Phase Extraction of Non-Stationary Signals Produced in
Dynamic Interferometry Involving Speckle Waves

THESE N° 4514 (2009)

PRESENTEE LE 13 NOVEMBRE 2009

A LA FACULTE SCIENCES ET TECHNIQUES DE L'INGENIEUR
LABORATOIRE DE NANOPHOTONIQUE ET METROLOGIE
PROGRAMME DOCTORAL EN PHOTONIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Sébastien EQUIS

acceptée sur proposition du jury:

Prof. M. Chergui, président du jury
Prof. P. Jacquot, directeur de thése
Dr X. Colonna De Lega, rapporteur
Prof. C. Depeursinge, rapporteur
Prof. P. Flandrin, rapporteur

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Suisse
2009






Abstract

It is now widely acknowledged, among communities of researchers and engineers of very
different horizons, that speckle interferometry (Sl) offers powerful techniques to charac-
terize mechanical rough surfaces with a submicronic accuracy in static or quasi-static
regime, when small displacements are involved (typically several microns or tens of mi-
crons). The issue of dynamic regimes with possibly large deformations (typically several
hundreds of microns) is still topical and prevents an even more widespread use of speckle
techniques. This is essentially due to the lack of efficient processing schemes able
to cope with non-stationary AM-FM interferometric signals. In addition, decorrelation-
induced phase errors represent an hindrance to accurate measurement when such large
displacements and classical fringe analysis techniques are considered. This work is an
attempt to address those issues and to endeavor to make the most of speckle interferom-
etry signals.

Our answers to those problems are located on two different levels. First of all, we adopt
the temporal analysis approach, i.e. the analysis of the temporal signal of each pixel
of the sensor area used to record the interferograms. A return to basics of phase ex-
traction is operated to properly identify the conditions under which the computed phase
is meaningful and thus give some insight on the physical phenomenon under analysis.
Due to their intrinsic non-stationary nature, a preprocessing tool is missing to put the Sl
temporal signals in a shape which ensures an accurate phase computation, whichever
technique is chosen. This is where the Empirical Mode Decomposition (EMD) intervenes.
This technique, somehow equivalent to an adaptive filtering technique, has been studied
and tailored to fit with our expectations. The EMD has shown a great ability to remove
efficiently the random fluctuating background intensity and to evaluate the modulation in-
tensity. The Hilbert tranform (HT) is the natural quadrature operator. Its use to build an
analytical signal from the so-detrended Sl signal, for subsequent phase computation, has
been studied and assessed. Other phase extraction techniques have been considered
as well for comparison purposes .

Finally, our answer to the decorrelation-induced phase error relies on the well-known
result that the higher the pixel modulation intensity, the lower the random phase error.
We took benefit from this result - not only linked to basic SNR considerations, but more
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specifically to the intrinsic phase structure of speckle fields - with a novel approach. The
regions within the pixel signal history classified as unreliable because under-modulated,
are purely and simply discarded. An interpolation step with the Delaunay triangulation is
carried out with the so-obtained non-uniformly sampled phase maps to recover a smooth
phase which relies on the most reliable available data. Our schemes have been tested
and discussed with simulated and experimental Sl signals.

We eventually have developed a versatile, accurate and efficient phase extraction proce-
dure, perfectly able to tackle the challenge of dynamic behaviors characterization, even
for displacements and/or deformations beyond the classical limit of the correlation dimen-
sions.

Keywords:

Dynamic speckle interferometry, Instantaneous frequency/phase estimation/tracking, Non-
stationary signals processing, Fringe analysis, Full-field measurements, Diffraction pat-
terns calculation, Speckle fields statistics, Delaunay triangulation, Scattered data inter-
polation.



Réesume

[l est unanimement reconnu, parmi les chercheurs et ingénieurs provenant d’horizons
tres différents, que I'interférométrie speckle (SlI) permet, par un ensemble de techniques
puissantes, la caractérisation de surfaces mécaniques rugueuses en régime statique
et quasi-statique, lorsque de faibles déplacements sont en jeu (typiquement de I'ordre
du micron ou de la dizaine de microns). Le probleme des régimes dynamiques avec
de potentiels grands déplacements (typiquement de I'ordre de la centaine de microns)
reste a ce jour d’actualité, et empéche un usage encore plus répandu qu’il ne l'est
déja des techniques speckle. Ceci s’explique essentiellement par le manque de tech-
niques de calcul capables de traiter efficacement les signaux interférométriques non-
stationnaires modulés en amplitude et en fréquence. En outre, les erreurs de phase
dues aux décorrelations entravent sérieusement I'obtention de mesures précises lorsque
I'on a affaire a de grands déplacements et que I'on considére des techniques classiques
d’analyse de franges. Ces problématiques sont au coeur de ce travail de these, avec
pour objectif de s’efforcer d’exploiter au mieux les signaux d’interférométrie speckle.

Nos solutions a ces problémes se situent sur deux niveaux. Tout d’abord, nous avons
adopté I'approche de I'analyse temporelle des signaux, i.e. I'analyse des signaux en-
registrés sur chaque pixel du capteur matriciel au cours du temps. Nous avons effectué
un retour aux principes de base de I'extraction de phase de fagon a clairement identi-
fier les conditions sine qua non sous lesquelles la phase extraite a un sens physique
et peut étre de maniere univoque reliée au phénomeéne physique analysé. A cause de
leur nature non-stationnaire intrinseque, les signaux temporels provenant de techniques
speckle ne permettent pas un calcul direct de la phase et il manque un outil de pré-
traitement pour mettre ces signaux dans la forme ad hoc, quelle que soit d'ailleurs la
technique de calcul de phase choisie. C’est ici qu’intervient la décomposition modale
empirique (EMD). Cet outil, qui est en somme équivalent a une technique de filtrage
adaptatif, a été étudié et adapté a nos besoins. Nous avons démontré que grace a 'TEMD
I'intensité aléatoire du fond continu peut étre efficacement éliminée et I'intensité de mod-
ulation, elle aussi aléatoire, précisément calculée. La transformée de Hilbert (HT) est
I'opérateur de quadrature naturel. Son usage pour construire le signal analytique a partir
du signal précédemment centré, et duquel sera tiré la phase, a été étudié, évalué et enfin
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comparé a d’autres méthodes telles que la transformée en ondelettes et le décalage de
phase dynamique

Enfin, nous avons apporté une solution originale au probleme des erreurs de phase
aléatoires. Nous sommes partis du constat bien connu, que I'extraction de phase est
d’autant plus précise que le signal du pixel est bien modulé. Ces erreurs de phases
aléatoires sont plus liées a la structure profonde des champs speckle qu’a de simples
considérations de rapport signal sur bruit. Les régions sous-modulées du signal tem-
porel du pixel sont considérées comme non fiables et sont par conséquent purement et
simplement éliminées. Les cartes de phases qui résultent de cette classification sont
ainsi échantillonnées de maniére non uniforme, et une étape d’interpolation doit étre
menée pour retrouver des cartes de phases uniformes, ou seules les données les plus
fiables ont été conservées. Cette interpolation fait intervenir la triangulation de Delaunay.
Nos algorithmes de traitement ont été testés avec des signaux issus de simulations et
d’expériences, et les résultats obtenus discutés.

Nous avons finalement développé une procédure de calcul de la phase, précise, effi-
cace et souple, en mesure de relever le challenge de la caractérisation des régimes
dynamiques en mécanique expérimentale, pour des déplacements et/ou déformations
allant au-dela de la limite classique des dimensions de corrélation.

Mots clés:

Interférométrie speckle dynamique, Estimation/suivi de fréquence et phase instantanées,
Traitement des signaux non-stationnaires, Analyse de franges, Mesure optique plein-
champ, Calcul de figures de diffraction, Statistiques de champs speckle, Triangulation de
Delaunay, Interpolation de données diffuses.



Si sa [de 'Homme] vie entiere n’avait pas été consacrée a la recherche du superflu, il
n’elt jamais pu, d’'une fagon aussi inexpugnable, s’entourer du nécessaire.

William James

tiré du livre L'Homme Sauvage et 'Enfant de Robert Bly
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Chapter |

Foreword

1 Background and goal of the thesis

The full-field optical methods have proved huge capabilities and potentials in engineering
and industrial areas and their use tends to be more and more widespread. Speckle inter-
ferometry (Sl) considerably widened the horizon of classical interferometry, by offering the
capability to characterize rough mechanical surfaces with a submicronic accuracy. Digital
holography as been equivalently a huge step forward, notably in microscopy. Those meth-
ods require efficient and accurate processing schemes to meet the increasing demand
for computation speed and measurement accuracy. If many experimental arrangements
have been proposed to overcome the limitations that are most likely to exist in a real in-
dustrial environment, one bottleneck remains: the processing load. It is indeed easy to
acquire a huge amount of data (typically dozens of GB or even more) from an experiment,
but the computation tasks are still intensive. An additional constraint exists, and not the
slightest, which is unavoidable as soon as speckle waves are involved: decorrelation and
its impact on the achievable phase accuracy.

This project aims at improving the processing of interference patterns: it should be faster,
more reliable and accurate, as well as less operator-dependent. The focus here is on
Sl signals: because of the intrinsic nature of speckle, those signals exhibit substantial
intensity and phase fluctuations, and thus represent the worst case to be treated. This
research work was organized along four principal directions:

i) build an accurate and simple numerical tool to simulate complex speckle fields in or-
der to assess and compare the performances of existing and new phase extraction
algorithms,

ii) gain knowledge of the processing schemes successfully applied in neighboring
fields (speech and image processing, non-stationary signals study, acoustic and
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Chapter . Foreword

microwave interferometry),
iii) imagine and combine efficient processing methods with the resources of optics to
build a reliable procedure able to process full-field measurement signals,

iv) test our processing procedures on well-controlled, reproducible and - it would be of
great benefit for us and mechanics experts as well - relevant experiments.

2 Original contribution of this work

This thesis work addresses the processing of non-stationary interferometric signals stem-
ming from dynamic experiments. The original contribution of this work is actually built on
three main axes. The first one is the conception of a numerical model able to simulate
complex speckle fields which reproduces with a high faithfulness physical speckle fields.
A clear definition of the strengths and the limits of this numerical model has been provided
and constitutes the first stone of this thesis. The second contribution is the clear state-
ment of the phase extraction problem with non-stationary interferometric signals, which
leads naturally to an adaptive filtering method, namely the Empirical Mode Decomposi-
tion. This latter technique has been thoroughly studied and tailored to make the Sl signals
in dynamic regimes amenable to a subsequent phase extraction step as reliable as possi-
ble. The phase computation method based on the Hilbert transform has been considered,
theoretically studied, implemented, assessed and finally compared to other well-behaved
methods, as dynamic phase-shifting and Morlet wavelet transform. The final contribution
was an original answer to the under-modulation issue. The technique basically starts with
the classification of the pixel signals, along time, according to their modulation. The pix-
els declared as irrelevant are then purely and simply discarded, and an interpolation step
has then to take place so as to recover uniformly sampled phase maps. The interpolation
scheme which has been considered is based on the Delaunay triangulation, followed by
a cubic spline interpolation and a resampling step. This approach has the huge asset to
discard pixels regions that are the most likely to generate the largest phase errors and
thus to avoid having reliable data polluted by unreliable ones, which is never achieved
with usual filtering techniques. In fine, we have a method at our disposal, which is robust,
accurate and versatile to process flows of interferometric signals in order to reconstruct
the temporal phase evolution. The techniques that have been developed can totally be
applied to other full-field optical methods, like digital holography and fringe projection.

3 Layout of the dissertation

We give here some clues about the organization of this dissertation. Chapter 2 recalls
some basics on interferometry and gives the fundamental definitions of speckle interfer-
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3. Layout of the dissertation

ometry. We conclude the chapter by a short discussion on imaging methods, which we
very briefly confront to interferometric methods. The reader familiar with speckle tech-
nigues might prefer to skip this chapter.

Chapter 3 is dedicated to a review of some fundamental statistics which rule speckle
fields, both amplitude, intensity and phase. This is actually also the opportunity to conduct
some more involved simulations, notably on the fine structure of speckle phase maps.
The reader, again familiar with the theoretical description of speckle fields might prefer
to skip the three first sections of this chapter, and jump to the last two sections, where
we talk about the optimization of the interferometric signals with unresolved speckle and
about decorrelations and the induced random phase errors.

Chapter 4 deals with the very core of this thesis, which is the phase extraction tech-
niques, even if the bulk of this chapter is dedicated to a review of existing methods. We
actually start with the phase-shifting techniques, which are acknowledged as the choicest
methods in static regimes, and thus do not represent the ideal candidates to address the
dynamic regime problem. We then present some single-frames techniques, to finally ad-
vocate the temporal approach which basically consists in analyzing the temporal history
of the pixel signal. We finally come to the Hilbert transform and the concept of analytic
signal. This non chronological way of introducing phase computation methods was mo-
tivated by the will to return to the fundamentals of phase extraction from non-stationary
signals.

Chapter 5 is dedicated to the Empirical Mode Decomposition. We study this processing
tool in details and advocate its use to make the speckle interferometry temporal signals
in a suitable shape for accurate subsequent phase extraction. In concrete terms, we will
show that the Empirical Mode Decomposition is a very accurate, versatile and efficient
tool for detrending those non-stationary signals, i.e. remove their fluctuating mean inten-
sity. This step is indeed mandatory to conduct a meaningful phase computation.

As already said and widely known, the temporal pixel signals are strongly non-stationary
and the modulation is perfectly able to drop to zero, which leads to phase indetermina-
tions. To solve this well-known issue, we propose, in chapter 6, a novel approach based
on the Delaunay triangulation. The idea is to classify, in a binary manner, the pixels,
based on a criterion and discard the ones found to be prone to the largest phase errors
and thus irrelevant. The criterion used is the pixel modulation intensity, as it is acknowl-
edged that the higher the modulation, the lower the phase error. We have then in hands
some scattered data which have been found to be reliable, and an interpolation has to
take place to fill in the gaps and rebuild phase maps sampled on a uniform grid. We also
show a very similar method to filter wrapped phase maps obtained, for instance, with a
phase-shifting algorithm.

Chapter 7 is dedicated to the experimental assessment of our processing schemes, while
Chapter 8 is somehow an outlook chapter, with a glance to the stochastic world and its
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mine of phase tracking and estimation techniques, originally developed for the radio-wave
and the speech processing communities. We indeed think that interesting methods could
be successfully applied to our field, especially after the Empirical Mode Decomposition
pre-processing step. We think to autoregressive models, Kalman filters and so on.

The last chapter summarizes the main points of our work and also proposes some po-
tential further developments of phase extraction techniques in dynamic regime.
Appendix A is a short reminder on Fourier analysis, Appendix B presents our speckle
pattern diffraction model with a discussion on its potential and limits and our algorithm of
the EMD is given in Appendix C.
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Chapter I

Interferometric measurement
methods

1 Smooth wave interferometry

1.1 Theoretical background
1.1.1 The notion of optical path

Pierre de Fermat put the cornerstone of the formulation of the light propagation in any
medium with his famous principle, formulated in 1657, and historically known as the prin-
ciple of the shortest optical path or the principle of least time and which can be stated in
a more complete manner as:

The light follows the trajectory corresponding to a stationary optical path ( [23,82]).
Considering two points A and B in a given medium, characterized by its refractive index
n(s) depending on the location in space, the optical path is the length of the trajectory,
weighted by n(s), followed by the light between those two points and is defined by the
curvilinear integral:

L:/Bn(s)ds (1.1)

A
This path is said to be stationary if the quantity L varies slowly when the trajectory is

slightly distorted. In other words, the light trajectory is shorter than any other curves lying
in its neighborhood. In mathematical terms, along the light trajectory we have:

0L = 0 to the first order with OM , (1.2)

M being any point of the trajectory except A and B. This principle implies, among other
things, a straight trajectory of the light in an homogeneous medium. The optical path
becomes simply in that case:

L=nAB (1.3)
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1.1.2 Interferences: the 2-beam equation

When two beams are separated with an ad hoc apparatus and recombined, geometrical
optics is not able to explain the phenomenon that occurs. The light distribution in the
region of superposition can have maxima, which exceed the sum of the intensities of the
beams, and minima, which can be zero. This is the interference phenomenon, demon-
strated by Thomas Young and his famous double-slit experiment at the very beginning of
the XIXth century. In this section, we will limit ourselves to the case of interferences with
strictly monochromatic waves. The case of real physical sources will be covered in the
next section with the notion of coherence.

Let us consider two scalar waves of complex amplitude:

An(,9) = B, ) exp(ion) = B,y exp(ikz) with k=20, (IL4)

where E,, (m=1,2) is the real valued amplitude of the field, A\ the light wavelength , z
the coordinate along the propagation direction, = and y the coordinates in the transversal
plane and ;2 = —1. The time dependence of the field has been skipped, and we assume
that the fields are monochromatic, stem from the same source and propagate in air. In the
overlapping region, the total complex field is (the spatial coordinates have been skipped
to lighten the equations):

Aot = A1 + Ay = Erexp(i¢r) + Eaexp(iga) , (11.5)
and the resulting intensity is:
Liot = Ator - Ajpy = I + In+ L2, (11.6)
where x denotes complex conjugate, and I, is the interference term and equals to:

Iio = 2~/ 1115 cos A¢ , with Aqb = gf)l — qbg = 277-‘—OPD (”7)

OPD is the optical path difference between the reference arm and the measurement arm,
i.e. the quantity of interest in interferometry. This is the well-known 2-beam equation
generally written as:

Ligt = 1o+ I, cos A , (11.8)

where I, is the background intensity and I,,, is the modulation intensity. The ratio 1,,,/1,
is the fringe visibility or fringe contrast ranging from 0 to 1. Optical sensors are sen-
sitive to intensity and this fringe contrast becomes thus of primary importance as it is
the determining factor of the measurement quality of the phase A¢, which is again the
measurand.
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1. Smooth wave interferometry

1.1.3 Interferences in partially coherent light

The coherence theory deals with the consequences of the finite frequency bandwidth
of light sources, and of their stability in terms of polarization, frequency and phase. The
mathematics related to this field are rather intricate, and the addressed cases in the litera-
ture are usually the punctual source of finite frequency bandwidth and the pure monochro-
matic spatially extended source. We will even not treat those cases here and will simply
recall how the 2-beam equation is affected by partial coherence between overlapping
beams ( [23,123]):

Lot = 1, + [m|’}/12‘ Ccos A¢> , (”9)

where |y12| is the normalized module of the cross-correlation of the complex amplitudes,
also called the degree of coherence. This term, ranging from 0 to 1, will be taken equal to
1 in the following, as for fully coherent interfering beams. Some interferometric techniques
exploit the partial temporal coherence of finite broad band light sources as the optical
coherence tomography and the white-light interferometry.

1.2 Quantitative measurement in smooth-wave interferometry and basic
setups

Albert Abraham Michelson, (1852-1931), Armand Hippolyte Louis Fizeau (1819-1896),
Ludwig Louis Albert Zehnder (1854-1949) and Ludwig Mach (son of Ernst Mach), Franck
Twymann and Arthur Green, Jules Celestin Jamin (1818-1886), Charles Fabry (1867-
1945), Jean-Baptiste Perot (1863-1925), among others, all gave their name to interferom-
eters ( [23]), that are now well-known and widely used. Optical interferometers combine
two or more light beams, created either by wavefront or amplitude division.

Since the CCD technology has become easily available directly from the shelf, the inter-
ferometric measurements, until then qualitative, became quantitative full-field measure-
ments. As already mentioned, the phase A¢ in Eq.(11.8) is the sought-after quantity, and
extracting this phase coded in intensity levels has received - and still receives nowadays
- a considerable interest from the researchers. Classical interferometry is nonetheless
confined to transparent media and optically smooth dioptres and surfaces. To deal with
rough surfaces, phase extraction methods had to be refined and/or rethought. Before get-
ting to the heart of the matter of this thesis work, i.e. the phase extraction from speckle
interferometry signals in dynamic regimes, one must define several notions, and, speckle
effect and speckle interferometry are two of them.
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2 Speckle wave interferometry

2.1 Where does speckle come from?

In the early 1960s, the continuous-wave lasers became available, which gave a huge
impetus to research and development in optics, and notably to interferometry. When a
laser beam is pointed on a rough object ', this object is seen with a peculiar granular
appearance. When the observer is moving, the distribution of speckle spots, which has
no direct relationship with the macroscopic characteristics of the object, changes in the
manner of the surface of boiling water. This type of granularity became known as speckle.
If speckle has been observed in optics with coherent light sources for the first time at that
time, analogous phenomena have been previously observed and studied in the radio-
wave domain (see [77] and references therein). Speckle actually appears in a signal when
it is composed by the addition of a multitude of independently phase shifted complex
components (see Fig.ll.1).

1ncom1ng \
/ gaussian beam g
rough
surface random
1 source 2 sources walk for a
bright spot

T B

speckle
field random
walk for a
3 sources N sources black spot
(a) Interferences with several sources. (b) Random walk in the complex plane.

Figure Il.1: Multiple independent phasors.

Depending on the statistics of the surface roughness, the created speckle field can be
either partially or fully developed. The latter case is the usually encountered regime in
Sl. It is notably characterized by a contrast C (C' = o7/ < I >, where o7 is the standard
deviation of the intensity and < . > denotes averaging) of the speckle field equal to 1.

"The term roughness is always to be understood as compared to the scale of optical wavelength. There
are actually an in-depth and an in-plane characteristic lengths. The first one is the determining factor for the
speckle field to be fully developed or not, while the last one must be unresolved by the imaging system to
give birth to a speckle field.
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2. Speckle wave interferometry

The case of partially developed speckle pattern has received some attentions, especially
the dependance of this speckle contrast on the surface roughness ( [67,74,91]). This
dependance has been notably exploited to follow the temporal change of the state of a
surface, as, for instance, the drying process of a painting.

2.2 What defines SI?

We recalled in the previous section some basic knowledge about interferometry involv-
ing smooth waves, which possess nearly constant amplitude and gently varying phase.
Speckle interferometry (SI) is the time-honored expression to designate measurement
interferometric methods involving at least one speckle wavefront. It is in contrast with
smooth wave interferometry, where all components, including the object under analysis,
have roughness extremely small compared to the light wavelength. Since its birth in the
early 1970s ( [30,90, 104]), Sl techniques arouse interest first in the holography commu-
nity and later in the experimental mechanics circles, to finally assert themselves as major
full-field optical methods. Sl still attracts researchers interest and its range of applications
is getting wider and wider. This success can be partly explained by the ease of use of
those methods: the needed material (laser sources, sensor array, acquisition and storage
system) is affordable and readily available in the market, and setups are less critical than
in classical smooth-wave interferometry, especially if some arrangements are made (e.g.
common path interferometers), and thus are well suited for reasonably disturbed environ-
ment. Another important asset is that the speckle grain does not need to be resolved as
in speckle photography or holographic interferometry. It allows the use of large aperture
objectives (frequently F/4 but up to F/2) and thus makes the characterization of broad
objects possible with reasonable optical power. The counterpart lies in the phase extrac-
tion complexity, especially if the phenomenon under study is dynamic. Phase extraction
constitutes the heart of the matter of the thesis and will be discussed in details starting
from chapter 4.

2.3 The 2-beam equation with at least one speckle wave

Sl signals follow the 2-beam equation, recalled below with the phase A¢ split into a
random term representing the phase of the speckle field ¢4,c.x;c and the sought-after
quantity ¢opp:

Lior = I + I cos(@speckie + ¢oPD) (1.10)

Now the background intensity I,,, the modulation intensity ,, and the phase ¢gpccrie are
random variables. The intensity pattern recorded on a sensor array contains definitely
the information but, on the contrary of smooth-wave interferometry, this information is
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embedded in "noise” and its extraction is thus not straightforward. Applying classical
phase extraction methods will not lead to any kind of usable information. S| techniques
are actually differential, and to get rid of the random phase term ¢,...i., a reference state
is needed. In addition, the two states have to be correlated, which means that speckle
grains of the two states must be at least partially superimposed. Impact of decorrela-
tions on the achievable accuracy of the extracted phase will be discussed in Chapter 3
and 6. Depending on the sought information (deformation, displacement, shape), spe-
cial experimental arrangements are required, and this will be the theme of the coming
subsections.

2.4 The interferometer sensitivity: what can we measure in SI?

In Sl setups, in contrast with classical interferometry, the link between the change of the
physical quantity and the phase depends on both the illumination direction and the ob-
servation direction. We usually define the observation direction as the line joining any
point M on the object surface to the pupil center of the recording device (CCD or CMOS
camera). In a similar manner, we define the illumination direction as the propagation di-
rection of the beam impinging the object at the same point M. We respectively associate
the vectors K, and K; to those directions. We can then define the so-called sensitivity
vector S = K, — K; of the speckle interferometer (Fig.11.2).

Figure 11.2: Speckle interferometer sensitivity.

- E—
This leads to the very general formula which gives, for a certain displacement L = M M’,
the corresponding phase change:

Ap= "SI (I1.11)
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In a system of axes (z,y, z) attached to the object surface, the projection of S on the z
axis defines the out-of-plane sensitivity, while its projection on the (z,y) plane defines
the in-plane sensitivity. It is of primary importance to carefully design the interferometer
to have the highest sensitivity along one preferential direction and the lowest one along
other directions for the sake of interpretability of the observed correlation fringes and the
extracted phase. The know-how of people using Sl consists indeed in choosing properly
an interferometer whose response is predominantly due to one of the components, to
extract a meaningful phase. Measuring all the displacement components necessitates
special and complex arrangements ( [69, 78]), where several illumination and/or obser-
vation directions are successively selected and synchronized with the acquisition and
storage system. Another matter of concern is the variations of K, and K; within the field
of view, inducing a variable sensitivity vector. This issue is readily solved by a careful
calibration step, with a well-controlled experiment (in general a rigid body motion along
the average sensitivity vector).

2.5 Fringe formation in Sl

As mentioned above, S| methods are differential, and both states (e.g. before and after
deformation of the probed object) are specklegrams where no fringes appear directly.
The first step consists in general in recording the reference state:

Iz' = Io + Im COS(‘bspeckle) (”1 2)

A second pattern is recorded after application of a load to the object:

If = Io + Im COS(Qbspeckle + ¢OPD) (”13)

oopp is the phase change induced by the deformation of the object and is the wanted
quantity. If no fringes can be seen at this stage, it is nonetheless possible to compute the
square of the difference between the two recorded states to form the so-called correlation
fringes - the two states must be correlated (see next chapter):

dopPD
2

(If - Ii)2 = QITQnSinQ(Cbspeckle + ) : (1 - COS(gbopD)) (”14)

We obtain a pattern whose envelope is a function of ¢opp, showing thus locations of
equal displacement as bright and dark fringes (¢opp being respectively equal to 2k7 and
(2k + 1)m, k being an integer). However, the bright fringes are modulated by a term de-
pending on random quantities, i.e. the modulation intensity 7,, and the speckle phase
dspeciie- It gives this grainy aspect to the so-built fringes, which necessitate some filtering
step before applying any kind of fringe analysis technique. Fig.11.3 shows a specklegram
recorded in a Sl setup with an in-plane sensitivity. After having recorded a second image,
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(a) Specklegram of a piece of rubber under (b) Correlation fringes as equal in-plane
continuous compression. displacement locations.

Figure I1.3: An example of subtraction fringes experimentally obtained in an in-plane
setup.

the two patterns are subtracted to form the correlation fringes shown in Fig.l1.3(b).
Correlation fringes can also be observed by adding the two recorded patterns of Eq.(l1.12)
and Eq.(11.13):

¢>0PD)COS(¢0PD) (11.15)
2 2

The background is not removed, and the fringes visibility is thus reduced. However, it is
possible to obtain directly such fringes patterns by performing double-exposure experi-
ments, without recourse to photographic processing or plate relocation 2. Such arrange-
ments have been proposed for the first time in the 1970s by Cookson et al for vibration
analysis ( [41]) using a vidicon TV camera and a pulsed ruby laser. Very high speed
transients have been observed this way with laser pulse separation of a few tenths of us.
Some researchers have proposed since then techniques to enhance the poor contrast of
addition fringes recorded by CCD sensors ( [94,131]).

If + Iz = 210 + 2Im COS((bspeckle +

2.6 Experimental setups

There are mainly two groups of interferometers: the external-referenced ones and the
self-referenced ones. In usual operating conditions the first group is generally used for
out-of-plane characterization and the second one for in-plane characterization and shear-
ing measurements.

2.6.1 Out-of-plane speckle interferometer

This class of speckle interferometers features a sensitivity vector along the normal of the
surface under analysis. Typical arrangements are shown in Fig.ll.4.

2Butters and Leendertz proposed in [29] a double exposure speckle technique involving photographic
plate in the very beginning of the 1970s.

26



2. Speckle wave interferometry

parallel illumination microscope objective PZT

X ' ! o Xé_’ with filtering aperture beam
);L_'z l l objercttlve y splitter
aperture /
‘ ‘ -1
. ' beam splitter J_ o

§ = 5]
€1 2
s = = E
23 P TN -
1Y - R <
£ ¢ z beam
S l & splitter
o S} . . .. CCD
imaging objective
diffusing surface S5 with aperture
(a) Michelson type speckle interferometer. (b) Classical in-line reference setup.

Figure I1.4: Typical out-of-plane setups.

In Fig.ll.4(a), a Michelson type setup, where the mirrors are replaced by diffusing sur-
faces, is shown. In addition, a temporal carrier can be easily added by implementing a
PZT actuator on one arm.

Lately a new class of self-referenced interferometers has been proposed [27] for out-of-
plane measurement. Those interferometers stand indeed apart from the general classifi-
cation mentioned earlier. Those namely "double-focusing” interferometers have typically
a Michelson structure with unbalanced arms, either it be by a longer optical path or by
an additional optical element. The object beam is focused on the detector, while the
reference beam is defocused. Those interferometers lead to compact and simple setups.

2.6.2 In-plane speckle interferometer

The probably most well-known arrangement used to perform in-plane measurement is
the Leendertz configuration, also known as dual-illumination, single-observation direction
method. The Duffy’s - or single-illumination, dual-observation-direction method - method
is also well-known but has been rather used in Moiré gauging. A schematic of the latter
experimental arrangement is shown in Fig.I1.5.

The wave coming from the two apertures interfere in the image plane with an angle.
Hence, the speckle grains, whose size depends on the aperture diameter, are modulated
by a straight fringe pattern. After deformation, the fringe are locally shifted and the ad-
dition of the two states - either through the use of a developed photographic plate, or
numerically in a computer - create a Moiré-like fringe pattern.

Leendertz demonstrated in [104] the fringe formation in S| by superposition of speckle
patterns coming from either two different scattering surfaces, or a single one. This latter
case necessitates two directions of illumination (see Fig.ll.6) making an angle 6; and 6,
with the surface normal. We usually assume that the average directions of illumination
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diffusing surface

imaging objective with
a double aperture

Figure I1.5: Duffy’s configuration for in-plane measurement.

are symmetrical, i.e. §; = 0, for the chief rays. The recorded speckle pattern is the result
of the coherent superposition of two speckle patterns.

parallel illumination

vz / objective aperture

diffusing surface

parallel illumination

Figure I1.6: Leendertz configuration for in-plane measurement.

