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Abstract—Cloud computing, the new trend for service in-
frastructures requires user multi-tenancy as well as minimal
capital expenditure. In a cloud that services large amounts of
data that are massively collected and queried, such as scientific
data, users typically pay for query services. The cloud supports
caching of data in order to provide quality query services. User
payments cover query execution costs and maintenance of cloud
infrastructure, and incur cloud profit. The challenge resides in
providing efficient and resource-economic query services while
maintaining a profitable cloud. In this work we propose an
economic model for self-tuned cloud caching targeting the service
of scientific data. The proposed economy is adapted to policies
that encourage high-quality individual and overall query services
but also brace the profit of the cloud. We propose a cost model
that takes into account all possible query and infrastructure
expenditure. The experimental study proves that the proposed
solution is viable for a variety of workloads and data.

I. Introduction

The new trend for service infrastructures in the IT domain
is called cloud computing, a style of computing that allows
Internet users of any expertise to access information services
on the web. Information, as well as software is permanently
stored in Internet servers and probably cached temporarily on
the user side, having little or no centralized infrastructure.

Public archiving of large persistent scientific datasets from
various disciplines, such as geophysical data, environmental,
biological, astronomical etc, gains more and more credence.
Data is massively collected and queried by large groups of
scientists. Therefore, cloud computing seems to be the perfect
data management infrastructure. Such a cloud necessitates var-
ious technological capabilities. Most importantly, it is required
that the cloud service runs with minimal capital expenditure,
but, nonetheless, can support efficiently multi-user tenancy.

A cloud of databases that archives scientific data supports
cloud caching, meaning common unrestricted caching for all
cloud data. Users are customers of the cloud that consume
its resources as a utility service. Specifically, the users can
query the cloud data, paying the price for what they use.
User payment is employed for coverage of short and long
term cost. Short-term cost refers to the respective query
execution, and long-term cost to the self-preservation of the
cloud infrastructure and improvement of the cloud services.

Emerging IT business in cloud computing [6]–[8] is an
effort to offer such network services. Nevertheless, research
on cloud computing currently considers an infrastructure that
comprises a set of independent edge caches that cooperate

in order to deliver web content [1], [18], [19]. Concerning
the management of scientific data, existing research solutions
[14], consider network bandwidth to be the only important
resource, and, therefore, the sole basis for cost computation.
However, cloud businesses usually prorate cost to more types
of resources. For instance, GoGrid [8] gives network band-
width for free.

We aim to coalesce the existing research or business tech-
nologies and propose an all-inclusive solution for the manage-
ment of scientific data in the cloud. This paper proposes a self-
tuned economy for a cloud infrastructure that serves scientific
data. This economy achieves minimal capital expenditure and,
at the same time, the service of multiple users in an efficient
but also resource-economic way.

Following the business line in cloud computing, the pro-
posed economy employs a cost model that takes into account
all the available resources in a cloud, such as disk space and
I/O operations, CPU time and network bandwidth. The econ-
omy is self-tuned to the policies that aim to:(i) high quality
of individual query service, (ii) increasing overall quality of
query services, and (iii) cloud profit. According to the first
policy, users are satisfied with the received query services
given the amount of money they are charged. According to the
second, the overall query service is gradually ameliorated so
that individual query charges are minimized. According to the
third, the cloud infrastructure remains profitable at all times.
This goal is accomplished through a methodical resolution
of tradeoffs for imminent profit and for future investment.
The experimental study shows that the proposed economy is
competitive to existing solutions, but most importantly, very
promising for a variety of query-workload and data.

The rest of this paper is structured as follows. Section II
summarizes the related work. Section IV describes the details
of the proposed economy. Section VI presents a discussion
on the viability of the proposed solution. Section V adds
details on the infrastructure cost. Section VII presents the
experimental results and Section VIII concludes this paper.

II. Related Work
Bypass-yield caching [14] relies on reducing network traffic

where querying scientific data. A self-tuned cache [25] reduces
query execution costs adaptively to the workload. However, as
a step further towards commercial applications, the economic
model proposed in this paper takes into consideration the
overall cost of the infrastructure beyond network bandwidth:

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.143

1687

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.143

1687

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147954007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


disk I/O and storage, as well as CPU.
Researchers have considered cloud caching as an infras-

tructure that comprises a set of edge caches that cooperate
in order to deliver web content. Document sharing among
caches [1], [18], [19] involves (i) document retrieval from
sibling caches instead from the server, (ii) routing and sharing
of document updates, and (iii) sharing cache resources, in
order to achieve efficient collaborative data placement/ re-
placement/update/lookups etc. Being more compliant with the
business domain [6]–[8], this paper focuses on self-tuned cloud
caches that share resources, rather that self-organization of
independent caches.

