
Improving OLTP Scalability
using Speculative Lock Inheritance

Ryan Johnson†‡

ryanjohn@ece.cmu.edu
Ippokratis Pandis†

ipandis@ece.cmu.edu
Anastasia Ailamaki‡

natassa@epfl.ch

†Carnegie Mellon University
Pittsburgh, PA

‡École Polytechnique Fédérale de Lausanne
Switzerland
ABSTRACT
Transaction processing workloads provide ample request level
concurrency which highly parallel architectures can exploit. How-
ever, the resulting heavy utilization of core database services also
causes resource contention within the database engine itself and
limits scalability. Meanwhile, many database workloads consist of
short transactions which access only a few database records each,
often with stringent response time requirements. Performance of
these short transactions is determined largely by the amount of
overhead the database engine imposes for services such as logging,
locking, and transaction management.

This paper highlights the negative scalability impact of database
locking, an effect which is especially severe for short transactions
running on highly concurrent multicore hardware. We propose and
evaluate Speculative Lock Inheritance, a technique where hot data-
base locks pass directly from transaction to transaction, bypassing
the lock manager bottleneck. We implement SLI in the Shore-MT
storage manager and show that lock inheritance fundamentally
improves scalability by decoupling the number of simultaneous
requests for popular locks from the number of threads in the sys-
tem, eliminating contention within the lock manager even as core
counts continue to increase. We achieve this effect with only minor
changes to the lock manager and without changes to consistency or
other application-visible effects.

1. INTRODUCTION
Online transaction processing is a vital and challenging database
workload which demands scalable access to rapidly changing data,
consistency among thousands of competing requests, tight
response time requirements and stringent data reliability and avail-
ability. Such heavy use of core database services imposes high
overhead, especially for the short transactions common in
telecom [15], banking [2], and sales/retail [21][17] workloads.
Logical locking is a particularly significant source of overhead in
the DBMS. For example, Harizopoulos et. al. report overheads of
16-25% for TPC-C transactions [6] running on a single-core
machine with no physical contention for lock data structures.

Recent shifts in computer architecture have resulted in systems
containing multiple cores per chip, with core counts projected to
double every two years for the foreseeable future. While multicore
architectures make available an unprecedented degree of hardware

parallelism, they also impose new challenges for database engine
design. Increasing the number of concurrent threads puts pressure
on internal database engine components and exposes new bottle-
necks in the system [11].

1.1 Contention Within the Lock Manager
Virtually all database engines use some form of hierarchical
locking [5] to allow applications to trade off concurrency and over-
head. For example, requests which access large amounts of data
can acquire coarse-grained locks to reduce overhead at the risk of
reduced concurrency. At the same time, small requests can lock
precisely the data which they access and maximize concurrency
with respect to other independent requests. The lock hierarchy is
crucial for application scalability because it allows efficient fine-
grained concurrency control at the logical level.

Ironically, however, hierarchical database locking causes a new
scalability problem while addressing the first one: all transactions
must acquire intention locks high in the hierarchy in order to
access individual objects. Until recently, single-node database
engines time-shared all requests on one to four processors, with lit-
tle potential for physical contention. However, as core counts con-
tinue to double each processor generation the increased hardware
concurrency leads to bottlenecks in the centralized lock manager,
especially as hierarchical locking forces many threads to update
repeatedly the state of a few hot locks.

Physical contention causes locking-related bottlenecks even for
scalable database applications which cause few logical conflicts.
Because of the inherent behavior of hierarchical locking, we
expect that every system will eventually encounter this kind of
contention within the lock manager, if it has not done so already.
Figure 1 highlights how contention for database locks impacts per-
formance as we increase load in our test system running the NDBB
benchmark (see Section 5). The x-axis varies load on the system

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
VLDB '09, August 24-28, 2009, Lyon, France.
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Figure 1. Lock manager overhead as system load increases

from very light (left) to very heavy (right) while the y-axis shows
the fraction of CPU time each transaction spends in the lock man-
ager (not counting time spent blocked on I/O or true lock con-
flicts). This figure, and those that follow, define overhead and
contention as the useful and useless work, respectively, performed
by the system when processing transactions. We can make two
observations from Figure 1. First, the overhead (useful work) due
to the lock manager is a small part of the total. Second, nearly all
contention in the system arises within the lock manager and that
contention component grows rapidly. As load increases, lock man-
ager contention becomes a rapidly growing bottleneck responsible
for nearly 75% of the transaction’s CPU time. This suggests that,
in order to improve scalability, we must focus on eliminating con-
tention within the lock manager.

1.2 Reducing Lock Overhead and Contention
The guiding concept of speculative lock inheritance — not releas-
ing locks between transactions — appears in Rdb/VMS [14] as a
way to reduce network communication costs. Locks in this distrib-
uted database physically migrate to nodes whose transactions
acquire them. The authors highlight very briefly a “lock carry-
over” optimization which allows a node to avoid the overhead of
returning the lock to its home node when transactions complete by
caching it locally, as long as no conflicting lock requests have
arrived. Each carry-over saves at least one round trip over the net-
work in the event the lock is reused by a later transaction, improv-
ing the performance of a two-node system by over 60%. We apply
the concept of lock carry-over to the single-node Shore-MT engine
to solve the problem of contention for lock state, which did not
exist with the high network overheads and low node counts (1-3 in
the evaluation) experienced by Rdb/VMS. We also detail an imple-
mentation designed for modern database engines running on multi-
core hardware with shared memory and caches, and where transac-
tions, not nodes, hold locks. SLI allows a centralized lock manager
to distribute requests among the many threads that would other-
wise contend with each other.

IBM’s DB2 provides a performance tuning registry variable,
DB2_KEEPTABLELOCK [8], which allows transactions or even
connections to retain read-mode table locks between uses, again
exploiting the idea of not releasing locks unless necessary. How-
ever, transactions only benefit from the setting if they repeatedly
release and re-acquire the same locks, and the documentation notes
that retaining table locks for the life of a connection leads to “poor
concurrency” because other transactions cannot make updates until
the connection closes. The setting is disabled by default.

H-Store [18] takes an extreme approach to reducing both overhead
and contention by executing transactions one at a time, in a single
thread, with no interleaving. However, where SLI requires only a
scalable workload, H-Store requires a workload which can be par-
titioned evenly among multiple machines in order to avoid the high
cost of distributed transactions.

