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Résumé

Scala est un langage de programmation généraliste développé à l’EPFL.
Il combine les principaux concepts mis en oeuvre dans les langages
orientés-objets et fonctionnels. Scala est un langage statiquement typé; en
particulier il possède un système de types évolué et supporte l’inférence
de type locale. D’autre part, il s’intègre facilement avec les plateformes
Java et .net: leur bibliothèques sont directement accessibles et le compi-
lateur Scala génère du code pour les deux environnements d’exécution.

Le langage Scala offre plusieurs fonctionnalités qui font de lui un
candidat idéal pour la programmation d’applications distribuées. En
particulier, il supporte les fonctions de première classe qui sont utiles
en relation avec les notions de portée distribuée et de mobilité du code.
Dans ce contexte, l’absence de support des types à l’exécution représente
un inconvénient important de l’environnement d’exécution Java comme
plateforme cible.

Cette thèse se focalise sur la réalisation d’un concept nouveau com-
binant des notions essentielles de la programmation fonctionnelle et de
la programmation distribuée et impliquant l’extension de la notion de
portée lexicale au contexte distribué. En quelques mots, nous défendons
l’idée selon laquelle la notion d’abstraction lambda permet de traiter de
manière élégante la liaison dynamique des références locales dans un
environnement d’exécution distribué.

Les principales idées exposées dans ce travail de recherche ont été
mises en œuvre dans notre compilateur Scala. Cela nous a permis d’évaluer
la qualité des techniques utilisées, en particulier leur impact sur la fiabil-
ité et les performances des programmes distribués.

A ce jour, la plupart des travaux de recherche en relation avec le
présent sujet se sont concentrés sur les langages de programmation fonc-
tionnels, en particulier sur la famille des langages ML.

Mots-clés: langage de programmation, programmation distribuée, code
mobile, évaluation distante, appel de méthode distante, liaison dynamique,
portée distribuée, compilation, Scala.





Abstract

Scala is a general-purpose programming language developed at EPFL.
It combines the most important concepts found in object-oriented and
functional languages. Scala is a statically typed language; in particular
it features an advanced type system and supports local type inference.
Futhermore it integrates well with the Java and .net platforms: their li-
braries are accessible without glue code and the Scala compiler generates
code for both execution environments.

The Scala programming language has several features that make it
desirable as a language for distributed application programming. In par-
ticular, it supports first-class functions which are useful in relation with
the notions of distributed scope and code mobility. In that context, the
missing support for run-time types is one important drawback of the Java
run-time environment as a target platform.

This thesis focuses on the realisation of a new concept combining
essential notions from the functional and distributed programming and
implying the extension of the notion of lexical scoping to the distributed
context. In short, we claim that the notion of lambda abstraction provides
an elegant way for dealing with the dynamic rebinding of local references
in a distributed execution environment.

The key ideas exposed in this research work have been implemented
in our Scala compiler. This helped us to evaluate the used techniques,
in particular their impact on the reliability and the performance of dis-
tributed programs.

So far, most research works related to the present subject have focused
on functional programming languages, in particular on the ML language
family.

Keywords: programming language, distributed programming, mobile
code, remote evaluation, remote method invocation, dynamic binding,
distributed scope, compilation, Scala.
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Chapter 1

Introduction

The best way to predict
the future is to invent it.

Alan Kay1

Languages supporting mobile code differ from other languages or
middleware for distributed systems (like CORBA) because they explicitly
model the concept of separate computational environments and how code
and computations move among these environments.

Some concepts shared with traditional languages acquire new dimen-
sions in the case of languages supporting mobile code (e.g. scope rules
and name resolution) and others are typical of those languages (e.g. dy-
namic binding and security).

Mobility has a strong impact on programming language features:

1. Programs are location aware [100]. Knowing where computation
happens is necessary in order to write mobile programs effectively.
The structure of the underlying computer network is made explicit
to the programmer.

2. Mobility is under program’s control. Code units may be shipped or
fetched to/from remote nodes.

Code mobility places new demands on programming languages and
run-time systems. We mention here two of them:

1Alan Kay was honored with the ACM Turing Award 2003 for pioneering many of
the ideas found in OO languages; he also contributed to the development of Smalltalk.

http://en.wikipedia.org/wiki/Turing_Award
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1. Code manipulation. The language must provide means to identify
and transmit code units and the run-time environment must be able
to execute received code units within the existing address space of
the recipient.

2. Type safety. Type safety2 is the property that every operation the
program performs is executed on values of the appropriate type. It
is the responsibility of the compiler to enforce type safety. In order
to ensure type safety a high-level language must provide a correct
mapping of typing rules between the type checker of the compiler
and the verifier tool (e.g. the bytecode verifier in the Java VM) of
the run-time environment.

Mobile code languages (MCL)3 [35, 43] facilitate the transmission
of code between remote locations in a distributed system. A piece of
code which is generated at one location can be transmitted for execution
at another location which may exhibit characteristics different from its
place of origin.

1.1 Motivation
In this work we focus our attention to language-enforced disciplines that
guarantee abstraction safety — presupposing the existence of reliable
communication. However, this work is fully compatible with the usage
of cryptographic techniques to enforce the reliability and authenticity of
the transmitted code.

The objectives of this work are two-fold: propose a new approach to
dynamic binding in the context of mobile code and take advantage of the
expressiveness of the Scala language [89] to extend it with programming
abstractions for mobile code.

First we perform an analysis to identify the language abstractions
important to our model. Concretely, we study and compare the different
existing approaches found in the literature [28, 33, 56, 59, 96]. Second
we design the new language abstraction and propose a formalization of
our programming model. We focus in particular on typical concepts of
languages supporting mobile code such as dynamic binding and type
safety.

2More terms are defined in appendix "Glossary".
3More acronyms are listed in appendix "Abbreviations".
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Finally we integrate the programming model into the language Scala
and implement a few sample applications to validate our conceptual
choices. The target platform is the Java VM [72].

Although our approach is targeted at Java, it is not heavily based on
its features. Indeed we propose a more general translation that abstracts
from the language features; we only assume that the target language
provides support for weak mobility — code mobility without migration
of execution state — and distributed objects.

We consider first two different approaches found in existing program-
ming languages to address the problem of dynamic reference binding
inherent to the concept of mobile code. The main technical issue is to
find a meaning for higher-order distributed computations.

On one side, the language Obliq [27, 28] uses network references to
remotely access objects at the source location. Obliq objects have state;
they are local to a site and are never automatically copied over the net-
work. Regarding the free variables of network-transmitted functions,
Obliq takes the view that such variables are bound to their original loca-
tions and network sites, as prescribed by lexical scoping.

On the other side, Java adopts the opposite approach where the applet
code is moved and bound to the target location.

In this work we propose a more general approach which retains the
two approaches just described and extends the abstraction model with
a solution based on the lambda calculus for the dynamic (re-)binding of
local references.

A fundamental question about dynamic binding in the context of mo-
bile code lies in the way object references are handled at run-time.

In this work we handle references in three different ways:

- Either they are routed back to the source location. In this case we
need some proxy mechanism based on remote objects.

- Or they are copied together with the transmitted code. We use here
marshalling based on serializable objects.

- Or they are (re-)established at the target location. We think that this
case can be handled by a simpler solution as described in existing
works [10, 56]. This observation constitutes the main motivation of
this research work.

While the first two cases can be solved using well-known techniques,
such as Java RMI [120] for remote objects and Java object serialization
[119] for serializable objects, we propose for the last case a solution based
on the lambda calculus.



4 CHAPTER 1. INTRODUCTION

When values or computations are marshalled from a running system
and moved elsewhere, either by network communication or via a persis-
tent store, some of their identifiers may need to be dynamically rebound.
These may be both identifiers of language run-time library functions or
identifiers from application libraries which exist in the new context.

There are several reasons motivating this approach. In particular,
Scala supports closures, meaning that the facilities for remote invoca-
tion and distributed scope pioneered by Obliq [28] can be easily added
without any change to the underlying language semantics.

Example

Consider the following scenario which is quite common in distributed
environments: Several network locations are hosting some agenda infor-
mation, e.g. agenda entries about people working in the same company.
In order to arrange a project meeting we want to check the availability
of all concerned persons.

Principle From a functional perspective it looks quite natural to con-
sider that mobile code is just a function that we parameterize with the
variables to be locally bound at the target location.

We illustrate that principle with two small pieces of pseudo-code:

"send_to_B"(

a: Agenda => { ... a.doSomething() ...} )

val e = "receive_from_B"

Listing 1.1: Source location "A".

val a = new Agenda(...)

val f = "receive_from_A"

"send_to_A"(f(a))

Listing 1.2: Target location "B".

The client process at location "A" (Listing 1.1) sends a closure contain-
ing the parameterized code — in this example with parameter a — to
some location "B" and waits for some result. The server process at loca-
tion "B" (Listing 1.2) executes the transmitted code using the locally bound
variable a and sends the result value back to the client. In the above



1.1. MOTIVATION 5

pseudo-code we rely on the two operations send_to and receive_from to
deal with the type-safe transmission of higher-order functions.

Why has this not been done before? Note that the closure could also
access other names from its environment that need to be rebound. For
instance, it could use a Math.max function, in that case the reference to
the Math module needs to be rebound. Such rebindings are possible in
Scala, unlike in other programming languages, because:

- Modules are objects in Scala [88] and can thus appear as free vari-
ables in the transmitted code.

- The import clause in Scala [89] may also appear in a block, which
is for example not possible in Java.

Code sample Let us illustrate the basic idea of our solution with a
small example4 based on the above scenario. We limit our example to
processes running on a single machine and we assume the availability
of typed channels to establish a type-safe communication between them.
The source code excerpts presented below are coded in Scala.

In Listing 1.3 we define a minimal framework with a class Agendaman-
aging a list of agenda entries and some library functions like freeSlots

to operate on Agenda objects.

object agendas {

type Day = ...

type Entry = ...

class Agenda(e: Entry*) {

def get(day: Day): List[Entry] = ...

... (more methods)

}

def freeSlots(a1: Agenda, a2: Agenda, d: Day): List[Entry] = ...

... (more methods)

}

Listing 1.3: Agenda pseudo-code (library).

In Listing 1.4 the client process sends a closure marked with detach

to the target location specified by the communication channel chan. The
detach primitive is used to "detach" the closure from its lexical environ-
ment. In the closure body we consider the agendas of two people and
look for free time slots available on the week day day. The code itself

4The same example will be discussed in more details in Section 5.6.
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accesses three non-local variables: the application-specific object agendas,
the non-local object agendaBob and the local variable day.

...

val agendaBob = new Agenda(..)

def client {

val server = new Channel(host, port)

var day = "Mon"

server ! detach(

(a: Agenda) => agendas.freeSlots(a, agendaBob, day)

)

val e = server.receive[List[Entry]]

println("e = "+e)

}

Listing 1.4: Agenda pseudo-code (client).

The server process in Listing 1.5 simply waits for incoming requests,
executes the received closure code with its actual parameter agendaTom

and, finally, sends the evaluation result back to the client.

...

val agendaTom = new Agenda(..)

def server {

val server = new ServerChannel(port)

loop {

val client = server.accept

val f = client.receive[Agenda => List[Entry]]

client ! f(agendaTom)

}

server.close()

}

Listing 1.5: Agenda pseudo-code (server).

Code Transformations For supporting the new programming abstrac-
tion we intend to perform code transformations only on source code
containing occurences of the primitive detach. In Listing 1.6 we sketch
how the transformed program code for the client may look like:
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class Env(x1: Proxy1, x2: Proxy2, x3: RemoteObjectRef)

extends ... with Function[Agenda, List[Entry]] {

def apply(a: Agenda): List[Entry] =

x2.freeSlots(a, x1.agendaBob, (Day) x3.elem)

}

val agendaBob = new Agenda(...)

def client {

val server = new Channel(host, port)

val day = new ObjectRef("Mon")

server.!({

val x1 = bind(name1, new Proxy1Impl(this))

val x2 = bind(name2, new Proxy2Impl(agendas))

val x3 = bind(name3, new RemoteObjectRefImpl(day))

new Env(x1, x2, x3)

});

val e = server.receive[List[Entry]]

println("e = " + e)

}

Listing 1.6: Agenda pseudo-code (client converted).

Several transformations are actually applied to the original code:
- The synthetic class Env allows us to capture the free variables (in this
case variables agendas, agendaBob and day) and to turn the function
into an object;

- The type of the captured variables agendas, agendaBob and day is
changed to remote reference types (declarations of traits Proxy1,
Proxy2 and RemoteObjectRef are omitted here for brevity);

- A method apply with parameter a is added to the class Env to allow
the deferred evaluation of the closure body.

Implementing the above example in a distributed environment requires
additional handling of object references. In particular we need to:

- Use remote instead of local references to access free variables.
- Provide some remote interface to classes containing functions which
are called in the mobile code executed remotely at the target loca-
tion.

- Rely on some global service to permit type-safe communication be-
tween separate computational environments (i.e. address spaces
[30]).
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1.2 Scope
The aim of this work is neither to propose a new process calculus nor to
design a fully-fledged mobile code language (MCL).

We further recognize that considering all aspects of a distributed sys-
tem is not realistic; we thus limit our study to some dynamic aspects of
relocated code — such as dynamic binding and type safety — and delib-
erately keep aside considerations related to inter-process communication
— such as concurrency and security —. The Scala Actors library and the
Java security library already provide good support in those domains.

A practical goal of this work is to extend the Scala programming
language with programming facilities for mobile code without compro-
mising type safety. By programming facilities we mean either language
or library extensions.

1.3 Background

1.3.1 The Scala Language
Scala [89, 90] is a general-purpose programming language developed by
Prof. Martin Odersky and his team at EPFL since 2002. Scala incorpo-
rates several advanced concepts from recent research and has been used
successfully in the development of large-scale programs.

Scala is amulti-paradigm languagewhich combines functional and object-
oriented elements [22, 101] and thus supports both programming styles.
From the functional world, it takes the concepts of higher-order func-
tions, algebraic data types and pattern matching; from the object-oriented
world, it takes the concepts of classes, objects and virtual types.

Scala is a statically typed language featuring an advanced type system
and supporting local type inference [95]. In particular, Scala is equipped
with a rich set of language constructs providing powerful type abstrac-
tions:

Type parametrization Classes and methods support type parametriza-
tion (or parametric polymorphism) and the specified type parame-
ters can have both lower and upper bounds, which can refer to the
parameter itself (so-called F-bounded polymorphism).

Higher-kinded types Type constructor polymorphism [82, 83] — also known
as higher-kinded types — allows to abstract over generic types; a
type constructor is like a function on the level of types that takes
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type arguments to yield a type. The Scala collection library rely
heavily on type constructor polymorphism5.

Type members A class can include type members as well as value mem-
bers; like value members, type members can be either abstract or
concrete. Abstract type members [34] — also known as virtual types
— are bounded by a type, and this bound can be refined by sub-
classes.

Compound types A value can be declared to have a compound type con-
sisting of a set of class types and an optional type refinement. When
present the refinement constrains the type of the class members by
specifying more precise types. A compound type thus expresses
the fact that a value has simultaneously all the component types.

Structural types A value can be declared to have a structural type con-
sisting of a (usually implicit) base type and a mandatory type re-
finement. The refinement constrains the type of the class members
by specifying more precise types.

Existential types Existential types are similar to the Java wildcard types
which provide type-safe casts for erased types at run-time. In prac-
tice, they are mainly useful for accessing Java wildcard types and
raw types from Scala.

Self types A self type specifies the requirements on any concrete class
when one or more traits are mixed into. Then it may be necessary to
specify which of those other traits should be assumed. Technically,
a self type is an assumed type for variable this whenever this

appears within the class.

Singleton types Singleton types represent a basic form of dependent
types and always refer to a particular value. A singleton type thus
expresses the fact that a value is the only instance of its type.

Scala further supports powerful programming techniques such as im-
plicit conversions [90, §21.1], implicit parameters [90, §21.5], default pa-
rameter values and named arguments for adapting existing code or writ-
ing new code in a more flexible and concise way.

5The refactoring of the collection library has been achieved in version 2.8 but Scala
supports type constructor polymorphism since version 2.5.
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NOTE
Since the project’s beginning the Scala language has undergone one
major evolution in March 2006; while software versions released before
that date implement the Scala 1 specification actual versions of the
language implementation follow the Scala 2 specification [89].
The Scala compiler and libraries (e.g. the collection library and the
Actors library) are actively maintained — a new software distribution
is released every 2-3 months — and are still evolving through smooth
steps.

The Scala compiler is targeted both to the Java and the .NET platforms
and can read respectively generate either Java class files or MSIL assembly
files (separate compilation). The Scala compiler is itself written in the
Scala programming language and is bootstrapped.

The design of Scala is mainly — but not only — influenced by the
language Java (Java-like syntax, class libraries) and the Java infrastruc-
ture (run-time environment and libraries). Scala also integrates concepts
pioniered by other languages like the uniform object model of Smalltalk,
the systematic nesting of Beta and functional aspects of ML and Haskell.

In particular, Scala benefits from its interoperability with Java and its
greater expressiveness to get adopted by many programmers from the
Java community. Nevertheless, this pragmatic approach has both advan-
tages and disadvantages: while the functionality of the numerous Java
libraries is directly accessible to the Scala programmers the interaction
with some Java features does complicate the tasks of the Scala imple-
mentors.

1.3.2 The Java Platform
In this project we adopt the Java platform as our global target architecture
and thus avoid the implementation challenges related to the heterogene-
ity of the network locations.

Indeed, while Java as an object-oriented language doesn’t offer lan-
guage support for distributed programming, Java as a development plat-
form provides library and run-time support for developing distributed
applications. Its cross-platform capability together with mechanisms like
dynamic class loading, object serialization and distributed objects facili-
tate the development of distributed systems.

Furthermore, the Java security framework was designed with the se-
curity aspects of network programming in mind and features run-time
mechanisms at both the platform level and the application level.
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1.4 Contributions
The main contributions of this work can be summarized as follows:

• We present a novel approach based on the notion of lambda ab-
straction for dealing with the dynamic rebinding of local references
in a distributed execution environment.
The lambda-calculus has had a tremendous influence on the design
and analysis of programming languages; realistic languages are in-
deed too large and complex to study from scratch as a whole. That
applies in particular to distributed programming languages which
promote the cooperation between concurrent processes.
In this work we defend the idea that the naked notion of lambda
abstraction — with no domain-specific extensions — offers an effec-
tive way to build a new programming abstraction for mobile code.

• We introduce a new programming abstraction for mobile code which
relies on two fundamental binding mechanisms: the dynamic re-
binding mechanism provided by the lambda abstraction applies to
variables captured in the lexical context and the generalized data
binding mechanism provided by the concept of module objects al-
lows the selective import of object members to any lexical context.
Concretely, we define detached closures as lexical closures with re-
mote references which can move in a distributed execution envi-
ronment. This follows the functional way of dealing with higher-
order functions and allows us to stay close to the concept of lambda
abstraction with our new programming abstraction.

• We add programming support for detached closures to the language
Scala. The new facility preserves language semantics and relies
on three existing features: Scala higher-order functions, Java code
mobility and Java distributed objects.
We address the different challenges associated with the conversion
of detached closures in a distributed settings: first, the function
body is a parametrized piece of code that can move between differ-
ent environments; second, the code preserves bindings to variables
in their originating scope; and finally, the code performs operations
on type-safe remote references.
Concretely, we extend the compiler front-end with a new transfor-
mation phase and provide the needed run-time infrastructure as an
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extension of the Scala standard library. After analyzing the code
of the detached closure, the new phase generates remote interfaces
and substitutes occurences of free objects with remote references
to proxy objects. The run-time library extension provides a global
naming service for remote references and remote interfaces for pre-
defined types.

1.5 Outline
The structure of the thesis is as follows:

Chapter 1 introduces the key idea and the design goals of this work; it
also defines its scope, presents some backgrounds and resumes its main
contributions.

Chapter 2 gives an overview of multi-paradigm programming. In
particular, it focuses on two concepts of the functional and distributed
programming which are essential in this project for the realization of our
new programming abstraction: lexical closures and distributed objects.

Chapter 3 handles important aspects of code mobililty. In particular,
it introduces two forms of code mobility, discusses security issues related
to mobile code and finally focus on the mechanisms featured by the Java
platform to support code mobility.

Chapter 4 focus on previous research efforts to study the concept of
dynamic rebinding in higher-order distributed computations. In partic-
ular, we observe that most research on mobile code has been carried out
in the context of functional programming languages.

Chapter 5 gives several code examples to demonstrate the practical
usage of our programming abstraction. In particular, the new abstraction
relies only on existing language features and combines smoothly with
other functionalities provided by the existing Scala libraries.

Chapter 6 presents the abstraction model for extending the Scala lan-
guage with support for mobile code. In particular, it builds upon the
idea that the notion of lambda abstraction provides an elegant way for
dealing with the dynamic rebinding of local references in a distributed
execution environment.

Chapter 7 presents the implementation of the compiler and library
extensions for supporting mobile code. In particular, the addition of the
new facility does not require any language change.

Finally, Chapter 8 concludes.
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Multi-paradigm Programming

The idea of a multi-paradigm language is to
provide a framework in which programmers
can work in a variety of styles, freely inter-
mixing constructs from different paradigms.

Timothy Budd1

Timothy Budd [22] describes a programming paradigm as ".. a way
of conceptualizing what it means to perform computation, of structuring and
organizing how tasks are to be carried out on a computer" in his seminal book
on multi-paradigm programming.

Examples of programming paradigms include the imperative paradigm
(Turing machine), functional paradigm (lambda calculus), logic paradigm
(predicate calculus) or object-oriented programming (object calculus).

Some languages tend to subscribe to a single programming paradigm
like Smalltalk and Java, two representatives of the object-oriented paradigm.
Other languages like OCaml, Leda, Oz and Scala integrate concepts bor-
rowed from several programming paradigms. Since every paradigm
comes with its own strengths and weaknesses, no single paradigm offers
the simplest, most elegant and efficient solution to every problem. This
quite naturally motivates the need to use a combination of paradigms in
a manner that best fits the problem(s) at hand.

Multi-paradigm extensions to Java have been experimented by several
researchers [23, 91]. Furthermore languages such as Groovy and Scala
go one step further in adopting the multi-paradigm concept without sac-
rifying their interoperability with Java.

1Timothy Budd is the designer of Leda, a multi-paradigm language based on Pascal.
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2.1 Functional Programming
Functional programming (FP) [62] is a programming paradigm that treats
computation as the evaluation of mathematical functions and avoids state
and mutable data. FP emphasizes the application of functions, in contrast
with the imperative programming style that emphasizes changes in state.

In particular, referential transparency — the program behaves the same
when an expression is replaced by its value — is an important principle
of FP, allowing referentially transparent functions to be memoized or to
be included in interprocedural dependence analysis.

FP supports functions as first-class objects, also called function values.
Essentially, function values are objects that act as functions and can be
operated upon as objects — allowing them to be stored in data structures,
passed as arguments and returned as results.

A function value that captures free (non-local) variables is also called
a closure (discussed later in Section 2.1.2). Many research works have fo-
cused on supporting closures in non-functional languages such as Ada [61],
C++ [20, 127] and Java [45].

FP also supports higher-order functions (HOFs). A HOF can take func-
tional arguments or can return function values.

These two constructs together allow for elegant ways to modularize
programs, which is one of the biggest advantages of adopting the FP
style. Curried functions [90, §9.3] is another powerful FP construct we’ll
keep aside as it is not directly relevant for this work.

2.1.1 Higher-Order Functions
Besides functional languages like Erlang, Haskell, ML or Scheme, which
are well-known to make use of higher-order programming techniques,
dynamic languages like Groovy, JavaScript, Python or Ruby also provide
good support for higher-order programming.

As a citizen of both the functional and object-oriented worlds, Scala
also features many FP concepts for supporting higher-order program-
ming. HOFs are for instance used in simulation programs to execute
actions at specified points in simulated time or to install triggers that
associate actions with state changes.

Several proposals have been submitted by the Java community to pro-
vide support for closures in Java; the Java source code listed in Table 2.3
and Table 2.6 follows BGGA’s proposal2 [45].

2BGGA: Gilad Bracha, Neal Gafter, James Gosling and Peter von der Ahé.
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Also, the possibility to compose HOFs is a powerful language abstrac-
tion of the FP paradigm. In particular, the function value returned by the
function composition is a closure whose formal parameters are bound to
actual arguments visible from the calling environment.

In the following we illustrate the usage of HOFs with the map function
and give source code examples in several programming languages. Basi-
cally, the map function takes a function f and a sequence s as arguments
and returns a list containing the results of applying f to the elements of
s. Iterating over a sequence using the map function obliviates the need
for an explicit counter — typical with the imperative programming style.

Table 2.1, Table 2.2 and Table 2.3 illustrate the usage of anonymous func-
tion values (or function literals) in several functional languages, dynamic
languages and object-oriented languages, respectively.

In particular, we can make the following observations:

• In functional languages map is a first-class function taking a sequence
as argument while in object-oriented languages map is a member
function of some sequence type. The difference in the syntactical
order becomes explicit then function composition comes into the
play (an example is presented later in this section).

• The language Java — in opposite to C# and JavaFX — has not
yet adopted closures as control abstraction; Java code samples pre-
sented later in this chapter are thus based on BGGA’s proposal.

• Most languages featuring function values associate local type infer-
ence with a lightweight syntax to enforce their conciseness.

Clojure (map (fn [x] (* x 2)) [1 2 3 4 5])

Erlang lists:map(fun(X) -> X*2 end, [1,2,3,4,5]).

Haskell map (\x -> x*2) [1,2,3,4,5]

OCaml List.map (function x -> x*2) [1;2;3;4;5];;

SML map (fn (x) => x*2) [1,2,3,4,5];

Scheme (map (lambda (x) (* x 2)) ’(1 2 3 4 5))

Table 2.1: map function in functional languages.
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Groovy [1,2,3,4,5].collect {x -> x*2}

JavaScript var res =[1,2,3,4,5].map(function(x) {return x*2});

print("res="+res);

Perl my @res = map {$_*2} 1..5;

print "res=", toStr(@res), "\n";

Python map(lambda x: x*2, [1,2,3,4,5])

Ruby [1,2,3,4,5].map {|x| x*2}

Table 2.2: map function in dynamic languages.

C# (3.0)

class hof_map1 {

static void Main(string[] args) {

var res =

new List<int> {1,2,3,4,5}.Select(x => x*2);

Console.Write("res=" + Utils.ToString(res));

}}

Java
(BGGA)

// <A,B> List<B> map(List<A> xs, {A => B} f) {..}

public class hof_map1 {

public static void main(String[] args) {

List<Integer> res =

map(asList(1,2,3,4,5), {int x => x*2});

out.println("res="+res);

}}

JavaFX

// function map(xs: Integer[],

// f: function(Integer): Integer

// ): Integer[] {..}

var res = map([1..5], function(x: Integer) {x*2});

out.println("res={toString(res)}");

Scala 1
List(1,2,3,4,5) map (_ * 2)

Smalltalk
(Squeak)

|res|

res := #(1 2 3 4 5) collect: [:x|x*2].

Transcript show: ’res=’; show: res; cr.

Table 2.3: map function in object-oriented languages.

1Scala intentionally appears here, near to Java, although it is both a functional and an
object-oriented language.
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Similarly, Table 2.4, Table 2.5 and Table 2.6 illustrate the usage of
named function values in several functional languages, dynamic languages
and object-oriented languages, respectively.

In particular, we can make the following observations:

• Most languages adopt a similar (if not identical) syntax for spec-
ifying anonymous and named function values while in languages
such as Haskell, OCaml, Python and Ruby the function body is
introduced by a different token (e.g. "->" versus "=" in Haskell).

• Languages such as Perl and Ruby require an unusual syntax for
specifying function values as function arguments. For instance, the
Ruby programmer must write |x| twice(x) instead of providing
the partially applied function twice as argument (see Table 2.5).

• Again, most languages featuring function values associate local type
inference with a lightweight syntax to enforce their conciseness.

Clojure (defn twice [x] (* x 2))

(map twice [1 2 3 4 5])

Erlang1 Twice = fun(X) -> X*2 end.

lists:map(Twice, [1,2,3,4,5]).

Haskell let twice x = x*2

map twice [1,2,3,4,5]

OCaml let twice x = x*2;;

List.map twice [1;2;3;4;5];;

SML fun twice x = x*2;

map twice [1,2,3,4,5];

Scheme (define (twice x) (* x 2))

(map twice ’(1 2 3 4 5))

Table 2.4: map function in functional languages.

1Variable names in Erlang must start with a capital letter.
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Groovy twice = {x -> x*2}

[1,2,3,4,5].collect twice

JavaScript
function twice(x) {return x*2};

var res = [1,2,3,4,5].map(twice);

print("res="+res);

Perl1
sub twice { my $x = shift; $x*2 };

my @res = map {twice($_)} 1..5;

print "res=", toStr(@res), "\n";

Python def twice(x): return x*2

map(twice, [1,2,3,4,5])

Ruby def twice(x) x*2 end

[1,2,3,4,5].map {|x| twice(x)}

Table 2.5: map function in dynamic languages.

1toStr is a user-defined subroutine.
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C# (3.0)

class hof_map2 {

static void Main(string[] args) {

Func<int, int> twice = x => x*2;

var res =

new List<int> {1,2,3,4,5}.Select(twice);

Console.Write("res=" + Utils.ToString(res));

}}

Java
(BGGA)2

public class hof_map2 {

public static void main(String[] args) {

{int => int} twice = {int x => x*2};

List<Integer> res =

map(asList(1,2,3,4,5), twice);

out.println("res="+res);

}}

JavaFX2
function twice(x: Integer): Integer {x*2}

var res = map([1..5], twice);

out.println("res={toString(res)}");

Scala def twice(x: Int) = x*2

List(1,2,3,4,5) map twice

Smalltalk
(Squeak)

|twice res|

twice := [:x|x*2].

res := #(1 2 3 4 5) collect: twice.

Transcript show: ’res=’; show: res; cr.

Table 2.6: map function in object-oriented languages.

2Function map is user-defined (see Table 2.3).
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HOFs can further be composed to build more complex programming
abstractions; for example they provide an elegant way to express queries
over some data collection.