Cloud computing is the natural dilation of grid computing
[4], as it enables an integrated collaborative use of high-end
computing owned and managed by multiple organizations.
Grid databases [17] are federated database servers over a
grid, which are viewed as a virtual database system through
a service federation middleware [26]. Querying the grid data
guaranteeing high performance is one of the key issues for
distributed queries across large data sets. Another issue is the
provision of an accounting service that supports a payment
scheme for Grid usage.

Accounting in wide-area networks that offer distributed
services have long been the target of research in computing.
Mariposa [22] discusses an economic model for querying and
storage in a distributed database system. In Mariposa clients
and servers have an account in a network bank and users
allocate a budget to each of their queries. The processing
mechanism aims to service the query in the alloted budget
by executing portions of it on various sites. The latter place
bids for the execution of query parts, and the bids are accu-
mulated in query brokers. The decision of selecting the most
appropriate bids is delegated to the user. In contrast, our work
recommends to the user an efficient but also profitable for the
cloud query plan.

In the spirit of Mariposa, a series of other works have
proposed solutions for similar frameworks [2], [3], [11], [12],
[15], [16], [27]. These focus on job scheduling and bid
negotiation, which are orthogonal issues to those tackled by
the present work.

III. An altruistic cloud DBMS
We assume that data are stored in a cloud of databases and

that cloud caching supports efficient query processing on the
data. Users pose queries to the cloud that are charged in order
to be served. Service of queries is performed by executing
them either in the cloud cache or on the cloud databases.
Query performance is measured in terms of execution time.
Naturally, query execution is accelerated with the number of
available physical structures (indices, views, partitions. etc)
and the amount of cached data. The faster the execution, the
more expensive the service. The cloud is altruistic in the
sense that its intention is not to increase the cloud profit,
but provide good quality query services at low cost. Quality
increment of services is achieved with investments on new
cache structures. Possible repay failure f new inventory must

be avoided. Formally:
Definition 1: An altruistic cloud of databases holds an

economy along the lines of the following policies: (i) indi-
vidual user satisfaction with the query services they receive
w.r.t. the money they are charged, (ii) increasing overall
quality of query services based on new investments, and (iii)
minimization of risk of investment loss. The prioritization of
the policies is from first to last: (i) � (ii) � (iii).

The user defines her preferences concerning the service of
her query by indicating the budget she is willing to spend on
the query, according to the respective execution time that the
cloud can provide. The cloud computes a set of query plans
suitable to run the query. The price of these query plans is
estimated and juxtaposed to the preferences of the user. If
there are query plans that the user can afford, according to
her budget, then the cloud chooses the most appropriate one
of them, w.r.t. the supported policies. If all alternative query
plans are priced above the user budget, the user is presented
with the alternative options and can choose which one she
is willing to pay for. The profit from each query service is
credited to the cloud account and spent in building physical
structures and cache data that can improve the query services.

IV. Economy of the cloud
In this section we describe in detail the economy of the

cloud, as well as the cost model employed for the price
estimation of the query plans.

A. Rationale of an altruistic economy

The cloud has an account where the user payments for the
query services they receive are deposited. Also, money from
this account are used in order to invest on new inventory, i.e.
cache structures that can be later on used in order to execute
queries in the cache, faster and cheaper. The overall credit
amount in this account is denoted as CR. It is not the intension
of an altruistic cloud to make profit from its investments.
However, some moderate profit is made in cases that the user is
willing to pay more for the provided services than they really
cost, without taking advantage of the difference of offered
compensation and real cost for services. Moreover, the cloud
aims and functions towards the direction of total amortization
of investment cost.