Multiversioned buffer pools [3] allow writers to update copies of
pages rather than waiting for readers to finish. Copying avoids the
need for low-level locking because older versions remain available
to readers, but it does not remove the need for hierarchical locks or
the corresponding contention which SLI addresses. In addition, for
the common case where a transaction updates only a few bytes per

record accessed, multiversioning imposes the cost of copying an
entire database page per record. Finally, multiversioning provides
“snapshot isolation,” which suffers from certain non-intuitive
update anomalies that are only partly addressed to date [13].

1.3 Speculative Lock Inheritance
The key to reducing contention within the lock manager comes by
observing that virtually all transactions request high-level locks in
compatible modes; even requests for exclusive access to particular
rows or pages in the database generate compatible intent locks
higher up, and transactions which require coarse-grained exclusive
access are extremely rare in scalable workloads. Further, in the
absence of intervening updates, it makes no semantic difference
whether a shared-mode lock is released and re-acquired or simply
held continuously. Either way a transaction will see the same
(unchanged) object, and other transactions are free to interleave
their reads to the object as well.

Speculative Lock Inheritance exploits these characteristics of
shared-mode locks to transparently and safely allow committing
transactions to pass some of their locks to those which follow,
without releasing and reacquiring them. Inheriting the hottest locks
in the system alleviates contention because most transactions
acquire those locks directly from their predecessor instead of mak-
ing requests to the centralized lock manager. For our test system
with 64 hardware contexts running a variety of short transactions,
we find that SLI reduces contention in the lock manager to small,
near-constant levels even as hardware concurrency increases.

1.4 Contributions and Paper Organization
This paper makes the following contributions. First, we identify
the lock manager as a growing scalability bottleneck on multicore
hardware, particularly for workloads made up of small transac-
tions. We identify the source of the lock manager bottleneck as
contention for updates to the state of the locks themselves. Based
on the observation that this contention arises largely from compati-
ble requests for shared-mode database locks, we propose Specula-
tive Lock Inheritance, which modifies the lock and transaction
managers to pass selected locks directly from transaction to trans-
action. Lock inheritance virtually eliminates contention within the
lock manager by keeping nearly constant the number of threads
which make simultaneous requests for hot locks, even as the num-
ber of threads using the locks continues to increase. Our approach
takes the lock manager off the critical path in the system and yields
throughput improvements of 10%-40% for short transactions.

The rest of this paper proceeds as follows: Section 2 introduces
critical sections and discusses ways to alleviate bottlenecks.
Section 3 gives an overview of a database engine lock manager
and discusses sources of overhead introduced by database locking,
and Section 4 describes speculative lock inheritance. Sections 5
through 7 present our experimental methodology and analysis of
SLI performance, and we conclude in Section 8.

2. CRITICAL PATHS AND LATCHING
Serialization in a database engine falls into two basic categories:
database locks protect (logically) the data stored in the database
and enforce consistency between transactions. However, database
code paths also include dozens of critical sections, or regions of
code which access shared data structures — e.g. buffer pool pages,

logs, and database lock state — in ways that must (physically)
appear atomic to the rest of the system. Critical sections are pro-
tected by latches, which apply either mutual exclusion or, less
often, reader-writer locking. In contrast with database locks,
latches are held, one or two at a time, for very short intervals and
acquired far more frequently than lock requests. For example, prior
work has shown that the TPC-C Payment transaction, which
accesses only 4-6 rows, acquires roughly 100 latches before
committing [11]. Historically, systems with one or few processors
have depended on latching mostly to prevent untimely OS schedul-
ing decisions and other spurious thread interleavings from expos-
ing inconsistent data; the current trend, however, is for the number
hardware contexts to double every processor generation, tracking
Moore’s Law. As available hardware parallelism increases the seri-
alizing effect of latching becomes much more significant for over-
all performance because more and more threads can attempt to
enter critical sections simultaneously. Any latch-protected critical
section which causes non-trivial serialization delays is a bottle-
neck; we refer to the set of bottleneck critical sections for a given
systems and workload as the critical path through the storage
engine. We can identify bottlenecks because they either cause
transactions to block (not for I/O or database lock conflicts), or
spin (indicated by flat or decreasing performance even as CPU uti-
lization grows).

Intuitively, latch-protected critical sections can be seen as a kind of
server in traditional bottleneck analysis. Just as disk and CPU can
only serve so many requests or perform so much work per second,
critical sections have a maximum rate at which threads may enter
them and which depends inversely on the length of the critical sec-
tion. Where hardware bottlenecks can be resolved by adding more
resources, however, bottleneck critical sections can only be
resolved by making (often significant) changes to the code base.
Optimizing the code inside the critical section increases its
throughput by a (potentially large) constant factor, but provides
only a temporary solution because the degree of hardware parallel-
ism is projected to grow exponentially for the foreseeable future.
Even if the optimizations ease the bottleneck for the moment, ever-
increasing thread counts will quickly take up the slack and the bot-
tleneck will eventually return.

Fine-grained synchronization is another approach for alleviating
bottlenecks; instead of using one latch per type of data, fine-
grained synchronization provides one latch per piece of data. This
approach is highly effective for reducing contention by distributing
threads to different locations. However, fine-grained synchroniza-
tion can only eliminate contention if the data scales uniformly with
available compute power. Inevitably, contention such as a database
log or a few hot locks will become bottlenecks, and this contention
cannot be alleviated without fundamental changes to the access
pattern — causing fewer threads to request the shared resource in
the first place. This kind of change is not always complex to imple-
ment, but requires re-evaluating the algorithms and data structures
used by the database engine in order to identify the opportunity.

Speculative Lock Inheritance falls under the last category of con-
tention-reducing approaches. The lock manager code has already
been highly optimized and uses fine-grained synchronization, but
high-level intent locks emerge as a bottleneck if many transactions
request them concurrently. Historically this bottleneck was masked

by the limited number of available hardware contexts, which in
turn allowed only a few threads to request the lock at any given
instant. Multicore hardware removes this limitation, pushing the
lock manager onto the critical path of short transactions. In order
to eliminate this new and growing bottleneck we must find ways to
reduce significantly the number of threads which make simultane-
ous requests for the same hot locks.

3. DATABASE LOCKING
Logical locking is a significant and largely unavoidable overhead
in the DBMS. Even with only one thread in the system, Harizopou-
los et. al. report overheads between 16 and 25% for TPC-C
transactions [6]; contention for database locks only increases the
overhead they impose. The high overhead of database locking has
even prompted proposals for hardware support [16].