With a parallel illumination, any displacement along the z or the y axis produces no rela-
tive phase change between the superposed speckle patterns. However, a surface move-
ment dx in the x direction produces for one beam a phase change of (27/\)dzsin and
for the other one a phase change of —(27/\)dz sin 0 resulting in a relative phase change
equal to:

AD = 4;5$sin9:yx5:c (11.16)

With a divergent illumination, the angles #; and 62 will change across the field of view.
For points where the illumination angles are no more symmetrical, the in-plane sensitivity
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7, 3 will fluctuate whereas, there will be a residual out-of-plane sensitivity .7,

Sy = 2Tﬂ(sin 01 — sin 6s)
. = 2 (cos 01 — cos ba) (I1.17)

A very nice feature of this kind of setups is that the wanted sensitivity .7, is readily tunable
by changing the illumination directions.

Lately, a new class of speckle interferometers with a radial in-plane sensitivity has been
proposed in [5, 6]. Originally the radial in-plane sensitivity was obtained with two coaxial
conical mirrors - one of the mirrors can be shifted along its axis with a PZT actuator
to introduce a temporal carrier - illuminated by an annular collimated laser beam. The
last development involved a circular diffractive element, and is somehow a Leendertz
configuration with an axial symmetry. The nice feature of this arrangement is that its
sensitivity, given by .7, = 27 /p, depends only on the period of the grating p, which makes
possible the use of cheap low coherence laser sources.

2.6.3 Shearing speckle interferometer

Experimental mechanics experts, and especially strain analysts, are often more inter-
ested in deformation, i.e. the derivative of the displacements, than in displacements. A
straightforward way is to compute the displacement map and differentiate it. The differen-
tiating operation is equivalent to high-pass filtering, and thus tends to enhance the noise,
which is not negligible in phase maps stemming from S| measurements. It is thus prefer-
able to obtain a phase map which is directly representative of the deformation field, and
the numerous proposed techniques are well-known under the denomination shearogra-
phy, or equivalently, speckle shearing interferometry. Leendertz, and shortly after Hung,
imagined in the 1970s a setup based on a classical Michelson configuration with lat-
eral shear(Fig.Il.7), whereby derivative of displacements could be directly computed from
the extracted phase( [86, 103]). Interested readers are invited to look into [168] for a
pretty comprehensive review of setups with various sensitivities. It has to be said that
the Duffy’s arrangement for in-plane measurement can be easily adapted for shearing
by simply adding a wedge in front of one aperture. As predictable, shearing arrange-
ments have been widely used in experimental mechanics circles to compute strain fields
([2,170)).

The phase change is now proportional to the difference of displacement of any point on
the surface, realizing this way an optical differentiation:

27 ow(x,y)
AD = TAa:(l—l—cosH)T , (1.18)

3We set apart the component of the sensitivity vector S along the x-axis S, and the quantity .#,, which
includes the term 27/ . This latter quantity represents the amount of phase induced by a unitary deformation.
We will call .7, the in-plane sensitivity and likewise ., the out-of-plane sensitivity for the sake of simplicity.
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Figure I1.7: Michelson arrangement for shearing.

where Az is the lateral shear and w(x, y) is the displacement of any point on the surface
along the z-axis. This setup has some nice features, with notably a pretty good insensi-
tivity to external perturbations as the two interfering beams are created very close to the
detector 4. In addition, the shearing amount Az is easily tunable to adapt the interferom-
eter sensitivity.

2.6.4 Contouring speckle interferometer

As already explained before, Sl techniques necessitate two states. To perform shape
measurements of rough objects, as no load is applied to the object, the two states are
generated by changing one parameter of setup (wavelength, refractive index, illumination
direction, object orientation) ( [168]). The setup is usually the same configuration (see
Fig.I1.8) as the one used for in-plane measurement (Leendertz type). If the illumination
direction change is small and designated by 46, then, using Eq.(11.17), the sensitivity to
the surface height (along the z coordinate) is simply given by:

I, = 27”2sm(0)59 (11.19)

This is the dual-beam shifted Sl contouring technique ( [196]). A technique using a Duffy
like arrangement has been proposed in ( [161]). Another approach is to use an out-of-
plane setup and to generate the two required states with a slight shift of the illumination
source wavelength, while keeping the geometrical parameters of the setup untouched.
The substraction correlation fringes represent the contour lines where the elevation dif-
ference between consecutive isohypses is A /2, A being the synthetic wavelength, ranging

*We assume here that the illuminating beam wavefront does not experience perturbations that would be
non-uniform across its propagation region. Otherwise, the shearing phase would include the derivative of
those perturbations.
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Figure 11.8: Leendertz setup for surface contouring.

from microns to millimeters depending on the closeness of the wavelengths:

A= Mfl_AzM (11.20)

3 Imaging versus interferometric methods

The object of this section is to present an alternative to interferometric methods for full-
field measurements and wavefront reconstruction, and methods involving a reference
beam (interferometric methods) are thus not considered here. We will briefly adopt the
general point of view of digital holography, of microscopy and finally of experimental me-
chanics end user. More precisely, these approaches are the wavefront reconstruction
with the deconvolution problem, the phase retrieval from one or several intensity mea-
surements with notably the Gerchberg-Saxton algorithm, and finally the digital image
correlation. Wang et al introduced the optical vortex metrology ( [187]) some years ago.
We will come back to those techniques in the forthcoming chapter, as they involve topo-
logical objects of speckle fields, namely, the phase singularities.

Classical holography has, nowadays, unfortunately fallen out of favour with researchers
and engineers who use and/or look for full-field measurements methods. However, dig-
ital holography (DH) has the wind in its sails since its feasibility has been established
in the mid 1990s ( [162]) °. The idea is actually to replace the photosensitive substrate
by an electronic sensor array, to perform the reconstruction process numerically, through
the use of the Fresnel integral (see Appendix B), instead of optically. Schnars and Jipt-
ner wrote a review article on the principles and the major applications of DH ( [163]).

5The principle of numerically reconstructed images from electronically detected holograms was originally
demonstrated by Goodman et al thirty years before ( [73])
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Reconstruction algorithms in DH ( [112]) feature a valuable flexibility as they offer the
opportunity to numerically compensate optical aberrations ( [38]), a task which was orig-
inally done by well-designed and expensive optics. DH also lends perfectly itself to mi-
croscopy ( [1]) and this way to the characterization of micrometric and submicrometric
objects (MEMS/MOEMS, micro optics ( [31]), living cells ( [32]),etc). A theoretical formu-
lation of digital Fresnel holography is available in [146], where the reconstruction process
formulation follows the classical imaging theory, that is to say the reconstructed field (say
in the +1 order) results from the convolution between the object field and the impulse
response of a linear system. This latter function is composed by functions representing
the reference wavefront aberrations, the focusing error, the finite extend of the pixel ©
and of the sensor and finally the reconstructed image localization. The intrinsic spatial
resolution in digital Fresnel holography is imposed by the finite size of the sensor, which
is the recording zone. To extend the recording zone and thus the spatial resolution, so-
lution have been proposed with notably a shift of the sensor in the observation plane to
make several recordings so as to record a synthetic hologram, larger than the sensor. An
alternative approach has been proposed in order to increase the numerical aperture of
the holographic system: the idea is to insert a grating in the path of the object beam so
as to fold back parts of the diffracted beam by the object, corresponding to higher spatial
frequencies, which otherwise would have fallen outside the sensor array. The method
has been originally presented in [115] with a 1D grating, and substantially improved with
a 2D grating in [143].
Apart from the classical reconstruction algorithms succinctly presented before, a differ-
ent approach has been proposed by Skarman and improved by Yamaguchi ( [193]), and
is known as phase-shifting digital holography. The basic idea is to use a phase-shifting
algorithm to compute the complex optical field in the electronic recording support plane.
The wave field in another plane is then computed with the Rayleigh-Sommerfeld integral
(see Appendix B). The bulk of this thesis is the phase extraction from Sl signals in dy-
namic regime, but it is quite clear that DH can benefit from the techniques developed here
for Sl.
Another set of techniques exists, called sometimes in-line holography, allowing object
reconstruction from a sequence of recorded diffraction pattern. The basic principle is
shown in Fig.1l.9 and was first proposed by Pedrini et al a couple of years ago ( [144])
with transmitting apertures.

The reconstruction technique has been shown to perform well with diffusiving objects,
transmitting or reflective [10]. Improved procedures have been proposed since then, no-

5The spatial resolution of electronic sensing devices is at least one order of magnitude lower than the one
of usual argentic emulsions: 1000 lines per mm and up to 5000 for photographic emulsions, to compare to
at most 100 lines per mm for an electronic sensing device ( [163]). In DH, the maximum angle between the
reference wave and the object wave is therefore limited to a few degrees.
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Figure 11.9: Principle of object reconstruction from a sequence of diffraction patterns.

tably with the introduction of a random phase object right after or before the object, and
are known under the terminology speckle-based phase retrieval technique ( [9,12]). The
addition of the random diffuser allows the detection of very low frequencies with recording
planes that are recorded at close locations, in comparison with what would be necessary
in classical in-line holography without diffuser.

Let us now take the second point of view, the one of the microscopy expert. The only
things that can be readily measured in optics are intensity maps and power spectrum,
which means that some substantial knowledge about the object, carried by the phase, is
lost. The Gerchberg-Saxton algorithm has been originally designed to address the prob-
lem of recovering the phase from two intensity measurements. The block diagram of the
algorithm is recalled in Fig.Il.10, where g(z,y) and G(u,v) designate complex quantities
in real and Fourier domains respectively. The convergence of the algorithm is notably
discussed in [59], where others algorithms are moreover proposed. A generalization of
the Gerchberg-Saxton algorithm for nonunitary optical system, the Yang-Gu algorithm,
can be found in [194].

The conventional Shack-Hartmann sensor is another well-known technique of wavefront
sensing and has been - is still - used in astronomy. This sensor uses a microlenses array
and its principle is basically to measure the deviation of the spot given by each lens from
its optical axis, giving this way the average local slope of the wavefront. The use of such
a device is still plagued with low spatial resolution.

To conclude this section, we can say some words on digital image correlation - DIC -
([141,175,176]), which took over classical gauge sensing in the experimental mechanics
circles two decades ago. Without enlarging on the subject, the basic idea is to compare
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Figure 11.10: Block-diagram of the Gerchberg-Saxton algorithm.

the two frames corresponding to the states of the probed surface before and after defor-
mation and obtained by classical imaging with a white light illumination. The recorded
frames are actually split into picturelets of usually 10 x 10 pixels, on which an interpo-
lation procedure is performed. The correlation function is then computed between the
smooth interpolated picturelets and its maximum gives the local averaged (due to the
use of sub-windows) in-plane displacement of the surface between the two states. The
interpolation step with efficient algorithm for the correlation function computation allow to
achieve an accuracy in the displacement computation up to 1/100 pixel. Though being a
huge improvement with respect to gauge sensing, the DIC techniques present poor spa-
tial resolution. In addition, a speckle-like structure is most of the time needed on the object
surface if the sample does not present its own natural texture. Moreover the achievable
accuracy for displacement computation of Sl techniques is usually acknowledged to be
submicrometric and, say, one order of magnitude smaller than DIC techniques in usual
conditions. However, apart from the speckle-like structure which needs to be attached
to the probed surface in some manner - which excludes DIC techniques from non de-
structive remote sensing techniques -, the setup is very simple and obviously much less
sensitive to external disturbances than interferometric arrangements.
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Chapter Il

Theoretical description of speckle
fields and speckle interferometry

1 The central limit theorem and basic first order statistics

1.1 The perfectly resolved case

We have seen in the previous chapter that speckle phenomenon arises each time a sur-
face with a roughness scale of the same order of magnitude of the light wavelength is
illuminated with a beam of coherent light. The Huygens principle stipulates that the sur-
face can be seen as a certain number N of independent phasors, and at each point of
the speckle pattern the electric field is the sum of their N contributions. Having no clue on
the exact structure of the surface, a deterministic analysis of the resulting field is not pos-
sible. The central limit theorem is the starting point of all the statistical analysis of speckle
fields. This fundamental theorem states that the probability density function (PDF) of the
speckle electric field tends toward a gaussian distribution as soon as N tends to infinity.
In practice, we observe a gaussian speckle pattern as soon as few tenths of elementary
scatterers are involved.

Assuming having a large enough number of independent phasors, the joint PDF of the
electric field real and imaginary part is Gaussian (see Fig.lll.1(a)):

1 A2 4 A2
p(Ar, Ai) = —seap(———3—) (I1.1)

By applying a variable transformation from the couple (A4,, A;) to (I, ¢) on the previous
gaussian distribution, we obtain a uniform distribution for the phase of the resultant phasor
in the range [—m, 7|, while the light intensity defined by I = AA* obeys the well-known
negative exponential distribution:

p(I) = %exp(—%), for I > 0 and 0 elsewhere

.2
p(¢) = o= , for ¢ € [~m, 7], (1.2)
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Figure Ill.1: First order statistics of (4,, A4;) and | A|.

where < . > stands for the averaging operator. It is worthwhile to point out that the real
and the imaginary parts are jointly gaussian but it is not the case for the amplitude of
the electric field. The PDF of the amplitude is readily obtained by a direct-probability
transformation of Eq.(lll.1) ( [77]) and is known as the Rayleigh density function (see

Fig.II1.1(b)):
2
p(1AD = 2leap(- 21 (13)

g2
1.2 The integrated case: the box-car approximation

What has been seen so far holds for the ideal case of an infinitely small detector. In the
real world, the sensors are obviously of finite size and the statistics of integrated speckle
fields are rather different from the ideal resolved case. The smooth resolved speckle in-
tensity pattern can be approximated by a staircase function as shown in Fig.lll.2. Within
each individual sub-area, the assumption of a constant intensity (z, y) can be made. The
intensity values of the sub-areas are in addition supposed to be statistically independent.
In other words, the sub-areas must thus be small enough for the approximation of con-
stant intensity to hold and large enough for the assumption of statistical independence to
be valid. Under those assumptions which constitute the so-called box-car approximation,
the integrated intensity PDF takes the following form ( [77]):

I
<I>

1 m

P = fom (75

m) )mlm—l

), (I11.4)

exp(—m

where I'(m) is the gamma function of argument m. m can be interpreted as the number
of independent sub-areas within each elementary sensor. This interpretation holds for
large values of m and fails as m becomes closer and closer to 1 which is the asymptotic
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Figure lll.2: The box-car approximation.

value of the resolved case '. The case m = 1 does certainly not correspond to one
correlation cell per elementary sensor. It has been shown nonetheless that the negative
exponential distribution can be obtained to a good confidence level for an aperture size
ten times smaller than the average speckle size ( [133]).

In Fig.lll.3, a nearly resolved speckle pattern and an integrated one, both obtained by
numerical simulation 2, are shown with the corresponding values of m. The theoretical
PDFs are depicted with respect to the variable I/ < I >, jointly with the computed
histograms. The central limit theorem applies again here for large values of m. The PDF
of a strongly integrated speckle pattern tends to follow a Gaussian law, centered on the
mean intensity. The gamma distribution of Eq.(lll.4) is pretty accurate for small and large
values of m.

The first order statistics give insight in the energy fluctuations and second order statistics
are necessary to get more knowledge on the spatial properties of the speckle pattern, or
in other words on granularity of its spatial structure.

'm is the fitting parameter of the gamma distribution, and it is only in some cases that it can be connected
to the number of speckle grains contained in the elementary sensor. Two different symbols are used in [75]
to avoid the ambiguity, m and .#.

2All the simulations of complex speckle fields have been carried out based on the model described in
Appendix B and [52].
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Figure IlIl.3: Nearly resolved and integrated simulated speckle patterns and the
corresponding PDFs.

2 The notion of speckle grain and second order statistics

2.1 The perfectly resolved case

Given a speckle pattern, the autocorrelation function of the intensity map provides a mea-
sure of the characteristic size of a speckle grain:

Ri(r) =< I(ro)I(ro — 1) > , (I11.5)

where < . > denotes an averaging over an ensemble of rough surfaces. The dimension
of the objective impulse response is the resolution limit in the image plane, so we expect
from the computation of R; to retrieve this physical dimension for the average size of the
speckle spot. For the usual case of a circular lens aperture of diameter D, the autocor-
relation function takes the form of the Airy function and the average transversal width of
the grain is thus ([110]):

(111.6)

where ) is the wavelength of light and z is the distance between the exit pupil of the lens
and the image plane. For the case of objective speckle pattern, the same formula applies
with D now corresponding to the dimension of the illuminated area and z the distance
between the diffusing surface and the observation plane.

Along the z-axis, the average width is given by ( [110]):

822

i~ (111.7)
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The first zero of the 3D autocorrelation function of the intensity map define a volume
which has the famous cigar shape (see Fig.lll.4).

Figure lll.4: The statistical dimensions of speckle grain in 3D.

A more detailed study of the 3D dimensions of the speckle cell outside of the Fresnel
diffraction domain can be found in [110,111]. For a free-space pattern, the speckles
grains point away from the center of the illuminated area of the scattering surface. They
tend to stretch along the observation direction and to have an elliptic profile in a transver-
sal plane.

The 3D average dimensions of the speckle grain do not depend on the defocusing or on
the geometrical aberrations ( [77,132]), insofar as aberrations correspond to an additional
phase term in the pupil plane. The zeros of the autocorrelations functions are thus not af-
fected. This is actually no more the case for partially developed speckle fields, and it turns
out that, if the zeros of the power spectral density ( [132]) remain unaffected by aberra-
tions, the distribution of energy inside the main lobe changes 3. In the following only the
case of fully developed speckle fields will be considered. This cigar-shaped volume actu-
ally define the volume of correlation of the speckle field. This notion of correlation volume
is of primary importance in S| and we will come back to this notion more thoroughly later
on, especially when talking about decorrelations and random phase errors in Sl.

3The power spectral density (PSD) of a speckle pattern is defined as the FT of the autocorrelation function
of intensity, or in other words as the convolution of the coherent transfer function of the lens with itself. It
represents the distribution of intensity fluctuations with respect to spatial frequencies. As an example, the
PSD of a subjective speckle pattern involving a rectangular uniform aperture has triangular cross-sections
along the axes in the frequencies plane ( [77]).
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2.2 The correlation cell of integrated speckle fields

We have quickly reviewed the box-car approximation, which provides the framework no-
tably to easily compute some first-order statistics in integrated regimes. The integration
of the array sensor has also an influence on the second-order statistics, i.e. on the cor-
relation volume dimensions. The sensor cell integrates the intensity over a certain region
of the speckle field. To understand what is happening within this elementary region, the
box-car approximation combined with the random walk view in the complex plane is use-
ful. We can indeed consider that the elementary sensor cell collects the contributions
from K several independent phasor, to which a complex intensity is associated as follows
(see Fig.lIL.5):

I = I, + I with1 <k <K (111.8)

Each elementary sensor being independent, the correlation cell, in a transverse plane, is
thus the pixel itself.

Figure lIl.5: Resulting intensity of a pixel in integrated regime.

Along the z-axis, the things are slightly different. The sensor cell integrates several
speckle grains whose statistical dimension along the propagation axis is given by Eq.(I11.7).
In Fig.111.6, the contour of a simulated three-dimensional speckle field is jointly shown with
different pixels sizes for different integration regimes (The point of computing the speckle
cell dimensions by thresholding an intensity map is discussed in [7]. It is notably showed
that the speckle grain size is correctly estimated with intensity threshold levels equal
roughly to twice the mean value).

We carried out simulations for a nearly perfectly resolved, a weakly integrated and a
strongly integrated regime. We know from Eq.(Ill.4) and common sense that the proba-
bility density function deviates from the negative exponential as the speckle field is more
and more integrated and tends to a gaussian distribution centered around the mean
value, with a narrower and narrower range of likely gray levels. Without conducting any
mathematical derivation, we can imagine that the correlation coefficient along the z-axis
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Figure lll.6: Effect of the pixel size on the in-depth correlation length.

will deviate from the sinc? function as the number of speckle grains integrated in the el-
ementary sensor increases, with a peak less and less sharp, as seen in Figlll.6. We
observe from the simulations that the in-depth correlation length seems to increase as
the speckle field is more and more integrated. This observation would definitely need a
deeper analysis both theoretically and experimentally.

3 Intensity and phase maps topology: phase saddles, vor-
tices and bright spots

3.1 Phase singularities
3.1.1 Existence and basic properties

The central limit theorem states that the real and imaginary part of the electric field result-
ing from the interference of independent phasors are themselves independent and jointly
gaussian.

Az, y) = Az, y) + Ai(z, y) = p(z, y)exp(ix(z,y))

p*(x,y) = A2, y) + AF (. y) (111.9)

tan(x(x, y)) = Air2)
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It is thus likely that A, (z,y) and A;(z,y) both vanish, and thus lead to an indetermi-
nate phase x(z,y). In their seminal work on phase vortices published in 1974, Nye and
Berry ( [138]) showed that points of zero complex amplitude exist in pulses diffracted by
rough surfaces, and introduced the concept of phase dislocation, a key topological object
of speckle fields. Nye and Berry, in [138], placed the emphasis on the dislocations in
the non-monochromatic case (pulses of light), and the case of monochromatic speckled
wavefront has been studied in [17] and [65].

A, (x,y) and A;(x,y) actually define surfaces in space which respectively intersect with
the zero plane in a family of lines. The phase singularities are located where those family
of lines intersect themselves.

{7 clockwise
O counterclockwise

Figure lIl.7: Phase singularities in a simulated speckle field.

It can be seen in Fig.l1l.7 that walking around singularities makes the phase go through a
full 27 loop clockwise or counterclockwise. In Fig.lll.8, a cross-section along the z-axis of
a simulated speckle pattern is shown.

Figure Il.8: Longitudinal simulated speckle pattern.

The raw phase of the field is shown in Fig.lll.9, while the same phase map where the
propagation phase term has been removed is shown in Fig.111.10.

We can see that when walking from A to B in Fig.lll.9 the phase ranges from 0 to 2,
while the phase covers a range twice larger along the path A’B’. This is the signature of
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Figure 111.10: Phase map of the longitudinal simulated speckle pattern without the
propagation phase term.

a phase singularity enclosed in the circuit A — A’ — B’ — B. Moving from A to B in an
Argand diagram* simply means turning around the origin once. In the same diagram, two
loops lie between A’ to B’. It means that if we represent the field in the complex plane
while we move smoothly from plane P, to plane P», the curve A(x,y) has to pass through
the origin (point S in Fig.I11.9).

Those simulations meant to show that the fine structure of the phase of a speckle field
can faithfully be simulated, and it might be of use to study the connection between the
phase map and the intensity map topologies, which has clearly important implications in
practice in Sl.

3.1.2 Singularities density, motion, birth and annihilation

It is known since the work of Berry in 1977 ( [17]) that the phase singularities are in av-
erage as numerous as bright spots in a speckle pattern. They are moreover known to
appear by pair and disappear as well by pair; a pair containing a counterclockwise (pos-
itive) and a clockwise (negative) vortice. Our numerical simulations confirmed that there

4An Argand diagram is a plot of complex numbers as points in the complex plane. It is also known as
Fresnel diagram, which is used in electrical engineering.
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is in average a pair of singularities of each speckle grain, a general result which has been
somehow demonstrated in [65]. When we look at a typical speckle phase map (Fig.111.7),
the analogy between singularities and electric charges comes naturally to mind, with the
equiphases being similar to electric field lines. It is also very intuitive that the singularities
can only appear and annihilate by pair, leaving the total charge conserved ( [64]).
Singularities in wavefronts can be classified following some topological parameters: sign,
isotropy (the constant phase gradient curve around a singularity is a circle in the isotropic
case), orientation (it is the angle between the local coordinate system and the global one),
amplitude scale factor (it denotes how fast the field increases away from the vortice), and
degeneration factor (it denotes how many 27 intervals the phase circulates through in one
cycle) ([65]). The analogy with electric field and charges is actually exact for the isotropic
and non-degenerated singularities, which is generally the encountered case with circular
aperture, symmetrical gaussian illumination beams and in the paraxial approximation.

In [77], the density of vortices is computed for a speckle pattern plus a coherent back-
ground. The condition to obtain a phase singularity changes now to obtain at the same
point in space a null imaginary part of the field and a real part of the field canceling
the background intensity. As might be expected, the stronger is the background inten-
sity, the lower is the probability to form a vortex. The density of vortices is thus re-
duced by the addition of a coherent background and depends exponentially on the ratio

Ibackground/ < Ispeck’le >.

3.1.3 Phase singularities: nuisance or useful feature?

The authors in [138] had already the intuition that phase dislocations may act as markers
and thus be of interest in the field of remote sensing, and it is only thirty years later that
optical vortex metrology has been introduced by Wang in [187]. The authors make profit
of the fact that, without decorrelations, the displacement of each phase singularity is di-
rectly related to the local displacement of the object surface. However, extracting the real
speckle phase implies an interferometric measurement with a well-calibrated reference
beam, with all the usual attention that must be paid to all direct interferometric measure-
ments. The idea of the authors was rather to build an analytic signal directly from the
intensity speckle pattern and extract from it a pseudo-phase. The very good point of this
approach is that a pseudo-phase can be computed from any structure containing enough
randomness (printed or projected random pattern, random texture of an object etc). We
will come back with details to the analytic method, originally introduces by Gabor in 1946,
in one and two dimensions, later on in chapter 4. The analytic signal is thus computed
for the original state and the final state as well, i.e. after displacement. A pseudo-phase
map is computed from the multiplication of the complex signal corresponding to the initial
state by the complex conjugate signal corresponding to final state. If the two complex
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patterns are shifted by the correct amount along both = and y directions, the singularities
density within this new pseudo-phase map reach a minimum, as two vortices respectively
positively and negatively charged annihilate. In the ideal case of a displacement of an
integer number of pixels and sufficiently small to neglect decorrelations effects, all the
singularities should be paired and thus annihilated. Looking for the smallest density of
vortices yields an accurate measurement of the displacement. As we said before, the
intuition of Nye proved to be true, but the method exposed in [187] is not really applicable
to real situations, as it is limited to very small displacements - typically a couple of pixels
- and also to pure rigid body translations. However, it is one of the very first work which
shows that phase singularities are of use in optical sensing.

The method has been deeply revised in [188]. The analytic signal is now built from the
original random pattern as follows:

I(x,y) = F LY (va,v)-Z (I(2,y))] , (I1.10)

where .7 is the FT (see Appendix A) and .#¥ is the Laguerre-Gauss (LG) filter, and
defined as a Riesz transform with a doughnut-like zero-phase bandpass filter. The Riesz
transform is an isotropic HT and some words will be said about it in the next chapter, as
it has been introduced in fringe analysis by Larkin et al in [100, 102]. To fix the ideas, the
LG filter expression in the Fourier domain is defined by:

2
LY (v, vy) = pexp(—ﬁ)ezp(ie) (n.11)

The spiral phase operator allows an isotropic implementation of the HT in 2D while the LG
kernel allows to control, through w, the density of singularities in the pseudo-phase map.
To illustrate the effect of the LG transform, a N x N speckle pattern has been simulated
(see Appendix B) with N = 128. From this pattern, a pseudo-phase map has been
computed for different values of w. The results are shown in Fig.lll.11. We can clearly
observe the impact of the zero-phase doughnut-like amplitude filter on the singularities
density.

With the idea to extend the measurement range and to be able to characterize not only
pure translation motion but also pure rotation, matching the singularities as before is not
enough, and the last improvement of the method lies in the fact that the core structure
of the singularities is considered: the topological charge (clock-wise or counterclock-
wise singularity and number of 2z cycles around it), the vorticity (vorticity of the phase
around the vortice), the eccentricity (ellipticity of the amplitude contour lines) and the
zero-crossing angle (angle between the zero-crossing lines of the real and imaginary
parts of the analytic pattern) are now computed for each singularities and matched so as
to retrieve the object motion. Those features are the fingerprints of each singularity and
thus allow its identification without ambiguity. The method has proven to be efficient in
vivo to track living objects in their own environment (fugu fishes) ( [189]).
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Figure 1ll.11: Examples of pseudo-phase maps computed from a speckle pattern for
different sizes of the doughnut-like filter.

3.2 Are bright speckle grains the location of stationary phase?

This section mostly relies on the work or Shvartsman and Freund ( [167]). This work
actually provided a wealth of insights in the speckle phase maps topology and notably
shed new light on the connection between bright spots and stationary phase areas. It
was indeed acknowledged that the correlation area of a speckle field is a region of nearly
constant amplitude and phase ( [65]). This statement might lead to think that the phase
is nearly constant within speckle bright grains, which is actually refuted by the following
short reasoning: let us consider that the complex-valued speckle field is written: A(z,y) =
B(x,y) +iC(x,y). The intensity is given by: I = AA* = B% + (2, while the phase is:
¢ = arctan(C/B). With the convention dF'/dxz = F,, maxima of amplitude and phase
respectively imply the following equations:

oI _ oI _ - BB, +CCy =BB,+CCy =0

o™ tans - (11.12)
ang _ 6 _ g (OB, +C,B=CBy+C,B=0

Those conditions are jointly fulfilled if and only if B,, B,,, C, and C, are equal to zero. B
and C being independent random variables, the probability that their partial derivatives
vanish together is minute. The phase is thus not stationary within bright grains. The
authors observed that speckle spots actually lay on the borders of phase saddles, as
shown in Fig.lll.12. The authors reported an average phase gradient of 172° per corre-
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(a) Intensity map with saddles and (b) Phase map with saddles and
singularities highlighted by singularities highlighted by
circles. circles.

Figure lll.12: Topology of phase and intensity in a complex speckle field.

lation length, while it is around 50° per correlation length within bright grains, so more
than three times less than elsewhere in average. A theoretical value of 140° is reported
in [108]. With the simulation model presented in Appendix B, we also computed the aver-
age phase gradient within a speckle phase map and obtained a typical value of 136° +2°.
The small difference comes probably from different definition of the correlation length, but
the order of magnitude is the same. As a little detail that it is worthwhile to mention, it is
better to compute the gradient using the following trick than classically:

V6= VVleosd)P T (VEmP = \/(v6)2(sin’ o+ cos?g)  (1IL13)

Around phase singularities the 27 step can lead to a gradient of v/2 x 27. The previous
trick avoids this wrong estimation.

It is actually surprising that the phase gradient is not null or at least very small within
regions of high intensity. Fresnel diagrams are actually of use to predict such behaviors
of the complex field in the neighboring of such topological objects (see Fig.Ill.13). The di-
agram on the left of Fig.111.13 illustrates the case of a phase saddle. As previously stated,
it clearly appears that a phase saddle and an intensity maximum cannot be situated at
the same location °. In the diagram on the right, we present some likely situations around
a maximum of intensity. The green line illustrates the case where a bright speckle grain
rides a phase saddle ( [167]).

The observations reported in [167] and the analytical derivation in [108] ® enable to con-
clude that the brightest pixels are not the ones to favor as they are the scene of a certain

5The speckle field is continuous and differentiable and the curve followed by the field in the complex plane
has thus the same properties of differentiability. There is thus no singular point apart from the origin, which
is the location of the phase vortices.

®1t is reported in [88,108] and acknowledged that the higher the modulation, the lower the random phase
error induced by decorrelation.
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iR, phase saddle iR , bright spot of a grain
A

Figure 11l.13: Likely path followed by the speckle field in the complex plane around a
phase saddle (left) and a bright spot in a grain (right).

phase error. The pixels in the neighboring of a phase saddle, less bright, should thus be
privileged. Those conclusions are valid in the resolved case. In the integrated regime,
there are no more such topological objects - phase saddles and phase singularities -,
especially for large values of m (see the section of the box-car approximation), but the
same reasonings hold for the complex intensity of the "meta-speckles”, and its path in the
complex plane.