In Listing 2.1 (C#), Listing 2.2 (Python), Listing 2.3 (Ruby), Listing 2.4
(Scala) and Listing 2.5 (Scheme) we look for the salary of the highest paid
programmer in some software company. Each employee is described by
his name, role and salary, and is stored in a list of employees.

The query itself is composed of three successive operations: a filter
function retains employees who are programmers, a map function returns
the salary of those programmers and, finally, a fold (or reduce) function
picks up the highest salary.

class Employee {

private string _name;

private string _role;

private int _salary;

public Employee(string name, string role, int salary) {
_name = name; _role = role; _salary = salary;

}

public string role() { return _role; }

public int salary() { return _salary; }

}

class hof_comp1 {

static void Main(string[] args) {

var employees = new List<Employee> {

new Employee("John", "programmer", 4500),

new Employee("Tom", "programmer analyst", 6000),

new Employee("Jessica", "programmer", 5000),

new Employee("Alvin", "software architect", 7000),

new Employee("Peter", "programmer", 5200)

};

int maxSalary = employees.

Where(emp => "programmer" == emp.role()).

Select(emp => emp.salary()).

Aggregate(0, (m, v) => (m > v) ? m : v);

Console.WriteLine("Max. salary=" + maxSalary);

}

}

Listing 2.1: Composition of HOFs in C#.
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class Employee:

def __init__(self, name, role, salary):

self.name = name

self.role = role

self.salary = salary

def __str__(self):

return ’%s(%s,%d)’ % (self.name, self.role, self.salary)

employees = (\

Employee(’John’, ’programmer’, 4500),

Employee(’Tom’, ’programmer analyst’, 6000),

Employee(’Jessica’, ’programmer’, 5000),

Employee(’Alvin’, ’software architect’, 7000),

Employee(’Peter’, ’programmer’, 5200)

)

maxSalary =\

reduce(lambda m, v: max(m, v),\

map(lambda emp: emp.salary,\

filter(lambda emp: ’programmer’ == emp.role,\

employees)), 0)

print ’Max. salary=%d\n’ % maxSalary

Listing 2.2: Composition of HOFs in Python.

class Employee

def initialize(name, role, salary)

@name = name; @role = role; @salary = salary

end

attr_reader :name, :role, :salary

def to_s

@name+"("+@role+","+@salary.to_s+")"

end

end

employees = [

Employee.new("John", "programmer", 4500),

Employee.new("Tom", "programmer analyst", 6000),

Employee.new("Jessica", "programmer", 5000),
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Employee.new("Alvin", "software architect", 7000),

Employee.new("Peter", "programmer", 5200)

]

maxSalary = employees.

select {|emp| "programmer" == emp.role}.

map {|emp| emp.salary}.

inject {|m, v| m > v ? m : v}

print "Max. salary=", maxSalary, "\n"

Listing 2.3: Composition of HOFs in Ruby.

case class Employee(name: String, role: String, salary: Int)

val employes = List(

Employee("John", "programmer", 4500),

Employee("Tom", "programmer analyst", 6000),

Employee("Jessica", "programmer", 5000),

Employee("Alvin", "software architect", 7000),

Employee("Peter", "programmer", 5200)

)

val maxSalary = employes.

filter {emp => "programmer" == emp.role}.

map {emp => emp.salary}.

foldLeft(0) {(m, v) => if (m > v) m else v}

println("Max. salary="+maxSalary)

Listing 2.4: Composition of HOFs in Scala.

(define (get-salary emp) (cadr (cdr emp)))

(define (get-role emp) (cadr emp))

(define employees

’(("John" "programmer" 4500)

("Tom" "programmer analyst" 6000)

("Jessica" "programmer" 5000)

("Alvin" "software architect" 7000)

("Peter" "programmer" 5200)

) )
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(define maxSalary

(foldl

0

(lambda (x y) (max x y))

(map

(lambda (emp) (get-salary emp))

(filter

(lambda (emp) (equal? (get-role emp) "programmer"))

employees

) ) ) )

(println "Max. salary=" maxSalary)

Listing 2.5: Composition of HOFs in Scheme.

Furthermore the expressiveness of HOFs also comes from the ability
to abstract over functional behavior. Examples of such an abstraction are
the concurrent primitives in the pi-calculus or the fold operation.

In Listing 2.6 (C#), Listing 2.7 (Python), Listing 2.8 (Ruby), Listing 2.9
(Scala) and Listing 2.10 (Scheme) we first define recursively the addition
and multiplication on number sequences using the two binary operators
+ and * together with the corresponding neutral elements. In a second
step we abstract over the functional behavior of those two operations to
obtain the same functionality using HOFs.

class hof1 {

static int Sum1(List<int> xs) {

if (xs.Count == 0) return 0;

else return xs.ElementAt(0) + Sum1(xs.Skip(1).ToList());

}

static int Mul1(List<int> xs) {

if (xs.Count == 0) return 1;

else return xs.ElementAt(0) * Mul1(xs.Skip(1).ToList());

}

static int Sum2(List<int> xs) {

return xs.Aggregate(0, (x, y) => x + y);

}

static int Mul2(List<int> xs) {

return xs.Aggregate(1, (x, y) => x * y);

}
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static void Main(string[] args) {

var xs = new List<int> {1,2,3,4,5};

Console.WriteLine(Sum1(xs)); // 15

Console.WriteLine(Mul1(xs)); // 120

Console.WriteLine(Sum2(xs)); // 15

Console.WriteLine(Mul2(xs)); // 120

}

}

Listing 2.6: Abstracting over functional behavior in C#.

def sum1(xs):

if xs == []: return 0

else: return xs[0] + sum1(xs[1:])

def mul1(xs):

if xs == []: return 1

else: return xs[0] * sum1(xs[1:])

def sum2(xs): return reduce(lambda x, y: x+y, xs, 0)

def mul2(xs): return reduce(lambda x, y: x*y, xs, 1)

xs = [1,2,3,4,5]

sum1(xs) # prints 15

mul1(xs) # prints 120

sum2(xs) # prints 15

mul2(xs) # prints 120

Listing 2.7: Abstracting over functional behavior in Python.

def sum1(xs)

if xs == [] then 0 else xs[0] + sum1(xs[1..-1]) end

end

def mul1(xs)

if xs == [] then 1 else xs[0] * mul1(xs[1..-1]) end

end

def sum2(xs) xs.inject(0) {|x, y| x + y} end

def mul2(xs) xs.inject(1) {|x, y| x * y} end

xs = [1,2,3,4,5]
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sum1(xs) # prints 15

mul1(xs) # prints 120

sum2(xs) # prints 15

mul2(xs) # prints 120

Listing 2.8: Abstracting over functional behavior in Ruby.

def sum1(xs: List[Int]): Int =

if (xs.isEmpty) 0 else xs.head + sum1(xs.tail)

def mul1(xs: List[Int]): Int =

if (xs.isEmpty) 1 else xs.head * mul1(xs.tail)

def sum2(xs: List[Int]): Int = xs.foldLeft(0)((x, y) => x+y)

def mul2(xs: List[Int]): Int = xs.foldLeft(1)((x, y) => x*y)

val xs = List(1,2,3,4,5)

println(sum1(xs)) // prints 15

println(mul1(xs)) // prints 120

println(sum2(xs)) // prints 15

println(mul2(xs)) // prints 120

Listing 2.9: Abstracting over functional behavior in Scala.

(define (sum1 xs) (if (null? xs) 0 (+ (car xs) (sum1 (cdr xs)))))

(define (mul1 xs) (if (null? xs) 1 (* (car xs) (mul1 (cdr xs)))))

(define (foldl z f xs)

(if (null? xs) z (foldl (f z (car xs)) f (cdr xs))))

(define (sum2 xs) (foldl 0 + xs))

(define (mul2 xs) (foldl 1 * xs))

(define xs ’(1 2 3 4 5))

(sum1 xs) ; prints 15

(mul1 xs) ; prints 120

(sum2 xs) ; prints 15

(mul2 xs) ; prints 120

Listing 2.10: Abstracting over functional behavior in Scheme.
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2.1.2 Lexical Closures
The term lexical closure refers to a function value that captures free (non-
local) variables while preserving lexical scoping, i.e. bindings to the
surrounding scope are retained until the function is actually applied to
its arguments (see also Section 6.1).

Every programming language must have some rules to determine the
declaration to which each variable reference refers. These rules are typi-
cally called scoping rules. The portion of the program in which a decla-
ration is valid is called the scope of the declaration.

Lexical scopes are nested: to find which declaration corresponds to a
given use of a variable, we search outward from the use until we find
a declaration of the variable. With lexical scoping (or static scope) a local
declaration thus takes precedence over a previous declaration using the
same name.

The concept has been around in programming languages since at least
Algol-60 and in the following we use the terms closures and lexical closures
interchangeably3.

NOTE
Scheme has introduced lexical scoping and lexical closures to the Lisp
world; early Lisp implementations were indeed purely dynamically
scoped. Concretely, the name of a dynamically scoped variable is
looked up in the call stack and resolved in the most recent stack frame.

Languages such as Common Lisp [105, §6] and Scala support both
ways to declare variables; Scala adopts the lexical scoping rule and
the Scala standard library provides support for dynamically scoped
variables:

object Scope extends Application {

val xs = List(1,2,3,4)

val ys = xs.map((x: Int) => x :: xs)

println("ys="+ys.mkString("List(\n ", ",\n ", ")"))

def map[A, B](f: A => B,

v: DynamicVariable[List[A]]): List[B] = {

val xs = v.value

if (xs.isEmpty) Nil

else f(xs.head) :: v.withValue(xs.tail) { map(f, v) }

}

val xs2 = new DynamicVariable(List(1,2,3,4))

val ys2 = map((x: Int) => x :: xs2.value, xs2)

println("ys2="+ys2.mkString("List(\n ", ",\n ", ")"))

}

3Nowadays most languages support lexical closures.
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(continued)
The printed values for the resulting lists ys (static scope) and ys2

(dynamic scope) differ according to the adopted scoping rule:

ys=List( ys2=List(

List(1, 1, 2, 3, 4), List(1, 1, 2, 3, 4),

List(2, 1, 2, 3, 4), List(2, 2, 3, 4),

List(3, 1, 2, 3, 4), List(3, 3, 4),

List(4, 1, 2, 3, 4)) List(4, 4))

Table 2.7 illustrates the usage of closures with a source code sample
written in several functional languages; Table 2.8 and Table 2.9 present the
same example for well-known dynamic and object-oriented languages.

In the presented code, the function multiply takes two parameters,
a list list of integers and some integer value n, and returns a list of
integers containing the results of the multiplication of each element of
list with n. Variable x is bound to the lexical scope of the closure passed
as argument to the map function while n is a free variable.

Clojure (defn multiply [n list] (map (fn [x] (* x n)) list))

(multiply 2 [1 2 3 4 5])

Erlang
Multiply = fun(N, List) ->

lists:map(fun(X) -> X*N end, List) end.

Multiply(2, [1,2,3,4,5]).

Haskell let multiply n list = map (\x -> x*n) list

multiply 2 [1,2,3,4,5]

OCaml
let multiply n list =

List.map (function (x) -> x*n) list;;

multiply 2 [1; 2; 3; 4; 5];;

SML fun multiply n list = map (fn x => x*n) list;

multiply 2 [1,2,3,4,5];

Scheme
(define (multiply n list)

(map (lambda (x) (* x n)) list))

(multiply 2 ’(1 2 3 4 5))

Table 2.7: Closures in functional languages.

In each example, the evaluation of function multiply with the argu-
ments 2 and [1,2,3,4,5] simply returns the list [2,4,6,8,10].
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Groovy multiply = {n, list -> list.collect {x -> x*n}}

multiply(2, [1,2,3,4,5])

JavaScript

function multiply(n, list) {

if (typeof list.map != "function")

throw new TypeError();

return list.map(function(x) {return x*n});

}

var res = multiply(2, [1,2,3,4,5]);

print("res="+res);

Perl

sub multiply {

my ($n, @list) = @_; map {$_*$n} @list;

}

my @res = multiply(2, 1..5);

print "res=", toStr(@res), "\n";

Python
def multiply(n, list):

return map(lambda x: x*n, list)

multiply(2, [1,2,3,4,5])

Ruby def multiply(n, list) list.map {|x| x*n} end

multiply(2, [1,2,3,4,5])

Table 2.8: Closures in dynamic languages.

NOTE
One can approximate the functionality of closures in Java using anony-
mous inner classes. There are two problems with this, though. First,
anonymous inner classes are unnecessarily verbose. Second, Java
doesn’t really close over the surrounding scope, it copies it. To hide
this implementation detail, any variable referenced inside the inner
class must be declared final outside it.

The combination of anonymous functions and higher-order functions
together is where the programmer gets the power from, the anonymous
functions essentially specialize the higher-order functions. Any language
that supports passing functions as parameters can support higher-order
functions, but without anonymous functions, they won’t get used too
often.
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C# (3.0)

class clo1 {

static void Main(string[] args) {

Func<int, List<int>, List<int>> multiply =

(n, list) => list.Select(x => x*n).ToList();

var res = multiply(2, new List<int>{1,2,3,4,5});

Console.Write("res=" + Utils.ToString(res));

}}

Java
(BGGA)1

public class clo1 {

static List<Integer>

multiply(int n, List<Integer> list) {

return map(list, {int x => x*n});

}

public static void main(String[] args) {

List<Integer> res =

multiply(2, asList(1,2,3,4,5));

out.println("res="+res);

{int, List<Integer> => List<Integer>} multiply2 =

{int n, List<Integer> list =>

map(list, {int x => x*n})};

List<Integer> res2 =

multiply2.invoke(2, asList(1,2,3,4,5));

out.println("res2="+res2);

}}

JavaFX

function multiply(n: Integer,

list: Integer[]): Integer[] {

map(list, function(x: Integer): Integer {x*n});

}

var res = multiply(2, [1..5]);

out.println("res={toString(res)}");

Scala
def multiply(n: Int, list: List[Int]): List[Int] =

list map (x => x*n)

multiply(2, List(1, 2, 3, 4, 5))

Smalltalk
(Squeak)

|multiply res|

multiply := [:n :list | list collect: [:x|x*n]].

res := multiply value: 2 value: #(1 2 3 4 5).

Transcript show: ’res=’; show: res; cr.

Table 2.9: Closures in object-oriented languages.

1map, asList and out are static imports.
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2.2 Distributed Programming

Support for cooperative distributed applications is an important research
topics involving developments in operating systems as well as in pro-
gramming languages.

In the 1980’s, a model has emerged for the support of cooperative
distributed applications, that of a distributed shared universe organized
as a set of objects. Distributed object-oriented systems such as Emer-
ald [15, 16], Clouds [36] or Guide [53] belong to this family of systems.
More recently, the growth of the Internet, which is now used daily for
cooperation, logically leads to the deployment of cooperative distributed
applications over the Internet.

Today, distributing applications on the Internet is often linked to the
Web (essentially URLs) and Java. This is mainly because they provide
a global naming scheme and machine independent code. A first step to
provide distributed shared objects on the Internet was Java RMI [128]
which supports remote method invocation between Java objects. Dis-
tributed programs can exchange remote object references using Java RMI
or they can send copies of objects using the object serialization mecha-
nism (as ONC RPC [37, 73]).

2.2.1 Historical Survey

One of the first few steps towards providing some abstraction at the
programming level in a distributed system was made by Andrew Birell
and Bruce Nelson in the 1980’s. They proposed and implemented the
RPC model, which allows programmers to invoke procedures on remote
machines as if they were local [12, 84] (see Section 2.2.2). The trans-
parency of remote calls was made possible by the use of client stubs. A
stub is piece of code (automatically generated by a software tool) that
is responsible with marshalling the request (along with the parameters)
and sending it over the network. On the server side, a server stub do
the reverse process, it invokes the local procedure and sends the results
back to the caller.

This model proved to be successful and other companies created their
own RPC modules. Sun Microsystems implemented their own RPC li-
brary (SunRPC, in 1985); this is still in use today as an underlying mech-
anism for the NFS file system. However, it became clear that — although
useful — RPC was still a low-level tool for distributed programming and
that a more abstract approach was needed.
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While some languages — e.g. Emerald [14] and Linda — were de-
signed to meet the requirements of a distributed programming language,
none of these languages became popular and a new approach was pro-
posed.

Instead of using a single language to write distributed applications,
the CORBA specification (Section 2.2.4) defines a standard architecture for
connecting existing objects, written in any language. An IDL (Interface
Definition Language) is used in order to define wrappers around objects,
so that they can interact in a standard way. A client application can
access a CORBA object via a local IDL stub that talks to an IDL skeleton
(on the server-side) via an ORB (Object Request Broker).

The initial release of Java in 1995 was another step in the efforts to pro-
vide programming abstractions in a distributed system. Although Java is
not a true distributed programming language, it makes distributed pro-
gramming easy by incorporating a lot of useful network-related packages
in its core API. It also provides mechanisms for dynamic class loading
[11, 104, 111] and for dynamic discovery of objects’ capabilities (the “re-
flection“ package). These features along with its platform independence
and simplicity made it a successful language both in software industry
and academic research.

In addition to its low level packages for socket programming, Java
provides — since version 1.2 (1997) — amechanism for remote method in-
vocation (RMI). The RMI model (discussed later in Section 2.2.5) provides
a higher-level of abstraction and gives Java the flavor of a distributed lan-
guage. It is suited for client-server architectures and uses the same idea
of stubs and skeletons as RPC and CORBA.

2.2.2 Remote Procedure Calls
RPC [47, 84] provides a communication paradigm for invoking subrou-
tines across a network4. RPC implements a logical client-server commu-
nication system designed specifically for the support of network appli-
cations. The idea of RPC has been discussed in the literature since 1976
[125]; Nelson’s doctoral dissertation [84] presents extensively the design
possibilities for an RPC system.

The primary purpose of RPC is to make distributed computing easy.
It was previously observed that the construction of communicating pro-
grams was a very painful task. Since procedure calls are a well-understood
mechanism for transfer of control and data inside a program running on

4RPC works just as well on a single machine.
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a single machine, it was proposed to extend the same mechanism to
transfer data across a network. Note that RPC systems require call-by-
value since addresses are context dependent and have no meaning in the
remote environment.

Figure 2.1: RPC architecture.

The flow of control in a RPC call is depicted in Figure 2.1. The control
goes logically through two processes: the client process and the server
process. First, the client process sends a call message that includes the
procedure parameters to the server process. Then the client process waits
for a reply message5. Next, the server process, which waits for the ar-
rival of a call message, extracts the procedure parameters, computes the
results, and sends a reply message. Finally, the client process receives
the reply message, extracts the results of the procedure, and resumes
execution.

RPC presumes the existence of a low-level transport protocol, such
as TCP or UDP, for carrying the message data between communicating
programs. RPC provides an authentication process that identifies the
server and client to each other and includes a slot for the authentication
parameters on every remote procedure call so that the caller can identify
itself to the server.

The RPC Language (RPCL) [115] is similar to the C language and
formally describes the procedures that operate on the XDR (External Data

5 The server process provides a service via a request-reply protocol which requires
that clients obey strict synchronization rules.
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Representation) data types defining the service protocols. Both RPC and
XDR type definitions are then compiled into C type definitions in the
output header file.

Because most RPC implementations do not support asynchronous
client-server interaction, the RPC architecture is not well-suited for ap-
plications involving distributed objects or, more generally, object-oriented
programming.

NOTE
Appendix A presents implementations of a simple distributed appli-
cation built upon RPC, CORBA, RMI and .NET Remoting respectively.

2.2.3 Remote Evaluation
In 1990 an alternative architecture called Remote Evaluation (REV) was
proposed by Stamos and Gifford [113, 114]. In REV, instead of invoking a
remote procedure as with RPC, the client sends its own procedure code
to a server, requesting that the server executes it and returns the results
(see Figure 2.2).

In RPC, data travels between the client and server, in both directions.
In REV, both code and data go from the client to the server and data
returns. Both mechanisms also have similarities: they generate stubs at
compile-time and perform static type checking, they presuppose reliable
communication and can recover from failures, and they transmit argu-
ments and results between nodes. The main difference between REV
and RPC arises from the transmission of executable code: first, REV
gives the programmer fine-grained control over the location of process-
ing in a distributed system; second, the server application can provide a
more general service which can be used in different ways by the client
applications.

A REV request specifies the relocated procedure, the arguments and
the server that executes the REV request. Its syntax in CLU is:

rev_expression ::= at srv_expression eval invocation

The REV request first determines the server, then it evaluates the
actual arguments in the procedure invocation and, finally, it sends the
relocated procedure and its actual arguments to the server.

The validity of a REV request depends on:
- the transmissibility of the relocated procedure (checked at compile-
time). A procedure P may be transmittetd to a server supporting
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Figure 2.2: REV architecture.

service S if P is contained in service S or if P meets the following
condition: P has no free variables and no own variables.

- the transmissibility of the arguments and the results. An object of
type T may be transmitted to the server if it satisfies the following
conditions: T is a transmissible type [58], both the client and the
server implement type T and the argument is not a procedure.

The client code given in Listing 2.11 requests a file service to count the
number of vowels occuring in a text file stored on some remote server.
Concretely, the client process sends a REV request consisting of the pro-
cedure code to be executed remotely together with its arguments (vowels
and file name).

LetterCount = proc (fname, chars: string) returns (array[int])

% ...

end LetterCount
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VowelCount = proc () returns (array[int])

fname: string := ".."

vowels: string := "aeiouAEIOU"

service: FileService := FileService$Locate("..")
answer: array[int] := at service eval LetterCount(fname, vowels)

return(answer)

end VowelCount

Listing 2.11: REV request.

In order to experiment with the REV mechanism the authors have
implemented a Lisp-based prototype where the procedure code is trans-
mitted as a compressed form of list structure. They haven’t developed
any distributed application using REV and have limited their evaluation
to a few direct comparisons between the RPC and REV mechanisms. In
particular, they observed that REV overperforms RPC when the client-
server communication cost is larger than the average execution time of
server procedures.

REV Examples

PostScript PostScript is an interpreted language designed to describe
and manipulate documents in a system-independent way; it is executed
by a specialized execution engine which may be a virtual machine such as
a GostView interpreter or a physical machine such a PostScript printer.
Postscript documents can thus be transmitted over a network and dis-
played respectively printed out remotely.

SQL Similarly to PostScript SQL is an interpreted language designed to
describe and manipulate data queries in a system-independent way; it is
executed by a SQL interpreter which may interact with many different
DBMS systems. A set of data is returned as a result of the evaluation
of a transmitted SQL query. Again, the key idea is to bring ressources
and data processing together in order to execute the task in a dedicated
environment.

Mathematica Mathematica is a high-level computing environment sup-
porting computer algebra, graphics and multi-paradigm programming.
Furthermore it provides several toolkits like Mathlink to communicate
with other programming environments, or Parallel to execute unrelated
tasks in parallel. In particular, Parallel provides several commands to
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send jobs to slave kernels — hosted locally or on remote computers —
for remote evaluation and to retrieve results.

2.2.4 OMG CORBA
Released in 1991 CORBA [93] specifies a system which provides interoper-
ability between objects in a heterogeneous, distributed environment and
in a way transparent to the programmer. This open distributed infras-
tructure has been implemented by many software vendors with language
bindings for Ada, C++, COBOL, Java and Smalltalk, among others.

The Object Request Broker (ORB) is the central component of CORBA
and encompasses all of the communication infrastructure necessary to
identify and locate objects, handle connection management and deliver
data.

Figure 2.3: CORBA architecture.

The idea behind CORBA is essentially the same as the one behind RMI
and the fundamental difference is that CORBA is programming-language
independent while Java RMI is confined to the Java platform.
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In the CORBA architecture (Figure 2.3) clients request services from
objects through a well-defined interface. This interface is specified in
OMG IDL (Interface Definition Language). A client accesses an object by
issuing a request to the object. The request is an event, and it carries
information including an operation, the object reference of the service
provider, and actual parameters (if any).

NOTE
Appendix A presents implementations of a simple distributed appli-
cation built upon RPC, CORBA, RMI and .NET Remoting respectively.

2.2.5 Java RMI
Remote Method Invocation (RMI) [120] was released in February 1997 as
part of Sun’s JDK 1.1 and is the object-oriented version of RPC.

Java RMI was designed to simplify the communication between two
objects in different JVMs by allowing transparent calls to methods in
remote virtual machines while preserving the object-oriented paradigm.
The system combines aspects of the Modula-3 Network Objects system
[13] and Spring’s subcontract [54].

Once a remote object reference is obtained, it is possible to call meth-
ods of that remote object in the same way as methods of local objects.
Since the remote object resides in a different virtual machine, a global
naming service is needed to manage remote references; Java RMI imple-
ments a remote registry. When an RMI server wants to make its local
methods available to remote objects, it registers those methods to the lo-
cal registry. A remote object connects to the remote registry, which listens
to a well-known socket, and obtains a remote reference.

The general Java RMI architecture is depicted in Figure 2.4. First the
server creates a remote object and registers it to the local registry (1).
The client then connects to the remote registry and obtains the remote
reference (2). At this point, a stub of the remote object is transferred from
the server VM to the client VM. When the client (3) invokes a method
at a remote object, the method is actually invoked at the local stub. The
stub marshals the parameters and sends a message (4) to the associated
skeleton on the server side. The skeleton unmarshals the parameters
and invokes the appropriate method (5). The remote object executes
the method and passes the return value back to the skeleton (6), which
marshals it and sends a message to the associated stub on the client side
(7). Finally the stub unmarshals the return value and passes it to the
client (8).
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Figure 2.4: RMI architecture.

2.2.6 .NET Remoting
Targeted at the Microsoft’s Win32 platforms the .NET Remoting [77, 87,
99] framework allows distributed objects to interact together across ap-
plication domains in a way similar to Java RMI.

.NET Remoting provides an abstract approach to interprocess commu-
nication that separates the remote object from a specific client or server
application domain and from a specific mechanism of communication.
As a result, it is flexible and easily customizable. You can replace one
communication protocol with another, or one serialization format with
another without recompiling the client or the server.
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NOTE
Released in 2002 .NET Remoting is based on Distributed COM
(DCOM), an extension of Microsoft’s COM, which allows the inter-
action between objects running in different machines. In particular,
it provides support for parameter marshalling in method calls and
distributed garbage collection.
COM allows a binary compatibility between the client and the ob-

ject, written in arbitrary languages, through the use of interfaces in a
similar manner as Java RMI. COM objects and interfaces are specified
using Microsoft IDL. When the client is separated from the server,
the data must be marshalled. As in Java RMI and CORBA, mar-
shalling is accomplished by a proxy and a stub object that handle
the cross–process communication. All COM objects are registered in
a component database.

Figure 2.5: .NET Remoting architecture.
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2.3 Distributed Programming in Java
Java features a library package for socket programming since its first
release in 1995 and support for distributed programming appears one
year later with the addition of a distributed object model [128], mainly
an object-oriented version of RPC (see Section 2.2.2).

Its integration in the Java run-time environment is achieved through
the extension of the exception handling and security mechanisms and
the addition of a distributed garbage collector.

2.3.1 Distributed Objects
Java RMI provides language-level support for distributed objects.

Under the term distributed object (or remote object or server object) we
mean an object which resides in a separate address space and methods
of which can be called remotely (a remote call is issued in an address
space separate to the address space where the target object resides).

By convention, the code issuing the call is referred to as the client. The
set of methods which implements one of the server object’s interfaces is
sometimes designated as a service that this object provides. Similarly, the
process in which the server object is located is referred to as a server.

An important goal of the client and server abstractions is to make it
transparent how far the client and server spaces actually are — whether
they reside on the same machine6 or on different network nodes —.

The design goal for the Java RMI architecture was to create a distributed
object model (JDOM) that integrates naturally into the Java programming
language and the local object model (JOM). The RMI architecture is based
on one important principle: the definition of behavior and the implemen-
tation of that behavior are separate concepts. Specifically, the definition
of a remote service is coded using a Java interface and its implementation
is coded in a class.

Similarly to Java objects, remote Java objects are passed as arguments
of method invocations, and can be cast to any remote interface allowed
by the JOM. Changes to the invocation semantics of the remote objects in-
clude passing non-remote arguments of remote methods by copy, passing
remote arguments of remote methods by reference, specialized seman-
tics of several methods of the Object class, and more complex exception
handling required by remote objects.

6As a special case, client and server may share the same address space.
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NOTE
While Java RMI does preserve the regular Java invocation syntax, pa-
rameters of remote operations are treated differently from those of
local operations. Remote passing is done as follows:
- If an actual parameter has a primitive type it is passed by value.
- If an actual parameter has a reference type and its class implements
the Remote interface, it is passed by reference (the local reference
being replaced by a network reference).

- If a class does not implement Remote but rather implements the
Serializable interface, the object is passed by value (using serializa-
tion).

- If a class implements neither Remote nor Serializable an exception
is raised. Java arrays are serializable by default.

2.3.2 Distributed Exception Handling
All methods of a remote interface, an interface that extends Remote, must
list RemoteException in their throws clause7. Additionally, they can throw
any other Java exceptions and the client code can catch them.

RemoteException is the common superclass for many communication-
related exceptions that may be thrown during the execution of a remote
method call. They can be organized into several categories depending on
the performed RMI operation; for brevity, we give just one example per
category:

Naming exceptions A NotBoundException is thrown when attempting to
look up a name that is not bound.

Export exceptions A StubNotFoundException is thrown if no valid stub
class was found for a remote object to be exported.

Calling exceptions A NoSuchObjectException is thrown when attempting
to invoke a method on an object that is no longer available.

Return exceptions An UnmarshalException can be thrown while unmar-
shalling the parameters or results of a remote method call.

2.3.3 Distributed Garbage Collection
Thanks to garbage collection Java programmers don’t spend their time
chasing memory management errors; the increase in code reliability and

7Java programmers must wrap remote method calls with try/catch blocks.



42 CHAPTER 2. MULTI-PARADIGM PROGRAMMING

productivity largely compensate the run-time costs associated with that
mechanism. Garbage collectors (GC) implemented on a single VM are
typically designed to maximize the performance of applications at the
expense of predictability.

As opposed to the classical techniques used in single address space,
garbage collection in distributed environment is a more complex issue
that has been the subject of much research (e.g. Ferreira and al. [42]).
In particular, coordination becomes essential for the management of dis-
tributed system resources. In Java the main difficulty with distributed
garbage collection is that object references can cross node boundaries.

Futhermore garbage collection in Java is not guaranteed to be timely8.
Indeed, as garbage collection is potientially expensive, the JVM is free to
do it only when necessary [118].

