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Abstract

In periodic scheduling jobs arrive regularly and have to be executed on one or several ma-
chines or processors. An enormous amount of literature has been published on this topic,
e.g. the founding work of Liu & Layland [LL73] is among the top cited computer science
papers, according to Citeseer database. The majority of these papers is mainly con-
cerned about practical applications and several important theoretical questions remained
unsolved.

Let S be a set of periodic tasks, where each task τ ∈ S releases a job of running
time c(τ) and relative deadline d(τ) at each integer multiple of its period p(τ). In
the single-processor scheduling one considers rules like Earliest-Deadline-First (EDF)
or Rate-monotonic (RM) scheduling, that determine the order, in which the jobs have
to be processed. The principal question here is to predict, whether such a schedule is
feasible, i.e. whether all jobs are finished before their individual deadlines.

It was well-known that to validate the feasibility of an EDF-schedule, one has to
evaluate the condition

∀t ≥ 0 :
∑

τ∈S
max

{(⌊
t − d(τ)

p(τ)

⌋

+ 1

)

, 0

}

· c(τ) ≤ t.

But the complexity status of this test remained unknown, despite of many heuristic
approaches in the literature. We prove that testing this condition is coNP-hard even in
special cases, answering an open question of Baruah & Pruhs [BP09].

For a static-priority schedule of implicit-deadline tasks, i.e. d(τ) = p(τ), it is known
that the jobs of a task τ will meet their deadlines if and only if there exists a fix-point
r ∈ [0, p(τ)] of the equation

c(τ) +
∑

τ ′≺τ

⌈
r

p(τ ′)

⌉

· c(τ ′) = r,

where the sum ranges over all tasks with priority higher than τ . We settle the com-
plexity status of this problem by proving its NP-hardness, even if one asks for modest
approximations.

Both results are achieved by bridging the more practically oriented area of Real-time
scheduling and the field of algorithmic number theory. In fact, the intractability follows
by a chain of reductions to simultaneous Diophantine approximation (SDA), which is a
classical problem in the geometry of numbers and deals with finding a small denominator
Q ∈ {1, . . . , N}, that yields a good approximation to a given vector of rational numbers
α ∈ Qn, i.e. maxi=1,...,n |Qαi − ⌈Qαi⌋| ≤ ε. We strengthen existing hardness results
for SDA such that they admit intractability results also for a directed version, where
the goal is to find a Q ∈ {1, . . . , N} with maxi=1,...,n(⌈Qαi⌉ − Qαi) ≤ ε. We show that
this problem remains NP-hard if one asks for an approximation that may exceed the
bound N by a factor of nO(1/ log log n) and the error bound ε by 2nO(1)

. As an applica-
tion we are able to answer an open question of Conforti et al. [CSW08] negatively by
obtaining NP-hardness for the problem of optimizing a linear function over a mixing set
{(s, y) ∈ R≥0 × Zn | s + ai yi ≥ bi ∀i = 1, . . . , n}. Furthermore we obtain that, regardless
to the used ‖ · ‖p-norm, the problem of finding a shortest positive vector in a lattice is
not approximable within a factor of nO(1/ log log n), unless NP = P.
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For scheduling constrained-deadline tasks (i.e. d(τ) ≤ p(τ)) with a static-priority
policy one possibly needs machines, which are a factor f > 1 faster than it is needed for
the EDF policy. Baruah & Burns [BB08] sandwiched this factor between 1.5 and 2. We
pinpoint this value to f = 1/Ω ≈ 1.76 by characterizing the properties of task systems,
which attain this value. Here, Ω ≈ 0.56 is a well known constant from complex calculus,
defined as real root of x · ex = 1.

We further consider a multiprocessor setting, where a given set of tasks has to be
assigned to machines, such that each partition is RM-schedulable and the number of
occupied processors is minimized. For the popular case that the tasks are equipped with
implicit-deadlines, i.e. d(τ) = p(τ), we develop new algorithms as well as intractability
results:

• We state an asymptotic PTAS under resource augmentation. This is achieved by
two concepts: First we derive that using a merging and clustering procedure, the
instance can be modified, such that the utilization of tasks is lowerbounded by
a constant, without excluding near-optimal solutions. Secondly, we introduce a
relaxed notion of feasibility, which yields a drastic reduction of complexity and
admits to compute solutions via dynamic programming.

• We introduce a simple First-Fit-like heuristic and obtain that this algorithm behaves
nearly optimal on average, by proving that the expected waste is upperbounded by
O(n3/4(log n)3/8), if the instance of n tasks is generated randomly. Here, we assume

that the utilization values c(τ)
p(τ)

of the tasks are drawn uniformly at random from

[0, 1].

• We state a new approximation algorithm with a running time of O(n3), which can
be sketched as follows: Create a graph with the tasks being the nodes and insert
edges, if both incident tasks can be scheduled together on a processor. Then define
suitable vertex costs and compute a min-cost matching, where the costs are the
sum of edge costs plus the vertex costs of not covered nodes. From such a matching
solution we can then extract a feasible multiprocessor schedule. The approximation
ratio of this algorithm can be proven to tend to 3/2, improving over the previously
best known ratio of 7/4 [BLOS95].

• We consider a column-based linear programming relaxation for this multiproces-
sor scheduling problem and derive that the asymptotic integrality gap is located
between 4/3 ≈ 1.33 and 1 + ln(2) ≈ 1.69.

• We disprove the existence of an asymptotic FPTAS, which yields that the problem
is strictly harder to approximate than its special case of Bin Packing.

Keywords: Scheduling, combinatorial optimization, geometry of numbers, approxi-
mation algorithms, complexity theory, inapproximability, periodic tasks, simultaneous
Diophantine approximation
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Zusammenfassung

Im periodischen Scheduling müssen regelmässig auftretende Jobs auf einer oder mehreren
Maschinen bzw. Prozessoren abgearbeitet werden. In der Literatur wurde diesem Thema
ein enormer Aufwand gewidmet, beispielsweise ist die grundlegende Arbeit von Liu &
Layland [LL73] eine der am meisten zitierten Informatik-Veröffentlichungen überhaupt
(siehe Citeseer-Datenbank). Die Mehrzahl dieser Arbeiten ist eher praktisch orientiert
und einige fundamentale theoretische Fragestellungen blieben unbeantwortet.

Sei S eine Menge von periodischen Tasks, wobei ein Task τ ∈ S zu jedem Vielfachen
seiner Periode p(τ) einen Job mit Ausführungszeit c(τ) und relativer Deadline d(τ) ge-
neriert. Beim Single-Processor Scheduling betrachtet man Regeln wie Earliest-Deadline-
First (EDF) oder Rate-monotonic (RM) Scheduling, welche die Reihenfolge angeben, in
der die Jobs ausgeführt werden sollen. Die wesentliche Problemstellung ist es vorherzu-
sagen, ob alle Jobs vor ihrer individuellen Deadline abgearbeitet werden.

Es ist seid langem bekannt, dass ein EDF-Schedule zulässig ist, genau dann wenn

∀t ≥ 0 :
∑

τ∈S
max

{(⌊
t − d(τ)

p(τ)

⌋

+ 1

)

, 0

}

· c(τ) ≤ t.

Trotz einer Vielzahl von heuristischen Ansätze in der Literatur, die das Testen dieser
Bedingung untersuchen, blieb eine komplexitätstheoretische Einordnung bislang aus. Wir
beweisen, dass das Testen der obigen Bedingung sogar in Spezialfällen coNP-schwierig
ist, was eine offene Frage von Baruah & Pruhs [BP09] beantwortet.

In einem Schedule von Tasks mit impliziten Deadlines, d.h. d(τ) = p(τ), mittels
statischer Prioritäten werden genau dann alle Jobs eines Tasks τ ihre Deadline einhalten,
wenn die Gleichung

c(τ) +
∑

τ ′≺τ

⌈
r

p(τ ′)

⌉

· c(τ ′) = r,

einen Fixpunkt r ∈ [0, p(τ)] aufweist, wobei über alle Tasks mit höherer Priorität sum-
miert wird. Wir sind in der Lage zu zeigen, dass dieses Problem sogar im Bezug auf eine
bescheidene Approximierbarkeit NP-schwierig ist.

Beide Resultate werden erreicht, indem wir eine Brücke zwischen dem eher prak-
tisch orientieren Bereich des Echtzeit-Scheduling und dem Feld der algorithmischen Zah-
lentheorie schlagen. Die Herleitung der komplexitätstheoretischen Schwierigkeit erfolgt
durch eine Kette von Reduktionen auf die simultane Diophantische Approximation, wel-
che ein klassisches Problem der Geometrie der Zahlen darstellt und sich damit befasst,
einen Zähler Q ∈ {1, . . . , N} zu finden, der einen gegebenen Vektor von rationalen Zah-
len α ∈ Qn gut approximiert, d.h. maxi=1,...,n |Qαi − ⌈Qαi⌋| ≤ ε. Wir verbessern be-
kannte Resultate für SDA derart, dass diese auch ein Nichtapproximierbarkeitsresultat
für eine gerichtete Variante ermöglicht, in welcher es das Ziel ist ein Q ∈ {1, . . . , N}
mit maxi=1,...,n(⌈Qαi⌉ − Qαi) ≤ ε zu finden. Wir beweisen, dass das Problem NP-
schwierig bleibt, sogar wenn die Schranke N um einen Faktor von nO(1/ log log n) and
die Fehlerschranke ε um einen Faktor von 2nO(1)

überschritten werden darf. Als Ne-
benprodukt können wir eine offene Frage von Conforti et al. [CSW08] beantworten, in
dem wir zeigen, dass das Optimieren einer linearen Zielfunktion über einer Mixing Set
{(s, y) ∈ R≥0 × Zn | s + ai yi ≥ bi ∀i = 1, . . . , n} NP-schwierig ist. Eine weitere Anwen-
dung besteht darin, dass unter der Annahme NP 6= P das Problem einen positiven Vektor
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in einem Gitter zu finden unabhängig von der verwendeten ‖ · ‖p-norm nicht innerhalb
eines Faktors von nO(1/ log log n) in Polynomialzeit zu approximieren ist.

Damit das Schedule von Constrained-Deadline Tasks (d.h. d(τ) ≤ p(τ)) mit statischen
Prioritätszuweisungen zulässig ist, benötigt man Maschinen, die im ungünstigsten Fall
einen Faktor f > 1 schneller sind, als dies für EDF-Scheduling notwendig wäre. Baruah
& Burns [BB08] zeigen, dass dieser Faktor zwischen 1.5 and 2 liegt. Wir sind in der Lage,
diese Konstante mit f = 1/Ω ≈ 1.76 exakt zu bestimmen, indem wir die Eigenschaften
von Tasksystemen beschreiben, bei denen dieser Wert angenommen wird. Dabei ist Ω ≈
0.56 eine aus der komplexen Analysis bekannte Konstante, welche als reelle Lösung von
x · ex = 1 definiert ist.

Wir betrachten auch Multi-Processor Scheduling, bei dem eine gegebene Menge von
Tasks auf Maschinen verteilt werden müssen, so dass das RM-Schedule von jedem Pro-
zessor zulässig ist und die Anzahl der benötigten Prozessoren minimiert wird. Für den
populären Fall, dass die Tasks implizite Deadlines haben, d.h. d(τ) = p(τ), entwickeln
wir neue Algorithmen sowie Komplexitätsresultate:

• Wir liefern ein asymptotisches PTAS unter Resource Augmentation. Dies erreichen
wir durch zwei Schlüsselkonzepte: Durch das Vereinen von Tasks können wir die
Eingabeinstanz so modifizieren, dass die Utilization jedes Tasks von unten durch
eine Konstante beschränkt ist, ohne dass dies fast-optimale Lösungen ausschliesst.
Dann relaxieren wir die Zulässigkeitsbedingung was eine drastische Reduktion des
Rechenaufwands zur Folge hat und uns erlaubt, Lösungen mit dynamischer Pro-
grammierung zu berechnen.

• Wir führen einen einfachen First-Fit-basierten Algorithmus ein und beweisen, dass
dieser Lösungen mit einem erwarteten Waste von höchstens O(n3/4(log n)3/8) liefert.

Dabei nehmen wir an, dass die Utilization c(τ)
p(τ)

zufällig aus [0, 1] gezogen wird.

• Wir präsentieren einen neuen Approximationalgorithmus mit einer Laufzeit von
O(n3), welchen man wie folgt skizzieren kann: Wir legen einen Graphen an, dessen
Knoten die Tasks sind und fügen Kanten ein, wenn das RM-Schedule der inzidenten
Tasks zulässig ist. Für geeignete Knoten- und Kantengewichte liefert ein Minimal-
kostenmatching in diesem Graphen eine Verteilung der Tasks, die einer asympto-
tischen 3/2-Approximation entspricht. Dies ist eine Verbesserung gegenüber der
bislang besten Approximationsgarantie von 7/4 [BLOS95].

• Wir betrachten die spaltenbasierte LP-Relaxierung und zeigen, dass der asymptoti-
sche Integrality Gap dieser Formulierung zwischen 4/3 ≈ 1.33 und 1 + ln(2) ≈ 1.69
liegt.

• Wir können zeigen, dass es unter Standardannahmen kein asymptotisches FPTAS
für dieses Problem geben kann, also Multiprocessor Scheduling echt schwerer zu
approximieren ist als sein Spezialfall Bin Packing.

Schlüsselworte: Scheduling, kombinatorische Optimierung, Geometrie der Zahlen,
Approximationsalgorithmen, Komplexitätstheorie, Nichtapproximierbarkeit, periodische
Tasks, simultane Diophantische Approximation
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Chapter 1

Introduction

“Cras legam1.”
—Gaius Iulius Caesar

Combinatorial Optimization deals with making an optimum choice among a finite number
of possible combinations. To give an example, for moving we usually need to pack all our
belongings into boxes, such that the boxes are not overpacked and the number of boxes
is minimized. Typically the number of combinations is astronomically large, hence even
the fastest existing computers would need billions of years to try out all possibilities. But
many problems are well-structured and sophisticated problem-based algorithms can find
optimal solutions in reasonable time, where in theoretical computer science one considers
a running time as acceptable, if it is bounded by a polynomial in the input size. Other
problems have been studied for decades, without admitting such an algorithm. On the
other hand no one has been able to disprove the existence of efficient algorithms for
the mentioned problems. The NP 6= P-conjecture says that, for the whole class of
so called NP-complete problems, there is no polynomial time algorithm. Consequently
researchers investigate approximation algorithms, which efficiently find solutions, whose
quality is within a provably small distance, say 10%, from the optimum value. As we will
see in this thesis, other problems forbid even modest approximations.

Among such combinatorial problems, we are studying periodic scheduling, where tasks
S = {τ1, . . . , τn} are given, which release jobs of running time c(τi) and relative deadline
d(τi) at each integer multiple of the period p(τi). We consider preemptive scheduling
policies, i.e. rules that determine the order, in which the jobs are processed. For example
the Earliest-Deadline-First policy executes at any time that job, whose deadline comes
next. Other rules assign fixed priorities to each task: for example, the Rate-monotonic
scheduling policy assigns higher priorities to tasks with smaller periods. If the jobs can
be processed by some rule, such that they meet their deadlines, then it is known that also
the EDF-policy produces a feasible order. In other words, EDF is an optimal scheduling
policy. For task systems with implicit deadlines, i.e. d(τ) = p(τ), the RM-policy yields
optimal static-priorities in the sense that if the schedule is infeasible, then it will be
infeasible for any assignment of fixed priorities.

The complexity status for deciding the feasibility of these schedules had remained an

1”I will read it tomorrow!”, announced by Gaius Iulius Caesar when a warning was passed to him
while being on the way to the senate on the 15th of March 44 BC.
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open problem since the initial studies decades ago. E.g., for the EDF-schedulability one
has to evaluate the condition

∀t ≥ 0 :
∑

τ∈S
max

{(⌊
t − d(τ)

p(τ)

⌋

+ 1

)

, 0

}

· c(τ) ≤ t,

which involves a single variable t and a floor operation. To obtain a hardness result,
one has show that given an oracle for testing the above condition, one could also solve
problems, for which efficient algorithms are unlikely to exist and consequently also the
initial problem must be hard to solve. But the only problem that shares at least slight
similarities and hence could serve as a starting point for a reduction is the so called
simultaneous Diophantine approximation problem, which deals with finding nominators
and a small common denominator such that the composed rational numbers do not differ
much from a given set of reals. This problem, lying in the field of algorithmic number
theory and the geometry of numbers, was already studied centuries ago by Dirichlet.

It can be considered as the central theme of this thesis, to apply results from the
fields of theoretical computer science and the geometry of numbers to practically relevant
problems in Real-time scheduling. We will see that as a kind of a by-product of this
bridging, we can answer the question of the complexity status of the mixing set problem
from the field of integer programming.

The second topic in this thesis is the multiprocessor setting, in which one asks to
assign a given set of tasks to a minimal number of machines. The reader might observe
that this goal bares some similarities with the above moving example, where the tasks
correspond to our items and the machines mimic the boxes. Applying techniques from
theoretical computer science and especially from the area of approximation algorithms
will lead to several fruitful algorithmic and intractability results.

Clearly restricting the scheduling policies to static-priority assignments may cause
that to achieve schedulability, processors are needed, which are a certain factor faster.
Finally we are able to exactly quantify this factor for the class of constrained-deadline
tasks, i.e. d(τ) ≤ p(τ).

Back to the cited epigraph, it seems that Caesar had assigned his priorities wrong —
with fatal consequences.

1.1 Outline

Next, we briefly outline the content of the different chapters. Roughly spoken the first
part (Chapter 2 to 6) of this thesis deals with algorithmic results, while the second part
(Chapter 7 to 10) yields negative results, thus deals with inapproximability.

• Chapter 2: We begin with describing basic terms and concepts in scheduling,
focusing on the theory of Real-time scheduling.

• Chapter 3: We obtain an asymptotic PTAS under resource augmentation for
Rate-monotonic multiprocessor scheduling of implicit-deadline tasks. That means,
for any fixed ε > 0, we can assign the tasks in polynomial time among (1+ε)OPT +
O(1) many machines. Thereby the RM-schedule of the tasks on each processor is
feasible, if the speed of each machine may be increased by a factor of 1 + ε. This is

12



achieved by two concepts: First we derive that using a merging and clustering proce-
dure, the instance can be modified such that the utilization of tasks is lowerbounded
by a constant, without excluding near-optimal solutions. Secondly, we introduce
a relaxed notion of feasibility, which yields a drastic reduction of complexity and
admits to compute solutions via dynamic programming.

This chapter is a slight extension of the result of Eisenbrand & Rothvoß [ER08a].

• Chapter 4: We introduce a simple First-Fit-like algorithm for Rate-monotonic
multiprocessor scheduling of implicit-deadline tasks. We show that the algorithm
behaves nearly optimal on average, by proving that the expected waste is upper-
bounded by O(n3/4(log n)3/8) if the instance of n tasks is generated randomly. Here,

we assume that the utilization values c(τ)
p(τ)

of the tasks are drawn uniformly at ran-

dom from [0, 1]. This result is achieved by proving that the algorithm behaves better
than a specific restricted variant. The waste of this auxiliary algorithm can then
be bounded by a reduction to well-known results from the average-case analysis for
BinPacking. This reproduces Karrenbauer & Rothvoß [KR09].

• Chapter 5: We state a new approximation algorithm for Rate-monotonic multi-
processor scheduling of implicit-deadline tasks with a running time of O(n3), which
can be sketched as follows: Create a graph with the tasks being the nodes and
insert edges if both incident tasks can be scheduled together on a processor. Then
add suitable vertex costs and compute a min-cost matching. Here the cost is the
sum of edge costs plus the vertex costs of not covered nodes. From such a matching
solution we can then extract a feasible multiprocessor scheduling. The approxima-
tion ratio of this algorithm tends to 3/2, improving over the previously best known
ratio of 7/4 [BLOS95].

• Chapter 6: We consider a column-based linear programming relaxation for Rate-
monotonic multiprocessor scheduling of implicit-deadline tasks and derive that the
asymptotic integrality gap is located between 4/3 ≈ 1.33 and 1+ ln(2) ≈ 1.69. The
upper bound is obtained by a randomized rounding scheme.

• Chapter 7: The simultaneous Diophantine approximation (SDA) problem deals
with finding a small denominator Q ∈ {1, . . . , N}, which yields a good approxima-
tion to a given set of rational numbers α ∈ Qn, i.e. maxi=1,...,n |Qαi − ⌈Qαi⌋| ≤ ε.
We strengthen existing hardness results for SDA such that they admit intractabil-
ity result also for the directed version, where the goal is to find a Q ≤ N with
maxi=1,...,n(⌈Qαi⌉ − Qαi) ≤ ε. We obtain that this problem remains NP-hard
if one asks for an approximation that may exceed the bound N by a factor of
nO(1/ log log n) and the error bound ε by 2nO(1)

. As an application we are able
to answer an open question of Conforti et al. [CSW08] negatively by obtaining
NP-hardness for the problem of optimizing a linear function over a mixing set
{(s, y) ∈ R≥0 × Zn | s + ai yi ≥ bi}. As a by-product we obtain that, regardless to
the used ‖ · ‖p-norm, the problem of finding a shortest positive vector in a lattice is
not approximable within a factor of nO(1/ log log n), unless NP = P.

The chapter follows mainly Eisenbrand & Rothvoß [ER09].
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• Chapter 8: In order to verify, that the Earliest-Deadline-First schedule of a set
S of constrained-deadline tasks is feasible, one has to determine whether

∑

τ∈S

(⌊
t − d(τ)

p(τ)

⌋

+ 1

)

· c(τ) ≤ t

holds for all t ≥ 0. Based on results from the previous chapter we derive that
testing this condition is coNP-hard. This solves Problem 2 from the list of Open
Problems in Real-time Scheduling [BP09].

Secondly, to test, whether all jobs of an implicit-deadline task τ w.r.t. a static-
priority schedule meet their deadline, one has to compute a minimum solution
r ≥ 0 of the equation

c(τ) +
∑

τ ′≺τ

⌈
r

p(τ ′)

⌉

c(τ ′) = r,

where the sum ranges over the higher priority tasks. We obtain that this problem is
NP-hard. In fact, even approximating the smallest r up to a factor of nO(1/ log log n) is
intractable. The complexity status of both problems had remained open for decades.
The latter result is a strengthening of the paper of Eisenbrand & Rothvoß [ER08b].

• Chapter 9: By a reduction from 3-Partition, we can disprove the existence
of an asymptotic FPTAS for multiprocessor scheduling of implicit-deadline tasks,
unless NP = P. This yields the proof, that the problem is strictly harder than its
special case of BinPacking. The chapter follows Eisenbrand & Rothvoß [ER08a].

• Chapter 10: For scheduling constrained-deadline tasks with a static-priority pol-
icy one possibly needs machines, which are a factor f > 1 faster than it is needed for
the Earliest-Deadline-First policy. Baruah & Burns [BB08] sandwiched this factor
between 1.5 and 2. We pinpoint this constant to f = 1/Ω ≈ 1.76 by characterizing
the properties of task systems, which attain this value. Here Ω ≈ 0.56 is a well
known constant from complex calculus. The content of this chapter is borrowed
from Davis, Rothvoß, Baruah & Burns [DRBB09].

14



Part I

Algorithmic Results

15





Chapter 2

Preliminaries

2.1 The basics of scheduling

Suppose that a single processor (or machine) is available to us and we have jobs J1, . . . , Jm

that have to be executed on the machine, whereby at any time t the machine can process
at most one job, which is then called the active job w.r.t. t. Each job has a running time,
a release time (a.k.a. arrival time) and a deadline, at which the job must be completed.
In a preemptive schedule a job may be interrupted at any time − and resumed later.
Thereby the work, which has already been done is not lost, thus we do not have to
process the full job again. In contrast, in non-preemptive scheduling once that a job
is active, it cannot be interrupted before it is completed. As the name suggests, the
completion time is that time, when the job is finished. The response time of a job is the
difference of completion time and release time.

release time deadline

response time

completion time

running time

J J J time

Figure 2.1: Processed job J is preempted twice.

In general settings there might be precedence constraints, where for all jobs J there
is a (possibly empty) list of jobs, which have to be finished before J may be processed.
However we will not consider such constraints here.

A task τ is a finite or infinite sequence of jobs. Throughout this thesis we will consider
the periodic task model in which each task τ releases a job with execution time c(τ) and
(relative) deadline d(τ) every p(τ) time units, where p(τ) is termed the period of the task.
We assume that the tasks are synchronous, i.e. there is a time, say 0, at which all tasks
release a job simultaneously. In other words for each z ∈ Z≥0, a job of running time c(τ)
and absolute deadline z · p(τ) + d(τ) is released at z · p(τ).
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In many settings, the deadlines are equal to the periods, i.e. we have implicit deadlines
d(τ) = p(τ) for all tasks τ . If at least d(τ) ≤ p(τ) holds for all tasks, one speaks
about constrained deadlines. The tasks have arbitrary deadlines (sometimes called explicit
deadlines) if no such restriction holds.

A schedule (or scheduling policy) is an algorithm A that decides, in which order the
jobs are processed. If all jobs meet their deadlines in the schedule defined by A, then
the jobs are called A-schedulable. If all task systems that are schedulable with some
policy, are also A-schedulable, then A is termed an optimal scheduling policy. In many
applications the scheduler runs on a machine with few computation power like in a mobile
or a car. Consequently one prefers simple scheduling algorithms, like Earliest-Deadline-
First (EDF), where always that task is active, whose deadline comes next. Or we might
assign priorities to the tasks so that at any time, we consider the queue of arrived but
not yet finished jobs and choose that job, whose task has the highest priority, to be the
active job. Since we want to compute the priorities in advance and are not willing to
change them during time, we call this a fixed-priority (or static-priority) schedule. We
should note that we will only consider preemptive scheduling, thus whenever a job of
higher priority arrives, we would immediately stop a lower priority job in favour of the
higher priority task.

EDF is an optimal dynamic priority scheduling policy for all considered periodic task
model, see Dertouzos [Der74]. On the other hand if we are restricted to static priori-
ties, for implicit-deadline tasks the Rate-monotonic (RM) scheduling policy is optimal
(Liu & Layland [LL73]), in which the priority is higher, the smaller the periods are, i.e.
the priority of τ is 1/p(τ) (ties broken arbitrarily, but fixed). The Deadline-monotonic
(DM) schedule, which assigns priority 1/d(τ) to τ is optimal for constrained-deadline
task systems [LW82]. Also in case of arbitrary deadlines, optimal priorities can be com-
puted [Leh90].

The response time of a task τ (w.r.t. to a given schedule) is defined as the longest
time, which ever elapses between arrival and accomplishment of a job of τ . In other words
it is the supremum of the response times of all its jobs. The job (or instance) of τ , where
the response time of the task is attained is called the critical job. Of course a schedule
is feasible if and only if for each task, the response time does not exceed the deadline.

The following table gives an overview over optimal scheduling policies.

optimal complexity of
Setting scheduler feasibility test

implicit-deadline & static-priority RM ?
& dynamic-priority EDF polynomial

constrained-deadline & static-priority DM ?
& dynamic-priority EDF NP-hard

arbitrary-deadline & static-priority [Leh90] ?
& dynamic-priority EDF NP-hard

In the cases where the complexity status of the schedulability test is unknown, we
are able to prove in Chapter 8 that computing the response time of a task is NP-hard,
yielding a strong hint that the feasibility test itself is intractable.

In the asynchrounous setting, each task τ is additionally equipped with an offset a(τ),
thus jobs are released at time z · p(τ) + a(τ) for all z ∈ N0, see [BG04] for an overview.
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But we will not consider asynchronous tasks in this thesis.
In the sporadic task model neither release times nor running times are predetermined.

There, c(τ) denotes the worst-case execution time and p(τ) denotes the minimum inter-
arrival time. See Figure 2.2 for a visualization. But for the considered schedules, the
worst-case is attained in a synchronous arrival sequence, that is when all tasks release
jobs at time 0, all jobs fully use the worst-case execution time c(τ) and jobs arrive as
early as permissible, see Baruah, Mok & Rosier [BMR90]. In other words, the sporadic
task system is schedulable if and only if this is true for the corresponding periodic task
system.

≥ p(τ) ≥ p(τ)

≤ c(τ) ≤ c(τ)

Ji Ji+1 Ji+2 time

Figure 2.2: Jobs of a sporadic task τ , scheduled alone on a processor.

If a task system S is scheduled on a processor with non-unit speed β > 0, this
corresponds to a schedule of a modified task system S ′ on a unit-speed processor. Here
S ′ emerges from S by dividing the running times of all tasks by β or alternatively by
multiplying all periods and deadlines by β.

For multiprocessor scheduling we have to distribute jobs (or tasks) among as few
processors as possible, such that the jobs assigned to each processor are schedulable w.r.t.
the given scheduling policy. For the sake of completeness we should mention that another
popular variant is that the number of processors is fixed and one has to minimize the
makespan (i.e. maximum completion time) or the (weighted) sum of completion times or
response times. Such situations may be made even more complicated by different speed
of processors, precedence constraints, enforcing or forbidding jobs to be processed on the
same processor and so on and so forth. In view of the diversity of possible combinations
and the fact that the Handbook of Scheduling [Leu04] has more than 1200 pages, the
reader will understand, why we restrict ourselves to a specific scheduling problem.

2.2 RM-scheduling of implicit-deadline tasks

In this thesis we will mainly focus on Rate-monotonic scheduling of implicit-deadline
tasks, which was introduced in 1973 by Liu & Layland [LL73]. Recall that we deal
with tasks S = {τ1, . . . , τn}, which we write abbreviated as τi = (c(τi), p(τi)), since
d(τi) = p(τi). Each such task τi generates a job of running time c(τi) with release time
z ·p(τi) and absolute deadline (z +1) ·p(τi) for all z ∈ Z≥0. If all jobs of task τ meet their
deadlines in a RM-schedule, we say that τ is feasible w.r.t. S. If all tasks are feasible,
then S is called RM-schedulable or simply feasible. See Figure 2.3 for an example.

Since we already know the optimal priority assignments, the question, which naturally
comes to our mind is, how to verify that the obtained schedule is indeed feasible; thus
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c(τ1) = 1
p(τ1) = 2

c(τ2) = 2
p(τ2) = 5

b b b

time0 1 2 3 4 5 6 7 8 9 10

Figure 2.3: RM-schedule of an implicit-deadline task system τ1 = (1, 2), τ2 = (2, 5). The
arrows in the figure indicate the release times of the jobs. τ1 has higher priority than τ2.
Consequently the first job of τ2 is interrupted by τ1 at time 2 and continues at time 3.
Observe that lcm(p(τ1), p(τ2)) = 10, thus the schedule repeats periodically and all jobs
meet their deadlines.

the infinite number of jobs always meet their deadlines.
Let us define r(τ) to be the response time of task τ , i.e. it is the longest time,

which ever elapses between arrival and accomplishment of a job of τ . Consider again
Figure 2.3, then we have r(τ1) = c(τ1) = 1, since jobs of τ1 have the highest priority.
On the other hand the first job of τ2 needs 4 time units and the second one 3, thus
r(τ2) = 4. These values are very useful, since clearly the schedule is feasible if and
only if ∀τ ∈ S : r(τ) ≤ p(τ). Consequently verifying feasibility may be reduced to
finding response times. Let us denote τi ≺ τj if τi has higher priority than τj . Thus
p(τ1) < . . . < p(τn) implies τ1 ≺ . . . ≺ τn.