4 Optimization of S| measurements with unresolved speckles

Performing accurate measurements in Sl requires a certain know-how, as it is less straight-
forward than in classical interferometry. We will not come to the inherent limitations of
interferometric methods or let us rather say the precautions one must take to avoid the
recorded signals depending on too many external parameters, degrading this way their
quality and thus their reliability and their relevance. This is a well-known point which has
received a lot of attention. Here we will rather speak about the parameters we can play
on to maximize the measurement quality, which is usually quantified in SI by the amount
of random phase errors. Lehmann studied the case in [106, 107] for the resolved and
the unresolved regime. The setup parameters considered here are the beam intensity
levels with respect to the camera dynamic and noise level, and the lens aperture. The
interferometer sensitivity is of course of primary importance but rather for sampling con-
siderations than for measurement quality considerations. The beam intensities, are in
practice, limited by the available laser power, especially for large objects, and the lens
aperture is thus adapted to match the illumination with the camera dynamic. It is now
acknowledged that the speckle grains do not need to be resolved to perform S| measure-
ments. Of course, the highest modulation is attained in the resolved case, but for obvious
ilumination considerations, performing Sl in a resolved case is not realistic in practice.
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In addition, in the resolved, or nearly resolved, regime the grey levels that are the most
likely are rather black, whereas the range of likely grey levels becomes narrower as and
when more and more speckle grains are integrated in the pixel. Thus, in the integrated
regime, there may not be pixels with the highest achievable quality, but there will be a
higher number of pixels with reasonable quality.

In addition, it makes sense to think that saturation must be avoided. This is actually
wrong in Sl. Huntley showed indeed in [88] that the decorrelation-induced phase errors
are lower when a certain amount of pixels are saturating the sensor. The saturating pixels
are useless but their sacrifice allows to elevate the average modulation - and the average
SNR - and thus the average reliability of the pixels.

It is reasonable to evaluate the quality of the measurement by attributing a quality index
to the pixels of the probing sensor. The two solutions that are offered to us are:

e a binary classification of the pixels: valid and not valid, with respect to a certain
criterion.
¢ a finer classification with continuous weights.

It is now well-known that the decorrelation-induced phase error is to a very good approx-
imation inversely proportional to the modulation intensity, and pixel weights proportional
to the square of its modulation represent theoretically an ideal choice ( [106, 107]).

At a first glance, the binary classification might appear as a simplistic solution, as a pixel
is neither fully good nor completely bad. More realistically, the higher the modulation, the
more reliable the pixel, and thus the pixel reliability is gradually getting better and better,
as its modulation is itself higher and higher. We chose nonetheless this classification
strategy to offer a completely new approach to speckle phase maps filtering, which will
be detailed in the chapter 6.

5 Decorrelations and their impact on the achievable phase ex-
traction accuracy

Due to the intrinsic randomness of the intensity and the phase of a speckle field, the
temporal Sl signal will experience strong fluctuations of modulation and local mean (re-
spectively I,,, and I, in Eq.(I1.10)). In [55], we advocated the use of the Empirical Mode
Decomposition (EMD) ( [85]) to remove efficiently the local mean to give to the signals the
required shape for a meaningful subsequent phase computation ( [55]). However, when
the modulation of the centered signal drops to zero, the derivative of the phase or instan-
taneous frequency (IF) ( [19]) does not reflect the underlying physical phenomenon. In
addition, in the vicinity of those areas of null modulation, noise - due to the electronic
chain of acquisition, or to laser power fluctuations, or also to mechanical disturbances -
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becomes preeminent and the EMD and, as a consequence, the phase extraction tend to
be very inaccurate as any other method would be, by the way. Due to the 1D unwrapping
operation, the error will propagate and corrupt the whole phase dataset. The statistics
of these phase errors are actually quite complex ( [77,88,109]). In [109], the standard
deviation of this error is computed with respect to the decorrelation amount for different
pixel modulations (see Fig.l11.14).
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Figure lll.14: Overall standard deviation (c3) and conditional standard deviation
(cs(I,)) of the decorrelation-induced phase error as a function of the normalized
decorrelation (0 for no decorrelation and 1 for total decorrelation ). The curves of the
conditional standard deviation are given for different pixel modulations ranging from
< I, > /4t0 8 < I,, >, < I, > being the mean pixel modulation.

The conclusion is that the higher the modulation, the lower the phase error, reaching of
course the maximum value of 7/+/3 at total decorrelation (standard deviation of a ran-
dom variable uniformly distributed in the range [—x,x]). Interestingly, the phase error
does not depend on the number of speckle grains per pixel. Those results have been
derived analytically for a smooth-reference-wave interferometer and the trickier case of
speckle-reference-wave interferometer follows presumably the same trend.

50



Chapter IV

Phase extraction from Sl signals in
dynamic regime: still a topical issue

Drawing up a thorough review of the phase extraction techniques is clearly out of our
scope, though this work can hardly be found in the literature ( [89]). We provide in Fig.IV.1
an attempt of classification of the main techniques in fringe analysis divided in four main
streams: morphological, phase probing, definite transforms based methods and stochas-

tic methods.
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Figure IV.1: A tentative classification of phase extraction methods.

Among phase probing techniques, we found phase-locked loop (PLL) methods ( [114]),
where the basic idea is to build a system (either analogical or digital) which responds
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Chapter IV. Phase extraction from Sl signals in dynamic regime: still a topical issue

to both the phase and the frequency of the signal under consideration, and provides, by
adapting the frequency of an internal controlled oscillator, an output signal which matches
the input signal both in phase and frequency. In fringe analysis, the idea is to analyze
the interferogram column-wise or row-wise with a PLL algorithm. Only interferograms
with a carrier can be processed this way and different techniques have been developed
to increase the noise rejection power and compensate the locked-in time( [71, 165, 166]).
The first section will deal with phase-shifting techniques. Those techniques have been
massively used and substantially improved ( [44,45]). Though generally acknowledged
as the choicest techniques in terms of measurement and spatial resolutions, they are not
in essence good candidates for dynamic problems, despite attempts to adapt it to real
time situations ( [28,40,87]). Resorting to single-frame based techniques is then the nat-
ural trend, and it will be the matter of the next section. The mainstream techniques are
here the Fourier transform (FT) method combined with spatial carrier fringes ( [22,177]),
the spiral phase quadrature transform method ( [102]), the latter being basically a con-
venient 2D isotropic Hilbert Transform (HT), the local interpolation of the intensity pattern
using splines ( [26,158]), and regularization based methods ( [127]). Most of the single-
frame techniques need a 2D unwrapping step ( [72]), and the task is not trivial with noisy
wrapped phase maps, even if iterative filtering techniques have proven to be efficient and
easy to implement ( [3]). Besides the sign ambiguity that cannot be removed without a pri-
ori knowledge, single-image techniques depend on the quality of the correlation fringes.
With standard apertures of usual systems, the correlation lengths are as small as a few
tens of microns both in out-of-plane and in-plane measurements, and the fringes are not
exploitable beyond this range.

Leaving aside computational considerations for the moment, a fruitful approach lies in the
pixel history analysis, presented in a third section. It offers not only means to get rid of the
intrinsic limit of correlation, but it reduces also greatly the complexity of the unwrapping
step, as one deals from now on with 1D signals. The sign ambiguity is moreover easily
cleared up by adding a temporal carrier, readily subtracted afterwards. The methods de-
voted to solve the 1D temporal problem include the Morlet wavelet transform ( [35]) and
the HT ([120]).

The need of increasing performances in terms of accuracy and computation speed is
permanently demanding new efficient processing techniques, and convinced that the
temporal approach has a lot to offer, we look for efficient and accurate techniques to
compute the phase from the temporal signals of each pixel of the sensor array, which un-
dergo strong intensity fluctuations. To this aim, we consider the problem from a general
point of view with a return to the basics of defining the instantaneous quantities of a non-
stationary signal. We will thus focus on those issues in the last section of the chapter.
We will conclude by the fact that a pre-processing tool is missing to make the Sl temporal
signals amenable to a meaningful phase extraction step.
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1 Phase-shifting interferometry (PSI): the choicest method in
terms of measurement accuracy

1.1 Principle of the phase extraction from several intensity maps

Due to the sign ambiguity of the arcos function in Eq.(I1.10) it is generally not possible to
compute the phase distribution from one single interferogram without a priori knowledge.
The general method to solve this ambiguity is to add a linear temporal carrier ( [44]). To
this aim, a phase shifter, properly calibrated, is inserted into one arm of the interferometer.
Each interference pattern following the two beam equation (Eq.(11.10)), at least three
states are necessary to solve the three unknowns equation.

I, =1, + Iy, cos(® + kdo) , (IV.1)

where ¢ is the phase-shift amount induced by the shifter device (e.g. a mirror mounted
on a PZT actuator, a liquid crystal cell, etc), and & is the sought-after phase (it includes
the speckle phase and the OPD phase denoted by ¢pcciic and ¢opp in Eq.(11.10)). Many
algorithms have been designed with a different number of frames and different values
for the phase shift. The phase-shifter miscalibrations are a matter of concern in phase-
shifting interferometry, and numerous solutions have been proposed to solve this issue
([4,173,190]), either by making the algorithm more robust to random errors around the
expected values of phase shifts, or by computing alternatively the phase based on a
priori values of phase shifts and then recompute the phase shifts values based on this
phase. The procedure is repeated several times to refine the computation, until some
convergence criterions are met. A review and assessment of existing algorithms that are
insensitive to linear phase shift errors has been conducted in [134].

The authors in [96] propose an iterative technique to adjust the voltage values applied
to the PZT to perform the wanted phase-shifts. Interestingly, they showed that by select-
ing pairs of quadrature pixels in the array sensor, we can form Lissajous curves whose
shape helps to compensate miscalibrations of the PZT actuator. As an example, if the
K phase-shifts run over less or more than a 2= cycle, a gap or an overlap is respec-
tively observed on the Lissajous display. The shape of the curve is strongly affected
by PZT miscalibrations, mechanical disturbances, sensor non-linearities, thresholding or
saturation, and can severely stray from the ideal circular shape. Adjusting iteratively the
voltages for each phase-shift amount has a direct visual influence on the curve and it has
been demonstrated that an almost circular Lissajous curve, i.e a proper phase-shifting
voltage profile, can be obtained after say 5 iterations.
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1.2 General approaches to design PSI algorithms

We present in this section some general approaches that allow to design and optimize
PSI algorithms. We start with the Fourier series approach presented in [25]. We give
some clues then on the more general approach presented in [49] which makes a neat
connection between PSI algorithm design and the use of windows in Fourier analysis.
We will end up the section with an even more general approach presented in [174], which
is able to address the issue of non-sinusoidal intensity waveforms. Phillion came up
in [145] with a family of algorithms that have been designed to be insensitive to various
orders of PZT distortions, detector non-linearities and signal and background drifts.

1.2.1 A general formulation with Fourier series

Bruning et al proposed in [25] an alternative representation of Eq.(IV.1) with Fourier se-
ries:
I, = ay + aj cos(kdp) + ag sin(kd) (IV.2)

We recall that §¢ is the phase-shift amount between consecutive recorded intensity pat-
tern and is equal to 27/ K, K being the number of steps to run over a complete 27 cycle.
The latter equation is the Fourier series decomposition of I, with a dc term and the first
harmonic. The Fourier coefficients are defined as following:

ap = I,
a1 = Iy cos(®) = 2 S0 | I cos(kdo) (IV.3)
az = Iy sin(®) = 2 S | I sin(kdg)

The sought-after phase is thus readily obtained by:

K .
tan @ = 22 = 2uh=t T sin(ko9) (IV.4)

a1 S T cos(kdo)

Starting from this general formulation, Kuchel designed algorithms able to make ben-
efit of random phase shifts, caused for instance by mechanical vibrations, to measure
deformations of very large optical mirrors dedicated to telescopes ( [98]).

1.2.2 A general formulation with the concept of data-sampling window

So as to design algorithms able to compensate errors due to shifter miscalibrations or
non-linearities, and also due to the likely presence of higher harmonics, the following
approach has been proposed in [49]. The idea is to consider the recorded frames as a
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windowed and sampled version of the continuous frequency-modulated 2-beam equation.
The 2-beam equation with a temporal carrier can be rewritten in the following way:

I(t) = I,(1 4+ V cos(® + ¢(1))) , (IV.5)
where ¢(t) is supposed to be continuous and linear, and thus of the form: ¢(t) = 27v,t.
The FT of Eq.(IV.5) with the previous hypothesis is simply:

I(t,v) = L[w(v) + g(w(y — 1) exp(i®) + w(v + v,) exp(—i®))] , (1V.6)

where the hat denotes FT and w(t) is the sampling window. If the window is such that its
spectrum vanishes at v, and 2v,, then the phase @ is readily available by:

—~
~>
—~

I Vo)) 4 g(i0)) (IV.7)

®(t) = arctan| Re((t.70))

If we consider a rectangular sampling window, which is usually the case, the previous
conditions on the window spectrum are fulfilled but the important variations of the sinc
function on both sides of v, and 2v, are responsible in practice for a high sensitivity
to phase-shifter errors. It is thus highly preferable to give smoothness to the sampling
window in real domain, so as to greatly reduce the spectral leakage in Fourier domain and
thus lead to robust algorithms, tolerant to phase-shifter miscalibrations. In [49], the Hahn
window is used and a seven-frame algorithm is designed with very interesting results. Of
course, we have to deal with discrete signals in practical cases, that are formally written
as Dirac combs:

®;
w(®,t) = ijé[t — 27%] (IV.8)
J
The DFT of the sampled intensity is:
I(t,vo) = > Ijw;exp(—id®;) (IV.9)
J
The previous derived equation for phase computation becomes then:
Im(w; exp(—i®;))1;
O(t) = arctan[zj (105 exp( ]))AJ} (IV.10)

> j Re(w; exp(—i®;))I;

This way of writing has the asset to be a generalization of the previous formulation involv-
ing Fourier series ( [25]) with the introduction of weights which are the window samples.
In addition, this formulation is compliant with existing PSI algorithms as it is possible to
know the window coefficients w; if the algorithm coefficients are known. This general for-
mulation provides actually a wealth of insights in the process of designing PSI algorithms,
and permits to understand it with well-known tools of Fourier analysis.
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1.2.3 A general formulation for non-sinusoidal waveforms

So far, we have considered the ideal case of sinusoidal waveforms. The case of non-
sinusoidal waveforms can occur in practice if the intensity levels are not well adapted to
the sensor dynamic, with thresholding and saturating effects. This case is also encoun-
ters in fringe projection with non-sinusoidal fringe profile. A general approach has been
proposed in [174], and as it introduces the notion of characteristic polynomial in PSI al-
gorithm design, it has the nice feature to cling to Z-transform theory. In this more general
case, the algorithm is not only expected to be tolerant to shifter non-linearities but also to
the harmonics. The starting point is the decomposition in Fourier series of the intensity,
as what is presented in [25], but not limited to the sinewave case.

(D + ko) = Z m exp(im®) (exp(imd))* (IV.11)

m=—0oQ

Eq.(IV.4) is equivalent to the computation of the argument of a signal which is a linear
combination of the recorded intensities with complex weights.

> ko bl -
¢ = arctan[ = =——| = arg[z crly] = arg[S(®)], (IV.12)
k=0 ikl k=0

where, ¢, = ay, + b, and I, = I(® + k0). Injecting the decomposition in Fourier series of
I, into the expression of S(®), we get:

=

cr(exp(imd))* = i am exp(im®) P(e‘'md) , (IV.13)

0 m=—o0

S(®) = Z am exp(im®)

m=—0oQ

e
Il

where P is the so-called characteristic polynomial of the algorithm. It is shown that,
depending on quite simple rules applying to the location and the multiplicity of the char-
acteristic polynomial roots, insensitivity of the algorithm to harmonics of arbitrary order,
with or without phase-shifter miscalibrations, can be obtained.

1.3 Some basic algorithms

There is an impressive number of PSI algorithms and we simply recall below two of the
most well-known standard algorithms, namely, the five-frame algorithm and the Carré
method ( [152]).

1.3.1 The five-frame algorithm

This algorithm is actually an improvement of an older procedure which needs four frames
shifted by é¢ = 7/2. Here also, the phase shift is equal to 7/2, and the phase estimator
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is given by the following combination of the intensity patterns:
: 2(I3 — )
® = arctan———— V.14
arcanl4+10_2l2 ( )

This algorithm belongs to a class of algorithms known as N + 1 algorithms, due to the fact
that the last image is supposed to be the same as the first one. Here, the last recorded
image I, is indeed supposed to be identical to the first one Iy, and it has been shown that
this redundancy makes the algorithm more tolerant to phase-shift non-linearities. This
appreciated feature is exploited in the dynamic phase-shifting technique, whose spirit is
briefly described in a coming paragraph.

1.3.2 The Carré algorithm

An alternative to the NV + 1 algorithms class, is to consider the phase shift 5¢ as another
unknown. In that case, four frames are sufficient to compute &:

I =1,+ I, cos(® — %5@
I = I, + Iy, cos(® — 30¢)
Iy = I, + I, cos(® + 36¢)
Iy = I, + Iy cos(® + 35¢)

(IV.15)

The phase-shift 6¢ is supposed to be unknown but linear. The phase-shift and the phase
estimators are given below:

Sl 3(U2—1I3)=(h—14)
d¢ = 2arctan (Io—T3)+(I1—11) (IV.16)

& = avctan VIRl

The phase is only computed modulo w. The sign ambiguity is readily solved, if the sign of
d¢ is known, by inspecting the quantities I» + I3 and I, — I3, respectively proportional to
cos ® and sin ®. One small drawback of the method is that the computed phase does not
correspond to any of the recorded frame, but the algorithm allows to perfectly compensate
linear phase-shift errors. For instance, if divergent beams are used for the illumination,
the phase-shift will change across the field of view. The phase-shift computation following
Eq.(IV.16) is pixelwise, and the method is thus perfectly able to compensate this kind of
systematic error ( [45]).

1.4 Improved phase-shifting methods for dynamic regimes

Usually, the phase-shifting method relies on the assumption that the phase is constant
during the acquisition cycle of the N necessary images. One way to proceed is to design
setups where the N frames can be acquired simultaneously with N synchronized, cali-
brated and perfectly aligned cameras ( [169]). Some techniques have been proposed to
circumvent such setups with prohibitive complexity and cost.
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1.4.1 The temporal phase-unwrapping algorithm

This method, presented in [87], straddles the questions of unwrapping and dynamic event
characterization. It has actually been proposed as a mean to obtain an unwrapped phase
from several acquired interference patterns, without the drawbacks of usual unwrapping
algorithms, and notably the propagation of phase errors outward from regions of low SNR.
The technique exploits the fact that interferograms have been acquired at different times
of a deformation process, and therefore the name of temporal unwrapping, in contrast
with spatial unwrapping as generally considered ( [72]). This approach is also very inter-
esting also because it is one of the first work to introduce the temporal approach, which
has many assets for dynamic regimes. The authors consider a four-frames algorithm:

I14(t) — Ix(t)
I (t) — I3(t)
where the I;, (i = 1..4) are the recorded intensity frames. Considering a set of four frames

corresponding to the instant ¢ — 1, and another set of four frames recorded at instant ¢,
the phase increment between the states ¢ — 1 and ¢ can be directly calculated by:

Alys(t)
Al (t)

®(t) = arctan| | = arctan] ], (IV.17)

ALp(t)ALs(t — 1) — ALs() ALt — 1)

AD(t) = arCtan[Allg(t)Ah:z(t — 1)+ ALp(t) ALp(t — 1)

] (IV.18)

The final phase map is readily calculated afterwards by summing the phase increments
obtained at the different instants. The temporal unwrapping method relies on a four-
frames PSI algorithm, which is not the most tolerant to shifter non-linearities. In addition,
the phase is supposed to be constant over the cycle of four frames, which limits the range
of application of the method to quasi-static regimes. It would be probably worthwhile to
combine a five-frame algorithm with the temporal unwrapping approach to extend the
method to the characterization of dynamic events where the phase is no more piecewise
constant but piecewise linear.

1.4.2 The object induced dynamic phase-shifting method

The basic idea is to take advantage of the phase change induced by the application of
the load on the object under analysis ( [40]). Indeed, with an appropriate sampling rate,
the application of the load will yield interferograms which are naturally phase-shifted,
comparable to interferograms artificially phase-shifted, created to compute the phase of a
given static interferogram. For basic sampling considerations, it is required that the phase
change at each pixel is less than = between successive frames, and it is also required
for the phase evolution induced by the object to be locally linear, which is in general the
case in practise. Once an appropriate sampling rate is set and a suitable temporal carrier
is chosen, a phase extraction algorithm has to be chosen. A mandatory feature of the
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algorithm is that it must include a step where the phase-shift is computed, as we have
no clue - beside an upper bound - on the natural phase increment between successive
frames acquired during the dynamic event. From this work, it turns out that the 5-frames
algorithm is very stable for a phase-shift amount around 7 /2, and is thus well-adapted to
dynamic events characterization. It is worthwhile to emphasize the fact that several PSI
algorithms have been designed to compensate miscalibrations of the shifter and thus for
unknown and even unequal phase-shift amounts, but which are the same within the field
of view (irregularities being compensated during the calibration step). Here the phase-
shift computation is performed pixelwise. The major limit of this method lies in the fact that
errors occur as soon as the phase evolution fulfils no more the piecewise linear condition.

1.4.3 The one bucket algorithm

Another approach has been presented in [28]. The idea is to design a PSI algorithm able
to retrieve the phase from one single frame acquired in a deformed state, provided that
the reference state is perfectly known. Although, the mean intensity 7, and the modula-
tion intensity 1,,, are supposed to be constant during the deformation of the investigated
object, another requirement must be formulated to solve the sign ambiguity of the phase
Ag. ltis thus assumed that the sought-after phase is considered as being constant within
a small neighborhood around each pixel. If an area constituted by two contiguous pix-
els is enough to solve the sign ambiguity, it is highly recommended to consider larger
areas to minimize phase errors due to decorrelations. The phase is computed for each
pixel within a sliding area containing N pixels by a least square method applied to the
overdetermined linear system of two-beam equations written for each of the N pixels -
keeping in mind that the modulation and the mean intensity at any point are known from
the reference state. The major drawback of the method is that it is limited in terms of mea-
surement range to the correlation cell, unless the reference state is somehow refreshed
periodically.

2 The main streams in single frame based techniques

2.1 Mathematical transform based methods
2.1.1 Fourier transform based methods

Takeda proposed in the beginning of the 1980s a method which became a key technique
in full-field measurement field ( [177]). The method consists in, first, introducing a spatial
carrier (grid projection, additional tilt in one arm of the interferogram), and then in demod-
ulating the so-constituted pattern, which contains the sought-after phase (either it be a
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true phase as in interferometric techniques or a synthetic one as in fringe projection tech-
niques). The demodulating step makes benefit of the modulation theorem (see Appendix
A). The principle is well-known and illustrated in Fig.IV.2.

Figure IV.2: Principle of the Fourier-based method.

The method proposed in [177] analyzes originally the frame line after line with a 1D FT.
It has been improved in [119] and has been proposed in its final version of Fig.IV.2 by
Bone in [22], with the use of a 2D FT and the full-frame, instead of linewise, processing.
The introduction of a spatial carrier shifts the object spectrum around the frequency of
the carrier v, and —v,. The idea is then to filter one part of the spectrum, say the one
around v, and shift it back to the origin to remove the carrier. The phase is retrieved by
extracting the argument of the inverse FT of the so-filtered complex spectrum.

When the carrier frequency does not coincide with a discrete frequency k/(Ndz) in the
Fourier domain, interpolating and resampling are mandatory to shift the filtered part of the
spectrum by the ad hoc amount. To avoid the resampling part, one can consider rather
to remove the carrier in the real domain once the carrier frequency has been computed
accurately enough, either by removing a phase plane from the unwrapped argument, or
by multiplying by the correct complex exponential. A best-fit plane in the real domain is
also a good option. The band-pass filtering step is the most critical step of the method
- the exact determination of the carrier frequency is not critical as an eventual remaining
error can be compensated most of the time by a final best plane fit step. A trade-off must
be found between removing the noise with a narrow filter, and keeping as many details
as possible in the object phase. In addition, the final outcome of the method depends
strongly not only on the size of the window but also on its "smoothness”. The use of
windows and FT is discussed in [81].

2.1.2 The Spiral Phase Quadrature Transform (SPQT)

A more detailed description of the Hilbert transform (HT) will be given in the third section
dedicated to the analytic signal and its instantaneous quantities. The domain of validity of
the analytic method will be defined and its use to process Sl signals will be advocated. As
another mathematical transform based method, the SPQT ( [100, 102]) is a neat exten-
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sion of the HT to 2D. The HT reduces in the Fourier domain to a pure phase filter, shifting
the phase of positive frequencies by 7/2 and the phase of negative frequencies by —7 /2
(signum function). The HT of a real-valued signal is thus a quadrature version of the
signal itself. It is the natural way to build a complex signal and then to be able to compute
the phase. To overcome the anisotropy of usual implementations of the HT in 2D, Larkin
proposed in [100, 102] a new isotropic signum function defined as spiral phase function
in the spatial frequency space (see Fig.IV.3(a)). The spiral phase operator exhibits a =
step on any radius, but which is between —x /2 and /2 only for one specific orientation
(see Fig.IV.3(b)). An additional step is needed to readjust the radial phase step functions
to —w/2 and 7 /2, to be an acceptable quadrature operator. The readjustment actually
corresponds to the considered orientation angle in the Fourier domain, which is the local
orientation of the fringe pattern (see Fig.IV.3(c)).

i
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(a) The spiral phase operator. (b) The necessary fringe orientation step.

(c) Local fringe orientation.

Figure IV.3: The spiral phase operator requires the computation of the fringe orientation.

In addition, the fringe orientation map has to be unwrapped, but of course, unlike the
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classical case of phase unwrapping which aims at a final smooth phase distribution, here
the orientation phase map cannot be continuous, as illustrated in FiglV.4 with experimen-
tal correlation fringe obtained with an out-of-plane sensitive speckle interferometer. The
use of regular unwrapping algorithms is thus precluded.

(a) Experimentally obtained (b) Wrapped fringe orientation (c) Unwrapped and filtered fringe
correlation fringe. map. orientation map.

Figure IV.4: A practical case of fringe orientation computation with a gradient-based
method.

Despite its neat formulation, the method suffers from the fact that the fringe orientation
has to be computed ( [101,149]). The task is not easy especially when we have to deal
with noisy fringe pattern, and notably speckle correlation fringe.

2.1.3 Time-frequency and Time-scale distributions

As discussed in the final section of this chapter, the FT is not well suited for processing
non-stationary signals. The very fundamental goal of time-frequency analysis is to de-
vise a function, that depends jointly on time and frequency - which are mixed together in
classical Fourier analysis - and represents the energy distribution per time and frequency
unit. Understanding what a time-varying spectrum is, and representing the varying prop-
erties of a signal simultaneously in time and frequency is indeed a huge challenge. There
are many ways to design a proper time-frequency distributions (TFD) and the question
of the TFD optimality is not solved yet, though it aroused the interest of mathematicians
in the last few decades and continues to do so. Cohen reviews the fundamental ideas
of time-frequency analysis in [36] for deterministic signals, and we will not give further
details here, except mention some examples and give references of TFD applications in
our field and more specifically for phase extraction.

The use of the windowed FT (WFT), or equivalently called short-time FT (STFT), has
been investigated in [95] with a double view to denoise fringe patterns and to extract the
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phase from them. The basic idea behind STFT is to limit the window of observation to a
certain duration inside which the signal can be considered as stationary so that using the
FT be meaningful. Kemao et al extend this principle in 2D, leading to 4D distribution, to
process interferograms with good-looking results.

Wavelets analysis is a widely used mathematical tool in a continuously growing number
of fields. Daubechies, in a very interesting paper [47], suggests the image of the tree
to represent both the numerous branching which contributed to the establishment of the
wavelets analysis theory as we know them since the mid-1990s and the not less nu-
merous communities of researchers and engineers of very different horizons branches
(acoustics, optics, data compression efc) where wavelets are successfully used [35, 66,
70,92]. Giving a faithful history, though interesting, is by far beyond the scope of this the-
sis work and our knowledge. The literature about the matter in hand is profuse, either it be
about the synthesis of wavelets basis of compact support from FIR filters, or their connec-
tions with multiresolution analysis, subband coding, splines and so on ( [121,181, 184]).
We will confine ourselves to recall what is known as the Morlet wavelet transform, be-
cause it remarkably fits with our application, as shown by the pioneering work of Colonna
De Lega ( [39]), and also because we will compare our algorithms with it and discuss the
limits and assets of each method.

The mother Morlet wavelet is basically a sine wave whose support is limited by a smooth
window, usually a Gaussian window. The daughter wavelets are then classically shifted
and scaled versions of the mother wavelet (see Eq.(IV.19))

S(a,b) = / T s(Omas(t)dt (IV.19)

aJ oo

where s(t) is the signal under analysis and m,(t) is the daughter wavelet centered
around instant b and scaled by the factor a (see Eq.(IV.20))

— _ 12
map(®) = m(" =) = exp(- L0

) exp(i%(t — b)) (IV.20)

It is then possible to compute the inner product of every daughter wavelet at scale a and
at time b with the signal, resulting in a two-dimensional distribution or scalogram (see
Fig.IV.5).

The sought-after IF is then computed by looking for the maximum of the so-built distribu-
tion at each instant. The wanted phase is then directly available by numerical integration,
but this way of doing is neither reliable nor efficient. The computation of the wavelet co-
efficients is indeed performed over a certain range of scales and the whole duration of
the signal. Detecting spurious peaks, which do not reflect the underlying phenomenon, is
also very likely especially in the presence of noise. In addition it does not exploit the fact
that, on the ridge, the wavelet phase is equal to the signal phase. Efficient ridge tracking
algorithms follow from this observation ( [50]), and proved to be well-suited for temporal
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s(t)

Figure 1V.5: Computation of the scalogram of a given signal s(t).

analysis of Sl signals ( [35,39]), yielding smooth and reliable results (see Fig.IV.6).

| AI\I/I-F:M éign;ll S scalogram and ridge
| —Hilbert transform
‘+—basic ridge searching | ~

/

' —ridge tracking

=% /\/

IF computatlon

Figure 1V.6: Ridge extraction.

2.2 Morphological methods

We now come to another class of fringe demodulation methods. It consists in a collection
of techniques which aim at fitting the fringe pattern with smooth functions by minimizing

a certain cost function (a process known as regularization).

In [157], the authors search locally for the maximum of similarity between the original
fringe pattern and a straight fringe pattern. In other words, they want to locally match the
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phase with a plane. The step of finding the minimum of the function of merit is greedy in
terms of computation resources. The authors propose then an improved method in [158]
where they use a polynomial as the mathematical model, and the maximum of correlation
between the fringe pattern and the mathematical model is achieved through a steepest-
descent algorithm.

Another fitting procedure is proposed in [26] based on a B-spline formulation. The surface
is expressed as a linear combination of fitting functions defined as B-spline with different
degrees in the two orthogonal directions, say = and y, centered on the knots of a prede-
termined grid (this grid is sparser than the sampling grid of the original data). The fitting
procedure consists then in building and solving a linear over-determined system. In this
way, a rectangular matrix is build with as many columns as the coefficients, and as many
rows as the data points (N - M data points obtained with a vV x M sensor).