The investment on a specific new cache structure is decided
based on the notion of regret, inspired by [23]. Essentially, the
absence of a structure from the cloud cache leads the cloud to
discard query services that employ it. However, in case that
this structure is available in the cache, it is possible that the
execution of some queries could benefit by employing it, either
in terms of time or cost. The regret for not having already
built a structure is accumulated and monitored; if this regret
becomes substantial, then the cloud decides to invest in the
construction of this structure. Formally:

Definition 2: The regret for a structure S that is possible
new inventory of the cloud represents the accumulated value
of the missed chances to provide better quality query services
in terms of either performance or cost.
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Fig. 1. Typical budget functions; (a) step function: BQ(t) = |a|, (b) convex
function: BQ(t) < −|a|(1 − t/tmax) · t, (c) concave function: BQ(t) >
−|a| · (1 − t/tmax).

The regret leads to improvement of the query services.
The cost of the investment on new inventory is payed from
the credit in the cloud account. This cost is amortized to
prospective users that receive query services which include
the new inventory. The aim of the amortization is to reduce
the individual cost of these quality query services. Reduction
of the cost increases the potential that the offered services
are cheaper than the amount that the user is willing to pay
for it. In such a case, the cloud benefits from the difference of
actual cost and offered user compensation; therefore, the cloud
increases its profit, and, thus, its credit CR, which gives the
opportunity for more investments directed by regret, leading
to even more quality query services.

B. The space of cloud functionality

The cloud maintains a pool of structures relevant to the
queries in the recent past. Cache structures considered by the
cloud are CPU nodes, table columns and indexes (see Section
V). These structures are garbage collected using LRU policy,
so that the structure cache can be searched and processed
efficiently for each incoming query plan. Upon receiving an
incoming query Q, the cloud considers a set of plans, PQ.
This set consists of two non-overlapping subsets: the set of
plans that include only existing cache structures, PQexist, and
the set of plans that include also possible new cache structures,
PQpos. The cloud determines the most optimal execution plan
in PQexist

1 and considers the plans in PQpos for possible
investment in new cache structures.

C. Economy management

The user input to the cloud is a query Q as well as a
respective budget function BQ(t) , that indicates the price
she is willing to pay according to the execution time of the
query. There are no limitations for the structure of BQ, while
the user is expected to input a function that is descending
with time, and limited to a specific time interval (0, tmax]: i.e
BQ(t1) ≥ BQ(t2), ∀t1, t2 ∈ (0, tmax] s.t. t1 < t2. Graphi-
cally, an expected user budget function is any combination of
the three simple types depicted in Figure 1.

The cloud produces a set of alternative query plans for the
input query Q, PQ2. The cost of each query plan PQ ∈ PQ is
estimated according to the cost model described in Section

1The optimum plan can be determined by querying the optimizer or by
looking up a set of plans cached from earlier queries.

2We assume that PQ holds only the skyline query plans (w.r.t. execution
time and overall cost); i.e. if there are two plans PQ1 and PQ2 with the same
execution time, only the cheapest one is encompassed in PQ.

Fig. 2. The types of relationships between the user- and cloud-defined budget
functions, corresponding to the respective cases.

IV-D, and produces a discrete budget function BPQ(t) :
tPQ �→ �+, where tPQ is the set of execution time values for
all plans in PQ. We assume that BPQ(t) is also descending,
i.e. BPQ(t1) ≥ BPQ(t2), ∀t1, t2 ∈ tPQ s.t. t1 < t2. The two
functions BQ and BPQ are compared (for the subspace of time
tPQ). Figure 2 depicts the comparison of the two functions.
A query plan that conforms to the budget of the user, but also
supports the three policies defined earlier is chosen, depending
on the relationship of BQ and BPQ , as follows:

Case A: BQ(t) < BPQ(t)∀t ∈ (0, tmax] ∩ tPQ
The user budget function defines a budget lower than the
actual cost of all possible query plans PQ. Therefore, Q
cannot be served according to the user’s defined budget. The
user is presented with BPQ , i.e. with all the query plans in
PQexist accompanied with their cost and the execution time
that they guarantee. The user can pick and pay for one or
none of PQi ∈ PQexist. For all the plans in PQpos that are
cheaper that the chosen one, i.e. ∀PQj , j 
= i, PQj ∈ PQ s.t.
BPQ(tPQj

) ≤ BPQ(tPQi
), the cloud calculates the regret for

not investing in this plan, as the difference of the cost of the
chosen and the not chosen plan:

regret(PQj ) = BPQ(tPQi
) − BPQ(tPQj

) (1)

In this case, the regret for a rejected query plan concerns the
lost chance to offer better query services in terms of cost.