Since in this setting it is always the first job, which defines the response time [LL73],
r(τ) is the smallest fix-point of the response time function [LSD89]

Dτ,S(r) = c(τ) +
∑

τ ′≺τ

⌈
r

p(τ ′)

⌉

· c(τ ′). (2.1)

The reason for this is as follows: In the interval [0, r(τ)] one job of τ is executed, taking

c(τ) time units and each task τ ′ with higher priority than τ , is processed exactly ⌈ r(τ)
p(τ ′)

⌉
many times in the interval, consuming c(τ ′) time units for each execution.

Applying this to the task system from Figure 2.3, we obtain r(τ2) = 4 as the smallest
fix-point of

r(τ2) = c(τ2) +

⌈
r(τ2)

p(τ1)

⌉

· c(τ1) = 2 +

⌈
r(τ2)

2

⌉

,

which matches the value, that we already came up with. To become more familiar with
function Dτ,S , let us consider the former example of tasks τ1 = (1, 2), τ2 = (2, 5) and add
one more tasks τ3 = (1/2, 12). We wonder, whether the RM-schedule will be still feasible.
Since τ3 gets the lowest priority, all jobs of τ1 and τ2 will still meet their deadlines. To
see, whether τ3 is feasible, let us inspect its response time function

Dτ3,S(r) =
1

2
+
⌈r

2

⌉

· 1 +
⌈r

5

⌉

· 2,
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⌈
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5

⌉
· 2.

depicted in Figure 2.4. We observe that r(τ3) = 9.5 ≤ 12 = p(τ3), thus τ3 will meet
the deadlines. Note that Dτ,S(r) is monotonically increasing, thus from Dτ,S(r) ≤ r, we
can derive that there must be a fix point ”before” r, formally r(τ) ≤ r. Furthermore a
vector of response times r(τ) for τ ∈ S can serve as a certificate for feasibility of the task
system, since we can efficiently check whether indeed Dτ,S(r(τ)) ≤ r(τ). We do not have
to verify that these values are the smallest fix-points.

But in Chapter 8 we will derive that even approximating response times is NP-hard.
For n = 2 there is a simple exact schedulability criterion (cf. [Leu04]): The task set
{τ1, τ2} with p(τ1) ≤ p(τ2) is RM-schedulable if and only if

c(τ2) ≤
⌊

p(τ2)

p(τ1)

⌋

(p(τ1) − c(τ1)) + max

{

0, p(τ2) −
⌊

p(τ2)

p(τ1)

⌋

p(τ1) − c(τ1)

}

.

This constant time test will be used in our matching based algorithm in Chapter 5.
Note that for all constant n the response times can be computed in polynomial time by
Lenstra’s algorithm for integer programming in fixed dimension [Len83].

For general n, Baruah & Fisher [FB05] obtained an FPTAS for approximating the
processor speed, from which on the task system is RM-schedulable. To understand their
result we again inspect the response time function for a task τ w.r.t. a task set S

Dτ,S(r) = c(τ) +
∑

τ ′≺τ

⌈
r

p(τ ′)

⌉

· c(τ ′).

The idea is now to replace the roundup operation, applied to r/p(τ ′) by a +1 as soon as
the fraction exceeds 1/ε for an error parameter ε > 0. Thus for

δ(r, τ ′) =

{

⌈r/p(τ ′)⌉ if r/p(τ ′) ≤ 1/ε

r/p(τ ′) + 1 otherwise
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Figure 2.5: Piecewise linear approximation D′
τ3,S(r) (in black) w.r.t. the response time

function Dτ3,S(r) (in gray) for τ1 = (1, 2), τ2 = (2, 5), τ3 = (1/2, 12) and ε = 1/3. The
bisecting line is drawn dashed. The approximate test fails to certify the feasibility of τ3.

we define a function

D′
τ,S(r) = c(τ) +

∑

τ ′≺τ

δ(r, τ ′) · c(τ ′),

which is dominating the response time function, but never exceeds it by a factor of more
than 1 + ε, i.e. D′

τ,S(r)/(1 + ε) ≤ Dτ,S(r) ≤ D′
τ,S(r) for all r ≥ 0. Furthermore the

dominating function D′
τ,S is piecewise linear with O(n/ε) many different line segments,

thus the smallest intersection with the bisecting line can be easily computed in polynomial
time. We obtain a test, which yields no if S is not feasible and yes if the set is feasible
even after the running times are multiplied by 1 + ε. However for task sets, that are
barely feasible, the test might fail. Figure 2.5 shows an example.

A very useful quantity is the utilization u(τ) = c(τ)
p(τ)

, denoting the average fraction

of processor cycles, which are used for τ . We further define u(S) =
∑

τ∈S u(τ) as the
utilization of the whole task system. It is not difficult to see that if u(S) > 1, the
system cannot be schedulable on a single processor. On the other hand a system should
be schedulable if the utilization is not too large. And in fact, Liu & Layland [LL73]
have shown that if u(S) ≤ n · ( n

√
2 − 1) then S is RM-schedulable. This quantity is

monotonically decreasing in n and tends to ln(2) ≈ 0.69, see Figure 2.6.

However, this test is sufficient, but not necessary as the example from Figure 2.3 with
a utilization of u({τ1, τ2}) = 90% shows. The hyperbolic test of Bini et al. [BBB01] (see
also [Liu00]) guarantees feasibility for S if

∏

τ∈S
(1 + u(τ)) ≤ 2

Taking the logarithm on both sides and using that ln(1 + x) < x for x > 0 we see that
this test is strictly more accurate than that of [LL73], but still not necessary.
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Figure 2.6: Visualisation of the Liu & Layland utilization bound

To obtain better criteria we need to incorporate also the relationship of the periods,
since the result of Liu and Layland is tight in the sense, that for any n ∈ N and ε > 0,
there is a task system consisting of n tasks with total utilization n · ( n

√
2 − 1) + ε, which

is not RM-schedulable.
Suppose for example that all periods were pairwise divisible. We want to derive a

condition, when a task τ is then feasible. Consider the response time function, divided
by p(τ). We claim that p(τ) is a certificate for feasibility of τ . Then

Dτ,S(p(τ))

p(τ)
=

c(τ)

p(τ)
+
∑

τ ′≺τ

⌈
p(τ)

p(τ ′)

⌉

· c(τ ′)

p(τ)
= u(τ) +

∑

τ ′≺τ

u(τ ′) ≤ u(S). (2.2)

using that p(τ ′) | p(τ). We see that S must be feasible if the utilization is bounded by 1
− the best we can hope for. It seems natural to hope for similar, possibly weaker results
in case that the periods are nearly multiples of each other.

Thus define
α(τ) = log2 p(τ) − ⌊log2 p(τ)⌋

and
β(S) = max

τ∈S
α(τ) − min

τ∈S
α(τ).

for a set of tasks S. Clearly 0 ≤ α(τ) < 1. Furthermore the smaller β(S) is, the closer are
the periods to be multiples of each other. Note that the reverse does not necessarily hold,
since for tasks τ1, τ2 with p(τ1) = 2 and p(τ2) = 2−ε, one has β({τ1, τ2}) = log2(2−ε) ≈ 1.
On the other hand scaling the periods and running times decreases the β-value to almost
0, while not affecting the feasibility itself.

We now want to cite the following useful result from Burchard et al. [BLOS95] (see
also [Leu04]).

Theorem 2.1 ([BLOS95]). Given an implicit-deadline task system S, let β := β(S) =
maxτ∈S α(τ) − minτ∈S α(τ). Then

1. S is RM-schedulable if

u(S) ≤ gn(β) :=

{

(n − 1)(2β/(n−1) − 1) + 21−β − 1 if β < 1 − 1
n

n(21/n − 1) else

23



0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

β

g2(β)

g3(β)

β ln(2) + 21−β − 1bln(2)

1 − ln(2)β

Figure 2.7: Utilization bounds for Burchard et al.’s feasibility criterion.

2. S is RM-schedulable if
u(S) ≤ β ln(2) + 21−β − 1

3. S is RM-schedulable if
u(S) ≤ 1 − β ln(2)

Thereby (2) follows by taking the limit for n → ∞ of (1). Condition (3) is then a
linear approximation to (2) for β = 0. These sufficient bounds on the utilization are
visualized in Figure 2.7.

Note that even the best bound in Theorem 2.1 is not necessary for feasibility.

2.3 Multiprocessor scheduling

Again we consider RM-schedules for implicit-deadline tasks. The challenging goal here
is: Given a set of tasks, distribute them on as few processors as possible.

Rate-monotonic Multiprocessor Scheduling (MulSched)
Given: A set S = {τ1, . . . , τn} of periodic tasks τi = (c(τi), p(τi)) with
implicit deadlines.
Find: Partition S = S1 ∪ . . . ∪ Sk s.t. each Si is RM-schedulable and
k is minimized.

For the sake of completeness note that

Definition 1. Let ρ ≥ 1. For a minimization problem L, A is called a ρ-approximation
algorithm if it has polynomial running time and

AL(I) ≤ ρ · OPTL(I)

for all instances I. Here, OPTL(I) gives the value of an optimum solution for instance
I and AL(I) denotes the value of the solution, obtained by algorithm A.
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We will omit L and I, if the problem and the instance, respectively, are clear from
the context.

Definition 2. For a minimization problem L, A is called an asymptotic ρ-approximation
algorithm, if A is a polynomial time algorithm, such that

lim
k→∞

sup
I:OPTL(I)≥k

{
AL(I)

OPTL(I)

}

≤ ρ.

For example, an algorithm obtaining solutions of cost at most 2 · OPT +
√

OPT + 4
is an asymptotic 2-approximation algorithm.

Till now most MulSched algorithms work similar to simple BinPacking heuristics
(see also Section 2.4): They sort tasks w.r.t. a specific criterion and then distribute them
either in a First Fit or in a Next Fit manner, using a sufficient feasibility test. Here, Next
Fit manner, means an active processor is maintained and incoming tasks are assigned to
it, until the feasibility criterion fails. Then a new processor is opened. Old processor are
never considered again. Such algorithms have the advantage, that they are very simple
– at the expense of the quality, i.e. the number of processor. For First Fit, tasks are
assigned to the first processor, on which they fit, according to the feasibility criterion.
Here, the first processor is that one with the smallest index. The following table gives
an overview over popular algorithms from the literature, see [Dha04].

Name sorting distribution ratio run time
RMNF inc. periods Next Fit 2.67 O(n log n)
RMFF inc. periods First Fit 2.00 O(n log n)
FFDU dec. utilization First Fit 2.00 O(n log n)
RMST inc. α(τ) Next Fit 1

1−maxτ∈S u(τ)
O(n log n)

RMGT - First Fit+RMST 1.75 O(n2)
FFMP inc. α(τ) First Fit 2.00 O(n log n)
RMMatching - matching+FFMP 1.50 O(n3)

For the sake of comparison, we list two algorithms FFMP and RMMatching in the last
rows, which we are going to introduce in Chapters 4 and 5. The ratio column gives
the bound on the asymptotic approximation ratio. The Rate-monotonic general task
algorithm distributes tasks with utilization at most 1/3 using RMST and the rest separately
with First Fit. A more detailed description can be found in [Leu04]. One observes that
RMST is nearly optimal for tasks with small utilization. The used sorting principle will be
useful for us in Chapter 4.

2.4 Bin Packing

Suppose we are given an instance S of implicit-deadline tasks and all periods were pairwise
divisible, then S would be RM-schedulable on a single processor if and only if u(S) ≤ 1.
This condition reminds us of the famous BinPacking problem.

BinPacking
Given: A set of items I = {1, . . . , n} with item sizes ai ∈ [0, 1]
Find: Partition of I into bins I1, . . . , Ik such that

∑

i∈Ij
ai ≤ 1 for all

j and k is minimized.
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Let us denote size(I) =
∑

i∈I ai, then we see that BinPacking is a special case of
MulSched, where each item i corresponds to a task, whose utilization equals the size
ai.

Three classical algorithms for BinPacking are FirstFit, NextFit and BestFit, see
Johnson [Joh73]. In each algorithm one starts with empty bins and distributes the items
consecutively.

• FirstFit: Assign the current item to the first bin (i.e. that one with a minimal
index), having enough space.

• NextFit: Maintain an active bin. Assign the current item to the active bin if
possible, otherwise assign it to an empty bin and let this bin be the active one.

• BestFit: Assign the current item to the fullest bin with enough space.

NextFit gives a 2-approximation since two consecutive bins must have a total size of
at least 1. FirstFit produces solutions with not more than 1.7 ·OPT +1 bins [JDU+74].
If items are initially sorted w.r.t. their sizes in non-decreasing order, FirstFit even needs
only 11

9
OPT + 6

9
bins [Dós07]. This algorithm is called FirstFitDecreasing [JDU+74].

BestFitDecreasing gives the same asymptotic ratio of 11
9
. More on BinPacking results

can be found in the excellent survey of Coffman, Garey & Johnson [CGJ84].
The question whether 2 bins suffice or 3 are needed, is exactly the so called Partition

problem, which is weakly NP-hard [Joh92, Weg05], but solvable via dynamic program-
ming in pseudo-polynomial time.

Partition
Given: A multi-set of numbers a1, . . . , an.
Decide: Is there a partition I1∪̇I2 = {1, . . . , n} such that

∑

i∈I1

ai =
∑

i∈I2

ai

We conclude that unless NP 6= P, for any ε > 0 there cannot be a (3/2 − ε)-
approximation algorithm for BinPacking, since such an algorithm would solve the
Partition problem in polynomial time. Thus a PTAS cannot exist for BinPacking.
On the other hand, a polynomial time algorithm distinguishing, say, OPTBinPacking ≤ 20
and OPTBinPacking ≥ 30 is easy to obtain (see e.g. [Vaz01]). Consequently it makes sense
to consider the achievable approximation ratio for large values of OPTBinPacking.

Definition. [Vaz01] Algorithm Aε is termed an asymptotic polynomial time approxima-
tion scheme (PTAS) for minimization problem L, if for any fixed ε > 0, it runs in time
polynomial in |I| and

Aε(I) ≤ (1 + ε) · OPT (I)

for all instances I with OPT (I) large enough.

Such an asymptotic PTAS for BinPacking was found by Fernandez de la Vega and
Lueker [FdlVL81]. Considering the running time of nO(1/ε)O(1/ε)

, it is not hard to believe
that this algorithm is mainly intended to be a theoretical result. An algorithm that also
behaves well in practice should also have polynomial running time in 1/ε. This motivates
the following definition.
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Definition. Let ε > 0. Algorithm Aε is called an asymptotic FPTAS if

Aε(I) ≤ (1 + ε) · OPT (I) + p(1/ε)

for all instances I, whereby p is a polynomial and the running time is polynomial in n
and in 1/ε.

Karmarkar & Karp [KK82] obtained such an asymptotic FPTAS for BinPacking,
using the Gilmore-Gomory LP relaxation. More on this topic can be found in Chapter 6.

Let us close this introduction on BinPacking with a comparison of all popular al-
gorithms. The approximation ratios in the following table are meant asymptotically, i.e.
for OPT → ∞.

Name year ratio run time
NextFit 1973 [Joh73] 2 O(n)
FirstFit 1972 [GGU72, JDU+74] 17/10 O(n log n)
BestFit 1973 [Joh73, JDU+74] 17/10 O(n log n)
FirstFitDecreasing 1973 [Joh73, Dós07] 11/9 O(n log n)
BestFitDecreasing 1973 [Joh73] 11/9 O(n log n)

F. de la Vega/Lueker 1981 [FdlVL81] 1 + ε nO(1/ε)O(1/ε)

Karmarkar/Karp 1982 [KK82] 1 + ε poly(n, 1/ε)

2.5 Related scheduling problems

To get a broader overview, we discuss other combinations of deadline-types and scheduling
policies.

2.5.1 Dynamic priority scheduling & implicit deadlines

Suppose that we are not forced any more to assign fixed priorities, thus priorities may
depend on time and EDF is an optimal scheduler [Der74]. Already Liu & Layland [LL73]
have shown that a set S of implicit-deadline tasks is EDF-schedulable if and only if u(S) ≤
1, thus the schedulability test is polynomial and multiprocessor scheduling coincides with
BinPacking.

2.5.2 Fixed priorities & constrained deadlines

Next, consider the case that tasks have constrained deadlines, i.e. d(τ) ≤ p(τ). Recall
that here Deadline-monotonic priorities 1

d(τ)
are optimal [LW82]. As for implicit-deadline

tasks, the critical instance is the first job, released at time 0 (which is not the case
anymore for arbitrary deadlines, see [Leh90]). Due to this reason, the response time can
again be obtained as minimal solution of fix-point equation (2.1). Note that even if the
utilization is arbitrarily small, the system might not be schedulable on a single machine.
For example the task system τ1 = τ2 = (1, 1, M) (using notation τ = (c(τ), d(τ), p(τ))) is
not DM-schedulable for any M although the utilization is just 2/M .

27



2.5.3 Dynamic priorities & arbitrary deadlines

Finally suppose that we have to schedule explicit deadline tasks with a dynamic priority
schedule. The result of Dertouzos [Der74] applies also here, thus EDF-scheduling is
optimal. But again the condition u(S) ≤ 1 is not sufficient anymore. To see this,
consider again a task system consisting of τ1 = τ2 = (1, 1, M). Then in the interval from
0 to 1, jobs of both tasks must be completed. Since the sum of the running times is 2,
this is impossible, regardless to the used schedule. The demand bound function

DBF(S, t) =
∑

τ∈S
max

{(⌊
t − d(τ)

p(τ)

⌋

+ 1

)

, 0

}

· c(τ)

gives the running time of all jobs, which have their release time and deadline in [0, t].
Thus for feasibility it is necessary, that DBF(S, t) ≤ t for all t ≥ 0. Baruah et al. [BMR90]
showed that this condition is in fact sufficient. Given that S is not EDF-schedulable, the
smallest t > 0, certifying the infeasibility must have

t <
u(S)

1 − u(S)
max
τ∈S

{p(τ) − c(τ)},

see e.g. [BG04, Leu04]. This admits a pseudo-polynomial algorithm for the feasibility
test, if the utilization of S is bounded away from 1 by a constant.

A quantity, which is useful in this setting is the load, defined as

LOAD(S) = max
t>0

{
DBF(S, t)

t

}

This maximum is clearly attained. Then S is EDF-schedulable if and only if LOAD(S) ≤ 1.
But we will prove in Chapter 8, that testing this condition is coNP-hard even if the tasks
have constrained deadlines and the demand bound function can be simplified to

DBF(S, t) =
∑

τ∈S

(⌊
t − d(τ)

p(τ)

⌋

+ 1

)

· c(τ).

In Chapter 10 we give an exact quantification of the power of EDF-scheduling for con-
strained-deadline tasks compared to the DM-schedule.

2.6 Notation

For the sake of completeness we now define some notation. We denote N = {1, 2, . . .}, i.e.
0 is not included. For Q+ is the set of strictly positive numbers, while Q≥0 is the set of
non-negative rationals. 0 = (0, . . . , 0) and 1 = (1, . . . , 1) denote suitably sized all-0 and
all-1 vectors, respectively. log(x) := log2(x) always denotes the logarithm w.r.t. base 2,
ln(x) gives the logarithm of x w.r.t. base e. We define the norms

‖v‖p :=

(
n∑

i=1

|vi|p
)1/p

and ‖v‖∞ := max
i=1,...,n

|vi|

for a vector v ∈ Rn and 1 ≤ p < ∞.
The names of problems will be written in Capitals, while algorithms are written in

TypeWriter.
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Chapter 3

An asymptotic PTAS under
Resource Augmentation

In this chapter, we deal with approximating MulSched, i.e. we want to partition a set
S = {τ1, . . . , τn} of implicit-deadline tasks into sets S1, . . . ,Sk such that each Si is RM-
schedulable and k is minimized. But we face the problem, that even if an assignment
of the tasks to the processors is given, we would not know, whether we could certify
the feasibility in polynomial time. On the other hand, the test of Baruah & Fisher
[FB05] allows to certify the feasibility, after the processor is speeded up by a factor of
1 + ε. Here we aim at a generalization of this result from the single processor to the
multiprocessor case. We will prove that given a fixed ε > 0 and a set S = {τ1, . . . , τn}
of implicit-deadline tasks, we can find an assignment to processors S1, . . . ,Sk with k ≤
(1 + ε)OPTMulSched(S) + O(1), such that the RM-schedule of each Sj is feasible if the
running times are divided by 1+ε. In other words, we obtain an asymptotic PTAS under
resource augmentation. This chapter is borrowed from Eisenbrand & Rothvoß [ER08a].

Since MulSched is a generalisation of BinPacking, we should naturally ask, what
we would do to obtain a PTAS in that special case. The asymptotic BinPacking PTAS
of Fernandez de la Vega & Lueker [FdlVL81, Vaz01] works as follows: First discard the
small items with a size of at most ε. Round up the sizes such that just a constant number
of different item sizes remain and OPTBinPacking increases by a factor of not more than
1 + ε. Then each bin must be packed with a constant number of items, chosen from a
candidate set of constant cardinality. Consequently the number of possibilities, how a
single bin can be packed is bounded by a (huge) constant and the number of solutions
that have to be considered is just a polynomial, though the exponent is astronomically
large. Afterwards the initially discarded small items are distributed in a First Fit manner
over the already packed bins. If no new bin needs to be opened for the small items, the
approximation guarantee directly follows. Otherwise all but one bin must be filled up to
at least 1 − ε, thus the solution is near optimal as well.

Unfortunately for MulSched such a treatment of tasks with small utilization cannot
work, since in the case that the utilization of a processor exceeds 69%, it may be that even
a task with tiny utilization ε > 0 could not be added without making the set infeasible.

Back to BinPacking, if we may slightly overpack a bin, a different approach might
work as follows: We initially glue together small items and round down item sizes s.t. a
constant number of different item types remain. The emerging instance is dominating in
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the sense that the modified items reserve enough space for the original items, at least if
each bin may be filled up to a value of 1+ε, instead of 1. By generalizing this approach for
MulSched we obtain tasks whose utilization is a multiple of some constant (depending
on ε).

The remaining challenge is that in general the periods range over a large interval,
thus we may not assume to have just a constant number of different task types. We
will resolve this problem by introducing a relaxed notion for feasibility, which allows to
compute a solution via dynamic programming.

Throughout this chapter, a constant independent from ε is denoted by O(1) and Oε(1)
otherwise.

3.1 Domination

Now let us extend the concept of domination to implicit-deadline task systems S. We say
that task system S ′ dominates S, if there is a map π : S → S ′ such that for any feasible
MulSched solution S ′ = S ′

1∪̇ . . . ∪̇S ′
k also all sets π−1(S ′

i) are RM-schedulable. Here π
is not necessarily injective, that means we allow that several tasks may be bundled in the
dominating instance S ′.

It immediately follows that

Corollary 3.1. If S ′ dominates S, then

OPTMulSched(S) ≤ OPTMulSched(S ′).

In fact, a solution for S ′ of value k directly gives a solution for S with the same value.
In all constructions of dominating instances the function π will be described implicitly,
but can be computed in polynomial time. But for the sake of readability we will never
state π explicitly.

The following operations yield dominating instances:

• Replace a task τ by another task τ ′ with c(τ ′) ≥ c(τ) and p(τ ′) ≤ p(τ).

• Replace tasks τ1, . . . , τm ∈ S of the same period (i.e. p(τ1) = . . . = p(τm)) by a
single task τ ′ with accumulated running time c(τ ′) = c(τ1) + . . .+ c(τm) and period
p(τ ′) = p(τ1) = . . . = p(τm).

For the sake of approximation algorithms a more general notion of domination will
turn out to be helpful.

Definition. Given a task system S and an ε > 0, the system S ′ is weakly ε-dominating
S, if there is a polynomial time computable function π : S → S ′, such that for any
feasible MulSched solution S ′ = S ′

1∪̇ . . . ∪̇S ′
k, there is a polynomial time computable

set Sd of discarded tasks with u(Sd) ≤ ε ·u(S), such that all π−1(S ′
1)\Sd, . . . , π−1(S ′

k)\Sd

are RM-schedulable.

We should give the reader some intuition about the meaning of this definition: Suppose
we run an algorithm on S ′, obtain a solution S ′

1, . . . ,S ′
k and compute the corresponding

solution S1, . . . ,Sk in the original instance S. For a nearly optimal solution it is then
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sufficient if S1, . . . ,Sk are not RM-schedulable, but can be made feasible after discarding
an ε-fraction of the tasks.

For discarding tasks we should first observe a simple claim, which suffices for our
purposes.

Lemma 3.2. Given a set S of implicit-deadline tasks, one can efficiently find a solution
for MulSched, consisting of at most 3u(S) + 1 many processors.

Proof. We distribute the tasks in a First Fit manner, considering a set S ′ ⊆ S as feasible
if u(S ′) ≤ ln(2) (cf. [LL73]). Let m be the number of needed processors, then all but
(possibly) one processor must have a utilization of at least ln(2)/2 > 1/3, otherwise
we could merge processors. We derive the inequality u(S) ≥ (m − 1)/3 and hence
m ≤ 3u(S) + 1.

Here we did not aim at optimizing any constant. Next, we demonstrate the usefulness
of the notion of weak ε-domination.

Corollary 3.3. If S ′ weakly ε-dominates S, then a solution of cost k for S ′ can be
efficiently turned into a feasible solution for S of cost at most k + 3ε · u(S) + 1.

Proof. Let S ′
1, . . . ,S ′

k be a solution for S ′. Let Sd be the discarded tasks such that each
Si = π−1(S ′

i)\Sd is feasible. Lemma 3.2 yields, that Sd can be scheduled on

3u(Sd) + 1 ≤ 3ε · u(S) + 1

many processors. The claim follows.

3.2 Relaxing the feasibility

When designing an approximation algorithm for MulSched we face the feasibility test
as a difficult subproblem. Next, we develop a relaxed feasibility test, which is similar
to that one of [FB05], but tailored for our dynamic programming approach (see Section
3.4). Recall that an implicit-deadline task system S is RM-schedulable if and only if for
any task τ ∈ S one has an r ∈ [0, p(τ)] such that

c(τ) +
∑

τ ′≺τ

⌈
r

p(τ ′)

⌉

· c(τ ′) ≤ r. (3.1)

We would like to relax this condition in a suitable way. Let us consider the left hand
side of inequality (3.1). Given any solution r and z ∈ N, also z · r solves the inequality
since ⌈

zr

p(τ ′)

⌉

≤ z ·
⌈

r

p(τ ′)

⌉

Thus we may assume that a solution to (3.1) fulfills r ∈ [p(τ)/2, p(τ)], even if this r then
is not the response time (but an integer multiple of it). Now suppose that the left hand
side of (3.1) contains a summand ⌈ r

p(τ ′)
⌉ with p(τ ′) ≪ p(τ). Then consequently p(τ ′) ≪ r.

But if we do not round up a large value r
p(τ ′)

≫ 1, then we change the response time
function just by a small factor. This motivates the upcoming definition of local feasibility.
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Definition. Given an implicit-deadline task system S, a task τ ∈ S is called locally
feasible w.r.t. 0 < ε < 1, if there is an r ∈ [0, p(τ)] with

Dε
τ,S(r) = c(τ) +

∑

τ ′:p(τ ′)≤εp(τ)

r

p(τ ′)
· c(τ ′) +

∑

τ ′≺τ :εp(τ)<p(τ ′)≤p(τ)

⌈
r

p(τ ′)

⌉

· c(τ ′) ≤ r

The task system S is called locally feasible, if all its tasks are locally feasible.

Note that Dε
τ,S(r) can be rewritten as

c(τ) + r · u({τ ′ ∈ S | p(τ ′) ≤ ε · p(τ)}) +
∑

τ ′≺τ :p(τ ′)>εp(τ)

⌈
r

p(τ ′)

⌉

· c(τ ′)

In other words, the contribution of the rounding operation is only taken into account
for tasks which are close or local to the task τ in consideration. The other tasks contribute
only with their utilization. This relaxed feasibility notion causes a drastic reduction of
complexity, as we will see in Section 3.4.

We now show that, if an assignment is locally feasible, then it is “really” feasible (i.e.
RM-schedulable) on a slightly faster processor.

Lemma 3.4. If a set of tasks S is locally feasible w.r.t. ε > 0, then it is feasible on a
processor of speed 1 + 2ε.

Proof. Let r be the certificate for local feasibility of τ ∈ S, i.e., one has p(τ)/2 ≤ r ≤ p(τ)
and Dε

τ,S(r) ≤ r. It is enough to show that Dτ,S(r) ≤ (1 + 2ε)Dε
τ,S(r) holds. We derive

that

Dτ,S(r) − Dε
τ,S(r) ≤

∑

τ ′≺τ :p(τ ′)≤εp(τ)

c(τ ′)

≤ 2εr ·
∑

τ ′≺τ :p(τ ′)≤εp(τ)

c(τ ′)

p(τ ′)

≤ 2ε · Dε
τ,S(r)

where we use that r
p(τ ′)

≥ r
εp(τ)

≥ 1
2ε

and consequently 1 ≤ 2ε r
p(τ ′)

.

More general for δ ≥ 0, we call a task τ ∈ S locally (1 + δ)-feasible, if there is an
r ≤ p(τ) such that Dε

τ,S(r) ≤ (1 + δ)r or equivalently τ is locally feasible on a processor
of speed 1+δ. We term a system S (1+δ)-feasible, if it is RM-schedulable on a processor
of speed 1 + δ. Clearly

Corollary 3.5. For δ ≥ 0, if a set of tasks S is locally (1 + δ)-feasible on one processor,
then it is feasible on a processor of speed (1 + 2ε) · (1 + δ).

Proof. Suppose p(τ)/2 ≤ r ≤ p(τ) and Dε
τ,S(r) ≤ (1 + δ)r, then reusing the proof of

Lemma 3.4 yields

Dτ,S(r) ≤ (1 + 2ε)Dε
τ,S(r) ≤ (1 + 2ε) · (1 + δ) · r.
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3.3 The merging theorem

In this section we show that small tasks of similar periods can be merged together to
obtain large tasks. We will obtain a weakly ε-dominating instance S ′, containing only
tasks whose utilization is lower bounded by a constant and OPTMulSched(S ′) ≤ (1 +
O(ε))OPTMulSched(S) + O(1). Here the relaxed feasibility notion will already be useful.

In the following we call a task small if its utilisation is at most γ = ε6 and large
otherwise. Let S = Sℓ ∪Ss be the partition of the task system S into small tasks Ss and
large tasks Sℓ.

The whole procedure to eliminate small tasks can be divided into 3 steps

I) Clustering: In a first step, we discard tasks and re-set periods such that the utiliza-
tion of each period is at least ε6. Here, the utilization of a period p is the sum of the
utilization of the tasks having period p. The total utilization of the discarded tasks
is bounded by O(ε) · u(S). Furthermore if Si ⊆ S is RM-schedulable and S ′

i ⊆ S ′ is
the set of the modified tasks, then S ′

i remains (1 + O(ε))-feasible.

II) Merging: In a second step, we partition small tasks of the same period into groups,
each of which will be identified into one single task having utilization of roughly ε6.
We show that this increases the value of OPT only by a factor of 1 +O(ε) if again
a slight speedup of the processor speed is admitted.

III) Post-processing : Finally we prove, that it suffices to remove a tiny subset of the
tasks from a (1 + O(ε))-feasible system to establish again feasibility.