Servin et al developed in [164] a regularization technique to demodulate interferograms
with open and close fringe. The authors defined thus a cost function, classically com-
posed by a “closeness” term and a "smoothness” term, that has to be minimized. The
"closeness” term is here to keep the fringe model faithful to the data in a least-square
sense. The purpose of the "smoothness” term is explicit and its weight in the final result
is controlled by a regularization parameter, which can be adjusted by the reliability of
the data. The regularization technique yields a phase which is smooth and unwrapped.
The regularization framework has been shown to be well-suited to any fringe processing
step ( [127]), from demodulation to smoothing and fringe orientation computation. Those
techniques have a high noise rejection power and a great immunity to border effects.
However, the phase tracking is carried out pixelwise, which can be a problem for large
amounts of data, and furthermore, it must be fed with normalized and background free
fringe patterns. This latter point has been addressed in [105], by including in the original
cost function new terms to regularize the background and the modulation with a plane
model.

3 Phase map filtering and unwrapping

3.1 Filtering methods for wrapped phase maps

The phase map, extracted in [—m, 7], contains usually a lot of noise in SI, mainly due
to decorrelations. Filtering out this noise while preserving the 27 sharp phase jumps,
necessitates specific filtering techniques. One simple and very efficient technique is the
iterative sine-cosine filter. The basic scheme is shown in Fig.IV.7. The novelty of the
method in [3] is that the phase is computed each time a filtering step takes place. The
spatial resolution is much less degraded this way. There is a large freedom in choosing
the kernel. The authors in [3] showed the benefit of an anisotropic filter.

65



Chapter IV. Phase extraction from Sl signals in dynamic regime: still a topical issue

sin(®) K, sin(®)
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T cos(®D) ®—> cos(®D)

N iterations

Figure IV.7: lterative sine-cosine filter.

As the phase error due to decorrelation is to a good approximation inversely proportional
to the pixel modulation, a good way to filter the wrapped phase map is to use a weighted
kernel, whose weights depend on the pixel modulation. More precisely, the weights are
chosen to be functions of the inverse of the square pixel modulation ( [108]).

We will propose in Chapter 6 a completely new approach to filter noisy wrapped phase
maps through the use of the Delaunay triangulation.

3.2 2D phase unwrapping

Once the phase map is obtained, it is generally wrapped in the range [—=, x|, which
is neither pleasant to the eye, nor convenient for subsequent quantitative analysis. The
unwrapping process consists in scanning the data set to detect and remove the 27 jumps.
The operation is straightforward with noise-free 1-D signals, but it gains in complexity
in 2-D and when the wrapped phase is highly corrupted by noise. Phase unwrapping
accounts for a field of research in itself, and a comprehensive review of techniques with
the corresponding codes is given in [72] (see also Chapter 6 in [159]). Mainly because we
could escape this complex task as we focused on to the temporal approach, addressed
in the forthcoming section, and also because some tools have been developed in our
laboratory in the past ( [183]), we did not concern ourselves with this thorny problem.

4 State of the art of the temporal analysis approach

To get rid of the intrinsic correlation length limitation and simplify the unwrapping step, a
straightforward approach lies in the pixel history analysis. The idea is thus to reshape the
stack of N x N frames recorded in the acquiring computer into N x N unidimensional
signals (see Fig.1V.8).

The phase is extracted from those temporal signals and phase maps can then be rebuilt.
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. s5,(k)
pixel (7,/)

s(k)=L[1j]

Figure IV.8: The temporal approach.

The phase extraction can be very efficient but the access to each of the so-built vV, x N,
signals followed by the saving of computed phase signal is quite time demanding. A
straightforward and time-preserving solution is to gather the N, x N, temporal interfero-
metric signals into IV, or N, stacks of respectively IV, or N, signals each (see Fig.IV.9).

w frames

N

N, stacks

J

~—"7
N N samples

X

Figure 1V.9: Data shaping for computation load reduction.

In the last decade, it became obvious that the ability to accurately characterize the dy-
namic behavior of a mechanical surface under stress was of great interest. Colonna
De Lega ( [39]) pioneered the domain with the use of the Morlet wavelet transform with
a scalogram ridge tracking algorithm to avoid the heavy computation of the distribution
over a fixed pre-determined grid. The obtained results were conclusive and demonstrated
the potential of the temporal approach. As any tracking algorithm, the ridge tracking al-
gorithm, originally proposed in [50], smooths the phase evolution, especially in low SNR
areas. This case occurs, in Sl, when the pixel is under-modulated, resulting in high phase
variance. This crucial point will be discussed in details in chapter 6, where another ap-
proach to this issue is proposed.

A FT-based demodulation technique has also been proposed by Kaufmann et al in [93].The
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HT has been assessed in [120]. As it will be also seen in the last section of this chapter,
the signal must be centered for a meaningful use of the HT as the quadrature operator.
The authors thus cancelled the local mean of the temporal signal with a sliding window
of a certain duration empirically set. The main drawback, and quite considerable, of the
method is the lack of adaptiveness due to this mean cancellation step. This issue will be
addressed in the next chapter through the use of the Empirical Mode Decomposition.
The authors in [160] proposed a method based on the computation of the WFT of the tem-
poral signal and on searching for the ridge of the TFD, from which the phase is extracted
(the ridge tracking can be found by classical iterative methods like Newton-Raphson al-
gorithm). In the absence of object motion, i.e. the phase variations being only due to the
temporal carrier, we retrieve the FT of the window (a Hanning window is used in [160])
around the carrier frequencies. The object motion, assumed to be piecewise linear, will
result in a shift of the peaks at a speed proportional to the object motion speed. The
benefit of the method is a high tracking ability of the phase fluctuations even in low SNR
conditions.

5 The analytic signal and the analytic method: back to basics

5.1 Stationarity and non-stationarity in practice

A discrete time stochastic process is said to be stationary when its statistical properties do
not vary in time '. Stationarity means thus that we have realizations of infinite duration in
hands, something obviously unrealistic in practice. In the real world, stationarity is rather a
relative concept linked to the observation scale ([61,192]). A speckle field is theoretically
a stationary stochastic process, at least in the wide sense. In practice, depending on
the observation area, the stationarity is lost (IV.10). The authors in [61, 192] propose to
generate surrogate signals from the signal under consideration, which actually share with
this latter one the same marginal spectrum but which are known to be stationary. The set
of surrogate signals are in practice built by destroying the phase structure of the signal
(the signal is usually Fourier transformed and the phase of the FT is then replaced by a
random one). The raw signal is then "compared” to the surrogates with a certain norm to
finally determine if the signal is stationary or not within the analysis window.

'The strict-sense stationarity implies that all the moments of the process are independent of time and the
correlation function between a realization of the process and its time-shifted version by 7 depends only on 7
and not on the time. If we release the first condition by only a requirement on the first moment, we introduce
the notion of wide-sense stationarity. The strict-sense stationarity implies the wide-sense stationarity.
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Figure 1V.10: Depending on the observation scale, a speckle field, which is supposed to
be a stationary process, appears non-stationary.

5.2 Definition of instantaneous quantities of an arbitrary signal
5.2.1 What is wrong with Fourier analysis?

Communication theory was first based on the two disjointed methods of signal analysis:
one in time domain and the other in Fourier domain. The first one operates with sharp
instants of time, while the second one deals with infinite harmonic waves. The necessity
to represent a 1D signal in a 2D time-frequency space becomes obvious ahead of the
inability of classical Fourier analysis to properly represent non-stationary signal. For in-
stance, taking the FT of a musical track will provide a series of harmonic which enlarges
upon the entire duration of the music, which is obviously not representative of the reality 2.
The mathematical description is nonetheless correct, as the components of the decom-
position have a certain phase so as to produce constructive and destructive interference
when summing them up and thus recovering the original signal. Though mathematically
unquestionable, Fourier analysis yields results that are not easy to reconcile with our
physical intuition. It is much more intuitive and interpretable to decompose the signal
under analysis in such a way that the spectral components are localized in time. This is
the instantaneous spectrum. Hence, considering time and frequency as coordinates of
a unique representation necessitates a novel paradigm. To this aim, the expression of
the original signal, say s(t), has to be somewhat changed, and here comes the analytic
signal ¥ (t) ( [68,186]):

U(t) = s(t) +io(t), (IV.21)

where o(t) represents the signal in quadrature of s(¢). Hence, from an oscillating signal,
we obtain a rotating vector (see Fig. IV.11).

This is a mathematical operation to which an analogy can be found in Optics: this is
indeed the effect of a quarter-wave plate on an optical field linearly polarized and whose
polarization orientation is at 45° of the fast and slow axes of the plate.

2By paraphrasing P. Flandrin during a seminar, the time-frequency analysis quest is wonderfully de-
scribed by the phrase of George Perec in "La vie, mode d’emploi”: Je cherche en méme temps I'éternel
et I'éphémere.
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iR

sin(dD(t))

Figure IV.11: The analytic signal built from a sine wave.

The way to obtain the so-called analytic signal will be reviewed in a forthcoming para-
graph. Now, having this complex signal in the hands, we are going to define its instanta-
neous quantities, i.e. its instantaneous phase, amplitude and frequency. In this section,
we introduced the analytic signal without explicitly mentioning the HT, though the two are
unequivocally linked by definition. The idea behind this intended omission is to see how
the HT is the most natural quadrature operator (QO in the following) so as to vindicate its
use, even if other solutions have been proposed ( [118, 182]).

5.2.2 Defining and interpreting instantaneous quantities of a signal

We mentioned that the analytic signal is built from the real-valued signal so that we can
write:
s(t) = R[|V(t)| exp(iarg(¥V))] , (IV.22)

where R stands for real part and arg denotes the argument of a complex-valued function.
s(t) is thus an oscillating signal modulated by |¥(¢)|. This latter quantity is the envelope
of the signal at the instant of time t or the instantaneous amplitude, and the instantaneous
frequency (IF) is defined by the derivative of the instantaneous phase arg(¥) ( [186]):

*

V(1) = o (arg(V) = i%%% , (IV.23)
where x denotes the complex conjugate. We have seen that the concept of frequency is
unambiguous but does not lend itself to a localization in time. The concept of IF is much
more questionable, though the concept is intuitive. If the considered signal is monocom-
ponent, the IF would be the frequency of the sine wave which locally fits with the original
signal ( [19]). The literature is profuse on the connection between the IF and the spectral

components (see [19, 20, 118, 122]), and some words will be said when discussing on
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the meaningful use of the analytic method to access the instantaneous quantities of the
signal under analysis. The general case of multicomponents and wide-band signals will
be left apart or only briefly mentioned through the two-tone case.

5.3 Which operator to build the quadrature signal?
5.3.1 General requirements on the quadrature operator

In this section, we discuss the choice of the quadrature operator, relying on [118, 182].
The notations adopted in Eq.(1V.21), Eq.(IV.22) and Eq.(IV.23) will be kept all along the
section. The use of the HT as QO is a natural and intuitive choice, but even without
recalling the proofs, it is worth to see that the HT is actually the choicest QO for physical
and mathematical reasons. The author in [182] lists three reasonable physical conditions
the QO (denoted by ¢ in the following equations) should fulfill:

i) Amplitude continuity and differentiability: A small variation s of the original signal
s(t) should imply a correspondingly small variation on the quadrature signal &'[s(t)].
It means that the QO must be continuous. The existence of the derivative of &[s(t)]
is also required for the IF to exist (Eq.(IV.23)).

i) Phase independence of scaling: The phase should remain the same when the
signal amplitude is scaled by any real number. It imposes for the operator & to be
homogeneous 3, i.e. O|c.s(t)] = c.0[s(t)] for any cin R.

iii) Harmonic correspondence: The instantaneous quantities of a simple sine-wave
should be its constant amplitude and frequency.

It can be shown that the HT is the only QO that fulfils those conditions ( [182]). So given
few simple requirements, the choice of the QO is imposed and the complex-valued signal
is thus uniquely defined. This uniqueness has been discussed and disputed notably
in [37] and [80]. The authors in [118] have suggested other requirements for the QO
to fulfill, which lead them to consider rather time-frequency distributions (TFD, see [36])
than the analytic method. They notably impose the QO to be bounded-input / bounded-
output, which is an additional and more restrictive constraint on the amplitude than the
simple amplitude continuity condition of Vakman ( [182]). They suggest also that if the
signal frequency content is limited to a certain range, then the extracted IF should likewise
be limited to the same range. The HT is well-known to violate those two conditions. They
moreover suggested to extend the three conditions cited before by a fourth condition on
the continuity of the phase, which has been found irrelevant by Hahn in [80]. The HT

%a function £, between two vector spaces, is said to be homogeneous of degree « if: f(A\z) = A\* f(z).
A linear function is thus homogeneous of degree 1.
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is clearly a very natural choice for the QO despite some limits, and after recalling some
definitions and properties of the HT, we will see which conditions the signal has to fulfil
for a meaningful use of the HT, and thus a subsequent accurate phase extraction.

5.3.2 Reminder on the Hilbert transform

We remind here several definitions and basic properties of the HT. The HT of a function
s(t) is defined by the following convolution product ( [24]):

Hs(t)] = © /oo @) 4, =g s (IV.24)

t—x Tt

It is well-known, that it is much more efficient to compute convolution products in the
Fourier space, thanks to the Fast Fourier Transform (FFT) algorithm (see Annexes). We
thus define the HT in the reciprocal space:

FAAH[s(t)]} = (IV.25)

—iS(v) forv <O,

{z’S(:/) forv >0

where v is the Fourier domain coordinate and S(v) is the FT of s(¢). The HT reduces
to a phase filter in the Fourier domain, adding = /2 to the phase of positive frequencies
components and —x /2 to the phase of the negative ones, while leaving the amplitudes
unimpaired (see Fig.IV.12(a) and Fig.IV.12(b) for a basic example, the cosine function).
We recall below two useful basic results on HT:

HJcost] = —sint

(IV.26)
Ha) =0 , Va € [—00, 0]

Once the quadrature signal is built and thus the analytic signal also, the phase ®(t) is
then extracted in the range [—, 7] with the arctan function:

O(t) = arctan(i_%[s(t”) (IV.27)
The unwrapping operation is straightforward in one-dimension, provided that the noise
level is low enough to detect only actual 27 phase jumps.

5.3.3 Conditions for a meaningful use of the HT as the quadrature operator

There are actually some restrictive conditions in a meaningful use of the HT to obtain
the proper quadrature signal, or in other words, to extract a phase representative of the
physical phenomena:

i) amplitude and phase modulations spectra have to be well separated,
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(a) The HT in the Fourier domain reduces to
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Figure IV.12: The HT: the natural quadrature operator

ii) the mean has to be locally zero and
iii) the signal has to be narrow-band.

After those general considerations, we will consider from now on the following signal:

s(t) = B(t) - cos(P(t)) + a(t) (IV.28)

5.3.3.1 Amplitude and phase spectra well separated The spectra of the amplitude
B(t) and of the phase ®(¢) (Eq.(IV.28)) have to be well separated (amplitude modulation
restricted to low frequencies range, and phase modulation to high frequencies range),
otherwise, the computed phase would depend on both, losing physical sense. Bedrosian
proposed in [15] a product theorem for the Hilbert transform for band-limited functions.
Writing this theorem with the signal s(¢) of Eq.(IV.28) and with Eq.(IV.26) leads to :

Hs(t)] = B(t) - H[cos (t)] = —B(t) - sinD(t) (1V.29)

The last part of Eq.(IV.29) is not strictly speaking the Bedrosian theorem, and is not valid
for any ®(t) (see discussion below about the Nuttal theorem ( [137])). It is nonetheless
true in the quasi-monochromatic case (narrow-band condition expressed hereafter). The
phase is then easily extracted with Eq.(IV.27).
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5.3.3.2 Null local mean The analytical method fails in the case of real-valued signals
with non zero mean. Indeed the HT of such a signal is given by:

HBcosD(t) + a] = —FsinP(t) (IV.30)

The extracted phase is then (see Fig.IV.13 representing ¥ (¢) in the complex plane):

B sin ®(t)
Beos®(t) + a

D 45(t) = arctan( ) # ®(t) (IV.31)

Figure IV.13: Representation of the analytic signal in the complex plane.

For the dashed curve, the phase moves fast near the origin, with a = jump in the limit
case where the modulation depth equals the mean, leading to a singularity. As soon as
the modulation depth is lower than the mean (dotted line), the phase computed with the
HT, ®45(t), is distributed in a narrow range, namely [®72(¢),®74%(t)], and is indeed very
different from the meaningful quantity of interest ®(¢). The phase error, when the local
mean is not zero but nonetheless smaller than the local modulation depth, can be easily
estimated. Let us first rewrite Eq.(1V.31) to simplify the notations:

sin ®(t) ) (IV.32)

(I)AS(t) = arctan(m y

where ~, positive and smaller than 1, represents the ratio mean over modulation. The
error between the actual phase ®(t), and the unwrapped extracted one ® 45(t), is null at
kr (k integer), and is thus bounded elsewhere. A Taylor expansion of Eq.(IV.32) limited
to the first order readily shows that the error upper bound is equal to ~ itself. Thus, if
the residual mean remains smaller than the modulation depth in the whole data set, the
phase error is bounded and does not propagate.
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5.3.3.3 Narrow-band signal condition The HT is perfectly defined for wide-band sig-
nals. As soon as its FT exists, there is no difficulty to compute its HT with Eq.(IV.24). The
problem lies actually in the physical sense to give to the evaluated phase. To illustrate
this difficulty, let us consider the two-tone signal s(¢) with fixed amplitude and constant
frequencies:

s(t) = Ajcosvit + Agcoswat , where v = vy + Av (IV.33)

The two-tone case has already been extensively studied, even in the non-stationary sit-
uation ([19,118,122]). If 4, is equal to As, the IF v45(t) as computed with Eq.(IV.23) is
found to be the average of 14 and v,. For unequal strength of the two tones, the IF can
even extend beyond the range [, v»2]. What is true for signals containing two frequencies
separated by Av is especially true for signals with a continuous distribution of the same
width. This example is used by some authors to illustrate the weaknesses of the analytic
method, whereas it simply illustrates the fact that it is not possible to correctly character-
ize with one single quantity, the IF v45(t), a signal with a broad frequency content at one
time.

The Nuttall theorem ( [137]) stipulates that the HT of cos ¢(t) is not necessarily sin ¢(t),
for any arbitrary ¢(t). This theorem and the Bedrosian one demonstrate that in certain
cases, the HT is only approximately a quadrature operator. It is however important to
say, that if the conditions expressed previously are satisfied, the HT allows an accurate
computation of the quadrature signal.

5.4 How to compute the HT?

We considered so far continuous-domain functions with an ideal definition of the Hilbert
transform to obtain the quadrature signal. In practise again, only discrete-time signals
are available, and one has thus to design Hilbert transformers which must be the best ap-
proximation of the ideal one. The definitions in Eq.(IV.24) and Eq.(IV.25) straightforwardly
suggest to compute the HT in the Fourier domain ( [126]). The idea is thus simply to
compute the FT of the original signal and zero the half part of the complex spectrum. The
discrete quadrature signal is then obtained by an inverse FT of the so-filtered complex
spectrum. This approach seems to be ideal at first glance but it has the usual drawback
of the DFT use, to wit, new frequencies creation due to border effects. This is the well-
known leakage error ( [178]). Applying a smooth window to the data set greatly alleviates
the induced errors, which manifest themselves in spurious oscillations in the extracted IF.
An alternative to the FT-based approach is to conceive an all-pass phase filter which ap-
proaches the ideal HT filter (see Eq.(IV.25)). There has been a considerable matter of
interest in the 1970s to efficiently design digital Hilbert transformers with finite impulse re-
sponse (FIR phase filter) ([151]). The idea is actually to approximate the function 1/(rt)
with a finite number of coefficients, while the frequency response both in amplitude and
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phase are as close as possible to the ideal case #. The main drawback of this approach is
that only the imaginary part of the signal has been filtered, and consequently, outside the
approximation band, the quadrature operation is not well performed (loss of orthogonality
between the real and the imaginary part of the signal).

A third approach is proposed in [153] and compared to the direct DFT method (without
signal windowing) and the FIR filter method. The authors actually propose to design first
a low-pass filter and shift it to the positive frequencies by an appropriate carrier. The au-
thors demonstrate that the methods based on FIR filter use show better results than the
direct DFT technique, even if it would have been valuable to compare it when appropriate
windowing is applied prior to the FFT computation( [81]).

In the following, we will use the DFT-based methods to compute the HT. As said before,
the sampling window greatly reduces the spurious oscillations around the correct IF with-
out any bias. The lack of bias implies that no error greater than 27 will be made. However,
the DFT-based method, even if a sampling window is used, is not suitable if the sought
quantity is the IF, rather than the phase. A tracking technique with better noise rejection
should be preferred. For long experiments, overlapping data sets have been considered
so as to alleviate those leakage errors.

5.5 Behavior of the analytic method with different types of signals

We now come to basic examples to see how the analytic method behaves in cases we
might encounter in Sl, like signals with varying frequency, with phase and/or frequency
step, and signals polluted with different amounts of noise. In each case, a Hanning
window is used to minimize the border effects due to HT implementation in the Fourier
domain.

5.5.1 Frequency modulated signal

We consider here a signal whose frequency increases in time, ranging from 2z /32 up to
27 /8, with three different laws of variation. We report the results of the HT-based phase
extraction for the three different cases in Fig.IV.14. So as to reduce the boundaries errors,
due to the use of the DFT, we windowed the signal with a Hanning window.

“given a filter length, a trade-off must be found between the cut-off frequencies (low and high) and the
ripple error in the approximation band (frequency band between the two cut-off frequencies) ( [151])
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Figure IV.14: HT-based phase extraction method from a chirped signal with different
frequency laws.
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5.5.2 Signal with phase or frequency step

To evaluate the behavior of the HT when a phase step occurs in the signal history, we
simulate a single tone with an added phase step at the center of the signal support.
We have considered a phase step of 7/8, n/4, /2 and =. The difference between the
extracted phase and the original phase is reported in Fig.IV.15.

In the same way as before, a single tone with a frequency step at the center of the signal

2 2
0 0 M
-2 -2
0.4 0.45 0.5 0.55 0.6 0.4 0.45 0.5 0.55 0.6
2 2
-2 -2
0.4 0.45 0.5 0.55 0.6 0.4 0.45 0.5 0.55 0.6

Figure IV.15: Discrepancy between the original phase and the extracted one for phase
step of 7/8, 7/4, 7/2 and 7.

support is simulated. We have considered a frequency step from 27 /32 to respectively
27/16, 2w /8 and 27 /4. The extracted IF and the original one are jointly shown in Fig.IV.16.

5.5.3 Noise sensitivity

The analytic method is not well-suited for IF computation as it is very sensitive to noise
(derivative filters are high-pass filters, enhancing thus the noise). We consider a sine
wave with additive gaussian noise of standard deviation ¢,,. We compute the standard
deviation of the phase error for different values of ¢,,, and the so-obtained curve average
on 100 realizations is shown in Fig.IV.17.

An error on the phase greater than 27 is made as soon as the SNR becomes lower than
approximately 3 dB.
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5. The analytic signal and the analytic method: back to basics
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Figure IV.16: Gibbs phenomenon around a frequency step in a signal (from 27/32 to
respectively 27 /16, 27 /8 and 2w /4).
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Figure IV.17: Standard deviation of the phase error as function of the SNR.
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Chapter IV. Phase extraction from Sl signals in dynamic regime: still a topical issue

5.6 A preprocessing tool is missing for detrending Sl signals

In fact, the quantity of interest carried by Sl signals is unique at one time as soon as
the setup is mechanically, optically and electronically isolated from external disturbances.
Hence the narrow-band signal condition is fulfilled for the signals we are interested in. We
have spent some space to review the requirements that the signal must fulfil to allow a
meaningful phase extraction. We focused on the analytical method but the requirements
are actually general and apply to any phase extraction or tracking method. We will show
now how the EMD method is a perfect candidate to put the signal in the ad-hoc shape for
subsequent phase evaluation.

In Sl, the spectra separation condition is actually intrinsically fulfilled. In a suitable ex-
periment, the modulation variations are much slower than the oscillation periods of the
phase term. Modulation depth variations are ruled by the statistical spatial properties of
the speckle fields and decorrelation effects, while the phase variations depend on the
sensitivity of the interferometer. Though they form the subject of rather involved math-
ematical descriptions, the fluctuations of the modulation have been thoroughly studied
([108]), leading to a set of quite simple operational rules the principal parameters of the
optical system - the aperture of the recording system, the pixel size, the sensitivity of
the interferometer, the frame frequency, and the rate of phase change - should obey. It
is just reminded here that an inappropriate choice of this set of parameters would lead
to a complete failure of the experiment, irrespective of the processing method. On the
contrary, with adequately selected system parameters, pixel signals take ipso facto the
form of rapid oscillations (of the cosine term) with random, slowly varying modulation and
mean values, as exemplified in Fig.V.22.
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Chapter V

The Empirical Mode Decomposition
dedicated to SI

1 Basic principles of the decomposition

The Empirical Mode Decomposition (EMD) has been developed a decade ago to address
([85]), jointly with the Hilbert spectral analysis, the thorny problem of the characterization
of signals which are fulfilling neither the stationarity nor the linearity conditions. Actually,
we are not devoid of means to analyze signals stemming from non-stationary but linear
processes, and wavelet analysis ( [121]) is certainly one of the most famous one, due
to a neat mathematical formalism, some efficient implementations through filter banks
( [184]), and numerous and successful applications ( [39]). The Wigner-Ville distribution
([36]) is another classical way to process such non-stationary signals, notably for the IF
tracking issue ( [21,62]). It has nonetheless the drawback of cross-term interferences
which pollute the useful time-frequency pattern. Some improvement have been brought
to reduce those interference artifacts while keeping the desirable properties of the distri-
bution.

For non-stationary and non-linear signals, the mathematical paradigm of signal analysis,
which is to decompose the signal over an a priori established basis, has to be circum-
vented. The EMD method is a completely new approach in the sense that it is a data-
driven method. It actually decomposes any non-stationary signal s(¢) into its intrinsic
oscillation modes, acting basically like a filtering process from higher to lower frequen-
cies, but with self-adaptive band-filters.

This chapter is organized as follows: first the EMD method will be presented and some
examples will illustrate its way of working with more and more intricate signals . A quick
overview of the range of application will demonstrate its potentials and its versatility. After
this overview of the decomposition, a deeper analysis is necessary. We will focus thus
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Chapter V. The Empirical Mode Decomposition dedicated to Sl

on the sifting process influence, the sampling effect and the boundaries ending. Their
impact on the decomposition will be discussed, notably in terms of orthogonality, unique-
ness and completeness. Those three properties are generally highly valuable features
that a decomposition should have. We will present here known results and new ones as
well, especially to check and quantify the orthogonality of the decomposition and recover
it if it has been lost during the process. This comprehensive study of each step of the
EMD will show the strengths and the limitations of the method. A fast implementation of
the EMD will finally be proposed and assessed to process Sl signals.

1.1 Algorithm
1.1.1 The concept of the intrinsic mode function

As said before, the EMD technique, fed with any non-stationary signal, yields a sparse
set of functions, which are the intrinsic oscillation modes of the signal. The modes that
could be non-stationary too, are acceptable modes, namely the intrinsic mode functions
(IMF), if they satisfy the two following conditions:

i) in the whole data set, the number of extrema and the number of zero-crossings
differ from each other at most by one, and

ii) the mean envelope is zero at any point.

The first condition is equivalent to the narrow-band condition (see previous chapter on
the HT). The second one is a good approximation of the zero local mean condition, and
less constraining as it does not need a definition of a local time scale. Indeed, to compute
a local mean we need to define a range containing a sufficient integer number of local
periods. For non-stationary signals, the width of this range (local time scale) has to be
adjusted all along the time axis. It is directly done by the EMD algorithm through the
extrema finding and the subsequent envelopes computation. The last condition, namely
the spectra separation condition for amplitude and phase, must be fulfilled by the nature
of the experiment itself. Thus, by construction, the IMFs have a well-behaved Hilbert
transform, and more generally they allow good phase extraction. Let us now see how
the EMD yields this collection of IMFs, which have the ideal shape for subsequent phase
extraction.

1.1.2 The way the decomposition works

The starting idea is to consider the signal constituted by a detail part (local high fre-
quency) d(t), and a residue part (local low frequency) m(t). The detail part is sifted out
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1. Basic principles of the decomposition

from the raw signal by removing the mean envelope, whose computation is based on a
cubic spline ( [179]) ! fitting between the signal extrema. The interpolation with a cubic
spline kernel is acknowledged to have the best performances in most cases. The residue
is then considered itself as a signal to process and thus split into a detail and a residue
part as well. We obtain in fine the following decomposition:

M) =

s(t) = dp(t) + mg(t) , (V.1)

k=1
where the dy(t) are the extracted IMFs and m g (t) is the final residue. The decomposition
can be stopped at any rank K depending on the purpose, or in other words, depending
on the frequency band the sought-after information belongs to (detrending, denoising,
texture extraction and so on). If a total decomposition is wished, the procedure is ended
when the current residue contains less than three extrema.

Let us see now how the algorithm works by relying on some simple examples involving
harmonic signals, chirps and also piecewise polynomial signals. The power of the method
will be particularly obvious for the two latter classes of signals. The algorithm, in its basic
form ( [60]), consists in the following steps:

mean m
rema | P (eM) proceed
y & botto = detail ith th

finding otom 1 odulation s isd N X

e (em) =» od = bartd: = an IMF i modqs
signal s envelopes envelopes d=s-m " extraction
computed computed on m

sifting process: proceed with d instead of s

Figure V.1: The standard EMD algorithm.

i) Sum of harmonic signals: For the trivial case of a signal composed by a linear com-
bination of harmonic signals, we obtain a decomposition, which is identical to what
Fourier analysis gives, except near the data set boundaries. All the issues (sam-
pling, extrema finding, interpolation and so on) raised by the implementation of EMD
and the processing of discrete-time signals will be addressed in the next section.

"The cubic spline kernel is acknowledged to perform well for the envelopes computation, but the real
impact of choosing higher order splines is still unknown (see the paragraph on the extrema finding for further
discussion on the use of higher order splines).
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84

The signal considered below is the sum of 3 sines:

2 2
s(t) = sin(gt) + sin(3—gt

27
—t

)+ sinl356

) (V.2)

After having found the extrema, the upper and lower envelopes are computed with a
cubic spline kernel. The mean envelope is then simply evaluated as the average of
the two previous interpolated curves (see Fig. V.2(a)). The mean envelope is then
subtracted from the original signal s(¢) to obtain the detail part d(t). If the obtained
mode is not an acceptable IMF, i.e. the condition on the number of zero-crossings
and extrema and the condition on the local mean envelope are not fulfilled, the
sifting process must be pursued (see Fig. V.2(b)) until a certain or several criteri-
ons are fulfilled. There are different ways to end the sifting process: it might be, a
maximum number of iterations, or a certain similarity measurement between con-
secutive extracted modes. The sifting process influence will be seen later in detalils,
and for now, we will just keep in mind that the sifting process goal is to remove riding
waves and make the mode as symmetrical as possible, but it may also make bound-
aries errors spreading inward the data set and thus lead to over-decomposition and
mode-mixing. A trade-off must be found ( [83, 156]).

Once the mode is compliant with our expectations (see Fig. V.2(c)), it is subtracted
from the original signal and the same procedure is applied to the first residue, which
yields the second IMF (see Fig. V.3(a) and Fig. V.3(b)).