In workloads characterized by large numbers of short transactions
— such as telecom and banking workloads (e.g. NDBB [15] or
TPC-B [20]) — many simultaneous requests for locks must serial-
ize to check and update internal lock manager state even though
such requests nearly always specify compatible lock modes. In
addition, short transactions touch only one or a few records per
table and cannot amortize the cost of acquiring those locks over
many accesses or heavy computation. Exponentially growing core
counts amplify the serialization effect by allowing more threads to
run and compete for data structures at any given instant — an
example of the internal bottlenecks modern hardware exposes in
database systems [11]. Together these effects make the overhead of
acquiring locks a significant fraction of total transaction cost.

3.1 Hierarchical Locking
Hierarchical locking schemes treat the database as a nested data
structure of sorts. For example, a database contains tables, which
in turn contain pages and rows, and each object at each level of the
hierarchy has locks associated with it. For instance, a transaction
which accesses only a few records must still acquire a lock on the
table to prevent its being dropped by another transaction. To distin-
guish between direct accesses to an object (such as dropping a
table) and indirect accesses to its children (such as reading a row
from a table), hierarchical locking defines the following basic lock
modes [5]. All database engines using lock-based concurrency
control provide these lock modes, though most implementations
define additional modes as well for performance reasons:

• Share (S): The holder can read this object, and implicitly
holds an S-mode lock on all of its children as well.

• Exclusive (X): The holder can update this object and implic-
itly holds an X-mode lock on all of its children as well.

• Intention Share (IS): Notifies other transactions that the
holder has shared locks on a subset of this object’s children;
coarse-grained updates are not permitted, but fine-grained
updates may proceed if they do not conflict.

• Intention Exclusive (IX): Notifies other transactions that the
holder has exclusive locks on a subset of this object’s chil-
dren; no coarse-grained locks are permitted, but fine-grained
accesses are allowed if they do not conflict.

Intention locks are vital to application scalability because they
allow transactions which access different subtrees in the hierarchy
to proceed in parallel while still preventing coarse-grained opera-

tions from interfering with fine-grained ones. Acquiring intention
locks on the parents of an object of interest also allows the data-
base engine to identify conflicting transactions at the level of gran-
ularity where they occur, usually without requiring repeated
searches through numerous low-level locks.

It is important to note that a transaction which accesses any chil-
dren of an object (such as rows of a table) must always acquire
some lock on that object, even if it applies fine-grained locking
further down the hierarchy. This centralized coordination intro-
duces a point of contention for transactions which access different
children of the same object, as they must acquire intention locks on
it. Reading and updating internal state of hot locks becomes a seri-
alization point even though there is no logical conflict.

3.2 The Database Lock Manager
There are two main entities involved in database locking: the lock
manager and transaction agents. The lock manager provides an
interface for transactions to request, upgrade, and release locks.
Behind the scenes it also ensures that transactions implicitly
acquire proper intention locks, performs deadlock prevention and
detection, and manages storage for lock state (there can easily be
too many locks to store in memory at the same time). This section
describes the lock manager found in Shore-MT [12]; we expect
other lock manager implementations to be similar as they must
provide the same services.1 Figure 2 depicts the internal data struc-
tures of the Shore-MT lock manager. Every active lock in the sys-
tem is represented by a lock head data structure which contains the
lock’s current state, the head of a linked list of current lock
requests, and a latch which protects both lock head and list ele-
ments. When a transaction requests a lock, the manager first
ensures the transaction holds higher-level intention locks, request-
ing them automatically if necessary. If an appropriate coarse-
grained lock is found the request can be granted immediately; oth-
erwise the manager probes an internal hash table to find the desired

lock head. It then latches the lock head, appends a new request
object to the request queue, and blocks the transaction if the
request is incompatible with the lock’s current holder. It then
unlatches the lock head and returns the (granted) request to the
transaction. If the transaction requests an upgrade for an existing
lock, the lock manager finds and updates the existing request
(again, possibly blocking the transaction).

In order to facilitate lock release at transaction completion, each
transaction agent maintains a private list of requests for all locks it
holds, in the order it acquired them. At transaction completion, the
transaction repeatedly removes the youngest request from its pri-
vate list and passes it back to the lock manager for release. The
lock manager latches the corresponding lock head, unlinks the
request from the lock queue, and searches the queue for other
requests which may now be granted.

The effort required to grant or release a lock grows with the num-
ber of active transactions because of repeated searches within the
lock queues. For example, Figure 3 shows a realistic lock request
list for an S-lock held by a transaction; blue requests are granted
and white ones are waiting. To release the lock the transaction
must traverse the list from the beginning (A) to determine the new
lock mode and identify any upgrade requests which can now be
granted. In this case it identifies at least one upgrade to grant:
IS => IX. Once all pending upgrades have been satisfied, the
next waiting (new) request can be granted (B) if compatible, which
in this case it is. All compatible requests directly after the first (C)
can also be granted (at least two more in this example). Heavily
accessed locks such as table locks will have many requests and
upgrades in progress at any given point, and each release operation
must traverse the list. Deadlock detection usually results in further
list traversals to identify dangerous transactions which must be
aborted to guarantee forward progress in the system.

Lock queues impose high overhead as the number of active trans-
actions in the system increases both because more threads contend
to access the list simultaneously and because the longer queues
require more work per critical section. Intention locks tend to
worsen the problem because they allow many transactions to hold
the lock simultaneously, and they also introduce many upgrade
requests as transactions change from IS to IX to modify records in
the hierarchy. In contrast, releasing an exclusive request requires
looking at only one request (the holder’s successor). Combined,
these costs lead to the spiralling overheads shown in Figure 1.

4. SPECULATIVE LOCK INHERITANCE
Speculative lock inheritance is based on the key observation that a
scalable application will nearly always request hot (often-
accessed) locks in a compatible mode; otherwise a significant frac-
tion of transactions in the system would be blocked on the (exclu-

1. For example, the DB2 documentation describes space requirements of
the first vs. subsequent requests to each lock in a way that strongly
suggests it also uses a linked list of lock requests.

