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ABSTRACT

The use of omnidirectional cameras for videoconferenc-
ing promises to simplify the hardware setup necessary for
large groups of participants. We investigate the use of a
multimodal speaker detection algorithm on audio-visual se-
quences captured with such a camera, in particular, an al-
gorithm that uses the audio energy together with the optical
flow. We analyze several types of optical flow methods to de-
termine the one which is appropriate to the omnidirectional
context.

1. INTRODUCTION

Videoconferencing systems are becoming more and more
popular for business and academic communication, due to
their ease of use and the ubiquity of internet. For one or two
persons et each end, the hardware setup is quite simple, a
camera and a microphone. However, when more people are
participating, the field of view can become quite crowded and
an automatic system to detect the speaker becomes useful, ei-
ther to move the camera to the person speaking or to switch
views between several cameras. But the use of a moving
camera or of multiple cameras makes the hardware system
more complicated. A setup with just one omnidirectional
camera is simpler and still allows changing the view and fo-
cusing on the current speaker automatically. This is our target
scenario.

We investigate the use of a multimodal speaker localiza-
tion algorithm on omnidirectional sequences. In particular,
as our algorithm uses optical flow for the video processing
part, we analyze the influence of the type of optical flow ex-
traction method on the speaker localization, with the specific
constraints of omnidirectional video.

This article continues and expands our previous work
presented in [1]. Our first contribution here is the adaptation
of our multimodal speaker localization technique to the use
on omnidirectional videos. Our second contribution is the
analysis of several optical flow extraction methods, showing
their particularities in the case of visual speech.

The structure of the paper is as follows. First, we give the
context of our work, presenting a brief overview of the state
of the art in speaker localization, optical flow computation
and omnidirectional image processing. Second, we compare
several optical flow methods for their use in speech analysis.
We aim to find the optical flow method which is best suited
to capture the motion of the mouth, in the particular context
of omnidirectional images. Finally, we present our results for
omnidirectional speaker localization, on sequences acquired
in our laboratory.

*Department of Electrical and Computer Engineering,
University of Stavanger

Stavanger, Norway

email: ivar.austvoll @uis.no

web: www.uis.no

2. THE CONTEXT

2.1 Speaker localization

It is possible to perform speaker localization only from the
audio modality, using a microphone array, but we are aiming
for a simple hardware setup, so only a simple microphone
will be used. Previous approaches to audio-visual speaker
localization either assume the local Gaussianity of the data,
as in [2] [3], or rely on complex and computing-intensive
operations at test time to detect correlation between the audio
and the video [4] [5] [6].

We will use our speaker localization method detailed in
[1], which uses the joint audio-visual probability density to
find the most likely locations of the current speaker’s mouth.
This multimodal speaker localization algorithm has several
advantages. First, the use of a training procedure ensures that
the number of operations performed while testing is reduced,
making possible a real-time implementation. However, op-
tical flow extraction is still very heavy computationally, and
there are possible optimizations which will be discussed in
the next section.

Another advantage of our approach is that, in contrast to
methods that consider the audio and video features of speech
to have a Gaussian joint probability density, we can model
any kind of probability density. The Gaussian mixture model
that we use is an universal approximator of densities, pro-
vided that enough Gaussians are considered.

Finally, in our case, no face tracker needs to be used, as
testing is done on the entire image, not only the face or mouth
region. An extracted mouth region is required, but only in the
training step.

For more details on the state of the art in speaker local-
ization, and on our localization method, we direct the reader
to our paper, [1].

In the next section, we will give a short overview of opti-
cal flow methods, and in particular of the algorithms used in
this work.

2.2 Optical flow algorithms

The optical flow is the apparent motion of objects in an im-
age. There is usually a difference between this apparent mo-
tion and the real motion which is the projection of the ob-
ject’s 3D motion on the 2D image plane. A simple example
that can be given is a uniform sphere which is illuminated
by a light source which is rotating around it. The optical
flow seen on the surface of the sphere would suggest that it
is moving, although in reality it is static.