In contrast to the local garbage collector, the Java RMI distributed
garbage collector’s (DGC) behavior is well defined and reliable with re-
spect to its timing. The DGC employs a lease mechanism for remote
references. All remote references are leased to clients for a default pe-
riod of time. The client VM must request a new lease before the period
runs out. Otherwise the server considers the remote reference to be dead
and releases the corresponding remote object to the local GC for potential
collection.

The RMI system provides a reference counting distributed garbage
collection algorithm based on Modula-3’s network objects [13]. Thus,
activity on nodes must not be suspended while collecting, as it is the
case with the traditional mark-and-sweep scheme.

NOTE
The RMI system uses the broker approach which evaluates the num-
ber of live references: it keeps track of the live TCP/IP connections.
Basically, each registration of a remote reference in the RMI Registry
implies also one live connection. If the number of live connections
reaches zero, the server object is handled as if it was a local object in
the server VM and thus being a subject of the standard local garbage
collection process.
If the number of live remote references to the remote object in the

current JVM (before deserializing this one) had been zero, then the
client-side DGC implementation will attempt to call the server-side
DGC once, synchronous with the deserialization, in an effort to main-
tain referential integrity (if that attempt fails, retries will only be at-
tempted in the background). Deserializing a remote stub behaves in
this respect similarly to unmarshalling one as part of a remote call’s
arguments or return value.

8How long the garbage collector will run is another source of non-determinism.
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Similarly to Java, the Emerald system [66] calls for two collectors: a
node-local GC that can be run independently of other nodes and a DGC
that requires the nodes to cooperate in collecting distributed garbage.

2.4 Discussion
The key characteristic of the mobile code paradigm is to give program-
mers control over the mobility of code across the network by providing
appropriate language features. Therefore, a typical MCL is expected to
facilitate the expression and execution of language constructs contain-
ing mobile code. The dynamism and flexibility offered by this form of
computation, however, brings around a number of problems, the most
challenging of which are relevant to type safety and security.

A functional computation has some characteristics which makes it
promising to adopt a functional language as the core of a language sup-
porting mobile code. One such characteristic is that functions are first-
class values; they can be passed as arguments to other functions or they
can be returned as results. Furthermore, the rebinding mechanism inher-
ent to transmitted functions greatly facilitates their adaptation to a new
execution environment.

In a setting where the communication between different sites is sup-
posed to be facilitated, functions become a natural candidate for mod-
elling code mobility and thus enhance the dynamic behavior of a system
[67]. Regarding type safety, functional languages are also attractive be-
cause they are often equipped with expressive and well understood type
systems; this applies to Scala too.
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Chapter 3

Code Mobility

A distributed system is one in which
the failure of a computer you didn’t
even know existed can render your own
computer unusable.

Leslie Lamport1

The term mobility means a change of location performed by the entities
of a system and is associated with concerns like communication protocols
and interaction with multiple environments. Starting from simple data,
the mobility has evolved to abstraction mechanisms to move the execution
control, the code and finally the execution environment.

Examples of the first two steps of that evolution are the mobility of
files — for example with the FTP protocol — and the RPC concept (see
Section 2.2.2) which had a great impact in computer science. Then came
the idea to move code.

Code mobility characterizes the capability to dynamically change the
bindings between a code fragment and the location in which it is exe-
cuted. The main idea behind mobile code is that, by bringing the code
close to the resources needed for a certain task, it is possible to perform
the task in a more effective way. The ability to relocate code is a pow-
erful concept that started a broad range of developments and studies
[29, 35, 43].

1Leslie Lamport is best known for his seminal work in distributed systems and as
the initial developer of LaTeX.

http://www.latex-project.org/
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NOTE
Fuggetta and al. [43] identify and compare three main design
paradigms exploiting code mobility: code on demand, remote eval-
uation and mobile agent.

Code on demand Code on demand (COD), is the download of
executable content (code fetching) to a client environment as the
result of a client request to a server. A well-known example
of this approach is the download of Java applets or JavaScript
code in a Web browser. Executable contents may also be em-
bedded in electronic documents such as JavaScript-enabled PDF
documents [1].

Remote evaluation A different form of code mobility is repre-
sented by the upload of code (code shipping) to a server. The
uploaded code is executed by the server and, possibly, the re-
sults of the computation are sent back to the client. This form
of mobility, also known as remote evaluation (REV) [2, 114], al-
lows the client to perform a computation close to the resources
located at the server’s side so that network interaction can be
reduced (see Section 2.2.3).

Mobile agent In the mobile agent (MA) paradigm mobile com-
ponents can explicitly relocate themselves across the network,
usually preserving their execution state (or part thereof) across
migrations. Examples of systems supporting this type of mo-
bility are Telescript [126] and IBM’s aglets [70].

In middleware systems like Java RMI (and Jini), code migration takes
place behind the scenes, where code mobility is exploited to increase the
flexibility of service invocation. In other systems, the ability to trigger
code migration is directly under the control of the programmer and can
be explicitly relocated from one host to another.

Furthermore mobility of code has a direct impact on design decisions
regarding computation state; in short, how should state be handled when
code is moving ? We give here three choices commonly found in dis-
tributed systems:

- No state. The code transmission involves no state migration, e.g.
Java applets;

- Autonomous state. The transmitted code contains no external ref-
erence and computation state is represented alone by the current
execution state, e.g. IBM’s aglets;

- Global state. The transmitted code may contain external references
— this includes active network connections —, e.g. Obliq objects.
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3.1 Forms of Code Mobility
Mobile code has many incarnations: Java applets, ActiveX controls2, soft-
ware agents, JavaScript scripts, Visual Basic scripts, e-mail attachments,
push technology and so on. All of them are programs that are transmit-
ted from one host and executed on another.

With today’s Internet clients, such as Web browsers or mail readers,
it is often no longer clear when a user is downloading data for perusal
versus downloading a program for execution on his machine.

Several different approaches have emerged for providing some assur-
ance against malicious behavior. Thus, Sun comes up with a technolog-
ical solution (sandbox mechanism of Java) to constrain malicious behav-
ior, while Microsoft provides a trust-based solution (digital signatures
attached to any mobile piece of software).

3.1.1 Weak Mobility
In the context of this work we use the terms code mobility, mobile code
and weak mobility interchangeably. A system supports weak mobility if
it allows an executing unit in a node to be bound dynamically to code
coming from a different node, but no execution state is transferred across
the network.

In most environments code mobility rely on a platform-independent
representation of the transmitted code; an extra execution environment
infrastructure needs to be present at the target node (e.g. a Java VM for
Java applets or a JavaScript engine for JavaScript scripts).

3.1.2 Strong Mobility
Similarly, the terms computation mobility, mobile computation and strong
mobility are used interchangeably in the context of this work.

In addition to weak mobility strong mobility requires interrupting the
execution, moving the state of a run-time system (stacks, for instance)
from one site to another, and then resuming execution.

For providing strong mobility to Java, it is necessary to change the
compilation model (by using a preprocessor, by modifying the com-
piler, or by modifying the generated bytecode) or to modify the vir-
tual machine. For example, Fünfrocken [44], Baumgartner [124] and

2 Released in 1996 ActiveX combines OLE and COM, two prevalent technologies of
Microsoft R© Windows.
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Sekiguchi [106] use a preprocessor, while Suri [121] uses a custom virtual
machine in his Nomads system. In her research work Bouchenak [17, 18]
compares application-level and platform-level approaches and describes
her CTS3 system, a JVM-based solution for serializing Java threads.

Systems such as Telescript [126], Agent Tcl [49] provide strong mobil-
ity by using a dedicated language interpreter to capture and resume the
process’s execution state.

Other systems such as X-Klaim [6, 7, 8] transform programs support-
ing strong mobility into code that rely only on weak mobility4.

In his work Tarau [122] extends BinProlog with mobile threads and
shows that part of the functionality of mobile computations can be em-
ulated in terms of remote predicate calls combined with remote code
fetching.

3.2 Security
Unlike traditional systems whose design relies on heavy address space
protection mechanisms to ensure system reliability (e.g. in multi-user
environments), mobile code is intended for quick, lightweight execution,
which conflicts with the cost of such security mechanisms [21].

The security issues in mobile code systems can be divided into two
categories: one is the protection of hosts from malicious and untrusted
mobile code programs [75] and the other is the protection of mobile code
programs from malicious and untrusted hosts or intermediaries. For
example, a malicious mobile code could allocate memory (or create new
threads) until the host runs out (denial of service).

NOTE
In its policy guidance for use of mobile code technologies the U.S.
Department of Defense (DoD) [38] defines mobile code as a technol-
ogy allowing for the creation of executable information which can be
delivered to an information system and directly executed on any hard-
ware/software architecture which has an appropriate host execution
environment.
The DoD further divides mobile code technologies into three risk

categories and restricts their application within DoD based on their
potential to cause damage if used maliciously.

3Capture time-based thread serialization.
4Weak mobility is supported at run-time by the Java package Klava.
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(continued)
Category 1 Category 1 mobile code exhibits a broad functionality,

allowing unmediated access to workstation, host and remote sys-
tem services and resources. It typically requires an all or none
decision. Examples include ActiveX, WSH scripts, Unix shell
scripts and DOS batch files.

Category 2 Category 2 mobile code has full functionality, allow-
ing mediated or controlled access to workstation, host and remote
system services and resources. It typically provides known fine-
grained, periodic or continuous safeguards. Examples include
Java, VBA, LotusScript and PostScript.

Category 3 Category 3 mobile code supports limited functional-
ity, with no capability for unmediated access to workstation, host
and remote sytem services and resources. It typically provides
known fine-grained, periodic or continuous safeguards. Exam-
ples include JavaScript, VBScript, PDF and Flash.

Security is a global property, so a security model must take into ac-
count all components of a system supporting the execution of code.

Mobile code is typically executed within a system where multiple
environments — such as the run-time environment, the operating system
and the network — interact in a complex way with none of them ensuring
a clear separation of the responsabilities.

For example, Java classes loaded from the local file system are more
trusted than classes loaded through the network and may perform more
dangerous operations. Here the integrity of the system depends on both
the local operating system and the Java run-time environment.

Type Safety Fundamentally, the issue of safe execution of code comes
down to a concern about access to system resources. For instance, Java
does not allow direct access to the address space of the program and
provides automatic memory management (garbage collection).

Any running program has to access system resources in order to per-
form its task. Dealing with executable content and ressources in dis-
tributed environments impose additional requirements on those envi-
ronments.

The type safety of a programming language is an essential security
factor to ensure the safe execution of mobile code. Type systems can
guarantee that code cannot violate variable typing or that methods can
always be found. These features are needed to ensure that various code
units do not interfere with each other or with the system, and that pro-
grams do not crash.
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NOTE
As part of their formal analysis of a distributed object-oriented lan-
guage Ahern and Yoshida [5] introduce a core-calculus for a class-
based Java-like programming language with basic primitives for dis-
tribution, including dynamic class downloading and serialization.
In particular, they demonstrate that the integration of those thunk-
passing primitives based on Java RMI and class downloading mecha-
nisms preserve type safety.

The type system can further be used to determine the operations that
processes want to perform at each locality, and to check whether they
comply with the declared intentions and whether they have the necessary
rights to perform the intended operations at the specific localities.

3.3 Code Mobility in Java
A key feature of Java is code mobility.

Java allows classes to be dynamically loaded from remote locations.
Such mobility of code requires code portability and security enforcement.
Code portability is provided by interpretation of the Java bytecode while
security is mainly enforced by the type safety of the Java language (see
Section 3.3.4).

Since 1996 Java code mobility has been widely used for the Web. Most
Web browsers include a Java plugin and HTML pages can refer to Java
programs called Java applets. While applets are a well-known example
illustrating the dynamic loading of classes during code execution, run-
time facilities such as object serialization (see Section 3.3.3) and Java RMI
(see Section 2.2.5) also rely on that mechanism since data and code move
separately in Java. Many services (e.g. servlets, EJB, etc.) featured by
the enterprise edition of the Java platform also make an extensive use of
those standard mechanisms.

3.3.1 Java Applet
Java applets are the most famous example of code mobility in Java. In
the 1990’s their interoperability with the emerging World Wide Web has
largely contributed to the success of the Java platform.

A Java applet is a (small) network-downloable piece of code that is in-
tended not to be run on its own, but rather to be embedded inside another
application. Unlike a local application, an applet is typically deemed as
untrusted and runs under the standard applet security manager.
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NOTE
Concretely, an applet is an embeddable window (inheriting from class
java.awt.Panel) with a few extra methods that the applet context can
use to initialize, start, and stop the applet. The applet context is an
application that is responsible for loading and running applets. For
example, the applet context could be a Web browser or an applet
development environment.

Example In the following client-server (C/S) application the client ap-
plication is a Java applet (Listing 3.3 and Listing 3.4) displaying a reg-
ularly updated message transmitted from the server application (List-
ing 3.2) using Java RMI.

public interface RemoteService extends Remote {

String getMessage() throws RemoteException;

}

class RemoteServiceImpl implements RemoteService {

public String getMessage() {

return "Server date/time is "+getDateTime();

}

}

Listing 3.1: Java applet using RMI (service).

The server application exports a service with just one operation (List-
ing 3.1): the method getMessage returns a formatted text message report-
ing the current server time. The method init initializes both variables
port and name and the method repl starts a basic REPL thread.

public class Server {

public static void main(String[] args) throws Exception {

init(args);

Registry registry = LocateRegistry.createRegistry(port);

RemoteService service = new RemoteServiceImpl();

UnicastRemoteObject.exportObject(service);

registry.rebind(name, service);

repl();

}

}

Listing 3.2: Java applet using RMI (server).



52 CHAPTER 3. CODE MOBILITY

On the client side the refresh thread th periodically updates the dis-
played message (Figure 3.1) as long as the containing HTML page is
visible in the Web browser (using methods start and stop).

public class ClientApplet extends JApplet implements Runnable {

private Registry registry;

private String name;

private RemoteService service = null;

private JLabel label = new JLabel();

private Thread th;

public void init() {

add(label);

try {

String host = getHost(this);

int port = getPort(this);

String path = getPath(this);

registry = LocateRegistry.getRegistry(host, port);

name = "//"+host+":"+port+"/"+path;

} catch (Exception e) {

label.setText(filterMessage(e));

}

}

public void run() {

while (Thread.currentThread() == th) {

String msg = getMessage();

if (msg != null) label.setText(msg);

try { Thread.sleep(1000); }

catch (InterruptedException e) { break; }

}

}

public void start() { th = new Thread(this); th.start(); }

public void stop() { th = null; }

public String[][] getParameterInfo() { return pinfo; }

private String getMessage() {

String msg = null;

try {

checkConnection();

msg = service.getMessage();

} catch (Exception e) {
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msg = filterMessage(e);

service = null;

}

return msg;

}

private void checkConnection() throws Exception {

if (service == null)

service = (RemoteService) registry.lookup(name);

}

}

Listing 3.3: Java applet using RMI (client).

A Java applet is generally deployed as one or more Java archive files
(JAR) which can be digitally signed to ensure their authenticity. The
HTML tag <applet> serves as an anchor for embedding an applet into a
Web page (Listing 3.4); the applet parameters are specified as attribute-
value pairs (e.g. ("archive", "applet_client.jar")) and are passed to
the downloaded code in order to customize its behavior (see method
init in Listing 3.3).

<html>

<head>

<title>Date/time via an Applet using Java RMI</title>

</head>

<body>

<h1>Date/time via an Applet using Java RMI</h1>

<p>

<applet code="examples.ClientApplet" height="50" width="340">

<param name="archive" value="applet_client.jar"/>

<param name="registry.host" value="127.0.0.1"/>

<param name="registry.port" value="8888"/>

<param name="registry.path" value="RMI_Example"/>

</applet>

</p>

</body>

</html>

Listing 3.4: Java applet using RMI (HTML page).



54 CHAPTER 3. CODE MOBILITY

Figure 3.1: Java applet using RMI.

3.3.2 Dynamic Class Loading
Every mobile code system (MCS) requires the ability to load code from
outside an execution environment into the system dynamically.

The Java platform provides unique support for dynamic class loading
through the following feature [65, 71]:

- Classes are loaded on demand (lazy loading). The JVM dynami-
cally loads classes and interfaces when they are either needed or
explicitly demanded5.

- Type safety is preserved without additional run-time checks (type-
safe linking).

- Class loaders provide separate namespaces allowing classes of the
same name to be treated as distinct types by the JVM.

- Class loaders are ordinary objects allowing user-definable class load-
ing policies.

The JVM’s main task is to execute Java bytecode. Bytecode is stored in
Java class files which are loaded into the JVM via a class loader. Loading
a class means locating a class file that contains the desired type, based
on the type’s name, and then creating the class from that file. Once a
class is loaded (and linked) into a JVM, it becomes part of the program’s
execution. Finally, the JVM initializes the class by calling a special ini-
tialization method, which essentially corresponds to static initialization
of the class.

5A class is unloaded when its class loader becomes unreachable.
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NOTE
The basic JVM knows how to load bytecode only from the local file
system. To load code from anywhere else, one has to subclass the
abstract class ClassLoader (and to override method defineClass).

Alternatively the programmer may also use (or subclass)
one of the following classes provided by the Java standard
library: java.net.URLClassLoader, java.rmi.RMIClassLoader and
java.security.SecureClassLoader.
Furthermore several class loaders are used internally by the Java

run-time environment:

- sun.applet.AppletClassLoader is the class loader used to start a Java
applet.

- sun.misc.Launcher.AppClassLoader is the default class loader used
to start a Java application (may be overriden using the system prop-
erty "java.system.class.loader").

- sun.plugin.security.PluginClassLoader implements support for
RSA verification (deployment of RSA-signed applets) and dynamic
trust management (import of signer certificates).

- com.sun.jnlp.JNLPClassLoader is the class loader used in the Java
network launch protocol (e.g. Java Web Start).

Example In the following C/S application we use dynamic class loading
to periodically update a service which consists of the single operation
getMessage (Listing 3.5); the service implementation is updated at fixed
intervals by the server application (Listing 3.6).

public interface RemoteService extends Remote {

String getMessage() throws RemoteException;

}

Listing 3.5: Service class reloading (interface).

Concretely the server application loads a different class (line 6) and re-
binds a new instance of the selected service implementation (line 21) to
the exported service name. The class loader cl with type URLClassLoader

loads the class corresponding to the specified service implementation
(e.g. class services.Service1) from some user-defined location. The
method init (line 7) initializes the static variables port, name, cl and
millis while the method repl starts a basic REPL thread.

public class Server {

2 private static RemoteService updateService() throws Exception {

Class c = cl.loadClass(nextClassName());
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4 return (RemoteService) c.newInstance();

}

6 public static void main(String[] args) throws Exception {

init(args);

8 Registry registry = LocateRegistry.createRegistry(port);

repl();

10 while (true) {

RemoteService service = updateService();

12 UnicastRemoteObject.exportObject(service);

registry.rebind(name, service);

14 Thread.sleep(millis);

}

16 }

}

Listing 3.6: Service class reloading (server).

The client application (Listing 3.7) resolves the service name, invokes the
method service.getMessage and prints out the returned string value to
the console. Thus, successive executions of the client application will
output different results depending on the currently available service.

public class Client {

2 public static void main(String[] args) throws Exception {

init(args);

4 Registry registry = LocateRegistry.getRegistry(host, port);

RemoteService service = (RemoteService) registry.lookup(name);

6 System.out.println(service.getMessage());

}

8 }

Listing 3.7: Service class reloading (client).

When a JVM starts up, it loads a class using a bootstrap class loader. This
first class must have a public static void main(String[] args) method.
The JVM calls that method after initializing the class, and then starts
executing code specified in the main() method.

Code in the main() method typically references classes not yet loaded
into the JVM. When the JVM encounters such a reference, it asks its class
loader to load, link, and initialize this class as well. The class loader uses
a codebase to locate the requested class file. The codebase is the location
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where the class loader searches for class files.
If there were only a bootstrap class loader, this process would not be

very powerful, since all classes would have to be installed at a prede-
termined location. Fortunately, the JVM’s class loader architecture (Fig-
ure 3.2) is modular with a hierarchical organization [104]. In addition to
its built-in class loader, a JVM allows any number of user-defined class
loaders. A Java programmer may thus partition the JVM so that the re-
duced visibility of a class makes it possible to have multiple, different
definitions of the same class loaded.

Figure 3.2: Class loader architecture.

NOTE
The bootstrap class loader considers the CLASSPATH environment vari-
able to determine its codebase. By default, the Java core class library,
supplied by the Java run-time environment (JRE), is also a part of that
codebase.

Since Java does not provide any explicit class versioning mechanism,
the programmer has to use custom class loaders with extended capa-
bilities. In Java the versioning information is setup at the level of a Java
package [117] and the corresponding Package object is made available
by the ClassLoader instance that loaded the class(es)6. An application
can check if the package is compatible with a particular version with the
method isCompatibleWith.

Several researchers have studied the class loading mechanism to raise
the assurance that the JVM as specified and implemented by Sun is safe;

6The versioning information is typically stored in the manifest file that is distributed
with the classes.
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for instance, Qian and al. [97] have formalized and proved the type safety
of the main aspects of class loading in the Java VM.

3.3.3 Object Serialization
The JVM is able not only to load classes, but also to load objects (instances
of classes) from a storage device or from the network via the Java object
serialization mechanism [50, 119]. Object serialization stores an object
(or more generally a graph of objects) in a binary stream in such a way
that a Java program can reconstruct the object’s state at a later time. The
binary stream can then be saved on a persistent storage or sent over a
wire7.

NOTE
Along with instance data, the object serialization mechanism writes a
special object to the stream to represent the serializable object’s class.
This object is of type ObjectStreamClass, and is essentially a descriptor
for the Class object associated with the serialized object. It contains
the class’s name, its unique version number (serialVersionUID), and
the class fields.

The serialization run-time calculates a default serialVersionUID

value for serializable classes that do not explicitly declare it. The
Java Object Serialization Specification [119] strongly recommends that
all serializable classes explicitly declare serialVersionUID values since
their computation is highly sensitive to class details and may vary
between different Java compiler implementations.

Object serialization supports encryption, both by allowing classes to
define their own methods for serialization and deserialization (inside
which encryption can be used), and by adhering to the composable
stream abstraction (the output of a serialization stream can be channelled
into another filter stream which encrypts the data).

NOTE
The Java run-time restricts access to fields declared to be private, pack-
age protected, or protected. No such restriction can be made on an
object once it has been serialized; the stream of bytes resulting from
object serialization can be read and altered by any object that has
access to that stream. Consequently, Java developers who declare a
class to be Serializable must first give some thought to the possible
consequences of that declaration.

7Only the object’s state is saved; the object’s class file and methods are not saved but
must be accessible from the system in which the restoration occurs.
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Codebase Annotation

Given a class’s name from the descriptor found in the serialized stream,
the JVM still needs to know where it should load the actual class from.
Once it has that information, the JVM can create a class loader with the
codebase pointing to that location, load the class, link it to the current
execution environment, and initialize its class data.

While the JVM could use the data contained in the serialized object
stream to create an instance of the class and initialize the object’s instance
data, the best way is to stamp the code location for the class onto the
serialized object stream – in other words, to annotate the serialized object
with the codebase URL. This method facilitates dynamic code mobility,
because the JVM can decide at run-time where it should download the
classes from. This is also the fundamental technique used by Java RMI.

The Java RMI run-time mechanism provides a special output stream
which serializes the stub of a remote object (i.e. an object which im-
plements the java.rmi.Remote interface) instead of the object itself and
annotates the location of the objects’class to the serialized stream.

NOTE
The codebase is specified to the JVM using the Java RMI property
java.rmi.server.codebase. The codebase property is a space-separated
list of URLs. When deserializing an RMI stub annotated with the
codebase, the RMI run-time (i.e. java.rmi.RMICLassLoader) will create
a class loader for each codebase URL specified in this list.

3.3.4 Security
The Java security framework is organized into three layers, each one ad-
dressing differents needs:

• At the platform level, the Java security infrastructure provides sev-
eral security mechanisms such as the bytecode verifier or the sand-
box mechanism for Java applets. At run-time Java applications can
download classes on demand; classes can thus be loaded from ei-
ther the local file system (built-in classes) or from a network. The
main security concern of the bytecode loader is to prevent built-in
classes from being "spoofed" by other classes. This is accomplished
by partitioning classes into separated namespaces (see Section 3.3.2).

• At the language level, the Java compiler delves into extensive static
checking to detect as many errors as possible at the compilation
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stage. In particular the generated bytecode is guaranteed that all
references to objects, methods, and variables are of the appropriate
type, that Java ’s access control mechanism is not violated, and so
on.

• At the application level, the Java security framework provides a
broad set of security mechanisms available to applications for im-
plementing a requested security policy. For example, Java RMI re-
quires the installation of a security manager in order to use dynamic
class loading; without it, servers could easily attack their clients by
sending malicious code that masquerades as a remote stub.

Java’s security primitives are largely based on where code originated
from. Thus, security policy files grant permissions based on where code
was loaded from, and location is specified using URLs. The Java class
loaders have a a crutial responsability here; a vulnerability 8 in the
AppletClassLoader would for example allow a remote user to connect
to local sockets on the target system.

Executable code is categorized based on its URL of origin and the
private keys are used to sign the code. The security policy maps a set of
access permissions to code characterized by particular origin/signature
information. Protection domains can be created on demand and are tied
to code with particular Codebase and SignedBy properties.

NOTE
The class java.security.CodeSource extends the concept of a code-
base to encapsulate not only the location (URL) but also the certificate
chains that were used to verify signed code originating from that lo-
cation.

3.4 Discussion
RPC-based technologies are connection-oriented, since first the connec-
tion must be established (by requesting a reference to a remote object
via the name server) and then used (throughout the interaction with the
remote object). Code that uses remote objects should thus be cluttered
with many checks in order to deal with possible network communication
failures.

Nevertheless, benefits of mobile code include fault-tolerance, service
customization, code deployment and maintainance.

8SecurityTracker 1018428.



Chapter 4

State of the Art

You have to design distributed systems
with the expectation of failure.

Ken Arnold1

While much research efforts have been devoted to the field of dis-
tributed programming most published studies focus on aspects related
to inter-process communication while the present work primarily consid-
ers aspects related to the dynamic relocation of code fragments.

In this chapter we concentrate our analysis on studies and projects
dealing specifically with the dynamic rebinding mechanism in a dis-
tributed environment. First, we present two language calculi and sketch
relevant aspects of their formalization; second, we look at four distributed
languages and evaluate their respective solution in relation with our ap-
proach presented in the introduction (see Section 1.1).

Most research works related to this project have focused on functional
programming languages, in particular on the ML language family.

The key ideas presented in this thesis have been influenced by the
lambda calculi proposed by Bierman and al. [9] and the language Obliq
designed by Luca Cardelli [28] and share the same objectives which are
to improve the design of programming languages for distributed compu-
tation.

1Ken Arnold is an inventor of Jini and a designer of JavaSpaces.
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4.1 Calculi

4.1.1 λmarsh Calculus
Bierman and al. [9, 10] identify and formalize core mechanisms for
dynamic rebinding in distributed ML-like languages. Their study relies
on language features like high-order functions for expressiveness, call-by-
value reduction for simple evaluation orders and static typing for early
error detection.

They formulate the key question as follows:

"When a value is moved between scopes, how can the user specify
which identifiers should be rebound and which should be fixed ?"

To formalize their answer Bierman and al. propose the λmarsh calculus,
a calculus based on a simply-typed call-by-value (CBV) lambda calculus
[31] which contains primitives for packaging a value such that some of its
identifiers are fixed to bindings in the current context while others will be
rebound when unpacked in the new scope. They also sketch an extension
of the λmarsh calculus with support for network communication.

In order to evaluate their calculi Bierman and al. consider the con-
crete case of a network-transmitted function value which might contain
identifiers for:

- ubiquitous standard library calls which should be rebound at the
destination;

- application-specific location-dependent library calls which should
also be rebound at the destination;

- application code which is not location-dependent but should be
rebound rather than sent; and

- other let-bound application values, which should be sent with it.
The λmarsh calculus provides high-level representations of marshalled

values and primitives to manipulate them (see Figure 4.1). For simplicity,
the λmarsh calculus focuses on the case of rebinding application-specific
libraries which the authors consider as the more interesting case.

The mark primitive allows the programmer to cleanly and fexibly
notate which definitions should be fixed and which should be rebindable;
definitions occuring within the named context markM are copied into a
package value. In that way a different context may be choosen for each
marshal and unmarshal operation.
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t

T

::= ...
|markM in t
|marshalM t
| unmarshalM t
|marshalled Γ t

::= ...
|MarshT

Figure 4.1: λmarsh extended language syntax.

An expression marshalM t first reduces expression t to a value v and
then packages v with all the bindings within the nearest enclosing context
markM ; these bindings are essentially static.

The typing rules in Figure 4.2 define the typing derivations dealing
with the types MarshT and T .

(T-Mark) (T-Unmarsh)
Γ ` t : T

Γ `markM in t : T

Γ ` t : MarshT

Γ ` unmarshalM t : T

(T-Marsh) (T-Marshed)
Γ ` t : T

Γ `marshalM t : MarshT

Γ′ ` v : MarshT

Γ `marshalled Γ′ v : MarshT

Figure 4.2: λmarsh typing rules.

Identifiers of v not bound within the mark are recorded in a type
environment within the packaged value, which has form marshalled Γ v,
and can be rebound.

The authors conclude their work by stating that they still need to pro-
vide a type system for λmarsh; in particular, their would like to statically
prevent all run-time errors for programs that make only simple use of
the marshal and unmarshal primitives.
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4.1.2 Calculus of Module Systems
In their lazy module calculus CMSl,v Ancona and al. [4, 41] present a sim-
ple and powerful mechanism for dynamic rebinding of mixin modules.
Mixin modules are mutually recursive modules allowing redefinition of
components.

CMSl,v is an extension2 of CMS, a calculus of module systems previ-
ously developped by Ancona and Zucca. The CMSl,v calculus supports
redefinition of virtual components — a feature analogous to method over-
riding in object-oriented languages — together with the interleaving of
execution and configuration phases.

The CMSl,v syntax defines two basic expressions which are standard
in module calculi [39]:

- A basic module [ι; o; ρ] consists of three mappings: a mapping ι
from variables into input names, a mapping o from output names3
into expressions and a mapping ρ from local variables into expres-
sions.