Figure 2. Inside a database engine’s lock manager

Figure 3. Lock release example

sive) lock at any given moment and not competing to update the
lock’s internal state. If most transactions request the hot lock in a
shared mode, a transaction could hold the lock for a significant
length of time without reducing available concurrency as a result.
The lock is only necessary to guarantee that rare transactions
which do make updates can exclude other transactions properly.

Speculative lock inheritance exploits the lack of logical contention
for hot, shared database locks in order to virtually eliminate physi-
cal contention for internal lock state. SLI allows a completing
transaction to pass on some locks which it acquired to transactions
which follow. This avoids a pair of release and acquire calls to the
lock manager for each such lock. During the lock release phase of
transaction commit, the transaction’s agent thread identifies prom-
ising candidate locks and places them in a thread-local lock list
instead of releasing them. It then initializes the next transaction’s
lock list with these previously acquired locks hoping that the new
transaction will use some of them. Successful speculation
improves performance in two ways. First, a transaction which
inherits useful locks makes fewer lock requests, with correspond-
ing lower overhead and better response time; short transactions
amortize the cost of the lock acquire over many row accesses
instead of just one. Second, other transactions which do request the
lock will face less contention in the lock manager.

4.1 Extensions to the Lock Manager
When a transaction attempts to release a lock the lock manager
determines whether it is a good candidate for inheritance (see next
section), and if so, does not remove the request from the lock
queue. Instead, it changes the request status from granted to inher-
ited and moves it from the transaction’s private list to a different
private list owned by the transaction’s agent thread. When the
agent thread executes its next transaction, it pre-populates the new
transaction’s lock cache with the inherited locks. The speculation
succeeds if the new transaction attempts to request an inherited
lock: it will find the request already in its cache, update its status
from inherited back to granted, and add it to its lock list as if it had
just acquired it. The status update uses an atomic compare-and-
swap operation and does not require calling into the lock manager,
allocating requests, or updating latch-protected lock state. Inheri-
tance fails harmlessly if the transaction does not make use of the
lock(s) it inherited: they do not cause overhead during transaction
execution and the transaction simply releases them at commit time
along with the locks it did use. If another transaction encounters an
inconvenient inherited lock request and an atomic compare-and-
swap to invalid state succeeds, it simply unlinks the request from
the queue and continues. Future attempts to reclaim the lock will
fail, and the next time the owning agent completes a transaction it
will deallocate any invalid requests it finds.

Lock inheritance is a very lightweight operation regardless of
whether it eventually succeeds or not. In the worst case a transac-
tion does not use the lock it inherited, and pays the cost of releas-
ing the lock which the previous transaction avoided. Both
invalidations and garbage collection are performed only when a
transaction is already traversing the queue and add only minimal
overhead. In the best case the lock manager will be completely
relieved of requests for hot locks, with a corresponding boost to
performance.

4.2 Criteria for Inheriting Locks
Our speculative lock inheritance scheme uses the following five
criteria to identify candidates which are likely to benefit subse-
quent transactions with minimal risk of reducing concurrency:

1. The lock is page-level or higher in the hierarchy

2. The lock is “hot” (i.e. contention for the latch protecting it)

3. The lock is held in a shared mode (e.g. S, IS, IX)

4. No other transaction is waiting on the lock

5. The previous conditions also hold for the lock’s parent, if any

The first two criteria favor locks which are likely to be reused by a
subsequent transaction. Low-level locks such as row locks are so
numerous that the overhead of tracking them outweighs the bene-
fits, while a lock which has only one outstanding request at release
time is unlikely to have another request arrive in the near future.
We detect a “hot” lock by tracking what fraction of the most recent
several acquires encountered latch contention and enabling SLI
when the ratio crosses a tunable threshold.

The second two rules ensure lock inheritance does not hurt perfor-
mance or concurrency, while the last rule ensures that lock inheri-
tance maintains the hierarchical locking protocol. Though database
designers are often willing to make sacrifices in consistency or
other areas if it improves performance [7][13], speculative lock
inheritance will be most useful if it does not change transaction
consistency semantics or introduce other anomalies. It must be
transparent and automatic, and impose minimal performance pen-
alty for unsuccessful speculations.

4.3 Ensuring Correctness
SLI preserves consistency semantics by only passing share-mode
locks from one transaction to another. Assuming the first transac-
tion acquired its locks in a consistent way, the new transaction will
inherit consistent locks. In addition, shared locks ensure that the
previous transaction did not change the corresponding data objects.

From the perspective of a new transaction, an inherited lock
request looks just like a new request that happened to be granted
with no intervening updates since it was last released. Two-phase
locking semantics are preserved because the inheritance is not
finalized until the new transaction actually requests the lock. If an
exclusive request arrives before then it invalidates the inheritance
and the inheriting transaction must make a normal request. There-
fore, from a semantic perspective an inherited lock was released
and reacquired; only the underlying implementation has changed.
From the perspective of both the inheriting and any competing
transactions which arrive after the original transaction completes,
the request was granted in the same order it would have been had
SLI not intervened. A mixture of inherited and non-inherited locks
is consistent and serializable for the same reasons. SLI preserves
the hierarchical locking protocol by only inheriting locks whose
parents are also eligible. Any inherited lock “orphaned” when its
parent is invalidated will also be invalidated before any transaction
tries to use it, thus avoiding the case where a low-level lock is held
without appropriate locks on its ancestors.

A transaction could also potentially acquire locks in a different
order than expected if it inherits locks which it would have

requested later than the beginning of the transaction. For example,
Figure 4 shows how SLI could potentially induce deadlocks
between transactions that are otherwise well-behaved. During nor-
mal execution (left), transaction agents T1 and T2 both acquire
lock L2 followed by L1. Whichever agent requests the lock second
has to wait until the other commits its current transaction, but no
deadlock is possible. However, enabling SLI (right) allows T1 to
inherit L1 from a previous transaction. If agents could not invali-
date inherited but not-yet-used locks, T1 would have effectively
acquired its locks in reverse order and could deadlock with T2.

Fortunately, SLI-induced deadlocks can easily be avoided because
the transaction must still reclaim the lock before accessing the
data; if any exclusive requests arrive for an inherited lock before
the inheriting transaction first requests it, the lock manager can
invalidate the inheritance. Once the request has been reclaimed the
transaction has effectively acquired the lock in its natural order and
conflicting requests will have the same risk of deadlock as in the
unmodified system.

4.4 Non-uniform Locking Patterns
One minor concern with SLI is that, for real-world workloads, it
will not achieve its full potential due to locking patterns which
interfere with normal operations. We discuss two such patterns
here: the roving hotspot and the bimodal workload.

