

Structuration of thin bridge and cantilever structures in thick-film technology using mineral sacrificial materials

Th. Maeder , C. Jacq, Y. Fournier, W. Hraiz, and P. Ryser

Laboratoire de Production Microtechnique (LPM) Ecole Polytechnique Fédérale de Lausanne (EPFL)

EPFL - LPM, Station 17, CH-1015 Lausanne, Switzerland thomas.maeder@epfl.ch, lpm.epfl.ch/tf

- 1. Introduction Thick-film / LTCC structuration techniques
- 2. Mineral sacrificial pastes Requirements & formulation
- 3. Overlying structures Overprinting onto porous layers
- 4. Final steps Etching, rinsing & drying
- 5. Conclusions & outlook

- 1. Introduction Thick-film / LTCC structuration techniques
- 2. Mineral sacrificial pastes Requirements & formulation
- 3. Overlying structures Overprinting onto porous layers
- 4. Final steps Etching, rinsing & drying
- 5. Conclusions & outlook

1. Applications : cantilever & bridge

- Micro-force sensors
 - Thick-film or LTCC
 - Mineral sacrificial paste etched by acid

- Suspended thermistor
 - Flow sensing
 - Thermal actuator
 - Igniter
 - µ-Thruster
 - SOFC

IMAPS/ACerS 5th CICMT, Denver, 21-23.4.2009

1. Applications : fluidics

Introduction

1. Structuration methods

Features top Glass intermediate membrane Vias chan. [diel.+] glass sealing Channels bottom Membranes top Beams chan. membrane Cutting intermediate out bottom Three types 1) Glass sealing Sacrificial top chan. membrane 2) Cutting & stacking layer (carbon or bottom 3) Sacrificial layer mineral)

1. LTCC vs. alumina for sensors

Introduction

Material	LTCC (DP 951)	Al₂O₃ (96%)	Ratio
Minimal thickness [mm]	0.04	0.17	0.24
Short-term strength [MPa]	320	600	0.53
10 year strength [MPa]	110	270	0.41
Young's modulus [GPa]	110	320	0.34
Thermal conductivity [W/m]	3	25	0.12
Design strain [ppm]	1'000	800	1.25
Flexural sensitivity [kN-1]	5.68	0.11	53
Thermal resistance [K/W]	8'333	235	35

LTCC for thermal & low-range mechanical sensors
Thick-film dielectric ≈ LTCC

- 1. Introduction Thick-film / LTCC structuration techniques
- 2. Mineral sacrificial pastes Requirements & formulation
- 3. Overlying structures Overprinting onto porous layers
- 4. Final steps Etching, rinsing & drying
- 5. Conclusions & outlook

- Pioneering work in in the 1980's
 - Stecher et al., Bosch, Germany
 - Thick-film dielectric on carbon sacrificial paste
 - Alumina substrate
 - Complex steps to avoid sagging / swelling (N₂, then air)
 - Already thought about using mineral sacrificial paste (MSP)!
- Did not catch on

2. Mineral sacrificial paste - process

- Print [fire] mineral sacrificial paste (MSP) onto LTCC / ceramic substrate
- Laminate (LTCC) / print (ceramic) top layer
- Fire structure (co- or post-fire)
- · Chemically etch sacrificial layer
- → Requires relatively "open" structure

2. Previous MSP work

- 1983 : Stecher & al. Cu : OK only with N₂
- 2004 : Sippola & al. Au? (not mentioned, metal etched with KI)
- 2006 : Birol et &.; 2006-7 Lucat & al CaCO₃ & SrCO₃
 - CaCO₃ dissociates to CaO + CO₂, then swells to Ca(OH)₂
 - SrCO₃ doesn't dissociate, but CO₂ evolved in acid etching
 - No cohesion / sintering: not all-purpose

2006 Birol (LTCC)

> 2007 Lucat (Thick-film)

2. MSP - CaO + B_2O_3

- CaO or CaCO₃ + B_2O_3 or borax ($Na_2B_4O_7$)
- CaO B_2O_3 : low shrinkage (ca. 8%)
- Sintering hindered by CaO-B₂O₃ reaction?
- Deformed LTCC (low shrinkage)
- Very good dissolution in acids
- Low cohesion & swelling in humid air