- A basic configuration [ι; o; ρ | e] consists of a basic module and an
expression e, also called program.

Thus, in module M1 = module { virtual X=1; virtual Y=X+1; } — writ-
ten in some hypothetical module language — X and Y are virtual com-
ponents of module M1 whose semantics is given by the basic module
M1 = [x : X, y : Y ;X : 1, Y : x+ 1; ]

Since CMSl,v supports dynamic rebinding, it provides a natural formal
basis for modeling marshalling and update.

In the following basic configuration

M2 = module {

virtual X=1;

Y=2; (*frozen*)

Z=3; (*frozen*)

} with main marshal X+Y+X+Z rebind Y; (*Y deferred*)

the main expression X+Y+X+Z depends on the three components X, Y and
Z. It is however possible to specify a list of components which have to
be rebound when the expression will be eventually unmarshalled; in the
above example, a new definition of Y must be provided before M2 can be
evaluated.

2l and v stand respectively for "linking" and "virtual" in CMSl,v .
3Input names are called virtual if they are output names as well, deferred otherwise.
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In CMSl,v the above marshalled expression is translated into an expres-
sion e2 whose value results from the application of the operator marshal
to the module configuration for M2:

e2 = marshal([x : X, y : Y ;X : 1, Z : z; z : 3 | x+ y + x+ z])

When executing the main expression, its actual context is represented by
the module [x : X, y : Y ;X : 1, Y : y, Z : z; y : 2, z : 3], where component Y
is removed since it must be rebound.

In the example below, the evaluation of the unmarshal expression M3

depends on the update of components Y, X and Z:

M3 = unmarshal result(M2) bind Y:4, X:5, Z:6;

As before M3 is translated into an expression e3 whose value results from
the application of the extraction operator ↑ to the module configuration
below:

e3 = (unmarshal(e2) \X \Z + [;Y : 4, X : 5, Z : 6; ])↑

The sum operator + combines the unmarshalled expression e2 — from
which X and Z are removed using the delete operator — with the module
expression [;Y : 4, X : 5, Z : 6; ].

After evaluating unmarshal(e2), e3 reduces to

e3 = ([x : X, y : Y ;X : 1, Z : z; z : 3] | x+ y + x+ z] \X \Z + [;Y : 4, X : 5, Z : 6; ])↑

Now, in the main expression x+ y + x+ z, the first occurence of x is
bound to 1; then y is bound to 4 and the second occurrence of x is bound
to 5. Finally, z is bound to 3 (the update of Z has no effect); expression
e3 thus evaluates to 13.

The CMSl,v calculus allows an executing program to use virtual vari-
ables and thus to refer to components whose definition may change by
applying module operators. It also provides a simple mechanism to ex-
press interaction of execution by combining module configurations with
evaluation operators.

Finally, Ancona and al. [4] mention the integration of lazy module
calculi with mobile code as future work; this mainly concerns the design
of calculi for the dynamic reconfiguration where code to be used for
reconfiguring the running program can migrate from a different process.
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4.2 Languages

4.2.1 Obliq
Obliq [25, 26, 27, 28] is a lexically scoped, dynamically typed, prototype-
based language, designed for distributed object-oriented computations.
Computations in Obliq are network transparent — i.e. site independent
— and the code mobility is managed explicitly at the language level.

To support network transparency, Obliq extends the static scope to
the network: free variables in the transmitted code can refer to objects
from the origin site. Obliq objects have state and are local to a site,
network references to objects can be transmitted from site to site without
restrictions. Object migration is explicit and can be encoded using cloning
and redirection. Obliq computations can thus roam over the network,
while maintaining network connections (Figure 4.4).

The distributed computation mechanism of Obliq is based on Modula-
3 network objects [13]. Network objects are implemented as a library
extension of Modula-3 enabling remote procedure call services. Objects
are not mobile, but they can be passed by value or by reference.

NOTE
An object in Obliq is a collection of attributes (e.g. {x => 3, y => 4});
an attribute can be protected against modification, cloning or aliasing
from outside the object using the protected keyword. Since there are
no classes in Obliq the language provides special operations on objects:
- Selection/invocation E.g. p.x selects attribute x of object p.
- Updating/overriding E.g. p.x <- 4 assigns the value 4 to attribute x

of object p.
- Cloning Cloning an object creates a shallow copy: immediate values
of attributes are copied while structured values introduce sharing.

- Aliasing Attributes can be redirected to attributes in other objects;
all operations on alias objects are forwarded. An alias itself can point
to another alias. This is the way alias-chains are constructed [27].

As synchronization mechanisms a mutex object is built into every
Obliq object; it serializes the execution of field selection, method in-
vocation, update, and cloning operations on its object.

At the source site an object {m1 => a1, ...} with name "myObj" can
be initially shared through a name server Namer:

net_export("myObj", Namer, {m1 => a1, ...});

At the target site the network reference o is obtained from the server
Namer using the name "myObj" and the method m1 is invoked remotely.
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let o = net_import("myObj", Namer);

o.m1(b);

- Obliq data is network-transparent: immutable data may be dupli-
cated, but state is never automatically duplicated (cloning allows
explicit state duplication).

- Obliq computations are network-transparent: their effect on free
variables is the same no matter where they execute. However, pro-
cedures may receive different parameters at different sites.

Object migration in Obliq is implemented using the cloning and aliasing
operations; it is presented by the author to be network-transparent. How-
ever, Nestmann, Merro and others have shown that the original scheme
for object migration is not transparent [86] and suggest an amended se-
mantics for Obliq [78] where object migration is proved to be transparent
to clients.

Distributed lexical scoping in Obliq is the key mechanism for man-
aging distributed computations. An object may become accessible over
the network either by the mediation of a name server, or by simply being
used as the argument or result of a remote method.

Figure 4.3: Value transmission in Obliq.

When computations are transmitted, lexically scoped free identifiers
retain their bindings to the originating sites. Through these free iden-
tifiers, migrating computations can maintain connections to objects and
locations residing at various sites.

In fact, Obliq extends a familiar language feature, lexical scoping, to a
distributed context. The approach is analogous but more general than
the extension of local procedure call to remote procedure call.
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Figure 4.4: Closure transmission in Obliq.

The main technical issue is to find a meaning for higher-order distributed
computations: what happens to the free identifiers of network-transmitted
procedures ? Obliq takes the view that such identifiers are bound to
their original locations and network sites, as prescribed by lexical scoping
(Figure 4.4).

NOTE
Courtney has developed Phantom [33], an interpreted, strongly typed,
higher-order language, which uses a class-based object model. The
core language is based on the syntax and semantics of Modula-3
and the distribution model of Phantom uses the same basic model
as Obliq [27].
Courtney’s approach to security is based on strict lexical scoping

in the context of distribution and higher-order functions. When an
executing unit receives a function from a remote site, it can perform a
single, static check to ensure that all free identifiers in the code for the
function have a corresponding entry in the set of bindings received
with the function.

The Obliq interpreter can easily be embedded in a Modula-3 applica-
tion and its functionality can be extended either with new built-in oper-
ations that invoke Modula-3 code or with new Obliq library packages.

The Obliq implementation [25, §2.4] is split into several packages in
order to generate minimal Obliq interpreters that can act as (relatively)
small network servers: the obliqrt-ip package implements the Obliq run-
time kernel, the obliqparse-ip package contains routines to parse and
evaluate Obliq phrases from a reader (REPL), the obliqprint-ip pack-
age performs pretty-printing and, finally, the obliq-ip package brings
together the packages that are needed to build a stand-alone Obliq inter-
preter.
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4.2.2 ML3000
ML3000 [40] is a distributed type-based dialect of ML, which supports
dynamic typing, user-definable marshalling, built-in objects (similar to
Obliq objects, see Section 4.2.1) and structural type equivalence.

ML3000 relies on the mechanism of Dynamics4 to generate run-time
type informations and follows the fingerprint approach taken in Modula-
3 network objects for their transmission.

Futhermore, Duggan and Przybylski provide mechanisms for user-
defined marshalling for supporting type polymorphism in ML3000 such
that instances of (un-)marshalling operations for a specific type can be
registered by the programmer.

Rather when relying on ML polymorphic functions which are second-
class, ML3000 provides built-in objects — which may contain polymor-
phic methods — as abstractions for network connections as is done in
distributed object systems. Similarly to Obliq, an object is transmitted as
a network reference that is unmarshalled at the target location as a proxy
calling back to the original object.

The compiler front-end – including type-checker — was written from
scratch and the ML3000 backend is based on the Moscow ML compiler
with modifications to support RTTIs. The bytecode interpreter is itself
based on the CAML Light interpreter with modifications to support RT-
TIs. While Obliq uses Modula-3 network objects as transport mechanism,
ML3000 uses the ILU multi-language remote object system [32].

The ML3000’s backend allows transmission of code segments as parts
of closures; a separate string constant is generated for every code segment
and is saved as part of the global data table in the compiler output.
Marshalling of closures introduces the greatest complications; in order
to marshall a closure, its environment slots must be marshalled. Every
instruction which extend the environment is modified to provide the
needed type information to be added to the global data table.

The main challenge concerns global values referenced in the code of
closures: their type index in one address space becomes meaningless
when the code with references on those values in transmitted to another
address space.

In resume Duggan and Przybylski provide with ML3000 a distributed
type-based extension of ML whose design approach is similar to the one
of the Obliq language. Built-in objects serve as distribution abstractions
and RTTIs are added to the transmitted code.

4The primitives dynamic and typecase are used for packing a value with its type
respectively for inspecting a type in a dynamic.
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4.2.3 MobileML
MobileML [56] is a ML-based programming language which features
transparent migration (see Section 3.1.2) of mobile code and dynamic
linking with distributed resources by means of contexts [55, 106, 107].
Hashimoto and al. introduce the notion of contexts to succintly describe
the interactions between mobile code and environments at the target lo-
cation. The semantic model for contexts is based on Plotkin’s λv-calculus
and tuple spaces.

A context is a program expression with holes in it. The basic op-
eration for a context is to fill its hole with an expression by capturing
free variables. When the code is filled, the free variables in the code are
dynamically bound to the variables defined in the context.

For example, the agent expression agent(e) specifies the code region
which migrates to the context "//hal::2001/k" using the instruction go.

let name = "HAL" in

agent(go "//hal::2001/k"; print_string("Hello, "^name));

Then, variable name is dynamically bound to value "HAL" in the pro-
gram context "//hal::2001/k".

NOTE
In his implementation of Facile [68, 69], a dialect of MobileML, Knabe
uses proxy structures (vs. contexts in MobileML) in order to specify the
variables which become bound at a remote site. Proxy structures are
generated from a remote signature which specifies names and types
of the values provided at the remote site and are treated as if they
were local structures.
In case specifications of the proxy structures are modified, it is nec-

essary to get the new remote signatures and to recompile programs
which reference them. MobileML does not need such recompilation
since such consistency is dynamically checked.
In order to reduce the space cost of generating their transmissi-

ble representation Facile performs compile-time marshalling only for
those functions which have been explicitly annotated by the program-
mer to be potentially transmissible.

The authors have implemented an experimental interpreter system as
a first step of the full-flegded language system.
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4.2.4 PLAN

PLAN [52, 59] is a domain-specific, strongly typed, simple functional
language for programs which form the packets of an active network.
It is based on a subset of ML with some primitives to support remote
evaluation (see Section 2.2.3).

A PLAN application is composed of a series of PLAN packets which
are injected into the active network through a port connected to the local
PLAN interpreter. Mobility of PLAN packets and the remote evaluation
of chunks are at the heart of the execution of PLAN programs. PLAN’s
expressiveness is limited to permit actives nodes to evaluate PLAN pro-
grams without requiring authentification5: all PLAN programs are stati-
cally typeable and are guaranteed to terminate6.

A PLAN packet encapsulates a chunk and several control fields. A
chunk consists of the PLAN code, an entry point function within that
code, and the function’s arguments. The code itself contains a series of
definitions which bind names to functions, values and exceptions where
the names of the services available at the source location form the initial
bindings in the namespace. The arguments are evaluated locally in a call-
by-value fashion and the actual evaluation of the function call is delayed
until the packet arrives at its destination site.

Chunks [81] are first-class values whose execution can be initiated by
the core service eval. The function call takes place in an environment
where all top-level bindings are available; PLAN departs here from the
discipline of static scoping adopted by others systems.

Nevertheless, the chunk abstraction provides an elegant way to ex-
press common network mechanisms: on one side chunks representing
micro-protocols can be arbitrarily ordered and composed to create more
complex protocols, on the other side chunks are carried in the packet
themselves and thus permit asynchronous protocol adaptation.

Moore and al. [81] report two drawbacks with their implementation:
the evaluation of PLAN programs is quite costly because it is based on
bytecode interpretation; also the space cost of carrying the code in the
packet needs to be reduced.

As future work, the authors see a promising approach in the addi-
tion of language-level remote references. Since all PLAN values (including
chunks) are immutable, that would allow further space savings as some
of a chunk’s bindings could be savely cached.

5Authenticating every active packet results in unacceptable performance degradation.
6So far they only call node-resident services that terminate.
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4.3 Discussion
The language calculi from Bierman and al. and Ancona and al. (Sec-
tion 4.1) rely on different binding mechanisms to formalize the mar-
shalling and the update of relocated expression values: the mark prim-
itive in λmarsh defines a named context with definitions to be rebound
while CMSl,v relies on lazy modules to model marshalling and update.

λmarsh, the language calculus from Bierman and al. (Section 4.1.1), re-
lies on the same language features — high-order functions, call-by-value
reduction and static typing — as in our work. However, while their
calculus provides high-level representations of marshalled values and
primitives to manipulate them, our approach, based on lambda abstrac-
tion, requires only minimal library support to delimit the context of the
remote code evaluation. Futhermore, Bierman and al. do not describe
the choosen representation for the marshalled values and their calculus
is still missing a type system for static typing.

CMSl,v, the module calculus from Ancona and al. (Section 4.1.2),
supports the redefinition of virtual components in dynamically reconfig-
urable modules. Unfortunately, the integration of its rebinding mecha-
nisms with mobile code is only mentioned and left as future work.

The programming languages examined in the context of this work
(Section 4.2) provide more concrete solutions to express higher-order dis-
tributed computations.

First, the prototype language Obliq (Section 4.2.1) supports network
transparent computations through distributed lexical scoping and net-
work references to local Obliq objects. However, since Obliq is a DSL
embedded in a Modula-3 system, it represents a niche solution for deal-
ing with mobile code in a distributed environment.

Second, the language ML3000 (Section 4.2.2) introduces the operation
dynamic — a feature similar to mark in λmarsh — for packing transmitted
values with their type. ML3000 relies on built-in objects to abstract over
network connections in a way similar to network references in Obliq.

Third, the ML-based language MobileML (Section 4.2.3) provide the
primitive agent to deal with the transparent migration of mobile code
(discussed in Section 3.1.2), a feature not retained in our solution.

Finally, the domain-specific language PLAN (Section 4.2.4) support
the transmission of chuncks — immutable first-class function values —
whose remote evaluation takes place in a global environment in contrast
to the static scoping rule adopted by other systems such as Obliq. Fur-
thermore, the authors mention as future work the addition of remote
references in order to reduce the amount of transmitted data.



Chapter 5

Programming Examples

Programming is usually
taught by examples.

Niklaus Wirth1

In this chapter we illustrate the usage of detached closures with sev-
eral programming examples written in the language Scala. Following the
client-server paradigm, the presented Scala applications consist of a client
process and a server process interacting through different communication
mediums.

The first example presents the marshalling of detached closures on a
single machine; the local file system serves as communication medium.

The second and third examples introduce more elaborated use cases
of distributed lexical scoping and rely on typed channels respectively on
remote actors for client-server communication.

The fourth example is adapted from a compute server example origi-
nally written in Obliq.

Finally, the two last examples build upon more concrete scenarii and
aim to demonstrate the strengths of code parametrization based on lambda
abstraction in a distributed programming environment.

1Niklaus Wirth was honored with the ACM Turing Award 1984 for his work in the
area of compiler construction; he is the designer of Pascal, Modula-2 and Oberon.

http://en.wikipedia.org/wiki/Turing_Award
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5.1 Marshalling Example

We start with a client-server console application illustrating the mar-
shalling of detached closures on a single machine. On one side, the client
application serializes a detached closure and writes it to some local file;
on the other side, the server application reads the serialized data back
and executes the parametrized code applied to the interactively provided
arguments.

For simplicity, we use the un-/marshalling operations load and dump

(Listing 5.1) of the Scala standard library; those operations rely on the
serialization mechanism of Java (see Section 3.3.3) and save both the argu-
ment and its associated run-time type information represented as a Scala
type manifest and provided automatically by an implicit parameter.

object Marshal {

def dump[A](o: A)(implicit m: Manifest[A]): Array[Byte] = ...

def load[A](a: Array[Byte])(implicit m: Manifest[A]): A = ...

//...

}

Listing 5.1: Type-safe marshalling in Scala.

The server application (Listing 5.2) implements a simple REPL which
waits for user input (interaction details are hidden in trait ServerConsole).
The user can either load and execute (lines 8-9 and lines 15-16) a client-
marshalled function using the command "f <args>" or he/she can exit the
interactive server shell with "quit". The auxiliary function signatureOf

(line 6) is called by the server process to determine the operation to be
performed and to read the expected arguments.

object Server extends ServerConsole with ManifestParser {

2 private var bytes: Array[Byte] = null

def mainBody(args: Array[String]) {

4 val data = readData()

if (data != null) bytes = data

6 if (bytes != null) signatureOf(bytes) match {

case "Int=>Int" =>

8 val x = args(0).toInt

val f = load[Int => Int](bytes)

10 println("f("+x+")="+f(x))
_notify()
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12 case "(String,Int)=>String" =>

val x = args(0)

14 val y = args(1).toInt

val f = load[(String, Int) => String](bytes)

16 println("f(\""+x+"\", "+y+")="+f(x, y))
_notify()

18 case m =>

println("error: unknown manifest "+m)

20 } } }

Listing 5.2: Marshalling application (server).

object Client {

2 var y = 1

def main(args: Array[String]) {

4 var z = 2

println("y="+y+", z="+z)

6 writeData(dump(detach((x: Int) => x + y + z)))
_wait()

8 println("y="+y+", z="+z)

y += 10

10 _wait()

println("y="+y+", z="+z)

12 z += 20
_wait()

14 println("y="+y+", z="+z)

writeData(dump(

16 detach((s: String, x: Int) => {z += 1; s + (x + y + z)})

))

18 _wait()

println("y="+y+", z="+z)

20 } }

Listing 5.3: Marshalling application (client).

The client application (Listing 5.3) first transforms the detached func-
tion literal

detach((x: Int) => x + y + z)

into a byte array, writes it to some file (line 6) and waits for the server
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process to load and execute the marshalled code. Second, the client prints
out the actual values for the two captured variables y and z (line 8). Then,
both variables y and z are updated such that further executions of the
closure code in the server thread return different results.

Later on (line 15) we choose to update the code to be executed in
the server process and perform another marshalling operation with the
detached function literal

detach((s: String, x: Int) => z += 1; s + (x + y + z))

as argument, where s and x are bound variables and y and z are free
variables.

Both the output in the client console and the user interaction with
the server process are given in Figure 5.1; program execution terminates
when the user enters the command "quit" in the server console.

Figure 5.1: Marshalling application (consoles).
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5.2 Basic Example using Typed Channels
In the following distributed client-server (C/S) application the client
process (Listing 5.7) and the server process (Listing 5.6) communicate
through a typed channel.

A typed channel provides a type-safe abstraction for network com-
munication and is implemented by the two classes Channel (Listing 5.4)
and ServerChannel (Listing 5.5) of the library package scala.remoting2.
The class Channel defines basic generic send/receive operations.

class Channel(socket: Socket) {

def this(host: String, port: Int) =

this(new Socket(host, port))

val host = socket.getInetAddress.getHostAddress

val port = socket.getLocalPort

def receiveInt = receive[Int]

def receiveLong = receive[Long]

//.. more primitive types

def receive[T](implicit expected: Manifest[T]): T = { /*..*/ }

def ?[T](implicit m: Manifest[T]): T = receive[T](m)

def send[T](x: T)(implicit m: Manifest[T]) { /*..*/ }

def ![T](x: T)(implicit m: Manifest[T]) { send(x)(m) }

def close() { socket.close() }

}

Listing 5.4: The Channel class (Scala API).

The class ServerChannel represents the second endpoint of the commu-
nication channel and accepts incoming client requests on a given service
port. The Scala programmer can define a subclass of AbstractServerChannel
in order to customize receive operations for user-defined messages.

class ServerChannel(p: Int) extends AbstractServerChannel[Channel] {

def newChannel(s: Socket) = new Channel(s)

}

abstract class AbstractServerChannel[T <: Channel](_port: Int) {

def this() = this(0) // any free port

val host = serverSocket.getInetAddress.getHostAddress

val port = serverSocket.getLocalPort

//..

2The current implementation is based on Java sockets and Scala manifests.
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protected def newChannel(s: Socket): T

def accept: T = { /*..*/ newChannel(serverSocket.accept) }

def close() { serverSocket.close() }

}

Listing 5.5: The ServerChannel class (Scala API).

On the server side (Listing 5.6) we first create a server channel for
accepting incoming requests and then enter the main loop (as for the
previous example interaction details are hidden in trait ServerConsole).
Once communication is established with a client, we receive the detached
closure and evaluate it (line 4); the resulting integer value is then sent
back to the client (line 12).

object Server extends ServerConsole {

2 private def computation(f: Int => Int): Int = {

//some time-consuming task

4 f(2)

}

6 def main(args: Array[String]) {

val server = new ServerChannel(args(0).toInt)

8 loop {

val client = server.accept

10 val f = client.receive[Int => Int]

val result = computation(f)

12 client ! result

}

14 server.close()

}

16 }

Listing 5.6: Basic C/S application (server).

On the client side (Listing 5.7) we first create a channel to commu-
nicate with the server, we send a detached closure over it and, finally,
we wait for the evaluation result and print the integer value 111113 to
the console. The closure code contains several variable references and
method calls declared in different contexts:

- Uses of variables include the formal parameter x of the anonymous
function, the instance variables yInstVal and yInstVar declared in

3x+yInstVal+yInstVar+zLocVal+zLocVar = 2+10+99+1000+(9998+2) = 1111.
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object Client (lines 5-6) and the local variables zLocVal and zLocVar

declared in a try/catch block (lines 13-14);
- Function calls include the library methods println, System.out.println
and Debug.info, method this.trace of the Client instance, method
Foo.trace of the top-level object Foo and method Bar.trace of the
field object Bar.

object Foo {

2 def trace(s: String) { info("[Foo.trace] "+s)}

}

4 object Client {

val yInstVal: Int = 10

6 var yInstVar: Int = 99

object Bar {

8 def trace(s: String) { info("[Bar.trace] "+s) }

}

10 def main(args: Array[String]) {

init(args)

12 val server = new Channel(host, port)

val zLocVal: Int = 1000

14 var zLocVar: Int = 9998

server ! detach(

16 (x: Int) => {

println("yInstVal = "+yInstVal)

18 this.trace("yInstVar = "+yInstVar)

Bar.trace("zLocVal = "+zLocVal)

20 Foo.trace("zLocVar = "+zLocVar)

zLocVar += 2

22 System.out.println("zLocVal = "+zLocVal)

Debug.info("zLocVar = "+zLocVar)

24 x + yInstVal + yInstVar + zLocVal + zLocVar

})

26 val result = server.receiveInt

println("result received: " + result)

28 }

private def trace(s: String) { info("[Client.trace] "+s) }

30 }

Listing 5.7: Basic C/S application (client).

Building RMI-based applications typically consists of three main phases
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which include the development phase (build process and configuration
setup), the installation phase (deployment and customization) and the
execution phase (test and production environments).

- In this example the distribution files generated during the build
process include three Java archive files (client, server and deploy-
ment files), one preconfigured Java security policy file and two shell
scripts to launch the client and server applications.

- These files are then installed according to the chosen configuration
settings (targeted to one, two or three different machines). Soft-
ware requirements for the client and server applications are a recent
Java run-time environment (version 1.5 or newer) and a modified
Scala distribution (version 2.6 or newer with the detach-extension4).

- The two launch scripts (Listing 5.8 and Listing 5.9) can then be
executed (in that order!). The server application runs forever and
waits for incoming client requests.

#!/bin/sh

${JAVACMD:=java} \

-Xbootclasspath/a:$SCALA_HOME/lib/scala-library.jar \

-Dscala.remoting.logLevel=${LOGLEVEL:=warning} \

-Djava.security.manager \

-Djava.security.policy=$GENDIR/java.policy \

-Djava.rmi.server.codebase=$DEPLOYDIR/basic_deploy.jar \

-Djava.rmi.server.useCodebaseOnly=true \

-jar $GENDIR/basic_server.jar ${PORT:=8889}

Listing 5.8: Basic C/S application (server script).

#!/bin/sh

${JAVACMD:=java} \

-Xbootclasspath/a:$SCALA_HOME/lib/scala-library.jar \

-Dscala.remoting.logLevel=${LOGLEVEL:=warning} \

-Djava.security.manager \

-Djava.security.policy=$GENDIR/java.policy \

-jar $GENDIR/basic_client.jar 127.0.0.1 ${PORT:=8889}

Listing 5.9: Basic C/S application (client script).

4Implementation details are presented later in Section 7.2.
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A Java policy file (Listing 5.10) must be specified in both launch scripts
(Listing 5.8 and Listing 5.9); it defines two groups of permission rules (or
grant entries) : the first group of rules applies to class files loaded from
any location and grants access permissions to Java sockets and library-
defined properties; the second group of rules applies to the application
class files and grants access permissions to RMI specific ressources.

grant {

permission java.net.SocketPermission "*:80", "connect,accept,listen";

permission java.net.SocketPermission "*:1024-", "connect,accept,listen";

permission java.util.PropertyPermission "scala.remoting.logLevel", "read";

permission java.util.PropertyPermission "scala.remoting.port", "read";

};

grant codeBase "@PROJECT_LIB_BASE@" {

permission java.lang.RuntimePermission "getClassLoader";

permission java.util.PropertyPermission "java.rmi.server.codebase", "read";

permission java.util.PropertyPermission "java.rmi.server.hostname", "read";

permission java.util.PropertyPermission "sun.rmi.dgc.server.gcInterval",

"read, write";

};

Listing 5.10: Basic C/S application (policy file).

Both the client and server applications can be executed with differents
levels 5 of logging information.

The two console outputs in Figure 5.2 correspond to the normal exe-
cution (LOGLEVEL=warning) of the shell scripts presented in Listing 5.8 and
Listing 5.9. The instructions println on line 17 and System.out.println

on line 22 (Listing 5.7) write to the server console while the instruction
println on line 27 writes to the client console.

In Figure 5.3 we add some logging information to trace the execution
of the client and server applications by setting the environment variable
LOGLEVEL to value info.

For instance, the three instructions this.trace, Foo.trace and Bar.trace

(lines 18-20, Listing 5.7) write to the client console since they are application-
specific, while the instructions println, System.out.println and Debug.info

(lines 17, 22 and 23) write to the server console since those three methods
are defined in the Scala standard library.

Unlike the above logging information which is generated by instruc-
tions appearing in the user code, the three notifications starting with

5Class Debug in package scala.runtime.remoting currently defines five logging levels
ERROR, WARNING, VERBOSE, INFO and SILENT.
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unreferenced in the client console mean that the specified remote objects
are no more referenced (their binding can thus be removed from the
remote registry).

Figure 5.2: Basic C/S application (consoles).

Figure 5.3: Basic C/S application (consoles, option info).
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Finally, in Figure 5.4 we trace the execution of the server application and
print out additional logging information about operations performed in
typed channels by setting LOGLEVEL to value info,lib before running the
server script.

Figure 5.4: Basic C/S application (server console, option info,lib).

Similarly, Figure 5.5 presents the displayed logging information when
setting LOGLEVEL to value info,lib before running the client script.
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Figure 5.5: Basic C/S application (client console, option info,lib).
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5.3 Basic Example using Remote Actors

The example presented in Section 5.2 relied on typed channels for client-
server communication. The same C/S application can easily be adapted
to make use of the Scala Actors library for remote communication (and
synchronization).

The server application (Figure 5.11) consists of a remote actor respond-
ing on some user-defined port (line 9) and registered with the name
’Server (line 10). The remote actor reacts on incoming messages of type
Int => Int (line 13), performs some computation and sends the integer
value resulting from the code evaluation back to the sender (line 15).

object Server extends ServerConsole {

2 private def computation(f: Int => Int): Int = {

//some time-consuming task

4 f(2)

}

6 def main(args: Array[String]) {

actor {

8 classLoader = serverClassLoader

alive(args(0).toInt)

10 register(’Server, self)

loopWhile(isRunning) {

12 react {

case f: (Int => Int) =>

14 val result = computation(f)

sender ! result

16 }

}

18 }

}

20 }

Listing 5.11: C/S application with Scala actors (server).

The client application (Listing 5.12) only differs from the original
source code (Listing 5.7) in the manner it connects to the server (line
13) and it receives the result of the remote evaluation (line 26).

object Foo {

2 def trace(msg: String) { info("[Foo.trace] "+msg)}
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}

4 object Client {

val yInstVal: Int = 10

6 var yInstVar: Int = 99

object Bar {

8 def trace(msg: String) { info("[Bar.trace] "+msg) }

}

10 def main(args: Array[String]) {

init(args)

12 actor {

val server = select(Node(host, port), ’Server)

14 val zLocVal: Int = 1000

var zLocVar: Int = 9998

16 server ! detach(

(x: Int) => {

18 println("yInstVal = "+yInstVal)

this.trace("yInstVar = "+yInstVar)

20 Bar.trace("zLocVal = "+zLocVal)

Foo.trace("zLocVar = "+zLocVar)

22 zLocVar += 2

System.out.println("zLocVal = "+zLocVal)

24 Debug.info("zLocVar = "+zLocVar)

x + yInstVal + yInstVar + zLocVal + zLocVar

26 })

react {

28 case result: Int =>

println("result received: " + result)

30 Predef.exit(0)

}

32 }

}

34 private def trace(msg: String) { info("[Client.trace] "+msg) }

}

Listing 5.12: C/S application with Scala actors (client).
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5.4 Compute Server Example
The following example — a very simple compute server — is adapted
from Cardelli’s paper [28] on distributed mobile computation in Obliq
(see Section 4.2.1). The Obliq programmer uses the two primitives net_export
and net_import to export respectively import services.