Now the steps are described in detail. Thereby suppose that 1/ε is an integer and
u(S) ≥ 1/2 ≥ ε. This assumptions are w.l.o.g. since in case of u(S) < 1/2 one processor
trivially suffices and the following machinery would not be needed.

In the following we will several times discard tasks. Let Sd be a set of such tasks, then
we can partition them into RM-schedulable sets Sd

1 , . . . ,Sd
m with m ≤ 3 · u(Sd) + 1 many

processors (see Lemma 3.2). Since we are constructing a dominating instance, formally
we replace each set of tasks Sd

i by a task with utilization 1 and arbitrary period. This
ensures that in any feasible schedule these new tasks would use their own processor.

Clustering

Let p be a period of a task in S. The utilization of this period is the sum of the utilizations
of tasks, having period p

u(p) :=
∑

τ∈S:p(τ)=p

u(τ).

Resetting the period of a task τ to period p means to substitute it by a task τ ′ which
has period p but the same utilization as τ , i.e. u(τ ′) = u(τ). Later we want to merge
small tasks with the same period. In case that the instance is sparse, there are possibly
no tasks with similar periods. Thus we need to apply the following clustering procedure
to S.

1. Round down the periods of the small tasks to the next power of 1 + ε.
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(1/ε)Z (1 + ε)Z task
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periods
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periods

block Bi

Ji

block Bi+1
gap of 1/ε

r r

Figure 3.1: Consider the axis of real numbers and draw a × at p(τ) for each small task
τ and a square for each large task. The upper picture visualizes the situation before step
(1), the lower picture shows the partition into blocks (after step (3)).

2. Choose j ∈ {0, . . . , (1/ε) − 1} such that the utilization uj of tasks, having their
period in an interval [(1/ε)i, (1/ε)i+1[ with i ≡1/ε j, is minimized. By the pigeonhole
principle uj ≤ ε · u(S). We discard the tasks, contributing to uj.

3. Partition the task set S into blocks B1, . . . ,Bm such that

i) For τ ∈ Bi, τ
′ ∈ Bj with i < j one has p(τ) ≤ ε · p(τ ′).

ii) Due to the rounding, the number of different periods of small tasks in each
block Bi is bounded by

1 + log1+ε(1/ε)
1/ε−1 ≤ 1/ε3,

which is a constant. See Figure 3.1 for a visualization. Each block may still
contain large tasks with a numerous amount of different periods.

4. Let Bi be the first block having utilization at most ε2, i.e. u(Bi) ≤ ε2 for i minimal.
Then choose j ≥ i as the minimal index such that u(Bi ∪ . . . ∪ Bj) ≥ ε2. If this
utilization is larger than ε, then we discard Bi, . . . ,Bj−1 from S. Otherwise, we re-
set the period of each task to an arbitrary value sandwiched between the smallest
and the largest period of a task in Bi∪. . .∪Bj . Thereby the utilization of this period
is at least ε2. We repeat this procedure, until such a block Bi, having utilization at
most ε2, cannot be found anymore.

5. If there is a period p such that the utilization of small tasks with period p is less
then ε6, then we discard all small tasks with this period.

What is the sense of this clustering procedure: Now for each period p, the utilization
of small tasks with that period is either 0 or lowerbounded by some constant.

Consider again a block Bi. Due to the way, blocks are created we can assign an
interval Ji = [ 1

εi1
, 1

εi2
] with i1, i2 ∈ Z to Bi, such that for any τ ∈ Bi one has p(τ) ∈ Ji, the
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intervals are pairwise disjoint and all powers of 1/ε are covered by intervals1. The interval
bounds of Ji are then called the period bounds of Bi. The period bounds of Bi, . . . ,Bj

(i ≤ j) then yield the interval from the lower period bound of Bi to the upper bound of
Bj .

Let Si ⊆ S. We term a task τ ∈ Bj ∩ Si locally feasible w.r.t. the block partition if
there is an r ≤ p(τ) with

DB1,...,Bm

τ,Si
(r) := c(τ) + r · u((B1 ∪ . . . ∪ Bj−1) ∩ Si) +

∑

τ ′∈Bj∩Si:τ ′≺τ

⌈
r

p(τ ′)

⌉

· c(τ ′) ≤ r

Since p(τ) ≤ εp(τ ′) for all τ ∈ Bi, τ
′ ∈ Bj with i < j, the stated lemmas for local

feasibility still hold for local feasibility w.r.t. the block partition. More precisely one has

Dε
τ,Si

(r) ≤ DB1,...,Bm

τ,Si
(r) ≤ Dτ,Si

(r) ≤ (1 + 2ε)Dε
τ,Si

(r)

for all τ ∈ Si and p(τ)/2 ≤ r ≤ p(τ).

We next show that any (1 +O(ε))-feasible multiprocessor schedule is still (1 +O(ε))-
feasible after the resetting procedure.

Lemma 3.6. For δ ≥ 0 and 0 < ε ≤ 1/2, let S be a set of implicit-deadline tasks
and let S1∪̇ . . . ∪̇Sk = S be a (1 + δ)-feasible solution, i.e. each Sj is (1 + δ)-feasible. Let
B1, . . . ,Bm be a block partition of S w.r.t. ε and let I1, . . . , Iµ ⊆ [1, m] be disjoint intervals
such that

∑

j∈Ii
u(Bj) ≤ ε for all i ∈ {1, . . . , µ}. For any interval Ii we may reset the

periods of the tasks arbitrarily within the period bounds of
⋃

j∈Ii
Bj. Let S ′

1∪̇ . . . ∪̇S ′
k = S ′

be the solution with the modified tasks. Then each S ′
j is (1 + δ + ε)(1 + 2ε)-feasible.

Proof. To simplify notation, we can join blocks, such that |Ii ∩ {1, . . . , m}| = 1 for all

intervals (this destroys the property that p(τ)
p(τ ′)

is upper bounded by a constant for all tasks

τ, τ ′ in the same block, but we do not need this property here). Consider w.l.o.g. S1 and
some task τ ∈ S1. Suppose τ ∈ Bi and let r ∈ [p(τ)/2, p(τ)] such that Dτ,S1(r) ≤ (1+δ)r.

Inspect the local response time function DB1,...,Bm

τ,S1
(r):

c(τ) + r · u((B1 ∪ . . . ∪ Bi−1) ∩ S1) + r ·
∑

τ ′≺τ :τ ′∈Bi∩S1

⌈
r

p(τ ′)

⌉
p(τ ′)

r
︸ ︷︷ ︸

∈[1,2]

·u(τ ′) ≤ (1 + δ)r

Here one has ⌈ r
p(τ ′)

⌉p(τ ′)
r

≤ 2 since r
p(τ ′)

≥ r
p(τ)

≥ 1/2. First suppose that τ does not lie
in one of the blocks, whose index is in an interval. Then resetting periods in any of the
blocks B1, . . . ,Bi−1 does not affect this function. Thus τ is still locally (1 + δ)-feasible
and therefore (1 + δ)(1 + 2ε)-feasible by Lemma 3.5. Now suppose τ ∈ Bi and i ∈ Ii′ for
some i′. Let S ′

1, . . . ,S ′
k be the family of solutions S1, . . . ,Sk after resetting the periods.

Similar B′
1, . . . ,B′

m emerge from B1, . . . ,Bm. By choosing r := p(τ), we can upper bound

1We may allow ±∞ as borders for the first and last interval, resp.
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Dε
τ,S′

1
(p(τ))/p(τ) by

c(τ)

p(τ)
+ u((B′

1 ∪ . . . ∪ B′
i−1) ∩ S ′

1) +
∑

τ ′∈B′
i∩S′

1:τ
′≺τ

⌈
p(τ)

p(τ ′)

⌉
p(τ ′)

p(τ)
︸ ︷︷ ︸

≤2

·u(τ ′)

≤ u((B1 ∪ . . . ∪ Bi−1) ∩ S1) + 2 u(Bi ∩ S1)
︸ ︷︷ ︸

≤ε

≤ 1 + δ + ε

using that u(Bi ∩S1) ≤ u(Bi) ≤ ε and that we did not change the utilization of any task.
Again by Lemma 3.5 the task system S ′

1 is (1 + δ + ε)(1 + 2ε)-feasible.

We still have to show that we did not discard too many tasks during the clustering.

Lemma 3.7. Let Sd ⊆ S be the set of tasks, discarded in the course of the clustering
procedure and 0 < ε ≤ 1/2. One has u(Sd) ≤ 5ε · u(S).

Proof. For obtaining the block partitions we discard tasks of utilization at most ε · u(S).
Next consider the cases that some blocks Bi, . . . ,Bj−1 are discarded. This happens if
u(Bi∪ . . .∪Bj−1) ≤ ε2, but u(Bi∪ . . .∪Bj) > ε. Consequently u(Bj) ≥ ε−ε2 ≥ ε/2. Now
let us account the discarded utilization of at most ε2 to the utilization of Bj . We will never

again charge Bj . Clearly the accounted utilization is in total at most ε2

ε/2
u(S) = 2ε ·u(S).

Note that just in the last step, we might have u(Bi ∪ . . . ∪ Bm) ≤ ε2, but no block to
account for discarding Bi, . . . ,Bm. Finally consider the tasks, which are discarded in
step (5) in some block Bi due to the reason, that the tasks with periods p have a to
tiny utilization. We account the discarded utilization of ε6 to Bi. Since there are at
most 1/ε3 many periods for small tasks per block, we account at most ε6 · 1

ε3 = ε3 to
Bi. Since u(Bi) ≥ ε2 the total utilization of tasks, discarded in step (5) is bounded by
ε3u(S)/ε2 ≤ ε · u(S).

Accumulating the bounds yields that in total the discarded utilization is at most

ε · u(S) + 2εu(S) + ε2 + ε · u(S) ≤ 5ε · u(S)

since we assume that u(S) ≥ 1/2 ≥ ε.

Merging

The situation after the above clustering step is now as follows: For a constant γ = ε6,
the amount of utilization of small tasks Ss = {τ ∈ S | u(τ) ≤ γ} of a period is either 0
or at least γ. Thus we can partition the small tasks Ss into groups R1, . . . , Rq such that
for all groups Ri one has

• p(τ) = p(τ ′) ∀τ, τ ′ ∈ Ri

• γ ≤ u(Ri) ≤ 3γ
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The merging procedure now consists of replacing the tasks in a group Ri by a single task
τi, such that p(τi) equals the periods of the tasks in Ri and u(τi) = u(Ri). In other words,
we glue small tasks of the same period together. Let S ′ be the emerging task system,
now consisting only of large tasks.

It is clear that any solution to S ′ immediately gives a feasible solution of the same
cost for S, but it is less obvious, whether we can still guarantee solutions for S ′, which
are not significantly more costly than OPTMulSched(S), since we loose some flexibility
to distribute small tasks. Those belonging to one group must be assigned to the same
processor.

In the proof of the next theorem we will apply a non-standard variant of the Chernoff
bound. Recall that given a sum X := X1 + . . .+Xn of independently distributed random
variables Xi ∈ {0, 1}, it is well known that X is distributed sharply around its mean.
More precisely for each µ ≥ E[X] one has

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3

for 0 < δ < 1, see e.g. the book of Mitzenmacher & Upfal [MU05]. A similar result holds
for weighted sums, if the weights do not differ too much.

Theorem 3.8. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, bi} for
bi > 0. Consider the sum X := a1X1 + . . .+anXn with ai > 0. Then for α := maxi{ai ·bi}
and 0 < δ < 1 one has

Pr[X ≥ (1 + δ)E[X]] ≤ e−
δ2

3α
E[X].

A proof can be found in the Appendix. We next show, that the merging step doesn’t
increase the value of OPT significantly — at least if we again allow a slight processor
speedup.

Lemma 3.9. Let γ = ε6, 0 ≤ δ ≤ 1, 0 < ε ≤ 1/3 and let S be a set of tasks which can be
partitioned into subsets Sℓ = {τ ∈ S | u(τ) > γ} of large tasks and groups R1, . . . , Rq with
γ ≤ u(Ri) ≤ 3γ. Glue together tasks in S from the same group and denote the emerging
task system by S ′. Let S = S1∪̇ . . . ∪̇Sk be a (1 + δ)-feasible solution for S. Then there is
a solution of k processors for S ′ which is (1 + δ + 2ε)-feasible, after discarding tasks of
utilization ε · u(S).

Proof. Let a (1 + δ)-feasible solution S1∪̇ . . . ∪̇Sk = S be given. We have to show that
there exists a solution for S which uses at most k processors of speed 1+ δ +2ε, in which
the tasks of each group Ri are scheduled together on one processor. In the construction
of this solution we are allowed to discard an ε-fraction of the tasks.

After identifying sets Si ∩ Rj with a single task of utilization u(Si ∩ Rj) we may
assume that each processor contains at most one task from each group Rj. The new
solution S ′

1, . . . ,S ′
k is now constructed using a probabilistic argument. We first assign

deterministically all large tasks from Si to S ′
i. Furthermore all tasks from group Rj are

assigned to S ′
i with probability

u(Rj∩Si)

u(Rj)
.

We consider the situation on processor i. First suppose that τ ∈ Si is a large task, i.e.
τ ∈ Sℓ. We need to show that after moving small tasks, τ still meets the deadlines, at least
after a slight speedup of the processor. Let r ∈ [p(τ)/2, p(τ)] such that Dτ,Si

(r) ≤ (1+δ)r.
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We show that Pr[Dτ,S′
i
(r) > (1 + δ + 2ε)r] ≤ ε, i.e. it is unlikely that the response time

function grows significantly. After reordering we may assume that τ1, . . . , τm are the small
tasks in Si of higher priority than τ and Rj ∩ Si = {τj}. Then Dτ,Si

(r) can be rewritten
as

c(τ) +
∑

τ ′∈Si∩Sℓ,τ ′≺τ

⌈
r

p(τ ′)

⌉

· c(τ ′) + r ·
m∑

j=1

⌈
r

p(τj)

⌉
p(τj)

r
︸ ︷︷ ︸

=:aj∈[1,2]

·u(τj).

Note that the number aj = ⌈ r
p(τj )

⌉ · p(τj)

r
in the right sum satisfies 1 ≤ aj ≤ 2. After

randomly redistributing the tasks in R1, . . . , Rq, the evaluation of the response time
function at r is a random variable of the form

Dτ,S′
i
(r) = c(τ) +

∑

τ ′∈Si∩Sℓ,τ ′≺τ

⌈
r

p(τ ′)

⌉

· c(τ ′) + r ·
m∑

j=1

aj · Xj

where the Xi ∈ {0, u(Rj)} are independent random variables with Pr[Xj = u(Rj)] =
u(τj)

u(Rj)
. For X :=

∑m
j=1 ajXj , one has E[X] ≤ 1 + δ ≤ 2. It is sufficient to show that

Pr[X ≥ E[X]+ ε] ≤ ε. Here the variant of the Chernoff bound (Theorem 3.8) comes into
play. Choose

α := max
j

{aj · u(Rj)} ≤ 2 · 3ε6 = 6ε6.

Applying Theorem 3.8 yields, that

Pr[X ≥ E[X] + ε] = Pr

[

X ≥
(

1 +
ε

E[X]

)

E[X]

]

≤ e
− 1

6ε6
ε2

3E[X]2
E[X] ≤ ε,

where the last inequality follows from E[X] ≤ 2 and ε ≤ 1/3.
Now consider the case that u(τ) ≤ ε6, that means τ is a small task and c(τ) in

(3.3) is a random variable as well. But then the above analysis can be applied after
the observation that u(τ) grows up to at most 3γ. Thus after the merging step, c(τ) is
bounded by 3γ · p(τ) ≤ 6γ · r ≤ ε · r. We conclude: With probability of at least 1 − ε, a
given task τ is (1 + δ + 2ε)-feasible. In the unlikely event that τ becomes infeasible, we
discard τ . The expected cumulated utilization of all discarded tasks is upper bounded by
ε · u(S). By Lemma 3.2 and the principle of the probabilistic method (see e.g. the book
of Alon & Spencer [AS08]) there is a way to distribute S among k processors of speed
1 + δ + 2ε, such that tasks from each group Rj are assigned to the same processor and
we only need to discard tasks with a utilization of at most ε · u(S).

Post-processing

Suppose we obtain a MulSched solution for the task system, as modified in the clus-
tering and merging step. Then this solution might be infeasible for the original tasks,
because we changed the periods of some tasks. Since we did not modify tasks with a
utilization of ε or larger, this infeasibility must be due to small tasks. We next show
that one can always remove a few small tasks to achieve again RM-schedulability. More
formal
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Lemma 3.10. Let 0 ≤ δ ≤ 1 and 0 < ε ≤ 1/2. Given an implicit-deadline task system S
let S = Sℓ ∪Ss be the partition into large tasks Sℓ with utilization larger than ε and small
tasks Ss. If S is (1 + δ)-feasible and Sℓ is feasible, then one can discard a subset S ′ ⊆ Ss

of the small tasks with a utilization of u(S ′) ≤ δ + ε, such that S\S ′ is RM-schedulable.

Proof. Let {τ1, . . . , τk} = Ss be the small tasks, ordered by their periods, i.e. τ1 ≺ . . . ≺
τk. If u(Ss) < δ + ε, discarding all small tasks, makes S feasible, thus assume that
u(Ss) ≥ δ + ε. Choose a j ∈ {1, . . . , k} such that δ ≤ u(τ1) + . . . + u(τj) ≤ δ + ε. Define
S ′ := {τ1, . . . , τj}. It remains to show feasibility of an arbitrary task τ ∈ S\S ′. If τ ≺ τj ,
then τ is trivially feasible, since all higher priority tasks and τ itself must be contained
in Sℓ and Sℓ is feasible by assumption. Thus assume τj ≺ τ . Since S is (1 + δ)-feasible,
we know that there is an r ∈ [p(τ)/2, p(τ)] with

Dτ,S(r) = c(τ) + r ·
∑

τ ′∈S:τ ′≺τ

⌈
r

p(τ ′)

⌉
p(τ ′)

r
︸ ︷︷ ︸

≥1

·u(τ ′) ≤ (1 + δ)r

whereby we rewrote the response time function in a suitable way. Now discarding all
tasks τ1, . . . , τj decreases the left hand side by at least r · u(S ′) ≥ r · δ. Thus S\S ′ is
RM-schedulable.

We now have everything by hand to derive the main result of this chapter

Theorem 3.11 (Merging Theorem). Let 0 < ε ≤ 1/3. Let S be any implicit-deadline
task system. Then using the clustering, merging and preprocessing steps, described above,
we obtain in polynomial time a weakly O(ε)-dominating set S ′ with u(τ) ≥ γ = ε6 for
all τ ∈ S ′ and

OPTMulSched(S ′) ≤ (1 + O(ε)) · OPTMulSched(S) + O(1).

Proof. It suffices to show the following two assertions.
Claim: One has OPTMulSched(S ′) ≤ (1 + O(ε)) · OPTMulSched(S) + O(1).

Let S = S1 ∪ . . . ∪ Sk be any feasible solution for the original task system. We applied
the following operations to obtain a modified task system: Rounding periods, creating
blocks, clustering tasks, merging tasks. In each operation the sets S1, . . . ,Sk remain
feasible after a speedup of 1 + O(ε) and discarding an O(ε)-fraction of the tasks, see
Lemmas 3.6, 3.7 and 3.9. We obtain the existence of a partition S ′ = S ′

1∪̇ . . . ∪̇S ′
k′ with

k′ = (1 + O(ε))k + O(1) for the modified task system, such that each S ′
i is (1 + O(ε))-

feasible. Since the modifications affect only tasks with utilization less than ε, S ′
i ∩ {τ ∈

S ′ | u(τ) ≥ ε} is RM-schedulable. Lemma 3.10 then yields that tasks of utilization
O(ε) can be removed to make S ′

i feasible. The total amount discarded utilization is then
O(ε) · k.

Claim: S ′ is weakly O(ε)-dominating S.
Now we go the other way around. Let S ′ = S ′

1∪̇ . . . ∪̇S ′
k be any feasible solution for S ′.

Let Si be the tasks in S, corresponding to that in S ′
i. We have to show that we can

make Si feasible, after discarding an O(ε)-fraction of the tasks. The only reason, why Si

might be infeasible is due to the resetting of periods. However, by applying Lemma 3.6
again, Si is at least (1 + ε)(1 + 2ε) ≤ 1 + 4ε feasible. Since Si is feasible if restricted to
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tasks of utilization at least ε, Lemma 3.10 makes Si feasible after discarding task with
a cumulated utilization of at most 5ε. It follows from the proof in Lemma 3.10, that
these tasks can be found in polynomial time. Again the total amount of discarded tasks
is clearly O(ε) · k, implying the claim.

A consequence of this theorem is the following powerful claim

Corollary 3.12. Suppose there is an algorithm Aε which for any fixed ε > 0 computes in
polynomial time a solution of cost (1 + ε)OPT + O(1) for MulSched instances S with
u(τ) ≥ ε ∀τ ∈ S. Then for any ε > 0, there is a polynomial time algorithm A′

ε with

A′
ε(S) ≤ (1 + ε)OPT (S) + O(1)

for all implicit-deadline task systems S.

3.4 The algorithm

Still, let S = {τ1, . . . , τn} be an implicit-deadline task system. Due to the work in the last
sections, we now may assume that u(τ) ≥ γ = ε6 for all task τ ∈ S and an arbitrary but
fixed ε > 0. Unfortunately, this assumption does not suffice for our algorithmic approach,
which we are going to describe now. We will also need to modify large tasks, which we
did not yet do so far. This might cause that the obtained solutions are slightly infeasible
for the original instance.

Rounding the instance

We suggest the following rounding procedure, which is now applied to all tasks

• Round up the periods p(τ) of all tasks to the next larger power of 1 + ε.

• Round down the running time c(τ) of any task τ , such that the utilization u(τ)
becomes an integer multiple of γ2 = ε12.

• Create (similar to Section 3.3) a block partition S\Sd = B1∪̇ . . . ∪̇Bm, after discard-
ing Sd ⊆ S with u(Sd) ≤ ε · u(S), i.e. p(τ) ≤ ε · p(τ ′) for τ ∈ Bi, τ

′ ∈ Bj with i < j
and the tasks in each block have at most 1/ε3 many different periods.

The rounding is visualized in Figure 3.2. Let S ′ be the obtained well rounded task
system, then clearly OPTMulSched(S ′) ≤ OPTMulSched(S), since the running times were
rounded down and the periods have been rounded up. On the other hand let S ′

i ⊆ S ′ be
a feasible task system and let Si be the corresponding original tasks in S. Then Si is at
least feasible on a processor of speed (1 + ε)2 ≤ 1 + 3ε, since periods and running times
are both scaled by not more than 1 + ε (while this is clear for the periods, note that the

ratio of old and new utilization is bounded by u(τ)
u(τ)−γ2 ≤ 1

1−γ
≤ 1 + 2γ ≤ 1 + ε).
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Figure 3.2: Rounding tasks to discretize instance. Balls indicate original tasks, rectangles
denote rounded tasks. Gray balls are discarded tasks.

A dynamic program

Recalling Lemma 3.4, we observe that it suffices to compute an optimum locally feasible
solution.

Theorem 3.13. For a well-rounded implicit-deadline task system S, an optimum locally
feasible solution (w.r.t. the block partition B1, . . . ,Bm) can be computed in time Oε(1) ·
n(1/ε)O(1)

with n = |S|.

For the rest of this chapter, we use the term “locally feasible” always w.r.t. the block
partition B1, . . . ,Bm. To obtain the above theorem, we demonstrate how the tasks can
be distributed with a dynamic programming algorithm to compute an optimal assign-
ment of S, such that each task is locally feasible. This is done block-wise via dynamic
programming. The key ingredients, to make our algorithm work in polynomial time, are:

1. The number of different task types per block is bounded by a constant.

2. In the concept of local feasibility, the tasks from blocks B1, . . . ,Bℓ−1 influence the
feasibility of tasks in Bℓ only with their utilization.

A vector a = (a0, . . . , a1/γ2) with ai ∈ Z is called a configuration, whereby ai denotes the

number of processors whose utilization is exactly i · γ2. We require that
∑1/γ2

i=0 ai = n,
since |S| = n many processors suffice in any case. Consider the following table entries.

A(a, ℓ) =







1 if tasks in B1, . . . ,Bℓ can be scheduled in a locally feasible way
such that the utilization bounds of configuration a are exactly met

0 otherwise

Note that a has fixed dimension, thus the table has a polynomial number of entries. We
now describe, how to compute A(a, ℓ) efficiently. Let b = (b0, . . . , b1/γ2) be a processor
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configuration from a distribution of the tasks B1, . . . ,Bℓ−1. Then d(Bℓ, b, a) is defined to
be 1, if the tasks in block Bℓ can be additionally distributed among the processors, such
that the bounds of configuration a are met. The base case is

A(a, 1) = d(B1, (n, 0, . . . , 0), a)

The configuration (n, 0, . . . , 0) here means, that initially all n processors are empty. For
all ℓ > 1 note that A(a, ℓ) = 1, if and only if there exists a configuration b ∈ Z1/γ2+1 with
0 ≤ bi ≤ ai for all i and

A(b, ℓ − 1) = 1 and d(Bℓ, b, a) = 1

In other words A(a, ℓ) = 1 holds, if one can distribute the tasks from the first ℓ−1 blocks
to reach a configuration b and then add tasks in Bℓ in a feasible way, to extend this
configuration to obtain a. After computing all entries, the optimal number of processors
can be read out of the table. In fact, it is

min{k ∈ N0 | ∃ configuration a with A(a, m) = 1 and a0 = n − k}.

The concrete solution, attaining this value can be easily reconstructed.

Computing d(Bℓ, b, a)

It remains to show, how to determine d(Bℓ, b, a) in time Oε(1) · nO(1). Each block Bℓ

has only a constant number of different task-types, each having a utilization, which is
lower-bounded by a constant. Suppose that Bℓ has tasks, whose running-time and period
are from the tuples (c1, p1), . . . , (ck, pk) with k ≤ 1

γ2 · 1
ε3 = Oε(1). Let di be the number of

times, that task (ci, pi) is contained in Bℓ and suppose that the tasks are ordered by their
priorities, i.e. p1 ≤ . . . ≤ pk. A pattern is a vector (x1, . . . , xk) ∈ Nk

0, which represents a
set, composed of these task types (the set, defined by the pattern, contains xi times task
type (ci, pi)). There is only a constant number of candidate patterns, which can be used
to distribute the tasks in Bℓ.

We are now going to show, how d(Bℓ, b, a) can be computed for configurations a, b ∈
Z1/γ2+1. Let Pβα be the set of all patterns x, such that x can be assigned to a processor,
having already tasks from blocks B1, . . . ,Bℓ−1 with utilization β · γ2 without violating
local feasibility and with increasing the total utilization of this processor to precisely
α · γ2 (α, β ∈ Z). More concrete, Pβα consists of all x such that

∃0 ≤ rj ≤ pj : xjcj + rj · βγ2 +

j−1
∑

i=1

⌈
rj

pi

⌉

xici ≤ rj ∀j = 1, . . . , k

βγ2 +
k∑

i=1

xi
ci

pi

= αγ2

This conditions can be checked efficiently in time Oε(1) · nO(1) (for each x) via integer
programming in fixed dimension [Len83].

Each pattern may occur in several Pβα’s, thus we ideally think of several copies of
x, each assigned to precisely one Pβα. Due to the lower bound on the utilization, the
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number of tasks per pattern cannot exceed 1/γ, hence the number of feasible patterns is
again a (huge) constant.

Let λx be a variable, indicating the number of times, that pattern x is used, to
distribute tasks Bℓ. Then we have d(Bℓ, b, a) = 1 if and only if the following system has
a solution

∑

x

λxx = d

∑

i

∑

x∈Pij

λx = aj ∀j

∑

j

∑

x∈Pij

λx = bi ∀i

λx ∈ Z≥0 ∀x

Again we use [Len83] to solve this integer program with a fixed number of variables
in time Oε(1) · nO(1). The final conclusion of this chapter is then

Theorem 3.14. Let 0 < ε ≤ 1/3 with 1
ε
∈ Z arbitrary, but fixed. Then there is

an algorithm, which partitions an implicit-deadline task system S into S1, . . . ,Sk with
k ≤ (1 + ε)OPTMulSched(S) +O(1) in time Oε(1) · n(1/ε)O(1)

, such that each Si is (1 + ε)-
feasible.
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Chapter 4

An Optimum Algorithm in the
Average

As a rule of thumb, a good heuristic for an optimization problem does not need to yield
provably good solutions even in the worst case, but must be asymptotically optimal in
the average, meaning if the input is drawn from a reasonable probability distribution.
Asymptotically optimal here means that the expected approximation ratio must tend to
1 for growing instances. The reason is that for heuristics, that are optimal in the average,
one can also hope for near optimal solutions for (large) instances appearing in practice.

In this chapter, we introduce a simple First Fit based algorithm, called First Fit
Matching Periods (FFMP) and show that it has exactly this property, where the input is
a set S = {τ1, . . . , τn} of implicit-deadline tasks and we aim at finding a partition of S
into P1, . . . , Pk such that each Pi is RM-schedulable and k is minimized. Our algorithm
initially sorts the tasks according to their α-values and then distributes them in a First
Fit manner, using the sufficient feasibility criterion of Burchard et al. [BLOS95]. Recall
that for

α(τ) = log p(τ) − ⌊log p(τ)⌋ and β(S) = max
τ∈S

α(τ) − min
τ∈S

α(τ)

a sufficient RM-schedulability criterion for a set of tasks S is that

u(S) ≤ 1 − β(S) ln(2),

see Section 2.2 or [BLOS95]. A formal description of our algorithm is as follows

Algorithm 1 FFMP

Input: Set S = {τ1, . . . , τn} of implicit-deadline tasks
Output: Assignment of τ1, . . . , τn to processors P1, P2, . . .

(1) Sort tasks such that 0 ≤ α(τ1) ≤ α(τ2) ≤ . . . ≤ α(τn) < 1
(2) FOR i = 1, . . . , n DO

(3) Assign τi to the processor Pj with the least index j such that
u(Pj ∪ {τi}) ≤ 1 − β(Pj ∪ {τi}) · ln(2)

It is not clear, what exactly one understands under a reasonable probability distribu-
tion. However, here we decide to generate tasks as follows
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1. First arbitrary periods are given by an adversary.

2. Then for each task τ , the utilization u(τ) is drawn uniformly and independently
from [0, 1].

We will measure the quality of a solution in terms of the waste, which is the ratio of
idles times, cumulated over all processors, therefore a solution for task set S, consisting
of k processors has a waste of k − u(S). Clearly minimizing the waste is equivalent to
minimization of the number of partitions.

The main result in this chapter is that FFMP produces a solution with expected waste
of O(n3/4(log n)3/8) if n tasks are drawn according to the above probability distribution.
Consequently the expected approximation ratio of 1 + O(n−1/4(log n)3/8) tends to 1 for
n → ∞, thus the solution is asymptotically optimal on average.

To the best of our knowledge, this is the first proof that any algorithm for MulSched
admits this property w.r.t. a reasonable probability distribution.