The final decomposition is shown in Fig. V.4, jointly with each mathematical har-
monic signal. Except for issues near the boundaries, we recover quite well the three
original sines. In those examples, the boundaries ending strategy is to keep the 1st
and the last extremum value for the 15t and the last point of the data set used for the
envelopes computation. The modes are not expected or forced to have an harmonic
nature, and what we get for each IMF is actually the approximation of a sine by a
cubic spline. Due to the basic boundaries management strategy, we have slightly
distorted sine signals in the final decomposition.
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Figure V.4: Final decomposition of the sum of three sines (from top to bottom: original
signal, first IMF with first component, second IMF with second component, and finally,
residue with third component).
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1. Basic principles of the decomposition

ii) Sum of parabolic chirps: It is when dealing with non-stationary signals that the EMD
is really valuable. The following example illustrates the sparseness of the decom-
position when the considered signal is the sum of two parabolic chirps of equal
strength, whose instantaneous frequencies increase linearly and are well-separated
at each instant but span overlapping ranges:

s(t) = sin(wy - t) + sin(wa - t) , (V.3)
H 2m . 27 2. 27
where w; and wy span respectively the ranges [¢}; 15] and [£3; <]
2
0,
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Figure V.5: The EMD of the sum of two parabolic chirps (from top to bottom: original
signal, first IMF with first chirp component, second IMF with second chirp component,
and final residue).

This example will be used later to illustrate the concept of local orthogonality. The
separation of the two components is perfect, apart again some issues near the data
set boundaries (see Fig. V.5). The final residue is shown in the bottom graphic
of (see Fig. V.5). The sparseness of the decomposition appears in an obvious
manner.
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Chapter V. The Empirical Mode Decomposition dedicated to Sl

iii) Piecewise polynomial signals: We consider here the sum of a sine and a triangle,
i.e. a continuous piecewise linear signal. Except at points of non derivability, the
reconstruction is pretty good (see Fig. V.6). In this particular example, a linear in-
terpolation would probably better fit, at least for the piecewise linear IMF.
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0 64 128 192 256 320 384 448 512
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64 128 192 256 320 384 448 512

Figure V.6: The EMD of the sum of a sine and a piecewise linear signal (from top to
bottom: original signal, first IMF with sinewave component, second IMF with piecewise
linear component, and final residue).

iv) Sine wave with a mean value step: We consider here a pure sine wave with a mean
value which experiences a step in the middle of the signal support. This is a situa-
tion which might occur in Sl, due to a brutal mode jump of the laser source. What
we will get is simply the response of the cubic spline kernel to a step function. An
example is shown in Fig.V.7.

The ratio overshoot over step value is constant, and the overall induced phase error
is null, unless the oscillations created by the interpolating polynomial create riding
waves. It will then create a 2x error for each so-created riding wave (see Fig.V.8).

We observe that depending on when the event occurs, an overall phase error might
exist (the phase error experiences oscillations around the event date). This error
bound is nonetheless inferior to 7/10 if the mean value step takes reasonable val-
ues; laser intensity jumps are in practice smaller than 10% (see Fig.V.9).
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1. Basic principles of the decomposition

Figure V.7: The first IMF (bottom) of the EMD of a sine wave with a mean value step in
the middle of its support (the signal is jointly shown on top with its upper and lower
envelopes).

Figure V.8: Induced phase error by a mean value step (bottom). The EMD outcome is
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Figure V.9: Error bound for a mean value step ranging from 0 to 1; the amplitude is
equal to 1.
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1. Basic principles of the decomposition

v) Sine wave with a phase jump: With not equal-path setups, the mode jump would
probably introduce both intensity and phase jumps. The influence of the phase
jump on the extracted phase has been studied in paragraph 5.5.2. We consider
here a pure sine wave with a phase step of = in the middle of the signal support.
We compare the results of the phase extraction with HT from the first IMF and
from the raw signal in Fig.V.10. There is no real impact of the EMD on the phase
extraction accuracy when a phase jump occurs.

—— 1st IMF —— original signal e extrema
1 T T T ml
0 n
-1 I I I =
128 192 256 320 384
3 — :
2 |
extracted phase step extracted phase step
1 = from the raw signal from the 1st IMF 8
O — T 1 |
128 192 256 320 384
2 T T
—— phase error (A.M. on the 1st IMF)
0
—— phase error (A.M. on the raw signal)

%8 192 256 320 384

Figure V.10: Outcome of the EMD for a sine wave with a = phase jump in the middle of
its support. The original signal and the first IMF are jointly shown on top, while the
extracted phase steps are compared in the middle graph. The discrepancy between the
original phase and the extracted ones are given in bottom (with EMD in black and
without EMD in red).
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1.2 Applications

The EMD has been proven to be highly valuable in any case where non-stationary signals
are considered. Among the fields of applications, there is the processing of seismic, ECG,
weather forecast signals, financial series, the extraction of textures in 2D ([135,136]), and
lately the denoising and processing of Sl signals [16,53-55,58,124,125]. The interested
reader is encouraged to go to [84] for further applications.

1.3 Strengths and weaknesses of the method

EMD is a powerful method which finds a larger and larger range of applications, not
surprisingly given its simplicity of implementation and its valuable features. However,
some mathematical issues are still pending and the method is still waiting for theoretical
foundations. In this connection, Oliver Heaviside said: "Mathematics is an experimental
science, and definitions do not come first, but later on” and in a more pictorial manner,
"Why should | refuse a good dinner simply because | don’t understand the digestive pro-
cesses involved?” ( [84]). The wavelet analysis waited for Daubechies ( [46]) and Mallat
([121]) to rely on the strong mathematical basis that is available nowadays. EMD has not
revealed all its secrets yet, and thus represents a great challenge for mathematicians and
data analysis experts, being at the same time, a most welcome signal analysis method
for researchers in many fields. On that subject, Chen et al propose in [33,84] an answer
to the issue of the mathematical definition of suitable envelopes. Hence, the authors pro-
pose a new sifting process algorithm which circumvents the upper and lower envelopes
computation, and directly computes the mean envelope with B-splines. Flandrin et al re-
ported in [63] that when the EMD is fed with stochastic process realizations, it acts as a
dyadic filter bank, as those used in wavelet analysis.

As clearly shown by the few basic examples in the previous section, one of the main
assets of the EMD is its sparseness: an arbitrary signal is decomposed in fewer compo-
nents than with classical Fourier or even wavelet analysis, especially because we usually
do not know if any vector of the predefined basis represents more or less reliably the
intrinsic behavior of the analyzed data. Another important asset is the completeness: by
design, the algorithm guarantees a lossless decomposition. However, one of the main
drawbacks is the non-uniqueness of the final decomposition. It is indeed strongly depen-
dent on the different algorithm parameters and choices, like the sifting stoppage criterion,
the boundaries ending technique (signal continuation), the interpolation method, and so
on. The boundary ending is also a sensitive part of the mean estimation: an interpola-
tion kernel is chosen to link the extrema with smooth curves and some extrapolation is
needed near the boundaries to take benefit of the whole data set. The cubic spline kernel
is acknowledged to be the best trade-off between computation load, IMF smoothness and
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2. Deeper analysis of the decomposition

preserving the adaptiveness of the method ( [84, 85, 195]).

Bad choices for the aforementioned issues could lead to errors in the entire decompo-
sition, like over-decomposition but also mode-mixing (for instance, higher frequencies
oscillations are not caught locally by a given mode but by a successive one that should
contain lower frequencies oscillations). It simply follows from the non-uniqueness of the
decomposition. From the mathematical point of view, this is the most annoying issue, but
in practice the previous errors can be straightforwardly identified by simple visual check of
the decomposition or by more involved means, as e.g. the quantification of the orthogo-
nality between modes ( [53]). Some readjustments can then be brought to the algorithm,
to avoid the errors or compensate them ( [83, 84, 156]). At the end, a trade-off has to
be found between imposing signal-dependent safeguards to give more robustness to the
algorithm and preserving the self-adaptiveness of the method.

The outcome of a well-controlled EMD algorithm is actually multiple, ranging from signal
detrending to specific features extraction. In addition of the centered signal on which
phase extraction, estimation or tracking can be carried out, the location of the signal ex-
trema can provide a rough estimation of the “instantaneous” phase - rather the mean of
the instantaneous phase over every half-period. Moreover, the envelopes computation
gives also the modulation depth which is helpful to appraise the reliability of the phase
computation, and can also be of use to phase tracking techniques (for instance Digital
Phase Lock Loop).

2 Deeper analysis of the decomposition

2.1 The extrema finding and the sampling influence

In the real world, we deal with discrete-time signals , and, as briefly mentioned, the first
step of the EMD, i.e. the extrema identification, is error-prone especially in the case of
signals critically sampled. The EMD outcomes depend thus strongly on sampling condi-
tions ( [60,171]).

The authors in [171] have shown that a slight misalignment of the extrema with the sam-
pling points results in a wrong estimation of the amplitude and then in over-decomposition
and mode leakage. The error is actually maximum when the extremum of the continuous
time function is equally spaced from two samples. It emerges from this study that the am-
plitude difference between the continuous time signal and its sampled version becomes
below five percent as soon as the signal is sampled ten times finer than required by the
Shannon sampling theorem. Their criterion provides indeed an indication on the wrong
estimation of the amplitude, but the connection with a possible error on the extracted
phase has not been addressed. We might lose indeed, the orthogonality of the extracted
modes, leading to an energy spreading over successive modes, but the key point for our
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application is definitely the phase conservation.

In [154], the authors consider a single tone and define the error as the deviation of the
EMD outcome from the original signal. Here, with an original signal defined in Eq.(V.4),
we quantify the phase error due to sampling with the averaging over ¢ (a uniform distri-
bution of random phase pertaining to the speckle effect) of the standard deviation of the
difference between the original phase and the phase ¢;,,y extracted from the 1st IMF:

xy, okl = cos(2m - fs - k+ ) (V.4)

N

<0y >p=< J %Z ((Pimyp (k) — 2 fsk — ©)— < Gimyp(k) — 21 fsk — @ >N)* >,
k=1

(V.5)

where f, is the signal frequency and 2x f.k + ¢ is the theoretical phase. The phase
extraction is carried out through the analytic method as explained in the previous chapter.
To reduce boundaries errors due to the discrete FT, a Gaussian window is used to pre-
filter the dataset. Simulations have been conducted over 100 realizations of the signal
defined in Eq.(V.4) and the dependence of the phase error with the signal frequency 1/2"
(r being a real number) is shown in Fig.V.11.

lOg[<(5¢>q,] -8

Figure V.11: Standard deviation of the difference between the extracted phase from the
first IMF and the theoretical phase with an upper bound.

It appears clearly that the EMD behaves better when 2" is an even integer greater than
3, and especially a power of 2. The largest error is made when 2" is an odd integer.
In the latter case the odd number of samples per period leads indeed to a detrimental
asymmetry for the upper and lower envelopes computation. The maximum standard
deviation is in average about one hundredth of period and an upper bound varying with
the square of the signal frequency gives the global trend of the error (see Fig.V.11).
Finally, the sampling error is much lower than what we could have expected from the
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study in [171], and our results are actually closer to the ones presented in [60, 154]. We
end this part on the sampling influence with the comforting conclusion that sampling has
indeed an influence on the phase extraction but that we can neglect the error as long as
the sampling frequency is at least 3 times smaller than the Nyquist frequency.

The extrema finding step is another key step of the decomposition. It is actually the
step where some fine tuning can be done to enhance for instance the robustness of
the algorithm, as usual at the cost of the self-adaptiveness. With discrete signals, the
common way to identify the extrema is shown in Fig.V.12 in a pseudo-filter manner.

ZLEI_” @ >

Figure V.12: Pseudo-filter view of basic extrema finding.

This procedure applied on noise free signals does what it is expected to do, but things
change with realistic signals which contain unavoidably some noise, as shown in FigV.13.
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Figure V.13: Basic extrema finding with a noise-free signal (left) and an experimental Sl
signal (right). Maxima and minima are respectively highlighted by red and blue circles.

It is obvious that a more elaborate extrema finding algorithm is required. One first point to
care about is to be sure that there are no consecutive minima or maxima. Furthermore,
we already mentioned that the riding waves must be sifted out, to make of an extracted
mode an acceptable IMF. This is one of the purposes of the sifting process. But noise
may artificially create such riding waves, which may create, if taken as actual oscillations,
errors of 27. One solution, suggested in [84], is to forbid a maximum to be too close to a
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minimum, based again on a preset limit of allowed proximity. It is actually what we did for
the fast implementation described in section 3. With a revisited extrema finding step, we
could obtain the result shown in Fig.V.14.

i

5b 1 60 1 éO 2(50 250 360 BéO 460 4éO 5(50
Figure V.14: Improved extrema finding step to avoid taking into account riding waves
created by noise.

Recently, a new EMD algorithm has been proposed and named doubly-iterative EMD (
[97]). The starting point of this new method is the observation that, at a certain point of the
procedure - say the extraction of the kth mode is ongoing at the jth iteration of the sifting
process -, the local extrema of the signal under consideration sg.k) are not necessarily the
best interpolation points to take into account for the envelope computation. The authors
showed that it is preferable to rather take the extrema of the highest frequency content
subsignal, that is the signal sgﬁ)l. The sought interpolation points are estimated through
an additional sifting process interwoven in the regular one, as the signal sglj_)l is not known
in advance being the forthcoming outcome of the current iteration of the regular sifting
process. The authors used higher order splines for this secondary sifting process and
they showed that the frequency separation power of the EMD has been slightly enhanced,

at the cost of a substantially increased complexity.

2.2 The sifting process influence

Another key step of EMD algorithm is the sifting process and the criterion to stop it. We
will briefly say some words on which basis it is reasonable to stop or run further the sifting
process. First of all, its goal is to extract from the original signal an acceptable IMF, as
already said, and thus by definition, whose HT will behave well. In [83], several ways
are considered to end this iterative process, because if it might be necessary in some
cases to iterate a certain number of times to extract the IMF, it is definitely mandatory
not to run it too many times, otherwise over-decomposition will surely occur. The first
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proposed criterion ( [85]) was the Cauchy-type convergence criterion, where the sifting
process is carried out until two consecutive sifted modes are close enough according
to a certain preset limit. This way of determining the sifting process end does actually
not rely on the definition of the IMF. It requires a certain closeness between consecutive
sifted modes but nothing on the nature itself of the mode. A better criterion was then
proposed in [83] more empirical but closer to the core definition of IMFs. It requires that
the number of zero-crossings and extrema remain the same after a couple of iterations
(typically between three and five). Another valid criterion would be to proceed with the
sifting process to the point when the mean envelope is sufficiently small, again according
to a preset threshold. The main problem with this latter approach is that the aimed result
may not be obtained without a proper management of the boundaries. Because it is a
global criterion, it may be satisfied at different rates within the data set, which means in
other words, that applying this criterion globally, may lead to over-sifting in some areas
of the signal. That is why the authors in [156] propose a stopping criterion which acts
locally: the idea is thus to isolate the regions where the error remains high and to carry
out the sifting process only on those regions. In our specific application, we have in view
a high accuracy in the phase extraction and it may thus be delicate to concatenate the
different regions without creating or missing fringes of displacement.

We now turn to a deeper analysis of the sifting process influence on the separation power
of the EMD. The authors in [155] consider the following sum of two tones:

x(t) = cos(2mt) + « - cos(2mvt + ) , (V.6)

where o is a normalized amplitude ratio ranging from say 10~2 up to 102, v is a normalized
frequency ratio ranging from say 10~2 to 1 and ¢ is a random phase uniformly distributed
in [-m,w]. Their performance criterion measures the deviation of the outcome of the
EMD algorithm for the first IMF from the expected mode, i.e. the high frequency term in
Eq.(V.6):

_ I di(a,v) — cos(2xt) ||,

or(e.v, ) = | - cos2mvt + @) |1, (V-7)

where d} stands for the first IMF obtained after i iterations of the sifting process, and
||...||:2 stands for the Iy norm (square root of the sum of the square values). When the
two tones frequencies are close to each other, i.e. v ~ 1, we guess the separation
will fail and the EMD outcome will be the signal itself leading to a performance criterion
close to 1. However, if the two tones frequencies are well separated, i.e. v << 1, the
EMD will perform a perfect separation, and thus leads to a criterion value close to 0.
For intermediate cases, the guess is not trivial. We report a result from [155] in Fig.V.15,
where the average criterion over 100 realizations of ¢ is mapped for ten iterations of sifting
process.
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Figure V.15: averaged criterion § for 10 iterations of sifting process.

Those results actually provide a wealth of insights. We observe two very distinct areas
basically for « < 1 and for « > 1. It has been shown in [155] that the area where
a < 1 can be modeled by a filtering process (see Fig.V.16) with the kernel K used for the
interpolation (loosely cubic spline). The first IMF obtained after i iterations of the sifting
process takes the form:

di (o, v) = cos(2nt) + [1 — K(v)]".cv. cos(2mvt) , (V.8)

where K (v) takes the following form in the cubic spline interpolation case ( [179]):

sin(mv) )i 3

K@) = v’ 24 cos(2mv)

(V.9)

In Fig.V.16, we reproduced another result from [155] with some cross-sections of the
< & (a,v) >, distribution for i = 1, 5 and 10 sifting process iterations, obtained through
simulations and jointly shown with curves obtained from Eq.(V.8):

However, the filter model is no longer appropriate for the area where o > 1. It appears in-
deed that the sharp boundary between no separation at all and complete separation does
not depend on the number of sifting process iterations. Before drawing any conclusion we
must study the non-stationary case, but it is a good omen for a fast implementation for Sl
temporal signals. Indeed, as our signals have necessarily an amplitude ratio greater than
1 and well-separated spectra, we are most likely to be in an area where perfect separation
will be achieved in one single iteration. As previously said, the signals we are interested
in are strongly non-stationary, and it would be valuable to define a criterion similar to the
one in Eq.(V.6) for Sl signals defined by the classical two-beam equation. To this aim, we
simulate temporal Sl signals with the model described in [52] and detailed in Appendix
B. As a quick reminder, our model actually relies on the convolution equation between a
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Figure V.16: EMD filter model (cubic spline kernel) with simulations in solid line and
predictions in dashed line.

given impulse response and a complex field of random argument and unitary amplitude,
according to both the diffraction theory in the Fresnel approximation and the mechanism
of speckle formation. Our purpose here is to show that for Sl signals, the separation is
actually perfect between the AM-FM term and the varying bias after one single iteration.
For each temporal signal we compute the following criterion:

i_ | di —2y/T1. Ty cos @ ||

o) V.10
i A (V.10)

A simulated signal is shown in Fig.V.17, while the histograms of the criterion 6; computed
for 4096 temporal signals are depicted for ¢ = 1, 5 and 10 in Fig.V.18. We impose a non-
linear digital instantaneous frequency (IF) evolution distributed in the [27/16, 27/8] range.

=t
au20f HH HM il | ”“f\ q'"\““
o -1

Figure V.17: A simulated temporal Sl signal.

It finally turns out from the simulations that, whatever is the number of sifting process
iterations, the criterion defined in Eq.(V.10) is below 0.015: the similarity between the
EMD-processed temporal signal and the true sought-after AM-FM signal is better than
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Figure V.18: Histograms of criterion defined in Eq.(V.10) for 4096 simulated S| temporal
signals with 1, 5 and 10 iterations of sifting process (the dotted line represents the
similarity criterion of 99%). m is the fit parameter of the Gamma distribution (see Chap
3, Eq.(l11.4)).

98.5%. We observe that the sifting process actually degrades rather than improves the
components separation. It is likely to be due to the boundary choice and to the fact that
the sifting process makes the boundaries errors propagating within the data set. Not
surprisingly, we observe finally from Fig.V.18 that the separation is achieved with a very
high confidence independently from the spatial integration regime and from the type of
reference (smooth or speckle).

2.3 The boundaries ending

As briefly stated before, the boundaries ending is important as it may create artificial
oscillations in the interpolated curves, and thus generate errors which will propagate
inward through the sifting process. This point is well-known by users of the EMD and
several methods have been conceived to solve this issue. The authors in [156] propose
to mirrorize the extrema close to the edges. Zeng in [195], as for him, suggests to perform
separately an odd and an even extension of the signal, and the final mean envelope is
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computed by taking the average of the two upper and the two lower envelopes. The
authors precised that the mean must be beforehand removed from the signal to avoid
large jumps and as a consequence large swings in the cubic spline interpolation. This
precaution is a serious drawback and deteriorates the adaptiveness of the EMD method.
An interesting technique is exposed in [43]. The authors extend the signal at both ends
by constructing a sine wave, whose amplitude, frequency, phase and mean value are
directly computed respectively from the first and the last couple of (minimum,maximum).
This way, the slope of the envelopes tend toward zero, eliminating large swings of the
cubic spline. The Gerchberg algorithm is also a well-known technique to extend signals
within their support (typically in interferometry when the object has holes or a non-convex
shape) or beyond. Another way of doing could be extending the signals by relying on the
trend near the borders. More explicitly, it would consist in imposing respectively maxima
and minima which belong to the best linear fitting curve of the respectively maxima and
minima close to the edges.

In this thesis work and the related articles ( [53-55]), we chose to repeat the first and
the last couple of (minimum,maximum) to bound the vectors of interpolation points. This
way of doing is fast, does not need to extend the signal support or to compute some local
trends, but is certainly not optimal in all the cases. However, it proved to be efficient in
ours.

2.4 Orthogonality

At this point, we shall discuss the orthogonality and the completeness of the EMD. Com-
pleteness is actually straightforward from the decomposition itself. Orthogonality is a little
bit trickier. Let’s first rewrite the decomposition in (V.1) ( [85]):

K+1

s(t) =) C(t), (V.11)
k=1

where we consider the final residue as a component. Taking the square of equation (V.11)

yields:
K+1 K+1K+1

S =) Crt)+2) > Ct)Cs(t) (V.12)
k=1

i=1 j=1
If the basis vectors form an orthogonal set, the second term of the right member is null.
So, we can assess the obtained decomposition orthogonality by estimating the following
global index:

Yo (S A Gty (1))

10 = , (V.13)
Ztho s%(t)
which, for two modes, becomes:
T
Zt:O s2(t)
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We can even build (K + 1) x (K + 1) matrices defined by:

LGOS0 oy 5 SEalCHOC0)
OMij = =5 "Gay - OMnig = 25 catczay (V-15)

These matrices of orthogonality are symmetric, and even diagonal if the decomposition
is orthogonal. On one hand, the matrix OM allows a quick identification of the number
of modes of significant energy, and on the other hand, OMn is handy to see qualitatively
the leakage between modes.

It is important to note that the orthogonality concept becomes local when dealing with
non-stationary signals. This is illustrated with the example of a signal, which is the sum of
two parabolic chirp signals plus a centered sine wave. The frequency trajectories of each
chirp never cross but the ranges covered do have overlap. As seen in Fig.V.5, there is no
problem for the EMD to separate the two signals with varying frequency, whichever is the
law of variation by the way. The matrices of orthogonality clearly show the orthogonality
of the two components (Fig.V.19). It also demonstrates their usefulness to compensate
over-decomposition, by direct inspection of the correlated modes (we have been able to
rebuild the last mode with a quite good reliability).
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(c) third mode reconstructed. (d) original and reconstructed signal from
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Figure V.19: Reconstruction of an orthogonal decomposition by direct inspection of the
orthogonality matrices.
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3. A fast implementation of the EMD for Sl signals processing

3 A fast implementation of the EMD for Sl signals processing

3.1 Advocating the fast implementation

For a pixel signal with enough modulation and as soon as the illumination is well adapted
to the sensor dynamic, the relevant information is carried by the high frequency part of
the signal (the cosine term in the two-beam equation). This information is thus contained
in the first IMF, and it becomes useless to proceed further in the modes extraction. We
have moreover seen in details that the EMD is effective after one single iteration of the
sifting process with non-stationary, narrow-band signals containing two well-separated
IFs. We can extract the first IMF (or pseudo-IMF for the sake of rigorousness) through a
single iteration of the EMD algorithm. At this point, it is worth mentioning the method de-
veloped by Vikhagen ( [185]) and improved by Carlsson and Wei ( [191]) for deformation
measurement in dynamic Sl experiments. The phase evaluation method ( [185]) consists
in scanning the pixel history signal within a local oscillation to detect a maximum and a
minimum value: (I, + I,,) and (I, — I,,) with the notations of Eq.(11.10). There is only
one unknown left, the phase ®opp that is finally easily computed modulo 27 at each in-
stant using again Eq.(l1.10). The improvement of the method ( [191]) consists in a better
evaluation of the initial speckle phase, i.e. before deformation, and in a least-squares
estimation of the phase during the deformation allowing at the same time the resolution
of the sign ambiguity. Even if the methods come from very different starting points, we
arrive to a quite similar technique, likely to be nonetheless much faster in our case. In-
deed, the EMD does not need to analyze the signal at the oscillation level. We have
thus implemented the EMD in a light way, though with numerous changes to improve the
robustness - details are given in the next section.

3.2 Additional free features of the EMD

From the extrema finding step, we can readily extract a useful knowledge, though of
an approximate nature, on the IF and thus the phase. In continuous time domain with
narrow-band noise-free signal, if we consider a local maximum at ¢ = ¢; and a local mini-
mum at ¢ = ¢,+7, a rough estimate of the IF in the range [t1, t1+7] is simply (see Fig.V.20):

- 1
f=5 (V.16)

The previous estimation is simply the average IF over each half period of the original
signal. With discrete time signals, especially in the non-stationary case, the extrema are
very unlikely to be located at sampling points, adding thus some quantization noise to the
computation. The higher the FM is, the better the temporal resolution will be, as usual to
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Figure V.20: Rough estimation of the signal IF and phase.

the detriment of the frequency resolution and, in corollary, of the quantization noise. Not
withstanding the strong limitations of this method, we will use is as it is, either to provide a
fast evaluation of the phase in long experiments for instance, or to provide an initial guess
for phase tracking methods.

The key step of the EMD procedure is the envelopes computation so as to be able to
build a mean envelope, supposed to be as close as possible to the local mean value
everywhere. Once the upper (eM) and the lower (em) envelope are computed, we have
also access to the modulation (mod) of the signal:

m — emJgeM

(V.17)

mod = eM — em

The modulation can be also of great use for gain normalization purpose in IF and phase
tracking methods, as PLL and linear predictive filtering. A filtering technique inspired
by [79], exposed in the last chapter, will take advantage of the modulation computation.

3.3 Algorithm and evaluation

We now come to a detailed description of our implementation of the EMD. The flow-chart
of the algorithm is given in Fig.V.21 (the code is given in Appendix C).

The algorithm is fed with the original signal of length » and the threshold value used for
the reliability index computation. This latter quantity simply indicates whether the pixel
modulation is higher or lower than a certain threshold. This information will be exploited
by the 3DPP procedure, which will be the matter of the forthcoming chapter. The first
step is the extraction of the extrema. Once a rough estimate of their location has been
found (see Fig.V.12), three operations are carried out to refine their position:

104



3. A fast implementation of the EMD for Sl signals processing

s(t)
INPUT —l { n

Il T
v

i
v

rough estimate ]
l

manage ﬂat parts

remove rldlng waves ]
R
check |n,,-n .| <2 ]

I
A4

IF estimate

1
A4

I

, [

extrema finding I
[

envelopes computation mean envelope

modulation envelope

{ lower and upper envelopes

|
reliability index
computation
|

Ist IMF

IF estimate

OUTPUT reliability index vector
modulation envelope

Figure V.21: Structure of the fast implementation of EMD for Sl signals processing.

i) We first take care of the possible flat parts of the signal. Instead of taking into
account all the consecutive extrema, we consider a single one located at the middle
of the considered flat part.

i) We then remove the riding waves. As discussed earlier, we want to extract the
useful information in the first IMF and it is thus important not to count a noise-
induced riding wave as a fringe. We forbid thus extrema to be closer than 3 time
samples.

iii) We finally check that the number of maxima and minima differs from each other at
most by one. We remove, this way, spurious extrema and possible ones which have
been counted twice or more.

With the finer locations of the extrema, we compute the IF of the signal as it has been
described in the previous paragraph. Based on the rough estimate of the IF for each
half-period, a smooth curve is computed (with a cubic spline kernel) which can be further
numerically integrated to obtain an estimate of the phase law of the temporal pixel signal.
The next step is the envelopes computation. The lower and the upper envelopes are then
computed so as to obtain the mean envelope and, as also said in the previous paragraph,
the modulation envelope. The algorithm eventually yields the sought centered signal, the
rough IF estimate, the reliability index vector and the modulation envelope.

We provide in Fig.V.22, genuine temporal Sl signals processed by our algorithm, with its
different outcomes (1st IMF, envelopes, reliability index and rough IF estimate).
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Figure V.22: Genuine Sl pixel signals processed with the fast-EMD algorithm.
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3.4 Outlook: construction of an hybrid mode

In the next chapter, we will address the problem of decorrelation-induced random phase
errors in a completely new manner. Those phase errors are inherent to speckle fields and
cannot be avoided, but it does not mean that nothing can be done to reduce their impact
on the final result. This is the object of the next chapter with concrete results in the sev-
enth chapter. It is well-known that the under-modulated pixels are the scene of the largest
phase errors (see chapter 3 and 6). The SNR is indeed lower in there. Whichever safe-
guards are taken for the EMD implementation, especially at the extrema finding stage,
we cannot avoid some mode-mixing to occur in those areas, and the mode contains thus
essentially noise. The phenomenon is even more pronounced when the activity is low
(very large amount of over-sampling). The idea is then to regain some information, which
is contained in the first residue. The hybrid mode is actually defined by:

IM Fyyyp[k] = IMFOE] + RITk] « IMF®[E]  fork e [1,N], (V.18)

where IMF®) and 1M F® designate respectively the first and the second IMF, and RI
the reliability index. The idea is thus to take into account the information contained in the
second IMF only in the regions where the pixel modulation has been declared as too low,
because it is within those regions that mode-mixing is the most likely to occur. The choice
of the threshold value will be discussed in chapters 6 and 7.
We show in Fig.V.23 an experimental temporal Sl signal which experiences roughly 15
fringes of displacement. The extrema finding step is doomed to failure in such a case,
and the first IMF is indeed mainly constituted by noise in the under-modulated regions.
Some precious information is recovered in the hybrid mode.

If the construction of such hybrid modes can be valuable in some cases, the under-
modulation issue will be treated in a more robust and elegant way in the next chapter.
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Chapter VI

A novel approach to address the
modulation drops issue with the
Delaunay triangulation

The randomness of the background and modulation intensities and of the speckle phase
make tricky and prone to errors phase extraction procedures. Several strategies aiming
at reducing or eliminating the phase errors are available. The first one consists in com-
pensating the decorrelations by appropriate adjustments of the setup. It is also possible
to split the recorded data set into several batches, in each of which the displacement
is confined to a fraction of the correlation length, and to finally concatenate the results.
Another successful way is to use filtering methods, where the kernel coefficients depend
on the confidence levels of the measurements ( [109]). The method we propose here,
namely the 3DPP method - standing for 3 dimensional piecewise processing - is a still
completely different approach ( [55,56]). It consists in discarding, purely and simply, the
regions, within each temporal pixel history, where the phase extraction is likely to be unre-
liable, according to a predefined criterion. The so-built regions of missing data, of random
length and location, are filled by the information carried by reliable well-modulated neigh-
boring pixels, using an interpolation operation based on the Delaunay triangulation (DT).
The two main steps are detailed below:

i) the classification of the pixel signals based on their modulation which provides non-
uniformly sampled maps of phase increment at each instant, and

i) the DT of the so-build scattered data associated to a triangle-based interpolation
procedure to obtain the phase maps at each instant of the experiment.