In Listing 5.13 the string parameter service specifies the registration
name for the exported object and the string parameter host provides the
IP address or name of the machine running the desired name server.

Server
var q = proc() end;

net_export(service, host,
{ rexec => meth(s, p) q := p; p() end }

Client
let cs = net_import(service, host);
var x = 3;

cs.rexec(proc() x := x+1 end)

x; (* is now 4 *)

q; (* is now proc() x := x+1 end *)

q();

x; (* is now 5 *)

Listing 5.13: A compute server in Obliq.

The same example written in Scala consists of a service interface and
implementation6 (Listing 5.14), a server application (Listing 5.15) and a
client application (Listing 5.16).

@remote

2 trait ComputeService extends java.rmi.Remote {

def rexec(p: () => Unit)

4 }

class ComputeServer extends ComputeService {

6 private var qBlk: () => Unit = () => ()

private var qSet: Boolean = false

8 def rexec(p: () => Unit) = { qBlk = p; qSet = true; p() }

6Method q is implemented using at-most-once semantics.
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def q() { if (qSet) { qBlk(); qSet = false } }

10 }

Listing 5.14: Compute application (service).

object Server extends ServerConsole {

2 def main(args: Array[String]) {

init(args)

4 val cs = new ComputeServer

netExport("computeServer", port, cs)

6 println("Server is running")

loop {

8 Thread.sleep(millis)

cs.q()

10 }

}

Listing 5.15: Compute application (server).

On the client side (Listing 5.16) the detached closure is sent for remote
evaluation to the server (line 7). In particular, method println of the
library object scala.Console is invoked in the target environment and the
printed message will be display in the server console. Thus, the Scala
programmer must pass that object as an explicit argument in order to
invoke the method println in the source environment.

object Client {

2 def main(args: Array[String]) {

init(args)

4 val cs: ComputeService =

netImport("computeServer", host, port)

6 var x: Int = 3

cs rexec detach(() => { println("rexec: x="+x); x+= 1 })

8 println("x="+x) // is now 4

Thread.sleep(3000)

10 println("x="+x) // is now 5

exit(0)

12 }

}

Listing 5.16: Compute application (client).
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5.5 Bank Account Example

In the following example we consider the processing of a simple bank
order: a client wants to withdraw US $100 from his/her bank account
and, if necessary, to credit it with fresh money when it has reached some
balance limit.

For simplicity the class Account (Listing 5.17) defines just the three
operations deposit, withdraw and saldo.

class Account {

private var amount = 0

def deposit(n: Int): Boolean = synchronized {

if (0 <= n) { amount += n; true }

else false

}

def withdraw(n: Int): Boolean = synchronized {

if (0 <= n && n <= amount) { amount -= n; true }

else false

}

def saldo: Int = synchronized { amount }

}

Listing 5.17: Bank account application (Account).

The server application (Listing 5.18) manages bank accounts and waits
for client requests to process the transmitted sequence of operations and
apply them to the client’s account identified by an account number and
an authentication code.

object Server extends ServerConsole {

2 private val accounts = Map(

123456 -> ("secret", new Account),

4 654321 -> ("1a9z-A", new Account)

)

6 def main(args: Array[String]) {

val server = new ServerChannel(args(0).toInt)

8 loop {

val client = server.accept

10 val accnr = client.receiveInt

val accpwd = client.receiveString

12 accounts get accnr match {
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case Some((pwd, account)) if accpwd == pwd =>

14 client ! true

val f = client.receive[Account => Unit]

16 f(account)

client ! account.saldo

18 case _ =>

client ! false

20 }

}

22 server.close()

}

24 }

Listing 5.18: Bank account application (server).

The client application (Listing 5.19) first provides an account number
(line 5) and an authentication code (line 6) to access the client’s account;
once access is granted it sends a detached closure (line 8) describing the
operations to be executed remotely by the server.

object Client extends ClientHelper {

2 def main(args: Array[String]) {

init(args)

4 val server = new Channel(host, port)

server ! accnr

6 server ! accpwd

if (server.receiveBoolean) {

8 server ! detach(

(a: Account) => {

10 import a._

withdraw(100)

12 if (saldo < limit) deposit(limit)

info("saldo="+saldo) // server console

14 this.trace("saldo="+saldo) // client console

})

16 val result = server.receiveInt

println("received result "+result)

18 }

else

20 println("Authentication error")

server.close()
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22 }

private def trace(msg: String) {

24 info("[Client.trace] "+msg)

}

26 }

Listing 5.19: Bank account application (client).

In particular the clause import a._ on line 10 gives access to the oper-
ations deposit, withdraw and saldo defined for the formal parameter a of
type Account and rebound to the actual parameter account in the server
code (line 13).
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5.6 Calendar Example
In this section we consider in more details the code sample presented in
the introduction (see Section 1.1). As a reminder the client application
looks for the free time slots available on Monday between Bob’s agenda
and Tom’s agenda, two agendas hosted respectively on the client node
and the server node.

The object agendas (Listing 5.20) defines a minimal class Agenda with
the two methods get and free and the operation freeSlots. For the
sake of brevity the implementation details of agendas7 are hidden in an
auxiliary object.

object agendas {

type Day = ‘some Day‘

type Time = ‘some Time‘

val Time = ‘some Time‘

type Entry = ‘some Entry‘

val Entry = ‘some Entry‘

type Slots = ‘some Slots‘

class Agenda(e: Entry*) extends ‘some Agenda‘(e: _*) {

def get(day: Day): List[Entry] = ‘some get‘(day)

def free(day: Day): List[Entry] = ‘some free‘(day)

}

def freeSlots(a1: Agenda, a2: Agenda, day: Day): Slots =

‘some freeSlots‘(a1, a2, day)

implicit def pair2time(p: (Int, Int)) = Time(p._1, p._2)

implicit def int2time(h: Int) = new Time(h)

}

Listing 5.20: Calendar application (agendas).

The server application (Listing 5.21) waits for incoming client requets,
executes the transmitted closure code (line 13) and sends the evaluation
result — an array of agenda entries — back to the client.

object Server extends ServerConsole {

2 val agendaTom = new Agenda(

Entry("Mon", "Faculty meeting", (15, 20)),

4 Entry("Tue", "Scala meeting", 14),

Entry("Tue", "PL lunch", (12, 30)),

7Source code in Figure 5.20 is a valid Scala program.
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6 Entry("Wed", "ACIDE meeting", 17)

)

8 def main(args: Array[String]) {

val server = new ServerChannel(8888)

10 loop {

val client = server.accept

12 val f = client.receive[Agenda => Slots]

val result = f(agendaTom)

14 client ! result

}

16 server.close()

}

18 }

Listing 5.21: Calendar application (server).

On the client side (Listing 5.22) we first send the request to the server,
then we wait for the evaluation result of the remotely executed code and,
finally, we print out the list of free time slots.

object Client extends ClientHelper {

2 val agendaBob = new Agenda(

Entry("Mon", "Java Course", (8, 15), 45),

4 Entry("Mon", "French Course", 15, 90),

Entry("Tue", "Scala meeting", 14),

6 Entry("Tue", "PL lunch", (12, 30)),

Entry("Tue", "Compiler Course", (14, 15), 45)

8 )

def main(args: Array[String]) {

10 init(args)

val server = new Channel(host, port)

12 var day = "Mon"

server ! detach(

14 (a: Agenda) => freeSlots(a, agendaBob, day)

)

16 val result = server.receive[Slots]

Listing 5.22: Calendar application (client).
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The free time slots for Monday are listed below; an appointment be-
tween Bob and Tom can now be fixed given those time intervals.

result =

Mon 00:00-08:15: <free>

Mon 09:00-15:00: <free>

Mon 16:30-24:00: <free>

5.7 Discussion
The examples presented in this Chapter all show how straightforward
the new programming abstraction interacts with standard Scala code.
And since we are concerned with distributed programming we also have
to configure the individual applications for their respective execution
environments.



Chapter 6

Programming Abstractions

In a distributed language a closure may
escape not only the scope of its free
identifiers, but even their address space.

Luca Cardelli1

Hilfinger [60] provides a short history of major abstraction mecha-
nisms in programming languages, with an emphasis on procedure and
data abstraction. This history does not mention control abstraction, al-
though the mechanisms for control abstraction are present in early func-
tional languages such as Lisp.

Control abstraction has been used in several sequential languages to
support data abstraction. For example, CLU iterators (or generators) are
a limited form of control abstraction that allows the user of an ADT
to operate on the elements of the type without knowing its underlying
representation. Both abstractions are fundamental tools for modular pro-
gramming.

Data abstraction allows the programmer to separate the interface and
the (possibly several) implementation(s) of an ADT, and to control visi-
bility over the implementation details. Within the context of a single run-
ning application, the subtleties of resource usage and abstraction safety
are much better understood as for distributed applications. Indeed, when
code (or data) is transmitted between programs running on different ma-
chines, the question about what kinds of guarantees a language infras-
tructure should offer arises inevitably (see Section 3.2).

1Luca Cardelli is well-known for his research in type theory and operational seman-
tics; he also implemented the first ML compiler in 1980.
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Control abstraction allows the programmer to abstract the common
parts of a repetitive code pattern while relying on the caller to provide
the parts that differ. Thus, similarly to data abstraction, which hides the
implementations of an ADT from the user of the type, control abstraction
hides the exact sequencing of operations from the user of the control
construct. In particular, it increases the expressiveness of a language by
providing a means to extend the set of available statements. For instance,
while Java is pretty good at data abstraction, it is less flexible with respect
to control abstraction since it doesn’t support closures (see Section 2.1.2).

Our primary goal when designing our programming abstraction for
mobile code (see Section 1.2) is to provide distribution capabilities at the
language level. Since Scala [89] provides powerful language abstractions
which can be smoothly combined and statically type-checked, we follow
the same design philosophy when extending the language features with
our new programming abstraction.

On one side, Scala is a functional language; it naturally supports the
notion of lambda abstraction with its unification of objects and functions
(see Section 2.1). On the other side, Scala provides a generalized data
binding mechanism; everything is an object and import clauses can open
arbitrary objects (see Section 6.2.2).

Both language features are presented in the following two sections.
Then we introduce and formalize our programming model. Finally, we
discuss several aspects of our model in relation with other research works
(presented in Chapter 4).

6.1 Closures as Control Abstraction
Closures (introduced in Section 2.1.2) are a powerful control abstraction
which allows to suspend the evaluation of a function body with bindings
to its lexical scope.

Previous work on CML [67] and other languages shows that first-
class functions and channels increase the expressive power of a language
where concurrently executing processes can communicate by exchanging
values.

The expressiveness of closures is particularly well emphasized in the
implementation of several Scala core libraries, e.g. message handling in
the Scala Actors library, event handling in the Scala Swing library or
support for embedded DSL in the Scala parsing library. The present
work takes a similar approach to extend the notion of lexical scope in a
distributed programming environment.
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6.1.1 Lexical Closures
A lexical closure is an anonymous function that may escape the scope of
its free identifiers. The corresponding variable bindings therefore need to
be captured when defining closures in order to be able to later access their
actual values. Here, it is important to understand that it’s the binding,
not the value of the variable, that is captured. Thus, a closure can not
only access the value of the variables it closes over but can also assign
new values that will persist between calls to the closure.

Furthermore, closure conversion breaks the stack-based storage allo-
cation scheme for function invocations and instead requires heap-based
allocation. Formally, a lexical closure is a closed lambda term where
every variable occurence is bound.

Closure conversion becomes slightly more complicated when the lan-
guage provides some binding mechanism to access variables declared
outside the lexical context such as static variables or variables declared
in Scala objects.

To illustrate that case let us consider the two Scala code samples in
Listing 6.1: the source code on the left side contains an anonymous func-
tion (k: Int) => {..} with type Int => Int which simply performs the
sum of integer variables bound to different contexts; the transformed code
on the right side shows its intermediate representation as generated by
the Scala compiler front-end.

object x {

var i = 0

object y { var i = 1 }

}

class O { // outer

var i = 2

class I { // inner

var j = 3

object z { var i = 4 }

(k: Int) =>

k + x.i + x.y.i +

i + j + z.i

}

}

//...

class O$I$$anonfun$1 extends Object

with Function1 with ScalaObject {

def this($outer: O$I) /*..*/

//...

def apply(k: Int): Int =

k.+

(x.i()).+

(x$y.i()).+
(this.$outer.O$I$$$outer().i()).+
(this.$outer.j()).+
(this.$outer.z().i());

val $outer: O$I = _;

};

Listing 6.1: Scala closure and free variables.



98 CHAPTER 6. PROGRAMMING ABSTRACTIONS

Concretely, we can see from the above example that variables used in the
function body are accessed in three different ways:

- Variable k, a formal parameter of method apply, is bound and is
directly accessible in the code;

- Variables x.i and x.y.i are free, and, since they are declared in sin-
gleton objects2, they are not explicitely captured during the closure
conversion;

- The remaining three free variables are made accessible through an
outer field $outer (see Section 7.2.1) with the type O$I of the enclos-
ing instance.

In particular, the access to free variables occurs through some synthetic
getter/setter methods belonging to their respective declaration scopes.

Furthermore, with the declaration class O (see left side in Listing 6.1)
the operand i in the body of the anonymous function is transformed
into this.$outer.O$I$$$outer().i() (third case); if we change the above
declaration to object O the operand i is then transformed into O.this.i()

(second case).
When transforming the code of anonymous functions in a distributed

environment we must find a mechanism to preserve bindings to variables
in their originating scope.

6.1.2 Detached Closures
We define a detached closure as a lexical closure which can be moved
outside of an execution environment — e.g. outside the Java run-time
environment — and brought back to another environment while keeping
variable bindings to their originating scopes. The local environment of a
detached closure as prescribed by lexical scoping is thus extended to a
distributed environment and it may escape the address space of its free
identifiers.

A concern when moving objects containing references is deciding how
much to move. An object is typically part of a graph of references, and
one could move a single object, several levels of objects, or the entire
graph. The simplest approach — moving the specified object alone —
may be inappropriate. Depending on how the object is implemented,
invocations of the moved object may require remote references that would
have been avoided if other related objects had been moved as well.

2Either a global object or an object declared in a singleton object.
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Lexical closures in Scala are serializable objects and the serialization of
their arguments is under the programmer’s responsability. In this work
we adopt the same policy for detached closures and extend the handling
of free variables to a distributed scope. Since free objects may be stateful
objects we choose not to move them together with the detached closure
and introduce remote proxies to remotely access their members.

6.2 Generalized Data Binding Mechanism

Lexical binding does not provide any mechanism for the selective import
of bindings to different lexical contexts. Many programming languages
feature a top-level language construct in order to support that concept
of modularity, e.g. uses clauses in Pascal and Ada, include directives in
C++, using clauses in C# and import clauses in Java and Modula-23.

Compared to Java and other object-oriented languages Scala— as well
as Python — features a generalized data binding mechanism that pro-
vides a flexible name resolution mechanism and a uniform access to ob-
ject name spaces:

- Classes in Scala contain no static members; Scala objects act as dy-
namic modules4 [64] and make Java static members useless.

- Import clauses in Scala may occur in any scope in the source code;
member renaming can be used to solve ambiguities between im-
ports appearing at the same scope level.

6.2.1 Module Objects

The concept of code modularity first appeared in Pascal-like languages;
examples of language features include the Turbo Pascal unit construct,
the Modula-2 module declaration and the Ada package statement. Later
on, the notion of namespace was introduced to allow the logical grouping
of unique identifiers; thus, a namespace in C++ is defined with a names-
pace block while in Java the idea of a namespace is embodied in Java
packages.

The language Scala unifies the concepts of objects, modules and pack-
ages.

3 The language Modula-2 supports both selective import and export clauses.
4Object members may also be imported in Scala.
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6.2.2 Import Clauses
Scala packages and their members can be imported using import clauses
[90, §13.2]. Imported members can then be accessed by a simple name like
Random, as opposed to requiring a qualified name like scala.util.Random.

Import clauses in Scala are more general than Java’s: they can appear
anywhere, not just at the beginning of a compilation unit; they can import
packages themselves, not just their non-package members5; finally, they
can also rename or hide members.

Example 1 The source code in Listing 6.2 illustrates the shadowing effect
of import clauses as prescribed by the scoping rules of Scala:

- the first import clause (line 1) appears at the top-level scope and
imports class Queue from package collection.immutable,

- the second import clause (line 6) imports the mutable library class
Queue into the scope of object import1,

- the third import clause (line 11) appears inside an expression and
reintroduces the (shadowed) immutable library class Queue in the
local scope and, finally,

- the last import clause (line 16) uses renaming to access the im-
mutable library class Queue.

import collection.immutable.Queue

2 object import1 extends Application {

val p = new Queue enqueue 1

4 println("p="+p.dequeue)

6 import collection.mutable.Queue

val q = new Queue[Int]; q enqueue 1

8 println("q="+q.dequeue)

10 val p2 = {

import collection.immutable.Queue

12 new Queue enqueue 1

}

14 println("p2="+p2.dequeue)

5This is only natural if you think of nested packages being contained in their sur-
rounding package.
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16 import collection.immutable.{Queue => ImQueue}

val p3 = new ImQueue enqueue 1

18 println("p3="+p3.dequeue)

}

Listing 6.2: Import clauses at any scope level.

Example 2 The source code in Listing 6.3 presents several use cases of
import clauses6 opening Scala objects:

- the clause import List._ imports the library function range from
object List7,

- the clause import a._ imports class A from package a,
- the clause import b._ imports class B from object b,
- the clause import c._ imports class D from variable c,
- the clause import m._ (indirectly) imports the library function max

from field c.m and, finally,
- the clause import d._ imports the method init from variable d.

package a { case class A(x: Int) }

object b { case class B(x: Int) }

class C { case class D(x: Int); val m = Math }

trait D { type T; val init: T }

class E(c: C, d: D) {

import List._; println(range(0, 2))

import a._; println(A(1))

import b._; println(B(2))

import c._; println(D(3))

import m._; println(max(3, 4))

import d._; println(init)

}

Listing 6.3: Import clauses opening any object.

6Objects List and Math are imported implicitly as members of the package scala.
7All public object/package members are actually imported when specifying _.
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6.3 Programming Model
Our programming model is based on the following postulate: the notion
of lambda abstraction is more than just a founding concept of functional
programming, it provides an effective way to model dynamic aspects of
relocated code in a distributed settings.

First, our model adopts a similar approach as the Obliq’s answer (see
Section 4.2.1) to the technical challenge of finding a meaning for higher-
order distributed computations.

- it handles free variables as local objects and uses network references
to access them remotely.

- it extends the execution context of detached closures with remote
bindings referring to the surrounding scope of their originating
code location.

Second, our model borrows characteristics from both the REV paradigm
(Section 2.2.3) and the RPC paradigm (Section 2.2.2):

- following the REV paradigm the client benefits from a more general
service since it provides the code to be remotely executed; unlike
REV, code arguments are provided by the server.

- following the RPC paradigm the server can remotely access object
references located on the client node.

Finally our programming model for mobile code directly benefits from
the expressiveness of the language Scala and promotes the strengths of
lambda abstraction in a distributed settings, with no need for a specially
designed new language. In particular, it can be realized without any
change to the underlying semantics.

6.3.1 Detach Calculus
In this section we first formalize the meaning of the detach primitive
in the restricted setting of a classical lambda calculus extended with lo-
cations. Then, in section 6.3.2, we formalize our approach in a more
complete, object-oriented setting.

Syntax We define the syntax of our calculus inductively as follows,
where the meta-variable x denotes a variable, the meta-variable M (or
N ) denotes a term and the meta-variable A (or B) denotes a location.

M,N ::= x | M N | λx.M | [M ]A | detach(λx.M)
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The first three kinds of terms are borrowed from the classical lambda
calculus: a term can be a variable x, an application M N or a lambda
abstraction λx.M (also called function literal in the following).

Our detach calculus contains in addition the primitive [M ]A, which
means thatM must be evaluated at location A, and detach(λx.M), which
represents a function literal with a different behaviour, w.r.t. location,
from the classical λx.M construct.

While both terms λx.M and detach(λx.M) are applied to some ar-
gument, meaning that the formal argument x is replaced with the actual
argument, the location where the computation goes on is different:

- With the classical construct λx.M , the computation continues at the
location that directly enclosed λx.M .

- With the new construct detach(λx.M) the computation continues
at the location that called detach(λx.M).

Thus, in the former case the function literal is implicitly attached to its
enclosing location, while in the later case it is explicitly "detached" and
is moved to the caller location when applied.

Semantics We describe the semantics of our calculus with the equiva-
lence relation ≡ and the reduction relation →.

The equivalence relation ≡ reflects some trivial properties of locations;
the two interesting rules are [M N ]A ≡ [M ]A [N ]A and [[M ]A]A ≡ [M ]A.

The reduction relation → is mostly similar to the one of the classical
lambda calculus. There are two additional rules that deal with distributed
lambda redexes, i.e. with situations where a function literal and its argu-
ment are located at different places.

[[λx.M ]AN ]B → [M{x\[N ]B}]A (R-Att)

[[detach(λx.M)]AN ]B → [M{x\[N ]B}]B (R-Det)

In the first rule (R-Att) the function literal λx.M is by default attached
to its enclosing location A. So, the evaluation continues in the location A
even though the top-level enclosing location was B (notation: an expres-
sion like M{x\N} represents the substitution of N for x in M ).

In the second rule (R-Det), the function literal detach(λx.M) is de-
tached from its enclosing location A. So, the evaluation continues in the
location B where the call is invoked. In that case the body M is moved
from location A to location B, which is the essence of mobile code.
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Example Suppose we have the two locations L (local) and R (remote)
and let M be the following term:

M = λz. [λy.detach(λx. x+ y + z)]R

In the following we trace the evaluation of the term [M 1 2 3]L, which
starts at location L.

[M 1 2 3]L = [λz. [λy.detach(λx. x+ y + z)]R 1 2 3]L (by substitution)
→ [[λy.detach(λx. x+ y + 1)]R 2 3]L (by λ-reduction)
→ [[detach(λx. x+ 2 + 1)]R 3]L (using R-Att)
→ [3 + 2 + 1]L (using R-Det)

What is typical of the primitive detach in this example is that the
evaluation of the term x + y + z, which is initially located at R, finally
gets executed at location L (after arguments have been passed) because
it has been explicitly detached from its enclosing location. In a concrete
implementation this means that this piece of code is at some point moved
from location R to location L.

6.3.2 Formalization

This section presents a formal description of our type system. To facilitate
the apprehension of the key idea, we limit our formalization to a core
subset of Java [48] inspired by FJ [63]. Thus, the presented core language
support only top-level classes and no top-level objects.

We add the declaration of abstract methods and the expression detach.
The presented approach, however, extends to the whole of Java and other
object-oriented languages like Scala.

The core language syntax is shown in Figure 6.1. The syntax of pro-
grams, classes and expressions is standard.

First we extend the expression rule t in the above language syntax
with a lightweight syntax for function literals as shown in Figure 6.2.
Our choice corresponds to the syntax of function literals in Scala: the
character symbol⇒ introduces the function body whose type determines
the return type of the function.

Second we introduce the primitive detach to specify that the function
literal requires a special handling. In particular, the applied transforma-
tion is expected to be transparent in respect to the type of (x : T )⇒ t.
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P
cdef
fdef
mdef

t

T

::= cdef t
::= classC extendsD { fdef mdef }
::= f : T
::= def m(x : T ) : T
| def m(x : T ) : T = t

::= x
| t.f
| t.f = t1
| t.m(t)
| newC(t)

::= C

C,D, .. ∈ Classes
x, y, .. ∈ V ariables
f, g, .. ∈ Fields
m, n, .. ∈Methods

(variable)
(selection)
(assignment)
(invocation)
(instantiation)
(class)

Figure 6.1: Core language syntax.

t ::= . . .
| (x : T )⇒ t
| detach((x : T )⇒ t)

(same as before)
(function literal)
(detached function)

Figure 6.2: Extended language syntax.

Well-Formedness For type checking programs we assume a fixed, well-
formed class table CT that defines the nominal subtyping relation <: and
the structural subtyping relation <:struct.

In addition to user-defined classes CT also contains a set FT of syn-
thetic classes where each class has a unique name and defines an abstract
method apply(x : T ) : T such that T and T form a unique combination
of user-defined and synthetic classes taken from the class table8.

The exact set of classes for FT actually depends on the type-checked
program; we stipulate that the set FT should be large enough to include
all ftype(T , T ) appearing in a typing derivation of that program.

Furthermore we provide the following auxiliary functions for retriev-
ing type information from the class table:

- fields(C) = f : D where f : D are all fields in C and its parents;

- mtype(C,m) = T → T where T are the types of the formal param-
eters of method m and T its result type;

- mbody(C,m) = (x, t) where def m(x : T ) : T = t is defined in the
most direct superclass of C that defines m;

8In practice, those classes are defined by the generic functions Function1[T1, R],
Function2[T1, T2, R], etc.
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- override(C,m) = true if ∀D with C <: D mtype(D,m) is either
undefined or mtype(C,m) = mtype(D,m).

- and ftype(T , T ) = F where F ∈ FT and mtype(F, apply) = T → T .

A method m is well-formed in a class C if its body is well-typed in an
environment Γ that maps m’s formal parameters to their declared types
(WF-Method1), and this to C (WF-Method2). A class C is well-formed
if all its method definitions are well-formed (WF-Class).

Γ = x : T override(C,m)

C ` def m(x : T ) : T
(WF-Method1)

Γ = x : T , this : C override(C,m)
Γ ` t : T0 T0 <: T

C ` def m(x : T ) : T = t

(WF-Method2)

C ` mdef
` classC extendsD { fdef mdef }

(WF-Class)

Figure 6.3: Well-formedness.

We also provide an auxiliary function to operate on terms:

- type(t) = T where T = C if t = x with x : C or T = D if t = t.f
with f : D, and so on;

Typing Rules Figure 6.4 shows the typing rules for expressions in the
core language. The typing judgement has the form Γ ` t : C; Γ maps
(free) variables to types. The rules for typing variables (T-Var) and field
selections (T-Sel) are standard. In the typing rule for assignments (T-Ass)
we choose to use type C in the judgment to support chaining of variable
updates. Finally, the typing rules for typing method invocations (T-Call)
and instantiations (T-New) are also standard.

The additional typing rules given in Figure 6.5 are introduced together
with the extended language; they rely on the three transformations close,
proxy and detach which are introduced later.

While the closure conversion of a normal function literal results in the
partial application of the function body to its explicitly constructed envi-
ronment, the transformation of a detached function requires additional
formalization work.
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x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t : C f : D ∈ fields(C)

Γ ` t.f : D
(T-Sel)

Γ ` t : C f : D ∈ fields(C)
Γ ` t1 : E E <: D

Γ ` t.f = t1 : C

(T-Ass)

Γ ` t : C mtype(C,m) = T → T
∀i ∈ {1..|T |}Γ ` ti : Ci C <: T

Γ ` t.m(t) : T

(T-Call)

fields(E) = f : D
∀i ∈ {1..|D|}Γ ` ti : Ci C <: D

Γ ` newE(t) : E

(T-New)

Figure 6.4: Typing rules.

Γ, x1 : T1 ` t : T close(x1 : T1, x : T , t) = Efresh

Γ ` newEfresh(x1) : Efresh

Γ ` (x : T )⇒ t : Efresh

(T-Clo)

Γ, x1 : T1 ` t : T detach(x1 : T1, x : T , t) = Efresh

proxy(x1 : T1) = t1 Γ ` newEfresh(t1) : Efresh

Γ ` detach((x : T )⇒ t) : Efresh

(T-Det)

Figure 6.5: Extended typing rules.

Thus, class Efresh in rule (T-Clo) is a freshly created class with unique
name which captures its environment at the point of its instantiation and
defines a method apply with the closed expression t as body.

Similarly, class Efresh in rule (T-Det) gives access to variables declared
in the originating environment of the detached closure by the means of
the freshly created proxy objects t1. Thus, a free variable x1 : T1 originally
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used in t is accessed remotely through its associated proxy t1.

Γ, x1 : T1 ` t : T CT ′ = CT ⊗ Efresh

CT ` classEfresh extends ftype(T , T ) {
x1 : T1;
def apply(x : T ) : T = t

}
CT ` close(x1 : T1, x : T , t) = Efresh, CT

′

(close)

Figure 6.6: Transformation rule (close).

The close transformation (Figure 6.6) adds to class table CT a new
class definition Efresh synthetized from the tuple (x1 : T1, x : T , t) where
x1 : T1 represent the free variables captured by expression t.

Γ, x1 : T1,` t : T CT ′ = CT ⊗ Pintf ⊗ Pimpl ⊗ Efresh

Pintf <:struct T1 t1 = t[x1/x2]
CT ` classEfresh extends ftype(T , T ) {

x2 : Pintf ;
def apply(x : T ) : T = t1

}
classPintf {

def mi(x : T ) : T
}
classPimpl extendsPintf {
x2 : type(x1)
def mi(x : T ) : T = x2.mi(x)

}
CT ` detach(x1 : T1, x : T , t) = Efresh, CT

′

(detach)

Figure 6.7: Transformation rule (detach).

Γ, x : T ` Pintf <:struct T1

∀i ∈ {1..|T |}x ` ti = newPimpl(xi) : Pimpl

Γ ` proxy(x : T ) = t : Pimpl

(proxy)

Figure 6.8: Transformation rule (proxy).
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Example In the following source code, written in the extended language
(see Figures 6.1 and 6.2), we assume the existence of the root class Object,
the class Int which represents integer values (with a method +, etc.) and
the class Function_Int_Intwhich defines a type for functions from integer
values to integer values (corresponding to ftype({Int}, Int) ∈ FT , with
a method apply(x: Int): Int).

class A extends Object {

z: Int

def m(y: Int): Function_Int_Int =

detach((x: Int) => x.+(y).+(this.z))

}

new A(1).m(2).apply(3)

Listing 6.4: Core language example.