Case B: BQ(t) ≥ BPQ(t)∀t ∈ (0, tmax] ∩ tPQ
The user’s budget covers the cost of any query plan in PQ.
The cloud chooses the query plan in PQexist that minimizes
the gain from the user’s payment diminished by the actual
cost of the plan, i.e. the plan PQi ∈ PQ is picked, such
that BQ(tPQi

) − BPQ(tPQi
) ≤ BQ(tPQj

) − BPQ(tPQj
), i 
=

j, PQj ∈ PQ. The profit BQ(tPQi
) − BPQ(tPQi

) is credited
to the cloud account, and can be invested on new cache
structures.

For each plan in PQpos that is more expensive than the
chosen one, i.e. ∀PQj , j 
= i, PQj ∈ PQ s.t. BPQ(tPQj

) ≥
BPQ(tPQi

), the cloud calculates the regret for not investing in
this plan:

regret(PQj ) = BQ(tPQj
) − BPQ(tPQj

) (2)

In this case, the regret for a rejected query plan concerns the
lost opportunity to add credit in the cloud account.

Case C: (∃t ∈ (0, tmax] ∩ tPQ s.t. BQ(t) > BPQ(t)) ∧ (
∃t′ 
= t ∈ (0, tmax] ∩ tPQ s.t. BQ(t′) < BPQ(t′))
The user’s budget covers the cost of some query plans
PQS ⊂ PQ. The plan to run the query and the regret for the
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query plans are calculated as in Case B, taking into account
only the plans in PQS .

Once the regret of a plan is computed, it is distributed uni-
formly to every physical structure used by the plan. The cloud
maintains the array regretS , which stores the accumulated
regret values for each physical structure or set of cached data
S ∈ S that is employed by any plan PQ ∈ PQ, for any input
user query Q. Specifically, the regret for a non-chosen query
plan PQ is added to the positions in regretS that correspond
to the S ∈ S that are employed by PQ. The accumulated
regret value for each S shows the overall regret of the cloud
for not employing it in executed query plans. A high regret
value indicates that S could have been employed in either
numerous or expensive, or both, query plans. When the regret
for S, regretS [S] reaches a high value, then the cloud makes
an investment and constructs S. Assuming that the overall
credit in the cloud account is CR, then the regretS [S] must
be risen to a fraction a of CR, in order for S to be considered
for imminent investment:

InvestIn(S) = round(
regretS [S]

a · CR
), 0 < a < 1, (3)

In the current model we compute and distribute regret of
all plans, and distribute their regrets to the physica structures.
This allows the cloud to identify the commonly used structures
and use them first.

The selection criterion of a query plan in case A is the
minimization of user charge and, in cases B and C, the
criterion is the minimization of the cloud profit. These criteria
serve the policies that require user satisfaction in terms of her
budget definition, as well as maintenance of the cloud credit.
The accumulation of the regret values and the procedure of
investment into new inventory serves the policy that requires
increasing overall quality of query services, without contra-
vening the other two policies.

The cloud aims to increase the possibility that the rela-
tionship between BQ and BPQ falls into the case B. This is
achieved by amortizing the cost of new structures to numerous
prospective selected query plans. Amortization of cost is
described below.

D. Cost Model

The cost C of a query plan PQ is the sum of the cost of
executing the query plan, Ce(PQ) and the amortized cost of
any structure S ∈ S used by the query plan, Ca(PQ).

C(PQ) = Ce(PQ) + Ca(PQ) (4)

The execution cost of a query plan is analyzed in Section V-B.
The amortized cost of a query plan comprises the respective
cost for all the structures employed:

Ca(PQ) =
∑

S∈S
Ca(S) (5)

The amortized cost of a structure S depends on the initial
infrastructure cost that is necessary to build it, BuildS(S).
This dependence is expressed by a function that also considers

CPU1 CPU2 CPU3 CPUn

Shared File System

Internet

User
Coordinator

Cloud Cache

Fig. 3. The architecture of the cloud cache

the number of queries n that benefit from each S, and to which
the initial building cost is disseminated to:

Ca(I) = fS(n, BuildS(S)) (6)

The building cost BuildS(S) is analyzed in Section V-C. The
function fS quantifies the manner of cost amortization to the
n queries that use S. In this work we consider that the initial
building cost of S is amortized equally to the n queries, thus:

fS(n, BuildS(S)) = BuildS(S)/n (7)

Selecting n is a challenging problem in itself, as it depends
on the provider’s risk aversion, arrival pattern of the queries,
and infrastructure costs. We intend to study this problem in
our future research.