Even if the core of this thesis work is the characterization of dynamic regimes, it is ob-
viously possible to define the pixel modulation intensity in static phase-shifting interfer-
ometry ( [39,109]). We already briefly discussed this point in the section dealing with Sl
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statistics in chapter 3, where it is recalled that the reliability of a pixel is well represented
by a factor inversely proportional to its modulation. We nevertheless said that a binary
classification might be interesting and that we chose this direction to enhance the quality
of phase maps. We will thus present a novel phase map filtering technique, well-suited for
static regimes, and by essence regimes where the displacement does not extend beyond
the correlation cell.

1 Data classification and the concept of pixel reliability

1.1 The dynamic regime

As seen in Chap.3, the lower the pixel modulation, the higher the induced random phase
error ([109]).lt is reasonable to consider the modulation of the temporal pixel signal as a
good indicator of reliability (see Fig.VI.1).

512 ! ! ! !

256

128 25‘6 3&4 512 GtJ‘fO 7E|58 BEIJG 1024
Figure VI.1: A temporal SI signal (top) with 1024 time samples, experimentally obtained
and processed with the EMD, yields a centered signal (middle) with a fluctuating
modulation (the chosen threshold is shown in dashed line in the middle graph), whose IF
(bottom in plain line) obtained through the use of the Hilbert transform ( [55]) exhibits
high noise level in the low-modulation discarded region (highlighted by the gray strip in

the three graphs).

In the reliable areas, i.e. where the pixel modulation is higher than a chosen threshold,
the phase will be obtained up to an additive constant. The computation of the discrete
IF - temporal derivative of the phase allows of course to get rid of this constant, leaving
a meaningful exploitable result. The IF values in the under-modulated regions are dis-
carded. Each pixel being independent, when we gather again the temporal sets to form
frames (see Fig. VI.2), we obtain arrays of valid discrete |IF sampled on a fluctuating
non-uniform grid. An interpolation step has then to take place to obtain arrays of discrete
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IFs uniformly sampled. A final discrete integration step yields the phase maps at each
instant.

Discarded under-modulated  Retained well-modulated part
part of the temporal pixel signal | of the temporal pixel signal

Figure VI1.2: Data classification: (left) the irrelevant parts of the temporal signals are
highlighted by bright tubes while the dark ones show the parts on which the interpolation
step will rely; (right) the non-uniform sampling grid computed for an arbitrary frame with

the associated DT.

1.2 The static regime

The situation here is quite different as we consider the case where a map of phase differ-
ence between two static states has been computed, for instance with a phase-stepping
algorithm. We have thus in hand a phase map in the range [, 7| with a large amount
of noise, which we want to remove as much as possible, whereas the sharpness of the
27 jumps has to be preserved for the subsequent unwrapping step. This problem is well-
known. The widely adopted strategy is to apply filtering techniques on the cosine and
the sine of the phase map and recompute afterwards the phase (see chapter 4 and [3]).
The novel approach we bring here to tackle this issue is to replace the filtering step with
classical convolution by a certain kernel, by an interpolation procedure on the cosine and
the sine of the phase from which the pixels with insufficient modulation have been again
purely and simply discarded. The interpolation procedure will be exactly the same as in
the dynamic regime and is schematically shown in Fig.VI.3. We will designate this filter
by the sine-cosine-DT filter.
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Figure VI.3: Sine-cosine filter with the DT.

Comparing to the procedure of [3], the iterative loop becomes useless and is thus re-
moved, and the required modulation map is simply used as a mean to classify the pixels
in a black and white manner, similarly to what has been explained for the dynamic regime.
The method will be tested and discussed in the forthcoming chapter.

2 The Delaunay triangulation: a new approach to the modula-
tion loss issue

Given a set of points, randomly spread over a portion of space, it is convenient in many
instances (from terrain surveying to graphics rendering, robotics, and crystal structures
modeling [13]) to construct a smooth surface, containing these points and obeying definite
properties, which can be furthermore sampled on a uniform mesh. With this aim in view,
a natural approach is to construct first a triangulation in the plane, then assign a weight
to each point of the mesh, i.e. the IF value here, and finally, build a piecewise polynomial
surface over it. The purpose of this section is to give the theoretical background of this
scattered data interpolation which uses the DT. This procedure will then be included in the
3DPP procedure which will be thoroughly described and discussed in the next section.

2.1 Convex hull, Delaunay triangulation and Voronoi diagram
2.1.1 Definition and computation of the convex hull of a data set

We already mentioned that, given a random set of points in the plane, the first step of the
whole triangulation-interpolation process is to compute the convex hull of the data set in
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question. The convex hull in 2D might be seen as a rubber band surrounding a set of
nails driven in a wooden board, the latter ones representing our mesh of valid data (see
Fig.V1.4).

l rubber band

set of nails

convex hull

Figure VI1.4: Convex hull of a set of points.

More formally, a subset S of the plane is said convex if and only if for any pair of points
(p,q) € S the line segment pq is completely contained in S. The convex hull €57 (S) of a
set S is the smallest convex that contains S ( [48]).

Now that we have some basic knowledge on convex hull, we of course have to worry
about its computation. We can see that from Fig.VI.4, given the points p and ¢ such that
pq is an edge of ¥.77(S), all the points of the set are one side of the line (pq), say right if
the line is oriented. So if one can identify the pairs of our set - containing say n points -
for which the other points are all located on one side, one is able to compute the convex
hull. The problem of this straightforward algorithm is its complexity: n? — n pairs have to
be checked and for each of them, there are n — 2 points to look at to see whether they lie
on one side or the other. It results in a complexity in ¢'(n?), preventing the use of such
an algorithm for large point sets. Another strategy is mandatory and it can be shown
that an incremental algorithm can be designed with a total computation time of &'(nlogn)
([48]). The idea is to first compute separately the upper and the lower hull. For each of
them, only a lexicographic sorting of the points and a test wether three consecutive points
make a right turn (right because we chose arbitrarily to walk around the set clockwise)
are required (see Fig.VI.5). To be a little bit more specific, the points are sorted by z-
coordinate, and if several points share the same z-coordinate, then they are sorted by y-
coordinate: this is the lexicographic sorting (see Fig.VI.5). The construction of the upper
hull starts from the point with the smaller z-coordinate and the greater y-coordinate, i.e.
p1 in the array of Fig.VI.5. We proceed then with p3 and pg. If this triplet make a right
turn, we can proceed with the triplet (ps, ps, p7), otherwise, we delete the middle point
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and check the triplet (p1, ps, p7). The same procedure is applied for the lower hull except
that now the array of sorted points is perused in the other direction (from high to low
z-coordinate and with the smaller y-coordinate each time).

upper hull
. . ‘ . . lexicographic sorting
\‘ L] L] ° ' "". p3
P | P P,
Yo oo T N y
| lower hull I P | Ps| Ps| DPs
X X

Figure VL.5: Upper and lower hulls, and fast algorithm to compute them.

We have mentioned that the triangulation is constructed inside the convex hull of the
data set, which does not guarantee a constant definition of the boundaries of our area
of interest (AQI). It is thus mandatory to have at each instant fixed points on which the
convex hull will be constructed. The triangulation will then be computed within this fixed
framework, and the interpolating surface as well. To do so, we simply make sure that the
AOl is always surrounded by pixels, naturally or artificially, labeled as valid with values
of IF, either imposed by a priori knowledge or computed by averaging and/or fitting the
values of the AOI border. We will detail the adopted strategy for each specific experiment
in the next chapter.

2.1.2 The DT and its dual graph: the Voronoi diagram

Once the convex hull of the point set is defined, facets have to be built following some cri-
teria. It is actually desirable to build a triangulation which minimizes the size of the facets.
In other words, we should obtain a triangulation where each facet is as close as possi-
ble to an equilateral triangle. Indeed, it sounds natural to expect from the triangulation-
interpolation process that each interpolated point is computed by relying on the closest
data. The DT actually fulfils this criterion by maximizing the smallest angle of all the
triangles of the mesh, avoiding this way skinny triangles. So equivalently said, the DT
generates the least stretched facets and thus best preserves the spatial resolution. A bit
more formally, a DT for a set S of points in the plane is a triangulation DT'(S) such that
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no point in S is inside the circumcircle of any triangle in DT'(S). The question of the DT
uniqueness is interesting, and the answer is that, the DT is indeed unique for point sets
containing no sets of four co-circular points. Solutions have been proposed to resolve
this non-uniqueness problem ( [51]), but if it is valuable in some applications, it is clearly
not our case.

There is another well-known geometrical entity, worthy of interest for practical implemen-
tation of the DT: the Voronoi diagram (VD) ( [13]). Given a set of points in the plane, each
point - or site - is associated with a Voronoi cell, consisting of all points closer to this point
than to any other one. The frontiers of those Voronoi cells are all segments of the plane
equidistant to two sites and also the perpendicular bisectors of the triangles sides of the
associated DT. The VD is actually the dual graph of the DT (Fig.VI.6).

Figure VI1.6: The Voronoi diagram (thin dashed lines) of a random point set (black
circles), jointly shown with the DT (thick lines).

Due to this bijective relationship between DT and VD, the computation of one of them
leads to the other (see [48] for a review of algorithms).

2.2 The Quickhull algorithm

There is a close relationship between planar VD and convex hulls in space. This connec-
tion between those geometrical structures led to the design of improved algorithms for
fast computations of VD or equivalently DT. Let us consider, in a 2D Euclidean space, a
point set randomly distributed on a line and the unit parabola (see Fig.VI.7). The tangent
lines at the orthogonal projection of each point of the point set on the parabola are drawn.
It can be shown ( [48]), that the projection of the vertices of the upper polygonal enve-
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lope of the tangent lines to the parabola on the original 1D space is actually the Voronoi
diagram of the point set. The generalization of this construction to 3D is straightforward,
except that now we have to deal with tangent planes.

o original points set

% projection points
on the parabola

08F

o8 ] tangents to the

A - parabola at the
oaf ) projected points
02F i E

E% Voronoi cells

\ 4

0.2
-1

Figure VI.7: Given a set of points distributed in a 1D space embedded in a 2D
Euclidean space, the VD is the projection of the upper envelope of the tangent line set.

In our case, the DT is implemented using the Quickhull algorithm [14,147] and followed by
a triangle-based cubic spline interpolation (Clough-Toucher method [11]) step to obtain
the wanted uniformly sampled smooth IF frames.

3 The 3DPP procedure

3.1 Description of the method

The flow-chart of the algorithm is given in Fig.VI.8 for the dynamic cases (the procedure
in the static regime is schematically shown in Fig.VI.3).

At time k € [1, N], relying on the reliability index matrix RI[k], a non-uniformly sampled
frame of IF values IF®)[k] is built. With a convex hull properly defined, the DT is com-
puted followed by an interpolation/resampling step, so as to obtain a smooth uniformly
sampled frame of IF values 1F®)[k]. This latter one is simply added to the phase frame
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Figure VL1.8: Processing scheme of the 3DPP procedure with Sl signals.

obtained at time k — 1, P [k — 1], to finally get P(*)[k]. The phase map P*)[N] of the
total displacement is eventually obtained once the former procedure has been conducted
at each instant.

3.2 Assessment of the 3DPP method

The measurement accuracy of the extracted phase will be evaluated on a well-controlled
rigid-body motion (see Chapter 7). It is not straightforward to accurately quantify the
spatial resolution loss, as the sampling grids are fluctuating. Indeed, at one point of
the probed surface, the spatial resolution, or in other words the density of relevant pix-
els, changes at each frame and except for areas with almost no activity, a pixel always
features enough modulation somewhere in its history to allow meaningful IF extraction.
What is clear, is that at one time, the spatial resolution can be directly linked to the rep-
resentative dimension of the local area. The fact that the non-uniform sampling grids
are fluctuating reduces the spatial resolution loss, in the style of superresolution where
a batch of images of the same scene are taken while shifted by a random fraction of
pixel from one to the next to obtain a final image with a higher spatial resolution than
the detector - or the individual spatial resolution of each image if some filtering has to
be conducted. We will evaluate the average facet size at each point for the experiments
detailed in the next chapter, and the average edge length as well.
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3.3 Choice of the modulation threshold

The quality of the outcome of the 3DPP technique obviously depends on the choice of the
modulation threshold used to classify the pixel signals. A too low threshold will not discard
regions of pixel signals with poor modulation intensity which are prone to the highest
random phase error. Of course a too high threshold will lead to a very discriminate test
and the triangulation-interpolation step will rely on very few points, which induces a great
loss of spatial resolution, without in addition a significant improvement of the result quality.
The threshold has also to be high enough to filter out the noise of the whole imaging and
acquisition chain. The very point of the 3DPP method is to discard the aberrant pixels
while the spatial resolution is best preserved.

3.4 Computation load reduction with the sparse-3DPP

Even if efficient algorithms have been conceived for the whole processing scheme, a lot
of data manipulations are involved and it is often valuable and appreciated by end-users
to have procedures that are as fast as possible. The fewer discarded points, the heavier
DT/interpolation/resampling operation. A straightforward way to reduce this load ' is to
process only one frame every D frames. With the notations of Fig.VI.8, the scheme is
slightly changed as followed:

PY[Dk] = PO [D(k —1)] + D x IF®[DE] (VI.1)

3.5 Definition of convex hull with constraints

The 3DPP technique is able to address the issue of under-modulated pixels (which again
are the scene of the largest phase errors) accurately and efficiently, should we define
correctly the convex hull. This fixed convex hull guarantees that the same framework is
used for each IF frame. It is moreover likely that we have additional knowledge on the
shape and the type of deformation or displacement under study. We can take advantage
of this additional a priori knowledge by imposing constraints within the fixed framework,
defined beforehand. It is important to notice that "the convex hull with constraints” we are
talking about is completely different from the constrained DT, which is not supported by
the Quickhull algorithm. Adding constraints within the fixed convex hull simply means to
force pixels to be valid and assign them a certain IF value, determined either by averag-
ing, fitting or modeling. We give below an example of such a convex hull with constraints
(see Fig.VI1.9). This allows notably to best preserve the sharpness of edges.

"The reduction of the 3DPP computation load only is considered here. It is thus implied that the temporal
phase laws are available at each time.
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>

convex hull with constraints
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corresponding DT
with a certain threshold smooth IF map

Figure V1.9: An example of convex hull with constraints to best preserve edges.

3.6 Outlook: an improved 3DPP procedure for phase discontinuities man-
agement

In the previous paragraph, we were wondering how to evaluate the spatial resolution of
the 3DPP method. We mentioned the computation of the representative dimension of the
facet stemming from the DT and its area at one instant of the dynamic experiment. We
know that due to the fluctuations of the sampling grid, the resulting resolution loss will be
less than what could have been expected from the previous considerations, as long as
the motion is smooth within the whole convex hull. However, if a discontinuity is present in
the image (apparition of a crack, slide between two parts or layers of a given material, and
s0 on), the triangulation will clearly smooth out the sharpness of this discontinuity, which
is not desirable. A solution would be to use constrained DT ( [13]), but such geometrical
construction is not supported by the Quickhull algorithm.

Another quite obvious solution would be to tile the area of interest into regions where
the motion is known to be smooth and in the same manner as stitching interferometry,
the phase for the whole object is obtained by gathering the results for each region. The
main issues here will be to define properly the convex hull for each subregion, and to
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properly connect the phases maps so as to avoid the creation of artificial steps. Efficient
techniques have been developed to detect features in images - like edges - and segment
images into sub-images (see e.g. anisotropic diffusion methods [113]).
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Chapter Vii

Application of the EMD-HT-3DPP to
experimental signals

This chapter is dedicated to the experimental evaluation of our processing procedures
which we designed for the characterization of mechanical behaviors in dynamic regimes.
The bulk of this chapter is thus dedicated to this regime. The last section will be however
dedicated to static regime and the evaluation of the novel phase map filtering technique
relying on the DT. This organization has been done so as not to split the chapter into two
very unbalanced parts.

1 Experimental setup

A Sl setup with an in-plane sensitivity (Leendertz configuration) has been built to assess
our phase extraction procedures. The object is illuminated by two divergent laser beams
of equal intensity, each of them making an angle 6 with the normal to the object surface
(see Fig.VIl.1). The light source is a CW Argon laser emitting at 514.2 nm with a maximum
power of 1.5 W.

In Fig.VIl.1, S; and S designate the two unit vectors of the illumination directions, while
the observation direction coincides with the object surface normal. The overall phase
change between the two arms when a displacement L occurs is given by:

A¢:2;(Sl—82)~L:5”-L$, (VIL1)

where S and L, are respectively the sensitivity of the interferometer and the projection of
the motion on the z-axis. Due to its symmetry, the sensitivity is actually simply related to
the physical parameters of the setup by the following relation:

= 47” sin (VII.2)
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o |:|OBJ2
Object 4 Variable
Attenuator
Laser
(514 nm)

Figure VII.1: Sl arrangement with in-plane sensitivity.

In our experiment, the sensitivity S is equal to 8.7 rad/um. For off-axis points, due to
the divergence of the illumination beams, the interferometer has slight sensitivity to L,,
and L,. Those sensitivities are more than one order of magnitude lower than S, and will
be thus neglected. The divergent illumination leads also to variations of the sensitivity S
within the field that appear to be negligible (less than 0,2%). The setup has been used to
follow different in-plane deformations and/or rigid body motions:

e the rigid body translation of a rough piece of aluminium, achieved through the use
of the DC motor,

¢ the in-plane rotation of a rough metallic plate of 0.25°, achieved through the use of
the DC motor,

e the compression of a piece of rubber, achieved through the use of the DC motor,

The acquisition and processing chain will be described in details in the next section. The
speckle fields involved in the different experiments are integrated by the CCD sensor, and
the value of m (see Eq.(l1l.4)) is in the order of 20.
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1. Experimental setup

1.1 Experiment I: rigid body translation

The purpose of the experiment is the assessment of the method in terms of measurement
accuracy and repeatability. We thus performed experiments with and without temporal
carrier - added through the use of the mirror mounted on a PZT in one arm of the inter-
ferometer (see Fig.VIl.1) - on smooth rigid body motions performed with the DC motor.
The probed object is a white diffusing plate which is fixed on a ball-bearing carriage and
is smoothly translating in a reproducible and well-known manner (see Fig.VIl.2).

notched translating plate
AOIL Y

micrometric ball-bearing

Figure VII.2: Rigid body translation of a rough metallic plate.
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1.2 Experiment IlI: rigid body rotation

During the motion, 4640 frames are taken at a rate of 48fps, and processed by blocks
of 1024 frames with an overlapping of 120 frames between them to reduce the bound-
aries errors. The total rotation, equal to 0.25°, represents for the points of the higher
displacement along the z-axis (270um) twice the pixel size, i.e. the correlation length.
In this experiment, we do not use an optical temporal carrier - mandatory to find out the
direction of the deformation - in order to have the largest measurement bandwidth (which
otherwise would have to be shared with the carrier frequency) and to assess the method
with a very wide range of deformation rates. It is thus enough to process the temporal
pixels of half the plate (see Fig.VII.3).

Notched .
gears and rotatigg
st sy
_ ‘. : ’ = X

_aid

- -

driven micrometric
SCrew

DC motor

Figure VIL.3: Rigid body rotation of a rough metallic plate.
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1.3 Experiment lll: rubber compression

During the compression, 1024 frames are saved on the computer while a smooth motion
is performed by the DC motor in constant velocity mode (1500 rpm). A total displacement
of 90 pwm is achieved this way.

mechanical stop

=

load
application

-

Figure VIl.4: Compression of a piece of rubber.

2 Acquisition and processing chain

2.1 Acquisition system

The acquisition system is constituted by the camera, the DC motor (motor with reduction
gear) and the computer for the hardware part and some softwares for recording and
processing.

2.1.1 Hardware

The camera used to acquire the interferograms is the A202k model from Basler with
Cameralink interface. The sensing array is composed by 1000 x 1000 pixels encoded on
10 bits, and measuring each 7.4 x 7.4 um?. The maximum frame rate in full resolution
is 48 frames per second, which can be speeded up by enabling the binning option. The
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frame rate is this way doubled as the resolution is divided by 2 (frames of 500 x 1000
pixels). Our goal has always been to perform long dynamic experiments which implies
large quantities of data to process, but first to record, and ensuring a constant recording
rate on the HDD of our computer was thus of primary importance. Keeping all the frames
in RAM and transferring them on the HDD after the motion under study is done was of
course out of question as we have often to deal with several tens of GB of data. We thus
opted for a computer with HDD in RAID configuration able to maintain a recording rate
higher than 100 MB per second. The bay is also able to control a high-voltage power
supply to actuate the PZT device for temporal carrier generation, the whole thing being of
course synchronized with the camera internal shutter. The assessment of our processing
schemes requires reproducible and well-controlled motions, which is not possible with
PZT actuators for two reasons. Depending on the voltage profile applied to the PZT, the
total range may vary (hysteresis effect when moving back and forth, and possible locking
effect ). In addition, the total available range of displacement is in the order of few tens
of microns rather than hundreds of microns as wished. We thus chose to use a DC motor
with notched gears and belt. The ensemble is shown in Fig.VII.5 with the corresponding
reducing ratio of the gears.

notched gears and belt

driven micrometric

SCréw .
gear reduction of 1:5

‘"« the notched gears:
"

gear reduction of ]
the divider: 1:690

gear divider [
impulses per motor 512

revolution:

motion range per
screw revolution: 500 pm

Figure VII.5: DC motor with reducer and coder.

"The displacement of the outer face of a PZT stack depends strongly on the slope of the command
voltage.
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2.1.2 Acquisition software

The acquisition software, realized on a Labview platform and tailored for our application,
has been delivered with the system. The main features of this software are the following:

e calibration of the PZT actuator used for the temporal carrier generation,

e continuous acquisition with the possibility to visualize the correlation fringes in real-
time and also to follow the temporal behavior of two pixels whose emplacement can
be chosen,

e cyclic acquisition for experiments with a carrier, with the same possibilities as for
the continuous mode.

The frames are recorded in TIF format. The software architecture is schematically shown
in Fig.VII.6.

calibration continuous acquisition cyclic acquisition
Voltage command profile:| Visualization of: Visualization of:
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fil Noeresr

Visualization of ile and N,,,.:
substraction image: V 4 (Ex. 4 frames)
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\/ : ——
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min max Recording Recording
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Figure VII.6: The acquisition software architecture.

2.2 Processing scheme

The processing routines are implemented under MATLAB and LABVIEW and the whole
processing procedure is schematically shown in Fig.VII.7.
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Once the Sl raw frames are recorded on the computer, the data are reshaped in stacks

y

raw data
X X
—)
data shaping

in stacks of
temporal pixel signals

y

4 t increasing

< 4
3DPP| <= %1)(:3 HT |<a | fast-EMD[¢=a
— a .% = phase- &=
data reshaping |~ E shifting
in phase maps = <: ridge
tracking <:

Figure VIL.7: Flowchart of the processing schemes assessed on data experimentally
obtained.

of temporal signals. This way of reshaping the data allows to reduce the computation
load of this operation by a factor of ten. It also minimizes the reading/writing operations
on the HDD during the processing tasks and thus greatly lightens the computation burden
again. The so-built raw stacks are then processed in four manners:

i) fastimplementation of EMD followed by phase extraction with the HT and 1D-phase
unwrapping ( [54]),
ii) same operation as previously but enhanced by the 3DPP procedure (( [55])),
iii) Morlet wavelet ridge tracking algorithm followed by 1D-phase unwrapping ( [39]),

iv) five-frames dynamic phase-shifting algorithm followed by 1D-phase unwrapping (
[40]).

It is important to precise that a further improvement of the ridge tracking algorithm has
been made in [39]. It consisted in considering a fixed window of N x N (originally 3 x 3)
pixels to which a weight, depending on the squared modulation value, is assigned. This
way, if the ridge tracking algorithm fails, a relevant IF value can be assigned to the pixel
by inspecting its neighbors within the N x N window. This improvement has not been
implemented and considered in the forthcoming discussions.
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3 Results and discussion

3.1 Experiment I: rigid body translation

As mentioned earlier, we use this basic experiment to fully characterize our processing
scheme. We thus perform different kinds of motion with and without temporal carrier, to
evaluate the absolute accuracy and the robustness to full decorrelation when the motion
covers distances larger than the correlation length.

3.1.1  Accurate computation of the temporal carrier frequency

Without any displacement, 1024 images (128 cycles of 8 frames) are recorded. The phase
is computed simply through the use of the HT without any subsequent filtering and the
frequency carrier is simply computed by a classical least-square method applied on 100 x
100 temporal pixel signals. We obtained a distribution whose mean value and standard
deviation are given below:

. 2
Foarmier = 0.788 £ 0.01  instead of g —0.785, (VII.3)

which means an error less than half a percent from the wanted frequency tuned after the
PZT calibration step.

3.1.2 Phase extraction and discussion of the results

The DC motor is enabled in the profile position mode, and a motion with constant velocity
is performed over a distance of 9um. The input velocity profile and the associated dis-
placement profile are shown in Fig.VII.8.

velocity (rpm) displacement (pm)
A 3
200 9
AN 2000 rpm/s -
> 0 >
0 T ¢t 0 T t

Figure VIL.8: Input velocity profile and displacement profile for the experiment with a
carrier at 27/8.
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3.1.2.1 Result of EMD + HT: The final phase map is jointly shown with phase maps
at intermediate states in Fig.VII.9.
The raw phase maps are highly polluted by salt and pepper noise, and the median filter

Figure VIL.9: Result from the fast EMD followed by the HT based phase extraction
method (left). Raw phase maps filtered with a median filter with a box kernel of size
3 x 3 (middle) and 5 x 5 (right). The displacement maps are given in microns.

is well-known to be efficient in such situation. The raw phase maps filtered by median fil-
ter with 3 x 3 and 5 x 5 box kernels are also presented in Fig.VIl.9. The temporal evolution
of the phase on a good pixel and an aberrant one are shown in Fig.VIIl.10, jointly with the
original interferometric signal and the outcome of the EMD.
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Figure VII.10: Result from the fast-EMD followed by the HT-base phase extraction
method. The result for a well-modulated pixel is shown (left), and for an
under-modulated pixel as well (right).

We can note that there is a little discrepancy between the performed motion and the ex-
pected linear one. Despite the PID feedback with optimized parameters, the motor speed
is not perfectly constant. This has however no impact on the measure and the process-
ing. The expected displacement is 9um and the obtained value from this processing
is in average of 9.25 um. This value is actually biased by the errors generated by the
under-modulated pixels. The maximum likelihood value (taken as the maximum of the
probability density function of the displacement map) is closer to the expected value with
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8.90 um. The standard deviation of the displacement map is equal to 4.64 um. This result
will be compared and discussed later.

3.1.2.2 Result of 3DPP: We now come to the results from the 3SDPP method with dif-
ferent threshold values (see Fig.VII.12 for threshold values ranging from 10 gray levels up
to 450 gray levels). The imposed convex hull is constituted by the border pixels, which
have been assigned as IF value, the average IF value of the pixels considered as reliable
(see Fig.VIl.11). The average displacement and the maximum likelihood displacement
are also given for each threshold value.

fixed convex hull
with imposed IF values

y mean valﬁe of valid IF

Figure VII.11: Fixed convex hull for the rigid body translation experiment.

The DT, as detailed in the previous chapter, has to be computed at each instant, and
we show in Fig.VII.13, the DT of the scattered data at one instant of the motion. The
percentage of valid points, the facet area map (given in pixel?), and the edge length map
(given in pixel), with average values, are given for the threshold values of 10, 100, 200 and
450 gray levels.

Where the triangulation yields large facets, the spatial resolution is consequently de-
graded. A trade-off has thus to be found between noise removal and spatial resolution
conservation. For the threshold value of 10 gray levels, we discard only few pixels and
the triangles areas are mainly equal to 0.5 pixel®>. However, it is not straightforward to
accurately quantify the spatial resolution loss, as the grids are fluctuating. Indeed, at
one point of the probed surface, the spatial resolution, or in other words the density of
relevant pixels, changes at each frame and a pixel always features enough modulation
somewhere in its history to allow meaningful IF extraction.
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threshold = 10 threshold = 40 Threshold = 60

dis, e = 8.99 pm diS, e = 8.92 pum dis, e = 8.92 pm
ML(dis) = 8.92 um ML(dis) = 8.92 um ML(dis) = 8.92 um
G, = 0.56 pm G, =0.21 um Gy =0.11 um
threshold = 100 threshold = 250 Threshold = 450
dis, .. = 8.91 pm diS, e = 8.85 um dis, .. = 8.71 pm
ML(dis) = 8.9 pm ML(dis) = 8.90 um ML(dis) = 8.65 um
G4 =0.11 um G, =0.12 pm G, = 0.16 pm

Figure VII.12: Outcome of the 3DPP procedure with different thresholds values. The
average displacement and the maximum likelihood displacement are also given. The
displacement maps are given in microns.
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(c) threshold value of 200 gray levels.

Figure VII.13: DT of the nonuniform sampling grids at one instant of the motion.
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(b) threshold value of 100 gray levels.
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(d) threshold value of 450 gray levels.
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So as to connect the threshold value with a physical quantity of the experiment, we com-
pute the modulation histogram for the whole data set acquired for the frequency carrier
computation and obtain the curve shown in Fig.VIl.14. The curve of the proportion of
pixels with a higher modulation than a certain value is jointly shown in Fig.VIl.14. As an
example, the probability to find a pixel with a modulation of 100 gray levels is 0.85 times
the maximum likelihood, whereas 82.4% of the pixels have a modulation higher than 100
gray levels. The thresholds of 10, 40, 60, 100, 250 and 450 gray levels are highlighted by
dashed lines with the corresponding values.

P(mod>10)=99.7
P(mod>40)=97.7
P(mod>60)=93.8
P(mod>100)=82.4
-P(mod>250)=28.1
P(mod>450)=1.4

\‘:\
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modulation (gray levels)

p(mod=100)=0.85
p(mod=250)=0.73
p(mod=60)=0.57
p(mod=40)=0.37
p(mod=10)=0.08
- p(mod=450)=0.07
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Figure VII.14: Probability density function of the modulation intensity with the threshold
values highlighted.

Those results teach us different things. There is first of all, a clear - and expected - im-
provement of the results whereas the threshold value is increasing, from 10 to 100 gray
levels. Beyond those values, we have clearly a bias in the method, as the facets become
larger and larger. The main reason of this trend reversal is probably due to the cubic
interpolation. The large facets lead indeed to large - though smooth - peaks and valleys
in the phase map, which are totally artificial and produce not only a bias in the final result
but also increase the standard deviation. Interestingly, the trend reversal seems to be
around the most likely modulation value, around 150 gray levels.

3.1.2.3 Discussion: Inorderto compare the results obtained so far, we use the wavelet
ridge extraction algorithm ( [35,39]) and we implement also a five frames dynamic phase-
shifting algorithm, as presented in [40], where the phase-shift amount §¢ is recomputed
at each instant in order to take into account the phase-shift induced by the motion. There
are several manners to include the refining computation step of §¢ along time, and we
adopted the one which is proven to be robust for a phase-shift amount around = /2 ( [39]).
As the frequency carrier is equal to 27/8, the phase at time & is simply given by Eq.(VI1.4).
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(i)(k) = arctan|2 I(ki%i?(;ﬂ;:é)l(k) sin(d¢)]

I(k+4)—I(k—4 (VI1.4)
cos(0¢) = %W

The final phase map is jointly shown with phase maps at intermediate states in Fig.VII.15.

dis, e = 8.96 um dis, e = 12.13 pm
ML(dis) = 8.84 um ML(dis) = 8.82 um
G, = 1.92 um G, = 15.1 um

Figure VII.15: Result from the five-frame algorithm (left) and from the ridge extraction
algorithm (right). The displacement maps are given in microns.

