Let (X,≤) be a well-quasi-ordered set. Thenfor any 
ountable Y ⊆ X the following are equivalent:1. Y is irredu
ible2. Y 
ontains a 
hain C su
h that Y ≤ C3. Y is dire
tedTheorem 21 (Diestel [13℄). If (X,≤) is a well-quasi-ordered set then X 
anbe partitioned into �nitely many irredu
ible subsets.We 
all a partition P ⊆ 2X of a well-quasi-ordered set (X,≤) an in�nite
hain partition if and only if (1) P is �nite and (2) for all Y ∈ P , either Y is asingleton or Y 
ontains an in�nite 
hain C su
h that Y ≤ C.Proposition 22. If (X,≤) is a 
ountable well-quasi-ordered set then there existsan in�nite 
hain partition of X.Proof. We 
an 
onstru
t an in�nite 
hain partition P of X re
ursively using thefollowing pro
edure: a

ording to Theorem 21, X 
an be partitioned into �nitelymany irredu
ible subsets Y1, . . . , Yn. By Proposition 20, for ea
h 1 ≤ i ≤ n, Yi
ontains a 
hain Ci with Yi ≤ Ci. For ea
h 1 ≤ i ≤ n, 
he
k if Yi 
ontains anin�nite 
hain with this property. If it does then add Yi to P . Otherwise pi
k one�nite 
hain Ci with Yi ≤ Ci. Sin
e Ci is �nite it 
ontains a greatest element yi.Then let Zi = { y ∈ Yi | yi ≤ y } be the set of elements in Yi that are equivalentto yi wrt. the quasi-ordering ≤. Sin
e Yi 
ontains no in�nite 
hains that arelarge in Yi, the set Zi is �nite. Then add all singletons {z} with z ∈ Zi to P andre
ursively apply the above pro
edure on the well-quasi-ordered set (Yi −Zi,≤).Clearly, if this pro
edure terminates then the resulting set P is an in�nite 
hainpartition of X . Thus, assume that the pro
edure does not terminate. Then thealgorithm 
onstru
ts a stri
tly de
reasing in�nite sequen
e Y1 ⊇ Y2 ⊇ . . . ofsubsets of Y with Yi − Yi+1 > Yi+1 − Yi+2 for all i ∈ N. De�ne Zi = Yi − Yi+1then ea
h Zi is nonempty, i.e. we 
an 
hoose zi ∈ Zi for ea
h i ∈ N su
h that weget an in�nite des
ending 
hain z1 > z2 > . . . of elements in X . This 
ontradi
tsthe fa
t that ≤ is well-founded. �Better-quasi-orderings. Let ≤ be a quasi-ordering on a set X then de�ne thequasi-ordering ≤1 on subsets of X as follows: for Y1, Y2 ⊆ X , we have Y1 ≤1 Y2i� there exists an inje
tion φ : Y1 → Y2 su
h that for all y1 ∈ Y1, φ(y1) ≤ y2. Weare interested in wqo sets (X,≤) whose powerset is again a wqo with respe
tto ≤1. For this purpose we 
onsider Nash-William's better-quasi-orderings [34℄.Better-quasi-orderings are parti
ular well-behaved well-quasi-orderings. Unlikewell-quasi-orderings, they are 
losed under the powerset 
onstru
tion. The formalde�nition of better-quasi-ordering (bqo) is rather te
hni
al and not required forunderstanding our proof of Proposition 15. We therefore refer to [34℄ for thea
tual de�nition of bqo sets. In the following, we only state the properties ofbqo sets that we will need in our proof.