V. Infrastructure Details
In this section we describe the infrastructure details of the

cloud setting and we analyze the cost for building cache
structures and executing query plans.

A. Cloud Infrastructure

The architecture of the cloud which incorporates the pro-
posed economy is shown in Figure 3. The user requests for
query execution from the Internet and contacts the Coordinator
node. The latter distributes the query to the appropriate CPU
node, or to the back-end databases. We assume that the cloud
infrastructure provides unlimited amount of storage space,
CPU nodes, and very high speed intra-cloud networking. Also,
the CPU nodes in the architecture are all identical to each
other. Compared to TCP bandwidth on the Internet, the inter-
cloud bandwidth is orders of magnitude faster and we ignore
the overhead associated with it. The storage system is based
on a clustered file system, such as, [5], where the disk blocks
are replicated and stored close the CPU nodes accessing them.
With this infrastructure we can assume that the virtual disk is
a shared resource for all the CPU nodes in the cache.

B. Cost of Queries

Since the cache considers many possible plans, i.e. design
configurations, for executing a query, accurate and fast estima-
tion of the cost associated with each plan is very important.
The execution time of a query Ce is estimated based on a
respective query plan PQ. For the current cloud setting, we
assume that the query runs completely either in the back-end
or in the cache. In other words, plans that run partially in the
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back-end and then transfer the partially computed results to
the cache in order to complete the execution, are out of the
scope of this work.

Concerning queries that run in the cache completely, the
estimation of the execution cost is determined based on a plan
that is suitable for the cache. If the total cost of running the
query is qtot, and total I/O cost for in the execution plan is
iotot, the cost of running the query is:

CeC (PQ) = lcpu · fcpu · qtot · c + fio · io · iotot (8)

where lcpu is a factor that indicates the overload of the CPU
node, and, fcpu and fio are factors that convert the numbers
reported by the execution plan to actual CPU time and actual
IO operations, respectively. If these factors are stable, their
values can be estimated by running a fixed set of simple
queries and plotting the actual CPU time and logical disk
reads. If these factors change, their values are determined by
the actual execution plan after running the queries.

For network queries, the cost is the total cost of running in
the back-end database and transferring the result to the cache.

CeN (Q) = CeC (Q) + fn · (l +
S(Q)

t
) + S(Q) · cb (9)

The function S(Q) determines the size of the results for the
query Q, t represents the throughput of the network, fn is the
fraction of CPU required to process the incoming results, cb

is the cost of transferring one byte across the network, and l
is the network latency.

C. Cost of Structures

In the current caching infrastructure the columns of the
original tables in the back-end databases are cached, in or-
der to facilitate a comparison with [14]. Moreover, indexes,
constructed in the cache, accelerate the queries. Future work
includes the expansion of the infrastructure with caching
of materialized views, similar to [25], or partial columns,
similar to [21]. Furthermore, additional CPUs are employed
to speed up queries. Summarizing, the cache needs to decide
on building and maintaining three different types structures:
1) CPU nodes N , 2) table columns T , and 3) indexes I . As
discussed in Section IV, the cache needs to spend money for
building these structures (and maintain them). For a structure
S ∈ {N, T, I} we define the building cost BuildS, as well as
the maintenance cost MaintS

3.
For CPU nodes, we exploit the scalability of cloud infras-

tructure and dynamically boot up a system on demand. If b is
the time it takes to boot a system and u is the cost of using a
system per unit time, then the cost of building the CPU node,
N structure is constant:

BuildN(N) = b · u (10)

3As soon as a structure is built in the cache, the query plans that are selected
for execution and employ this structure, pay also for its maintenance cost.
Each newly selected query plan pays for the accumulated maintenance cost
from the time point of the previous query plan that payed off the previously
accumulated maintenance cost. Excessive maintenance cost of a structure due
to non-usage of it in selected query plans, can be the reason of structure
failure.

and the cost of maintaining the node per unit time is also
constant:

MaintN(N) = c (11)