The only probabilistic analysis so far for Rate-monotonic scheduling of implicit-
deadline tasks deals with the single processor case. The result of Lehoczky, Sha & Ding
[LSD89] indicates that the reachable processor utilization on average is much better,
than the worst-case value of ln(2) ≈ 69%. For example, if periods are drawn from [1, 100]
and the running times are scaled by the largest value, such that the system is barely
schedulable, then the utilization tends to 88% for n → ∞.

To achieve our results, we use the following approach: We introduce an auxiliary
algorithm FFMP∗ and prove that for any task set, it needs at least as many processors as
FFMP. Thus it suffices to derive an upper bound on the waste of this easier algorithm.
We then point out that for suitable subsets of the input tasks, FFMP∗ behaves like a well
studied BinPacking algorithm, termed FirstFit∗. Eventually this allows to bound the
waste for FFMP∗ in terms of the waste of FirstFit∗.

Finally we discuss the worst-case behaviour of FFMP in Section 4.5 and show in Sec-
tion 4.6 how it can be implemented to run in time O(n log n) .

We begin by describing average-case analyses for BinPacking, focusing especially on
the result of Shor [Sho84] on the waste of FirstFit and FirstFit∗.

4.1 Average case for Bin Packing

Recall that heuristics for BinPacking like FirstFit, NextFit, BestFit, as well as
FirstFitDecreasing and BestFitDecreasing have in the worst case asymptotic appro-
ximation ratios between 11/9 and 2 [GGJY76, Joh73].

On the other hand, if the items are generated randomly, the heuristics perform much
better, than in the worst-case scenarios. For item sizes drawn uniformly at random from
[0, 1], the BestFit algorithm yields an expected waste of Θ(

√
n log3/4 n) [Sho84], while for

FirstFit this value is lower bounded by Ω(n2/3) and upper bounded by O(n2/3
√

log n)
[Sho84]. In fact, a FirstFitDecreasing approach yields an even smaller waste of
Θ(

√
n) [Fre80, Knö81, Lue82]. NextFit on the other hand produces a linear waste of

(1
3
± o(1))n = Ω(n) [CSHY80]. If item sizes are drawn uniformly from [0, α], for any con-

stant α ≤ 1/2, the waste of FirstFitDecreasing is even constant with high probability.
Note that here the waste is defined similar to multiprocessor scheduling, namely as the
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number of bins minus the sum of all item sizes. See also the survey of Coffman, Garey &
Johnson [CGJ84].

4.2 The result of Shor

We are especially interested in the result of Shor [Sho84], that the expected waste for
FirstFit (w.r.t. item sizes uniformly distributed from [0, 1]) is upper bounded by
O(n2/3

√
log n), since we want to adapt it for FFMP. For the sake of completeness FirstFit

is stated as Algorithm 2.

Algorithm 2 FirstFit

Input: Items I = {a1, . . . , an} (ai ∈ [0, 1])
Output: Assignment of items to bins B1, B2, . . .

(1) FOR i = 1, . . . , n DO

(2) Assign item ai to the bin Bj with the smallest index j
such that size(Bj) + ai ≤ 1

Shor first introduced a simplified algorithm, termed FirstFit∗, which is FirstFit with
the additional restriction, that an item is never assigned to a bin, owning already an item
of size less than 1/2.

Algorithm 3 FirstFit∗

Input: Items I = {a1, . . . , an} (ai ∈ [0, 1])
Output: Assignment of items to bins B1, B2, . . .

(1) FOR i = 1, . . . , n DO

(2) Assign item ai to the bin Bj with the smallest index j such that either Bj is
empty or both of the following conditions hold

• Bj contains one item and this item has size ≥ 1/2

• size(Bj) + ai ≤ 1

That means each bin in the solution contains either 1 or 2 items. Although it seems
intuitive that restricting the choices of an approximation algorithm should not improve
the quality of a solution, this is not true in general for all algorithms. But with some
effort, one can prove that FirstFit∗(I) ≥ FirstFit(I) for all instances I. Here, for a
BinPacking instance I and an algorithm A, by a slight abuse of notation A(I) denotes
both, the solution and the value of the solution, which is produced if applying A to I.

In a first step, a simple case analysis yields that FirstFit∗ is monotonic, i.e.

FirstFit∗(I\{ai}) ≤ FirstFit∗(I)

for all instances I and items ai ∈ I. Here, the simplicity of the algorithm is heavily
exploited. Iterating this argument of course yields that removing any subset of items,
can only lower the number of bins in the produced solution.
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Figure 4.1: Example of an instance I = (a1, . . . , a6) = (0.4, 0.6, 0.5, 0.6, 0.2, 0.2), assigned
to bins by FirstFit. Dark items are also part of sub-instance I ′ = (a1, a2, a4, a5). Observe
that indeed FirstFit∗(I ′) = FirstFit(I).

Next consider an instance I and obtain a sub-instance I ′ ⊆ I as follows: Remove all
items from I that are assigned by FirstFit to bins, which at that time contain at least
one task of utilization less than 1/2 (see Figure 4.1 for an example). In other words,
we obtain I ′, by removing all items from I, which are assigned to bins, that FirstFit∗

would have considered to be full.
As a consequence, the restricted algorithm distributes I ′ in the same way, that

FirstFit distributes I ′ in the solution FirstFit(I). Hence

FirstFit(I) = FirstFit∗(I ′) ≤ FirstFit∗(I)

yields the desired domination claim.
Now it suffices to give an upper bound on the expected waste of the simplified algo-

rithm FirstFit∗. To this end, we transfer our analysis into a geometric setting. For each
item ai, we create a point (ai, i/n) in the unit square. If ai ≤ 1/2 we call it a − point,
otherwise a + point. Next, mirror the + points at the x = 1/2 line (see Figure 4.2 (a)).

We may now interpret the FirstFit∗ algorithm as follows: Match each − point a to
that + point b, which is to the right of a and is most upwards. If such a + point does
not exist, leave the − point unmatched (see Figure 4.2 (b)). Note that a + point p+ lies
above a − point p−, if the large item corresponding to p+ arrives before p−. Furthermore
p+ lies to the right of p− if and only if the item sizes sum up to a value smaller than 1.

The expected waste can now be bounded by the expected number of unmatched
points.

We introduce some notation for the further analysis. An upright matching is a match-
ing between the points such that a − point is matched to a + point that is above and
to the right. Additionally we call a matching well-ordered, if for pairs (a, b), (c, d) of
matched points (p = (xp, yp) ∈ R2 for p ∈ {a, b, c, d}) with ya > yc > yd > yb one has
xb < xc. In Figure 4.3 the left pair is well-ordered, the right one is not. We observe that
FirstFit∗ produces well-ordered matchings. In fact, one can prove, that among all well-
ordered upright matchings, the FirstFit∗ algorithm finds one of maximum cardinality.
Thus it remains to show that there exists a well-ordered upright matching that leaves in
expectation only O(n2/3

√
log n) many nodes unmatched.
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Figure 4.2: (a) shows items turned into − and + points. In (b) a + point with coordinates
(x, y) is mapped to (1− x, y). Edges denote the upright matching, which is produced by
FirstFit∗.
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Figure 4.3: Pair of edges in (a) is well-ordered, while this is not true for (b).
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Figure 4.4: Unit square with v × u grid in (a). Balls depict grid points. In (b) rows are
split into v/u = Θ∗(n1/3) many rectangles, each containing a u × u grid. Note that gray
edges belong to M− or M+, resp.

Here the following lemma is useful:

Lemma 4.1 (Leighton, Shor [LS89]). Draw n points uniformly at random from [0, 1]2.
Then with probability of at least 1 − 1/n, these points can be matched to grid points of a√

n ×√
n grid such that all matching edges have length of O((log n)3/4/

√
n).

This lemma is not directly applicable to our setting, for example in our distribution
the y-coordinates are not drawn uniformly at random. But given the point with the
jth smallest y-coordinate w.r.t. uniform distribution, moving it to y = j/n takes an
expected distance of O(1/

√
n). Next, transforming the half square [0, 1] × [0, 1/2] into

the unit square can only affect constants. The same happens, if we assume that we have
n − points and the same number of + points. Thus we may at least assume that our
distribution coincides with the assumptions from Lemma 4.1.

We now show, how to construct an upright matching, leaving O(n2/3
√

log n) points
unmatched. To simplify the presentation we use the O∗-notation, which suppresses any
poly-logarithmic term. This precision will be enough to explain the exponent of 2/3 —
the poly-logarithmic term then drops out from calculus. First place a grid of n = v×u =
Θ∗(n2/3) × Θ∗(n1/3) points in the unit square (see Figure 4.4 (a)). In other words, each
row contains u = Θ∗(n1/3) many grid points, while each column contains v = Θ∗(n2/3)
grid points.

We want to match the + and − points to the grid points. However, the grid is not
quadratic in the sense, that a row would contain the same number of grid points than
a column. But by grouping the rows, we may partition the grid into rectangles, each
containing a u × u = Θ∗(n1/3) × Θ∗(n1/3) grid (see Figure 4.4 (b)). Each such rectangle
contains in expectation Θ∗(n2/3) many − and + points. A simple application of the
Chernoff bound (see e.g. [MU05, AS08]) yields that with high probability, the number of
−/+ points differs by at most O∗(n1/3) from the number of grid points in the rectangle.
Since we have O∗(n1/3) many squares, summing up the differences yields at most O∗(n2/3)
points, which are discarded from now on.

50
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(i + Θ∗(1), j + Θ∗(n1/3) − i)

−
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∈ M−
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Figure 4.5: Construction of the upright matching out of M−, M+.

Though the rectangles are not unit squares, we can apply Lemma 4.1 to obtain with
high probability matchings M−, M+, assigning the remaining + and − points to the grid
points, such that edges in M− and M+ cross at most O∗(1) grid lines (see Figure 4.4 (b)).

Next consider the − point, which is matched to grid point (i, j) in M−. We connect
it to that + point, which is matched to the grid point (i + Θ∗(1), j + Θ∗(n1/3)− i) in M+

(see Figure 4.5).
We observe that this is in fact an upright matching. It leaves a few nodes uncovered,

namely the − points in the highest O∗(n1/3) rows and in the rightmost O∗(1) columns
(similar for the lowest/leftmost + points). However these are just O∗(n2/3) many.

As a technical difficulty, the obtained matching is not necessarily well-ordered, but
by switching pairwise edges we may establish this property without decreasing the car-
dinality.

4.3 An auxiliary algorithm

We now begin to derive an upper on the expected waste for FFMP, if applied to a set
of implicit-deadline tasks S. Like FirstFit∗ is a restriction to FirstFit, we next state
a restricted version of FFMP. Let γ := γ(n) be an integer value, which we are going
to choose later. First, the algorithm partitions the tasks into groups S1, . . . ,Sγ with
Sj = {τi ∈ S | j−1

γ
≤ α(τi) < j

γ
}, thus the α-values of tasks from the same group

differ only slightly. Next, FFMP∗ never assigns more than 2 tasks to each processor and
tasks from different periods are never mixed. Here we say that an algorithm mixes two
tasks τ1, τ2, if they are assigned to the same processor. The algorithm even considers a
processor to be full, if the first assigned task has a utilization of at most ≈ 1/2. Note
that this algorithm is precisely tailored for the used probability distribution. A formal
definition of FFMP∗ can be found as Algorithm 4.

Note that 1 − ln(2)
γ

is just slightly below 1. Observe that FFMP∗ assigns either one or

two tasks to each processor. Let FFMP∗(S) be the number of processors, needed when
scheduling tasks S with algorithm FFMP∗. As a slight abuse of notation FFMP∗(S) means
as well the schedule, obtained when applying FFMP∗ to S, however the meaning will be
clear from the context. From Theorem 2.1 we see that the produced solution is always
feasible, since either a single task is assigned to a processor or in case that two tasks are
assigned, their α-values differ by at most 1/γ and their cumulated utilization is upper
bounded by 1 − ln(2)/γ.
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Algorithm 4 FFMP∗

Input: Set S = {τ1, . . . , τn} of implicit-deadline tasks
Output: Assignment of τ1, . . . , τn to processors P1, P2, . . .

(1) Sort tasks such that 0 ≤ α(τ1) ≤ . . . ≤ α(τn) < 1
(2) Partition tasks into groups S1, . . . ,Sγ with Sj = {τi ∈ S | j−1

γ
≤ α(τi) < j

γ
}.

(3) FOR i = 1, . . . , n DO

(4) Assign τi to the processor Pj with the least index j such that either Pj is empty
or all following conditions are satisfied

(a) Pj contains only one item and this item is from the same group as τi

(b) the item on Pj has utilization ≥ (1 − ln(2)
γ

)/2

(c) u(Pj ∪ {τi}) ≤ 1 − ln(2)
γ

The following observation is crucial for our analysis and allows to link the expected
waste of FFMP∗ to FirstFit∗.

Observation 4.2. Consider tasks τ1, . . . , τm such that one has j−1
γ

≤ α(τi) < j
γ

(i.e. all

tasks fall into the same group) and 0 ≤ u(τi) ≤ 1 − ln(2)
γ

for all i = 1, . . . , m. Create

m BinPacking items a1, . . . , am with item sizes ai := u(τi) · /(1 − ln(2)/γ), i.e. ai ∈
[0, 1]. Then FFMP∗ schedules τ1, . . . , τm in exactly the same way, as FirstFit∗ distributes
a1, . . . , am, i.e. task τi is assigned to the ℓth processor if and only if item ai is assigned
to the ℓth bin. Especially FFMP∗({τ1, . . . , τm}) = FirstFit∗({a1, . . . , am}).

The main result of this section will be to show that FFMP∗(S) ≥ FFMP(S) for any set
of tasks S. The simplicity of FFMP∗ will enable us to prove monotonicity for it, meaning
that removing tasks from S can only lower the value of FFMP∗(S).

Lemma 4.3. For any set of tasks S and τ ∗ ∈ S one has

FFMP∗(S) ≥ FFMP∗(S\{τ ∗}) ≥ FFMP∗(S) − 1

Proof. Denote S ′ = S\{τ ∗} and let S1, . . . ,Sγ [S ′
1, . . . ,S ′

γ] be the groups of S [S ′, resp.].
Let i∗ be the index such that τ ∗ ∈ Si∗ . Since the algorithm never mixes tasks from differ-
ent groups one has FFMP∗(S ′

i) = FFMP∗(Si) for all i 6= i∗ and FFMP∗(S) =
∑γ

i=1 FFMP
∗(Si).

Thus we may assume that all groups but Si∗ are empty. Furthermore tasks with utiliza-
tion larger than 1 − ln(2)

γ
are never mixed with other tasks, thus their removal does not

affect the assertion. Due to this we may assume that such tasks are not contained in
S = Si∗ , hence S contains just tasks from the same group, all with utilization at most
1 − ln(2)

γ
. Sticking together Observation 4.2 and the monotonicity of FirstFit∗ [Sho84],

then yields the claim.

By iteratively applying Lemma 4.3 we obtain

Corollary 4.4. FFMP∗ is monotone, i.e. for all task sets S and S ′ ⊆ S one has

FFMP∗(S) ≥ FFMP∗(S ′).
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We may now conclude that the restricted variant of FFMP never produces better solu-
tions than FFMP itself.

Theorem 4.5. For all task sets S one has

FFMP∗(S) ≥ FFMP(S).

Proof. Let P1∪̇ . . . ∪̇Pm = S be the solution, computed by FFMP and denote the groups of
S by S1, . . . ,Sγ. Consider an arbitrary processor Pj and after renaming, let τ1, . . . , τp be
the tasks on Pj in incoming order (p ≥ 1). Remove τ3, . . . , τp. Given that p ≥ 2, remove
τ2 if at least one of the following conditions is true

• τ1 and τ2 stem from different groups
• u(τ1) < 1

2
(1 − ln(2)

γ
)

• u({τ1, τ2}) > 1 − ln(2)
γ

Let S ′ ⊆ S the remaining tasks. Clearly FFMP∗ schedules S ′ in exactly the same way
that FFMP schedules them in the solution leading to FFMP(S). Thus FFMP∗(S ′) = FFMP(S).
From Corollary 4.4 we gain FFMP∗(S) ≥ FFMP∗(S ′). Plugging both equations/inequalities
together, yields the claim.

4.4 An upper bound for FFMP∗

In this section we will give an upper bound on the expected waste of FFMP∗, by exploiting
the bound on the waste of FirstFit∗. Again Observation 4.2 will be crucial.

Theorem 4.6. Let f : R≥1 → R be a concave and monotonic increasing function, such
that f(n) yields an upper bound on the expected waste of FirstFit∗, if applied to n items
drawn uniformly at random from [0, 1]. Then the expected waste of FFMP∗ is bounded by
n
γ

+ γ · f(n/γ) for n tasks with arbitrary periods but utilization values drawn uniformly

at random from [0, 1].

Proof. Let S1, . . . ,Sγ be the partition of the tasks S into groups. Denote n = |S| and
ni = |Si|. FFMP∗ never mixes tasks from different groups, thus

FFMP∗(S) =

γ
∑

i=1

FFMP∗(Si).

Consider an arbitrary group Si. Call tasks τ with a utilization of u(τ) > 1 − ln(2)
γ

full

tasks and ordinary tasks otherwise. Let S full
i be the set of full tasks from Si and let

S ′
i = Si\S full

i be the ordinary tasks. Condition on the event |S ′
i| = no

i for an arbitrary
no

i ∈ {0, . . . , ni}. Clearly the algorithm FFMP∗ does not mix ordinary and full tasks, thus

FFMP∗(Si) = FFMP∗(S full
i ) + FFMP∗(S ′

i).

A full task has a utilization of at least 1− ln(2)
γ

, thus for each full task it suffices to account

a waste of ln(2)
γ

≤ 1
γ
. The expected waste stemming from the processors, owning the full
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tasks of group i is then

E[FFMP∗(S full
i ) − u(S full

i )] ≤ ni − no
i

γ
.

It remains to bound the waste from the ordinary tasks. The utilization values of tasks
in S ′

i are conditioned to be in [0, 1 − ln(2)
γ

]. It is not difficult to see that the distribution

of u(τ) for τ ∈ S ′
i is uniformly w.r.t. [0, 1 − ln(2)

γ
]. If we define a BinPacking instance

I ′
i with an item of size u(τ)/(1 − ln(2)

γ
) for each τ ∈ S ′

i, then the item sizes in I ′
i are

distributed uniformly w.r.t. [0, 1]. By Observation 4.2

E[FFMP∗(S ′
i)] = E[FirstFit∗(I ′

i)] ≤
no

i

2
+ f(no

i ).

We can express the expected waste, stemming from the processors owning ordinary tasks
from the ith group as

E[FFMP∗(S ′
i) − u(S ′

i)] ≤
(

no
i

2
+ f(no

i )

)

− E[u(S ′
i)] =

(
no

i

2
+ f(no

i )

)

− no
i

1 − ln(2)/γ

2

≤ f(no
i ) +

no
i

γ

The rest of the proof simply consists of summing up the achieved bounds on the waste.
Combining ordinary and full tasks yields

E[FFMP∗(Si) − u(Si)] ≤
ni − no

i

γ
+

(

f(no
i ) +

no
i

γ

)

≤ f(ni) +
ni

γ

using monotonicity of f . Hence, the total expected waste for solution FFMP∗(S) can be
written as

E[FFMP∗(S) − u(S)]
(∗)
=

γ
∑

i=1

E[FFMP∗(Si) − u(Si)] ≤
γ
∑

i=1

(

f(ni) +
ni

γ

)
(∗∗)
≤ n

γ
+ γ · f(n/γ)

For (∗) we used linearity of expectation and (∗∗) follows by Jensen’s inequality and
concaveness of f .

Applying the best known bound on f(n), we obtain

Theorem 4.7. For the expected waste of FFMP one has

E[FFMP(S) − u(S)] = O(n3/4(log n)3/8),

if S consists of n tasks, whose utilization values are drawn uniformly at random from
[0, 1].

Proof. Theorem 4.5 provides that bounding the waste of FFMP∗ is sufficient. Choosing
γ(n) := ⌈n1/4/(log n)3/8⌉ and using the bound of f(n) = O(n2/3(log n)1/2) [Sho84] to-
gether with Theorem 4.6 yields the claim (observe that c · n2/3 · (log n)1/2 is concave and
monotonic).

54



Observing that OPT (S) = Ω(n) with very high probability, we conclude that

Corollary 4.8. Let S consist of n tasks, whose utilization values are drawn uniformly at
random from [0, 1]. Then the expected approximation ratio of FFMP is

E

[
FFMP(S)

OPT (S)

]

≤ 1 + O(n−1/4(log n)3/8).

4.5 Worst-case behaviour

In this section we outline, that the asymptotic worst-case approximation ratio is bounded
by 2. Furthermore we state the worst case behaviour of FFMP in case that the utilization
of all tasks is small. Later in Chapter 5 we will exploit this fact further. The intuition
behind the next lemma is that the feasibility test u(S) ≤ 1 − β(S) ln(2) causes that
consecutive tasks are treated like items in BinPacking. In other words, the obtained
bounds correspond to that for FirstFit, apart from a constant additive factor. The used
proof technique closely follows [BLOS95, Leu04].

Lemma 4.9. Given implicit-deadline tasks S = {τ1, . . . , τn}. FFMP always produces fea-
sible solutions and

(1) FFMP(S) ≤ 2 · u(S) + 4

(2) If u(τi) ≤ δ ≤ 1
2

for all i = 1, . . . , n, then FFMP(S) ≤ 1
1−δ

u(S) + 3.

(3) Let k ∈ N. If u(τi) ≤ 1
2
− 1

k
for all i = 1, . . . , n, then FFMP(S) ≤ n

2
+ k

2

Proof. The feasibility of the produced solution follows from the criterion of Burchard et
al. (see Lemma 2.1 or [BLOS95]). Let P1, . . . , Pm be the used processors. By α(Pi) =
min{α(τ) | τ ∈ Pi} we denote the α-value of the first task, assigned to Pi by FFMP.
For (1). Let i ∈ {1, . . . , m − 1} and let τ be the first task, assigned to Pi+1 for i ∈
{1, . . . , m − 1}, thus α(τ) = α(Pi+1). But the (i + 1)th processor was only opened
because τ did not fit on a prior processor. Especially it did not fit on Pi, thus

u(Pi) + u(Pi+1) ≥ u(Pi) + u(τ)

> 1 − β(Pi ∪ {τ}) · ln(2)

= 1 − ln(2) · (α(Pi+1) − α(Pi))

Hence

u(S) ≥
⌊m/2⌋
∑

i=1

(u(P2i−1) + u(P2i))

≥
⌊m/2⌋
∑

i=1

(1 − ln(2) · (α(P2i) − α(P2i−1)))

≥ ⌊m/2⌋ − ln(2)

≥ m/2 − 2
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using that the differences of the α-values sum up to at most 1. We conclude that

m ≤ 2u(S) + 4.

For (2). Again, let τ be the first task, assigned to Pi+1 for i ∈ {1, . . . , m − 1}, then
similar to (1) one has

u(Pi) + u(τ) > 1 − β(Pi ∪ {τ}) · ln(2) ≥ 1 − ln(2) · (α(Pi+1) − α(Pi))

and hence u(Pi) ≥ 1 − δ − (α(Pi+1) − α(Pi)). Then

u(S) ≥
m−1∑

i=1

(1 − δ − (α(Pi) − α(Pi+1))) ≥ (m − 1) · (1 − δ) − 1.

We conclude that

m ≤ (u(S) + 1) · 1

1 − δ
+ 1 ≤ u(S) · 1

1 − δ
+ 3

For (3). Now consider the case that all utilizations are bounded by 1
2
− 1

k
. We cannot

directly apply claim (1), since the utilization might tend to n/2, thus (1) would give us
just a bound of roughly n. But we can use that almost each processor is owning two tasks.
For i ∈ {1, . . . , m − 1} consider a processor Pi with |Pi| = 1. Then it must be the case,
that 2 · (1

2
− 1

k
) > 1− (α(Pi+1) − α(Pi)) · ln(2) and α(Pi+1) − α(Pi) > 1

ln(2)
· 2

k
≥ 2

k
. Since

the differences of the α-values of the processors sum up to at most 1, this can happen
at most ⌊k/2⌋ times. We conclude that all but ⌊k/2⌋ + 1 ≤ k processors own two tasks,
thus n ≥ 2m − k and m ≤ n

2
+ k

2
follows.

Note that the multiplicative factors are tight, while we did not optimize the additive
ones.

4.6 Implementation

In the following, we explain how to implement the FFMP algorithm with a complexity
of O(n log n) using a heap data-structure. To this end, we rewrite the predicate of
the feasibility test as follows: Consider the current task τi and a processor P . Recall
that the tasks are ordered by increasing α-values. Thus, the value of β always depends
on the current task and the task already on P that defines the minimum α-value, say
α(P ) = min{α(τj) | τj ∈ P}. Hence, task τi can be scheduled on processor P if

u(P ) + u(τi) ≤ 1 − (α(τi) − α(P )) · ln(2)

which is equivalent to

u(τi) + α(τi) ln(2)
︸ ︷︷ ︸

vi

≤ 1 − u(P ) + α(P ) ln(2)
︸ ︷︷ ︸

ℓP

.

Note that the left-hand side (called vi in the following) only depends on the current task
τi, and that the right-hand side (called ℓP in the following) only depends on the tasks
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which are already scheduled on the processor P . For P = ∅, we define ℓP = ∞. Hence, we
may maintain a binary heap data-structure to find in logarithmic time the processor with
the least index that passes the feasibility test. Viewed as a binary tree, we have n leaves
corresponding to processors. They are labeled with the right-hand sides ℓP depending on
their current utilization and the α-value of the first task which was scheduled on each one.
Initially, they are empty and their labels are ∞. The other nodes of the tree are labeled
with the maximum label of their respective children. See Figure 4.6 for a visualisation.
Starting from the root, we proceed with the left child, if the vi value for the current task
is not greater than the label of the left child. Otherwise, we turn to the right child, which
then has a sufficiently large label by construction. The leaf that we eventually reach,
determines the processor on which we schedule the current task. Since the height of the
binary tree is logarithmic in the number of leaves, i.e. n, we can schedule each task in
O(log n). Moreover, the update of the data-structure also takes O(log n), since we only
need to traverse the tree back to the root and update the labels on this path; any other
label remains invariant.

τ3

P1

τ1

τ2

P2

τ4

P3 P4

ℓP1 = 0.40 ℓP2 = 0.37 ℓP3 = 0.81 ℓP4 = ∞

0.40 ∞

∞

Figure 4.6: Example for the heap structure. We use notation τi = (u(τi), α(τi)). Then
FFMP schedules tasks τ1 = (0.3, 0.0), τ2 = (0.7, 0.1), τ3 = (0.3, 0.2), τ4 = (0.4, 0.3) as
depicted.
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Chapter 5

Beating the Worst-case
Approximation Ratio

We again deal with Rate-monotonic multiprocessor scheduling of a set S = {τ1, . . . , τn}
of implicit-deadline tasks, i.e. each task τi = (c(τi), p(τi)) releases a job of length c(τi)
at each integer multiple of the period p(τi). In this chapter we beat the asymptotic 7/4-
approximation algorithm of the Rate-monotonic General Task algorithm (RMGT) of Bur-
chard et al. [BLOS95] by obtaining an asymptotic 3/2-approximation based on matching
techniques.

Let us start with describing the RMGT algorithm (see Algorithm 5). It splits the
instance S into small tasks with utilization at most 1/3 and the remaining large tasks of
utilization larger than 1/3. The small tasks are distributed in a Next Fit manner using
the sufficient feasibility criterion u(S ′) ≤ 1 − β(S ′) ln(2) for S ′ ⊆ S. The large tasks
are distributed in a First Fit manner, where one exploits that there is a simple exact
RM-schedulability test for 2 tasks (see Section 2.2). Consider the obtained solution. We
call a processor

• small if it owns small tasks
• 1-processor if it owns a single large task
• 2-processor if it owns 2 large tasks.

Then one can show that the average utilization of the small processors, 1-processors and
2-processors must be at least 2/3−o(1), 1/2−o(1) and 2/3, respectively. Since we use the

Algorithm 5 Rate-monotonic general task algorithm (RMGT) [BLOS95]

Input: Set S = {τ1, . . . , τn} of implicit-deadline tasks
Output: Assignment of τ1, . . . , τn to processors P1, P2, . . .

1. Split S into Ss = {τ ∈ S | u(τ) ≤ 1/3} and Sℓ = {τ ∈ S | u(τ) > 1/3}.
2. Sort Ss by increasing α-values.
3. Distribute tasks in Ss via Next Fit where S ′ ⊆ Ss is considered as feasible, if

u(S ′) ≤ 1 − β(S ′) ln(2).
4. Distribute tasks in Sℓ via First Fit, using the exact feasibility test for 2 tasks.
5. Output the union of both schedules.
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exact feasibility test for distributing the large tasks, the number of 1-processors yields a
lower bound on OPT . Plugging together these obtained bounds then yields the claimed
asymptotic approximation guarantee of 7/4.

We now wonder, how this algorithm could be improved. Observe that for the sub-
instance of large tasks we can even compute an optimum solution using matchings. It
lies on hand to use this fact for an approximation algorithm that improves over the ratio
of 7/4.

5.1 A matching based algorithm

Let G = (V, E) be an undirected graph. A matching is a subset of edges, which are
pairwise disjoint. The MinCostMatching problem is defined as

MinCostMatching
Given: An undirected graph G = (V, E) with edge costs c : E → Q.
Find:

min

{
∑

e∈M

c(e) | M is a matching

}

Note that edge costs might be negative, since otherwise the empty matching would
be optimal. The MinCostMatching problem can be solved in polynomial time using
Edmonds’ famous Blossom algorithm [Edm65b, Edm65a]. This algorithm can be imple-
mented to run in time O(n3) [Sch03] and even in time O(n(m + n log n)) for graphs with
m edges, see Gabow [Gab90]. We refer to the books of Cook, Cunningham, Pulleyblank
& Schrijver [CCPS97] and of Schrijver [Sch03] for an extensive account on matchings.

We define an undirected graph G = (S, E), whose nodes are the tasks and which
contains an edge {τ1, τ2} ∈ E, if and only if the set {τ1, τ2} of tasks is RM-schedulable
on a single processor. Furthermore we have edge weights c : E → Q and node weights
w : S → Q, for which we will give a suitable choice in a few sentences. It is our aim that
a minimum cost matching in this graph yields a good multiprocessor schedule. Here it
will pay off, to define the cost of a matching M ⊆ E in a non-standard way as the cost
of the edges in M plus the cost of the nodes, which are not covered by M . Formally

c(M) :=
∑

e∈M

c(e) +
∑

τ∈S\M
w(τ)

where, by a slight abuse of notation S\M := {τ ∈ S | τ not covered by M}.
We now want to determine edge and node weights, such that any matching M of

cost, say δ, can be turned into a feasible multiprocessor schedule using essentially δ many
processors.

By definition, two tasks {τ1, τ2} = e ∈ M can be scheduled on a single processor,
thus we choose unit edge costs, i.e. c(e) := 1 for all e ∈ E. We want to distribute tasks
that not covered by M with FFMP. Recall that the FFMP algorithm distributes tasks in a
simple First Fit manner, respecting the following bounds (see Lemma 4.9 in the previous
chapter):
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Figure 5.1: Graph of node weights w(τ) for k = 1.

• FFMP(S) ≤ 1
1−maxτ∈S u(τ)

u(S) + 3.

• Let q ∈ N and u(τ) ≤ 1
2
− 1

q
for all i = 1, . . . , n. Then FFMP(S) ≤ n

2
+ q

2
.