On Depth-bounded Message Passing Systems 23Proposition 23. Let (X,≤) be a bqo then1. (X,≤) is a wqo2. (2X ,≤1) is a bqo3. every Y ⊆ X is a bqo with respe
t to the restri
tion of ≤ to Y .Properties 1 and 2 are proved in [34℄. Property 3 immediately follows fromthe de�nition of better-quasi-orderings.Laver [29℄ proved a generalization of Kruskal's tree theorem stating that
ountable trees labelled by a bqo are a bqo under inf-preserving embedding.Similar to Friedman's spe
ial 
ase of Kruskal's tree theorem, we get the followingspe
ial 
ase of Laver's theorem.Theorem 24. The set of all 
ountable rooted labelled trees over a �nite set oflabels is a bqo with respe
t to inf and label-preserving embedding.Hedge automata. Finally, we introdu
e our version of hedge automata [10, Chap-ter 8℄. A (nondeterministi
) �nite hedge automaton A over a �nite alphabet Σis a tuple (Q, Σ, Qf , ∆) where Q is a �nite set of states, Qf ⊆ Q is a set of �nalstates, and ∆ is a �nite set of transition rules of the following form:
a(R) → qwhere a ∈ Σ, q ∈ Q, and R ⊆ Q∗ is a regular language over Q. These languages

R o

uring in the transition rules are 
alled horizontal languages.A run of A on a rooted labelled tree T with vertex label fun
tion l : V (T ) →
Σ is a vertex label fun
tion r : V (T ) → Q su
h that for ea
h vertex v ∈
V (T ) with a = l(v) and q = r(v) there is a transition rule a(R) → q with
r(v1) . . . r(vn) ∈ R where v1, . . . , vn are the immediate su

essors of v in T . Inparti
ular, to apply a rule to a leaf, the empty word ǫ has to be in the horizontallanguage of the rule R.A rooted labelled tree T is a

epted by A if there is a run r of A on T su
hthat r labels the root of T by a �nal state. The language L(A) of A is the set ofall rooted labelled trees over Σ that are a

epted by A.We now have all the ne
essary ingredients for proving Proposition 15.Proposition 15. The dire
ted downward-
losed sets of depth-bounded 
on�gu-rations are exa
tly the denotations of extended pro
ess terms.Proof. We �rst prove that every dire
ted downward-
losed set of depth-bounded
on�gurations is the denotation of an extended pro
ess term. For this purpose,let D = (Pi)i∈N be su
h a family of 
on�gurations and let k be the maximaltree-depth of all 
on�gurations in D. Choose some Q0 ∈ D with tree-depth k.Using Q0 
onstru
t an as
ending 
hain D′ = (Qi)i∈N as follows: for ea
h i ∈ N
hoose Qi ∈ D su
h that Pi ≤ Qi and Qi−1 ≤ Qi. Su
h Qi exists for ea
h
i ∈ N sin
e D is dire
ted and, by indu
tion, Qi−1 ∈ D. Then by 
onstru
tion(1) D =↓ D′ and (2) all elements in D′ have tree-depth k. Let (Gi)i∈N be the
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ted labelled graphs Gi = ct(Qi). Now for ea
h i ∈ N 
hoose a tree
Ti ∈ Treesk(Gi) su
h that the family T = (Ti)i∈N is an as
ending 
hain withrespe
t to the subtree relation. Su
h a family exists be
ause the Gi are orderedby subgraph isomorphism and all Gi have the same tree-depth. Without loss ofgenerality we assume that the vertex sets of all graphs Gi are pairwise disjoint.Let V =

⋃

i∈N
V (Ti), E =

⋃

i∈N
E(Ti), and let l be the union of all the vertexlabelling fun
tions of the labelled trees Ti. The height of the verti
es in the trees

Ti range from 1 to k + 1. For a node x ∈ V of height h > 1 we denote by
parent(v) ∈ V the parent of v in the tree Ti to whi
h v belongs. Similarly, fora node v ∈ V we denote by Children(v) the set of all verti
es that are dire
tsu