For a table column, T , the building cost BuildT (T ) is the cost
of transferring T from the back-end database and combining
it with the current columns in the cache. For simplicity, we
ignore the cost of integrating T into the existing table in
the cache. Therefore the cost of building a table column is
primarily the cost of transferring the respective data over the
network. Therefore the cloud has to pay for the bandwidth
used to transfer that data, and the CPU time taken to manage
that transfer. If fn is the fraction of CPU taken to manage
transfer, and t, l are the throughput and latency of the network,
the total cost for building a column C in the cache is:

BuildT (T ) = fn · (l +
size(T )

t
) + size(T ) · cb (12)

where cb is the cost of transferring a byte across the network.
The maintenance cost of the table column is just the cost of
using disk space in the cloud, so if cd is the cost of disk
storage in the cloud, then the maintenance cost for T is:

MaintT (T ) = size(T ) · cd (13)

For indexes, the building cost involves fetching the table
data across the Internet and then building the index in the
cache. Since sorting is the most important step in building an
index, the cost of building an index is approximated to the
cost of sorting the indexed columns. For example, the cost for
building an index I(A, B) on table T using columns A and
B is approximated to the cost of running the following query:
Q = select A, B from T order by A, B

The total cost building an index is therefore:

BuildI(I) = Ce(PQ) +
∑

T∈I∧T /∈Cache

BuildT (T ) (14)

where PQ is the query plan for query Q and T is a column
in the index I but not in the cache.

The function Ce(PQ), introduced in Section IV-D, deter-
mines the cost of running a query Q in the cache based on
a plan PQ, and is described in Section V-B. The last term in
the equation, BuildT (T ), determines the cost of building the
table column in the cache. We assume that the cloud databases
in the current setting are static, therefore there is no need for
index updating. Hence, the maintenance cost for an index is:

MaintI(I) = size(I) · cd (15)

where cd is the cost of storing a byte of data on cache per
unit time.

VI. Discussion
The viability of the proposed economy depends on the

following properties of the workload. The workload running
on the databases should be amenable to caching: First, queries
have data access locality, i.e. they mostly target a specific part
of the data; second, queries have temporal locality, i.e. similar
queries are posed close in time. Furthermore, the cache access
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is beneficial if the queries are “result heavy”, i.e., produce
significant amount of data to be transported from the back-
end databases to the cache. If there is high update rate in the
back-end databases, the overhead of maintaining the cache
structures becomes overwhelming, causing detriment to the
service provider. Moreover, the cache economy implies that
the expected profit depends on the stability of the data; thus,
rare or loosely predictable data changes are desired. Finally,
to exploit the scalability of the cloud service to the maximum,
the queries should be parallelizable.

Scientific data fits the description of the above require-
ments [10], [20]. A small portion of the data is of intense
interest to the users, and the workload is characterized by
access patterns that can be exploited by the cache to improve
performance by pre-fetching. Furthermore,the queries are par-
allelizable. Therefore, this work is aims to service massive
querying of scientific data collections.

VII. Experiments
We show simulation-based experimental results for a cloud

cache system using the economic model developed in Sec-
tion IV.

A. Experimental Setup and Methodology

We simulate the cloud with just one back-end database.
This is the best possible scenario for the back-end database
as it eliminates the inter-database communication to answer
the queries. The cache is operated under a TPCH-based
workload [13], which consists of 7 TPCH query templates
and simulates the query evolution of a million SDSS-like [9]
queries against a 2.5TB back-end database.

The proposed economic model is compared with bypass-
yield cache [14]. The latter is emulated by associating cost
only with network bandwidth, therefore setting costs for CPU,
disk and I/O to zero. This cache, denoted as net-only, tries to
reduce the network bandwidth and caches only table columns.
The experiments employ the ideal cache size for net-only,
which is 30% of the total database size [14]. The net-only
cache avoids using indexes to speed up queries, since the space
occupied by the indexes requires some of the cached data to
be removed, causing the cache to answer more queries in the
back-end database. The net-only cache is compared against
three variations of the economic model, i.e., econ-col, econ-
cheap, and econ-fast. The econ-col cache is similar to the
net-only cache, in which query plan execution employs only
cached columns and no indexes. The econ-cheap cache builds
and uses indexes, and adds extra CPU nodes to speed up the
queries. Given a set of query plans, the plan with the least cost
is chosen. Finally, the econ-fast cache is similar to econ-cheap,
but selects the query plan with the fastest response time.