Many workloads do not access data uniformly over time. Instead,
the object of interest shifts, and contention with it. A common
example is a table (such as a history or log) with heavy append
traffic. For a given page of the table, for instance, high contention
will disappear as soon as the page fills and transactions begin
inserting records in a different page. This moving target presents
two potential difficulties for SLI. First, old (now unnecessary)
locks might start to pollute transaction caches and lock lists, and
waste space in the lock manager’s hash table as well. Second,
newly hot locks will not be inherited at first, leading to contention.
Fortunately, neither problem occurs in practice because SLI has a
short memory: if transactions do not use inherited locks their agent
thread will release them quickly; if new sources of contention
appear, SLI will quickly begin inheriting the problematic locks.

A bimodal workload consists of two groups of transactions which
access very different sets of locks. If the distribution of transac-

tions to agent threads is random, a high fraction of transactions
will not utilize the locks they inherited (from a previous, different
transaction type), causing the lock manager to stop inheritance
even though it would be beneficial to continue. There are several
potential ways to make SLI resistant to this sort of workload:

1. Identify groups of transaction types which acquire similar
locks, and bias the assignment of transactions to agent threads
so that similar transactions execute with the same agent(s)
most of the time. This approach would require either applica-
tion developer assistance or some form of cluster identifica-
tion based on observing which high-level locks each
transaction type tends to acquire.

2. Apply a small hysteresis or momentum which prevents the
lock manager from dropping inheritance just because one
transaction did not use the lock. This approach is straightfor-
ward and inexpensive to implement using only local knowl-
edge, but would tend to increase the number of useless locks
which pass between transactions.

3. Do nothing. The fewer locks in common different transaction
types acquire, the less contention their requests will cause and
the less opportunity SLI has in the first place. Additionally,
because contention tends to grow quadratically,1 even a minor
reduction in the number of threads competing for a lock
request provides a significant improvement.

With our current hardware setup and benchmarks we find that the
third approach — do nothing — works well in practice, though as
the number of cores per chip continues to increase, contention may
grow to the point that only a subset of the total threads are required
to cause significant contention.

5. EXPERIMENTAL METHODOLOGY
We evaluate several benchmark transactions on highly concurrent
multicore machine to identify both the opportunity for, and the
effectiveness of, lock inheritance. We make use of three metrics to
determine the effectiveness of SLI. First, we consider the numbers
and types of locks which are responsible for contention, using soft-
ware counters. Second, we use Sun’s profiling tools to identify bot-
tlenecks by their time breakdowns. Finally, we measure system
throughput for several short transactions and transaction mixes to
quantify the performance impact of SLI.

It is important to note that profiling a parallel machine can be
somewhat counterintuitive because it measures work, not time.
Both time and the number of hardware contexts in the system
influence the amount of work which the system can perform. For
example, Figure 5 spans 5 hardware contexts and 15 seconds, for a
total of 75 cpu-sec of potential work. Offered load and the severity
of any bottlenecks determines how much work is actually per-
formed. In the example above, two daemon threads spend most of
the time asleep while two other threads serialize at some critical
section; only one thread remains busy all the time. Contention fur-
ther complicates matters because excessive spinning results in a
system which is fully utilized but does not produce the throughput

Figure 4. Example of potential SLI-induced deadlock

1. If N threads all contend for the same object, each can expect to wait for
N/2 threads, for O(N2) total time wasted blocking or spinning.

expected, while blocking results in an underutilized system in spite
of there being many live threads.

Using the profiler we can identify how much work was actually
performed by the system during a measurement, as well as how
much of that work was wasted due to contention. Further, we can
filter the output to isolate the components of the storage manager
responsible for both blocking- and spinning-based contention.

5.1 Benchmark Descriptions
We evaluate SLI using a set of ten transactions taken from three
benchmarks: Nokia’s Network Database Benchmark [15]
(“NDBB,” also known as “TM1”), TPC-B [20], and TPC-C [21].

NDBB is a telecom workload benchmark originally developed by
Nokia to evaluate offerings by telecom vendors. It consists of
seven transactions, operating on four large database tables, which
implement various Home Location Register operations (“HLR”)
executed by mobile networks during cell phone calls and other
common events such as call forwarding. The transactions are
extremely short, usually accessing only 1-4 database rows, and
must execute with very low latency even under extreme load. The
benchmark is unusual in that many transactions fail due to invalid
inputs (25-75%). Three of the transactions are read-only while the
other four perform updates; we evaluate the specified transaction
mix as well as individual transactions; we do not evaluate the call
forwarding transactions individually because they change the data-
base’s distribution and quickly approach 0% success rate:

• GET_SUBSCRIBER_DATA (“getSub” read-only, 35% of
mix, 0% fail). Retrieves subscriber and location information.

• GET_NEW_DESTINATION (“getDest” - read-only, 10% of
mix, 76.1% fail). Retrieves the current call forwarding desti-
nation for a subscriber, if any.

• GET_ACCESS_DATA (“getAccess” - read-only, 35% of
mix, 37.5% fail). Returns subscriber access validation data.

• UPDATE_SUBSCRIBER_DATA (“updateSub” - update,
2% of mix, 37.5% fail). Updates a subscriber’s profile.

• UPDATE_LOCATION (“updateLoc” - update, 14% of mix,
0% fail). Updates the current location of a subscriber.

• INSERT_CALL_FORWARDING (update, 2% of mix,
68.75% fail). Adds a call forwarding destination.

• DELETE_CALL_FORWARDING (update, 2% of mix,
68.75% fail). Removes a call forwarding destination.

• “Forward mix.” 71.4/28.5/28.5% mix of the getDest,
INSERT_CALL_FORWARDING, and DELETE_CALL_-
FORWARDING transactions.

• “NDBB Mix.” Full transaction mix, specified frequencies.

TPC-B is a database stress test consisting of a single transaction
type: customer deposits/withdrawals at the branches of a hypothet-
ical bank. Like NDBB it defines four database tables, but unlike
NDBB each transaction accesses all four of them.

TPC-C models an online transaction processing database for a
retailer. It consists of five transactions which follow customer
orders from initial creation to final delivery and payment:

• New Order (update, 45%) inserts a new sales order into the
database. It is a medium-weight transaction with 1% failure
rate due to invalid inputs.