essors of v in the tree to whi
h v belongs. We extend the fun
tions parentto sets of verti
es, as expe
ted. Furthermore, let T (v) be the subtree rooted in
v of the tree Ti to whi
h v belongs. For all 1 ≤ h ≤ k + 1, let Vh be the set ofall verti
es in V that have height h. For all h we extend the relation →֒ fromlabelled rooted trees to verti
es in Vh as expe
ted: for all v, w ∈ Vh, v →֒ wi� T (v) →֒ T (w). From Theorem 24, Property 3 of Proposition 23, and the fa
tthat on the tree en
odings the relation →֒ 
oin
ides with inf and label-preservingembedding, follows that for all h, (Vh, →֒) is a bqo.We will now 
onstru
t a �nite hedge automaton A from the family of trees
T whose language is both small and large in T . For this purpose we de�ne anequivalen
e relation on ea
h Vh that partitions Vh into �nitely many equivalen
e
lasses. These equivalen
e 
lasses serve as the states of the automaton.For ea
h i ∈ N �x some inje
tive label-preserving homomorphism φi : V (Ti) →
V (Ti+1) and denote by φ[i,j] the 
omposition φj−1 ◦ · · ·◦φi if j > i and the iden-tify fun
tion id if j = i. Then de�ne an equivalen
e relation ∼ on V as follows:for all vi ∈ V (Ti) and vj ∈ V (Tj)

vi ∼ vj i� i ≤ j and φ[i,j](vi) = vj or
i ≥ j and φ[j,i](vj) = viNow, re
ursively de�ne an equivalen
e relation ≃h on Vh for ea
h 1 ≤ h ≤

k + 1 as follows: for h = 1 we simply have v ≃1 w for all v, w ∈ V1. In order tode�ne ≃h for h > 1 we need some intermediate de�nitions. Given an equivalen
e
lass U in the quotient of Vh−1 wrt. ≃h−1, let Children(U) be the set of equiv-alen
e 
lasses ṽ in the quotient Vh/∼ su
h that some v ∈ ṽ has a parent in U .Sin
e (Vh, →֒) is a bqo, and Children(U) ⊆ 2Vh , it follows from Proposition 23that (Children(U), →֒1) is also a bqo and thus a wqo. Furthermore, Children(U)is 
ountable. Thus, by Proposition 22 there exists an in�nite 
hain partitionof Children(U). For ea
h U , 
hoose one su
h in�nite 
hain partition P(U) of
Children(U). Then for v, w ∈ Vh we have: v ≃h w i� there exists U ∈ Vh−1/≃h−1su
h that (1) parent(v), parent(w) ∈ U and (2) there is P ∈ P(U) su
h that
v, w ∈

⋃

P .We 
an easily prove by indu
tion on h that ≃h is indeed an equivalen
erelation on Vh and that ≃h partitions Vh into �nitely many equivalen
e 
lasses.Furthermore, one 
an easily prove the following properties: let U ∈ Vh/≃h
then1. all v ∈ U have the same label
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ted with respe
t to →֒3. if h = 1 then U 
ontains exa
tly the root verti
es of all the trees Ti4. if h > 1 then parent(U) ⊆ U ′ for some U ′ ∈ Vh−1/≃h−1
and(a) either all verti
es in U ′ have at most one 
hild in U or(b) every v ∈ U is 
ontained in a proper in�nite 
hain C ⊆ U and for every�nite subset V ⊆ U there exists v′ ∈ U ′ su
h that V →֒1 Children(v′)∩U .Now let ≃ be the union of all the relations ≃h. Then ≃ is an equivalen
e relationon V that partitions V into �nitely many equivalen
e 
lasses. For an equivalen
e
lass U ∈ V/≃, let C(U) be the set of all equivalen
e 
lasses that 
ontain 
hildrenof verti
es in U . Furthermore, let l(U) be the unique label of all verti
es in U ,and let m(U) denote 1 if every parent of a vertex v ∈ U has at most one 
hildin U and, otherwise, let m(U) denote the symbol +. Then de�ne a �nite hedgeautomaton A = (Q, Σ, Qf , ∆) as follows:� Q = V/≃� Σ = Lk.� Qf = V1/≃� ∆ 
onsists of transition rules of the following form for ea
h U ∈ V/≃