The transformation rule in Figure 6.7 is applied when encountering
the primitive detach in the above source code. Here, the transformed
code additionaly relies on the predefined class RemoteObject, a base type
for remote objects, while the two classes IntRef_proxy, a remote type
for integer references (with method elem, etc.), and IntRef_proxyImpl are
omitted for brevity.

class A_proxy extends RemoteObject {

def z(): Int

def z_=(z0: Int): A_proxy

}

class A_proxyImpl extends A_proxy {

a: A

def z(): Int = a.z

def z_=(z0: Int): A_proxy = a.z = z0

}

class A_detach extends Function_Int_Int {

a: A_proxy

y: IntRef_proxy

def apply(x: Int): Int = x.+(y.elem()).+(a.z())

}

class A extends Object {

z: Int

def m(y: Int): Function_Int_Int = new A_detach(

new A_proxyImpl(this), new IntRef_proxyImpl(y)
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)

}

new A(1).m(2).apply(3)

Listing 6.5: Core language example (transformed).

6.4 Discussion
Lexical closures are most interesting in programming languages that can
treat functions as first-class values since storing a closure for later use im-
plies an extension of the lifetime of the closed-over lexical scope beyond
what one would normally expect.

The programming model presented in this Chapter applies the same
concept to the distributed programming environment and extends the
static scope of a detached closure to the network. It looks familiar from
a user’s perspective and its implementation mainly involves high-level
code transformations which hide the boilerplate of hand-written code.



Chapter 7

Implementation

Comments lie. Code doesn’t.

Ron Jeffries1

In the following we present our implementation of the programming
model discussed in the previous chapter. We rely on the Java run-time en-
vironment to provide support for code mobility and security enforce-
ment, but our solution could easily be ported to other programming
environments such as .net platform.

In the first section we focus on the transformations performed dur-
ing closure conversion and discuss several code examples of function
literals transformed into lexical closures respectively into detached clo-
sures. Chapter 5 gives several programming examples of detached clo-
sures transmitted via different communication mediums such as files and
typed channels.

Then we describe in details the compiler and library extensions imple-
mented as additional code transformations, run-time support and pro-
gramming interface.

Finally we discuss several run-time constraints imposed by the target
platform.

1Ron Jeffries is one of the three founders of the Extreme Programming (XP) software
development methodology.

http://en.wikipedia.org/wiki/Extreme_Programming
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7.1 Closure Conversion
Closure conversion serves the powerful concept of control abstraction (see
Section 2.1.2) and many aspects of closure conversion have been studied
in past research works.

For example, Glew [46] presents a formal closure conversion transla-
tion for a second-order object language and proves it correct. Minamide
and al. [79, 80] study the typing properties of closure conversion for simply-
typed and polymorphic lambda calculi and validate their research by
implementing type-preserving transformations in two ML compilers.

In the following we first look at closure conversion as performed by
the Scala compiler developed at EPFL and then present the additional
transformations involved in the conversion of detached closures as intro-
duced in the previous chapter. An important property of closure conver-
sion is that the representation of the surrounding environment is private
to the closure; that property is also preserved by the transformation of
detached closures.

7.1.1 Lexical Closures
In Listing 7.1 we define a function literal (x: Int) => {..} in some class
A; its single parameter x is called a bound variable and the other variables
— in this case y and z — referring to its surrounding context are called
free (non-local) variables.

Mutable variables like z are declared using the var keyword and the
Scala compiler handles them differently whether they appear as class
members or as local variables.

class A {

val y = 1

var z = 2

((x: Int) => {z += 1; x + y + z})

}

Listing 7.1: Scala closure inside a class.

The Scala compiler analyzes the source code of Listing 7.1 and applies
several transformations to the internal representation of the program;
Listing 7.2 presents the transformed code after the LambdaLift phase (ex-
plained later in Section 7.2.1).
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class A extends java.lang.Object with ScalaObject {

//..

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
{

(new $anonfun$1(A.this): Function1)

};

class $anonfun$1
extends java.lang.Object with Function1 with ScalaObject {

def this($outer: A): $anonfun$1 = //..

def apply(x: Int): Int = {

$anonfun$1.this.$outer.z_=(
$anonfun$1.this.$outer.z().+(1));

x.+

($anonfun$1.this.$outer.y()).+
($anonfun$1.this.$outer.z());

};

//..

}

}

Listing 7.2: Scala closure inside a class (converted).

The generated closure definition looks like a specialized class definition:

class $anonfun$1
extends java.lang.Object with Function1 with ScalaObject {

def this($outer: A): $anonfun$1 = /*..*/

def apply(x: Int): Int = /*..*/

};

it defines a constructor for capturing the closure environment and a
method apply for the deferred evaluation of the closure body. Actually
it doesn’t capture free variables defined in the enclosing class individu-
ally, but refers to the outer field outer — an instance of that class — for
accessing them through their respective getter/setter methods.

Then the closure instantiation

new $anonfun$1(A.this)
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invokes the class constructor with argument A.this and so captures the
free identifiers declared in the surrounding scope (class A).

7.1.2 Detached Closures
The conversion of detached closures is implemented by an additional trans-
formation phase in the Scala compiler front-end. The Detach phase2 per-
forms several code transformations when encountering the marker object
detach in the Scala source code.

The marker object detach is declared in package scala.remoting of the
Scala standard library and defines dummy apply methods to be handled
by the compiler (similar to method Predef.classOf):

package scala.remoting

object detach {

def apply[R](f: Function0[R]): Function0[R] = f

def apply[T0, R](f: Function1[T0, R]): Function1[T0, R] = f

def apply[T0,T1,R](f: Function2[T0,T1,R]): Function2[T0,T1,R] = f

// ..

}

and can be applied to function literals with different arities3:

class A {

val y = 1

detach(() => y) // Function0[Int]

detach((x: Int) => Math.abs(x)+y) // Function1[Int,Int]

detach((x: Int, c: Char) => x+y+c) // Function2[Int,Char,Int]

def f(x: Int): Int = x + y

detach(f _) // Function1[Int,Int]

val g = (x: Int) => x + y

//detach(g) // error: detach inapplicable for value g

}

2The phase is currently enabled using the compiler option -Ydetach.
3 detach accepts all the function types represented by the predefined Scala traits

Function0, Function1, etc..
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Given some detached closure defined in the enclosing class A the
Detach phase performs the following transformations:

1. it generates in the top-level scope a remote proxy interface A$proxy
(see Listing 7.5) and the corresponding proxy implementation A$proxyImpl
(see Listing 7.6) for forwarding calls to the accessor methods4 of the
enclosing instance A.this;

2. it generates the remote proxy interfaces Bi$proxy and the corre-
sponding proxy implementations Bi$proxyImpl to remotely access
the objects bi (of type Bi) captured by the closure and not declared
in the enclosing class A;

3. it transforms the local (λ-lifted) closure definition $anonfun$j into
a detached closure definition $anonfun$j$detach (see Listing 7.7)
which remotely access the objects A.this and bi through the remote
proxy interfaces A$proxy, Bi$proxy;

4. and, finally, it creates remote references for the accessed objects
A.this and bi and pass them as arguments to the closure instantia-
tion new $anonfun$j(..) (see Listing 7.4).

Here, one implementation decision needs to be explained further: ob-
jects bi declared outside the enclosing class A are all accessed remotely
using the remote proxy interfaces Bi$proxy (point 2 below). We could
move serializable objects together with the detached closure – a serial-
izable object — depending on if they are stateful or not. In the present
implementation we choose not to distinguish further the case and simply
handle all referenced objects in the same manner.

Rather than discussing the internals of the transformation phase itself
we examine several interesting examples with both the Scala source code
and the corresponding transformed code. Each example emphasizes a
particular aspect of closure conversion; we presents first the code trans-
formation of a lexical closure and then focus on the code transformation
of a detached closure.

4Scala member variables are accessed using setter/getter methods.
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Example 1: Inside a class

In the source code of Listing 7.3 we slightly modify the Scala code pre-
sented in Listing 7.1 by adding the marker object detach around the
function literal (x: Int) => {..}:

class A {

val y = 1

var z = 2

detach((x: Int) => {z += 1; x + y + z})

}

Listing 7.3: Detached Scala closure inside a class.

After the Detach phase the transformed code looks as follows:
- the remote proxy object proxy$1 is passed as argument to the closure
instantiation (Figure 7.4, line 12);

- the type of proxy$1 is defined as the remote proxy type A$Proxy (Fig-
ure 7.5) together with its implementation A$ProxyImpl (Figure 7.6);

- the detached closure is defined as the serializable class $anonfun$1$detach
containing the method apply with a transformed body (Figure 7.7).

class A extends java.lang.Object with ScalaObject {

2 //..

def y(): Int = A.this.y;

4 def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
6 {

val proxy$1: A$proxy =

8 RemoteRef.bind(

"A/proxy$1",
10 new A$proxyImpl("A/proxy$1", A.this)).

$asInstanceOf[A$proxy]();
12 (new $anonfun$1$detach(proxy$1): Function1)

};

14 };

Listing 7.4: Detached Scala closure inside a class (1/4).

The call to method RemoteRef.bind binds the synthetic name "A/proxy$1"
to the remote proxy object proxy$1 of type A$proxyImpl (Figure 7.6).
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@remote

trait A$proxy
extends java.lang.Object with java.rmi.Remote with ScalaObject {

def y(): Int;

def z(): Int;

def z_=(x$1: Int): Unit

};

Listing 7.5: Detached Scala closure inside a class (2/4).

The class A$proxyImpl (Listing 7.6) implements the behavior defined
by the remote interface A$proxy (Listing 7.5) and merely forwards method
calls to class A.

class A$proxyImpl
extends java.rmi.server.UnicastRemoteObject with A$proxy
with ScalaObject with java.rmi.server.Unreferenced {

//..

def this(x$1: String, x$2: A): A$proxyImpl = /*..*/

def unreferenced(): Unit = {

Debug.info("unreferenced: ".+(A$proxyImpl.this.x$1));
RemoteRef.unbind(A$proxyImpl.this.x$1);

};

def y(): Int = A$proxyImpl.this.x$2.y();
def z(): Int = A$proxyImpl.this.x$2.z();
def z_=(x$1: Int): Unit = A$proxyImpl.this.x$2.z_=(x$1)

};

Listing 7.6: Detached Scala closure inside a class (3/4).

@SerialVersionUID(261399656060227L) @serializable

class $anonfun$1$detach
extends java.lang.Object with Function1 with ScalaObject {

//..

def this($outer: A$proxy): $anonfun$1$detach = /*..*/

def apply(x: Int): Int = {

$anonfun$1$detach.this.$outer.z_=(
$anonfun$1$detach.this.$outer.z().+(1));

x.+

($anonfun$1$detach.this.$outer.y()).+
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($anonfun$1$detach.this.$outer.z());
};

};

Listing 7.7: Detached Scala closure inside a class (4/4).

Figure 7.1 represents the two transformations graphically: the dia-
gram above the dashed line corresponds to the transformed closure with
its outer class A (see Listing 7.2) and the diagram below the dashed line
describes the interaction between the transformed closure marked with
detach and the same class A.

Figure 7.1: Detached closure and outer class.
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Example 2: Inside an object

Source code in Listing 7.8 is similar to that of Listing 7.1: it defines the
function literal (x: Int) => {..} in an object A instead of a class A. In this
case the closure definition accesses the free variables directly (see Listing
7.9, lines 13-14) using the variable A.this instead of the outer field outer

as there exists exactly one instance of the enclosing class A.

object A {

val y = 1

var z = 2

((x: Int) => {z += 1; x + y + z})

}

Listing 7.8: Scala closure inside an object.

class A extends java.lang.Object with ScalaObject {

2 //..

def y(): Int = A.this.y;

4 def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
6 {

(new $anonfun$1(): Function1)

8 };

class $anonfun$1
10 extends java.lang.Object with Function1 with ScalaObject {

def this(): $anonfun$1 = /*..*/

12 def apply(x: Int): Int = {

A.this.z_=(A.this.z().+(1));

14 x.+(A.this.y()).+(A.this.z());

};

16 //..

};

18 };

Listing 7.9: Scala closure inside an object (converted).

While lexical closures declared inside a class (Listing 7.2) or inside
an object (Listing 7.9) are transformed slightly differently in respect to
the this reference, detached closures declared in a class or in an object
undergo the same transformation (compare Listing 7.7 and Listing 7.14).
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import scala.remoting.detach

object A {

val y = 1

var z = 2

detach((x: Int) => {z += 1; x + y + z})

}

Listing 7.10: Detached closure inside an object.

class A extends java.lang.Object with ScalaObject {

//...

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
{

val uid$1: String = new java.rmi.server.UID().toString();

val proxy$1: A$proxy = scala.runtime.RemoteRef.bind(

"A/proxy1".+(uid$1),
new A$proxyImpl("A/proxy1".+(uid$1), A.this)

).$asInstanceOf[A$proxy]();
(new $anonfun$1$detach(proxy$1): Function1)

};

};

Listing 7.11: Detached closure inside an object (1/4).

@remote

trait A$proxy extends java.lang.Object

with java.rmi.Remote with ScalaObject {

def y(): Int;

def z_=(x$1: Int): Unit;

def z(): Int

};

Listing 7.12: Detached closure inside an object (2/4).

The class A$proxyImpl (Listing 7.13) implements the behavior defined
by the remote interface A$proxy (Listing 7.12) and merely forwards method
calls to object A.
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class A$proxyImpl extends java.rmi.server.UnicastRemoteObject

with A$proxy with java.rmi.server.Unreferenced with ScalaObject {

//...

def this(x$1: String, x$2: A): A$proxyImpl = /*..*/

def unreferenced(): Unit = {

scala.remoting.Debug.info("unreferenced: ".+(A$proxyImpl.this.x$1));
scala.runtime.RemoteRef.unbind(A$proxyImpl.this.x$1)

};

def y(): Int = A$proxyImpl.this.x$2.y();
def z_=(x$1: Int): Unit = A$proxyImpl.this.x$2.z_=(x$1);
def z(): Int = A$proxyImpl.this.x$2.z()

};

Listing 7.13: Detached closure inside an object (3/4).

@serializable @SerialVersionUID(156475164860L)

class $anonfun$1$detach extends java.lang.Object

with Function1 with ScalaObject {

def this($outer: A$proxy): $anonfun$1$detach = /*..*/

def apply(x: Int): Int = {

$anonfun$1$detach.this.$outer.z_=(
$anonfun$1$detach.this.$outer.z().+(1));

x.+

($anonfun$1$detach.this.$outer.y()).+
($anonfun$1$detach.this.$outer.z())

};

//...

};

Listing 7.14: Detached closure inside an object (4/4).



122 CHAPTER 7. IMPLEMENTATION

Example 3: Inside an inner class

In Listing 7.15 we introduce two more nesting levels5 in the surrounding
context and now define the function literal (u: Int) => {..} in some
inner class C declared locally to another class B, itself declared in the
top-level class A.

class A {

val r = 0

class B {

val y = 1

var z = 2

class C(x: Int) {

val v = y

var w = 4

var b = new B

((u: Int) => {w+=1; z+=1; u + v + w + x + y + z + b.y + r})

}

}

}

Listing 7.15: Scala closure inside an inner class.

The transformed code for class C (Listing 7.16) declares two new syn-
thetic fields: the member variable $A$B$C$$x (line 12) gets initialized with
the constructor argument x of class C and the method $A$B$C$$$outer()
(line 22) gives access to the members of class B.

class A extends java.lang.Object with ScalaObject {

2 //...

def r(): Int = A.this.r;

4 class B extends java.lang.Object with ScalaObject {

//...

6 def this($outer: A): A#B = //..

def y(): Int = B.this.y;

8 def z(): Int = B.this.z;

def z_=(x$1: Int): Unit = B.this.z = x$1;
10 class C extends java.lang.Object with ScalaObject {

//...

5This program configuration is not covered by the language formalization of Sec-
tion 6.3.2.
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12 final val A$B$C$$x: Int = _;

def this($outer: A#B, x: Int): A#B#C = //..

14 def v(): Int = C.this.v;

def w(): Int = C.this.w;

16 def w_=(x$1: Int): Unit = C.this.w = x$1;
def b(): A#B = C.this.b;

18 def b_=(x$1: A#B): Unit = C.this.b = x$1;
{

20 (new $anonfun$1(C.this): Function1)

};

22 def A$B$C$$$outer(): A#B = C.this.$outer;
};

24 def A$B$$$outer(): A = B.this.$outer
}

26 };

class $anonfun$1 extends java.lang.Object

28 with Function1 with ScalaObject {

def this($outer: A#B#C): $anonfun$1 = //..

30 def apply(u: Int): Int = {

$anonfun$1.this.$outer.w_=(
32 $anonfun$1.this.$outer.w().+(1));

$anonfun$1.this.$outer.A$B$C$$$outer().z_=(
34 $anonfun$1.this.$outer.A$B$C$$$outer().z().+(1));

u.+

36 ($anonfun$1.this.$outer.v()).+
($anonfun$1.this.$outer.w()).+

38 ($anonfun$1.this.$outer.A$B$C$$x).+
($anonfun$1.this.$outer.A$B$C$$$outer().y()).+

40 ($anonfun$1.this.$outer.A$B$C$$$outer().z()).+
($anonfun$1.this.$outer.b().y()).+

42 ($anonfun$1.this.$outer.A$B$C$$$outer().A$B$$$outer().r())
};

44 //...

def A$B$C$$anonfun$$$outer(): A#B#C =

46 $anonfun$1.this.$outer;
};

Listing 7.16: Scala closure inside an inner class (converted).

We now add the primitive detach to the source code of Listing 7.15 to
inform the Scala compiler it should handle the function literal (u: Int) => {..}
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as a detached closure. The modified source code is given in Listing 7.17.

import scala.remoting._

class A {

val r = 0

class B {

val y = 1

var z = 2

class C(x: Int) {

val v = y

var w = 4

var b = new B

detach((u: Int) => {w+=1; z+=1; u + v + w + x + y + z + b.y + r})

}

}

}

Listing 7.17: Detached closure inside an inner class.

The Detach phase (Section 7.2.2) transforms the closure instantiation
appearing in the original block expression (lines 18-20 in Listing 7.16) into
the registration of the remote proxy proxy$1 followed by the instantiation
of the generated detached closure.

class A extends java.lang.Object with ScalaObject {

2 //...

def r(): Int = A.this.r;

4 class B extends java.lang.Object with ScalaObject {

//...

6 def this($outer: A): A#B = /*..*/

def y(): Int = B.this.y;

8 def z(): Int = B.this.z;

def z_=(x$1: Int): Unit = B.this.z = x$1;
10 class C extends java.lang.Object with ScalaObject {

//...

12 def this($outer: A#B, x: Int): A#B#C = /*..*/

def v(): Int = C.this.v;

14 def w(): Int = C.this.w;

def w_=(x$1: Int): Unit = C.this.w = x$1;
16 def b(): A#B = C.this.b;

def b_=(x$1: A#B): Unit = C.this.b = x$1;
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18 {

val uid$1: java.lang.String =

20 new java.rmi.server.UID().toString();

val proxy$1: C$proxy = scala.runtime.RemoteRef.bind(

22 "A/B/C/proxy$1$".+(uid$1),
new C$proxyImpl("A/B/C/proxy$1$".+(uid$1), C.this)

24 ).$asInstanceOf[C$proxy]();
(new $anonfun$1$detach(proxy$1): Function1)

26 };

def A$B$C$$$outer(): A#B = C.this.$outer;
28 };

def A$B$$$outer(): A = B.this.$outer
30 }

};

Listing 7.18: Detached closure inside an inner class (1/4).

@remote

trait C$proxy extends java.lang.Object

with java.rmi.Remote with ScalaObject {

def x(): Int;

def v(): Int;

def w(): Int;

def w_=(x$1: Int): Unit;

def A$B$y(): Int

def A$B$z(): Int;

def A$B$z_=(x$1: Int): Unit;

def A$r(): Int;

};

Listing 7.19: Detached closure inside an inner class (2/4).

class C$proxyImpl extends java.rmi.server.UnicastRemoteObject

with C$proxy with java.rmi.server.Unreferenced with ScalaObject {

//...

def this(x$1: String, x$2: A#B#C): C$proxyImpl = /*..*/

def unreferenced(): Unit = {

scala.remoting.Debug.info(

"unreferenced: ".+(C$proxyImpl.this.x$1));
scala.runtime.RemoteRef.unbind(C$proxyImpl.this.x$1)

};
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def x(): Int =

C$proxyImpl.this.x$2.A$B$C$$$outer().A$B$$$outer().A$B$C$$x;
def v(): Int =

C$proxyImpl.this.x$2.A$B$C$$$outer().A$B$$$outer().v()
def w(): Int =

C$proxyImpl.this.x$2.A$B$C$$$outer().A$B$$$outer().w();
def w_=(x$1: Int): Unit =

C$proxyImpl.this.x$2.A$B$C$$$outer().A$B$$$outer().w_=(x$1);
def A$B$y(): Int = C$proxyImpl.this.x$2.A$B$C$$$outer().y();
def A$B$z(): Int = C$proxyImpl.this.x$2.A$B$C$$$outer().z();
def A$B$z_=(x$1: Int): Unit =

C$proxyImpl.this.x$2.A$B$C$$$outer().z_=(x$1);

Listing 7.20: Detached closure inside an inner class (3/4).

@serializable @SerialVersionUID(262141039231930L)

class $anonfun$1$detach
extends java.lang.Object with Function1 with ScalaObject {

def this($outer: A#B#C$proxy): $anonfun$1$detach = { /*..*/ };

def apply(u: Int): Int = {

$anonfun$1$detach.this.$outer.w_=(
$anonfun$1$detach.this.$outer.w().+(1));

$anonfun$1$detach.this.$outer.A$B$z_=(
$anonfun$1$detach.this.$outer.A$B$z().+(1));

u.+

($anonfun$1$detach.this.$outer.v()).+
($anonfun$1$detach.this.$outer.w()).+
($anonfun$1$detach.this.$outer.A$B$C$$x).+
($anonfun$1$detach.this.$outer.A$B$y()).+
($anonfun$1$detach.this.$outer.A$B$z()).+
($anonfun$1$detach.this.$outer.b().y()).+
($anonfun$1$detach.this.$outer.A$r())

};

//...

def A$B$C$$anonfun$$$outer(): C$proxy =

$anonfun$1$detach.this.$outer;
};

Listing 7.21: Detached closure inside an inner class (4/4).
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Example 4: Inside a member function

In the source code of Listing 7.22 we consider a function value defined
(and applied) in a method f. The free variables captured by the lexi-
cal closure (u: Int) => {..} are handled differently whenever they are
declared locally or are members of class A.

class A {

val y = 1

var z = 2

def f(x: Int): Int = {

val v = 3

var w = 4

((u: Int) => {w += 1; z += 1; u + v + w + x + y + z})(2)

}

}

Listing 7.22: Scala closure inside a member function.

class A extends java.lang.Object with ScalaObject {

//...

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
def f(x$1: Int): Int = {

val v$1: Int = 3;

var w$1: scala.runtime.IntRef = new scala.runtime.IntRef(4);

scala.Int.unbox({

(new $anonfun$f$1(A.this, x$1, v$1, w$1): Function1)

}.apply(scala.Int.box(2)));

};

class $anonfun$f$1
extends java.lang.Object with Function1 with ScalaObject {

def this($outer: A, x$1: Int, v$1: Int,

w$1: scala.runtime.IntRef)): $anonfun$f$1 = { /*..*/ }

final def apply(u: Int): Int = {

$anonfun$f$1.this.w$1.elem =

$anonfun$f$1.this.w$1.elem.+(1);
$anonfun$f$1.this.$outer.z_=(

$anonfun$f$1.this.$outer.z().+(1));
u.+
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($anonfun$f$1.this.v$1).+
($anonfun$f$1.this.w$1.elem).+
($anonfun$f$1.this.x$1).+
($anonfun$f$1.this.$outer.y()).+
($anonfun$f$1.this.$outer.z());

};

//...

};

Listing 7.23: Scala closure inside a member function (converted).

In Listing 7.24 we make one small addition to the source code pre-
sented in Listing 7.22: we mark the function literal (u: Int) => {..} with
the detach primitive.

import scala.remoting.detach

class A {

val y = 1

var z = 2

def f(x: Int): Int = {

val v = 3

var w = 4

detach((u: Int) => {w+=1; z+=1; u + v + w + x + y + z})(2)

}

}

Listing 7.24: Detached closure inside a member function.

The transformed code is presented below in Listing 7.25 (closure in-
stantiation), in Listing 7.26 (proxy interface), in Listing 7.27 (proxy im-
plementation) and in Listing 7.28 (closure definition).

class A extends java.lang.Object with ScalaObject {

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
def f(x$1: Int): Int = {

val v$1: Int = 3;

var w$1: scala.runtime.IntRef = new scala.runtime.IntRef(4);

scala.Int.unbox({

val proxy$1: A$proxy =

scala.runtime.RemoteRef.bind(
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"A/proxy$1",
new A$proxyImpl("A/proxy$1", A.this)

).$asInstanceOf[A$proxy]();
val proxy$2: scala.runtime.remoting.RemoteIntRef =

scala.runtime.RemoteRef.bind(

"A/proxy$2",
new scala.runtime.remoting.RemoteIntRefImpl("A/proxy$2", w$1)

).$asInstanceOf[scala.runtime.remoting.RemoteIntRef]();
(new $anonfun$f$1$detach(proxy$1, x$1, v$1, proxy$2): Function1)

}.apply(scala.Int.box(2)));

//..

};

Listing 7.25: Detached closure inside a member function (1/4).

@remote

trait A$proxy extends java.lang.Object

with java.rmi.Remote with ScalaObject {

def y(): Int;

def z(): Int;

def z_=(x$1: Int): Unit

};

Listing 7.26: Detached closure inside a member function (2/4).

class A$proxyImpl
extends java.rmi.server.UnicastRemoteObject with A$proxy
with java.rmi.server.Unreferenced with ScalaObject {

//...

def this(x$2: String, x$3: A): A$proxyImpl = //..

def unreferenced(): Unit = {

Debug.info("unreferenced: ".+(A$proxyImpl.this.x$2));
RemoteRef.unbind(A$proxyImpl.this.x$2);

};

def y(): Int = A$proxyImpl.this.x$3.y();
def z(): Int = A$proxyImpl.this.x$3.z();
def z_=(x$1: Int): Unit = A$proxyImpl.this.x$3.z_=(x$1)

};

Listing 7.27: Detached closure inside a member function (3/4).
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@serializable @SerialVersionUID(8307678459700123073L)

class $anonfun$f$1$detach
extends java.lang.Object with Function1 with ScalaObject {

def this($outer: A$proxy, x$1: Int, v$1: Int,

w$1: scala.runtime.remoting.RemoteIntRef):

$anonfun$f$1$detach = //..

def apply(u: Int): Int = {

$anonfun$f$1$detach.this.w$1.elem_=(
$anonfun$f$1$detach.this.w$1.elem().+(1));

$anonfun$f$1$detach.this.$outer.z_=(
$anonfun$f$1$detach.this.$outer.z().+(1));

u.+

($anonfun$f$1$detach.this.v$1.+
($anonfun$f$1$detach.this.w$1.elem()).+
($anonfun$f$1$detach.this.x$1).+
($anonfun$f$1$detach.this.$outer.y()).+
($anonfun$f$1$detach.this.$outer.z());

};

//..

};

Listing 7.28: Detached closure inside a member function (4/4).
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Example 5: Inside a local function

In Listing 7.29 we consider a function value defined inside the local func-
tion g. Here, the Scala compiler front-end transforms g into the lifted
method g$1 (Figure 7.30, line 32) and adds a reference parameter (line
33) with type IntRef for the local mutable variable w.

class C {

val y = 1

var z = 2

def f(x: Int): Int = {

val v = 3

var w = 4

def g(u: Int): Int = {

((r: Int) => {w+=1; z+=1; r + u + v + w + x + y + z})(x)

}

g(4)

}

}

Listing 7.29: Scala closure inside a local function.

class C extends java.lang.Object with ScalaObject {

2 //...

def y(): Int = C.this.y;

4 def z(): Int = C.this.z;

def z_=(x$1: Int): Unit = C.this.z = x$1;
6 def f(x$1: Int): Int = {

val v$1: Int = 3;

8 var w$1: scala.runtime.IntRef = new scala.runtime.IntRef(4);

C.this.g$1(4, x$1, v$1, w$1)
10 };

class $anonfun$g$1$1 extends java.lang.Object

12 with Function1 with ScalaObject {

def this($outer: C, x$1: Int,

14 v$1: Int, w$1: scala.runtime.IntRef,

u$1: Int): $anonfun$g$1$1 = { /*..*/ };

16 def apply(r: Int): Int = {

$anonfun$g$1$1.this.w$1.elem =

18 $anonfun$g$1$1.this.w$1.elem.+(1);
$anonfun$g$1$1.this.$outer.z_=(
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20 $anonfun$g$1$1.this.$outer.z().+(1));
r.+

22 ($anonfun$g$1$1.this.u$1).+
($anonfun$g$1$1.this.v$1).+

24 ($anonfun$g$1$1.this.w$1.elem).+
($anonfun$g$1$1.this.x$1).+

26 ($anonfun$g$1$1.this.$outer.y()).+
($anonfun$g$1$1.this.$outer.z())

28 };

def C$$anonfun$$$outer(): C = $anonfun$g$1$1.this.$outer;
30 //...

};

32 def g$1(u$1: Int, x$1: Int,

v$1: Int, w$1: scala.runtime.IntRef): Int =

34 scala.Int.unbox({

(new $anonfun$g$1$1(C.this, x$1, v$1, w$1, u$1): Function1)

36 }.apply(scala.Int.box(x$1)))
}

Listing 7.30: Scala closure inside a local function (converted).

Again, given the source code in Listing 7.29, we mark the function lit-
eral (r: Int) => {..} with the detach primitive (Listing 7.31) and present
the corresponding transformed code.

import scala.remoting.detach

class A {

val y = 1

var z = 2

def f(x: Int): Int = {

val v = 3

var w = 4

def g(u: Int): Int = {

detach((r: Int) => {w+=1; z+=1; r + u + v + w + x + y + z})(x)

}

g(4)

}

}

Listing 7.31: Detached closure inside a local function.
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class A extends java.lang.Object with ScalaObject {

//..