The optical flow (OF) is represented with a field of mo-
tion vectors, one for each pixel in the image. The OF, as de-



fined by the Brightness Constraint Equation, is an ill-posed
problem. A simple model of the imaging system is a pin-
hole camera. If we assume that the illumination is given by
a point source at infinity and a single moving object is con-
sidered, and that the reflectance of the object is Lambertian
and that there is no photometric distortion, then the differ-
ence between the real velocity in the image plane and the OF
can be shown to be [7] |Av| = p|I” @ x n|/||VE||, where p
is the surface albedo, 1 is the illumination, ® is the angular
velocity, n is the surface normal and VE is the spatial gradi-
ent of the image gray level. This shows that usually |Av| # 0.
We can summarize the result as follows. The error is small
(or zero) when

o the spatial gradient, | VE||, is large, or

o the 3D velocity is a translation (in any direction), i.e. ® =
0, or

o the direction of illumination, n, is parallel to the angular
velocity, i.e. ® x n=0.

In addition we give the following remark. The resulting OF
depend on the direction of the 3D translation. In the case
of a translation towards or away from the camera we get a
diverging flow field (expanding or contracting respectively).
If the translation is parallel to the image sensor the flow is
also parallel with a vector length decreasing with increasing
distance to the camera.

In this application, with sufficient lighting, rotations can
be ignored and only a translational velocity field parallel to
the viewing direction is assumed. The distance to the speak-
ers are more or less constant such that the OF vectors is a
sufficient good description of motion of facial features.

There are several categories of algorithms which can be
used for the computation of the optical flow [8]:

e Differential methods - which use spatiotemporal deriva-
tives of image intensities.

e Correlation-based methods - which use matching of re-
gions in the image.

e Spatio-temporal directional filtering - which use orienta-
tion sensitive filters.

We included several methods in our evaluation, aiming
to find one that is well-suited to our problem. The Horn and
Schunck [9] method is a differential method, which imposes
a velocity smoothness constraint in order to find the opti-
cal flow vectors. The Lukas and Kanade [10] method solves
the optical flow constraint equations for groups of adjacent
pixels, assuming they move with more or less the same ve-
locity. The differential methods work well for small velocity
vectors. In the case of large velocities a multiresolution ap-
proach can be used.

We also tested a block matching method [11], which
may be more appropriate than differentiation in the case of
poor signal to noise ratios and low framerates, since for low
framerates the velocity vectors are usually large. Typically,
matching amounts to maximizing a similarity measure [8].

We will not go into more details for the methods men-
tioned previously, however we will briefly present the esti-
mation of optical flow with directional filters [12] since we
think it could be a better fit with omnidirectional images.

The method consists in the application of filters at differ-
ent scales of the image, as shown in fig. 1. The local image
model used by this method is the modulated complex expo-
nential. Input images (in the video sequence) are first given
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Figure 1: An overview of the directional filters algorithm,
taken from [12].

to a 2D low-pass spatial filtering (Hy.) that bounds the max-
imal spatial frequency to prevent aliasing in the next steps.
Then, images are filtered using directional filters (Dg ... Dy),
described in detail in [13]. These filters are one-sided (com-
plex) bandpass filters that correspond to bandpass-filtering
followed by a Hilbert transform. For each direction a 2D
complex signal is extracted with spatial coordinate, s in the
given direction and time coordinate, ¢. This signal is locally
modeled as f(s,t) = exp[j¢(s,t)]. The component velocity
in this direction is found by estimation of the angle of the
local structure. In [13] the phase signal is used and the direc-
tion computed by a set of quadrature filters. In [12] the gra-
dient (equivalent to the instantaneous frequency) is estimated
by an AM-FM demodulation scheme [14] and the structure
tensor computed by the outer product. The component veloc-
ity is found by zan to the angle of the eigenvector belonging
to the smallest eigenvalue. The full OF vector is estimated by
combining a set of at least two component velocities in dif-
ferent directions (for more than two a least square solution is
used). A range of spatial frequencies can be covered by using
several levels. Lower spatial frequencies make it possible to
estimate larger velocity vectors. At level 2 the speed range is
from zero to approximately 5 pixels.

In this application only one direction is needed and only
one scale level is sufficient. This reduces the computational
complexity considerably. For the speakers in a distance of
one meter from the camera the velocity is most of the time
in the range of less than 5 pixels such that we can use level 2
and a down sampling by 2.

The low-pass spatial filter is also necessary for the other
methods in order to remove noise.