• Payment (update, 43% of mix) makes a payment on an exist-
ing order. It is a short transaction (though still larger than any
from the other two benchmarks).

• Order Status (read-only, 4%) computes the shipping status an
order’s line items. It is somewhat larger than Payment.

• Delivery (update, 4%) is the largest update transaction and
also the most contentious.

• Stock Level (read-only, 4%) is a medium-sized query which
examines roughly 200 order line items and their correspond-
ing stock entries.

• “Small Mix” combines Payment, New Order, and Order Sta-
tus in a 46.7/48.9/4.3% mix.

• “TPC-C Mix’ combines all five TPC-C transactions at their
specified frequencies.

We primarily use the “small mix” in for our analysis of SLI
because we are particularly interested in the three smaller transac-
tions — Payment, Order Status, and New Order — which together
comprise 92% of the workload. Delivery is very contention-prone
and tends to serialize transactions while Stock Level is very large
and amortizes the cost of high-level locks across more than 1000
low-level locks; neither causes significant contention within the
lock manager with the number of hardware contexts available
today. As the degree of parallelism continues to increase, however,
the size of transaction which suffers contention in the lock man-
ager will also increase.

5.2 System Configuration
We perform all our experiments on a Sun T5220 “Niagara II”
machine running Solaris 10. The Niagara II chip contains 8 cores,
each capable of supporting 8 hardware contexts, for a total of 64
OS-visible “CPUs.” Each core has two execution pipelines which
accept instructions from any two threads simultaneously. We chose
this machine because it offers more hardware contexts on one chip
than any other currently available, giving a glimpse into the future
for all platforms as on-chip core counts continue to double.

For a database engine we use Shore-MT [12], a version of the
Shore storage manager [4] which has been modified to provide

Figure 5. Simplified example of profiler output

scalable performance on modern multicore systems. We use Shore-
MT because it scales on highly parallel hardware, is open-source
so we can easily modify the lock manager, and behaves like com-
mercial database engines at the micro-architectural level [1]. We
implemented SLI as a straightforward extension to the lock man-
ager’s existing behavior. The changes affected three source files
and three headers (out of 461), and about 500 lines of added or
changed code (out of 175kloc).

Because Shore does not have a SQL front end, all transactions
have been partially hard-coded — the database metadata and back-
end processing are schema-agnostic and general purpose, but the
transaction code is schema-aware. This arrangement is similar to
the statically compiled stored procedures which commercial
engines support, converting annotated C code into a compiled
object which is bound to the database and executed directly. For
example, DB2 allows the developer to generate compiled “external
routine” in a shared library for the engine to dlopen and execute
directly within the engine’s core for maximum performance [8].

The Niagara II is capable of very high performance, and demand
on the I/O subsystem scales with throughput due to dirty page
evictions and log writes. For the random I/O generated by transac-
tion processing workloads, hundreds or even thousands of disks
may be necessary to meet the demand. We therefore decouple I/O
subsystem performance from the measurements by storing the
database on an in-memory file system and modifying Shore to
impose a 6 msec penalty for each I/O operation. The artificial
delay simulates a high-end disk array having many spindles, such
that all requests can proceed in parallel but must each still pay the
cost of a disk seek. This arrangement is somewhat pessimistic
because it assumes every access requires a full seek even if there is
some sequential component to the access pattern, but it ensures
that all aspects of the storage manager are exercised.

We evaluate both in-memory and “disk-resident” datasets; a
100,000 subscriber NDBB dataset occupies only a few hundred
MB and operates entirely in memory; a 1000 TPC-B branches con-
sume 20GB, simulating a balanced workload, and our 300 ware-
house TPC-C configuration requires 40GB — too large to replicate
the data both in memory and on disk, simulating a disk-resident
workload. All dataset sizes can support enough concurrent requests
to saturate the machine

To control the number of hardware contexts utilized for each mea-
surement we bind the database engine to a Solaris processor set of
the appropriate size, spreading threads over as many cores as pos-
sible. We then choose the degree of request concurrency that maxi-
mized performance for each processor set. For each run, the
benchmark harness spawns clients and allows them to start work-
ing, measures throughput over several 30 second intervals, then
notifies the clients to stop.

6. SLI OPPORTUNITY ANALYSIS
This section presents an opportunity analysis to demonstrate the
potential for SLI to improve performance. The analysis includes
two components. We first profile our system under high load to
produce a breakdown of overheads arising out of the lock manager,
giving an upper bound on the performance improvement SLI could
achieve. We also examine the number and types of locks acquired
by transactions to verify that SLI can exploit shared locks to
reduce contention.

6.1 Lock Manager Overhead and Contention
In order to identify the magnitude of contention within the lock
manager, we profile each of the transactions and transaction mixes
discussed in the previous section. We use the experimental meth-
odology outlined in Section 5, then plot the profiler breakdown for
the number of clients which maximizes performance (usually 32-
48 clients). Figure 6 shows the normalized work breakdown
extracted from the profiler output at peak throughput achieved by
each transaction (mix). The number of hardware contexts utilized
is shown at the top of each bar — note that many transactions peak
long before utilizing all 64 available contexts! Each column in the
graph shows the fraction of cpu time a transaction spent in both
work and contention, both inside and outside the lock manager.
The results confirm that the lock manager is a large bottleneck in
the system, especially for the smallest transactions such as those
from NDBB. As expected, the largest TPC-C transactions do not
suffer from the lock manager bottleneck: Stock queries a large
amount of data and thus amortizes the cost of acquiring high-level
locks; Delivery is not only large but also introduces true lock con-
tention which blocks transactions so they do not compete for the
lock manager. The measured lock manager overheads range
between 10-20%, corroborating the results in [6].

Figure 6. Execution time breakdowns at peak performance for NDBB Mix, TPC-B, and TPC-C

The profiler results also indicate that the lock manager bottleneck
is smaller for mixes of transactions which access the widest variety
of tables (NDBB and TPC-C mix), though transaction size has a
far stronger effect. Mixing different transactions together reduces
the bottleneck for two reasons: different access patterns spread
contention over more types of locks and agents running long trans-
actions spend less time in the lock manager, easing pressure. For
the workloads with small transactions we expect the bottleneck to
grow over time as more cores per chip allow multiple different hot-
spots in the lock manager at the same time. Distributing hotspots
over multiple tables will not eliminate contention in the long run
because, even if the number of heavily-accessed tables in a work-
load grows over time, we do not expect it to grow uniformly or
nearly as fast as core counts.