We define the node weights depending on the utilization. Here we distinguish 3 categories
of tasks:

• Small tasks (0 ≤ u(τ) ≤ 1
3
): Consider tasks τ1, . . . , τm with a small utilization, i.e.

u(τi) ≤ umax for all i = 1, . . . , m and umax ≤ 1/3. Then we may schedule such tasks
with FFMP using

u({τ1, . . . , τm})
1

1 − umax
+ 3 ≤ m · umax

1

1 − umax
+ 3

many processors, thus we choose w(τ) := u(τ)
1−u(τ)

for a small task τ .

• Medium tasks (1
3

< u(τ) ≤ 1
2
− 1

12k
): Suppose we have tasks τ1, . . . , τm whose

utilization is at least 1/3, but bounded away from 1/2, say u(τi) ≤ 1
2
− 1

12k
, where

k is an integer parameter that we determine later. Then FFMP({τ1, . . . , τm}) ≤
m/2 + O(k), thus we choose w(τ) := 1/2 for medium tasks.

• Large tasks (u(τ) > 1
2
− 1

12k
): For a large task one processor is sufficient and possibly

needed, thus w(τ) := 1 in this case.

For a choice of k = 1 the graph of w can be found in Figure 5.1.
We now have all ingredients that we need for our algorithm RMMatching: We first

compute an optimum matching M w.r.t. weights c and w. Each edge in M yields a pair
of tasks schedulable together on a single processor. The uncovered tasks are distributed
by FFMP. See Algorithm 6 for a formal description.

In our first proof we derive a polynomial bound on the running time.

Lemma 5.1. The RMMatching algorithm can be implemented to run in time O(n3).
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Algorithm 6 RMMatching

Input: Set S = {τ1, . . . , τn} of implicit-deadline tasks; parameter k ∈ N
Output: Assignment of τ1, . . . , τn to processors P1, P2, . . .

1. Construct G = (S, E) with edges (τ1, τ2) ∈ E ⇔ {τ1, τ2} RM-schedulable. Choose
edge costs c(e) = 1 and vertex costs

w(τ) =







u(τ) · 1
1−u(τ)

if u(τ) ≤ 1
3

1
2

if 1
3

< u(τ) ≤ 1
2
− 1

12k

1 if u(τ) > 1
2
− 1

12k

2. Find a matching M ⊆ E minimizing

∑

e∈M

c(e) +
∑

τ∈S\M
w(τ)

3. For all {τ1, τ2} ∈ M create a processor with tasks {τ1, τ2}
4. Define

• Si = {τ ∈ S\M | 1
3
· i−1

k
≤ u(τ) < 1

3
· i

k
} ∀i = 1, . . . , k

• Sk+1 = {τ ∈ S\M | 1
3
≤ u(τ) ≤ 1

2
− 1

12k
}

• Sk+2 = {τ ∈ S\M | u(τ) > 1
2
− 1

12k
}

5. Distribute Sk+2,Sk+1, . . . ,S1 via FFMP.
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Proof. For each set {τ1, τ2}, RM-schedulability can be tested in constant time [Leu04],
thus the graph G can be constructed in O(n2). The running time of FFMP is O(n′ log n′)
for scheduling n′ tasks, thus the total running time spent for Step (5) of the algorithm is
certainly upper bounded by O(n3).

It remains to show, how a min-cost matching M can be computed. But the cost of a
matching M can be rewritten as

∑

e∈M

c(e) +
∑

τ∈S\M
w(τ) =

∑

{τ1,τ2}∈M

(c(τ1, τ2) − w(τ1) − w(τ2)) +
∑

τ∈S
w(τ).

Since the second summand
∑

τ∈S w(τ) does not depend on M , this expression can be
minimized by a single MinCostMatching application with edge costs c′(τ1, τ2) :=
c(τ1, τ2) − w(τ1) − w(τ2). The claim then follows.

In a next step, we derive an upper bound on the approximation ratio.

Theorem 5.2. The RMMatching algorithm produces a solution of cost at most (3
2

+
1
k
)OPTMulSched + 9k.

Proof. Let P1, . . . , Pm with m = OPTMulSched(S) be an optimum solution for task set S.
Now we will prove that

(I) There is a matching solution of cost at most (3
2

+ 1
12k

)OPTMulSched.

(II) RMMatching turns a matching M of cost δ into an MulSched solution of at most
(1 + 1

2k
)δ + 9k many processors.

The claim then follows from (I)+(II), since
(

1 +
1

2k

)

·
(

3

2
+

1

12k

)

OPTMulSched + 9k ≤
(

3

2
+

1

k

)

OPTMulSched + 9k.

Part (I). Consider a processor Pi. After reordering let τ1, . . . , τq be the tasks on Pi,
sorted such that u(τ1) ≥ . . . ≥ u(τq). First suppose that q ≥ 2. We will either cover
the two tasks with highest utilization in Pi by a matching edge or leave all tasks from Pi

uncovered. But in any case we guarantee, that the tasks in Pi contribute at most 3
2
+ 1

12k

to the cost of the matching.

• Case: u(τ1) ≤ 1/3. We leave all tasks in Pi uncovered. This contributes at most

q
∑

j=1

w(τj) =

q
∑

j=1

u(τj)

︸ ︷︷ ︸

≤1

·

≤3/2
︷ ︸︸ ︷

1

1 − u(τj)
︸ ︷︷ ︸

≤1/3

≤ 3

2

• Case: u(τ2) ≤ 1
3

< u(τ1) ≤ 1
2
− 1

12k
. Again we do not cover any task by a matching

edge. The contribution is

w(τ1)
︸ ︷︷ ︸

=1/2

+

q
∑

j=2

w(τj) =
1

2
+

q
∑

j=2

u(τj)

︸ ︷︷ ︸

≤2/3

·

≤3/2
︷ ︸︸ ︷

1

1 − u(τj)
︸ ︷︷ ︸

≤1/3

≤ 3

2
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• Case: u(τ1) > 1
2
− 1

12k
. We add {τ1, τ2} to the matching and leave τ3, . . . , τq uncov-

ered. The contribution is

1 +

q
∑

j=3

u(τj)

︸ ︷︷ ︸

≤1−u({τ1,τ2})

· 1

1 − u(τj)
︸ ︷︷ ︸

≤u(τ2)

≤ 1 +
1 − u(τ1) − u(τ2)

1 − u(τ2)
≤ 2 − u(τ1) ≤

3

2
+

1

12k
.

• Case: 1
3

< u(τ2) ≤ u(τ1) ≤ 1
2
− 1

12k
. We again add {τ1, τ2} to the matching. The

contribution is

1 +

q
∑

j=3

w(τj) = 1 +

q
∑

j=3

u(τj)

︸ ︷︷ ︸

≤1/3

·

≤3/2
︷ ︸︸ ︷

1

1 − u(τj)
︸ ︷︷ ︸

≤1/3

≤ 3

2

since u({τ1, τ2}) ≥ 2/3.

If q = 1, then we do not cover τ1. The contribution is at most 1.
Part (II). It remains to show, that a matching solution M of cost δ is turned into a

MulSched solution, consisting of at most (1 + 1
2k

)δ + 9k processors. Recall that

δ = |M | +
∑

τ∈S1∪...∪Sk+2

w(τ).

We create |M | processors, covering pairs of tasks {τ1, τ2} ∈ M . For scheduling the tasks
in Sk+1 we know that according to Lemma 4.9

FFMP(Sk+1) ≤
|Sk+1|

2
+

12k

2
=
∑

τ∈Sk+1

w(τ) + 6k,

using that the utilization of all tasks in Sk+1 lies between 1
3

and 1
2
− 1

12k
. Of course

FFMP(Sk+2) ≤ |Sk+2| =
∑

τ∈Sk+2
w(τ). Let i ∈ {1, . . . , k}. For Si we know that the

utilization of each task in Si is sandwiched between 1
3
· i−1

k
and 1

3
· i

k
. Consequently

FFMP(Si) ≤
1

1 − 1
3
· i

k

u(Si) + 3 ≤ 1 + 1
2k

1 − 1
3
· i−1

k

· u(Si) + 3 ≤
(

1 +
1

2k

)
∑

τ∈Si

w(τ) + 3

using again Lemma 4.9. We conclude, that the total number of processors in the produced
solution is bounded by

|M | +
k+2∑

i=1

FFMP(Si) ≤ |M | +
(

1 +
1

2k

)
∑

S1∪...∪Sk+2

w(τ) + 3k + 6k

≤
(

1 +
1

2k

)

δ + 9k.

The claim then follows.
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We conclude

Corollary 5.3. For any choice of k = ω(1) and k = o(u(S)), RMMatching is an asymp-
totic 3/2-approximation algorithm.

We furthermore see, that the algorithm produces a near optimal solution, if all tasks
are large.

Corollary 5.4. If u(τ) > 1/3 for all tasks τ ∈ S, then RMMatching computes a solution
of cost at most

OPTMulSched(S) + 6k.

Proof. Let P1, . . . , Pm be an optimum multiprocessor schedule for S. Then there is a
matching M of cost at most m, by taking the paired tasks as matching edges. Note that
S1 = . . . = Sk = ∅, since u(τ) > 1/3 for all tasks. Similar to the proof of Theorem 5.2
we see, that the produced MulSched solution will have cost of at most

|M | + FFMP(Sk+1) + FFMP(Sk+2) ≤ |M | +
∑

τ∈Sk+1∪Sk+2

w(τ) + 6k ≤ m + 6k.

This concludes the assertion.

Remark 5.5. For large instances, the running time of O(n3) might not be acceptable for
application purposes. We now outline, how to speed up the algorithm without signifi-
cantly worsen the quality of the solutions in practice. On the other hand, we will not be
able anymore to guarantee the asymptotic worst-case approximation ratio of 3/2.

Consider the graph G, constructed in the algorithm and redefine the node weights
w(τ), such that w(τ) = 1/2 for 1/3 ≤ u(τ) ≤ 1/2. We may now delete all edges e with
c′(τ1, τ2) = c(τ1, τ2) − w(τ1) − w(τ2) ≥ 0 from the graph G, since they are not needed
for a min-cost matching. For each remaining edge e = (τ1, τ2) either τ1 or τ2 must be
large (i.e. u(τ1) > 1/2 or u(τ2) > 1/2). Consequently G is bipartite and a min-cost
matching can be found very efficiently either by the so called Hungarian method (see e.g.
[Sch03]) or by using a powerful LP solver like CPLEX, applied to the standard matching
LP formulation [Sch03]. To further increase the performance one can make the graph
sparse, by removing all but the m weight-minimal edges (w.r.t. c′) adjacent to τ , for each
τ ∈ S with u(τ) > 1/2. Here m can be chosen as a small constant, say m = 10.

5.2 Average-case behaviour

In many cases the provable guarantee of approximation algorithms is at the expense of
the practical performance. However, we believe that this is not the case for RMMatching.
Using the results from Chapter 4 we can show with very little effort that our algorithm has
an expected waste of O(n3/4(log n)3/8) (the same bound as for FFMP) if the input consists
of n tasks with arbitrary periods, but utilization values drawn uniformly at random from
[0, 1].

Recall that the waste of a solution is defined as the number of processors minus
the utilization. In Chapter 4 we proved that the O(n3/4(log n)3/8) upper bound on the
expected waste even holds for the restricted algorithm FFMP∗, which never assigns more
than two tasks per processor. It immediately follows that
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Lemma 5.6. Let OPT 2
MulSched(S) be the minimum number of processors, needed to RM-

schedule S, such that never more than 2 tasks are assigned to the same processor. If
S = {τ1, . . . , τn} and each u(τi) is drawn uniformly at random from [0, 1], then

E
[
OPT 2

MulSched(S)
]
≤ E[u(S)] + O(n3/4(log n)3/8).

With this result at hand, the following proof is easy to obtain.

Lemma 5.7. Assign arbitrary periods to n tasks S = {τ1, . . . , τn} and draw u(τi) ∈ [0, 1]
uniformly at random. For a parameter k = ⌈√n⌉ one has

E[RMMatching(S)] ≤ E[u(S)] + O(n3/4(log n)3/8).

Proof. Considering the definition of G in RMMatching we observe that there is a matching
solution of cost at most OPT 2

MulSched(S). Recalling part (II) of the proof of Theorem 5.2,
we know that the algorithm produces a solution of expected cost at most

E

[(

1 +
1

2k

)

OPT 2
MulSched(S) + 9k

]

≤
(

1 +
1

2
√

n

)

·
(
E[u(S)] + O(n3/4(log n)3/8)

)
+ 9⌈

√
n⌉

≤ E[u(S)] + O(n3/4(log n)3/8)

using that E[u(S)] = n/2.
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Chapter 6

A Column-based Linear
Programming Relaxation

As a standard technique in discrete optimization we will consider the integer linear pro-
gram for the MulSched problem and the corresponding linear programing (LP) relax-
ation. Again let S = {τ1, . . . , τn} be implicit-deadline tasks and we aim at finding a
partition of S into RM-schedulable systems S1, . . . ,Sk with k minimal.

In this chapter we obtain that the asymptotic integrality gap of the column-based
MulSched LP relaxation is sandwiched between 4/3 ≈ 1.33 and 1 + ln(2) ≈ 1.69. To
the best of our knowledge, this is the first result dealing with this LP relaxation.

6.1 The LP relaxation for Bin Packing

We remember that MulSched is a generalization of BinPacking, thus it will again
pay off, to first consider the well-studied LP relaxations for the latter problem. Suppose
we are given a BinPacking instance I = {a1, . . . , an} with item sizes 0 ≤ ai ≤ 1. The
intuitive way to model such a problem as an integer linear program is by introducing
binary decision variables xij , which are 1 if and only if item ai is assigned to bin j. But
this formulation allows that items may be arbitrarily split, consequently the optimum
fractional value always equals the trivial lower bound of size(I) =

∑

i:ai∈I ai. Such a
formulation is therefore not helpful.

This is the motivation for introducing the Gilmore-Gomory LP formulation [GG61],
which is column-based. We call x ∈ {0, 1}n a pattern if x denotes a feasible way to pack
a single bin, i.e. if aT x ≤ 1. Let P(I) = {x ∈ {0, 1}n | aT x ≤ 1} be the set of all feasible
patterns. The LP relaxation is then

min1T λ (BLP )
∑

x∈P
λxx ≥ 1

λ ≥ 0

where λx is a variable, telling us, whether to use a pattern x. Let OPT f
BinPacking(I) be

the optimum value of this LP. In general this linear program has an exponential number
of variables, but only n constraints. That means one might have a chance to solve the
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dual, which has only a polynomial number of variables. The dual is

max1T w (DLP )

wT x ≤ 1 ∀x ∈ P
w ≥ 0

The Ellipsoid algorithm [Kha79, GLS81] can find an optimum solution to (DLP ) in
polynomial time, if we can separate the set of solutions, i.e. if for a given vector w, we
can decide in polynomial time whether w is feasible or if not, yield a violated constraint.
Hence, we have to solve the following separation problem

max

n∑

i=1

xiwi

n∑

i=1

aixi ≤ 1

x ∈ {0, 1}n

which is exactly the Knapsack problem with item sizes ai and profits wi.

Knapsack
Given: Profits c1, . . . , cn ∈ Q+, weights a1, . . . , an ∈ Q+, bound B > 0
Find:

max

{
∑

i∈I

ci | I ⊆ {1, . . . , n} :
∑

i∈I

ai ≤ B

}

Although Knapsack is weakly NP-hard [GJ79, Weg05], there is an efficient FPTAS
available [KPP04, Vaz01]. That means we can solve the separation oracle approximately.
Consequently for any ε > 0, we can find a solution for the Gilmore-Gomory LP relaxation
of cost at most (1 + ε)OPT f

BinPacking(I) in time polynomial in n and in 1/ε [GLS81]. For
example we can even find a fractional basic solution of cost at most OPT f

BinPacking(I)+1.
The asymptotic integrality gap is defined as

lim sup
OPT (I)→∞

OPT (I)

OPTf(I)

An outstanding result of Karmarkar & Karp is that this gap is 1 for BinPacking. More
precisely

Theorem 6.1. [KK82] For any BinPacking instance consisting of n items, one has

OPTBinPacking − ⌈OPT f
BinPacking⌉ = O(log2 n).

Moreover the result is constructive, i.e. an integral solution of cost OPT f
BinPacking +

O(log2 n) can be found in polynomial time. This still holds if n is the number of different
item sizes and the LP is equipped with a general right hand side

min1T λ
∑

x∈P
λxx ≥ b

λ ≥ 0
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Here bi ∈ N denotes the multiplicity of item type ai. One can briefly sketch the
Karmarkar-Karp algorithm as follows

1. Compute a near optimal basic solution λ to (BLP )

2. Use ⌊λx⌋ times pattern x

3. Create a dominating instance I ′ with n/2 many different item sizes and recurse.

A basic feasible solution to (BLP ) has at most n patterns x with λx > 0. Consequently
the cumulated size of the items, which remain after step (2) is at most n. Then by
rounding item sizes, the number of different item types is decreased to n/2, while this
increases the value of OPT f

BinPacking by not more than O(log n). The promised bound
follows by observing that the recursion depth is O(log n).

An even stronger claim is conjectured:

Conjecture. (Mixed Integer Roundup Conjecture). For all BinPacking instances one
has OPTBinPacking − ⌈OPT f

BinPacking⌉ ≤ 1.

Clearly we wonder, whether similar properties also hold for the more general case of
MulSched. We will now see, that this is not true.

6.2 The LP relaxation for multiprocessor scheduling

Let S = {τ1, . . . , τn} be a set of implicit-deadline tasks. In the same manner as for
BinPacking, a pattern x = χ(S ′) is now redefined as the characteristic vector of an
RM-schedulable set S ′ ⊆ S. Furthermore denote

P := P(S) = {x ∈ {0, 1}n | {τi ∈ S | xi = 1} is RM-schedulable}

again as the set of all patterns. Consider the linear program (MLP )

min

{

1T λ |
∑

x∈P
λxx ≥ 1, λ ≥ 0

}

whose optimum value is termed OPT f
MulSched(S). To obtain at least a (1+ε)-approximate

solution to (MLP ) we need to solve the following separation problem:

MulSched-Separation
Given: Set S = {τ1, . . . , τn} (τi = (c(τi), p(τi))) of implicit-deadline
tasks; profits w(τ1), . . . , w(τn) ∈ Q+

Find:

max

{
∑

τ∈S′

w(τ) | S ′ ⊆ S is RM-schedulable

}

As a generalisation of Knapsack, this problem is at least weakly NP-hard. Unfor-
tunately we do not know, whether one can also approximate this problem as good as
Knapsack.
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Open Problem 6.2. Is there an FPTAS for MulSched-Separation?

Fortunately we obtained in Chapter 3, that tasks can be merged, s.t. for approxi-
mating MulSched it suffices to obtain an algorithm that assumes a lower bound on the
utilization of each task. If u(τ) ≥ ε for all τ ∈ S, then each pattern contains at most
⌊1/ε⌋ tasks, thus the number of possible patterns can be bounded by |P| ≤

(
n

⌊1/ε⌋
)
≤ n1/ε,

which is a polynomial for fixed ε > 0. Then (MLP ) has a polynomial number of vari-
ables and constraints, thus an optimum solution can be determined using any polynomial
time linear programming solver like the Ellipsoid algorithm of Khachiyan [Kha79] or the
Interior Point method of Karmarkar [Kar84].

We now determine bounds on the value of the integrality gap.

A lower bound

Let us begin with obtaining the result, that the LP relaxation for MulSched is much
weaker than that of BinPacking.

Theorem 6.3. (MLP ) has an asymptotic integrality gap of at least 4/3.

Proof. We state an instance S with 3n tasks, having

OPTMulSched

OPT f
MulSched

≥ 2n

3/2 · n =
4

3
.

Choose periods 1 < p1 < p2 < . . . < pn < 2 arbitrarily. For notational convenience we
may consider S as a multi-set, containing bi = 3 times task τi with (c(τi), p(τi)) = (pi/2, pi)
for all i = 1, . . . , n. Note that u(τi) = 1/2 for each task τi. Let xi be the pattern,
containing task τi exactly twice. Taking each pattern xi exactly λxi

= 3
2

times yields a
feasible fractional solution of cost 3

2
n.

We next demonstrate, that never two copies of different tasks can be scheduled to-
gether on the same processor. Let τ, τ ′ denote tasks with p(τ ′) < p(τ) (thus c(τ)/2 <
c(τ ′) < c(τ))

Task τ is feasible if and only if there is an r > 0, s.t.

c(τ) +

⌈
r

p(τ ′)

⌉

c(τ ′) ≤ r ≤ p(τ)

We will lead this to a contradiction.
Case r > p(τ ′): Then

c(τ) +

⌈
r

p(τ ′)

⌉

︸ ︷︷ ︸

≥2

c(τ ′)
︸︷︷︸

> 1
2
c(τ)

> 2c(τ) = p(τ)

leading to a contradiction since 1
2

< c(τ1) < . . . < c(τn) < 1.
Case r ≤ p(τ ′): Then one has

c(τ)
︸︷︷︸

>c(τ ′)

+

⌈
r

p(τ ′)

⌉

︸ ︷︷ ︸

=1

c(τ ′) > 2c(τ ′) = p(τ ′) ≥ r.
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Again we have a contradiction. We obtain, that for each 3 copies of τi, we need 2
processors, thus OPTMulSched ≥ 2n. The claim then follows.

An upper bound

In a next step, we derive an upper bound on the integrality gap, using randomized
rounding. Let S = {τ1, . . . , τn} be an arbitrary instance, λ be a solution for (MLP )
and let P(S) = {x1, . . . , xK} be the patterns, belonging to the instance. That means,
the fractional solution contains pattern xi to the extent of λi ≥ 0. Let α ∈ [0, 1] be
a parameter, that we are going to determine later. Independently from each other, we
buy pattern xi with probability α · λi, where buying means that we fill a processor with
the tasks contained in xi. Consider an arbitrary task τ ∈ S. After reordering we may
assume that x1, . . . , xk are precisely the patterns, containing τ . The next calculation is
similar to that of LP rounding analyses used in approximation algorithms for SetCover
or MaxSat [Vaz01]. We bound the probability that task τ is not covered by any of the
bought patterns as

Pr

[
k∧

i=1

pattern xi not bought

]

≤
k∏

i=1

(1 − αλi) ≤ e−α
Pk

i=1 λi ≤ e−α

Here we use 1 − y ≤ e−y for all y ∈ R and λ1 + . . . + λk ≥ 1. Let S ′ be the tasks, which
are not yet covered, then E[u(S ′)] ≤ e−αu(S). We distribute S via FFMP (see Algorithm
1 in Chapter 4) in a First Fit manner, then

E[FFMP(S ′)] ≤ 2 · E[u(S ′)] + 4 ≤ 2e−α · OPT f
MulSched(S) + 4

using Lemma 4.9 and u(S) ≤ OPT f
MulSched(S). Hence, the expected number of processors

in the produced solution is at most

α · OPT f
MulSched(S) + 2e−α · OPT f

MulSched(S) + 4

By the principle of the probabilistic method (see e.g. [AS08]), there must be at least one
integral solution, which respects this bound. Choosing parameter α := ln(2), we obtain

Theorem 6.4. One has

OPTMulSched(S) ≤ (1 + ln(2)) · OPT f
MulSched(S) + 4,

thus the asymptotic integrality gap of (MLP ) is upper bounded by 1 + ln(2) < 1.694.
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Part II

Intractability Results
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Chapter 7

Diophantine Approximation

Diophantine approximation is one of the fundamental topics in mathematics. Roughly
speaking, the objective is to replace a number or a vector, by another number or vector
which is very close to the original, but less complex in terms of fractionality. A famous
example is the Gregorian calendar, which approximates a solar year with its leap year
rule.

Since the invention of the LLL algorithm by Lenstra, Lenstra & Lovász [LLL82], si-
multaneous Diophantine approximation has been a very important object of study also in
computer science. One powerful result, for example, is the one of Frank & Tardos [FT87]
who provided an algorithm based on Diophantine approximation and the LLL algorithm
which, among other things, shows that a combinatorial 0/1-optimization problem is poly-
nomial if and only if it is strongly polynomial.

Let us denote the distance of a real number x ∈ R to its nearest integer by {{x}} =
min{|x− z| | z ∈ Z}. More general the distance of a vector v ∈ Rn to its nearest integer
vector w.r.t. the ‖ · ‖∞-norm is {{v}} = min{‖v − z‖∞ | z ∈ Zn}.

Lagarias [Lag85] has shown that it is NP-complete to decide whether there exists an
integer Q ∈ {1, . . . , N} with {{Q · α}} ≤ ε, given α ∈ Qn, N ∈ N and ε > 0. The best
approximation error δN of a vector α ∈ Qn with denominator bound N ∈ N is defined as
δN = min{ {{Q ·α}} | Q ∈ {1, . . . , N} }. Lagarias [Lag85] showed also that the existence
of a polynomial algorithm, which computes on input α ∈ Qn and N ∈ N a number
Q ∈ {1, . . . , 2n/2 ·N} with {{Q ·α}} ≤ δN implies NP = coNP. The famous theorem of
Dirichlet yields bounds, for which good approximations always exist.

Theorem (Dirichlet). For any α ∈ Rn and N ∈ N, there is a denominator Q ∈
{1, . . . , Nn} s.t. {{Qα}} ≤ 1

N
.

Using the LLL algorithm [LLL82] one can at least find a Q ≤ 2O(n2)Nn, respecting
the bound {{Qα}} ≤ 1

N
. Up to now there is no known polynomial time algorithm for

determining a Q, as its existence is guaranteed by Dirichlet’s theorem.

The reason for us to investigate simultaneous Diophantine approximation is, that it
will yield a hardness proof for response time computation of implicit-deadline tasks as
well as hardness of testing EDF-schedulability of constrained-deadline tasks and other
problems. The key insight on the way to this result will be that simultaneous Diophantine
approximation remains hard, if the approximation error is measured as distance to the
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nearest larger integer instead of the nearest one. The results, presented in this chapter,
can be summarized in a simplified manner as

• Simultaneous Diophantine approximation: It is NP-hard to distinguish the cases

– Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} : {{Qα}} ≤ ε

– No : ∄Q ∈ {1, . . . , 2nO(1)
N} : {{Qα}} ≤ nO(1/ log log n)ε

even if ε ≤ (1
2
)nO(1)

.

• Directed Diophantine approximation: It is NP-hard to distinguish the cases

– Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} : maxi=1,...,n(⌈Qαi⌉ − Qαi) ≤ ε

– No : ∄Q ∈ {1, . . . , nO(1/ log log n)N} : maxi=1,...,n(⌈Qαi⌉ − Qαi) ≤ 2nO(1) · ε

even if ε ≤ (1
2
)nO(1)

.

• Mixing Set: Optimizing a linear function over a system

{(s, y) ∈ R≥0 × Zn | s + ai yi ≥ bi ∀i = 1, . . . , n}

is NP-hard. This answers an open question of Conforti et al. [CSW08].

• Shortest vector in the positive orthant : The problem of finding the shortest, non-
negative, nonzero vector in a lattice, i.e.

min

{

‖x‖p | ∃z ∈ Zn : x =

n∑

i=1

ziai, x ≥ 0, x 6= 0

}

is NP-hard to approximate within nO(1/ log log n) w.r.t. any ‖ · ‖p-norm.

The promised hardness results for EDF-schedulability and response time computation
will follow in Chapter 8. A complete overview over all reductions that we derive in this
and in the next chapter is visualized in Figure 7.1. As a starting point, for all these
results we first need a strengthening of the reduction of Lagarias.

7.1 Hardness of simultaneous Diophantine approxi-

mation

In complexity theory it is widely common to work with gap problems instead of the
corresponding optimization variants, see for example the books of Vazirani [Vaz01] and
Wegener [Weg05]. Since hardness results do not make sense for small instances, we
will implicitly assume the phrase for n large enough in the upcoming reductions. In
this section, we obtain that the following gap problem is NP-hard for ρN = 2nc1 and
ρε = nc2/ log log n with c1, c2 > 0 being constants.
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Sir∞ : min
{
‖x‖∞ | aT x = 0, x ∈ Zn\{0}

}

SDA∞ : α1, . . . , αn ∈ Q; N ∈ N; 0 < ε ≤ (1
2
)nO(1)

• Yes : ∃Q ∈ {⌈N/2⌉, ..., N} : {{Qα}} ≤ ε

• No : ∄Q ∈ {1, ..., 2nO(1)
N} : {{Qα}} ≤ nO(1)/ log log nε

DDA∞ : α1, . . . , αn ∈ Q; N ∈ N; 0 < ε ≤ (1
2
)nO(1)

• Yes : ∃Q ∈ {⌈N/2⌉, ..., N} : {{Qα}}↑ ≤ ε

• No : ∄Q ∈ {1, ..., nO(1)/ log log nN} : {{Qα}}↑ ≤ 2nO(1)
ε

DDAp : α1, . . . , αn ∈ Q; N ; 0 < ε ≤ (1
2
)nO(1)

• Yes : ∃Q ∈ {⌈N/2⌉, ..., N} : {{Qα}}↑p ≤ ε

• No : ∄Q ∈ {1, ..., nO(1)/ log log nN} :

{{Qα}}↑p ≤ 2nO(1)
ε

DDAp,↓ : α1, . . . , αn; N ∈ N; 0 < ε ≤ (1
2
)nO(1)

• Yes : ∃Q ∈ {⌈N/2⌉, ..., N} : {{Qα}}↓p ≤ ε

• No : ∄Q ∈ {1, ..., nO(1)/ log log nN} :

{{Qα}}↓p ≤ 2nO(1)
ε

MixingSet:

min

{

css + cT y | s + aiyi ≥ bi ∀i,
(s, y) ∈ R≥0 × Zn

}Svp+
p : A ∈ Qn×n, det(A) 6= 0

min {‖x‖p | x ∈ Λ(A)\{0}, x ≥ 0}

DDA1,w : αi ∈ [1, 2]; wi ∈ Q+; N ∈ N; ε > 0

• Yes : ∃Q ∈ [⌈N/2⌉, N ] :
∑n

i=1 wi {{Qαi}}↑ ≤ ε
• No : ∄Q ∈ [1, nO(1)/ log log nN ] :
∑n

i=1 wi {{Qαi}}↑ ≤ 2nO(1)
ε

DDA1,w,↓ : αi ∈ [1, 2]; wi ∈ Q+; N ∈ N; ε > 0

• Yes : ∃Q ∈ [⌈N/2⌉, N ] :
∑n

i=1 wi {{Qαi}}↓ ≤ ε
• No : ∄Q ∈ [1, nO(1)/ log log nN ] :
∑n

i=1 wi {{Qαi}}↓ ≤ 2nO(1)
ε

Response Time: τi = (c(τi), p(τi))

min

{

r ≥ 0 | c(τn) +
∑

i<n

⌈
r

p(τi)

⌉

c(τi) ≤ r

}
EDF-schedul.: τi = (c(τi), d(τi), p(τi))

∀Q ≥ 0 :
n∑

i=1

(⌊
Q − d(τi)

p(τi)

⌋

+ 1

)

c(τi) ≤ Q

Figure 7.1: Overview over reductions. Arrows indicate Karp reductions. O(1) stands for
either for the phrase for all constants or for some constant. We abbreviate {{x}}↑p :=

(
∑n

i=1(⌈x⌉ − x)p)1/p, {{x}}↓p := (
∑n

i=1(x − ⌊x⌋)p)1/p, {{x}}↑ := {{x}}↑∞ and {{x}}↓ :=

{{x}}↓∞.
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Simultaneous Diophantine Approximation (SDAρN ,ρε
∞ )

Given: α1, . . . , αn ∈ Q; N ∈ N; 0 < ε ≤ 1/ρ2
N

Distinguish:
• Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} : {{Qα}} ≤ ε

• No : ∄Q ∈ {1, . . . , ρN · N} : {{Qα}} ≤ ρε · ε

In other words, we will prove that there is a polynomial time algorithm, taking the
instance of an NP-complete problem, say a clause C for Sat, and yielding a SDAρN ,ρε

∞
instance, such that we are in the Yes case if C is satisfiable and we are in the No case
otherwise. Thus we will never be obliged to deal with SDAρN ,ρε

∞ instances that fall in
neither of these two cases. Note that usually gap problems are equipped with just one
parameter, not with two like in case of SDAρN ,ρε

∞ . In the definition of SDAρN ,ρε
∞ , one has

the constraint that ε must be very small, namely ε ≤ 1/ρ2
N . In fact, the hardness reduc-

tion will yield instances, respecting this condition and we will need such an assumption
on ε later on. We will always assume ρε and ρN to be integers and ρε, ρN ≥ 2. If we are
discussing simultaneous Diophantine approximation without referring to particular gap
parameters, we will denote this simply by SDA∞.