Formulation of MSP

2. MSP - CaO + borax

- B_2O_3 replaced by borax ($Na_2B_4O_7$)
 - Reduced B_2O_3 volatility
 - Melting at ~740°C
- Dense & good cohesion @ high borax : overprinting possible
- → Capacitive force sensor (thick-film dielectric + conductor)

2. MSP - issues with borax

- Strong reaction with LTCC & thick films (Na)
- Difficult to remove by etching
- Peeling of conductor under sacrificial paste upon etching (Na)
- → Only small amounts of alkali oxides allowable

Co-firing of MSP with top dielectric / LTCC

- LTCC: MSP solvent should not be too aggressive with tape
- Thick-film: non-porous as-dried MSP or pore-tolerant top layer
 - Non-porous MSP: high-binder + other "non-evaporable" organics
 - Pore-tolerant top layer: more viscous vehicle + lower mineral filling

Post-firing of dielectric onto MSP

- Most straightforward process, better shape control
- Non-porous MSP too hard to etch
- Requires pore-tolerant overlayer

Avoid drying of overlayer during printing

- Non-solvent resin (2007 Lucat: epoxy)
 - Works well
 - Limited shelf life
- Solvent system: aim for denser dried film:
 - Lower mineral filling: works, but not desired solution
 - Increase "non-evaporable" organic part in vehicles
 - "Non-evaporable" organics
 - Polymer binder: low-viscosity grades @ higher concentration
 - Low-molecular weight high-boiling liquids or solids

2. Standard paste formulation

- Low amount of vehicle with little binder
- High as-dried porosity
- Will prematurely dry overlayer with standard formulation

2. Formulation for dense as-dried layer

- Higher amount of vehicle (lower powder loading)
- Increase nonevaporables: low-MW polymer + organics
- Low as-dried porosity: overprinting with standard paste

MgO - magnesium oxide

- Alkaline earth oxide similar to CaO / SrO
- Oxide reasonably stable vs. humidity ("dead burned")
- Well-known in MEMS literature (surface micromachining)
- Etchable in H₃PO₄ & acetic acid
- No carbonates
 - No decomposition during firing
 - No CO₂ gas generation during etching
- No sintering → needs sintering aids
 - $H_3BO_3 \rightarrow B_2O_3$
 - Borax = $Na_2B_4O_7$

2. MgO + H_3BO_3 - co-firing

ESL 4913 (left) / 4903 (right) over MgO+H₃BO₃ Insufficient cohesion of MgO in spite of B₂O₃ ESL 4903 over $MgO+H_3BO_3$ Too high H_3BO_3 : reaction

- H₃BO₃ gives insufficient cohesion in std. formulation
- Evaporation of $B_2O_3 \rightarrow$ reaction with overlying dielectric

2. MgO + borax - co-firing

ESL 4913 (left) / 4924 (right) over MgO+Na₂B₄O₇ Better cohesion, but some borax enters dielectric

- Borax gives better cohesion in std. formulation
- Some reaction still observed

2. MgO + H₃BO₃ - post-firing

ESL 4913 (left) / 4924 (right) over MgO+H₃BO₃ Sufficient cohesion of MgO with high H₃BO₃ content

- Very high H₃BO₃ gives moderate (sufficient) cohesion
- Excess evaporates → no reaction problems if post-fired

2. MgO + borax - post-firing

ESL 4913 (left) / 4924 (right) over MgO+Na₂B₄O₇ OK, still some slight reaction possible

- Post-firing also possible onto borax
- Potential issues (Na+) if MSP printed onto other layer
- Some residual reaction (borax less volatile)

MgO - magnesium oxide

- Succeeded in making relatively cohesive sacrificial paste with boric acid / borax (or both) additions
- Additives only bind the grains porous layer obtained
- Reaction problems encountered if co-firing post OK
- Low "efficiency" of additives with standard formulation (mixed powders) → coat MgO particles

Other tests

- CaB₂O₄ = calcium borate (or other AE borates)
- Sacrificial layer or "glue" for MgO

- 1. Introduction Thick-film / LTCC structuration techniques
- 2. Mineral sacrificial pastes Requirements & formulation
- 3. Overlying structures Overprinting onto porous layers
- 4. Final steps Etching, rinsing & drying
- 5. Conclusions & outlook