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
def f(x$1: Int): Int = {

val v$1: Int = 3;

var w$1: scala.runtime.IntRef = new scala.runtime.IntRef(4);

A.this.g$1(4, x$1, v$1, w$1)
};

def g$1(u$1: Int, x$1: Int, v$1: Int,

w$1: scala.runtime.IntRef): Int =

scala.Int.unbox({

val proxy$1: A$proxy =

scala.runtime.RemoteRef.bind(

"A/proxy$1",
new A$proxyImpl("A/proxy$1", A.this)

).$asInstanceOf[A$proxy]();
val proxy$2: scala.runtime.remoting.RemoteIntRef =

scala.runtime.RemoteRef.bind(

"A/proxy$2",
new scala.runtime.remoting.RemoteIntRefImpl("A/proxy$2", w$1)

).$asInstanceOf[scala.runtime.remoting.RemoteIntRef]();
(new $anonfun$g$1$1$detach(

proxy$1, x$1, v$1, proxy$2, u$1): Function1)

}).apply(scala.Int.box(x$1)))
}

};

Listing 7.32: Detached closure inside a local function (1/4).

@remote

trait A$proxy extends java.lang.Object

with java.rmi.Remote with ScalaObject {

def y(): Int;

def z(): Int;

def z_=(x$1: Int): Unit

};

Listing 7.33: Detached closure inside a local function (2/4).
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class A$proxyImpl extends java.rmi.server.UnicastRemoteObject

with A$proxy with java.rmi.server.Unreferenced with ScalaObject {

//...

def this(x$2: String, x$3: A): A$proxyImpl = { /*..*/ };

def unreferenced(): Unit = {

Debug.info("unreferenced: ".+(A$proxyImpl.this.x$2));
RemoteRef.unbind(A$proxyImpl.this.x$2);

};

def y(): Int = A$proxyImpl.this.x$3.y();
def z(): Int = A$proxyImpl.this.x$3.z();
def z_=(x$1: Int): Unit = A$proxyImpl.this.x$3.z_=(x$1)

};

Listing 7.34: Detached closure inside a local function (3/4).

@serializable @SerialVersionUID(8559650693438568463L)

class $anonfun$g$1$1$detach
extends java.lang.Object with Function1 with ScalaObject {

def this($outer: A$proxy, x$1: Int,

v$1: Int, w$1: scala.runtime.remoting.RemoteIntRef,

u$1: Int): $anonfun$g$1$1$detach = { /*..*/ };

def apply(r: Int): Int = {

$anonfun$g$1$1$detach.this.w$1.elem_=(
$anonfun$g$1$1$detach.this.w$1.elem().+(1));

$anonfun$g$1$1$detach.this.$outer.z_=(
$anonfun$g$1$1$detach.this.$outer.z().+(1));

r.+

($anonfun$g$1$1$detach.this.u$1).+
($anonfun$g$1$1$detach.this.v$1).+
($anonfun$g$1$1$detach.this.w$1.elem()).+
($anonfun$g$1$1$detach.this.x$1).+
($anonfun$g$1$1$detach.this.$outer.y()).+
($anonfun$g$1$1$detach.this.$outer.z());

};

//..

};

Listing 7.35: Detached closure inside a local function (4/4).
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Example 6: Inside a closure

In the source code of Listing 7.36 the function value is defined (and ap-
plied) inside another closure. Since lexical closures in Scala are handled
like normal classes by the Scala compiler this example appears to be a
special case of Example 3.

class A {

val y = 1

var z = 2

((w: Int) =>

w + ((x: Int) => {z += 1; w + x + y + z})(2)

)

}

Listing 7.36: Scala closure inside a closure.

class A extends java.lang.Object with ScalaObject {

//...

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
{

(new $anonfun$1(A.this): Function1)

};

class $anonfun$1
extends java.lang.Object with Function1 with ScalaObject {

def this($outer: A): $anonfun$1 = { /*..*/ };

def apply(w: Int): Int = w.+(scala.Int.unbox({

(new $anonfun$apply$1($anonfun$1.this): Function1)

}.apply(scala.Int.box(2))));

def A$$anonfun$$$outer(): A = $anonfun$1.this.$outer;
//...

class $anonfun$apply$1
extends java.lang.Object with Function1 with ScalaObject {

def this($outer: $anonfun$1, w$1: Int):

$anonfun$apply$1 = { /*..*/ };

def apply(x: Int): Int = {

$anonfun$apply$1.this.$outer.A$$anonfun$$$outer().z_=(
$anonfun$apply$1.this.$outer.A$$anonfun$$$outer().z().+(1));

$anonfun$apply$1.this.w$1.+
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(x).+

($anonfun$apply$1.this.$outer.A$$anonfun$$$outer().y()).+
($anonfun$apply$1.this.$outer.A$$anonfun$$$outer().z());

};

def A$$anonfun$$anonfun$$$outer(): $anonfun$1 =

$anonfun$apply$1.this.$outer;
//...

}

}

}

Listing 7.37: Scala closure inside a closure (converted).

import scala.remoting.detach

class A {

val y = 1

var z = 2

((w: Int) =>

w + detach((x: Int) => {z += 1; w + x + y + z})(2)

)

}

Listing 7.38: Detached closure inside a closure.

class A extends java.lang.Object with ScalaObject {

//..

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
{

(new $anonfun$1(A.this): Function1)

};

class $anonfun$1 extends java.lang.Object

with Function1 with ScalaObject {

def this($outer: A): $anonfun$1 = { /*..*/ }

def apply(w: Int): Int = w.+(scala.Int.unbox({

val uid$1: String = new java.rmi.server.UID().toString();

val proxy$1: $anonfun$1$proxy = scala.runtime.RemoteRef.bind(

"A/$anonfun$1/proxy$1$".+(uid$1),
new $anonfun$1$proxyImpl(
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"A/$anonfun$1/proxy$1$".+(uid$1), $anonfun$1.this)
).$asInstanceOf[$anonfun$1$proxy]();
(new $anonfun$apply$1$detach(proxy$1): Function1)

}.apply(scala.Int.box(2))));

//..

def A$$anonfun$$$outer(): A = $anonfun$1.this.$outer;
}

};

Listing 7.39: Detached closure inside a closure (1/4).

@remote

trait $anonfun$1$proxy extends java.lang.Object

with java.rmi.Remote with ScalaObject {

def $outer(): A

};

Listing 7.40: Detached closure inside a closure (2/4).

class $anonfun$1$proxyImpl extends java.rmi.server.UnicastRemoteObject

with $anonfun$1$proxy with java.rmi.server.Unreferenced with ScalaObject {

//..

def this(x$1: String, x$2: $anonfun$1) /*..*/

def unreferenced(): Unit = {

scala.remoting.Debug.info(

"unreferenced: ".+($anonfun$1$proxyImpl.this.x$1));
scala.runtime.RemoteRef.unbind($anonfun$1$proxyImpl.this.x$1)

};

def $outer(): A =

$anonfun$1$proxyImpl.this.x$2.A$$anonfun$$$outer().A$$anonfun$$$outer()
};

Listing 7.41: Detached closure inside a closure (3/4).

@serializable @SerialVersionUID(9085527522896121L)

class $anonfun$apply$1$detach extends java.lang.Object

with Function1 with ScalaObject {

def this($outer: $anonfun$1$proxy, w$1: Int) /*..*/

def apply(x: Int): Int = {
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$anonfun$apply$1$detach.this.$outer.A$$anonfun$$$outer().z_=(
$anonfun$apply$1$detach.this.$outer.A$$anonfun$$$outer().z().+(1));

$anonfun$apply$1$detach.this.w$1.+
(x).+

($anonfun$apply$1$detach.this.$outer.A$$anonfun$$$outer().y()).+
($anonfun$apply$1$detach.this.$outer.A$$anonfun$$$outer().z())

};

//..

def A$$anonfun$$anonfun$$$outer(): $anonfun$1$proxy =

$anonfun$apply$1$detach.this.$outer;
};

Listing 7.42: Detached closure inside a closure (4/4).
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Example 7: Referring out of scope objects

In the source code of Listing 7.43 the function literal (x: Int) => {..}

accesses the two objects B and Math directly.

object B {

var z = 0

}

class A {

object C {

var w = 0

}

val y = 1

((x: Int) => {B.z += 1; x + y + Math.max(B.z, C.w)})

}

Listing 7.43: Scala closure referring out of scope objects.

class B extends java.lang.Object with ScalaObject {

//...

def z(): Int = B.this.z;

def z_=(x$1: Int): Unit = B.this.z = x$1
};

class A extends java.lang.Object with ScalaObject {

//...

class C extends java.lang.Object with ScalaObject {

//...

def this($outer: A): A#C = { /*..*/ };

def w(): Int = C.this.w;

def w_=(x$1: Int): Unit = C.this.w = x$1;
def A$C$$$outer(): A = C.this.$outer

};

def C(): A#C = { /*..*/ };

def y(): Int = A.this.y;

{

(new $anonfun$1(A.this): Function1)

};

class $anonfun$1 extends java.lang.Object

with Function1 with ScalaObject {

//...

def this($outer: A): $anonfun$1 = { /*..*/ };
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def apply(x: Int): Int = {

B.z_=(B.z().+(1));

x.+

($anonfun$1.this.$outer.y()).+
(scala.Math.max(B.z(), $anonfun$1.this.$outer.C().w()))

};

def A$$anonfun$$$outer(): A = $anonfun$1.this.$outer;
}

};

Listing 7.44: Scala closure referring out of scope objects (converted).

As above the detached function (x: Int) => {..} in Listing 7.45 ac-
cesses the two objects B and Math directly. However, object Math is now
handled as an ubiquitous reference (Listing 7.51) since it is part of the
Scala standard library, while object B is accessed through a remote proxy
(Listing 7.47).

import scala.remoting._

object B {

var z = 0

}

class A {

object C {

var w = 0

}

val y = 1

detach((x: Int) => {B.z += 1; x + y + Math.max(B.z, C.w)})

}

Listing 7.45: Detached closure referring out of scope objects.

class B extends java.lang.Object with ScalaObject {

//...

def z(): Int = B.this.z;

def z_=(x$1: Int): Unit = B.this.z = x$1;
};

class A extends java.lang.Object with ScalaObject {

//...

class C extends java.lang.Object with ScalaObject {

//...
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def this($outer: A): A#C = /*..*/

def w(): Int = C.this.w;

def w_=(x$1: Int): Unit = C.this.w = x$1;
def A$C$$$outer(): A = C.this.$outer

};

def C(): A#C = { /*..*/ };

def y(): Int = A.this.y;

{

val uid$1: java.lang.String =

new java.rmi.server.UID().toString();

val proxy$2: B$proxy = scala.runtime.RemoteRef.bind(

"A/proxy$2$".+(uid$1),
new B$proxyImpl("A/proxy$2$".+(uid$1), B)

).$asInstanceOf[B$proxy]();
val proxy$3: A$proxy = scala.runtime.RemoteRef.bind(

"A/proxy$3$".+(uid$1),
new A$proxyImpl("A/proxy$3$".+(uid$1), A.this)

).$asInstanceOf[A$proxy]();
(new A$$anonfun$1$detach(proxy$2, proxy$3): Function1)

};

};

Listing 7.46: Detached closure referring out of scope objects (1/6).

@remote

trait B$proxy extends java.lang.Object

with java.rmi.Remote with ScalaObject {

def z(): Int;

def z_=(x$1: Int): Unit

};

Listing 7.47: Detached closure referring out of scope objects (2/6).

class B$proxyImpl extends java.rmi.server.UnicastRemoteObject

with B$proxy with java.rmi.server.Unreferenced with ScalaObject {

//...

def this(x$1: java.lang.String, x$2: object B): B$proxyImpl = /*..*/

def unreferenced(): Unit = {

scala.remoting.Debug.info("unreferenced: ".+(B$proxyImpl.this.x$1));
scala.runtime.RemoteRef.unbind(B$proxyImpl.this.x$1)

};
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def z_=(x$1: Int): Unit = B$proxyImpl.this.x$2.z_=(x$1);
def z(): Int = B$proxyImpl.this.x$2.z();

};

Listing 7.48: Detached closure referring out of scope objects (3/6).

@remote

trait A$proxy extends java.lang.Object

with java.rmi.Remote with ScalaObject {

def C(): A#C;

def y(): Int

};

Listing 7.49: Detached closure referring out of scope objects (4/6).

class A$proxyImpl extends java.rmi.server.UnicastRemoteObject

with A$proxy with java.rmi.server.Unreferenced with ScalaObject {

//...

def this(x$3: java.lang.String, x$4: A): A$proxyImpl = /*..*/

def unreferenced(): Unit = {

scala.remoting.Debug.info(

"unreferenced: ".+(A$proxyImpl.this.x$3));
scala.runtime.RemoteRef.unbind(A$proxyImpl.this.x$3)

};

def C(): A#C = A$proxyImpl.this.x$4.C();
def y(): Int = A$proxyImpl.this.x$4.y();

};

Listing 7.50: Detached closure referring out of scope objects (5/6).

@serializable @SerialVersionUID(261399656060227L)

class A$$anonfun$1$detach extends java.lang.Object

with Function1 with ScalaObject {

//...

def this(proxy$1: B$proxy, $outer: A$proxy) = /*..*/

def apply(x: Int): Int = {

A$$anonfun1detach.this.proxy$1.z_=(
A$$anonfun$1$detach.this.proxy$1.z().+(1));

x.+

(A$$anonfun1detach.this.$outer.y()).+
(scala.Math.max(A$$anonfun$1$detach.this.proxy$1.z(),
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A$$anonfun$1$detach.this.$outer.C().w()))
};

};

Listing 7.51: Detached closure referring out of scope objects (6/6).

Figure 7.2 represents the two transformations graphically: the dia-
gram above the dashed line corresponds to the transformed closure with
its outer class A (see Listing 7.44) and the diagram below the dashed line
describes the interaction between the transformed closure marked with
detach and the same class A.

Figure 7.2: Detached closure and free variables.



144 CHAPTER 7. IMPLEMENTATION

7.2 Extending Scala
The programming support for mobile code is implemented as an exten-
sion (see Listing 7.52) of the Scala compiler and the Scala standard library
developed at EPFL.

First, the Scala compiler front-end is augmented with the new trans-
formation phase Detach; second, the Scala standard library is extended
with the package scala.runtime.remoting which provides the required
run-time support for the Java VM and the package scala.remoting as a
simple programming interface (API).

1220 compiler/scala/tools/nsc/transform/Detach.scala

231 library/scala/remoting/Channel.scala

27 library/scala/remoting/Debug.scala

49 library/scala/remoting/detach.scala

68 library/scala/remoting/ServerChannel.scala

182 library/scala/runtime/RemoteRef.scala

85 library/scala/runtime/remoting/Debug.scala

192 library/scala/runtime/remoting/RegistryDelegate.scala

50 library/scala/runtime/remoting/RemoteBooleanRef.scala

50 library/scala/runtime/remoting/RemoteByteRef.scala

50 library/scala/runtime/remoting/RemoteCharRef.scala

49 library/scala/runtime/remoting/RemoteDoubleRef.scala

49 library/scala/runtime/remoting/RemoteFloatRef.scala

50 library/scala/runtime/remoting/RemoteIntRef.scala

50 library/scala/runtime/remoting/RemoteLongRef.scala

50 library/scala/runtime/remoting/RemoteObjectRef.scala

49 library/scala/runtime/remoting/RemoteShortRef.scala

2501 total

Listing 7.52: Extending Scala with detached closures.

7.2.1 Scala Compiler
The overall structure of the Scala compiler developed at EPFL follows the
traditional compiler structure consisting of a front-end and a back-end,
each one working on its own internal representation.

Over 80% of the compiler complexity is concentrated in the front-
end (with around 60% for the type-checker alone), testifying of the high
degree of expressiveness featured by the language Scala.
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Both the front-end and the back-end are organized as a graph of suc-
cessive phases (Figure 7.3):

- The front-end phases analyze the source files, reporting errors if the
input files don’t make up a valid Scala program, and generate a fully
attributed abstract syntax tree (AST) . Then, the AST is successively
simplified by several transformation phases [3] — including high-
level optimizations such as the elimination of tail-recursive calls —
until it looks very similar to Java code.

- The back-end phases transform the AST into a portable intermediate
code, perform several code optimizations — such as code inlining,
tail call elimination and dead code elimination — and finally gen-
erate either Java class files or .net assemblies.

NOTE
The rewriting of the Scala 2 compiler coincides with the reordering
of several transformation phases [3]. In the new compiler, the Erasure

phase comes early and in particular now precedes the LambdaLift

phase. On one side, that change has the advantage that later phases
do not have to handle the most complex Scala types; on the other side,
erasing types early may prevent a later phase from performing some
optimizations relying on type informations.

Transformation Phases

Transformation phases (see right part in Figure 7.3) perform either tree
transformations or both tree and type transformations.

Tree transformers are applied to the AST of the compiled program
while type transformers are applied to the type of all identifiers refer-
enced during compilation, i.e. defined in the AST or loaded from files
compiled separately.

Concretely, transformation phases analyze their input tree, looking
for the concept(s) they should translate away or substitute with extended
trees, and return a possibly transformed tree. For example, the UnCurry

phase transforms curried functions into multi-argument functions.

NOTE
The Typer phase has two important functions in relation with the trans-
formation phases: first, it ensures that those (later) phases perform
their tasks on a valid Scala program, and, second, it checks that the
successive transformations applied to the program preserve type cor-
rectness.
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Figure 7.3: Scala compiler phases.
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The addition of a new transformation phase for the conversion of
detached closures is described in detail in Section 7.2.2; we present here
several transformation phases that interact in some ways with the phase
to be added.

ExplicitOuter Phase The ExplicitOuter phase comes after the UnCurry

phase and before the Erasure phase (see Figure 7.3).
Nested classes in Scala have full access to the members of their en-

closing class(es). The task of the ExplicitOuter phase is to lift nested
classes to the top-level scope by augmenting them with an explicit ref-
erence to their enclosing object. This reference is then used to access all
the members of enclosing classes.

The ExplicitOuter phase performs several transformations on types,
e.g. it adds an outer parameter to the formal parameters of a constructor
in a inner non-trait class or it adds an outer accessor outer$C to every
inner class with fully qualified name C that is not an interface.

Also, the ExplicitOuter phase performs several transformations on
terms, e.g. a class which is not an interface and is not static gets an outer
accessor, a reference C.this where C refers to an outer class is replaced
by a selection this.$outer$$C.

Erasure Phase The Erasure phase performs a partial erasure of the types
appearing in a Scala program. Partial erasure maps Scala types into JVM
types respectively CLR types [103]. Thus, a Scala program compiled to
JVM bytecode must be annotated with valid Java types. Erased types are
Java types that define a type discipline on the program that is equivalent
to, although less precise than that of the program typed with Scala types
[89, §3.6].

Generics in Java 5 [48] are a well-known example of partial erasure
mapping, a translation initially implemented in GJ [19], an extension of
Java with generic types and methods. In that case, the erasure consists
of removing type parameters and replacing type variables by the erasure
of their bounds.

The Erasure phase performs several transformations on types, e.g. it
replaces a type-bound structure by the erasure of its upper bound, it
erases type references scala.Any or scala.AnyVal to java.lang.Object, it
replaces a non-empty type intersection by the erasure of its first parent.

LambdaLift Phase Classes and functions in Scala can be defined inside
many different contexts e.g. blocks, classes, objects or functions. Classes
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and objects can additionally appear inside a package — either a user-
specified package or the predefined empty package —; we call them
top-level classes respectively top-level objects.

The task of the LambdaLift phase is to lift classes either to the top-
level scope or to the scope of their enclosing class; functions are trans-
formed into members of their enclosing class (e.g. private methods).
Lifted classes and functions get additional parameters for the free vari-
ables appearing in their (initial) bodies. Mutable variables are turned
into reference cells.

Transformation phases invoked after LambdaLift (which itself comes
after ExplicitOuter) thus see a Scala program as a set of top-level classes.

Transformation Example

Given the code example from Listing 7.1, the Typer phase introduces ac-
cessor functions for the fields y and z — e.g. a getter method def z: Int

and a setter method def z_=(x$1: Int) for field z — and updates ac-
cordingly their references in the function body. Listing 7.53 presents
the transformed code ready to be processed by the later transformation
phases.

class A extends java.lang.Object with ScalaObject {

private[this] val y: Int = 1;

def y: Int = A.this.y;

private[this] var z: Int = 2;

def z: Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
((x: Int) => {

A.this.z_=(A.this.z.+(1));

x.+(A.this.y).+(A.this.z))

}

//..

}

Listing 7.53: Scala closure inside a class (Typer).

In the following we present the closure transformations performed by
the three phases Uncurry, ExplicitOuter and LambdaLift.

The Uncurry phase translates the function value to an anonymous
class with arity 1 (unary function) and body for the method apply (List-
ing 7.54).
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class A extends java.lang.Object with ScalaObject {

//..

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
{

class $anonfun
extends java.lang.Object with (Int) => Int with ScalaObject {

def this(): $anonfun = //..

final def apply(x: Int): Int = {

A.this.z_=(A.this.z().+(1));

x.+(A.this.y()).+(A.this.z())

}

};

(new $anonfun(): (Int) => Int)

}

}

Listing 7.54: Scala closure inside a class (Uncurry).

The ExplicitOuter phase replaces the reference to the enclosing class
with the outer field $outer and updates the constructor parameter list
and the body of the method apply accordingly (Listing 7.55).

class A extends java.lang.Object with ScalaObject {

//..

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
{

class $anonfun
extends java.lang.Object with (Int) => Int with ScalaObject {

def this($outer: A.this.type): $anonfun = //..

final def apply(x: Int): Int = {

$anonfun.this.$outer.z_=($anonfun.this.$outer.z().+(1));
x.+($anonfun.this.$outer.y()).+($anonfun.this.$outer.z())

};

private[this] val $outer: A.this.type = _;

def A$$anonfun$$$outer(): A = $anonfun.this.$outer
};
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(new $anonfun(A.this): (Int) => Int)

}

}

Listing 7.55: Scala closure inside a class (ExplicitOuter).

Then the LambdaLift phase moves (and renames) the anonymous class
$anonfun to the scope of its enclosing class6 (Listing 7.56).

class A extends java.lang.Object with ScalaObject {

//..

def y(): Int = A.this.y;

def z(): Int = A.this.z;

def z_=(x$1: Int): Unit = A.this.z = x$1;
{

(new $anonfun$1(A.this): Function1)

};

class $anonfun$1
extends java.lang.Object with Function1 with ScalaObject {

def this($outer: A): $anonfun$1 = //..

def apply(x: Int): Int = {

$anonfun$1.this.$outer.z_=(
$anonfun$1.this.$outer.z().+(1));

x.+

($anonfun$1.this.$outer.y()).+
($anonfun$1.this.$outer.z());

};

//..

}

}

Listing 7.56: Scala closure inside a class (LambdaLift).

7.2.2 Detach Phase
The Detach phase follows LambdaLift (see Figure 7.3) in the transforma-
tion process applied to the internal tree representation and looks for
applications of the marker object detach to function literals.

6The Flatten phase moves $anonfun$1 to the top-level scope when targeting the
Java VM.
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Concretely, the Detach transformation phase proceeds in three succes-
sive steps when processing a compilation unit:

• first it traverses the AST to gather the relevant symbol and tree
informations (e.g. captured this instance);

• then it adds new proxy symbols to the top-level scope and generates
the corresponding trees (added later to the appropriate statement
block by the method transformStats);

• finally, it transforms both the class definition and the class instanti-
ation of detached closures.

Tree traversal Informations collected during the tree traversal include:

• a HashMap[Symbol, SymSet] with function calls occuring in detach
closures,

• a HashMap[Symbol, SymSet] with module objects captured by de-
tached closures,

• a HashMap[Symbol, ClassDef] with class definitions containing a tree
node Apply for the marker object detach;

• a HashMap[Symbol, Symbol]with this instances captured by detached
closures;

• a HashMap[Tree, Apply] with expressions containing a tree node
Apply for object detach and instantiations of detached closures.

Proxy generation Proxy class definitions for the objects referenced in the
body of the detached closures are added to the top-level scope. Proxy
interfaces extend the RMI interface Remote and proxy implementations
extend the RMI class UnicastRemoteObject.

Closure transformation The operations performed during the tree trans-
formation include:

• the transformation of the closure definition representing the func-
tion value marked with the object detach,

• the transformation of the original closure instantiation into a block
expression where remotely accessed references are dynamically bound
before the detached closure is actually instantiated.
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7.2.3 Scala Run-time
The Scala standard library is extended with the package scala.runtime

which provides the RMI-based run-time support for the transformation
phase Detach described in Section 7.2.2.

While Scala programmers are not supposed to access those function-
alities it is nevertheless possible to write Scala source code by hand which
behaves the same as the generated one.

• The object RemoteRef in package scala.runtime provides several fa-
cilities to setup the name server and bind/unbind remote objects
to/from the name server.

• The run-time classes RemoteByteRef, RemoteCharRef, etc.. defined in
package scala.runtime.remoting are dual to ByteRef, CharRef, etc..
from package scala.runtime; they implement remote references7 for
primitive types such as Byte, Char, etc..

NOTE
In order to enforce some level of security, the standard RMI registry
implementation only allows processes on the same host to register
objects in the registry. So, by design, if a process tries to bind an
object to a remote registry an exception will be thrown.
The simplest technical solution to the remote registration problem

is to have a registry delegate. A registry delegate is an object that
serves as a proxy for the real registry. The delegate itself usually
appears in the registry under a well known name. It implements
the Registry interface and simply delegates all method calls to the
appropriate methods of the real registry. The delegate is allowed to
perform bind and unbind operations because it is running on the same
host as the registry.
The class RegistryDelegate in package scala.runtime.remoting im-

plements the registry delegate concept.

7.2.4 Scala API
The marker object detach in package scala.remoting is a compiler hint8
used to control the generation of the detached closures and their asso-
ciated remote proxies. The overloaded methods apply defined in object
detach (see Listing 7.57) implement the identity function by default.

7By inheriting from the RMI class UnicastRemoteObject.
8The conversion is currently enabled with the compiler option -Ydetach.
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Figure 7.4: Detached Scala closure architecture.

package scala.remoting

object detach {

def apply[R](f: Function0[R]): Function0[R] = f

def apply[T0, R](f: Function1[T0, R]): Function1[T0, R] = f

//... (function arities 2 up to 22)

}

Listing 7.57: The marker object detach (Scala API).
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7.3 Java Platform
In this work we limit ourselves to weak mobility (no migration of execution
state, see Section 3.3.1) as we intend to use an unmodified Java VM [72]
as computational environment.

Implementing strong mobility (migration of code and execution state,
see Section 3.1.2) in Java is indeed difficult. In order to move computa-
tions transparently the call stack needs to be preserved across migration.
But the Java security policy forbids Java bytecode itself to manipulate the
stack. Different approaches have been proposed for realizing transpar-
ent migration in Java: extending a Java VM [110], transforming source
code [108], or transforming bytecode [102].

While garbage collection, dynamic class loading and security enforce-
ment are under the responsability of the Java run-time environment type
safety is ensured both by the static type checker and the bytecode verifier.

Distributed Garbage Collection In order to ensure that unreachable
remote objects are unexported and garbage collected in a timely fashion
we reduce the maximum interval that the RMI run-time allows between
garbage collection of the local heap to one second (default is 60 seconds)
using the Sun-specific property sun.rmi.dgc.server.gcInterval9.

NOTE
In order to operate in a timely fashion, the DGC attempts to run local
asynchronous garbage collection periodically ([116]). As a result, full
GC cycles run at fixed intervals regardless of any attempts the local
GC makes to avoid them.

Maintaining up-to-date awareness of all unreachable objects
in a given JVM conflicts with the goals of a generational GC.
To resolve this conflict, the RMI run-time provides the two
Sun-specific system properties sun.rmi.dgc.server.gcInterval and
sun.rmi.dgc.client.gcInterval to decrease the frequency with which
RMI requests client and server-side asynchronous GC. The DGC
is responsible for maintaining leases. On the server side, when all
the outstanding leases to a particular server object expire, the DGC
makes sure the RMI run-time does not retain any references to the
server, thereby enabling the server to the garbage collected.

During the process, if the server implements the Unreferenced

interface, the server can find out if there are no longer
any open leases, Unreferenced consists of exactly one method:
public void unreferenced(). This can be useful when the server needs
to immediately release resources instead of waiting for garbage collec-
tion to occur.

9sun.rmi.* properties are not part of the public Java API and are subject to changes
in future implementations.
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Dynamic Class Loading We use the class RMIClassLoader of the Java
RMI library to dynamically load classes referenced by the detached clo-
sures. RMIClassLoader requires both a codebase and a security policy file
to be provided at execution time (see Listing 5.10).

Security In this work we rely on the Java VM to handle security is-
sues such as access control (security policies [75]), user authentication
(e.g. digital certificates), data integrity (e.g. code signing [51]) and data
confidentiality (through encryption).

Type Safety The Scala language (see Section 1.3.1) features an advanced
type systemwith powerful language abstractions that are statically checked.
For the type-safe execution of Scala programs we rely on the Java VM
whose bytecode verifier checks well-typedness at the bytecode level[92,
129].

7.4 Discussion
In this section we discuss both implementation considerations and pos-
sible improvements of the realized software extension.

They are two points worth mentioning regarding the implementation
of our solution: on the plus side, the compiler redesign initiated with
the language upgrade from Scala 1 to Scala 2 in March 2006 has notably
facilitated the addition of a new front-end phase; on the negative side,
the support for RTTI’s proposed by Schinz [103] — a required feature in
a distributed environment (e.g. [109]) — never became part of the main
software distribution, mainly due to performance weakness.

Finally, possible ways of improvement include the performance of Java
RMI and the secure transmission of the mobile code.

Performance
The performance of Java RMI depends on three main factors: object seri-
alization, socket communication and the RMI framework itself (protocol
and configuration).

Object Serialization Though Java serialization [57] provides great flex-
ibility, its overhead can be quite high. This is because object serialization
uses Java’s reflection mechanism to determine what data to serialize and
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how to serialize it. It is possible to convert objects to byte arrays more
efficiently by writing out objects manually with Java’s externalization
mechanism.

The cost of using the marker interface java.io.Serializable is that re-
flection runs slower than straight method calls. For instance, Greanier[50]
observes half-reduced average times when using the hand-written meth-
ods write-/readObject instead of the default mechanism.

Similarly, Mathew and al. [76] report a performance improvement of
20% or better for (de-)serializing objects using externalization on various
Java VM. However, implementing the java.io.Externalizable interface
requires more coding since read and write methods have to be hand-
coded in the child classes. Therefore, future additions to classes using
externalization will require more debugging than equivalent additions
made using serialization.