2.3 Omnidirectional images

Conventional imaging systems have a limited field of view,
which can be expanded either through the use of multiple
cameras, or through the addition of a moving mount. Since
these are expensive, an alternative is to use mirrors together
with the lenses to expand the field of view. A catadioptric
sensor uses a combination of a curved mirror and a lens to
form a projection on a camera’s sensor. The types of mirrors
used can be spherical, hyperbolical and parabolical [15].
Omnidirectional images are taken with a catadioptric



Figure 2: An example of an omnidirectional image taken
with our camera.

setup with a 360° field of view. This is the setup that we
will use in our experiments. Our aim is to simplify the
hardware configuration used for videoconferencing, allowing
larger number of participants with a single visual camera.

The geometrical properties of the omnidirectional image,
which is obviously distorted, are well-studied. It is possi-
ble to reconstruct the whole visual information on a sphere,
around a perfect point-like observer standing at the focus of
the mirror [15]. However, this transformation is expensive
and not necessary in our application’s context. We aim to
find the movement in the image which corresponds to an ac-
tive speaker, and for this only the vertical motion is required
[1]. This vertical motion becomes radial in omnidirectional
image, so in the end what is required is an optical flow ex-
traction method which can determine efficiently the motion
vectors distributed radially around the center of the image.

In this case, the directional filters method seems ideally
suited for this task. Indeed, instead of computing the opti-
cal flow in all directions throughout the image, only filters
adjusted to the particular radial direction required could be
used, greatly reducing the processing time. However, our
findings show that the frame rate attained for the spherical
images is insufficient to obtain good results with this opti-
cal flow method. The next section shows a comparison be-
tween the different optical flow algorithms on two types of
sequences, planar and omnidirectional.

3. OPTICAL FLOW EVALUATION FOR SPEECH

First, we want to evaluate the performance of the directional
optical flow method for planar sequences, taken from the
CUAVE database [16]. The result is shown in fig. 3. The se-
quences are at 60 deinterlaced frames per second (fps), and
the resolution is 720x480. As can be seen, in these condi-
tions the directional filters method performs better than Horn
and Schunck [9], as the motion is smoother. The optical flow
is computed around the speaker’s mouth. The third part of
the figure shows the space-time slice on this region.

For omnidirectional images, the conditions are differ-
ent, as the high-resolution camera is unable to provide us an
equally high fps. The resolution of the images is 1600x1000,
but the fps is only 15. Fig. 4 shows the comparison be-
tween the Horn and Schunck [9] method, Lukas and Kanade
[10] and block matching, together with the space-time slice
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Figure 3: Optical flow comparison at 60 fps. Here the direc-
tional filters method is compared to Horn and Schunck.
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Figure 4: Optical flow comparison at 15 fps.

derived from the directional filters. Unfortunately, the direc-
tional filters method is unable to provide us with accurate
optical flow vectors at such a low temporal resolution. This
may be caused by the fact that this method uses a time win-
dow of several frames to compute the motion in the image,
making it difficult at this frame rate to accurately follow the
motion of the mouth.

In conclusion, the directional filters method, although
promising, could not be used for speaker detection in om-
nidirectional images. It is clear that with a camera able to
provide a higher fps this method would work better, but us-
ing it with our particular hardware we were unable to obtain
good results. From the other methods tested, the Horn and
Schunck [9] method was the most accurate on our data, and
it was chosen for our following experiments.



Figure 6: A test frame with superposed likelihoods and a
circle of radius 150 around the ground truth location.

4. TRACKING FROM OMNIDIRECTIONAL
VIDEOS

We used a high-resolution (3264x2448) camera, but, unfor-
tunately, at this resolution the frame rate was only 3 fps, un-
usable for analyzing speech. By cropping the image and lim-
iting the field of view to around 130°, as shown in fig. 5, we
were able to increase the rate to 15 fps. As shown above, this
was enough to estimate optical flow with the H&S method,
but not with directional filters. Our findings on the cropped
images are also valid on the full 360° field of view, the only
limitation here being the hardware.

In our speaker tracking experiments, we used the method
detailed in [1], which consists in building a joint audio-visual
probability density function (pdf) using Gaussian mixture
models, and then using this model to determine the likeli-
hood of finding the speaker’s mouth at each position in the
test image. The features used are the audio energy and the
vertical difference of optical flow vectors, as detailed in the
paper.

Since an omnidirectional audio-visual database suited for
speaker tracking does not exist, we recorded our own se-
quences, both for training and for testing. In total, 6 test
sequences were recorded, with 3 speakers taking turns say-
ing digits. The length of each sequence was between 1 and
1.5 minutes. The layout is shown in fig. 5. We decided to
do all the processing in the plane domain, although comput-

ing optical flow directly on the sphere might have been more
precise. Our choice is motivated by the fact that the system
needs to be fast, and distortions at the level of the speakers’
faces were not significant.