Let Sir∞ be the problem of finding a shortest nontrivial integer vector in a hyperplane.

Shortest Integer Relation (Sir∞)
Given: a ∈ Zn

Find: OPTSir∞
(a) = min{‖x‖∞ | aT x = 0, x ∈ Zn\{0}}

Dinur [Din02] gave a reduction from Super-Sat to the shortest vector problem in
the infinity norm. This reduction has been modified by Chen & Meng [CM07] to obtain

Theorem 7.1. [CM07] For a universal constant c > 0, given a vector a ∈ Zn\{0} it is
NP-hard to distinguish

• Yes : OPTSir∞
= 1

• No : OPTSir∞
≥ nc/ log log n.

We will revisit the reduction from Sir∞ to simultaneous Diophantine approximation
of Lagarias [Lag85] and Rössner & Seifert [RS96] to obtain

Theorem 7.2 (Hardness of SDAρN ,ρε
∞ ). There is a universal constant c2 > 0, such that

for all fixed c1 > 0, SDAρN ,ρε
∞ is NP-hard for ρN = 2nc1 and ρε = nc2/ log log n, i.e. for

rational numbers (α1, . . . , αn), a bound N ∈ N and an error bound 0 < ε ≤ 2−2nc1 it is
NP-hard to distinguish the following cases

• Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} : {{Qα}} ≤ ε

• No : ∄Q ∈ {1, . . . , 2nc1N} : {{Qα}} ≤ nc2/ log log nε.

This is a strengthening of the known reduction, which yields the following improve-
ments:
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1. In the Yes case, there exists a good Q which is at least ⌈N/2⌉ whereas the result
in [RS96] guarantees only a good Q in the interval {1, . . . , N}.

2. In the No case, each Q bounded by 2nc1 ·N is violating the distance bound, whereas
the reduction of [RS96] together with the result of [CM07] guarantees this violation
only for Q ∈ {1, . . . , ⌊nc2/ log log n⌋ · N}.

3. The bound of ε ≤ (1
2
)2nc1 was not part of the original reduction [Lag85, RS96].

These improvements will turn out to be crucial for our further hardness results in which
SDAρN ,ρε

∞ is used as a starting point.

Assumptions on Sir∞

A solution x to Sir∞ must be nontrivial, thus there must be an index i with xi 6= 0.
Since −x is a solution as well, we may assume that xi ≥ 1. However in the reduction
from Sir∞ to SDAρN ,ρε

∞ we will suppose that in fact i = 1. Let us first discuss, why this
assumption may be made without loss of generality.

To this end, consider the matrix

A =










0 aT 0T . . . 0T

0 0T aT . . . 0T

...
...

...
. . .

...
0 0T 0T . . . aT

−1 eT
1 eT

2 . . . eT
n










∈ Z(n+1)×(n2+1)

containing n copies of aT on a shifted diagonal and having the last row (−1, eT
1 , eT

2 , . . . , eT
n ),

where ei is the i-th n-dimensional unit column vector. The rest is filled by zeros.

Lemma 7.3. One has

OPTSir∞
(a) = min{‖x‖∞ | Ax = 0, x ∈ Zn2+1\{0}}

and there is always an optimum solution x for the right hand side expression with x1 ≥ 1.

Proof. Let x be a Sir∞(a) solution, thus aT x = 0 and xi 6= 0 for some i. After possibly
switching to −x we may assume that xi ≥ 1. Then for

y := (xi, 0, . . . , 0
︸ ︷︷ ︸

i−1 times

, x, 0, . . . , 0
︸ ︷︷ ︸

n−i times

)

we have Ay = 0 and ‖y‖∞ = ‖x‖∞.

Now let vice versa y = (z, x1, . . . , xn) be a non-trivial integer solution with Ay = 0.
Then aT xi = 0 for all i = 1, . . . , n. The only possibility, that no xi is a suitable Sir∞
solution for a would be that x1 = . . . = xn = 0. But then z = 0, contradicting that
y 6= 0.
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Kannan [Kan83] provided an algorithm, replacing a system Ax = 0 by one equation
a′T x = 0 in polynomial time such that

{x ∈ Zn2+1 | Ax = 0, ‖x‖∞ ≤ µ} = {x ∈ Zn2+1 | a′T x = 0, ‖x‖∞ ≤ µ}.

His algorithm is polynomial in the encoding length of A and µ. Choosing µ = n is enough
for our purposes so that Kannan’s algorithm yields the desired shortest integer relation
instance, where one always has optimum solutions whose first entry is positive.

The reduction from Sir∞ to SDAρN ,ρε

∞
We are now prepared for the reduction.

Theorem 7.4. Let ρε ≤ n and 2n ≤ ρN = 2nO(1)
. There is a polynomial time transfor-

mation, which takes an Sir∞ instance a ∈ Zn and yields a SDAρN ,ρε
∞ instance consisting

of rational numbers (α0, . . . , αn), a bound N ∈ N and an error bound 0 < ε ≤ 1/ρ2
N such

that

• OPTSir∞
= 1 ⇒ ∃Q ∈ {⌈N/2⌉, . . . , N} : {{Qα}} ≤ ε

• OPTSir∞
> ρε ⇒ ∄Q ∈ {1, . . . , ρN · N} : {{Qα}} ≤ ρε · ε

Observe that the gap parameter ρε is conveyed from Sir∞ to SDAρN ,ρε
∞ , while the

second parameter ρN can be chosen arbitrarily large, as long as its encoding length is
polynomial. Before we state the instance (α0, . . . , αn; N ; ε) for the reduction, we need to
determine suitable prime numbers. One can find different primes p, q1, . . . , qn as well as
natural numbers R and T in polynomial time, such that

1. A := n
∑n

j=1 |aj| < pR < qT
1 < qT

2 < . . . < qT
n < (1 + 1

n
) · qT

1

2. p and all qi are co-prime to all aj

3. qT
1 > ρ2

N · pR

4. T, R, p, q1, . . . , qn are bounded by a polynomial in the input length.

A proof of this claim with weaker bounds is presented in [Lag85, RS96]. A full proof can
be found in the Appendix for the sake of completeness.

The following system of congruences appears already in a paper of Adleman & Man-
ders [MA78] and is crucial for the reduction.

rj ≡qT
i

0 ∀i 6= j (7.1)

rj ≡pR aj (7.2)

rj 6≡qj
0 (7.3)

Since the moduli qT
i , pR are co-prime there are solutions for rj , by the Chinese Remainder

Theorem, see e.g. [NZM91]. For j = 2, . . . , n, choose the smallest possible solution for
rj. There is also an efficient way to compute rj. Define B :=

∏n
j=1 qT

j , then the Chinese

Remainder Theorem allows to compute some r′j ≤ pRB/qT
j , which simultaneously solve
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(7.1) and (7.2). Then there are two possibilities: Either we have r′j 6≡qj
0, then rj := r′j

is a suitable choice. Otherwise we have rj := r′j + pRB/qT
j 6≡qj

0, while (7.1) and (7.2)
still hold. In any case rj ≤ 2pRB/qT

j .
We want to choose r1 considerably larger than r2, . . . , rn. Namely r1 = r′1+12npRB/qT

1

or r1 = r′1 + (12n + 1)pRB/qT
1 ; at least one choice solves (7.1), (7.2) & (7.3). In any case

12npRB/qT
1 ≤ r1 ≤ 13npRB/qT

1 and r1 ≥ 6n · rj for all j = 2, . . . , n. The reason for the
special treatment of r1 is that we assume x1 ≥ 1. This will later cause that Q ≥ N/2 in
the Yes case.

But we first need the following observation

Lemma 7.5. The systems

n∑

j=1

xjaj = 0

n∑

j=1

xjrj ≡pR 0

x ∈ Zn and x ∈ Zn

1 ≤ ‖x‖∞ ≤ n
︸ ︷︷ ︸

(I)

1 ≤ ‖x‖∞ ≤ n
︸ ︷︷ ︸

(II)

have the same set of solutions.

Proof. Since aj ≡pR rj , each solution x for (I) is a solution for (II). Vice versa, let
x be a solution for (II), thus

∑n
j=1 xjrj ≡pR 0. Due to aj ≡pR rj , the congruence

∑n
j=1 xjaj ≡pR 0 holds. But we have

|
n∑

j=1

xjaj | ≤ ‖x‖∞
︸ ︷︷ ︸

≤n

·
n∑

j=1

|aj|

︸ ︷︷ ︸

≤A

< pR

thus
∑n

j=1 xjaj = 0. We conclude that x solves (I).

Basically this lemma allows us, to replace each aj by a value rj, having additional
properties. This procedure will pay off later.

By r−1
j ∈ ZqT

j
we denote the unique value s.t. rj · r−1

j ≡qT
j

1 (this must exist since

rj 6≡qj
0 implies that gcd(rj , q

T
j ) = 1 and consequently rj is a unit in the ring ZqT

j
). The

SDAρN ,ρε
∞ -instance for the reduction is

α0 :=
1

pR

αj :=
r−1
j

qT
j

∀j = 1, . . . , n

N :=
n∑

j=1

rj

ε :=
1

qT
1

.

81



Note that ε = 1
qT
1
≤ 1

ρ2
N

by the choice of q1, . . . , qn, thus the bound on ε is justified. To

give some intuition behind this system: Since all qT
j are co-prime, there is a one-to-one

correspondence between solutions x and good Diophantine approximations Q. We will
see that x lies on the hyperplane aT x = 0 if and only if the corresponding Q is a multiple
of pR (at least for the relevant x with ‖x‖∞ ≤ n). Moreover the distance of Qαj to the
next integer will be proportional to xj .

Theorem 7.6. If OPTSir∞
= 1, then there is a Q ∈ {⌈N/2⌉, . . . , N} with {{Qα}} ≤ ε.

Proof. Let x ∈ {0,±1}n\{0} be that Sir∞ solution. We already outlined that we may
assume x1 = 1. Choose Q :=

∑n
j=1 rjxj as SDA∞ solution. Clearly one has

Q =

n∑

j=1

xj
︸︷︷︸

≤1

·rj ≤ N.

On the other hand applying x1 = 1 yields

Q ≥ r1 −
n∑

j=2

rj
︸︷︷︸

≤r1/(6n)

≥ 1

2

n∑

j=1

rj = N/2,

thus Q is within the feasible bounds. It remains to show that Q gives a good approxima-
tion. Note that

{{Qα0}} =

{{∑n
j=1 xjrj

pR

}}

= 0,

due to the reason that aT x = 0 and therefore
∑n

j=1 rjxj ≡pR 0 (see Lemma 7.5). Fur-
thermore we derive that for i ∈ {1, . . . , n} one has

{{Qαi}} =

{{

r−1
i

∑n
j=1 xj · rj

qT
i

}}

=

{{
xirir

−1
i

qT
i

}}

≤ 1

qT
i

≤ 1

qT
1

= ε

using that rj ≡qT
i

0 for i 6= j and ri · r−1
i ≡qT

i
1. The claim then follows.

Next, we show the reverse direction of the reduction.

Theorem 7.7. Given a SDA∞ solution Q ∈ {1, . . . , ρN · N} with {{Qα}} ≤ ρε · ε, then
OPTSir∞

≤ ρε.

Proof. We construct a solution x̂ for our Sir∞ instance aT x = 0 as follows: Let x̂j be
the smallest integer in absolute value with

Qr−1
j ≡qT

j
x̂j .

For proving that x̂ is the desired Sir∞ solution we need to show three partial claims,
namely

‖x̂‖∞ ≤ ρε, x̂ 6= 0 and aT x̂ = 0. (7.4)
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The first assertion of (7.4) follows from the fact that qT
1 < qT

j < (1 + 1/n) · qT
1 ≤

(1 + 1/ρε) · qT
1 which implies the strict inequality in

∣
∣
∣
∣

x̂j

qT
j

∣
∣
∣
∣
=

{{

Qr−1
j

qT
j

}}

≤ ρε · ε =
ρε

qT
1

<
ρε + 1

qT
j

.

Observe that Q is a multiple of pR. If this was not the case, then

{{Qα0}} =

{{
Q

pR

}}

≥ 1

pR
>

ρε

qT
1

= ρε · ε,

since qT
1 > ρ2

NpR and ρε ≤ n ≤ ρN .

We next show that Q =
∑n

i=1 x̂iri. This implies directly that x̂ 6= 0, since Q ≥ 1.
Furthermore Q ≡pR 0 and Lemma 7.5 imply together with ‖x̂‖∞ ≤ ρε ≤ n that aT x̂ = 0
and (7.4) is proved.

Multiplying the equation Q · r−1
j ≡qT

j
x̂j with rj yields Q ≡qT

j
x̂jrj . Recall that

B =
∏n

j=1 qT
j . Then the following implication holds

[

Q ≡qT
j

x̂jrj ∀j

0 ≡qT
i

x̂jrj ∀i 6= j

]

⇒
[

Q ≡B

n∑

j=1

x̂jrj

]

since the left hand side equations guarantee that Q ≡qT
i

∑n
j=1 x̂jrj for all divisors qT

i of
B.

We are done with the proof, once we have shown that Q < B/2 and |∑n
j=1 x̂jrj| <

B/2, since then both values must coincide, if they are congruent to each other modulo
B.

We first bound the value of N . This is done by applying the bound rj ≤ 13·npR ·B/qT
1 .

We obtain

N =
n∑

j=1

rj ≤ 13n2pR

qT
1

· B <
1

2
· B

ρN

for n large enough (recall that ρN ≥ 2n and qT
1 > ρ2

N · pR). Finally Q ≤ ρN · N < B
2

and

|
n∑

j=1

x̂jrj| ≤ max
j=1,...,n

|x̂j|
︸ ︷︷ ︸

≤ρε

·
n∑

j=1

rj

︸ ︷︷ ︸

=N

≤ ρε · N ≤ ρN · N <
B

2

concluding the claim.

Combining the results, Theorem 7.4 follows.

Remark 7.8. Note that the restriction ρε ≤ n could be replaced by any polynomial upper
bound on ρε. Furthermore the Yes case can be modified such that not just Q ≥ ⌈N/2⌉,
but even Q ≥ ⌈N/(1 + 1/f(m))⌉ and ε ≤ 1/f(m), where f is an arbitrary polynomial
time computable (positive) function and m is the input length of the instance.
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7.2 Directed Diophantine approximation

In a next step, we want to prove that the hardness of simultaneous Diophantine approxi-
mation still holds if instead of rounding to the next integer, we measure the approximation
error as the distance to the next larger integer. We term this problem directed Diophan-
tine approximation. In case that x ∈ R is a number, define ⌈x⌉ = min{z ∈ Z | z ≥ x}
and {{x}}↑ = ⌈x⌉ − x. For a vector v ∈ Rn we denote {{v}}↑ = maxi=1,...,n(⌈vi⌉ − vi).

Similar we define {{x}}↓ = x − ⌊x⌋ as the distance to the next smaller integer. Observe
that {{x}}↑ = {{−x}}↓.

The gap problem for which we derive hardness in this section is formally defined as

Directed Diophantine Approximation (DDAρN ,ρε
∞ )

Given: α1, . . . , αn ∈ Q, N ∈ N, 0 < ε ≤ 3/ρ2
ε

Distinguish:
• Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} : {{Qα}}↑ ≤ ε

• No : ∄Q ∈ {1, . . . , ρN · N} : {{Qα}}↑ ≤ ρε · ε

Directed Diophantine approximation was for example considered by Henk & Weis-
mantel [HW97, HW02] in the context of an integer programming problem, while its
computational complexity remained open.

The proof idea for our reduction from SDA∞ to DDA∞ works as follows: For each
rational αi in the SDA∞ instance, we add numbers αi − δ and −(αi + δ) to the DDA∞
instance. Next consider a number Q such that Qαi is close to an integer, say zi. Then for
a suitable choice of δ, Qαi−Qδ is slightly smaller than zi and Qαi +Qδ is slightly larger.
Hence, {{Qαi − Qδ}}↑ and {{Qαi + Qδ}}↓ = {{Q · (−(αi + δ))}}↑ are both small, since
Q(αi ± δ) is still close to zi. Vice versa, suppose {{Qαi − Qδ}}↑ and {{Qαi + Qδ}}↓ are
both small. We will then see that ⌈Qαi −Qδ⌉ = ⌊Qαi + Qδ⌋ =: zi and consequently Qαi

is close to the integer zi.
Note that in the following reduction, the gap parameters ρε and ρN will change their

position.

Theorem 7.9. Let ρN , ρε > 6. There is a polynomial time reduction taking a SDA∞
instance (α1, . . . , αn; N ; ε) with ε ≤ 1/ρ2

ε as input and producing a DDA∞ instance
(α′

1, . . . , α
′
2n; N ; ε′) such that ε′ ≤ 3/ρ2

ε and

• Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} : {{Qα}} ≤ ε
⇒ ∃Q ∈ {⌈N/2⌉, . . . , N} : {{Qα′}}↑ ≤ ε′

• No : ∄Q ∈ {1, . . . , ρN · N} : {{Qα}} ≤ 2ρN · ε
⇒ ∄Q ∈ {1, . . . , ρN · N} : {{Qα′}}↑ ≤ ρε · ε′

Proof. Let α1, . . . , αn together with N ∈ N and ε be the given SDA∞ instance. We define
a DDA∞ instance as

α′
i := αi − δ ∀i = 1, . . . , n

α′
i+n := −(αi + δ) ∀i = 1, . . . , n

ε′ := 3ε
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with δ := 2ε
N

. We start by proving the first implication. Let Q ∈ {⌈N/2⌉, . . . , N} be a
SDA∞ solution, i.e.

max
i=1,...,n

|⌈Qαi⌋ − Qαi| ≤ ε.

Choose an arbitrary i ∈ {1, . . . , n} and let zi be the integer, such that |Qαi − zi| ≤ ε.
Since Q · δ ≥ N

2
· 2ε

N
= ε, we have Q(αi + δ) ≥ zi. We conclude that

{{Q · (−(αi + δ))}}↑ = {{Q(αi + δ)}}↓ ≤ |Qαi − zi|
︸ ︷︷ ︸

≤ε

+ Qδ
︸︷︷︸

≤N · 2ε
N

=2ε

≤ 3ε

This situation is depicted below:

QαiQ · (αi − δ) Q · (αi + δ)zi ∈ Z

round up round down

≤ ε

= Qδ ∈ [ε, 2ε] = Qδ ∈ [ε, 2ε]

Similar one has
{{Q(αi − δ)}}↑ ≤ 3ε

for all i = 1, . . . , n, thus {{Qα′}}↑ ≤ 3ε = ε′ and the first implication is proven.
It remains to show the second part of the reduction, namely that given a Q ∈

{1, . . . , ρN · N} with {{Qα′}}↑ ≤ ρε · ε′ one also has {{Qα}} ≤ 2ρN · ε. Assume for
contradiction that there is an i ∈ {1, . . . , n}, such that there is no integer zi lying be-
tween Q(αi − δ) and Q(αi + δ) (see the following figure)

Q · (αi − δ) Q · (αi + δ)∈ Z ∈ Z

round upround down

But then either {{Q(αi − δ)}}↑ ≥ 1/2 or {{Q(αi + δ)}}↓ ≥ 1/2. In any case {{Qα′}}↑ ≥
1/2, contradicting that {{Qα′}}↑ ≤ ρε · ε′ = ρε · 3ε < 1/2, where we use the assumption
ε ≤ 1/ρ2

ε. Now let zi ∈ Z be the integer such that

Q(αi − δ) ≤ zi ≤ Q(αi + δ).

Then

|Qαi − zi| ≤ δ · Q ≤ 2ε

N
· ρNN = 2ρN · ε

proving the claim.
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Combining Theorem 7.9 with the hardness result of SDAρN ,ρε
∞ and the fact that

2nc2/ log log n ≤ nc′2/ log log n for c′2 := c2/2 and n large enough, one obtains:

Theorem 7.10 (Hardness of DDAρN ,ρε
∞ ). There is a universal constant c2 > 0 such that

for all fixed c1 > 0, DDAρN ,ρε
∞ is NP-hard for ρε = 2nc1 and ρN = ⌊nc2/ log log n⌋, i.e.

for rational numbers (α1, . . . , αn), bounds N ∈ N and 0 < ε ≤ 3/ρ2
ε it is NP-hard to

distinguish the following cases

• Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} : {{Qα}}↑ ≤ ε

• No : ∄Q ∈ {1, . . . , ⌊nc2/ log log n⌋ · N} : {{Qα}}↑ ≤ 2nc1ε.

We conjecture that DDA∞ is in fact much harder than we were able to prove:

Conjecture 7.11. DDAρN ,ρε
∞ is NP-hard for ρN = ρε = 2nc

and any constant c > 0.

Till now we measured the approximation error with the ‖ · ‖∞-norm, but of course we
can also use any other ‖ · ‖p-norm. Especially the ‖ · ‖1-norm will turn out to be a more
natural starting point for the upcoming reductions.

Directed Diophantine Approximation w.r.t. ‖ · ‖p-norm (DDAρN ,ρε
p )

Given: α1, . . . , αn ∈ Q, N ∈ N, 0 < ε ≤ 3/ρ2
ε

Distinguish:

• Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} : (
∑n

i=1 |⌈Qαi⌉ − Qαi|p)1/p ≤ ε

• No : ∄Q ∈ {1, . . . , ρN · N} : (
∑n

i=1 |⌈Qαi⌉ − Qαi|p)1/p ≤ ρε · ε

Since all ‖ · ‖p-norms differ by at most a factor of n and the hardness gap ρε is of the
form 2nc1 ≫ n, adapting the constant c1 yields

Corollary 7.12 (Hardness of DDAρN ,ρε
p ). There is a universal constant c2 > 0 such

that for all fixed c1 > 0 and all 1 ≤ p ≤ ∞, DDAρN ,ρε
p is NP-hard for ρε = 2nc1 and

ρN = ⌊nc2/ log log n⌋.
In the following two sections we will discuss consequences of the hardness results for

DDAρN ,ρε
p . More applications lie in deriving NP-hardness of response time computation

of implicit-deadline tasks as well as coNP-hardness of EDF-schedulability of constrained-
deadline tasks. But for these problems we will dedicate the whole Chapter 8.

7.3 Mixing set

In recent integer programming approaches for production planning the study of simple
integer programs, which are part of more sophisticated models has become very successful
in practice, see, e.g. Pochet & Wolsey [PW06]. One of these simple integer programs
is the so-called mixing set [GP01, CDSW07]. The constraint system of a mixing set
problem is of the form

s + ai yi ≥ bi ∀i = 1, . . . , n
s ≥ 0
yi ∈ Z ∀i = 1, . . . , n
s ∈ R.

(7.5)
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where ai, bi ∈ Q. Optimizing a linear function over this mixed integer set can be done in
polynomial time, if all ai are equal to one [GP01, MW03] or if ai+1/ai is an integer for
each i = 1, . . . , n−1 [ZdF08], see also [CSW08, CZ08] for subsequent simpler approaches.

Conforti et al. [CSW08] posed the problem, whether one can optimize a linear function
over the set of mixed-integer vectors defined by (7.5) also in the general case, to which
they refer as the case with arbitrary capacities, in polynomial time. In this section, we
apply our results on directed Diophantine approximation to show that this problem is
NP-hard.

For notational reasons it will be more suitable to consider a variant of directed Dio-
phantine approximation as starting point of the reduction, in which {{Qα}}↑ is re-
placed by {{Qα}}↓. Since {{x}}↑ = {{−x}}↓, all previously derived hardness results
for DDAρN ,ρε

p hold also for this problem, which we term DDAρN ,ρε

p,↓ .

Directed Diophantine Approximation w.r.t. ‖ · ‖p-norm and
rounding down (DDAρN ,ρε

p,↓ )
Given: α1, . . . , αn ∈ Q, N ∈ N, 0 < ε ≤ 3/ρ2

ε

Distinguish:

• Yes : ∃Q ∈ {⌈N/2⌉, . . . , N} : (
∑n

i=1 |Qαi − ⌊Qαi⌋|p)1/p ≤ ε

• No : ∄Q ∈ {1, . . . , ρN · N} : (
∑n

i=1 |Qαi − ⌊Qαi⌋|p)1/p ≤ ρε · ε

Our reduction will follow a Lagrangian relaxation approach, which is common in
approximation algorithms, see e.g. [RG96], in order to show a hardness result.

Theorem 7.13. Optimizing a linear function over a mixing set is (weakly) NP-hard.
In other words, given a, c ∈ Qn, cs ∈ Q, b ∈ {0, 1}n and δ ∈ Q, it is NP-hard to decide
whether

min{css + cT y | s + aiy ≥ bi ∀i = 1, . . . , n; (s, y) ∈ R≥0 × Zn} ≤ δ.

Proof. A linear function consists of a sum of coefficients, thus we choose DDAρN ,ρε

1,↓
as a starting point for the reduction, where a choice of ρN = ρε > 3 suffices. Let
(α1, . . . , αn; N, ε) be an instance of this problem. Since {{Qαi}}↓ = {{Qαi + z}}↓ for
z ∈ Z, we may assume that αi > 0 for all i = 1, . . . , n. One can define an integer program
for finding a good denominator Q ∈ {1, . . . , N} in a straightforward way.

min
∑n

i=1(Qαi − yi)

Qαi − yi ≥ 0 ∀i = 1, . . . , n
Q ≥ 1
Q ≤ N

Q, y1, . . . , yn ∈ Z.

The goal is to transform this integer program into a linear optimization problem over
a mixing set. So far the constraints 1 ≤ Q ≤ N and Q ∈ Z are not admitted. Thus
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consider the following mixing set.

Q − 1/αi · yi ≥ 0 ∀i = 1, . . . , n
Q + 0 · y0 ≥ 1
Q − yn+1 ≥ 0

Q ∈ R≥0

y0, y1, . . . , yn, yn+1 ∈ Z.

(7.6)

Suppose that the linear optimization problem can be solved in polynomial time. Then
we can also solve the linear optimization problem over the non-empty face of the convex
hull of the solutions which is induced by the inequality Q − yn+1 ≥ 0, see, e.g., [GLS93].
This enforces Q to be an integer. Furthermore we achieved Q ≥ 1. It remains to model
the constraint Q ≤ N . We will move this constraint to the objective function, as it is
common e.g. in Lagrangian relaxation. Let OPT be the optimum value of the following
integer program

min

n∑

i=1

(Qαi − yi) +
ε

N
· (Q − N) (IP )

Qαi − yi ≥ 0 ∀i = 1, . . . , n

Q ≥ 1

Q, yi ∈ Z ∀i = 1, . . . , n

We already discussed that the question whether one has OPT ≤ ε can be reduced to the
decision problem, whether a linear function over a mixing set has a solution of at most a
value, say δ. Hence it suffices to prove that we are in the Yes case of DDAρN ,ρε

1,↓ if and
only if OPT ≤ ε (for ρN , ρε ≥ 3). This is done by the following implications

(1) ∃Q ∈ {1, . . . , N} :
∑n

i=1 {{Qαi}}↓ ≤ ε ⇒ OPT ≤ ε

(2) OPT ≤ ε ⇒ ∃Q ∈ {1, . . . , 2N} :
∑n

i=1 {{Qαi}}↓ ≤ 2ε

Note that the conclusion of (2) certifies that we are not in the No case of DDAρN ,ρε

1,↓ and
hence, by a lack of choice, we have to be in the Yes case, though the obtained Q does
not respect the bounds of the Yes case.

For (1) let a Q ∈ {1, . . . , N} with
∑n

i=1 {{Qαi}}↓ ≤ ε be given. Observe that (Q, y) =
(Q, ⌊Qα1⌋, . . . , ⌊Qαn⌋) is an (IP ) solution of value

n∑

i=1

(Qαi − ⌊Qαi⌋)
︸ ︷︷ ︸

≤ε

+
ε

N
· (Q − N)
︸ ︷︷ ︸

≤0

≤ ε.

For (2) let (Q, y) be an (IP ) solution of value at most ε. Since the contribution of Qαi−yi

to the objective function is non-negative, we must have ε
N

(Q−N) ≤ ε and consequently
Q ≤ 2N . Next observe that

n∑

i=1

(Qαi − ⌊Qαi⌋) ≤ ε − ε

N
(Q − N)
︸ ︷︷ ︸

≥−N

≤ 2ε

and the theorem is proven.
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Figure 7.2: Lattice spanned by vectors a1 = (5, 1) and a2 = (−3, 0). Black points denote
feasible solutions for Svp+

p , x∗ is an optimum solution for Svp+
2 .

7.4 The Shortest Vector Problem in the positive or-

thant

A lattice is a set of the form Λ(A) = {Az | z ∈ Zn}, where A ∈ Qn×n is a non-singular
matrix. The classical shortest vector problem (Svp) is to find a nonzero vector in Λ(A)
with smallest norm. We denote the shortest vector problem w.r.t. ‖ · ‖p-norm by Svpp.
In this section we consider a variant of the shortest vector problem, where the objective is
to find a shortest nonzero and non-negative vector. More precisely, the shortest positive
vector problem (Svp+

p ) is as follows.

Shortest positive Vector Problem (Svp+
p )

Given: Non-singular matrix A ∈ Qn×n

Find:
OPTSvp+

p
= min{‖x‖p | x ∈ (Λ(A) ∩ Rn

≥0), x 6= 0}

See Figure 7.2 for a visualisation. The complexity of the classical shortest vector
problem has received a lot of attention by various researchers. Van Emde Boas [vEBil]
showed that Svp∞ is NP-complete. The question whether Svp2 is hard was open for
a long time until, using a randomized reduction Ajtai [Ajt98] succeeded in establishing
hardness also for Svp2. In a series of papers the inapproximability factors for Svp2 (under
standard complexity assumptions) have been improved to: 1 + 1

nε by Cai & Nerurkar

[CN99],
√

2−ε due to Micciancio [Mic01], 2(log n)1/2−ε
by Khot [Kho05] and finally 2(log n)1−ε

by Haviv & Regev [HR07]. By randomly embedding the ‖·‖2-norm in a higher dimensional
space essentially all hardness results can be converted to any ‖ · ‖p-norm [RR06] with
1 ≤ p ≤ ∞. However, for Svp∞ one can even show nO(1/ log log n)-hardness [Din02]. This
leaves a gap between inapproximability results for Svp∞ and Svpp for 1 ≤ p < ∞.