As for the results from the 3DPP procedure, the average and the maximum likelihood
displacements are given while the standard deviation of the final phase map is also given
for the two methods. The values of the average displacement and the standard deviation
of the final phase map are highly biased by the salt and pepper noise of the phase map,
and the right value to take into account is the maximum likelihood (ML) value. Those latter
displacement values are nonetheless also a bit shifted from the results obtained with the
analytic method and with the 3DPP technique. Despite its great smoothing ability, the
ridge extraction algorithm fails to track the ridge in low-SNR areas and does not converge.
An iterations counter must thus be added so as to exit the loop and produce a result,
generally of poor reliability. The histograms of the total displacement map are given in
Fig.VIl.16 for the EMD/HT method, the EMD/HT/3DPP method (with a threshold value of
100 gray levels), the five-frame algorithm and the ridge extraction algorithm.

We present in Fig.VIl.17, the temporal evolution of the phase on a good pixel and an
aberrant one, jointly with the original interferometric signal and the outcome of the EMD,

for the four methods compared in this paragraph.

We summarize the obtained results for the rigid body translation motion in Table VII.1.
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Figure VII.16: Normalized histograms of the displacement maps obtained with the
different methods.

Table VII.1: maximum displacement obtained during a batch of 1024 frames grabbed at
48 fps rate for the translation motion.

Method HT Ridge Dyn. PS 3DPP#60
Average displacement (um) 9.25 12.13 8.96 8.92
ML displacement (um) 8.90 8.82 8.84 8.92
Standard deviation (um) 464 151 1.92 0.11
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(b) Comparison of temporal phase history for an under-modulated pixel.

Figure VII.17: Temporal evolution of the phase for a well-modulated pixel, and for an
under-modulated pixel as well.
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Chapter VII. Application of the EMD-HT-3DPP to experimental signals

3.2 Experiment ll: rigid body rotation
3.2.1 Result of EMD + HT

As already explained, so as to assess the method with a large range of deformation rates,
we did not introduce a temporal carrier for this basic experiment and it is thus sufficient
to process the pixels of half the plate. We present first the results for the phase map rep-
resenting the total displacement, which we additionally process with a classical median
filter with different kernel sizes (see Fig.VIl.19). We first show the substraction fringe at
intermediate instants of the displacement and at the term of the motion in Fig.VII.18.

’1100'11|2 |Isoo'11|2 |11024'11|2

Figure VII.18: Correlation fringe between different couples of grabbed frames.

HT median filter 3*3 median filter 7%7

Figure VII.19: Phase map of displacement, carried out after 1024 frames grabbed at
48 fps rate, resulting from the fast-EMD/HT procedure, with from left to right, no
subsequent filtering, filtering by a median filter with a 3 x 3 box kernel, and filtering by a
median filter with a 7 x 7 box kernel.
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The phase computed through the use of the fast EMD followed by the analytic method is
very noisy and very quickly unexploitable for pixels experiencing less and less fringes of
displacement (toward the central part of the plate). This area is denoted as the blindness
area as the algorithm does not allow measuring accurately what happens inside. There
are actually two main cases to distinguish: the case where there are few fringes of dis-
placement and the case where there is almost none. The latter one corresponds to the
very central part of the metal plate and cannot be solved without a temporal carrier. When
there is very low activity during the pixel history, the presence of noise and the sparsity of
fringe extrema make the extrema finding step very inaccurate. The outcome of the EMD
algorithm contains then long areas of only noise. Applying the analytic method to such
signals leads to a result where the useful phase information is overwhelmed by large
and meaningless phase values. In those areas, a large proportion of pixels are declared
as invalid and the median filter clearly fails to filter out this salt noise, whichever is the
kernel size - especially toward the center of the plate - with an additional spoiling of the
boundaries sharpness.

3.2.2 Result of 3DPP

We present now the result of the 3DPP procedure in Fig.VIl.21 with three different thresh-
olds. The imposed convex hull has been defined as shown in Fig.VII.20, whereas the im-
posed IF values have been attributed from a theoretical IF plane. We have represented
also the case where an additional constraint of null IF is imposed in the center of the
metal plate.

theoretical IF plane

TF(x,y) IF(
) X
fixed convex hull fixed convex hull
with imposed IF values with imposed IF values and

the additional central constraint

Figure VII.20: Definition of the imposed convex hull for the rigid body rotation
experiment.

139



Chapter VII. Application of the EMD-HT-3DPP to experimental signals

e f

3DPP #20 3DPP #40 3DPP #60

|

|

!U

!

100 200 100 200

Figure VII.21: Phase map of displacement, carried out after 1024 frames grabbed at
48 fps rate, resulting from the 3DPP procedure with a threshold of 20, 40 and 60 gray
levels (from left to right).

The benefit of the 3DPP technique is obvious and greatly extends the measurement
bandwidth.

3.2.3 Discussion

In the same manner as for the rigid body translation, we compare our results with the
ones obtained with the ridge extraction algorithm. We actually compare the results for
one of the five batches of data and for the total displacement, to see the influence of full
decorrelation. Due to the lack of temporal carrier, the five-frame dynamic phase-shifting
algorithm would need to be adapted with respect to the local IF. The motion is supposed
to be smooth, and thus, the algorithm would simply need to be adjusted for each pixel
in this case - in fact as the motion is a pure rigid body translation, the algorithm would
simply necessitate to be adapted for each row of pixels, or even for group of rows, in
the direction of the interferometer sensitivity vector. The local IF used to tailor the dy-
namic phase-shifting algorithm could perfectly be the estimation provided by the extrema
method. We chose nonetheless to discard this method to only compare our procedures
with the ridge tracking algorithm.

Despite the feedback loop of the motor, the motor velocity experienced some fluctuations,
and it is thus difficult to evaluate with a high accuracy the total displacement. We have
nonetheless estimated it to be around 270 um.

We now compare the phase maps for one batch of 1024 frames, during which the dis-
placement is equal to about 59 um. We present below the final phase map after this
displacement with the associated maximum displacement for the extrema method, the
HT-based method, the dynamic phase-shifting method, the ridge tracking method and
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3. Results and discussion

finally the 3DPP method with a threshold equal to 20, 40 and 60 gray levels, recalled here
for comparison purposes (see Table VII.2 and Fig.VIl.22).

Table VII.2: Maximum displacement obtained during a batch of 1024 frames grabbed at
48 fps rate.

Method Extrema HT Ridge 3DPP#20 3DPP#40 3DPP#60
Displacement (um)  60.14  58.22 57.17 58.25 58.22 58.40

Not surprisingly, the phase map coming from the analytical method is severely polluted
by salt noise. The blindness area is highly reduced by the 3DPP procedure. The ridge
extraction algorithm performs very well also. The cross-sections of the different phase
maps are compared in Fig.VII.23.

We finally show the discrepancy of the obtained phase maps with the theoretical phase
plane in Fig.VIl.24, where the scales of colors are given in each case in um.

An additional knowledge about the motion has not been exploited so far: this is the fact
that the phase must be exactly null in the center of the metal plate (see Fig.VIl.20). We
thus add this constraint in the definition of the convex hull and the so-obtained results, for
a threshold value of 40 and 60 gray levels, are shown in Fig.VII.25, where the result from
the ridge tracking algorithm is recalled for comparison purposes. The cross-sections of
the different phase maps are compared in Fig.VII.26.

We finally show the discrepancy of the obtained phase maps, with this additional central
constraint with the theoretical phase plane in Fig.VII.27, where the scales of colors are
still given in each case in ym. The maximum phase difference between the theoretical
phase plane and the phase map obtained with this additional constraint has been re-
duced by roughly a factor of two.
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(a) Phase map of displacement, carried out after 1024 frames grabbed at 48 fps rate, resulting
from the HT-based, the extrema and the ridge tracking methods (from left to right).
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(b) Phase map of displacement, carried out after 1024 frames grabbed at 48 fps rate, resulting
from the 3DPP procedure with a threshold of 20, 40 and 60 gray levels (from left to right).

Figure VII.22
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Figure VII.23: Cross-section of the phase maps given in Fig.VIl.22.
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Figure VII.24: Discrepancy from the theoretical displacement plane for the different
methods shown in Fig.VIl.22. The color bars are given in microns.
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Figure VII.25: Phase map resulting from the 3DPP algorithm with the additional central
constraint.
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Figure VII.26: Cross-section of the phase maps given in Fig.VII.25.
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Figure VII.27: Reduction of the discrepancy from the theoretical displacement plane by
the additional central constraint. Those results are to be compared with those shown in
Fig.VIl.24. The color bars are given in microns.
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Chapter VII. Application of the EMD-HT-3DPP to experimental signals

3.2.4 Results for the total displacement

The phase maps for the total displacement of 270 um are shown in Fig.VIl.28, with the
cross-sections in Fig.VII.29.

We can observe that the ridge extraction algorithm does not perform well everywhere.
It is due to the choice of the mother wavelet frequency. A low value for w, (see section
2.1.3 in chapter 4) will lead to narrow temporal analysis windows and thus provide a fine
temporal resolution, but a poor frequency resolution. In this specific experiment, pixels
experience very different deformation rates (the IF ranges from 0 to typically 27/8). To
avoid interference with the DC term, a value of w, of 2w or more should be chosen.
However, we observed that the higher the mother wavelet frequency, the more sensitive
the algorithm to the initial scale value. As a trade-off between ridge sharpness (and thus
noise rejection power) and tracking convergence, we chose w, = w. Not surprisingly,
the largest errors are made with the analytic method, due to its bad behavior with noisy
signals. The 3DPP procedure allows nonetheless to recover a smooth and accurate
phase map.
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50 4gg 200

extrema

(a) Phase maps after the total displacement of 270 pm obtained with the analytic method and
the extrema method.

ridge 3DPP

(b) Phase maps after the total displacement of 270 wm obtained with the wavelet ridge tracking
algorithm and the 3DPP method with a threshold value of 40 gray levels.

Figure VII.28: Phase map of total displacement, carried out after 4640 frames grabbed
at 48 fps rate, resulting from the HT-based, the extrema, the ridge tracking and the 3DPP
methods.
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Figure VII.29: Cross-section of the phase maps given in Fig.VI1.28.
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3.3 Experiment lll: rubber compression

We show now the results for the in-plane compression of a piece of rubber with two differ-
ent mechanical stop shapes. The idea is actually to observe the behavior of the method,
and more specifically its real impact on the spatial resolution, when high gradients of de-
formation are involved. It will be also the opportunity to assess the impact of the sparse
3DPP on the final result. Examples of correlation fringes in the two cases are shown
in Fig.VI.30. Once again, it appears clearly that the fringe visibility quickly disappears,
illustrating speckle decorrelation mainly induced here by structural change.

|150'Il|2 |1150'11|2 ‘11000'11‘2

(a) 1024 frames for a displacement of about 90 pm.

|Iso'Il |2 |1250'Il |2 ‘ISOO-Il |2

(b) 512 frames for a displacement of about 40 pum with a sharper mechanical stop.

Figure VII.30: Correlation fringe between different couples of grabbed frames.

3.3.1 Results and discussion

As done in the previous analysis of experimental cases, we compare the phase maps
obtained with the ridge extraction, the fast-EMD/HT , the extrema-based and the fast-
EMD/HT/3DPP algorithms in Fig.VI.33 and in Fig.VI1.32, for the two cases illustrated in
Fig.VII.30. The fixed convex hulls for the two cases are shown in Fig.VI1.31.

We observe on this particular example that the 3DPP procedure yields the smoother

phase map without endangering the spatial resolution especially near the mechanical
stop.
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90 um experiment 40 pm experiment

IF values found by fitting

Figure VII.31: Fixed convex hull with imposed IF values for the 90 um and the 40 um
experiments.

HT extrema method

ridge 3DPP#40

Figure VII.32: Final phase maps for the different methods in the 90 pm experiment.
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Figure VII.33: Final phase maps for the different methods in the 40 um experiment.
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3.3.2 Results of sparse-3DPP

As briefly said in the previous chapter, it is often valuable for a method to feature a com-
putation load which can be tailored by the end-user, depending on the sought accuracy
of the result. We know that the temporal approach lends itself perfectly to this as we can
choose to process or not any pixel. For the 3DPP procedure, the computation load can
also be lightened at will, by processing one frame every D. We present in Fig.VI1.34 the
results for different "temporal downsampling” factors for the rubber compression experi-
ment with the 90 pwm displacement. The phase map obtained after having processed all
of the 1024 frames has been shown in Fig.VIl.32, and we consider a factor D equal to 4,
8, 16 and 32.

D=16 D =32

Figure VII.34: Final phase maps in the 90 um experiment for the sparse-3DPP
technique when 1 frame every respectively 4, 8, 16 and 32 is treated.
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4. Evaluation of the sine-cosine DT filter

4 Evaluation of the sine-cosine DT filter

A Sl setup with out-of-plane sensitivity (Michelson configuration) has been used to mea-
sure the deformation of a rough aluminium plate along the z-axis (see Fig.VII.35).
The five-frames algorithm has been used to compute the raw phase map and the mod-

reference plate
mounted on a pzt

Q CCD camera
\

incoming
illumination beam

Figure VIL.35: Michelson-type setup for out-of-plane measurement.

ulation map as well. To obtain the latter, we simply combine in a slightly different way the
original phase-shifted frames (see Eq.VII.5) as shown in Eq.(VII.6), where the phase shift
is assumed to be equal to 7/2.

I =1, + Iy, cos(® — 25¢)

Iy =1, + I, cos(® — d¢)

Is = I, + I, cos(P) (VIL.5)
Iy = I, + Ly, cos(® + 0¢)

Is = I, + I, cos(® + 20¢)

5 2(I3—11)
b = arctanm

(VILB)

I = \/([3 — )2+ LI+ Iy — 21)? = /T2, sin%(®) + 12, cos?(®)

We first show the wrapped raw phase map, i.e. the 27 difference of the phases from the
two states, each of them computed with the five-frame algorithm (Fig.VI1.36). It is jointly
shown with the modulation map computed with Eq.(VII.6). As stated in the previous
chapter, the principle of our sine-cosine DT filter is to firstly classify the pixels for the sine
and the cosine maps of the original wrapped phase based on this modulation map newly
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built. Then, the DT is computed for each of the two sparse arrays of reliable data and
a smooth surface is finally computed on a uniform grid. The smoothed phase is then
classically computed with the arctan function in [—7,7]. Maps of pixel validity, simply

Figure VII.36: Wrapped raw phase map (left) and modulation map (right).

built by thresholding the modulation map for three different threshold values, are shown
in Fig.VI1.37, with the corresponding filtered phase maps (see Fig.VI1.38).

5% of discarded 40% of discarded 95% of discarded
pixels pixels pixels

Figure VII.37: Maps of pixel validity for different threshold values. The number of
discarded pixels in the area of interest is indicated as a percentage.

It appears clearly on the filtered phase maps that the higher the threshold, the better the
noise rejection. A problem however appears near the boundaries of the AOL. It is simply
due to the fact, that the illumination is not uniform across the field of view of the camera.
The test is thus more discriminate near the boundaries than in the middle. The solution is
simply to take into account the illumination profile and to tailor the threshold accordingly.
The best result we have been able to obtain with this method is shown in Fig.VI1.39. For
information only, we reported also the result of the classical iterative sine-cosine filter,
applied 20 times with a box kernel of 3 x 3 pixels. The unwrapped phase maps are shown
in Fig.VII.40
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5% of discarded 40% of discarded 95% of discarded
pixels pixels pixels

Figure VII.38: Results of the sine-cosine DT filter for different threshold values.

sine-cosine DT filter iterative sine-cosine filter

Figure VII.39: Result of the sine-cosine DT filter with an optimum threshold value which
depends on the illumination profile (left). Result of the classical iterative sine-cosine filter
after 20 iterations (right).

It is undeniable that the result from the iterative sine-cosine filter appears smoother than

the outcome of the sine-cosine DT filter. In addition, it has been demonstrated that with
a convenient kernel ( [3]), the spatial resolution is not degraded by the iterative process,
while the result of the sine-cosine DT filter shown in Fig.VI1.39 has been obtained by dis-
carding more than 97% of the pixels, resulting in an average length of the DT facets of
10 to 15 pixels. However, the most annoying drawback of the classical sine-cosine filter
is that it pollutes the reliable data with the unreliable ones - as usual filtering methods
do. This can be improved by choosing appropriate filter coefficients, but it might be inter-
esting to combine the two methods: firstly, discarding the most aberrant pixels with the
sine-cosine DT filter and finally improving the result with the iterative sine-cosine filter.
Moreover, it should allows to reduce the number of iterations for the same requirement
on the phase smoothness.
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sine-cosine DT filter

iterative sine-cosine filter

Figure VII.40: 3D view of the phase maps shown in Fig.VII.39 after unwrapping.
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Chapter VIli

The stochastic signal processing
world: a mine of phase extraction
methods within reach thanks to the
EMD

1 Estimation or tracking techniques?

What we have seen so far, is that thanks to the EMD method, we obtain a signal that is in
an appropriate shape for subsequent accurate phase extraction. It is then up to the user
to choose the phase/IF extraction method according to the application. We have seen
in the past with the work of Colonna de Lega, that the S| community (developers and as
a consequence users) could benefit from advances in other fields like acoustics, speech
processing, efc. We do believe there is a mine of phase and IF computation methods
which are developed, notably in the speech processing domain, that could be of benefit
to our field, and the reciprocal might even be true.

Frequency tracking and estimation is an old issue, as it became quickly necessary to ac-
curately estimate frequencies embedded in noise, especially in radio waves domain. The
book from Quinn and Hannan ( [148]) offers a review of methods aiming at retrieving the
spectral content of a signal in different SNR conditions ranging from the Wiener filter, to
ARMA (auto-regressive moving-average) modeling, Kalman filtering and Hidden Markov
models.

The Wiener filter is the optimal filter to estimate a signal embedded in noise, in the sta-
tionary case. The Kalman filter is a recursive formulation of the Wiener filter and assumes
thus that the system which produces the observed process is linear. To deal with non-
stationary situations, we need to move to the extended Kalman filter, which has been
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applied to the frequency tracking issue ( [142]). It has notably be shown that the ex-
tended Kalman filter is closely related to the phase-locked loop ( [142]), another widely
used technique, firstly analogically and later digitally ( [114]). ARMA models are among
the most relevant signal models, thanks to their ease of use, their ability to model a wide
range of physical signals. For instance, GSM communications are actually based on an
ARMA modeling of voice signals. The task of signal estimation reduces then to estimat-
ing the ARMA parameters, and the Yule-Walker equations and the Levinson algorithm
are the basic methods to compute those parameters. Labarre et al proposed in [99] a
two-Kalman filters scheme to estimate AR parameters of speech signals, with the pur-
pose to enhance them. Besson proposed in [18] the ARCOS model, which is basically
a sine wave where the amplitude is modeled by an AR process. This model addresses
the issue of signal estimation in multiplicative noise, while this is principally the additive
noise case which is studied. The last model mentioned here is the Hidden Markov model
([150]), which has been applied to the frequency tracking issue notably in [172].

The purpose of this section does obviously not constitute an exhaustive review of fre-
quency trackers and estimators, but should convince that a rich collection of techniques
is available to model and estimate signals, with statistics that we are familiar with in Sl,
AM-FM signals with different amounts of noise.

2 Example: Linear predictive filtering for signal modeling

This section is strongly inspired, at least for the starting point, from the the work of Griffiths
([79]). The original method is actually composed by three steps: i) a linear filter predic-
tion, ji) the LMS (least mean square noisy gradient descent) algorithm to update the filter
coefficients, and iii) a spectral estimation. If we consider first a sequence z[k] perfectly
predictable using a linear filter, the prediction at time & is thus a linear combination of the
previous values weighted by the coefficient of the filter:

L

Bk =Y g -xlk—1], (V1)

=1

where L is the filter length and g; is the Ith filter coefficient. The coefficients are then
updated as stated above by a LMS algorithm whose formulation is recalled hereafter
(see [79] for the complete development):

Glk + 1] = G[k] + p(x[k] — 2[k]) - X[k — 1] , (VIIL.2)

where G is the filter coefficients vector at instant &, i.e. [g1(k), g2(k), , gi(k)], X is the vector
of data upon which the prediction is based again at time k, i.e. [z[k—1], z[k—2],, z[k— L]],
and u is the step-size, which regulates the convergence speed of the algorithm. The
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filter length L and the LMS algorithm step-size are parameters we impose empirically
here. This classical formulation works for signals with constant amplitude, and some
adjustments are required to be able to process our AM-FM signals. It is enough to weight
the data sample at time k& with the modulation value (see chapter 5) of the Sl signal. It
leads finally to the following formulation:

2kl =" g - Zk — |Gk + 1] = G[k] + p(@lk] — 2[k]) - X[k —1], (VIIL.3)

where ~ denotes the operation of normalizing by the modulation envelope value. Con-
sidering our perfectly predictable signal and taking the discrete Fourier transform of both
sides of equation Eq.(VII1.3), we obtain:

L
X(w)-1=) ge™]=0 (VII1.4)
=1

Thus, for frequencies where the signal spectrum is not null, the second term of Eq.(VIIl.4)
must be equal to 0. The spectral estimate defined below exhibits thus peaks at the input

signal frequencies:
1

| 1- Zlel gle_WZ |2
The problem here is that we have to compute at each time the spectral estimate over a
range of frequencies. The estimation will thus suffer some quantization noise due to the
finite number of frequencies where it is evaluated. A good way to reduce the computation
cost would be to evaluate the estimate over a close range around a rough frequency
estimate, that is actually easily available with the extrema method presented in chapter
5. It is also a pity to build an iterative estimator to model the signal to finally estimate the
IF over a certain range, wasting this way some computation resources.
The idea of the linear predictive filter (LPF) is nonetheless a good idea as Sl temporal
signals - pre-processed with the EMD, i.e. centered and normalized - lend themselves
to such models and require few filter coefficients . Two coefficients are necessary for a
sine wave with constant amplitude, and four or five coefficients are in practice enough for
AM-FM signals encountered in Sl. It is nonetheless interesting to increase the number
of coefficients as, the higher the number of coefficients, the better the noise rejection.
We show below two experimental pixel signals, experiencing different - but constant -
displacement rates, smoothed with this LPF approach. The phase of the so-built model
is then extracted with the analytic method, and the IF of the signals are then computed
and compared. We eventually compute the distribution of the IF values in the different
cases to highlight the influence of the filter length on the noise rejection (see Fig.VIIl.1
and Fig.VIIl.2).

Qw) (VIIL5)

"The signal model used here is in other words an autoregressive model (AR) whose components are
simply found by a steepest descent algorithm.
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Figure VIII.1: 1st IMF extracted from an experimental temporal Sl signal (top)
experiencing around 80 fringe of displacement, and modeled with the LPF approach with
(from top to bottom) a 4-tap, 8-tap and 16-tap filter. On the right, the distribution of the IF

values along time are shown for each signal (the red curve on top designates the
distribution for the extrema method).
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Figure VIII.2: 1st IMF extracted from an experimental temporal Sl signal (top)
experiencing around 30 fringe of displacement, and modeled with the LPF approach with
(from top to bottom) a 4-tap, 8-tap and 16-tap filter. On the right, the distribution of the IF

values along time are shown for each signal (the red curve on top designates the
distribution for the extrema method).
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Chapter IX

Conclusion

1 Achievements

The goal of this work was the conceiving of robust and accurate procedures for the char-
acterization of dynamic behaviors of mechanical surfaces, using speckle interferometry
or related full-field optical methods.

We first came up with a numerical model whose validity domain has been clearly defined,
and which is very convenient for creating complex speckle fields, a valuable tool to test
new processing schemes. We tackle the phase extraction problem by going back to the
basics of phase extraction from non-stationary signals. The idea was to clearly identify
the requirements of a meaningful phase computation.

It was then shown that a pre-processing tool was missing to efficiently detrend Sl sig-
nals, which are by nature strongly non-stationary. The Empirical Mode Decomposition,
an appealing candidate to fill the gap at first glance, proved to be efficient and accurate
to remove Sl signal background intensity. The method is however iterative, which is not
an ideal feature for dynamic regimes, and in addition, remains delicate to control. An
algorithm has thus been written with safe-guards to make the decomposition more robust
without deteriorating its self-adaptiveness, its very asset. The Hilbert transform and its
use as a quadrature operator, has been studied and assessed for the phase computation.
The so-called analytic method proved to be efficient but highly sensitive to noise. Other
phase extraction and/or tracking methods - subsequently to EMD preprocessing - have
been investigated and tested for comparison purposes.

A novel and powerful approach to the under-modulation issue has been proposed which
actually fits for phase (®) map filtering in static (®(r)) and dynamic regimes (®(r, t)). For
the static case, where two states are recorded and compared, the method showed some
pretty good noise rejection power without nonetheless reaching the level of the classical
iterative sine-cosine filter. A trade-off must be found between noise rejection and spatial
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Chapter IX. Conclusion

resolution, but unlike the latter classical filter, the outcome depends only on the reliable
data. For the dynamic case, the first step is the binary classification of the pixels signals
according to a certain threshold. The key point is that this classification is made along
time. Within its history, a pixel signal is very likely to carry useful information for a certain
period of time and to be completely unreliable at other instants. The useful information
considered here is the instantaneous frequency (IF) - the IF is the numerical derivative
of the phase - as the phase is very likely to be wrong up to a constant when such a
loss of modulation occurs in the temporal signal. Once the classification has been made
at each instant, an interpolation step, based on the Delaunay triangulation, takes place
so as to recover a uniform smooth phase map from the so-build non-uniformly sampled
frames of IF. The key point of the proposed technique is that its outcome depends on
the most reliable data as it discards the data which are the most prone to phase errors,
unlike classical filtering techniques. The method has no bias and greatly reduces the
decorrelation-induced random phase errors, intrinsically linked to speckle interferome-
try. The dynamic characterization of large displacements requires tackling the problem
of computation load. In addition, if a temporal carrier is required, the amount of data
to record is even higher. Our method proved to increase the measurement bandwidth
without damaging the measurement accuracy as it permits to do without temporal carrier,
which greatly compensates the oversampling needed by the EMD to perform well.

2 Further work

We already gave along this dissertation some possible improvements of the developed
methods. First, at the background intensity removal level, the use of the EMD method
has been advocated. In the under-modulated areas of the temporal pixel signals, mode-
mixing occurs despite the implemented safe-guards. Constraining more the decomposi-
tion is not appreciable as it would damage its self-adaptiveness, which is the very strength
of EMD. The construction of an hybrid mode, which basically regains useful information
from the second IMF only in the regions with low modulation, yields a more information-
saving EMD. A careful implementation might be of use, especially when the broadest
measurement bandwidth is sought, i.e. with no temporal carrier.

The world of stochastic methods for frequency estimation and tracking has been briefly
investigated and it can definitely help to conceive accurate, fast phase computation meth-
ods with a better noise immunity than the analytic method. Signal models have been
briefly discussed, and a predictive filtering based model has been proposed with some
good noise rejection ability on the first mode.

Our answer to the under-modulation issue proved to be powerful, versatile and very ac-
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2. Further work

curate. Some improvements can be done to be able to treat the case of objects with non-
convex shapes, and the case of spatial discontinuities as well. Another point that would
deserve to be pursued is the surface tiling to lighten the computation burden ( [34]). A
tiling depending on the activity with criteria derived from the temporal and spatial phase
gradients would permit to process the pixels, sparsely spread over the surface, which are
the most relevant to treat (around a crack, in a high spatial displacement gradient area,
and so on...).
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Appendix A

A reminder on Fourier analysis

The definitions and the basic theorems are recalled in this paragraph and the forthcoming
one without any proof. This would be beyond the scope of this chapter and this thesis.
The purpose of this section is to recall the basics of Fourier analysis to properly introduce
the FT-based processing methods in Sl.

1 The continuous Fourier transform (FT)

1.1 Definition

The FT F(s) of the function f(x) is defined as ( [24]):

F(s) = / f(z)e 2™ dg (A1)
The inverse FT is simply defined as:
f(z) = / F(s)e™™s ds (A.2)

1.2 Basic theorems

We recall in the following the basic theorems, without proof, which are useful in fringe
analysis and diffraction patterns computation. Again, the interested reader is invited to
look in [24] for a thorough review of FT theorems.

1.2.1 Similarity theorem

Considering the Fourier pair { f(z),F(s)}, the FT of f(ax), a being any real number, is:
1 s
F(flaz)) = —F () (A3)

-~ al
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1.2.2 Shift theorem

Considering again the Fourier pair { f(z),F(s)}, a shift in the real domain does not change
the amplitude of the Fourier components and are confined to their phase as following:

F(f(r—a))= e_i%“sF(s) (A.4)

1.2.3 Modulation theorem

This is the well-known theorem behind Fourier-based methods of fringe analysis. Adding
a carrier of frequency v, = 27w, in the real domain results in a shift in the reciprocal
domain. The spectrum of the function f(z) is shifted around the frequencies v, and —v,:

F(f(x) cos2mw,z) = %F(s —wo) + %F(s + wo) (A.5)

1.2.4 Convolution theorem

This theorem is of primary importance as it enables fast computations of convolution
products, which are very time-consuming. The convolution product reduces indeed to
a simple product in the Fourier domain. Considering the Fourier pairs {f(z),F(s)} and
{g9(z),G(s)}, then:

F(f@g(x)) =F(s) G(s) (A.6)

This theorem enables to compute diffraction patterns very efficiently (see the forthcoming
Annex).

2 The discrete Fourier transform (DFT)

2.1 Definition and theorems

We will not insist on the case of discrete signals of infinite extend. We recall simply
the definitions before talking about the FT of discrete sequences of bounded temporal
support. We do not consider the case of non-uniform sampling either. The sampling
operation causes the Fourier transform to become periodic and the FT and the inverse
FT of infinite sequences are defined as following:

P () = e wne ™ = g [T 2 () dw A7)

The theorems recalled above for the continuous case apply in the discrete one. It is
customary to specify the dependency of the discrete-domain FT as .2°(e*) instead of
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2. The discrete Fourier transform (DFT)

simply 2 (w), to make a point that the FT of infinite sequences is 2r-periodic function
(the continuity is implicit). It is common and convenient to look at this 27-periodicity, by
saying that the DFT is defined on the unit circle (interpreting physically the results and
thus considering a sampling period different from 1 is simply a matter of scale).

2.2 The Shannon’s sampling theorem

The sampling frequency must be properly chosen to avoid aliasing, i.e. irremediable loss
of information. To avoid this loss of information, the sampling frequency must be chosen
so that for any local period of the signal, there are at least two sampling points. This is
a "hand-waving” reformulation of the Shannon sampling theorem which stipulates: If f(t)
is continuous and bandlimited to w,, then f(t) is uniquely defined by its samples taken at
ws = 2w, (Nyquist criterion. We talk also of critical sampling). f(¢) can then be recovered
by the interpolation formula (7" is the sampling period):

ft) = Z f(nT)sincy(t —nT) , with sinep(t) = w (A.8)

n=—oo

It means, in practice, that before sampling, it is mandatory to filter. The interpolation ker-
nel, in the original formulation of the Shannon theorem, is the function sinc, and being not
of finite support, it is not very convenient for computer implementation. Sampling theory
has aroused the interest of many researchers among the signal processing community.
The interpretation of the Shannon’s sampling theorem as an orthogonal projection onto
the Hilbert subspace of band-limited functions allows for more realistic and easy to im-
plement interpolation models ( [180]).