• l(U)(U
m(U1)
1 · · ·U

m(Un)
n ) → U if C(U) = {U1, . . . , Un}

• l(U)(ǫ) → U if C(U) = ∅.Let TU be a tree labelled by Lk and r a run of A on TU . We show by indu
tionon the height of TU that if r(w) = U for the root w of TU then there exists v ∈ Usu
h that TU →֒ T (v).If h = 1 then TU 
onsists of a single root vertex w that is a leaf. Then thetransition rule in ∆ used to label w in r is of the form l(U)(ǫ) → U . Thus, by
onstru
tion of A all trees T (v) for verti
es v ∈ U 
onsist of the single leaf vertex
v labeled by l(U), i.e., TU →֒ T (v) for all v ∈ U .If h > 1 then the transition rule in ∆ used to label w must have the form

l(U)(Um1

1 · · ·Umn

n ) → Uwith C(U) = {U1, . . . , Un} and mi = m(Ui) for all 1 ≤ i ≤ n. Let
T1,1, . . . , T1,r1

, . . . , Tn,1, . . . , Tn,rnbe the subtrees of TU rooted at the 
hildren of w su
h that r labels the root ofea
h tree Ti,j by Ui. These trees have height h − 1 and r is a run of A on ea
hof these trees. Thus, by indu
tion hypothesis there exist verti
es
v1,1, . . . , v1,r1

∈ U1 . . . vn,1, . . . , vn,rn
∈ Unwith Ti,j →֒ T (vi,j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ ri. If two verti
es vi,j and

vi′,j′ 
oin
ide then we must have i = i′. Thus, ri > 1 and m(Ui) = +, i.e., by
onstru
tion of A, there are verti
es in U that have more than one 
hild in Ui.Then Ui satis�es property 4.(b) of the relations ≃h, i.e., Ui 
ontains a properin�nite 
hain C with vi,j ∈ C. Hen
e, we 
an 
hoose two verti
es v′i,j , v
′
i′,j′ ∈ C
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t, (2) disjoint from all other vi,j , and (3) satisfy Ti,j →֒ T (v′i,j)and Ti,j →֒ T (v′i′,j′). Therefore, without loss of generality assume that all the
vi,j are distin
t. Now for any 1 ≤ i ≤ n we 
an �nd vi ∈ U su
h that

{vi,1, . . . , vi,ri
} →֒1 Children(vi) ∩ UiNamely, if ri = 1 then vi = parent(vi,1) and if ri > 1 then su
h vi existsby property 4.(b). Now, using the fa
t that U is dire
ted we 
an indu
tively
onstru
t an upper bound v ∈ U of all the vi with respe
t to the wqo →֒. Thenwe have by 
onstru
tion:

{v1,1, . . . , v1,r1
, . . . , vn,1, . . . , vn,rn

} →֒1 Children(v)We 
on
lude that Children(w) →֒1 Children(v) and l(v) = l(U), i.e., TU →֒ T (v),whi
h 
on
ludes the indu
tion proof.From the proved statement follows
∀T ∈ L(A)∃i ∈ N : T →֒ Ti (2)Using a similar indu
tive proof we 
an show that for all equivalen
e 
lasses

U ∈ V/≃ and v ∈ U there exists a tree TU and a run r of A on TU su
h that
T (v) →֒ TU . From this follows

∀i ∈ N ∃T ∈ L(A) : Ti →֒ T (3)Note that by 
onstru
tion of A the tree en
oding operation 
an be reversedon the trees in L(A). Let DA be the 
orresponding set of 
on�gurations. FromProperties (2) and (3) follows that D = ↓D′ = ↓DA. From A we 
an now easily
onstru
t an extended pro
ess term E whose denotation is the downward 
losureof DA. It follows that D = ↓DA = γ(E).For proving the other dire
tion of the proposition we start from an extendedpro
ess term E. Then from E we 
an again easily 
onstru
t a �nite hedge au-tomaton A of the same form as above, su
h that the tree en
oding operation 
anbe reversed on all trees a

epted by A and the downward-
losure of the resulting
on�gurations DA 
oin
ides with γ(E). Using a simple pumping argument onthe hedge automaton A we 
an show that for every two trees T1, T2 ∈ L(A)there exists a tree T ∈ L(A) su
h that T1 →֒ T and T2 →֒ T . It follows that DAis dire
ted and thus γ(E).
�A.8 Proof of Theorem 19Theorem 19. The rea
hability problem for depth-bounded pro
esses is unde
id-able.