For the moment, the optical flow is computed along the
vertical and the horizontal in the image plane, and then it is
projected along radial dimensions around the center of the
field of view, which is at the top of the image. From these
motion vectors spatial differences are computed on a radial
grid, giving us the visual features.

Our 6 test sequences were recorded with different as-
sumptions on the motion of the speakers:

e Sequences 1 and 2: static speakers, the persons only
move their mouths.

e Sequences 3 and 4: natural relaxed stance, heads and
bodies move according to what is being said.

e Sequences 5 and 6: realistic motion, including irrelevant
movements like chin scratching, even when the person is
not speaking.

Aside from the speaker tracking algorithm, we also im-
plemented a very simple silence detector, based on the energy
of the audio, to set aside the segments in which nobody was
speaking. To obtain quantitative results, we also established
a frame-level ground truth, in which the position of the cur-
rent speaker’s mouth was located manually.

The location found by our algorithm was compared to the
ground truth position for each frame in the sequence. If the
detected position was inside a circle of radius r around the
ground truth, we considered the frame a successful match.
We used three values for the circle radius, r = 70, r = 100 and
r = 150. Fig. 6 shows a test image together with superposed
likelihood values, showing the probability of the speaker’s
mouth being at that location. The ground truth position is
also shown, together with a circle of 150 pixels around it.
As can be seen from the figure, even a circle of r = 150 is
enough for a good localization of the current speaker. As
typically the head might move in the same rhythm as the
speech, sometimes the chin or the front of the speaker are
wrongly identified as the mouth, although the algorithm is
correctly identifying the speaker.

Fig. 7 shows our results for the 6 sequences, from the
simplest to the most difficult. Numerical results are pre-
sented in table 1. As can be seen, for the simplest case,
when the speakers are still and only the mouth is moving,
results are close to 100%. The mouth is correctly located
even with a small radius circle around the ground truth. As
the sequences become more and more difficult, the accuracy
decreases, reaching 40% for the last sequence, with r = 70.
However, if the radius of the circle is increased, the accuracy
increases to 72%, which shows, as mentioned before, that al-
though the mouth itself might not be correctly localized, the
speaker is, because his head is moving in synchrony with the
speech. This effect can account for the difference between
results with » =70 and r = 150.

The effect of the silence detection step is not very pro-
nounced in these sequences, since there are very few seg-
ments in which all the speakers are silent. The improve-
ment brought by the silence detector is around 2% for all
sequences.

Many of the errors found are in fact caused by the in-
correct estimation of the optical flow. There are instances
where although the mouth is moving, the motion vectors on
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Figure 7: Results for the 6 test sequences, from easiest to
most difficult, with three different values for the tolerated
radius around the speaker’s mouth.

Seq. no. r=70 r=100 r=150
1 99.8 99.8 99.8
2 96.1 98.5 985
3 77.5 83.5 91.8
4 54.2 58.5 76.4
5 49.7 60.3 778
6 40.5 54.2 72.0
Avg. 69.6 75.8 86.1

Table 1: Speaker tracking accuracy.

the region of the mouth are quite small, making identifica-
tion impossible. However, as our method uses the average
over a temporal window, some of these errors will disappear
because of the averaging. It is clear though that a more pre-
cise optical flow method would greatly improve results.

Our average result of 86% correct recognition over the
6 omnidirectional sequences shows that it is possible at this
time to use an omnidirectional camera for speaker localiza-
tion, simplifying the hardware setup necessary for a video-
conferencing system.

5. CONCLUSION

Our work had two main aims. The first one was to evaluate
if it was possible in practice to use an omnidirectional imag-
ing system for speaker localization, while the second was to
evaluate several optical flow algorithms and to find the one
which is best suited for this task.

We have shown that our audio-visual speaker tracking al-
gorithm performs quite well with an omnidirectional camera.
In spite of the low frame rate, we achieved a good perfor-
mance in a wide range of conditions, correctly finding the
current speaker in the omnidirectional image.

The optical flow evaluation has shown that a higher frame
rate is however needed, before better optical flow meth-
ods can be used, in particular the directional filters method,
which promises to find the required motion vectors with bet-
ter accuracy and less computation.
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