Applications of Svp2 and the LLL algorithm lie for example in cryptography [LO85,
Reg04] and integer programming in fixed-dimension [Len83]. The LLL algorithm [LLL82]
approximates Svp2 within a factor of 2n/2. This factor was improved to 2O(n(log log n)2/ log n)

by Schnorr [Sch87] and later to 2O(n log log n/ log n) by Ajtai, Kumar & Sivakumar [AKS01].
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To the best of our knowledge, Svp+
p has not been studied before in the literature. By

a reduction from DDAρN ,ρε
∞ we now infer inapproximability for Svp+

p in any ‖ · ‖p-norm.

Theorem 7.14. There is a universal constant c′ > 0, such that for all 1 ≤ p ≤ ∞, given a
lattice Λ and a value ε′ > 0 as input, it is NP-hard to distinguish between OPTSvp+

p
≤ ε′

and OPTSvp+
p
≥ nc′/ log log nε′.

Proof. We know from Corollary 7.12 that there is a constant c > 0 such that DDAρN ,ρε
∞ is

NP-hard for ρN = ⌊nc/ log log n⌋ and ρε = 2n. Let (α1, . . . , αn; N ; ε) be a given DDAρN ,ρε
∞

instance with ε ≤ 3/ρ2
ε.

We define our lattice by a matrix, which is similar to that one, used to approximate
simultaneous Diophantine approximation with the help of the LLL algorithm for the
classical Shortest Vector Problem [LLL82].

A =












1/n 0 . . . 0 0 −α1/n
0 1/n . . . 0 0 −α2/n
...

...
. . .

...
...

...
0 0 . . . 1/n 0 −αn−1/n
0 0 . . . 0 1/n −αn/n
0 0 . . . 0 0 ε/N












Let Λ be the lattice, generated by the columns of A. It remains to show the upcoming
two implications; the theorem then follows from ε′ := 2ε and c′ := c/2.

• Yes : ∃Q ∈ {⌈N/2⌉ , . . . , N} : {{Qα}}↑ ≤ ε ⇒ OPTSvp+
p
≤ 2ε

• No : ∄Q ∈ {1, . . . , ⌊nc/ log log n⌋ · N} : {{Qα}}↑ ≤ 2nε ⇒ OPTSvp+
p

> ⌊nc/ log log n⌋ · ε
For the first implication let Q ∈ {⌈N/2⌉, . . . , N} with maxi=1,...,n(⌈Qαi⌉ −Qαi) ≤ ε be a
DDAρN ,ρε

∞ solution. Then

x := A · (⌈Qα1⌉, . . . , ⌈Qαn⌉, Q)T =

(
1

n
(⌈Qα1⌉ − Qα1), . . . ,

1

n
(⌈Qαn⌉ − Qαn), ε

Q

N

)T

is a positive vector in the lattice of length

‖x‖p ≤ 1

n

n∑

i=1

(⌈Qαi⌉ − Qαi)
︸ ︷︷ ︸

≤ε

+ε · Q

N
︸︷︷︸

≤1

≤ 2ε.

Vice versa, let x ∈ Λ be a non-negative, non-zero vector in the lattice with ‖x‖p ≤
⌊nc/ log log n⌋ε, which is generated by (z1, . . . , zn, Q) ∈ Zn. W.l.o.g. we assume Q ≥ 0,
otherwise replace Q by −Q. If Q = 0, then ‖x‖p ≥ 1/n ≫ ⌊nc/ log log n⌋ · ε for n large
enough since ε ≤ 3/ρ2

ε ≤ 3/22n. Thus Q ≥ 1. On the other hand we have Q · ε
N

≤ ‖x‖p ≤
⌊nc/ log log n⌋ε, hence Q ≤ ⌊nc/ log log n⌋ · N . It remains to bound the approximation error.
But we have 1

n
(zi − Qαi) ≤ ⌊nc/ log log n⌋ε and consequently {{Qαi}}↑ ≤ n1+c/ log log n · ε ≤

2n · ε. The claim then follows.

We conclude

Corollary 7.15. There exists a constant c > 0, s.t. for all ‖ · ‖p-norms (1 ≤ p ≤ ∞) it
is NP-hard to approximate Svp+

p within a factor of nc/ log log n.
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Chapter 8

Hardness of Schedulability

After the excursion to the geometry of numbers in the last chapter, we are now back to
the field of periodic scheduling. In this chapter we investigate the complexity of testing
the feasibility of implicit-deadline tasks under RM-scheduling and of explicit-deadline
tasks under EDF-scheduling.

We are given constrained-deadline tasks S = {τ1, . . . , τn}, each τ ∈ S with running
time c(τ), period p(τ) and deadline d(τ) ≤ p(τ). For EDF-schedulability of these tasks
one has to verify whether

∀t ≥ 0 :
∑

τ∈S

(⌊
t − d(τ)

p(τ)

⌋

+ 1

)

· c(τ) ≤ t, (8.1)

see [BMR90]. If the deadlines are implicit, i.e. d(τ) = p(τ) for all τ ∈ S, then the
response time for τj in a Rate-monotonic schedule is the smallest r ≥ 0 such that

c(τj) +

j−1
∑

i=1

⌈
r

p(τi)

⌉

c(τi) ≤ r. (8.2)

holds, given that the tasks are ordered according to their priorities, i.e. p(τ1) ≤ . . . ≤
p(τn). Here we will prove that both conditions are hard to evaluate unless NP = P1.
We know from the last chapter that testing conditions that involve directed rounding is
NP-hard. However, a closer look reveals that t and r in (8.1) and (8.2) are both ranging
over the rational numbers, not over the integers as it was the case for directed Diophan-
tine approximation. The first claim that we have to show is that directed Diophantine
approximation remains intractable, even if we allow the denominator Q to be an arbitrary
rational number. We will now see that this is true — at least if we introduce weights...

8.1 Weighted directed Diophantine approximation

We begin by formally introducing a version of directed Diophantine approximation, where
one asks for a possibly fractional denominator Q. For the sake of simplicity, we only
introduce this problem w.r.t. the ‖ · ‖1-norm.

1A preliminary version of the hardness result for (8.2) appeared already in a slightly weaker form in
[ER08b].
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Weighted Directed Diophantine Approximation w.r.t. ‖ · ‖1-
norm (DDAρN ,ρε

1,w )
Given: α1, . . . , αn ∈ Q ∩ [1, 2], w1, . . . , wn ∈ Q+, N ∈ N
Distinguish:

• Yes : ∃Q ∈ [⌈N/2⌉, N ] :
∑n

i=1 wi(⌈Qαi⌉ − Qαi) ≤ ε

• No : ∄Q ∈ [1, ρN · N ] :
∑n

i=1 wi(⌈Qαi⌉ − Qαi) ≤ ρε · ε

While in the previous chapter the input numbers were arbitrary rationals, from now
on we demand the αi’s to be in the interval [1, 2]. Since {{Qαi}}↑ = {{Q(αi + z)}}↑
for Q, z ∈ Z, we may assume w.l.o.g. that 1 ≤ αi ≤ 2 for any DDAρN ,ρε

1 instance
(α1, . . . , αn; ε; N). Recall Corollary 7.12 that it is NP-hard to distinguish between the
two cases

• Yes: ∃Q ∈ {⌈N/2⌉, . . . , N} :
∑n

i=1(⌈Qαi⌉ − Qαi) ≤ ε

• No: ∄Q ∈ {1, . . . , ⌊nc2/ log log n⌋ · N} :
∑n

i=1(⌈Qαi⌉ − Qαi) ≤ 2nc1 · ε
where c1, c2 are constants.

We now convey this hardness result to the weighted (but fractional) case of directed
Diophantine approximation. Note that still ρN , ρε ∈ N.

Theorem 8.1 (Gap preserving reduction from DDAρN ,ρε

1 to DDAρN ,ρε

1,w ). There is a poly-
nomial time transformation, taking a DDAρN ,ρε

1 instance (α1, . . . , αn; ε; N) with 1 ≤ αi ≤
2 ∀i = 1, . . . , n as input and yielding a DDAρN ,ρε

1,w instance (α0, . . . , αn; w0, . . . , wn; ε; N)
such that

• Yes: ∃Q ∈ {⌈N/2⌉, . . . , N} :
∑n

i=1(⌈Qαi⌉ − Qαi) ≤ ε
⇒ ∃Q ∈ [⌈N/2⌉, N ] :

∑n
i=0 wi(⌈Qαi⌉ − Qαi) ≤ ε

• No: ∄Q ∈ {1, . . . , ρN · N} :
∑n

i=1(⌈Qαi⌉ − Qαi) ≤ ρε · ε
⇒ ∄Q ∈ [1, ρN · N ] :

∑n
i=0 wi(⌈Qαi⌉ − Qαi) ≤ ρε · ε

Proof. Let (α1, . . . , αn; N ; ε) be the given DDAρN ,ρε

1 instance. Since the αi’s are rational
numbers, we can write them as αi = ai

bi
with pairwise co-prime integers ai, bi ∈ N. Our

DDAρN ,ρε

1,w instance consists of the same bounds ε and N ; the numbers α1, . . . , αn are
equipped with unit weights w1 = . . . = wn = 1. But furthermore we add an extra
number α0 := 1 with a very high weight of w0 := 2 · max{ai | i = 1, . . . , n} · ε · ρε.
Intuitively the weight w0 is large enough, such that any reasonable DDAρN ,ρε

1,w solution Q
to this instance must be an exact multiple of α0 = 1, thus it must be integer.

Yes-case: Clearly Yes instances for DDAρN ,ρε

1 are mapped to Yes instances of
DDAρN ,ρε

1,w by simply using the same solution Q. This is the case since given a Q ∈
{⌈N/2⌉, . . . , N} that matches the conditions of the Yes case for DDAρN ,ρε

1 , one has

n∑

i=0

wi(⌈Qαi⌉ − Qαi) = w0 · (⌈Q⌉ − Q)
︸ ︷︷ ︸

=0

+
n∑

i=1

1 · (⌈Qαi⌉ − Qαi) ≤ ε.

No-case: Now suppose that we have a Q ∈ [1, ρN · N ] with
∑n

i=0 wi(⌈Qαi⌉ − Qαi) ≤
ρε · ε. Increase Q until Qαj ∈ Z for at least one j ∈ {0, . . . , n}, while the approximation
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error can only decrease (or leave Q unchanged if this is already the case). If Q is then an

integer, we are done. Otherwise, we may write Qαj = Q
aj

bj
=: z ∈ Z, thus Q =

zbj

aj
∈ Z 1

aj
.

We obtain
n∑

i=0

wi(⌈Qαi⌉ − Qαi) ≥ w0 · (⌈Q⌉ − Q) ≥ w0 ·
1

aj
> ρε · ε

by the choice of w0. The contradiction yields that Q ∈ N and the claim follows.

We conclude

Corollary 8.2 (Hardness of DDAρN ,ρε

1,w ). There exists a constant c2 > 0, such that for

all c1 > 0 the problem DDAρN ,ρε

1,w is NP-hard for ρN = nc2/ log log n and ρε = 2nc1 . In other
words, given an instance (α1, . . . , αn; w1, . . . , wn; ε; N) with 1 ≤ αi ≤ 2 ∀i = 1, . . . , n it is
NP-hard to distinguish

• Yes: ∃Q ∈ [⌈N/2⌉, N ] :
∑n

i=1 wi(⌈Qαi⌉ − Qαi) ≤ ε

• No: ∄Q ∈ [1, nc2/ log log n · N ] :
∑n

i=1 wi(⌈Qαi⌉ − Qαi) ≤ 2nc1 · ε

A weaker version for intractability of weighted Diophantine approximation can also be
found in [ER08b]. The weights used in the proof are astronomically large. We conjecture
that this is not needed.

Conjecture 8.3. There are ρN , ρε > 1 such that DDAρN ,ρε

1,w is NP-hard for unit weights.

For the sake of completeness, we want to mention that the variant, where the appro-
ximation error is measured as the distance to the next smaller integer, is hard as well.
Define

Weighted Directed Diophantine Approximation w.r.t. ‖ · ‖1-
norm, with rounding down (DDAρN ,ρε

1,w,↓ )
Given: α1, . . . , αn ∈ Q ∩ [1, 2], w1, . . . , wn ∈ Q+, N ∈ N
Distinguish:

• Yes : ∃Q ∈ [⌈N/2⌉, N ] :
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ ε

• No : ∄Q ∈ [1, ρN · N ] :
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ ρε · ε

By essentially reproducing the proof of Theorem 8.1, one can obtain a gap preserving
reduction from DDAρN ,ρε

1,↓ to DDAρN ,ρε

1,w,↓ , hence

Corollary 8.4. There exists a constant c2 > 0, such that for all c1 > 0 the problem
DDAρN ,ρε

1,w,↓ is NP-hard with ρN = nc2/ log log n and ρε = 2nc1 .

8.2 Hardness of EDF-schedulability

In the following, let S = {τ1, . . . , τn} be a constrained-deadline task system, i.e. each
task τi = (c(τi), d(τi), p(τi)) releases a job of running time c(τi) at z · p(τi) with absolute
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d(τ) d(τ) + 1 · p(τ) d(τ) + 2 · p(τ)

c(τ)

2c(τ)

3c(τ)

Q

DBF(τ, Q)

Figure 8.1: Visualization of DBF(τ, Q)

deadline z · p(τi) + d(τi) for each z ∈ N0. Here we consider EDF-scheduling, which is an
optimal dynamic-priority policy in this setting. Define

DBF(τ, Q) =

(⌊
Q − d(τ)

p(τ)

⌋

+ 1

)

· c(τ)

as the demand bound function of a constrained-deadline task τ at time Q ≥ 0. Note that

⌊
Q − d(τ)

p(τ)

⌋

+ 1

gives the number of jobs of τ that have both, their release time and deadline in the
interval [0, Q], see Figure 8.1. More general

DBF(S, Q) =
∑

τ∈S
DBF(τ, Q)

gives the demand of the whole task system S. Obviously the EDF-schedule cannot be
feasible on a unit-speed processor, if there is a Q ≥ 0 with DBF(S, Q) > Q. In Baruah,
Mok & Rosier [BMR90] it was shown that this necessary condition is also sufficient.
Hence S is EDF-schedulable on a unit-speed processor if and only if

∀Q ≥ 0 : DBF(S, Q) ≤ Q.

See Figure 8.2 for an illustration.
Much effort has been spent on developing sufficient polynomial or exact pseudo-

polynomial time tests for the above condition, see [AS05, BCGM99, BMR90, CKT02,
Dev03]. Albers & Slomka [AS04] e.g. gave an FPTAS for approximating the speed of a
processor, needed to make the EDF-schedule of S feasible. Similar to the result of [FB05]
for RM-scheduling this is obtained by ignoring the rounding operation in the function
DBF(τ, Q) as soon as the term Q−d(τ)

p(τ)
exceeds 1/ε. This yields a function DBF′(τ, Q) with

DBF(τ, Q) ≤ DBF′(τ, Q) ≤ (1+ε)·DBF(τ, Q). For the obtained accumulated demand bound
function DBF′(S, Q), the value of only O(n/ε) many control points need to be evaluated,
which can be done in time O(n(log n)/ε).

But none of the algorithms suggested in these papers was able decide EDF-schedula-
bility on a unit speed processor correctly and in polynomial time for all instances. We
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DBF(S, Q)

DBF(τ1, Q)

DBF(τ2, Q)

Figure 8.2: Constrained-deadline task system S = {τ1, τ2} with τ1 = (2, 3, 4), τ2 =
(3, 5, 6), using notation τ = (c(τ), d(τ), p(τ)). One has DBF(S, Q) > Q for Q = 11, thus
S is not EDF-schedulable.

now give the underlying theoretical reason for this, by proving its intractability. This
was posed as Problem 2 in the list of Open Problems in Real-time Scheduling by Baruah
& Pruhs [BP09]. We show coNP-hardness of testing EDF-schedulability by a reduction
from the NP-hard problem DDAρN ,ρε

1,w,↓ (gap parameters ρN = ρε = 4 fully suffice). Here
Yes cases are mapped to No cases and vice versa.

Intuitively this is done as follows: Let (α1, . . . , αn; w1, . . . , wn; N ; ε) be a DDAρN ,ρε

1,w,↓
instance. The first idea is to create implicit-deadline tasks τ1, . . . , τn with p(τi) = d(τi) =
1
αi

. Then we have
⌊

Q − d(τi)

p(τi)

⌋

+ 1 = ⌊Qαi⌋

hence a Q that maximizes DBF(S, Q)/Q, minimizes the approximation error and gives a
good denominator. But this Q might be arbitrarily large, in fact it would be a common
multiple of all p(τi)’s. To enforce an EDF-schedulability oracle to find a small Q, we
add one special task τ0 which has a deadline of N/2 and a sufficiently large period (we
may imagine p(τ0) = ∞). Then the quantity DBF(τ0, Q)/Q contributes significantly to
DBF(S, Q)/Q only if Q is of order N . See also Figure 8.3 for an illustration.

Theorem 8.5. Given an instance consisting of rational numbers α1, . . . , αn ∈ Q+, weights
w1, . . . , wn ∈ Q+, a bound N ∈ N≥2 and an error bound ε > 0, we can find a constrained-
deadline task system S consisting of n + 1 tasks in polynomial time such that

• Yes: ∃Q ∈ [⌈N/2⌉, N ] :
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ ε ⇒ S not EDF-schedulable

• No: ∄Q ∈ [⌈N/2⌉, 3N ] :
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ 3ε ⇒ S EDF-schedulable

Furthermore n tasks in S have implicit-deadlines.

Proof. A set of tasks is EDF-schedulable on a processor of speed β > 0 if and only if the
tasks with running times scaled by 1

β
are feasible on a unit speed processor. Thus we
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may assume to have an oracle for the test

∀Q ≥ 0 :
∑

τ∈S

(⌊
Q − d(τ)

p(τ)

⌋

+ 1

)

· c(τ) ≤ β · Q

Let N ∈ N, α1, . . . , αn, w1, . . . , wn ∈ Q+, ε > 0 be the DDA1,w,↓ instance. We choose a
constrained-deadline task system S consisting of n + 1 tasks

τi = (c(τi), d(τi), p(τi)) :=

(

wi,
1

αi
,

1

αi

)

∀i = 1, . . . , n

τ0 = (c(τ0), d(τ0), p(τ0)) := (3ε, ⌈N/2⌉, 12N)

and processor speed

β :=
ε

N
+

n∑

i=1

wiαi

Yes-case: Suppose that we have a Q ∈ [⌈N/2⌉, N ] with
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ ε.
Then

DBF({τ0, . . . , τn}, Q) = DBF(τ0, Q) +
n∑

i=1

(⌊
Q − d(τi)

p(τi)

⌋

+ 1

)

c(τi)

= 3ε +

n∑

i=1

⌊Qαi⌋wi

(∗)
≥ 3ε +

((
n∑

i=1

Qαiwi

)

− ε

)

= 2ε + Q
n∑

i=1

αiwi

(∗∗)
> Q ·

(

ε

N
+

n∑

i=1

αiwi

)

︸ ︷︷ ︸

=β

= βQ

Here we use
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ ε in (∗) and Q ≤ N < 2N in (∗∗). Thus the task
system S is not EDF-schedulable (on a processor of speed β).

No-case: Next we assume that S is not EDF-schedulable (on a processor of speed
β). Then there is a Q > 0 such that DBF({τ0, . . . , τn}, Q) > βQ. We need to show that
Q ∈ [⌈N/2⌉, 3N ] and

∑n
i=1 wi(Qαi − ⌊Qαi⌋) ≤ 3ε.
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Observe that using the definition of β and ⌊Qαi⌋ ≤ Qαi, one has

DBF(τ0, Q) = DBF(S, Q) − DBF({τ1, . . . , τn}, Q)

> βQ −
n∑

i=1

⌊Qαi⌋wi

≥ βQ − Q
n∑

i=1

αiwi

= βQ − Q

(

ε

N
+

n∑

i=1

αiwi

)

︸ ︷︷ ︸

=β

+Q
ε

N

= Q
ε

N

Since τ0 has its first deadline at d(τ0) = ⌈N/2⌉ and DBF(τ0, Q) > 0 we must have Q ≥
⌈N/2⌉. Suppose for contradiction that already the second deadline of τ0 occurred before
Q, i.e. Q ≥ p(τ0) = 12N . Then

DBF(τ0, Q) ≤ c(τ0) ·
⌈

Q

p(τ0)

⌉

≤ 2 · 3ε · Q

12N
< Q

ε

N
,

leading to a contradiction. Hence, till time Q exactly one deadline of τ0 has passed,
thus DBF(τ0, Q) = 3ε. But we already inferred the bound DBF(τ0, Q) > Q ε

N
, thus even

Q < 3N . Finally

n∑

i=1

wi(Qαi−⌊Qαi⌋) = Q
n∑

i=1

αiwi

︸ ︷︷ ︸

<β

−(DBF(S, Q)−DBF(τ0, Q)) ≤ Qβ − DBF(S, Q)
︸ ︷︷ ︸

<0

+3ε ≤ 3ε

and the claim follows.

Combining Theorem 8.5 and Corollary 8.4 we obtain

Corollary 8.6. Given a set S = {τ1, . . . , τn} (τi = (c(τi), d(τi), p(τi))) of constrained-
deadline tasks with rational numbers 0 ≤ c(τi) ≤ d(τi) ≤ p(τi), it is (weakly) coNP-hard
to decide, whether S is EDF-schedulable, i.e. testing the condition

∀Q ≥ 0 :
∑

τ∈S

(⌊
Q − d(τ)

p(τ)

⌋

+ 1

)

· c(τ) ≤ Q,

is (weakly) coNP-hard. This holds even if for all but one i, one has d(τi) = p(τi).

8.3 Hardness of response time computation

Now we again consider Rate-monotonic scheduling of tasks with implicit-deadlines that
means d(τi) = p(τi) for all τi ∈ S. Recall that for testing feasibility of an RM-schedule,
usually the response times are computed and then compared to the periods. Suppose
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Q∗ scm(p(τ1), . . . , p(τn))

DBF({τ1, . . . , τn}, Q)/Q

DBF({τ0, τ1, . . . , τn}, Q)/Q

Q
⌈N/2⌉ N

U

β = U + ε/N

U − ε/N

3ε/N

6ε/N

⌈N/2⌉ N

DBF(τ0, Q)/Q

Q

Figure 8.3: In the upper picture the gray shaded function DBF({τ1, . . . , τn}, Q)/Q is de-
picted. Intuitively this function is larger, the closer the values Q

p(τi)
are to the next smaller

integer. It can never exceed U := u({τ1, . . . , τn}), but if the approximation error of Q
w.r.t. α1, . . . , αn is less than ε, then DBF({τ1, . . . , τn}, Q)/Q ≥ U − ε

Q
. In the lower pic-

ture we see DBF(τ0, Q)/Q, giving the demand from the auxiliary task τ0. In the interval
⌈N/2⌉ ≤ Q ≤ N this value is between 6ε/N and 3ε/N . Thus, if additionally Q = Q∗

is a good approximation, then the demand of τ0 pushes DBF({τ0, . . . , τn}, Q)/Q over the
threshold of β = U + ε

N
. On the other side for Q > 3N , the value of DBF(τ0, Q)/Q is to

small for this purpose.
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that τn+1 is the task with the highest period (thus it has the lowest priority in an RM-
schedule), then the response time r(τn+1) of this task is the smallest number r(τn+1) ≥ 0
such that

c(τn+1) +
n∑

i=1

⌈
r(τn+1)

p(τi)

⌉

c(τi) ≤ r(τn+1).

Of course any solution to this inequality gives an upper bound on the response time.

For the upcoming inapproximability result of response time computation, working
with different gap parameters ρN and ρε would not yield a significantly stronger result.
Thus for the sake of a simple representation, we restrict the gap preserving reduction to
a common gap parameter ρ := ρε = ρN .

Theorem 8.7. There is a polynomial time reduction, taking a DDAρ,ρ
1,w instance

(α1, . . . , αn; w1, . . . , wn; ε; N) (1 ≤ αi ≤ 2 ∀i = 1, . . . , n; N ≥ 2) and yielding a set of
implicit-deadline tasks S = {τ1, . . . , τn+1} such that

• Yes: ∃Q ∈ [⌈N/2⌉, N ] :
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ ε ⇒ r(τn+1) ≤ p(τn+1)

• No: ∄Q ∈ [1, ρ · N ] :
∑n

i=1 wi(Qαi − ⌊Qαi⌋) ≤ 4ρ · ε ⇒ r(τn+1) > ρ · p(τn+1)

where r(τn+1) gives the response time of τn+1 in a Rate-monotonic schedule of S.

Proof. Choose

δ :=
4ε

N
+

n∑

i=1

wiαi.

We define an instance of n + 1 implicit-deadline tasks via

(c(τi), p(τi)) :=

(
wi

δ
,

1

αi

)

∀i = 1, . . . , n

(c(τn+1), p(τn+1)) :=
(ε

δ
, N
)

First recall that for i = 1, . . . , n one has p(τi) = 1
αi

≤ 1 < N = p(τn+1), thus τn+1 gets
assigned the lowest priority in an RM-schedule. The intuition behind the system is as
follows: The tasks τ1, . . . , τn are chosen such that Q is a good Diophantine approximation
to α1, . . . , αn if and only the function

∑n
i=1⌈ Q

p(τi)
⌉ · c(τi) is close to Q. The contribution

of τn+1 then controls the approximation error.

Yes-case: Suppose that we have a Q ∈ [⌈N/2⌉, N ] with
∑n

i=1 wi(⌈Qαi⌉ − Qαi) ≤ ε

99



(used in (∗)). We show that r(τn+1) ≤ Q ≤ N .

c(τn+1) +

n∑

i=1

⌈
Q

p(τi)

⌉

· c(τi) =
ε

δ
+

n∑

i=1

⌈Qαi⌉ ·
wi

δ

(∗)
≤ ε

δ
+

1

δ

[
n∑

i=1

Qαiwi + ε

]

=
1

δ

[
n∑

i=1

Qαiwi + 2ε

]

(∗∗)
≤ Q

δ

[
n∑

i=1

αiwi +
4ε

N

]

︸ ︷︷ ︸

=δ

= Q

Here (∗∗) follows from Q ≥ N/2, thus Q is an upper bound on the response time.
No-case: Suppose Q ≤ ρ · p(τn+1) is the response time, hence

c(τn+1) +
n∑

i=1

⌈
Q

p(τi)

⌉

c(τi) ≤ Q

By plugging in the definition of the tasks, we can read this inequality in a different way,
namely as

ε

δ
+

n∑

i=1

⌈Qαi⌉
wi

δ
≤ Q

and consequently
n∑

i=1

⌈Qαi⌉wi ≤ Qδ.

Now the approximation error can be bounded by

n∑

i=1

wi(⌈Qαi⌉ − Qαi) =

n∑

i=1

wi⌈Qαi⌉ − Q

=δ
︷ ︸︸ ︷[

n∑

i=1

wiαi +
4ε

N

]

︸ ︷︷ ︸

≤0

+4ε
Q

N
︸︷︷︸

≤ρ

≤ 4ρ · ε

and the theorem follows.

By combining Corollary 8.2 and Theorem 8.7, we conclude

Corollary 8.8. There exists a universal constant c > 0 such that: Given a system
S = {τ1, . . . , τn} consisting of implicit-deadline tasks, i.e. τi = (c(τi), p(τi)), 0 ≤ p(τ1) ≤
. . . < p(τn), 0 ≤ c(τi) ≤ p(τi) ∀i = 1, . . . , n, it is NP-hard to distinguish between
r(τn) ≤ p(τn) and r(τn) ≥ nc/ log log n · p(τn).
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In other words, solving

min

{

r ≥ 0 | c(τn) +
n−1∑

i=1

⌈
r

p(τi)

⌉

c(τi) ≤ r

}

is NP-hard.

Remark 8.9. In this section, we showed that computing the response time of a single
task in a task system is NP-hard, i.e. deciding whether all jobs of this particular task
meet their deadlines is difficult. Formally this does not imply NP-hardness as well for
the feasibility test, since at this point we cannot exclude that one of the prior tasks is
already infeasible, thus there might be an algorithm that does not need to compute the
response times for all tasks. Nevertheless, we conjecture the opposite.

Conjecture 8.10. Given a system S = {τ1, . . . , τn} of implicit-deadline tasks it is NP-
hard to decide, whether S is RM-schedulable.

The instance, constructed in the reduction in Section 8.1 contains a number α0 with
an astronomically large weight w0. As a consequence, the utilization of the task system,
which is build in the hardness proof for response time computation is extremely close
to 1. This raises the following suspicion:

Conjecture 8.11. Let ε > 0 be an arbitrary but fixed constant. Then the response times
of a task τ ∈ S w.r.t. an RM-schedule of an implicit-deadline task system S = {τ1, . . . , τn}
can be computed in polynomial time if u(S) ≤ 1 − ε.
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Chapter 9

Intractability of Multiprocessor
Scheduling

While we already obtained hardness results for single-processor scheduling, we now shed
light on the complexity status of MulSched. Thus we are given a set S = {τ1, . . . , τn} of
implicit-deadline tasks (i.e., τi = (c(τi), p(τi))) and aim at a partition of S into P1, . . . , Pm

where each set Pi is RM-schedulable and m has to be minimized. We denote the optimum
reachable m as OPTMulSched. Since MulSched is a generalization of BinPacking, a
reduction from Partition directly yields that it is NP-hard to distinguish between the
cases, whether 2 or 3 processors are needed, hence there cannot be a polynomial time
(3

2
− ε)-approximation algorithm for any ε > 0, unless NP = P. But for BinPacking

one can obtain an asymptotic FPTAS (AFPTAS), i.e. an algorithm A with

A(I) ≤ (1 + ε) · OPTBinPacking(I) + p(1/ε)

for a polynomial p, which runs in time |I|O(1) · (1/ε)O(1). The algorithm of Karmarkar
& Karp [KK82] computes even solutions with a poly-logarithmic additive gap, i.e. it
respects

A(I) − OPTBinPacking(I) ≤ O(log2(OPTBinPacking(I))).

Such a gap indeed respects the conditions of an AFPTAS as we may easily obtain, see
e.g. [Joh92] for a more detailed account. For the sake of completeness:

Lemma 9.1. An algorithm A is an AFPTAS for a minimization problem if and only if
there is a constant 0 < δ < 1 s.t.

A(I) − OPT (I) ≤ OPT (I)δ

for all instances I with OPT (I) large enough.

Proof. We abbreviate OPT := OPT (I) and suppose that A(I)−OPT ≤ OPT δ. Either
one has OPT δ−1 ≤ ε, then OPT δ = OPT δ−1 · OPT ≤ ε · OPT , or OPT δ−1 ≥ ε, then
OPT δ = (OPT 1−δ)δ/(1−δ) ≤ (1/ε)δ/(1−δ). In any case

A(I) ≤ (1 + ε)OPT + (1/ε)δ/(1−δ).
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For the reverse direction, suppose that A(I) ≤ (1+ε) ·OPT +p(1/ε) for some polynomial
p. We assume w.l.o.g. that p(1/ε) = ε−α for a fixed exponent α > 0. Then for a choice
of ε := (1/OPT )1/(2α) the algorithm computes a solution with

A(I) − OPT ≤ ε · OPT + (1/ε)α ≤ OPT 1−1/(2α) + OPT 1/2.