Figure 7 illustrates the performance impact of the lock manager
bottleneck as we increase the load on the system along the x-axis
from near-idle to saturated. Each data series shows the throughput
achieved at different CPU utilizations for the NDBB mix, as well
as the TPC-B and TPC-C Payment transactions. For small num-
bers of hardware contexts we see that the system scales well, with
throughput increasing nearly linearly. However, as the number of
hardware contexts increases past 32 contexts the lock manager bot-
tleneck begins to impact performance, and by 48 contexts the bot-
tleneck becomes severe enough that throughput starts to drop —

the system is unable to utilize effectively the additional processing
power available to it.

6.2 Opportunity for Lock Inheritance
Two conditions must hold in order for SLI to improve system scal-
ability: most contention in the system should center around the
internal state of hot locks, and those locks must be heritable, meet-
ing the conditions that allow SLI to pass them between transac-
tions. The previous section illustrates that, for short transactions,
the lock manager is indeed the primary source of contention in the
system. We now analyze lock access patterns to evaluate the
opportunity for SLI to reduce that contention. The analysis consid-
ers three characteristics: hot vs. cold lock, shared vs. exclusive
requests and row-level locks vs. those higher in the hierarchy. SLI
targets hot, shared-mode, high-level locks. We are not interested in
cold locks because do not cause contention within the lock man-
ager, SLI cannot work with exclusive lock modes because it would
impact concurrency, and we hypothesize that hot, shared-mode
row-level locks are too rare to be worth considering. Therefore,
SLI will have the most potential to improve performance if a large
fraction of locks are hot, shared, and high-level; and if most
remaining locks are cold. We note that it is entirely possible for
many transactions to wait on “cold” locks, especially in badly-
behaved workloads. However, true lock contention serializes trans-
actions, and the resulting low concurrency reduces contention for
the lock’s internal state, making SLI unnecessary.

Figure 8 shows a breakdown of the types of locks acquired by each
transaction or transaction mix; the number at the top of each col-
umn is the average number of locks acquired per transaction. SLI
targets locks which are both hot and heritable. Any hot locks which
remain cannot be addressed by SLI and ideally contribute a small
fraction of the total. As expected, the smallest transactions acquire
few locks but most of those locks are heritable and many are hot.
As transactions acquire more and more locks the number of hot
and heritable locks does not increase as quickly, indicating lower
contention in the lock manager and less opportunity for SLI. We
observe that, for the workloads analyzed here, there are very few, if
any hot non-heritable locks and that transactions with the most hot
and heritable locks also experience the highest contention in the
lock manager in Figure 7. Together these indicate that SLI has the
potential to reduce or eliminate the lock manager bottleneck. We
note that, though there are relatively few hot and heritable locks in

Figure 7. Impact of lock manager bottleneck as load varies.

Figure 8. Breakdown of SLI-related characteristics for locks acquired by transactions

the breakdown, even a few transactions inheriting them (and
avoiding the lock manager) will have a disproportionate impact in
reducing contention; row locks, though numerous, are not usually
hot, and even less often both hot and shared.

7. PERFORMANCE ANALYSIS
In this section we quantify the performance improvement that SLI
gives for transactional workloads under various conditions, and
analyze the source of those improvements. We expect that SLI will
work best when many small and (usually) non-conflicting transac-
tions execute simultaneously on many hardware contexts; work-
loads with low load, or with transactions which are large or
conflicting, will not benefit nearly as much.

While the goal of SLI is to eliminate contention within the lock
manager so it does not impede scalability. It might also reduce
transaction overhead by avoiding calls into the lock manager. We
observe this effect to be negligible (< 4%) for even the shortest
transactions, given the fraction of locks which are never inherited.

7.1 Effectiveness of Lock Inheritance
We first examine the effectiveness of SLI in passing locks between
transactions. When inheritance is effective most hot locks in the
system are inherited and used by succeeding transactions. SLI will
not eliminate fully the lock manager bottleneck if hot locks cannot
be inherited, remain unused and are discarded, or are invalidated
before a transaction can reclaim them.

Figure 9 shows the breakdown of outcomes for hot locks in the
system for each transaction and mix. SLI is selective, passing only
hot locks between transactions. For shorter transactions most locks
are hot, though a significant fraction of them are invalidated and
cannot be used; the longest transactions have virtually no hot locks
because they acquire so many that relatively little time per transac-
tion goes to any one request. We also note that mixing multiple
transaction types increases the number of locks which are invali-
dated, and also increases the number of useless locks which trans-
actions eventually discard. However, as we will see in the next
section, the locks which are successfully inherited are also the ones
responsible for most of the lock manager bottleneck.

7.2 Performance Impact of SLI
Figure 10 shows the work breakdown of transactions when SLI is
active. Significantly, none of the transactions has a large contribu-
tion from lock manager contention any more. This indicates that
SLI is effective in identifying and passing the locks which cause
most lock manager contention. We also note that SLI has very low
overhead — even in the worst case it adds only 5% overhead, usu-
ally with a corresponding decrease in lock manager overhead. For
example, locks which are inherited but never used must still be
released, and that overhead counts toward SLI, not the lock man-
ager. For most transaction profiles contention in the lock manager
was replaced by useful work, suggesting a significant performance
improvement. However, the New Order transaction sees a shift of

Figure 9. Breakdown of outcomes for locks which SLI could choose to pass between transactions.

Figure 10. Breakdown of transaction execution time on loaded system with SLI enabled (64 contexts utilized).

contention from the lock manager to other areas (mostly in Shore’s
free space manager). The two large TPC-C transactions are virtu-
ally unchanged by SLI (as expected) because they did not have a
significant lock manager component to begin with.

Overall, the transactions spend 75% or more of the time doing use-
ful work with SLI active, even though the system is now fully
loaded (in contrast with Figure 6). For example, NDBB+SLI
exhibits lower contention at 95% utilization than the baseline does
at 60% utilization. SLI gives large speedup for this workload
because it not only eliminates contention for existing load, but
allows load to increase without the contention returning. We also
note that SLI never reduces performance for any of the workloads.

Figure 11 compares performance of the baseline system with SLI.
As expected, the short transactions benefit the most. Some, espe-
cially the larger transactions, see little or no performance improve-
ment. Comparing against Figure 6 we can see that large
transactions did not have lock manager contention component to
start with, explaining their lack of improvement.