3. Overprinting onto porous layer

- High mineral loading
- Low-viscosity vehicle escapes into MSP pores

- Standard paste: premature drying
 - Insufficient leveling rough surface
 - Clogging of the screen

3. Overprinting onto porous layer

- Lower mineral loading
- High-viscosity vehicle is slow to go into pores

- Adapted paste formulation
 - Somewhat lower mineral loading
 - Higher vehicle viscosity (doesn't need "non-evaporables")

3. Formulation for printing onto MSP

- Example formulation
 - Standard Terpineol / dibutyl carbitol (DBC) solvent
 - Standard ethylcellulose (EC; 46 cps, 48% ethoxy) binder
 - Add ca. 40% volume to commercial dielectric paste

Туре	Compound Parts	
		(by mass)
Solvent	Terpineol	10
	DBC	5
Binder	EC-46-48	3

- 1. Introduction Thick-film / LTCC structuration techniques
- 2. Mineral sacrificial pastes Requirements & formulation
- 3. Overlying structures Overprinting onto porous layers
- 4. Final steps Etching, rinsing & drying
- 5. Conclusions & outlook

4. Acid resistance of dielectrics

Heraeus GPA 98-029 (left) & ESL 4924 (right) after ≈ 1 day in acid Failure in 10% acetic or phosphoric acid @ RT

Destroyed: Her GPA 98-029 & ESL 4924
Apparently OK: ESL 4913, ESL 4903, ESL 4904

4. Test structures

- Structures for capacitive force sensors / actuators
- Cantilevers or bridges
- Different width
- Plain or structured (cutouts)

4. Sacrificial layer removal

- Dip into acid (≈ 1 day) @ RT
 - MgO not very reactive
 - "Dead-burned" or additives on surface
 - 10% phosphoric or acetic acid not optimised
- Rinse with tap water
- Neutralise acid with TRIS buffer
- Rinse with deionised water
- Rinse with isopropanol
- Dry @ 60°C in oven

4. Obtained structures: cantilevers

- Plain cantilever : 2 x ESL 4913 + 1 x AgPd ESL 9635B
- Lifting due to built-in strain (TCE mismatch)
 - No lifting was present before etching

4. Obtained structures: cantilevers

- Plain cantilever: 3 x ESL 4904 + 1 x 9535B + 1 x 4904
- Lower lifting due to partial structure compensation

4. Obtained structures: cantilevers

7.5 mm

- Structured cantilever: "hinges" to increase flexibility
- Advantage: move weak point away from base-cantilever junction

4. Obtained structures: bridges

6.0 mm

- Plain bridge: 3 x ESL 4904 + 1 x 9535B + 1 x 4904
- Other issue for bridges: buckling downward
- Most dielectrics adjusted in compression on alumina

4. Obtained structures: bridges

- 3 x ESL 4904 +
 - 1 x ESL 9635B + 1 x ESL 4904
- 3 x ESL 4903 +
 - 1 x ESL 9635B +
 - 1 x ESL 4903

- Very slender structures, yet reliable fabrication
- Confirms buckling issue bistable mechanical behaviour

- 1. Introduction Thick-film / LTCC structuration techniques
- 2. Mineral sacrificial pastes Requirements & formulation
- 3. Overlying structures Overprinting onto porous layers
- 4. Final steps Etching, rinsing & drying
- 5. Conclusions & outlook

Quite straightforward process achieved

- MgO-based sacrificial layer
- Standard firing sequence
- Excellent shape stability
 - Cohesion of MSP

5. Conclusions

- No lateral contraction
- No curling
- Issues
 - Acid etching
 - Stresses (TCE) buckling & bending
 - Drying capillar forces

5. Outlook

- Solve remaining issues
 - Better MgO bonding with less additive : coating the particles
 - Optimise MSP / etching conditions (more benign)
 - Thermal stress compensation / decrease
 - Optimise structure and materials
 - Drying by sublimation if needed
 - Freeze drying (water, cyclohexanol, ...)
- Functional testing of structures
 - Very sensitive force sensors + actuators, …
- Adapt to LTCC

Merci

Thank you !

IMAPS/ACerS 5th CICMT, Denver, 21-23.4.2009