We assume that the CPU nodes are never overloaded
(lcpu = 1), and the CPU is fully utilized during data transfer
(fn = 1). Also, there is no latency in the network (l = 0) and
the network throughput between the cache and the back-end
database is 25Mbps. The throughput parameter is the maxi-
mum throughput between two database nodes for SDSS [24].
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Fig. 5. Comparison of average response time for caching schemes

The response time for the SDSS queries is emulated by
setting fcpu = 0.014. Query execution scaling to multiple
CPU nodes follows the scaling property of a prototypical
SDSS query [17]: a query can be sped up 2x using only
25% extra CPU overhead using 3 CPU nodes in parallel. We
use 65 potentially useful indexes from DB2’s “recommend
indexes” mode recommendations. Finally, the cost values for
the caching service are imported from Amazon EC2 [6].

The cache provider is conservative and builds structures
only when her profit exceeds the cost of building them. The
user defines a step preference function BQ and accepts query
execution in the back-end.

B. Experimental Results

Figures 4 and 5 show the operating cost of the caching
infrastructure and the average query response time for all four
caching schemes using different inter-query time intervals.
Measurements are shown for two opposite extreme cases: 1
and 60 seconds duration of inter-query intervals, as well as
for the moderate case of 10 seconds. The disc space cost for
storage of indexes is very small and significant for the 1 second
and 60 seconds measurements, respectively, compared to CPU
and network costs. For the case of 10 seconds the disk cost
is not prohibitive, but it is enough to allow the algorithms to
evict the structures in order to save space.

Figure 4 clearly shows that the cost of operating a cache is
reasonable for all caching schemes. Hence, the caching service
for SDSS-like workload is viable. Figure 5 shows that the
response time of net-only and econ-col are similar. This is not
surprising since they both use only table data to answer the
queries. The cost for using these structures, however, is lower
for econ-col: net-only is conservative in terms of caching table
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columns and answers many queries over the network before
loading the data and answering queries into the cache. Yet,
econ-col reduces the number of queries answered over network
and the CPU overhead of transferring their results, because it
considers the overall CPU cost for data transfer and query
answering, which leads to earlier data caching. The results for
the 1 second query interval show that the disk cost is negligible
for this scenario; therefore, the overall reduced cost of the
economic model is directly proportional to the cost saved by
reduced CPU usage, i.e. approximately 7%. Since econ-cheap
uses indexes on top of the cached data, the response time is
about 50% of econ-col. Using inexpensive disks to speed up
the queries actually diminishes the operating cost of econ-
cheap scheme and is about 45% cheaper than net-only. econ-
fast further reduces the response time by approximately 10%,
employing extra CPU nodes to parallelize the queries. Yet, the
coordinator pays the overhead for the initialization of the extra
CPU nodes.

As the time interval increases, the response times of net-
only and econ-col remain similar, due to the fact that they use
only cached columns, which are small compared to indexes
and they are less eligible for eviction. The response times
for econ-cheap and econ-fast increase with the increment of
the inter-query interval, which indicates that these schemes
adapt to the workload change efficiently. As the time interval
increases, the cost increases, too, because of the extra cost of
disk storage for cached data. The cost of econ-col is lower
than that of econ-cheap for the 60-seconds interval, because
the first uses less disk space, (the most expensive structure for
this scenario), than the latter. Furthermore, the evolution of
the workload leads econ-cheap to evict indexes already built
in the cache, before being able to exploit them sufficiently.

Summarizing, the results show that a comprehensive eco-
nomic model that considers costs for all resources performs
better, in terms of response time and cost, than a model that
considers only one resource. The all-inclusive model allows
the cloud system to exploit the cheaper resource in order to
save on the more expensive ones. Also, it allows the user to
trade off cost with faster response times.

VIII. Conclusion

In this paper we propose an economic model for a cloud
cache suitable for the querying service of large scientific
datasets. The proposed economy is self-tuned to three policies.
These ensure high and increasing quality of individual and
overall query service, but also, guarantee profit for the cloud.
The economy is based on a cost model that takes into account
all the necessary infrastructure resources, namely: network
bandwidth, disk space and CPU time. The cloud profit from
the query services is invested in building physical structures
in the cache, which expedite query execution. The presented
experimental study shows that the proposed economy is viable
for a variety of workloads and data.
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