2.3 FT of finite sequences
2.3.1 Definition

In our real world, the data set we want to somehow process are inevitably of finite ex-
tend. We have seen that sampling the original signal makes the spectrum 2x-periodic but
continuous. Truncating the signal means multiplying the infinite sequence by a window of
finite length. The spectrum, in accordance with the convolution theorem, is thus the result
of the convolution of the original spectrum with the FT of the window. The spectrum is
thus degraded. The FT for such a finite sequence is defined by:

_ _1 N-1 nk, _ _ 1 N-1 —nk
'%/‘k ~ sqrtN n=0 onN Tn = sqrtN ZkZO %kWN ’ (Ag)

where Wik = exp(—i2mnk/N). We have considered here sequences of finite length
N, but the same definition of the FT applies for N-periodic sequences. The DFT can
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be implemented in a very fast way thanks to the Fast Fourier Transform (FFT) algorithm
( [42]). The algorithm complexity is O(nlog(n)), while the direct computation complexity
is O(n?). Typically, for a data set of 1024 samples, the FFT algorithm is 100 times faster
than the direct computation. It is also well-known, that the algorithm, due to its structure,
is much more efficient for data set of length N equal to a power of two.

2.3.2 Windowing and DFT

This point is a crucial matter of concern in spectral analysis of finite sequences, as when
the analysis window is not commensurate with the natural period of the signal, discon-
tinuities appear in the periodic extension of the signal at its boundaries. It generates
spectral contributions which have nothing to do with the intrinsic spectral content of the
signal ([178]). One mean to avoid this so-called spectral leakage is to apply a window of
a certain shape to the signal, and thus smoothly bring the windowed data to zero at the
boundaries. This point is detailed in [81].

2.3.3 Zero-padding

The DFT of a finite sequence of N samples is itself a complex-valued vector of length
equal to N. The spectrum is sampled with a step of 1/N. If some zeros are added to the
data sequence to form a sequence of length P (P > N), it is clear that the resulting DFT
will not be changed as the zeros bring no contributions. However the spectrum is this
time sampled with a finer step of 1/P. It is worthwhile to specify how to interpret correctly
this result:

i) if the signal is of impulse nature and is fully contained in the original window of
length N, zero-padding might be interesting to compute a finer spectral estima-
tion, which could be, by the way, equivalently achieved by an interpolation process
directly in the Fourier domain.

ii) if the sequence results from the truncation of a signal on which we have no knowl-
edge beyond the window, it is illusive to look for a finer spectral estimation by adding
zeros.

iii) if the sequence represents a period of a signal, zero-padding will certainly give a
finer spectral representation but still degraded by the FT of the sampling window. It
is preferable in that case to look toward the direction of signal continuation (signal
mirroring techniques or Gerchberg algorithm).
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Diffraction patterns computation

1 In which way a numerical model is valuable?

Experiments involving speckle distributions are indeed frequently carried out firstly on a
simulation basis. The underlying reasons are in the impossibility to exercise a perfect ma-
terial control of all the parameters governing the speckle formation, especially the rough-
ness parameters and their possible alterations. A great number of numerical models have
therefore been built. These models most often are of an ad hoc nature, limited to the val-
idation of particular findings. Such approaches span an horizon as wide as the analysis
of surface roughness versus speckle contrast ( [67]), the statistical study of intensity and
phase in the vicinity of singularities ( [167]), the intrinsic speckle noise in Gabor particle
holography ( [130]), the effectiveness of a wavelet filtering technique in speckle interfer-
ometry ( [57]), the noise evaluation in coherent fringe projection techniques ( [116]), the
subjective significance of a given SNR in speckle interferometry ( [109]), the testing of
unwrapping algorithms ( [72]), efc.

Sometimes, it is sufficient to introduce some sort of noise, additive or multiplicative, into
the standard two-beam interference formula in order to give a speckle appearance to the
fringe patterns under examination ( [158]). Artificial speckle patterns are also in use out-
side the visible part of the electromagnetic spectrum. Rare publications, on the contrary,
are tackling the question of the elaboration of an explicit and realistic digital representa-
tion of a speckle field, mimicking as closely as possible the concerned physical processes
( [57,128]). Moreover, apart from elementary tests, very few in-depth validations have
been attempted in order to guarantee the adequacy of the modeling. On the contrary,
this has been the goal of this preliminary work to the core topic of the thesis ( [52]). We
will recall in a first paragraph some basic matter of the diffraction theory from its funda-
mental form, the Rayleigh-Sommerfeld integral, to the well-known Fresnel approximation.
We will discuss numerical computation of diffraction patterns and use sampling consid-
erations to determinate the validity range of different acknowledged methods. The use of
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the linear model to simulate complex speckle fields and Sl signals will then be advocated,
while its limits will be discussed.

2 Diffraction theory: from Rayleigh-Sommerfeld to Fresnel

The base of Fourier Optics is the Rayleigh-Sommerfeld diffraction model. Considering
Fig.B.1(a), its formulation is given by:

U(P') = —% // U(P) ejp cos(#, 7) ds , (B.1)

—
where ds is an elementary surface of the diffracting aperture %, k = 2x/\, p = PP’ and
7 is the outward normal to the surface.

(a) Optical path from a source point P to a point P’ (b) Scalar auscultation cone.
of the image plane.

Figure B.1: Computation of the electromagnetic field diffracted by a given aperture.

The only condition to establish Eq.(B.1) is to consider that the surface where we want
to compute the field (X) is sufficiently far from the diffracting surface (X,). This formu-
lation is very general and rigorous. The scalar approximation of electromagnetic waves
requires that the contribution in P’ are all parallel in a first approximation. In other words,
the diffracting surface 3, must be seen under a narrow solid angle called the scalar aus-
cultation cone. The term cos(1, ﬁ) can thus be approximated by cos(6,), known as the
obliquity factor, where 6, is the field angle (see Fig.B.1(b)), and can be removed from the
integral. The Rayleigh-Sommerfeld integral becomes:

UP) = — L cosoy) [ U@ E as (B.2)
A . P

In the paraxial domain, the obliqueness can even be considered as equal to 1. When
the system aperture is too large to fulfill the paraxial approximation, it means that, in the
resulting field computation, we overestimate some contributions and this relative error is
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2. Diffraction theory: from Rayleigh-Sommerfeld to Fresnel

typically equal to 1% and 5% when the aperture angle is respectively 8° and 18°. Despite
the approximations made so far, the Rayleigh-Sommerfeld integral of Eq.(B.2) remains
hard to compute, and it takes a much simpler form in the Fresnel approximation. Indeed
in the paraxial domain, the distance PP’ exhibits very low variations. It can thus be
removed also from the integral computation and developed to the first order in the phase
term; it yields the Fresnel integral or Fresnel transform:

U(P) = et / / U(P)ei™ 55 ds (B.3)
The Fresnel approximation consists, in other words, to approximate the spherical wavelets
of Huygens by quadratic ones. We can evaluate the phase error made within this approx-
imation by considering the second order term of the Taylor expansion of the phase:

TZ | 4
RN —— B.4
0 o tan® @ , (B.4)

where 6 being again the aperture angle. Accepting a maximum error of 7/2 yields the
following relation between the aperture angle and the ration z/\:
2\
< -
z

94 (B.5)

In Fig.B.2, the validity domains of the approximations made so far are shown.

0(°) 4

10° 1‘01 “1‘0’ “103 “”10‘ 705 H1115 ;o’ da/n
Figure B.2: Acceptable range for Fresnel approximation.

Under the Fresnel approximation, the resulting field U(P’) is actually simply the convo-
lution of the field in the pupil plane of the diffracting surface with a function i (r) which
corresponds to the response of a certain filter:
i ikz iwﬁ
h(r,z) = BTG (B.6)
This linear time invariant filter view is very suitable, especially to introduce fast computa-
tion matters, through FFT algorithm. The FT of h(r) is given by:

F(h(r,2)) = H(w, z) = 7 imA=w” (B.7)
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This computation trick finds a physical meaning within the model of the plane waves.
The FT of the field is its decomposition in planes waves whose spatial frequency is
w =sin(#)/A, 6 being the inclination of the plane wave with respect to the z axis. Without
recalling all the well-known development, resolving the Helmoltz equation with the Fourier
domain expansion of the field yields the following filtering model with the free-space ker-
nel:

U(w, z) = U(w, 0)ersV1-Aw? (B.8)

The simplification of the square root to the 1st order gives the Fresnel kernel in the Fourier
domain. Fig.B.3 summarizes diffraction patterns computation both from the point of view
of scalar waves diffraction theory, and from the one of plane waves decomposition and
homogeneous free-space transfer function as well. The two approaches are obviously
theoretically equivalent but lead to very different results numerically.

U(r,0) Shes) U(r,2)
FT FT"
U(0,0) xHO2 | Tz

Figure B.3: Spectrum propagation method and integral computation method.

3 Computation of diffraction patterns: sampling considera-
tions

We now focus on the numerical implementation of the two approaches summarized in
Fig.B.3. Without any loss of meaning, we limit ourselves in this section to 1D signals.
The Rayleigh-Sommerfeld integral cannot be computed efficiently, except in the Fourier
domain thanks to the filtering model with the free-space kernel. However, the diffraction
pattern computation in the Fresnel domain of validity can be conducted efficiently in both
spaces. The Fresnel transform in eq.(B.3) can indeed be rewritten as following where the
diffracted field computation reduces to the FT of the input field multiplied with a quadratic
phase term:

;. N oo L 22 o ol
U, 2) = —)\Lemze”? / [U(x,0)e™%=]e™ ™5 da (B.9)
z —o0
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3. Computation of diffraction patterns: sampling considerations

In the far field, in the so-called Fraunhofer regime, the output field simply reduces to the
scaled FT of the input field:

Ux',2) = —)\Zzeikz/ Ul(z,0)e” 5% da (B.10)

To achieve physically meaningful computation with the FFT algorithm, ad hoc sampling
must be done. Considering a function f(z) and its N points sampled version f[k], its DFT
is defined by:

) N/2—1 ik
F(k)y= Y flklel - 127 ] (B.11)
—N/2

The sampling intervals are assumed to be Az and Az’ for the input and the output ma-
trices, and the sampling steps are thus éx = Az/N and 6z’ = Az’/N. We have the
following relation between both coordinates in the reciprocal spaces:

N .-bz-02' =1 (B.12)

In Eq.(B.9) and Eq.(B.10), it appears that the scaling factor is not equal to 1 but to Az,
and we obtain the following scaling relations between the input and output planes:

N - §z 02" = Az (B.13)

To clarify what we’ve done so far, we have shown that the integral computation can be effi-
ciently done thanks to the FFT algorithm, keeping in mind the scaling relation (Eq.(B.13))
existing between the planes at = = 0 and z. Hence, for a given sampling number of
points and a sampling step in the input plane, the sampling step in the output plane will
increase linearly with the distance z, allowing the complete computation of the wider and
wider diffracting field. The computation of the diffracted field can be also done by the
spectrum propagation method. The double use of Fourier operator impedes any rescal-
ing relation which means that the sampling step will remain the same in the output plane
at any z. Whichever method is chosen, an appropriate sampling of the kernel, either in
the Rayleigh-Sommerfeld model or in the Fresnel approximation is mandatory. A critical
sampling, i.e. according to the Nyquist criterion, of the phase term of the Fresnel kernel
in the real domain leads to the following condition on z ( [76,128,129]):
kf\z <1 vk and so, z > )\A; , (B.14)
where A is the field extension A = NJ. While keeping this classical sampling criterion,
we find another condition depending on z for the Fresnel kernel in the Fourier domain:
AQ
2 <y (B.15)
In Fig.B.4, the real part of the kernels in the Fresnel approximation are shown with re-
spect to (w, z) and (r, z). Thus, the spectrum propagation method is only appropriate to
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z

(a) Real part of the Fresnel kernel in the Fourier (b) Real part of the Fresnel kernel in the real
domain: aliasing occurs for large values of 2. domain: aliasing occurs for small values of z.

Figure B.4: Real part of the kernels in the Fresnel approximation in the Fourier domain
(left) and in the real domain (right)..

compute the complex field in the near-field, while the direct computation in the real do-
main apply only in the far-field. Outside the ranges of application of each method, strong
aliasing takes place. The conditions given above to properly sample the Fresnel kernel
phase show clearly the limits of the quadratic approximation, but it must be said, that the
spectrum propagation method with the free-space kernel comes up against exactly the
same sampling issue, with nonetheless slightly different domains of validity. In fact, the
greatest discrepancies between the two kernels are linked to the 1/ limit for propagating
fields & vectors. This limit does not hold mathematically for the Fresnel approximation,
but it is meaningless not to impose it.

4 The fractional FT: a versatile tool for near-field and far-field
diffraction computation

Operators originally defined for integers orders can be generalized to fractional orders
featuring this way interesting properties. The definition of the ath power of a function
f(z) as the multiplication of f(z) by itself a times makes sense only for a integer, but
its extension to any a, real or even complex, is elementary. The same occurs with the
derivative. Letting .% (v) denote the FT of a real-valued function f(z) (see Appendix A),
the time differentiation theorem allows the extension of the definition of derivative to real

orders:
da

dx®
In Optics, in setups involving free-space propagation and focusing devices such as GRIN
fibers, lenses, efc the field distributions in some specific planes are related with the FT.
But as the definition of power and derivative of functions extend naturally to real order, it
is worthwhile to wonder if:

[f ()] < ()" F(v) (B.16)
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4. The fractional FT: a versatile tool for near-field and far-field diffraction computation

i) Can we define a Fourier transform of fractional order?
i) What would be the link between such a transform and the Rayleigh - Sommerfeld
diffraction theory?

The answer at the first question is yes. Lohmann in [117] introduces the fractional Fourier
transform (frFT) as a rotation operator of the Wigner distribution. A compilation of the
definitions of the frFT can be found in [140], with notably one which involves the Green
theorem. It can be shown that, under the paraxial approximation, the frFT is a solution of
the wave equation and thus appears as a natural operator to compute fields propagation
in the Fresnel domain ( [8,140]). The basic diffraction patterns in Fig.B.5 show that the
frFT-based method allows to unify the near-field and far-field domains with a non-linear
scaling relation between the input and output planes. Designating by a the fractional or-
der of the frFT, the scaling relations of the sampling steps, 6« and ¢/, associated to the
planes respectively located at = = 0 and at z, is written as followed( [139]).

Az

ox'dx =
vor sinam/2

(B.17)

The fractional order a is equal to 0 at the input plane and is equal to 1 in the focal plane
of a lens, as the frFT of order 1 is the common FT.

aliasing aliasing NO aliasing

B e e S

z z
spectrum propagation single FFT fractional FT

Figure B.5: Computer simulations of the diffracted field by an infinite slit with the
spectrum propagation method(left), the single-FFT method (center) and the fractional FT

(right).

The methods involving a scaling relation are actually not suitable to complex speckle
patterns computation, as fields computed at different locations along the z-axis cannot be
directly superimposed, and interpolating an integrated speckle pattern to appropriately
resample it afterwards is obviously out of question - especially in the integrated case.
The spectrum propagation method remains the only meaningful way to compute complex
speckle patterns.
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5 Which computation method for speckle and Sl signals com-
putation?

The linear amplitude imaging model is chosen here for creating numerical speckles. This
model is dubbed for simplicity "linear model”. It starts from the basic and well-known con-
volution integral between object complex amplitude and impulse response for obtaining
the output amplitude. It is described in Fig.B.6.

\? / C‘»/lj\,\’ f \* /— ®hy \A Uy \* /—— Ohy —_ Ur

Uo 4 v Rt
free space focused imaging Defocused imaging
propagation geometry geometry

Figure B.6: Schematic representation of the input and output complex amplitude
distributions in different geometries.

The diffuser is usually assumed to be a pure phase object, whose phase is uniformly
distributed over a 27 interval:

Uo(r) = exp(ip(r)) (B.18)

With A\, D and f being respectively the wavelength, the pupil diameter and the focal length
of the imaging lens, and with the pupil function defined by circ(p) = 1 for 0 < p < D/2
and 0 otherwise, the functions h,, hy and hy are simply written as following.

ha(r,2) = exp(55)
hy(r) = FTcirce(p) = JI(EQ) , With ¢ = ﬂ;)\l;)

and J; : Bessel function of the first kind of order 1

ha(r) = FTcirc(p) exp(iga(p)) where ¢,(p) is the defocus aberration function
(B.19)

The Matlab program is given at the end of the chapter.

6 Potentials, limits and applications of the model

Generating speckle fields with the linear model is valuable for testing and benchmarking
automatic fringe processing methods developed for Sl. Strongly grounded to the first prin-
ciples, computationally efficient when the convolution integral is calculated by two FFT,
this model creates pertinent complex speckle distributions. The linear model is relevant
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7. Matlab program

for both objective and subjective speckle amplitudes: it is just a matter of choosing the
appropriate impulse response, which assumes respectively either the form of the FT of
the pupil function or the Fresnel function. In an imaging geometry, arbitrary amounts of
defocusing are also very easily modeled. When confronting the statistical properties of
the numerically created speckle fields to the theoretical distributions a Gaussian speckle
should obey, very good statistical agreements between theory and model are obtained
for the intensity and phase probability density functions, and hence for the moments of
these random variables, in particular the contrast. More elaborate statistical properties,
as the intensity autocorrelation functions, the average speckle size, the occurrence of
singularities, are also correctly verified. Moreover, interesting results have been obtained
in the fine structure of phase maps as shown in Chapter 3.

The linear model has nonetheless obvious limits linked to sampling considerations of the
phase of the Kernel in the Fourier domain, either it be in the Fresnel approximation or
not. Decorrelation induced phase errors are thus rather connected to the undersampling
of the kernel phase than to the physical reason that would have been closely simulated.

7 Matlab program

%#Simulation of Speckle Patterns

lambda = 532E-9;%lambda

a = 15E-3;%lens radius

f = 100E-3;%focal length

nuc = a/(lambdax*2xf);’%cut frequency of the imaging lens

N = 512;%number of sampling points

%Pupil matrix creating.

D = ones(N,N)*diag(-N/2:N/2-1);
D = (4/(N)"2)*(D.*D+D’ .*D’);
P = ones(N,N)-im2bw(D,0.1);

PO = ones(N,N)-im2bw(D,1);
gammaP = sqrt(sum(sum(P0))/sum(sum(P)));
T = 0.5%(1/nuc)/gammaP;’sampling rate in the object and image plane

phase = rand(N,N);
Ui = exp(i*2*pi*phase);
Ufd = fftshift(£££2(Ui));
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%Fourier shift theorem

vE = upsample(2*ones(1,N/2),2)-1;

vF = upsample(2*ones(N/2,1),2)-1;

FSTM = vE(ones(N,1),:) .*vF(:,ones(1,N));

Mx = ones(N,N)*diag((-(N/2)+1):(N/2));

My = Mx’;

k0 = (gammaP*a) "2*((2/N) "2* (Mx.*Mx)+(2/N) "2x (My . *My)) ;
delta = -N/2+1:N/2;

beta = 3E-6;

Atemp = zeros(N,N);

Ttemp = zeros(N,N);
Hd = zeros(N,N);

%possibility to simulate the integrating effect of the sensor array
nint = 8;

Ni
Op
bloc = [ones(nint,1),zeros(nint,nint-1)];

floor(N/nint) ; %number of pixels of the sensor

zeros (N,N) ;

for kop=1:Ni
Op((nint*(kop-1)+1) : ((nint*(kop-1)+1)+(nint-1)), ...
(nint*(kop-1)+1) : ((nint* (kop-1)+1)+(nint-1))) = bloc;

end
for k = 1:length(delta)
= delta(k)*beta;
Hd = exp(i*pixz*k0/(4*lambda*f~2));
Ud = ifft2(Uf.*Hd.*P*exp(i*2*pi/lambda*z)) .*FSTM;
Id = Ud.*conj(Ud);
Idmean = mean(mean(Id));
Temp = (Id*0p)’*0p;
Idint = (1/nint”~2)*Temp(l:nint:end,l:nint:end);
Idmeanint = mean(mean(Idint));
k
end
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Fast-EMD algorithm

%Empirical Mode Decomposition implementation to process signals obtained

in SI. The algorithm is fed with stacks of temporal signals.

%OUTPUT:

%mode_out : 1st IMF.

Jmean_est : 1st residue.

%envmax & envmin : upper and lower envelopes.

%valid_env : designates the temporal regions of the signal which have been
% classified as valid or not valid, based on th.

%if_em : estimate of the IF of the signal with the extrema method.

%INPUT:
%y : temporal signal under analysis.
%N : number of time samples.

%th : thrsehold value used for the pixels classification for 3DPP.

signal = y;

[envmin,envmax,if_em] = extrema(signal,t,N);
mean_est = 0.5*(envmin+envmax) ;

valid_env = define_envmodul (envmax—envmin,th) ;
signal = signal-mean_est;

mode_out = signal;
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function [envmin,envmax,if_em] = extrema(x,t,n)
% find the position of the extrema of the signal
m = length(x);
if (nargin == 1)
t = 1:m;
end
dx = diff(x);
dx1 dx(1:m-2);
dx2 = dx(2:m-1);
posmin = find(dxl.*dx2 < 0 & dx1 < 0)+1;
posmax = find(dxl.*dx2 < 0 & dx1 > 0)+1;
seuil_flat = 1E-10*abs(max(x)-min(x));
dxoo = (abs(dx) > seuil_flat);

dxo = dx.*dxoo0;

if isempty(posmin) == 1 || isempty(posmax) ==

posmin = 256;
256;

posmax
else
e B B
if (any(dxo == 0))
dxopos = find(dxo == 0);
ldxopos = length(dxopos);

dxocount = [];
dxoposf = [];
ko = 1;

vec_flat = [];
if (1dxopos > 1)
dxopos = [dxopos 0];
while (ko < ldxopos)
dposo = dxopos(ko+1)-dxopos(ko);
while (dposo == 1) && (ko < ldxopos)
vec_flat = [vec_flat dxopos(ko)];

ko = ko+l;

dposo = dxopos(ko+1)-dxopos (ko) ;
end
vec_flat = [vec_flat dxopos(ko)];

dxocount = [dxocount length(vec_flat)];
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dxoposf = [dxoposf floor(sum(vec_flat)/length(vec_flat))];
vec_flat = [J;
ko = ko+1;
end
ldxoposf = length(dxoposf);
for ko = 1:1ldxoposf
kot = dxoposf (ko) ;
if (floor(kot-dxocount(ko)/2) > 0) && ...
(floor (kot+dxocount (ko) /2) < n-1)
indl = kot-dxocount (ko) /2;
ind2 = kot+dxocount (ko) /2+1;
xo_ext = x(floor(indl) :floor(ind2)+1);
elseif (floor(kot-dxocount(ko)/2) < 1)
ind = kot+dxocount (ko) /2+1;
xo_ext = x(kot:min(floor(ind)+1,n));
elseif (floor(kot+dxocount(ko)/2)+1 > n-1)
ind = kot-dxocount (ko) /2;
xo_ext = x(floor(ind) :kot+1);

end
probe = diff(xo_ext);
1xo = length(probe);
if (sign(probe(1))*sign(probe(lxo)) == -1) &&...
(sign(probe(1))== -1)
posmin = sort([posmin dxoposf(ko)]);
elseif (sign(probe(1))*sign(probe(lxo)) == -1) &&...
(sign(probe(1))== 1)
posmax = sort([posmax dxoposf(ko)]);
else
clear xo_ext
end
end
elseif (ldxopos == 1)
if (dxopos == 1 && sign(dx(2)) == 1)
posmin = [2 posmin];
elseif (dxopos == 1 && sign(dx(2)) == -1)
posmax = [2 posmax];
elseif (dxopos == n-1 && sign(dx(n-2)) == 1)
posmin = [posmin n-1];
elseif (dxopos == n-1 && sign(dx(n-2)) == -1)
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posmax = [posmax n-1];

elseif (sign(dx(dxopos-1))*sign(dx(dxopos+1)) == -1) &&...
(sign(dx(dxopos+1)) == 1)
posmin = sort([posmin dxopos]);
elseif (sign(dx(dxopos-1))*sign(dx(dxopos+1)) == -1) &&...
(sign(dx(dxopos+1)) == -1)
posmax = sort([posmax dxopos]);
end
end
end %end dx ==

I I B T e L o o
%removing riding waves

posex = sort([posmin,posmax]);

dposex = diff(posex);
deltan = 3;
if any(dposex <= deltan)
dposexo = find(dposex <= deltan);
lposrw = length(dposexo);
for krw = 1:1lposrw-1
posexkl = posex(dposexo(krw));
posexk2 = posex(dposexo(krw)+1);
dxb = dx(posexki-1);
dxa = dx(posexk?2);
if (dxb*dxa >= 0)
indinf = max((posexkl-deltan),1);

indsup = min((posexk2+deltan),n);
if ((max([x(posexkl),x(posexk2)]) < max(x(indinf:indsup))) &&...
(min([x(posexkl) ,x(posexk2)]) > min(x(indinf:indsup))))

posmax (posmax == posexkl) = [];
posmax (posmax == posexk2) = [];
posmin(posmin == posexkl) = [];
posmin(posmin == posexk2) = [];

end
end
end
end
posex = sort([posmin,posmax]);
dposex = diff(posex);
dposexo = find(dposex == 1);
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lposrw = length(dposexo);

while lposrw > O

end

R e o B B o R

posexkl = posex(dposexo(1));
posexk2 = posex(dposexo(1)+1);

posmax (posmax == posexkl) = [];
posmax (posmax == posexk2) = [];
posmin(posmin == posexkl) = [];
posmin(posmin == posexk2) = [];

posex = sort([posmin,posmax]);
dposex = diff (posex);

dposexo = find(dposex == 1);
lposrw = length(dposexo);

/nmax and nmin must differ by at most 1

posex = sort([posmin,posmax]);

nex

for

= length(posex);
kex = 1l:nex-1
posextrl = posex(kex);

posextr2 = posex(kex+1);

indexmaxl = find(posmax == posextrl);
indexmax2 = find(posmax == posextr2);
indexminl = find(posmin == posextrl);
indexmin2 = find(posmin == posextr2);

if length([indexmaxl,indexmax2]) ==
%’2 CONSECUTIVE MAXIMA’
if x(posextrl) > x(posextr2)
posmax (indexmax2) = [];
else
posmax (indexmax1) = [];

end

elseif length([indexminl,indexmin2]) ==

%’2 CONSECUTIVE MINIMA’
if x(posextrl) < x(posextr2)
posmin(indexmin2) = [];
else
posmin(indexminl) = [];
end

end
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end

A e o B B B L oy o A
posex = sort([posmin,posmax]);

nex = length(posex);

for kex = 1:nex-1

posextrl = posex(kex);

posextr2 = posex(kex+1);

indexmaxl = find(posmax == posextrl);
indexmax2 = find(posmax == posextr2);
indexminl = find(posmin == posextrl);
indexmin2 = find(posmin == posextr2);

if length([indexmax1,indexmax2]) ==
%’2 MAXIMA CONSECUTIFS’
if x(posextrl) > x(posextr2)

posmax (indexmax2) = [];
else
posmax (indexmaxl) = [];
end
elseif length([indexminl,indexmin2]) == 2

%’2 MINIMA CONSECUTIFS’
if x(posextrl) < x(posextr2)
[1;

posmin(indexmin2)

else

posmin(indexminl) 1;
end
end
end
o B e o T S o S S
end
ne = length(posmax)+length(posmin);

[envmin,envmax] = envelinterp(posmin,posmax,x,t,n,ne);

%extrema method

posex = sort([posmin,posmax]);
dn_locper = diff(posex);
dn_locper(dn_locper < 4) = 4;
rough_if = pi/(mean(dn_locper)+0.01);
x_rif = posex(l:end-1)+dn_locper/2;

if_locper = pi./dn_locper;
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if any(x_rif == n)
x_rif(x_rif == n) = [1; %#ok<NASGU>
1_rif = length(x_rif);
if_locper = if_locper(1l:1_rif);

x_rif = [1,x_rif,n];

if_em = interpl(x_rif, [rough_if,if locper,rough_if], (t+1),’spline’);

function [envmin,envmax] = envelinterp(posmin,posmax,x,t,n,ne)
methint = ’spline’;%Cubic spline interpolation
lmin = length(posmin) ;
lmax = length(posmax);
kex = 0;
if (ne > 2 )
%make sure that all the data all between the two enveloppes
while (Imin "= 0 || 1lmax "= 0) && (kex < 10)
%check errors in extrema vectors used for interpolation

[posmin,posmax] = check_ext(posmin,posmax,t,n);

posminp = [t(1) t(posmin) t(n)];

posmaxp = [t(1) t(posmax) t(n)];
xmin = x(posmin);
xminp = [xmin(1) xmin xmin(length(posmin))];
xmax = x(posmax) ;
xmaxp = [xmax(1) xmax xmax(length(posmax))];
%interpolation
envmin = interpl(posminp,xminp,t,methint);
envmax = interpl(posmaxp,xmaxp,t,methint);
kex = kex+1;

end

else
envmin = x;

envmax = X;

function [posmin,posmax] = check_ext(posmin,posmax,t,n)
%check that there is no position gathered several times

dvmin = diff (posmin);
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dvmax = diff (posmax);
if (any(dvmin == 0))
posmin(dvmin == 0) = [];
posmin = sort(posmin) ;
else
posmin = sort(posmin) ;
end
clear pos;
if (any(dvmax == 0))
posmax (dvmax == 0) = [];
posmax = sort(posmax) ;
else
posmax = sort(posmax) ;
end
clear pos;
%check there is no position 1, t(1), t(n) or n already mentioned
if (any(posmin == 1)) || (any(posmin == t(1))) || (any(posmin == n)) ||...
(any(posmin == t(n)))

posl = find(posmin == 1);
pos2 = find(posmin == t(1));
pos3 = find(posmin == n);
pos4 = find(posmin == t(n));

pos = [posl pos2 pos3 pos4];
posmin(pos) = [];
clear posl pos2 pos3 pos4 pos;
end
clear pos;
if (any(posmax == 1)) || (any(posmax == t(1))) || (any(posmax == n)) ||...
(any (posmax == t(n)))

posl = find(posmax == 1);
pos2 = find(posmax == t(1));
pos3 = find(posmax == n);

pos4 = find(posmax == t(n));
pos = [posl pos2 pos3 pos4];
posmax(pos) = [1;

clear posl pos2 pos3 pos4 pos;



function valid_env = define_envmodul (env,threshold)

%discard parts of voxels where phase cannot be accurately extracted.
modul_envl = (env < threshold);

modul_envl = [0,modul_env1,0];

postot = find(abs(diff(modul_envl)) == 1);

posp = find(diff (modul_envl) == 1);

posm = find(diff (modul_envl) == -1);

nint = length(posp);

if nint < 2
modul_env2 = modul_envi;
else
modul_env2 = modul_envil;
lengthint = diff(postot);
for k = 1:nint-1
if lengthint(2*k) < 20
modul_env2(posm(k) :posp(k+1)) = 1;
end
end

end

postot = find(abs(diff(modul_env2)) == 1);
posp = find(diff (modul_env2) == 1);

posm = find(diff (modul_env2) == -1);
length(posp);

diff (postot);

nint

lengthint

o

if nint >
for k

if lengthint(2xk-1) < 10
modul_env2(posp (k) :posm(k)) = 0;

1:nint

end
end
end

valid_env = modul_env2;
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