Some of the smaller transactions, such as New Order, which saw
no speedup, had lock manager contention replaced by contention
from other sources, indicating that bottlenecks other than the lock
manager limit performance. If there were no other scalability bot-
tlenecks in the system, we would expect SLI to improve perfor-
mance even more than measured here.

8. CONCLUSIONS
In this paper we identify an important scalability challenge in data-
base engines: hierarchical locking, which is vital for high applica-
tion concurrency, forms a growing bottleneck, especially for small
transactions such as those found in telecom and banking. We
observe that the compatible nature of high-level intent locks means
they can be safely retained across transactions in order to reduce
pressure on the lock manager. We then show how Speculative
Lock Inheritance yields throughput improvements of 10-40% for
today’s hardware, while fundamentally limiting the number of
threads which are likely to request the same high-level lock simul-
taneously. Thus, even as core counts continue to grow we expect
that lock inheritance will keep the lock manager off the critical
path for transaction processing. Speculative Lock inheritance is an
example of a low-effort, high-impact modification which signifi-
cantly improves scalability within the lock manager.

9. REFERENCES
[1] Ailamaki, A., DeWitt, D. J., and Hill, M. D. Walking Four

Machines By The Shore. In Proc. CAECW, 2001.
[2] Anon, et al. A measure of transaction processing power.

Datamation, April 1, 1985.
[3] Brigde, W., Joshi, A., Keihl, M., Lahiri, T., Loaiza, J., and

MacNaughton, N. The Oracle Universal Server Buffer. In
Proc. VLDB’97, 1997.

[4] Carey, M., DeWitt, D. J., Franklin, N. Hall, M., McAuliffe,
M., Naughton, J., Schuh, D., Solomon, M., Tan, C. K., Tsata-
los, O., White, S., and Zwilling, M. Shoring up persistent
applications. In Proc. SIGMOD, 1994.

[5] Gray, J., and Reuter, A. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, New York, NY, 1993.

[6] Harizopoulos, S., Abadi, D., Madden, S., and Stonebraker, M.
OLTP under the looking glass, and what we found there. In
Proc. SIGMOD’08, Vancouver, Canada, 2008.

[7] P. Helland. Life beyond Distributed Transactions: an Apos-
tate's Opinion. In Proc. CIDR’07, Asilomar, CA, 2007.

[8] IBM. IBM DB2 9.5 Information Center for Linux, UNIX, and
Windows. Available online at http://publib.boulder.ibm.com/
infocenter/db2luw/v9r5/index.jsp

[9] IBM. SolidDB Product Family. See http://www-01.ibm.com/
software/data/soliddb/

[10] MySQL AB. MySQL Reference Manual v5.0. See http://
dev.mysql.com/doc/refman/5.0/

[11] Johnson, R., Pandis, I., and Ailamaki, A. Critical Sections:
Re-emerging Scalability Concerns for Database Storage
Engines. In Proc DaMoN’08, Vancouver, Canada, 2008.

[12] Johnson, R., Pandis, I., Ailamaki, A., and Falsafi, B. Shore-
MT: a scalable storage manager for the multicore era. In Proc
EDBT’09, St. Petersburg, Russia, 2009.

[13] Jorwekar, S., Fekete, A., Ramamritham, K., and Sudarshan,
S. Automating the detection of snapshot isolation anomalies.
In Proc VLDB’07, Vienna, Austria, 2007.

[14] Joshi, A. Adaptive locking strategies in a multi-node data
sharing environment. In Proc. VLDB’91, Barcelona, 1991.

[15] Nokia. Network Database Benchmark. Specification and ref-
erence implementation available online at http://
hoslab.cs.helsinki.fi/homepages/ndbbenchmark/

[16] Robinson, J. A fast general-purpose hardware synchroniza-
tion mechanism. In Proc SIGMOD’85, Austin, Texas, 1985.

[17] SAP. SAP Sales and Distribution Benchmark. Description and
results available online at http://www.sap.com/solutions/
benchmark/sd.epx

[18] Stonebraker, M., Madden, S., Abadi, D., Harizopoulos, S.,
Hachem, N., and Helland, P. The End of an Architectural Era
(It's Time for a Complete Rewrite). In Proc. VLDB, 2007.

[19] Transaction Processing Performance Council (TPC). TPC
Benchmark B: Standard Specification. Available online at
http://www.tpc.org/tpcb/spec/tpcb_current.pdf.

[20] Transaction Processing Performance Council (TPC). TPC
Benchmark C: Standard Specification. Available online at
http://www.tpc.org/tpcc/spec/tpcc_current.pdf.

Figure 11. Performance improvement due to SLI

	1. Introduction
	1.1 Contention Within the Lock Manager
	Figure 1. Lock manager overhead as system load increases

	1.2 Reducing Lock Overhead and Contention
	1.3 Speculative Lock Inheritance
	1.4 Contributions and Paper Organization

	2. Critical Paths and Latching
	3. Database Locking
	3.1 Hierarchical Locking
	3.2 The Database Lock Manager
	Figure 2. Inside a database engine’s lock manager
	Figure 3. Lock release example

	4. Speculative Lock Inheritance
	4.1 Extensions to the Lock Manager
	4.2 Criteria for Inheriting Locks
	4.3 Ensuring Correctness
	Figure 4. Example of potential SLI-induced deadlock

	4.4 Non-uniform Locking Patterns

	5. Experimental Methodology
	Figure 5. Simplified example of profiler output
	5.1 Benchmark Descriptions
	5.2 System Configuration

	6. SLI Opportunity Analysis
	6.1 Lock Manager Overhead and Contention
	Figure 6. Execution time breakdowns at peak performance for NDBB Mix, TPC-B, and TPC-C
	Figure 7. Impact of lock manager bottleneck as load varies.

	6.2 Opportunity for Lock Inheritance
	Figure 8. Breakdown of SLI-related characteristics for locks acquired by transactions

	7. Performance Analysis
	7.1 Effectiveness of Lock Inheritance
	Figure 9. Breakdown of outcomes for locks which SLI could choose to pass between transactions.

	7.2 Performance Impact of SLI
	Figure 10. Breakdown of transaction execution time on loaded system with SLI enabled (64 contexts utilized).
	Figure 11. Performance improvement due to SLI

	8. Conclusions
	9. References