Finally, systems in which objects can be serialized cannot guarantee
that the environment to which an object initially belongs will be remotely
similar to the one in which it was frozen. This can be a problem if the
object assumes (as almost all code does) that its environment doesn’t
suddenly undergo drastic changes. This kind of problem can easily lead
to type safety problems and unforseable security risks. Our solution does
not address that technical issue, but the Java security framework provides
means to do it.

Socket Communication The setup of a new TCP connection requires a
three-way handshake between the connected endpoints before data trans-
fer can proceed. On networks with long latency and for short transactions
this handshake wastes valuable time [98].

RMI Framework Campadello [24] analyzes the performance of Java RMI
for communications over a slow wireless link. For example, in a simple
RMI call, the actual invocation takes up only 5% of the total transmitted
data while 69% was related to the DGC protocol. He also reports an
important performance issue due to the high number of round-trips in-
volved in ping packets and TCP handshaking. Furthermore, Campadello
notes that the time spent for object serialization during a RMI call typi-
cally amounts for one third of the total time overhead.

The RMI framework provided by Sun has to be considered as a ref-
erence implementation which satisfies the programmer’s needs in many
common cases but still keeps space for performance improvements. Sev-
eral optimizations and implementations have been proposed [74, 85, 94,
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130, 123] to increase the efficiency of Java RMI.

Security
Cryptographic techniques combined with socket communication can be
used to ensure the reliability and authenticity of the transmitted code.
Regarding the safe execution of relocated code the security model pro-
vided by the Java run-time is an intrinsic part of Java’architecture.

Socket Communication The SSLServerSocket extends ServerSocket and
provides secure server sockets using protocols such as the SSL or TLS
protocols.

RMI Framework The Java VM can for instance be configured to gener-
ate cryptographically strong random numbers for object identifiers using
the system property java.rmi.server.randomIDs.
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Chapter 8

Conclusion

Every program has (at least)
two purposes: the one for
which it was written, and
another for which it wasn’t.

Alan Perlis1

With the growing number of network-connected computers, the con-
cept of distributing services among multiple computers has become in-
creasingly possible and desirable. This concept has been widely imple-
mented in modern operating systems and is raising interest in modern
programming languages too.

In this context mobile code makes it possible to define higher-order
communication protocols and enables the implementation of expressive
distributed computations.

However the presence of run-time features the programmer is only
aware of when something fails makes the behavior of a distributed com-
putation much more complex and less understandable than a sequential
one. Futhermore, while distribution and mobility of code increase the
generality of a programming environment, they almost invariantly imply
noticeable performance penalty and some additional security issues.

1Alan Perlis was honored with the ACM Turing Award 1966 for his influence in the
area of compiler construction; he also contributed to the development of Algol.

http://en.wikipedia.org/wiki/Turing_Award
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8.1 Achievements
We have proposed a new approach to dynamic binding in the context
of mobile code which is based on the concept of lambda abstraction and
have extended the language Scala with a programming abstraction for
mobile code.

Inspired by the language Obliq we have revisited the concept of dis-
tributed scope with a new programming abstraction for mobile code
which builds upon the concept of lexical closures and benefits from the
generalized data binding mechanism of the language Scala.

This thesis has been elaborated in the context of the Scala project at
EPFL; both the Scala language and libraries result from a collaborative
effort to provide a powerful development environment with advanced
programming features. With its uniform programming model and its
great expressiveness Scala is an attractive testbed for exploring new ideas
in a variety of research fields, including concurrent and distributed pro-
gramming.

The main achievements of this work are the following:

• We presented a novel approach based on the notion of lambda ab-
straction for dealing with the dynamic rebinding of local references
in a distributed execution environment.
In programming languages supporting lexical closures, the notion
of lambda abstraction provides an intuitive mechanism to model
the type-safe evaluation of mobile code.

• We proposed a programming model which preserves the language
semantics and relies only on higher-order functions and distributed
objects.
Within our model we introduced the notion of detached closures,
the first approach of combining lexical closures with remote refer-
ences in a distributed execution environment.

• We added programming support for detached closures to Scala by
extending the compiler front-end with a new transformation phase
and by providing a Java RMI based run-time infrastructure as a
lightweight extension of the Scala standard library.
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8.2 Open Issues
Currently Scala’s support for type manifests is quite basic; indeed class
Manifest in the package scala.reflect of the Scala standard library pro-
vides only few functionalities to the programmer and limited type infor-
mation at execution time (e.g. the subtyping test is done on the erasure
of the type). Nevertheless a more elaborated implementation of the Scala
manifests with better compiler support is planned for the next future.

More generally, run-time type information would be very useful to
extend the Java idea of load-time bytecode verification; for instance, the
.NET platform — another target platform of the language Scala — pro-
vides such a support in its common language run-time environment.

8.3 Future Work
We see several interesting directions of future work in relation with this
project and the language Scala; we sketch here four of them.

• Our programming support was implemented on the Java platform;
we think of an implementation based on .NET Remoting as a natural
follow-up project since Scala is targeted both at the Java platform
and the .NET platform.

• The Scala compiler was extended with a new transformation phase
to support our programming model; the generality of our solution
and its lightweight integration in the compiler front-end make it a
possible candidate to be implemented as a compiler plugin [112].

• The compiler and library extensions were implemented indepen-
dently from the official Scala distribution; it would require only
minimal integration work to make them available in an official soft-
ware release.

• The Scala Actors library provides the same programming model for
local and remote Actors; we think that our programming abstrac-
tion for mobile code would benefit from the Actor’s support for
asynchronous communication in a distributed settings.
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Abbreviations

ADT Abstract Data Type
API Application Programming Interface
AST Abstract Syntax Tree
AWT Abstract Windowing Toolkit

C/S Client/Server
CAB Cabinet Archive
CBN Call-By-Name
CBV Call-By-Value
CCS Calculus of Communicating Systems
CLR Common Language Runtime
CMS Calculus of Module Systems
COD Code On Demand
COM Component Object Model
CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model
DGC Distributed Garbage Collector
DoD Departement of Defense
DOS Disk Operating System
DSL Domain-specific Language

Facile Functional And Concurrent Integrated Language
FP Functional Programming
FTP File Transfer Protocol

GC Garbage Collector
GJ Generic Java

HM Hindley-Milner
HOF Higher-Order Function
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
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ICFP International Conference on Functional Programming
IDL Interface Definition Language
IIOP Internet Inter-ORB Protocol
ILU Inter-Language Unification

JAR Java Archive
JDK Java Development Kit
JDOM Java Distributed Object Model
JNLP Java Network Launch Protocol
JOM Java Object Model
JRE Java Runtime Environment
JSSE Java Secure Socket Extension
JVM Java Virtual Machine

Klaim Kernel Language for Agent Interaction and Mobility

LNCS Lecture Notes in Computer Science
LPC Local Procedure Call
LTI Local Type Inference

MA Mobile Agent
MCL Mobile Code Language
MCS Mobile Code System
MOS Mobile Object System
MSIL Microsoft Intermediate Language
MT Multi-Threaded

NFS Network File System

OLE Object Linking and Embedding
OMG Object Management Group
OOP Object-Oriented Programming
ORB Object Request Broker

PDF Portable Document Format
PLAN Packet Language for Active Networks
POA Portable Object Adapter
PoPL Principles of Programming Languages

REPL Read-Eval-Print Loop
REV Remote Evaluation
RMI Remote Method Invocation
RPC Remote Procedure Call
RPCL Remote Procedure Call Language
RTTI Run-Time Type Information
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SQL Structured Query Language
SSL Secure Socket Layer

TCL Tool Command Language
TCP Transmission Control Protocol
TLS Transport Layer Security
TOPLAS Transactions on Programming Languages and Systems

UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator

VBA Visual Basic for Applications
VM Virtual Machine

WSH Windows Scripting Host

XDR External Data Representation (RFC 4506)
XML Extensible Markup Language
XP Extreme Programming
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Glossary

abstraction safety Abstraction safety is the property that values of an ab-
stract data type can only be constructed and inspected by the code
of its declaration, thus preserving type invariants for all values.

aglet An aglet is a Java object that can move from one network host to
another, taking along its program code as well as its data. While
executing on one host an aglet can thus halt execution, dispatch
itself to a remote host, and resume execution there. See mobile com-
putation.

applet A Java applet is network-downloadable Java program that is em-
bedded in another application using HTML code.

at-most-once semantics The at-most-once semantics is adopted by most
distributed systems following the client-server paradigm. Under the
at-most-once semantics, either the server executes a remote request
(e.g. RPC, REV, RMI, etc.) exactly once and the client receives the
results, or the server don’t receive the request and the client is so
informed. This ensures that partial or multiple evaluations of a
request never occur.

bound variable A bound variable is a variable referred to in a function
that is either a local variable or an argument of that function. See
free variable.

class linking In Java class linking [48, §12.3] is the process of taking a
binary form of a class or interface type and combining it into the
run-time state of the JVM, so that it can be executed. A class or
interface type is always loaded before it is linked. See class loading.

class loading In Java class loading [48, §12.2] refers to the process of find-
ing the binary form of a class or interface type with a particular
name, perhaps by computing it on the fly, but more typically by re-
trieving a binary representation previously computed from source
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code by a compiler, and constructing, from that binary form, a Class

object to represent the class or interface.

Clojure Clojure is both a Lisp-based programming language and a JVM-
hosted dynamic environment. While Clojure can be embedded in
a Java application or used as a scripting language, its primary pro-
gramming interface is the REPL.

closure conversion Closure conversion is a program transformation used
by compilers to separate code from data in higher-order functions.
Functions with free variables are replaced by code abstracted on an
extra environment parameter. Free variables in the body of the func-
tion are replaced by references to the environment. The abstracted
code is partially applied to an explicitly constructed environment
providing the bindings for these variables. This partial application
of the code to its environment is in fact suspended until the func-
tion is actually applied to its argument; the suspended application,
called a closure, is a data structure consisting of a piece of pure code
and a representation of its environment.

CLU CLU is an ALGOL-based programming language created at MIT
by Barbara Liskov and her students between 1974 and 1975. Some
key features of CLU are iterators, multiple assignments, exception
handling and automatic memory management.

code mobility Code mobility is the capability to dynamically reconfigure
the binding between the software components of a distributed ap-
plication and their physical location in the computer network. See
mobile code.

computation mobility See mobile computation.

continuation A continuation is a closure that represents the current state
of execution. Calling a continuation results in the computation re-
suming from where the continuation was captured.

curried function Function currying is a technique named from its au-
thor, H.B. Curry, wherein a function with multiple arguments can
be logically represented as a HOF with only a single argument.
While an ordinary function with n arguments binds all of its ar-
guments at once, a curried function binds the first argument and
returns another function of n-1 arguments.
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distributed computation A distributed computation is a single task per-
formed by more than one network component in a distributed sys-
tem. See distributed system.

distributed system A distributed system is an application that executes
a collection of protocols to coordinate the actions of multiple pro-
cesses on a network, such that all components cooperate together
to perform a single or small set of related tasks.

domain-specific language A domain-specific language (DSL) is a limited
form of computer language designed for solving a specific class of
problems. The added abstraction layer makes user code more ro-
bust and readable and hides the boilerplate code of the underlying
implementation. Implementing an external DSL differs from inter-
nal DSLs in that the parsing process operates on pure text input
which is not constrained by any particular language.

dynamic binding Dynamic binding is the concept by which the value of
some variable is not fixed statically (at the time it is introduced),
but is determined dynamically from the current scope, each time
the variable is used.
Concretely dynamic binding is a run-time lookup operation which ex-
tracts values corresponding to some names from some environments.
See environment.

dynamic rebinding Dynamic rebinding is the ability of changing the def-
initions of names at execution time.

Emerald Emerald [16, 66] is a distributed, object-oriented programming
language that was developed at the University of Washington start-
ing in 1984. The goal of Emerald is to simplify the construction of
distributed applications. This goal is reflected at every level of the
system: its object structure, the programming language design, the
compiler implementation, and the run-time support.

enclave An enclave [38] is an information system environment that is end-
to-end under the control of a single authority and has an uniform
security policy. See security policy.

environment An environment e is a finite set of bindings, where a binding
is just a pair of a variable v and a term t which is usually written
as t/v.
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Erlang Erlang is a dynamically typed, single assignment language which
uses pattern matching for variable binding and function selection,
which has inherent support for lightweight concurrent and dis-
tributed processes, and has error detection and recovery mecha-
nisms. It was developed at the Ericsson Computer Science Labo-
ratory to satisfy a requirement for a language suitable for building
large soft real-time control systems, particularly telecommunication
systems.

explicitly typed A programming language is explicitly typed (opposite:
implicitly typed) if its syntax enforces explicit type declarations for
each declaration. Explicit typing is normally considered a speciali-
sation of static typing. See statically typed.
Typed language such as Pascal or Java require that types are de-
clared explicitly for all functions and variables in a program. Other
typed languages such as Haskell, ML or Scala will infer the type
of an expression depending on its structure and context. See type
inference.

first-class function A first-class function (or function object) can be stored
in data structures, nested, passed as arguments or returned as a
result of others functions. See higher-order function.

free variable A free (or non-local) variable in an expression e is a variable
that is used inside e but not defined inside e. The set of free vari-
ables of an expression e is defined by induction on the construction
of e. See bound variable.
For instance, in the Scala function literal (x: Int) => x + y, both
variables x and y are used, but only y is free, because it is is not
defined in e.

function value In Scala, a function value is a function object that can
be invoked like any other functions. The class of a function value
extends one of the traits scala.Function0, scala.Function1, etc.. and
is typically written using the function literal syntax. A function value
is “invoked“ when its apply method is called. A function value that
captures free variables is also called a closure. See first-class function.

higher-order function A higher-order function (HOF) is a function which
takes one or more functions as arguments and/or returns a func-
tion. In the untyped lambda calculus, all functions are higher-order.
See first-class function.



GLOSSARY 171

Klaim Klaim [6, 7] is a core programming language for describing mo-
bile agents and their interaction through multiple distributed tuple
spaces. Klaim’s primitives were heavily influenced by the process
algebra and the Linda programming language.

lambda calculus Introduced by Alonzo Church and Stephen Cole Kleene
in the 1930’s, the lambda calculus (short λ-calculus) is a formal sys-
tem with a minimal notation to capture the computational aspects
of functions.
Informally, it consists of a syntax of terms and a set of rewrite rules
for transforming terms.

lambda abstraction A lambda abstraction is a value that abstracts over
another value. It is commonly called a function.

late binding See dynamic binding.

lexical closure A lexical closure (or block closure) is a execution-delayed
function body (or block of code) with its associated context informa-
tion consisting of bindings to non-local identifiers. Closures allow a
programmer to refactor common code segments into a shared util-
ity, with the difference between the use sites being abstracted into
a local function or closure. Thus, a Scala closure represents at run-
time a function value with bindings to its free variables. See closure
conversion.

local type inference Type inference is local when the type of an expres-
sion depends only on the types of its subexpressions, and not on
the context in which it occurs. See type inference.

malicious mobile code Malicious mobile code [38] is a mobile software
module designed, employed, distributed, or activated with the in-
tention of compromising the performance or security of informa-
tion systems and computers, increasing access to those systems,
providing the unauthorized disclosure of information, corrupting
information, denying service, or stealing resources. See mobile code.

marker interface A marker interface (or tagging interface) is just a way to
take advantage of the type identification that an interface provides,
without declaring any behavior. Examples of marker interfaces in
Java are Cloneable, Serializable, Remote and EventListener (other
examples are also present in the CORBA and security packages).
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A major problem with marker interfaces is that an interface defines
a contract for implementing classes, and that contract is inherited
by all subclasses. A better solution is to support metadata directly,
such as attributes in the .NET framework or class annotations in
Java 5 and Scala.

memoized function A memoized function "remembers" the results corre-
sponding to some set of specific inputs. Subsequent calls with re-
membered inputs return the remembered result rather than recal-
culating it. A function can only be memoized if it is referentially
transparent. See referential transparency.

mobile code Mobile code [38] is a software module obtained from remote
systems outside the enclave boundary, transferred across a network,
and then downloaded and executed on a local system without ex-
plicit installation or execution by the recipient.
MCS supporting weak mobility include Sun’s NFS, Sun’s Java ap-
plets and MCS supporting strong mobility include Agent TCL, Tele-
script, Odyssey, and IBM’s Java aglets.

mobile computation Mobile computation (or strong mobility) requires in-
terrupting the execution, moving the state of a run-time system
(stacks, for instance) from one site to another, and then resuming
execution.

mobile computing Mobile computing is about both physical and logical
computing entities that move: physical entities are computers that
change locations and logical entities are instances of a running user
application or a mobile agent.
Mobile computing is characterized by several constraints: mobile
elements are resource-poor relative to static elements, they rely on
a finite energy source, their connectivity is highly variable in per-
formance and reliability and their mobility is inherently hazardous.

node In the context of distributed computing a node (or site, location)
consists of a computational environment and a node address which
uniquely identifies that node throughout the network. Conceptually
a network connects a possibly variable number of nodes.

normal form A λ-expression is in normal form if it cannot be further
reduced using β- or η-reduction. β-reduction is the process whereby
expressions are simplified as a result of values being substituted into
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function arguments. Thus, the beta reduction of ((λ x. e) e’) is
simply e[x/e’].

object serialization A serializable object can be written to a stream of
bytes and saved to a persitent storage or transmitted over the net-
work. Later one, the same object can be read back from the byte
stream. See serializable type.

operational semantics The evaluation of an expression is defined in terms
of the evaluation of its subexpressions. Each sentence of the form
e -> e’ defines one step in the evaluation so that e’ is the result
of the first step of evaluation of e. An evaluation rule may be an
axiom in the form of a single sentence or an inference rule where
the sentences above the bar represent the hypotheses and the sen-
tences below represent the conclusion. Expressions which cannot
be further evaluated are called canonical expressions.

PLAN PLAN is a resource-bounded functional programming language
that uses a form of remote procedure call to realize active network
packet programming. Developed at the University of Pennsylvania
(1997-2001) it is part of the SwitchWare project, a research project
on active networks.

pass by reference Pass by referencemeans that when an argument is passed
to a function f, f receives the memory address of the original value,
not a copy of the value. Therefore, if f modifies the parameter, the
original value in the calling code is changed.

pass by value Pass by value means that when an argument is passed to
a function f, f receives a copy of the original value. Therefore, if f
modifies the parameter, only the copy is changed and the original
value remains unchanged.

polymorphism Polymorphism in Java refers to the ability to define inter-
faces (or types) and classes separately. An interface is a definition of
the signatures of the methods of a class, which is independent from
any implementation. An interface can therefore be implemented by
several classes. It is possible to declare a variable whose type is an
interface and which can thus reference objects from different classes
that implement the same interface.

primary constructor In Scala the primary constructor does not have an
explicit definition; it is defined implicitly by the class parameters
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and body. Auxiliary constructors (also named secondary constructors)
can be added to the class; they are called this and must reference
a previously defined constructor. It possibly invokes a superclass
constructor (when supers is not empty) and initializes fields for any
value parameters not passed to the superclass constructor.

reference type In Scala a reference type is a subclass of scala.AnyRef. In-
stances of reference types always reside on the JVM’s heap at run-
time.

referential transparency An expression is said to be referentially transpar-
ent if it can be replaced with its value without changing the program
(in other words, yielding a program that has the same effects and
output on the same input). For example, assignments are not trans-
parent while arithmetic operations are referentially transparent as
their result depends only on their input regardless of the context in
which they are used.

scope The scope of an identifier is the range of program instructions over
which the identifier is known. Name resolution rules determine
which value is bound to each identifier in any point of a given
program.

security policy In Java the security policy is specified through a list of ac-
cess control rules which define the security behavior of the run-time
environment. Concretely, the security policy associates permissions
to code locations; those permissions define which system resources
can be accessed and which signatures must be checked.

serializable type A Java type is serializable if it satisfies one of the fol-
lowing conditions:

• The type is primitive, such as char, byte, etc..
• The type is a primitive wrapper such as Character, Byte, etc..
• The type is part of the Java standard library and is either a
throwable class, an AWT component, or one of classes Date,
String, Vector, etc..
• The type is an enumeration (since Java 5).
• The type is an array of serializable types.
• The type is a serializable user-defined class.
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statically typed A programming language is statically typed (opposite:
dynamically typed) if types are fixed at compile-time (i.e. type anal-
ysis happens at compile-time). The absence of compile-time errors
then guarantees not only the absence of (run-time) type errors but
also that run-time type checks are not needed.
Typed languages like Java do not fulfill this ideal because they con-
tain type casts and other constructs that (in general) cannot be fully
checked statically. In particular, as Java uses a covariant rule for
subtyping arrays, array stores require run-time type checks in ad-
dition to the normal array bounds checks. This means that the Java
bytecode verifier is not the only part of the JVM that must be correct
to ensure type safety; the interpreter must also perform run-time
checks.

strong mobility See mobile computation.

strongly typed A programming language is strongly typed (opposite: weakly
typed) if types are always enforced. Java (arrays excepted), Python,
Scala and Smalltalk are strongly typed.

stub A stub in Java RMI is a class that does the work of formatting and
transmitting method arguments to the RMI server and returning
results to the RMI client. Stub classes are either generated with a
RMI compiler or are built dynamically at run-time using dynamic
proxies. Dynamic class loading allows client virtual machines to
find stubs at run-time, without any special coding in the client.

trait In Scala a trait behaves similarly to a class, except that its constructor
can’t take parameters, a class can derive from only one superclass,
but can be mixed in with several traits and, finally, the meaning of
super in a trait is not defined until the programmer mix it into a
class.

transparent migration See mobile computation.

tuple space A tuple space is a repository of tuples that can be accessed
concurrently in parallel/distributed system. Producers post their
data as tuples in the space, and consumers retrieve data from the
space that match some pattern.
The language Linda introduced tuple spaces to support the concept
of global object coordination; meanwhile tuple spaces have been im-
plemented in many programming languages (e.g. JavaSpaces from
Sun is a distributed system based on Jini services and tuple spaces).
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type inference Type inference (or type reconstruction) is usually implemented
as a unification algorithm which attempts to reconstruct the (omit-
ted) static type of a declaration before being type checked by a
compiler.
Scala uses a local, flow-based type inference scheme [90, §16.9];
while Scala’s scheme has some limitations compared with the more
global Hindley-Milner (HM) scheme (e.g. Haskell and ML), it deals
much better with object-oriented subtyping than the HM scheme
does.

type safety Type safety is the property that every operation the program
performs is executed on values of the appropriate type. It is the
responsibility of the compiler to enforce type safety. A compiler
is equipped with a type system to perform a static analysis of the
program and to approximate its run-time behavior before it is exe-
cuted.
In a more rigorous setting, type safety is proved about a formal
language — which is unambiguous and complete — by proving
progress and preservation. See type system.

type system A type system guarantees that the reduction relation does
not get stuck on ground terms of closed types (progress property)
and preserves types (subject reduction property).

weak mobility See mobile code.
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Appendix A

Distributed Application Samples

In this appendix we provide code examples of a very simple distributed
application built upon four RPC-like software frameworks and targeted
at different run-time environments, namely:

• A Sun RPC application running natively on the Linux platform.

• A Java CORBA application running on the Java platform.

• A Java RMI application running on the Java platform.

• A .NET Remoting application running natively on the Windows
platform.

Sun RPC
The following code has been adapted (mostly simplified) from the output
generated by the RPCGEN tool, a generator tool for the RPC language
(RPCL).

Given some interface definition (Listing 8.1), it generates several C
source files — mainly a header file (Listing 8.2) with its (empty) imple-
mentation file (Listing 8.3) and (optionally) the corresponding server/-
client template files (Listing 8.4 and Listing 8.5) — which include the
needed glue code for accessing the RPC run-time library.

program HELLO {

version VERSION_1 {

string sayHello() = 1;

} = 1;

} = 0x22222220;
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Listing 8.1: RPC (RPC language).

#define HELLO 0x22222220

#define VERSION_1 1

#define sayHello 1

extern char ** sayhello_1_svc(void *, struct svc_req *);

Listing 8.2: RPC (interface).

char ** sayhello_1_svc(void *argp, struct svc_req *rqstp) {

2 static char *result = "Hello !";

return &result;

4 }

Listing 8.3: RPC (implementation).

// static void hello_1_call(..) { .. }

2 static void hello_1(struct svc_req *rqstp, register SVCXPRT *transp) {

switch (rqstp->rq_proc) {

4 case NULLPROC:

svc_sendreply(transp, (xdrproc_t)xdr_void, (char *)NULL);

6 break;

case sayHello:

8 hello_1_call(rqstp, transp);

break;

10 default:

svcerr_noproc(transp);

12 break;

}

14 }

int main(int argc, char **argv) {

16 pmap_unset(HELLO, VERSION_1);

register SVCXPRT *transp = svctcp_create(RPC_ANYSOCK, 0, 0);

18 svc_register(transp, HELLO, VERSION_1, hello_1, IPPROTO_TCP);

svc_run();

20 }
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Listing 8.4: RPC (server).

/* Default timeout can be changed using clnt_control() */

2 static struct timeval TIMEOUT = { 25, 0 };

4 char* sayHello_1(CLIENT *clnt) {

static char *result = NULL;

6 if (clnt_call(clnt, sayHello,

(xdrproc_t) xdr_void, (caddr_t) NULL,

8 (xdrproc_t) xdr_wrapstring, (caddr_t) &result,

TIMEOUT) != RPC_SUCCESS) {

10 clnt_perror(clnt, "call failed");

}

12 return result;

}

14 int main(int argc, char *argv[]) {

CLIENT *clnt = clnt_create("localhost", HELLO, VERSION_1, "tcp");

16 printf("%s\n", sayHello_1(clnt));

clnt_destroy(clnt);

18 return 0;

}

Listing 8.5: RPC (client).

CORBA IDL

The CORBA specification defines a standard architecture for connecting
distributed objects written in any language; in the following we present
a simple code example written in Java.

module idldemo

{

interface Hello

{

string sayHello();

};

};
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Listing 8.6: Java IDL (interface).

Given the above file (Listing 8.6) containing IDL definitions, the IDL-
to-Java compiler generates several auxiliary Java source files — e.g. the
abstract class HelloPOA (inherited by the servant object, see Listing 8.7),
the interface Hello and the helper class HelloHelper (used to bind resp.
resolve the object reference, see Listing 8.8 and Listing 8.9) — which are
then passed to the Java compiler, together with the user-defined server
and client code.

class HelloImpl extends HelloPOA {

public String sayHello() {

return "\nHello world !!\n";

}

}

Listing 8.7: Java IDL (implementation).

public class Server {

2 public static void main(String[] args) {

try {

4 ORB orb = ORB.init(args, null);

POA poa = POAHelper.narrow(

6 orb.resolve_initial_references("RootPOA"));

poa.the_POAManager().activate();

8 Hello href = HelloHelper.narrow(

poa.servant_to_reference(new HelloImpl()));

10 NamingContextExt ncRef = NamingContextExtHelper.narrow(

orb.resolve_initial_references("NameService"));

12 NameComponent path[] = ncRef.to_name("Hello");

ncRef.rebind(path, href);

14 System.out.println("Server started");

orb.run();

16 }

catch (Exception e) {

18 System.out.println("Server error: " + e.getMessage());

e.printStackTrace();

20 }

}
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22 }

Listing 8.8: Java IDL (server).

The server application (Listing 8.8) proceeds in three steps to export the
remote service(s):
• it first initializes the ORB (line 4) and activates the associated POA
(line 7),

• it then gets the object reference for the servant (line 8) and binds it
to the (root) naming context (line 13),

• and, finally, it waits for invocations from clients (line 15).

public class Client {

2 public static void main(String[] args) {

try {

4 ORB orb = ORB.init(args, null);

NamingContextExt ncRef = NamingContextExtHelper.narrow(

6 orb.resolve_initial_references("NameService"));

Hello helloImpl = HelloHelper.narrow(

8 ncRef.resolve_str("Hello"));

System.out.println(helloImpl.sayHello());

10 }

catch (Exception e) {

12 System.out.println("Client error: " + e.getMessage());

e.printStackTrace();

14 }

}

16 }

Listing 8.9: Java IDL (client).

The client application (Listing 8.9) proceeds in three steps to invoke the
remote service(s):
• it first initializes the ORB (line 4),

• it then resolves the object reference in the (root) naming context
(line 7),

• and, finally, it invokes the exported method sayHello of the server
object (line 9).
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Java RMI

public interface Hello extends Remote {

String sayHello() throws RemoteException;

}

Listing 8.10: Java RMI (interface).

public class HelloImpl extends UnicastRemoteObject implements Hello {

public HelloImpl() throws RemoteException { super(); }

public String sayHello() { return "Hello !"; }

}

Listing 8.11: Java RMI (implementation).

public class Server {

2 public static void main(String[] args) throws Exception {

try { LocateRegistry.createRegistry(8888); }

4 catch (Exception e) { LocateRegistry.getRegistry(8888); }

6 Naming.rebind("//localhost:8888/hello", new HelloImpl());

System.in.read();

8 }

}

Listing 8.12: Java RMI (server).

public class Client {

2 public static void main(String[] args) throws Exception {

Hello obj = (Hello) Naming.lookup("//localhost:8888/hello");

4

System.out.println(obj.sayHello());

6 }

}

Listing 8.13: Java RMI (client).
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.NET Remoting

public interface IHello {

String sayHello();

}

Listing 8.14: .NET Remoting (interface).

public class Hello: MarshalByRefObject, IHello {

public String sayHello() { return "Hello !"; }

}

Listing 8.15: .NET Remoting (implementation).

public class Server {

2 public static void Main(string[] args) {

ChannelServices.RegisterChannel(

4 new TcpChannel(8888), false/*ensureSecurity*/);

RemotingConfiguration.RegisterWellKnownServiceType(

6 typeof(Hello),

"hello",

8 WellKnownObjectMode.SingleCall);

Console.ReadLine();

10 }

}

Listing 8.16: .NET Remoting (server).

public class Client {

2 public static void Main(string[] args) {

IHello obj = (IHello) Activator.GetObject(

4 typeof(IHello),

"tcp://localhost:8888/hello");

6 Console.WriteLine(obj.sayHello());

}

8 }

Listing 8.17: .NET Remoting (client).
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