In this chapter, we exclude the existence of an AFPTAS for MulSched, unless
P = NP, reproducing a result from Eisenbrand & Rothvoß [ER08a]. This shows that
MulSched is strictly harder than its special case BinPacking.

The hardness reduction from Partition to BinPacking yields only weak NP-
hardness, i.e. the intractability is due to huge numbers in the instance and the opti-
mum solution assigns many items to each bin. But it was already shown by Garey &
Johnson [GJ79] that even a very restricted variant of BinPacking, called 3-Partition
where exactly 3 items may be assigned per bin, is strongly NP-hard.

3-Partition
Given: A multi-set of 3n numbers I = {a1, . . . , a3n} with 1

2
< ai < 1

4

for all i = 1, . . . , 3n.
Decide: Is there a partition of the numbers into triples, such that the
sum of the numbers of each triple is exactly one.
In other words: Is OPTBinPacking(I) ≤ n.

We now derive that the NP-hard additive gap of 1 for 3-Partition can be trans-
formed into an arbitrarily large additive gap for MulSched.

Theorem 9.2. If P 6= NP, there is no ε > 0 such that there exists a polynomial time
MulSched algorithm, which computes an approximate solution A(S) for each instance
S with

A(S) − OPTMulSched(S) ≤ |S|1−ε.

This holds even if the numbers c(τ), p(τ) in the instance are unary encoded.

Proof. Suppose we are given a 3-Partition instance I = {a1, . . . , a3n} with 1/2 < ai <
1/4 for all i, where each ai is bounded by a polynomial in n. Let M be a sufficiently large
number, which we will determine later. We define a new instance I ′ = (a′

1, . . . , a
′
3n) with

weights a′
i := M/3+ai

M+1
. Then a triple in I sums up to at most 1 if and only if the same

holds for the corresponding triple in I ′, as we can read from

∑

i∈J

a′
i =

M +
∑

i∈J ai

M + 1

for any J ⊆ {1, . . . , 3n} with |J | = 3. Hence I ∈ 3-Partition if and only if I ′ ∈
3-Partition. The new instance I ′ has the advantage that |1/3 − a′

i| < 1/M , thus we
may assume a′

i to be arbitrarily close to 1/3.
Let k be an integer value that is polynomially bounded in n. We will show, how to

blow up the NP-hard (additive) gap of 1 for 3-Partition to a gap of k/2. Define periods
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pj = 1 + j/(4 · k) for j = 1, . . . , k. Those periods are between 1 + 1/(4 · k) and 5/4. The
MulSched instance consists of 3kn many implicit-deadline tasks, which are defined as
S = {(a′

i · pj, pj) | i = 1, . . . , 3n; j = 1, . . . , k}, using again notation τ = (c(τ), p(τ)).
Observe that the utilization of task (a′

i · pj , pj) is precisely the number a′
i ∈ [0, 1]. All

tasks with period pj are called group Sj . We claim that

• (1) I ′ ∈ 3-Partition ⇒ OPTMulSched(S) ≤ nk

• (2) I ′ /∈ 3-Partition ⇒ OPTMulSched(S) ≥ nk + k/2

Once we have obtained this, we are done, since for any 0 < ε < 1, we may then choose
k := n1/(1−ε) and the gap is

k/2 =
1

2
n1/(1−ε) > 3n(1+ 1

1−ε
)·ε ≥ (3kn)ε = |S|ε

for n large enough.
We start by showing claim (1). Given a partition of the numbers in I ′, such that the

sum of each triple is at most 1. Then by applying the same partition to each group we
obtain triples of tasks, whose utilization is at most 1. Since the periods in each group are
the same, all triples of tasks are then RM-schedulable (cf. Chapter 2).

Case (2) is the more challenging one. First we show that 3 tasks are not RM-
schedulable on a single processor, if they are not all stemming from the same group. For
this aim choose tasks S ′ = {τ1, τ2, τ3} ⊆ S with τ1 ≺ τ2 ≺ τ3, thus p(τ1) ≤ p(τ2) ≤ p(τ3).
Since not all are from the same group, we have p(τ1) < p(τ3). We argue that τ3 is infea-
sible, if S ′ is scheduled on one processor using Rate-monotonic scheduling. Let r be the
response time of τ3, then

r = c(τ3) +

⌈
r

p(τ1)

⌉

c(τ1) +

⌈
r

p(τ2)

⌉

c(τ2). (9.1)

Ignoring the rounding operations yields

r ≥ c(τ3) + r · u(τ1) + r · u(τ2)

and consequently

r ≥ c(τ3)

1 − u({τ1, τ2})
≥ p(τ3) ·

1/3 − 1/M

1 − 2 · (1/3 − 1/M)
= p(τ3) ·

M − 3

M + 6

Notice that p(τ3) ≥ p(τ1) + 1
4k

, thus

r

p(τ1)
≥ M − 3

M + 6
· p(τ3)

p(τ1)
≥ M − 3

M + 6
· p(τ1) + 1

4k

p(τ1)
︸ ︷︷ ︸

≤5/4

M :=90k
≥ 90k − 3

90k + 6
·
(

1 +
1

5k

)

> 1

Hence

r = c(τ3) +

⌈
r

p(τ1)

⌉

︸ ︷︷ ︸

≥2

c(τ1) +

⌈
r

p(τ2)

⌉

c(τ2) ≥ 4 ·
(

1

3
− 1

M

)

>
5

4
≥ p(τ3)
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and task τ3 must be infeasible.
It remains to account the number of necessary processors. Let mi be the number of

processors, which contain 3 tasks from group Si. The remaining 3nk −∑k
i=1 3mi many

tasks need at least 1
2
(3nk − 3

∑k
i=1 mi) many processors. Recalling that mi ≤ n − 1, we

conclude that one needs at least

k∑

i=1

mi +
1

2
(3nk − 3

k∑

i=1

mi) =
3

2
nk − 1

2

k∑

i=1

mi ≥
3

2
nk − 1

2
k(n − 1) = nk + k/2

many processors. Finally the choice of M was modest enough, s.t. the numbers in
instance S are still polynomially bounded in n. The claim then follows.

Corollary 9.3. There is no asymptotic FPTAS for MulSched, unless P = NP. This
holds even if the numbers c(τi), p(τi) are unary encoded.

We obtained that MulSched is harder to approximate that BinPacking. On the
other hand in Chapter 3 we derived the existence of an asymptotic PTAS under resource
augmentation, i.e. a PTAS where the processors are allowed to be slightly infeasible.
Thus our results leave a gap and the following question arises:

Open Problem 9.4. Does there exist an asymptotic PTAS for MulSched?

To disprove the existence of such an approximation scheme, it might be needed to
incorporate problems for which much stronger inapproximability results are possible that
are based on the PCP theorem [ALM+92, ALM+98]. Note that the hardness proof of
3-Partition does not make use of this powerful tool.
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Chapter 10

Fixed Priorities vs. Dynamic
Priorities

A set of implicit-deadlines tasks is RM-schedulable if their utilization does not exceed
ln(2) ≈ 0.69, while for any ε > 0 one can find a task system with utilization ln(2) + ε,
which is not RM-schedulable [LL73]. On the other hand, if the scheduling algorithm may
assign priorities that depend on time, then the optimal policy is Earliest Deadline First
and all tasks meet their deadlines if and only if the utilization is bounded by 1.

In other words, if we are given an EDF-schedulable implicit-deadline task system,
then in the worst case, we need a processor which is 1/ ln(2) ≈ 1.44 times faster, to
achieve RM-schedulability.

This gives an exact quantification of the power of fixed priority scheduling compared
to dynamic priorities — at least if we talk about tasks with implicit deadlines. But how
is the situation for constrained deadlines?

Suppose we are given n tasks τ1, . . . , τn, where now each task τ is described by running
time c(τ), period p(τ) and additionally an explicit, but constrained deadline d(τ) ≤ p(τ).
To state a feasibility condition for EDF, first recall the demand bound function, giving
the cumulated running time of all tasks, whose release time and deadline lie in [0, t].

DBF(S, t) =
∑

τ∈S

(⌊
t − d(τ)

p(τ)

⌋

+ 1

)

· c(τ)

For feasibility it is of course necessary that DBF(S, t) ≤ t for all t ≥ 0. But this condition
is also sufficient, see [BMR90, BRH90]. Furthermore recall the load

LOAD(S) = max
t>0

{
DBF(S, t)

t

}

as the maximum utilization in any interval ]0, t]. Note that this maximum is always
attained. Then S is EDF-schedulable if and only if LOAD(S) ≤ 1 [BMR90, BRH90].

Among the static-priority policies deadline monotonic scheduling is optimal for such
constrained-deadline systems, meaning that the priority of a task τ is higher for smaller
d(τ) [LW82].

We call a task DM-tight, if any increase of its running time would cause a deadline
miss in a DM-schedule. Similar a task system is DM-tight if it contains at least one task,
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which is DM-tight. It might lack intuition but we do not assume that a tight schedule is
feasible. This prevents that we waste time and space in the proofs for showing a property
that is not needed for the main result. Thus a task system that is not DM-schedulable is
always DM-tight, but not necessarily vice versa. The precise question that we are going
to answer here is

What is the minimum value αn, such that for any ε > 0, there is a constrained-deadline
system consisting of n tasks, with load αn + ε, which is not DM-schedulable.

We can also state it as

αn := inf {LOAD(S) | S not DM-schedulable, |S| = n}
By either splitting a task τ into two tasks τ ′, τ ′′ with the same deadline and period as
τ but c(τ ′) + c(τ ′′) = c(τ) or by adding tasks with zero running time, we see that αn is
a monotone non-increasing sequence. Thus the limit α := limn→∞ αn is well-defined. Of
course 0 ≤ α ≤ ln(2) ≈ 0.69, as it is witnessed by the implicit-deadline task system from
Liu & Layland [LL73] since in case of d(τ) = p(τ) for all tasks, one has LOAD(S) = u(S)
and DM-scheduling coincides with RM-scheduling. Moreover it was shown by Baruah
& Burns [BB08] that 1/2 ≤ α ≤ 2/3. The main result from this chapter will be to
pinpoint this constant to α = Ω ≈ 0.5671, where Ω is a constant, which usually appears
in complex calculus. It is uniquely defined as solution of the equation x · ex = 1 for
x ∈ R+ or alternatively by x = ln(1/x). In other words we obtain that, given an EDF-
schedulable constrained-deadline task system, the system is also DM-schedulable if the
unit-speed processor is replaced by a processor of speed 1/Ω ≈ 1.7632. We will see that
this value is also tight. Note that this chapter is borrowed from Davis, Rothvoß, Baruah
& Burns [DRBB09].

But under which conditions is a task system DM-schedulable? Order tasks such that
τ1 ≺ . . . ≺ τn, i.e. d(τ1) ≤ . . . ≤ d(τn), and consider the interval [0, r], where r gives the
response time for task τi. Of course in this interval we have to execute τi. But any task
τj with j < i will be released and executed exactly ⌈r/p(τj)⌉ times, consuming time c(τj)
for each execution. Thus it is not surprising that τi meets all deadlines if and only if

∃0 ≤ r ≤ d(τi) : c(τi) +
∑

j<i

⌈
r

p(τj)

⌉

· c(τj) ≤ r

see [LSD89]. This condition is similar to RM-schedulability, with the slight difference
that the upper bound on the response time is now d(τi) instead of p(τi).

By basically negating the above condition, we see that τi is DM-tight if and only if

∀0 ≤ r ≤ d(τi) : c(τi) +
∑

j<i

⌈
r

p(τj)

⌉

· c(τj) ≥ r.

The left hand side expression is termed the DM-demand of τi w.r.t. r.

10.1 Characterization of DM-tight systems

The following theorem states that among all possible sequences of task systems that
determine the infimum for αn, there must be at least one sequence whose task systems
are of a very special form. The proof itself consist of a series of observations.
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Theorem 10.1. Given any DM-tight system S of constrained-deadline tasks, there is
another DM-tight system S ′ = {τ1, . . . , τm}, such that m ≤ |S|, LOAD(S ′) ≤ LOAD(S) and
the following properties hold

• 1/2 < d(τ1) ≤ . . . ≤ d(τm−1) < d(τm) = 1

• p(τi) = d(τi) ∀i = 1, . . . , m − 1

• p(τm) = ∞

• Task p(τm) is DM-tight

Proof. Consider a task system S = {τ1, . . . , τn} which is DM-tight. Let d(τ1) ≤ . . . ≤
d(τn). By definition there must be task, say τi, which is DM-tight. Removing the lower
priority tasks τi+1, . . . , τn may only decrease the load, while not affecting DM-tightness
of τi. Thus we may assume that it is the lowest priority task τn which is tight. DM-
tightness and the load are invariant under scaling, thus we may further assume that
d(τ1) ≤ . . . ≤ d(τn) = 1. After plugging in the definition of the load and DM-tightness
we obtain a not very handy formula for αn

inf
|S|=n

{LOAD(S) | τn DM-tight}

= inf
|S|=n






max
t>0







∑n
i=1

(⌊
t−d(τi)
p(τi)

⌋

+ 1
)

c(τi)

t






| ∀0 ≤ r ≤ 1 : c(τn) +

∑

i<n

⌈
r

p(τi)

⌉

c(τi) ≥ r







Observe that p(τn) only appears in the expression for LOAD(S) on the left hand side.
Furthermore increasing it can only lower the infimum. Thus we may choose p(τn) =
∞. Suppose there is an i < n with p(τi) ≥ 1. Defining d(τi) := 1 can only lower
the load. Note that for r ∈]0, 1] we have ⌈r/p(τi)⌉ = 1. This does not change, when
sending p(τi) to ∞ and the load decreases. But (t − d(τi))/p(τi) → 0, thus LOAD(S)
decreases. As a consequence we might obtain a subset S∗ of tasks with d(τ) = 1 and
p(τ) = ∞ for all τ ∈ S∗. If S∗ 6= ∅, then we replace the tasks in S∗ by a super task
τ ∗ = (c(τ ∗), d(τ ∗), p(τ ∗)) = (

∑

τ∈S∗ c(τ), 1,∞) without affecting DM-tightness or load.
From now on we may assume that p(τi) < 1 for all i < n. Next observe that also d(τi) for
i ∈ {1, . . . , n − 1} appears only in the expression for LOAD(S), not in the DM-tightness
constraint. Again increasing each d(τi) as much as possible can only decrease LOAD(S).
Since we are restricted to constrained-deadline tasks, the maximum admissible value for
d(τi) (for i < n) is d(τi) = p(τi).

Next introduce an auxiliary function

1 : R → {0, 1}, 1(t) :=

{

1 if t ≥ 1

0 if t < 1

By incorporating all simplifying assumptions that we may made so far, we see that the
expression for αn simplifies to

inf
|S|=n






max
t>0







1(t) · c(τn) +
∑

i<n

⌊
t

p(τi)

⌋

c(τi)

t






| ∀0 ≤ r ≤ 1 : c(τn) +

∑

i<n

⌈
r

p(τi)

⌉

c(τi) ≥ r






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It remains to shift the deadlines of all tasks into the interval ]1/2, 1]. To this aim, consider
a task τi with p(τi) ≤ 1/2. Choose an integer k ≥ 2, such that 1/2 < k · p(τi) ≤ 1. Then

⌈
r

kp(τi)

⌉

kc(τi) ≥
⌈

r

p(τi)

⌉

c(τi)

and ⌊
t

kp(τi)

⌋

kc(τi) ≤
⌊

t

p(τi)

⌋

c(τi)

Consequently replacing τi by τ ′
i = (c(τ ′

i), d(τ ′
i), p(τ ′

i)) = (kc(τi), kd(τi), kp(τi)) can only
increase the DM-demand and lower the load. Tasks with deadline 1 can again be merged
with τn. We conclude that starting from a DM-tight task system, we derived a task
system with not more tasks, but fulfilling the claimed properties.

10.2 Lower bounding αn

Before we continue with bounds on αn, we need an improved lower bound on the utiliza-
tion of a not RM-schedulable system. Recall that in general this bound is just n( n

√
2−1).

But if we know that there is at least one task with a high utilization, then we can improve
this quantity. Note that for the next lemma we are back to the setting of RM-scheduling
of implicit-deadline tasks.

Lemma 10.2. Let n ≥ 2. Suppose τ = (τ1, . . . , τn) with τi = (c(τi), p(τi)) is a system of
implicit-deadline tasks, which is not RM-schedulable. Then

u(S\{τn}) > (n − 1) ·
(

n−1

√

2

1 + u(τn)
− 1

)

≥ ln

(
2

1 + u(τn)

)

Proof. We begin by showing the first inequality. Since S is not RM-schedulable, according
to the hyperbolic bound of Bini & Buttazzo [BBB01] we must have

n∏

i=1

(1 + u(τi)) > 2

Then

1 +

∑n−1
i=1 u(τi)

n − 1
=

n−1∑

i=1

1 + u(τi)

n − 1

(∗)
≥ n−1

√
√
√
√

n−1∏

i=1

(1 + u(τi))

(∗∗)
> n−1

√

2

1 + u(τn)

Here in (∗) we use the inequality of arithmetic and geometric mean and in (∗∗) we plug
in the hyperbolic bound (divided by 1 + u(τn)). Rearranging terms then yields the first
claimed inequality.
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Figure 10.1: Functions gn(x) = (n − 1) ·
(

n−1

√
2

1+x
− 1
)

with g∞(x) = ln( 2
1+x

).

For the second part of the claim, observe that

(n − 1) ·
(

n−1

√

2

1 + u(τn)
− 1

)

≥ (n − 1) · ln
(

n−1

√

2

1 + u(τn)

)

= ln

(
2

1 + u(τn)

)

applying ln(y) ≤ y − 1 for y > 0.

Note that

lim
n→∞

(n − 1) ·
(

n−1

√

2

1 + u(τn)
− 1

)

= ln

(
2

1 + u(τn)

)

,

see Figure 10.1 for a visualization. If S is just RM-tight, then Lemma 10.2 still holds
with “≥” instead of strict inequality.

Lemma 10.3. Given a constrained-deadline task system S = {τ1, . . . , τn} with

• 1/2 < d(τ1) ≤ . . . ≤ d(τn−1) < d(τn) = 1

• p(τi) = d(τi) ∀i = 1, . . . , n − 1

• p(τn) = ∞

• Task τn is DM-tight

Then

LOAD(S) ≥ max

{

1 + c(τn)

2
, (n − 1) ·

(

n−1

√

2

1 + c(τn)
− 1

)}

≥ max

{
1 + c(τn)

2
, ln

(
2

1 + c(τn)

)}
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Proof. By evaluating DBF(S, t) just at t = 1 and t = ∞ we obtain

LOAD(S) = max
t>0

{
DBF(S, t)

t

}

≥ max{DBF(S, 1), u(S)}

Here we use that

lim
t→∞

DBF(S, t)

t
= u(S).

We first lower bound DBF(S, 1). By definition

DBF(S, 1) = c(τn) +
n−1∑

i=1

⌊
1

p(τi)

⌋

︸ ︷︷ ︸

=1

c(τi) =
n∑

i=1

c(τi)

since 1/2 < p(τi) ≤ 1. Recall that S is not DM-schedulable, thus especially for r = 1 we
must have

c(τn) +
n−1∑

i=1

2c(τi) = c(τn) +
∑

i<n

⌈
1

p(τi)

⌉

︸ ︷︷ ︸

=2

c(τi) ≥ 1

since 1/2 < p(τi) < 1 for i < n. Hence
∑n−1

i=1 c(τi) ≥ 1−c(τn)
2

and

DBF(S, 1) =

n∑

i=1

c(τi) ≥
1 − c(τn)

2
+ c(τn) =

1 + c(τn)

2
.

On the other hand the DM-tightness of τn in S implies that

(c(τ1), p(τ1)), . . . , (c(τn−1), p(τn−1)), (c(τn), 1)

considered as an implicit-deadline system is RM-tight. Therefore

u(S) = u(S\{τn}) ≥ (n − 1) ·
(

n−1

√

2

1 + c(τn)
− 1

)

using Lemma 10.2 and the fact that u(τn) = 0 due to p(τn) = ∞. We combine both
bounds to derive

LOAD(S) ≥ max

{

1 + c(τn)

2
, (n − 1) ·

(

n−1

√

2

1 + c(τn)
− 1

)}

The second term in the maximum is at least ln( 2
1+c(τn)

) as was shown in Lemma 10.2.

Lemma 10.4. One has αn ≥ α ≥ Ω ≈ 0.5671, where Ω is the unique positive real root
of x · ex = 1.

Proof. Let S a DM-tight system of constrained-deadline tasks, fulfilling the properties
guaranteed by Theorem 10.1. From Lemma 10.3 we obtain

LOAD(S) ≥ max

{
1 + c(τn)

2
, ln

(
2

1 + c(τn)

)}

Since the left hand function is monotonic increasing with c(τn), the right hand function
is monotonic decreasing, both functions are continuous and 1+0

2
< ln(2/1), while 1+1

2
>

ln(2/2), the minimum must be attained at their unique intersection.
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Ω ≈ 0.5671

2Ω − 1 ≈ 0.1343

Recalling the definition of Ω, we see that this happens for c(τn) = 2Ω− 1 ≈ 0.1343, thus
the maximum is at least Ω.

For small n we can improve this lower bound. To this end define

βn := min
0≤x≤1

max

{

1 + x

2
, (n − 1) ·

(

n−1

√

2

1 + x
− 1

)}

Note that αn ≥ βn. Numerically one can obtain

n 2 3 4 5 6 7 8 10 100 1000
βn 0.6180 0.5943 0.5856 0.5811 0.5784 0.5766 0.5752 0.5735 0.5677 0.5672

where the βn’s are rounded down to the 4th digit. See also Figure 10.2. However, while
our bound is tight for n → ∞, this is not the case for small n. In [DRBB09] it is for
example shown that α2 = 1√

2
≈ 0.7071.

10.3 A worst-case task system

In this section, we are going to construct a family of DM-tight task systems, whose load
tends to Ω. This show that our above bound on α is tight.

How can we construct such a system? Theorem 10.1 shows already that we may
choose c(τn) = 2Ω − 1 and d(τn) = 1 and p(τn) = ∞. Furthermore we must have
1/2 < d(τi) = p(τi) < 1 for all other tasks i = 1, . . . , n − 1. To complete the definition
of the system we just need to come up with the idea that the running times c(τi) should
be identical for all i = 1, . . . , n − 1 and the deadlines d(τi) must just be early enough so
that in the DM-schedule there is no idle time in the interval [0, 1]. Formally we define
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Figure 10.2: Improved lower bound βn on the load of DM-tight constrained-deadline task
systems.
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Figure 10.3: DM-schedule for Sn with n = 11 tasks

the task system Sn = {τ1, . . . , τn} with

τi : c(τi) := 1−Ω
n−1

d(τi) := Ω + (1−Ω)(i−1)
n−1

p(τi) := d(τi) ∀i < n

≈ 0.4329
n−1

≈ 0.5671 + 0.4329 i−1
n−1

τn : c(τn) := 2Ω − 1 d(τn) := 1 p(τn) := ∞
≈ 0.1342

Lemma 10.5. Sn is DM-tight.

Proof. Observe that indeed d(τ1) < d(τ2) < . . . < d(τn). We need to show that the
DM-schedule does not leave any idle time in the interval [0, 1] (which is the interval of
the critical instance of τn). First of all

n∑

i=1

c(τi) = (2Ω − 1) + (n − 1) · 1 − Ω

n − 1
= Ω

thus in the interval [0, Ω] the processor is fully busy with the first jobs of τ1, . . . , τn. Now
consider r ∈ [Ω, 1[. Choose i such that

d(τi) = Ω + (1 − Ω)
i − 1

n − 1
≤ r < Ω + (1 − Ω)

i

n − 1
= d(τi+1)
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If the processor is idle for a non-zero interval at time r, then the processor must have
finished the first jobs of τ1, . . . , τn and the second jobs of τ1, . . . , τi. But their cumulated
running time is

n∑

j=1

c(τj) +
i∑

j=1

c(τj) = Ω + i · 1 − Ω

n − 1
> r

The contradiction yields that τn must be DM-tight.

Figure 10.3 depicts the DM-schedule of Sn. Note that in fact the DM-schedule of Sn

is even feasible. It remains to determine the load of Sn. However, this needs a technical
analysis of several pages, which we omit here. But it can be found in [DRBB09].

Lemma 10.6 ([DRBB09]). One has

h(t) := lim
n→∞

DBF(Sn, t) ≤ Ω · t.

A rough outline of this proof is as follows

1. Express h(t) as a finite series.

2. Observe that h(t) is piecewise linear and the slopes of consecutive pieces decrease
only at t ∈ N.

3. Show that h(t+1)
t+1

≥ h(t)
t

for t ∈ {6, 7, 8, . . .}.

4. Show that h(t)
t

≤ Ω ∀t = 1, . . . , 6.

5. Observe that limt→∞
h(t)

t
= limn→∞ u(Sn) = Ω.

From this one can then conclude that h(t)/t ≤ Ω. See Figure 10.4 for the graph of h(t)/t.
The main result of this chapter may now be summarized as

Corollary 10.7. Given a constrained-deadline system S which is schedulable with a dy-
namic priority algorithm. Then it is also schedulable with a fixed-priority algorithm after
increasing the speed of the processor by a factor of 1/Ω ≈ 1.7632. This is tight in the
sense that for any factor f < 1/Ω there is an EDF-schedulable constrained-deadline task
system, such that a processor speed of f is not sufficient for fixed-priority schedulability.

As an open problem one might compare the power of fixed priorities and dynamic
priorities if the deadlines d(τ) are arbitrary, thus if we allow d(τ) > p(τ). There the
speedup factor must lie between 1/Ω and 2.
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Appendix

Finding dense primes

We still have to show that suitable prime numbers for the reduction from Sir∞ to SDA∞
exist and that they can be found in polynomial time. The proof follows closely [Lag85,
RS96].

Lemma 10.8. Let ρN = 2nO(1)
. For a vector a ∈ Zn of encoding size m one can find

distinct prime numbers p, q1, . . . , qn as well as natural numbers R and T in polynomial
time, such that

1. n ·∑n
j=1 |aj | < pR < qT

1 < qT
2 < . . . < qT

n < (1 + 1
n
) · qT

1

2. p and all qi are co-prime to all aj

3. qT
1 > ρ2

N · pR

4. T, R, p, q1, . . . , qn are bounded by a polynomial in m.

Proof. The number of different prime factors appearing in some aj is clearly bounded
by m. Note that m ≥ n. Due to the prime number theorem, see, e.g. [NZM91], the
first m + 1 prime numbers can be computed in polynomial time by testing the first
O(m log(m)) natural numbers. Choose p among these primes, s.t. gcd(p, aj) = 1 for
i = 1, . . . , n. Compute the smallest R and T (for example using binary search) such
that pR > n ·∑n

j=1 |aj | as well as 2T > ρ2
N · pR and T ≥ m. Clearly both, R and T

are polynomially bounded in m. It remains to find prime numbers q1, . . . , qn, which are
sufficiently close to each other. Fortunately, we may use a very deep result in number
theory at this point.

Theorem 10.9. [HBI79, HB88] For each δ > 11
20

there exists a constant cδ such that for
all z > cδ the interval [z, z + zδ] contains a prime.

Consider an arbitrary i ∈ {0, . . . , T 2 − 1}. Choose δ = 3
5
, then for sufficiently large

m, there is a prime between each z := T 20 + i(2T )12 and z + zδ with

zδ ≤ (T 20 + i(2T )12)3/5 < ((2T )20)3/5 = (2T )12.

Thus there must be a prime in each interval [T 20 + i(2T )12, T 20 + (i + 1)(2T )12[. Since
T is polynomially bounded, we can compute m + n + 1 ≤ T 2 distinct primes from
[T 20, T 20 + T 2(2T )12] ⊆ [T 20, T 20 + T 15]. Select n of these primes, which are co-prime to
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p and all aj and denote them by q1, . . . , qn. Using 1 + x ≤ ex ≤ 1 + 2x for x ∈ [0, 1] we
obtain

qT
n

qT
1

≤
(

T 20 + T 15

T 20

)T

=

(

1 +
1

T 5

)T

≤ eT/T 5

= e1/T 4 ≤ 1 + 2
1

T 4
< 1 +

1

n

Recall that T ≥ m ≥ n. The claim then follows.

A generalized Chernoff bound

Here we state the postponed proof of the generalized Chernoff bound, which we used in
the proof of Lemma 3.9 in Chapter 3.

Theorem. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, bi} for bi > 0.
Consider the sum X := a1X1 + . . . + anXn with ai > 0. Then for α := maxi{ai · bi} and
0 < δ < 1 one has

Pr[X ≥ (1 + δ)E[X]] ≤ e−
δ2

3α
E[X]

Proof. Initially we have

Pr[X ≥ (1 + δ)E[X]] = Pr[etX ≥ et(1+δ)E[X]] ≤ E[etX ]

et(1+δ)E[X]

whereby we first used monotonicity of f(x) = etx for all t > 0 and Markov inequality as
second. Denote Pr[Xi = bi] = pi. Multiplicativeness of the expectation of independent
random variables then gives

E[etX ] = E[e
Pn

i=1 taiXi ] (10.1)

=
n∏

i=1

E[etaiXi]

=

n∏

i=1

(pie
taibi + (1 − pi)e

tai0)

=

n∏

i=1

(1 + pi(e
taibi − 1))

1+x≤ex

≤
n∏

i=1

epi(etaibi−1)

Now choose t = ln((1 + δ)1/α). Then (10.1) equals

n∏

i=1

exp
(

pi((1 + δ)
aibi

α − 1)
)

(10.2)

Now Bernoulli inequality ∀δ > −1 : ∀x ∈ [0, 1] : (1 + δ)x ≤ 1 + δx can be applied since
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aibi

α
≤ 1. Thus (10.2) can be bounded by

n∏

i=1

exp

(

pi

(

1 + δ
aibi

α
− 1

))

=

n∏

i=1

exp

(

piδ
aibi

α

)

= e
δ
α

Pn
i=1 piaibi

= e
δ
α

E[X]

Thereby recall that E[X] =
∑n

i=1 ai · E[Xi] =
∑n

i=1 ai · pibi. We continue the bound on
Pr[X ≥ (1 + δ)E[X]] (equation (10.1))

E[etX ]

et(1+δ)E[X]
≤ e

δ
α

E[X]

(1 + δ)
1+δ
α

E[X]

=

(
eδ

(1 + δ)1+δ

)E[X]/α

≤ e−
δ2

3α
E[X]

whereby inequality
eδ

(1 + δ)1+δ
≤ e−δ2/3

comes from an elementary calculus, see, e.g. [MU05] and holds for all 0 ≤ δ ≤ 1.

The ordinary Chernoff bound is contained as special case for ai = bi = α = 1. It is
possible to define a′

i := aibi and b′i := 1. Then X ′
i could be assumed to be 0/1-distributed.

It is not difficult to see that this is an equivalent view, since aiXi is either 0 or aibi, but
the same holds for a′

iX
′
i.

Other variants and many applications of the Chernoff bound can be found in the
excellent book of Mitzenmacher & Upfal [MU05].
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