On Depth-bounded Message Passing Systems 27Proof. Let N = (Pl , T, F, M0) be a reset net with pla
es Pl , transitions T , �owfun
tion F : (Pl × T ) ∪ (T × Pl ) → N ∪ Pl , and initial marking M0 given bya multiset over Pl . We build a depth-bounded pro
ess P that simulates thetransitions of N . In ea
h rea
hable 
on�guration of P there is only one thread
P (x). This thread simulates a linearized exe
ution of the reset net N . Ea
h ofthe r pla
es in N simply 
orresponds to a 
hannel at a dedi
ated position in
x = x1, . . . , xr. We use a dedi
ated pro
ess identi�er A0 that indi
ates that thethread in the given 
on�guration of P is stable and 
an �re the next transitionof N . Let θ be the fun
tion that maps a name ve
tor x of length r and a pla
e
p ∈ Pl to the name in x at the position dedi
ated to p. If a pla
e p has n tokensin a marking M then the 
orresponding 
on�guration has n messages of the form
θ(x, p)(). Thus, the initial 
on�guration I of P is given by:

(νx)(A0(x)| Π
p∈M0

θ(x, p)())For en
oding the transitions of N we further assume pro
ess identi�ers At forevery transition t ∈ T that indi
ate whether the thread has 
onsumed all tokensof pla
es in the preset of t a

ording to the �ow fun
tion F and is now readyto produ
e all the tokens in the postset of t. Finally, we have auxiliary pro
essidenti�ers of the form A(t,p,i), A(t,p) and A(p,t,i), A(p,t) that are used for thelinearization of token 
onsumption and generation. Let t ∈ T and let •t =
{p1, . . . , pn}. For en
oding the 
onsumption of all tokens when t is �red we havethe following equations in P : for ea
h pi if F (t, pi) = k ∈ N is a normal ar
 wehave for all 1 ≤ i ≤ n and 0 ≤ j ≤ k equations

A(pi,t,j)(x) = θ(x, pi)().A(pi,t,j+1)where A(p0,t,0) = A0, A(pi,t,0) = A(pi−1,t) for i > 1 and, similarly, A(pn,t,k) = At,and A(pi,t,k) = A(pi,t) for i > 1. If instead F (t, pi) = pi is a reset ar
, we havean equation
A(pi−1,t)(x) = (ν(y))(A(pi,t)(x1, . . . , xj−1, y, xj+1))where θ(x, pi) = xj and A(p0,t) = Apn,t = A0. Similarly we have equations for all

t• = q1, . . . , qm that produ
e new tokens for ea
h qi by sending F (t, pi) messagesto the 
hannel asso
iated with qi.Note that the number of threads in ea
h rea
hable 
on�guration of P is 
on-stant. Sin
e the 
ommuni
ation topologies of 
on�gurations are bipartite graphsof verti
es for names and verti
es of threads, it follows that the tree-depth of allrea
hable 
on�gurations of P is bounded. In parti
ular, the dead names resultingfrom the simulation of �red transitions with reset ar
s are dis
onne
ted from thesingle thread vertex and, thus, do not in
rease the tree-depth.A marking M of N and a 
on�guration C = (νx)(A0(x)|P ) of P are equiv-alent i� for ea
h p ∈ M there is a 
orresponding message θ(x, p)() in P . By
onstru
tion, a marking of N is rea
hable in N i� an equivalent 
on�gurationis rea
hable in P . Thus, it follows from [6℄ that the rea
hability problem fordepth-bounded systems is unde
idable. �


