
Biol Cybern (2009) 100:147–158
DOI 10.1007/s00422-008-0288-z

ORIGINAL PAPER

Learning flexible sensori-motor mappings in a complex network

Eleni Vasilaki · Stefano Fusi · Xiao-Jing Wang ·
Walter Senn

Received: 31 July 2007 / Accepted: 10 December 2008 / Published online: 20 January 2009
© Springer-Verlag 2009

Abstract Given the complex structure of the brain, how can
synaptic plasticity explain the learning and forgetting of asso-
ciations when these are continuously changing? We address
this question by studying different reinforcement learning
rules in a multilayer network in order to reproduce monkey
behavior in a visuomotor association task. Our model can
only reproduce the learning performance of the monkey if the
synaptic modifications depend on the pre- and postsynaptic
activity, and if the intrinsic level of stochasticity is low. This
favored learning rule is based on reward modulated Hebbian
synaptic plasticity and shows the interesting feature that the
learning performance does not substantially degrade when
adding layers to the network, even for a complex problem.

E. Vasilaki · W. Senn
Institute of Physiology, University of Bern,
Buehlplatz 5, 3012 Bern, Switzerland

E. Vasilaki (B)
Laboratory of Computational Neuroscience, EPFL,
Station 15, 1015 Lausanne, Switzerland
e-mail: eleni.vasilaki@epfl.ch

S. Fusi
Institute of Neuroinformatics, ETH/University of Zurich,
Wintherthurerstrasse 190, 8057 Zurich, Switzerland

S. Fusi
Center for Neurobiology and Behavior,
Columbia University College of Physicians and Surgeons,
New York, NY 10032, USA

X.-J. Wang
Department of Neurobiology,
Kavli Institute for Neuroscience,
Yale University School of Medicine,
333 Cedar Street, New Haven, CT 06520, USA

Keywords Reward-modulated · Hebbian · Learning ·
Multilayer · Visuomotor task

1 Introduction

Experimental work of Asaad et al. (1998) has revealed mech-
anisms which might be involved in a visuomotor learning
task performed by monkeys. In this task, the monkeys are
trained to associate visual stimuli (pictures) with delayed
saccadic movements, left or right, with associations being
reversed from time to time. In Fusi et al. (2007), the authors
hypothesize that learning and forgetting associations happens
purely by synaptic modification mechanisms, on multiple
time scales. To support this hypothesis, they reproduce the
experimental results of Asaad et al. with a simplified one-
layer network, and make further predictions which are also
experimentally verified.

The objective of this paper is to investigate whether there
are learning prescriptions which allow us to extend the results
of Fusi et al. (2007) to the case of a multilayer network. One
major limitation of the analysis of Fusi et al. (2007) was the
assumption that the plastic input to the decision network was
generated by a single layer of synaptic inputs. In fact, many
algorithms result in a loss of performance as the number of
hidden layers is increased, although this problem is often not
explicitly addressed Fahlman and Lebiere (1991), Bak and
Chialvo (2001), Hinton and Salakhutdinov (2006); Bengio
and LeCun (2007). We therefore ask: what are the appropri-
ate synaptic mechanisms which allow us to reproduce the
learning performance observed in this experiment within a
complex network?

To address this question we consider three reinforcement
learning algorithms: a novel form of reward-modulated adap-
tive Hebbian learning (RAH), together with the previously

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147953708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

148 Biol Cybern (2009) 100:147–158

described node perturbation (NP) (Werfel et al. 2005) and the
associative reward penalty (ARP) algorithm (Mazzoni et al.
1991; Barto 1985, 1989; Barto and Jordan 1989). We inves-
tigate the performance of these algorithms on the monkey
association paradigm (Asaad et al. 1998; Fusi et al. 2007)
and different network architectures.

We find that both RAH and ARP can reproduce the mon-
key data, but not NP. In fact, adding a few layers slows
down learning, much less in the case of RAH and ARP and
much more in the case of NP. Nevertheless, the problem of
learning with many layers is present in more general archi-
tectures (Fahlman and Lebiere 1991; Bak and Chialvo 2001;
Hinton and Salakhutdinov 2006; Bengio and LeCun 2007)
and though there are solutions for particular cases (Hinton
and Salakhutdinov 2006; Bengio and LeCun 2007), no global
solution exists. Our simulations imply that the less noise
driven a rule is, the better its performance in a deep network
structure.

2 Methods

2.1 Monkey experiment

In an experiment of an oculomotor paradigm (Asaad et al.
1998), monkeys were trained to associate visual stimuli
(pictures) with delayed saccadic movements, left or right
(Fig. 1a). In particular, two visual stimuli (A and B) were
initially associated with left and right saccadic responses
(L and R), respectively. From time to time the associations
were reversed (from A→L and B→R to A→R and B→L,
and vice versa) without any warning to the animal. Two other
visual stimuli (C and D) were consistently associated with
a fixed motor response throughout the experiment and they
were randomly intermixed with the first two stimuli A and
B. The reward in successful trials was given in the form of
juice.

Whenever the associations of A and B were reversed,
the monkey quickly forgot the old associations and slowly
learned the new ones. After reversal, the animal almost imme-
diately reverted to random responses followed by learning the
new associations within 30 trials (Fig. 1b). It is worth noting
that, within a block of trials, every mistake was bringing the
system back to balanced configuration: the probability for
a correct choice in the following presentation was reset to
chance level 50%, independently of the previous success his-
tory, as shown in Fig. 1c. If we represent a correct answer with
1 and a mistake with 0, Fig. 1c shows the probability of find-
ing a 1 after a sequence of trials of the form 111–10. Hence,
we counted the sequences 111–101 and 111–100 between
two reversals, and plotted the percentage of correct answers
after an error (111–101), versus the number of consecutive
correct trials (the number of 1s) before the error.

A

B C

Fig. 1 Visuomotor association experiment from Asaad et al. (1998)
and analysis from Fusi et al. (2007). a Task protocol: the monkey learns
to associate four stimuli either with a left or right saccadic movement.
The associations for two stimuli (shown in the figure) are reversed at
unpredictable times and without explicit cues. For the other two stim-
uli (not shown) the associations are always the same. b The proportion
of correct responses, averaged across all the blocks, is plotted against
the number of trials from the time of reversal. Initially the monkey
keeps responding according to the previously rewarded associations
and makes the greatest number of mistakes. c After a single mistake,
the monkey forgets quickly, whereupon performance rises to chance
level (50%). The errors considered for the analysis can occur at any
time within a block, and not necessarily immediately after reversal

The learning process is roughly independent for each of
the two stimuli (picture A and B). In other words, whether the
monkey has seen one object to be reversed does not greatly
influence performance on the other, see Fusi et al. (2007).
In what follows, we reproduce the curves in Fig. 1b and c as
well as other psychophysical data. Under the assumption that
visual stimuli representations are coded sparsely, we show
that the network is able to learn the associations with little
interference between the patterns.

2.2 The model

We use a multilayer feedforward network with two compet-
ing output neurons, each representing a population selec-
tive to the intended saccadic movements (“right” or “left”),
see Fig. 2. The two populations compete through a group of
inhibitory neurons. The synaptic weights of the network are
analog (i.e., real valued), bounded and the neurons have two
states: active and silent.

Since we focus on the dynamics of learning, the details of
the neuron model is less crucial. In fact, the collective com-
putational properties of many binary neurons are equivalent

123

Biol Cybern (2009) 100:147–158 149

Plastic synapses (+/-):

Winner-Take-All

…

…

Input layer

Random pattern

Feedforward
network

w3

w1

w2

cR cL

L R

Inh

Output layer

Hidden
Layer 1

Hidden
Layer 2

Fig. 2 Network architecture. Two hidden layer feedforward network
with random input pattern, w1 denotes the synaptic connections from
the input layer to hidden layer 1, w2 the connections from hidden layer 1
to hidden layer 2 and w3 the connections from hidden layer 2 to the
output layer. The symbols cR and cL represent the feedforward synap-
tic inputs to the right and left selective populations, respectively, which
compete through a group of inhibitory neurons Inh (winner-takes-all
mechanism). The dynamics of the WTA mechanism are modeled via
a sigmoidal function, see Sect. 2. Plastic synapses, which can be both
excitatory and inhibitory, are plotted as arrows. Excitatory-only synap-
tic connections are depicted with a round-shaped ending and inhibitory
only with an ellipsoid-shaped ending

to neurons with graded response (Hopfield 1984). Moreover,
the dynamics of the readout network can safely be replaced
by a stochastic winner-takes-all (WTA) mechanism, without
the need to implement this explicitly in neuronal terms, as is
done, e.g., in Fusi et al. (2007), Wang (2002), Wang (2005).

We represent the two stimuli A and B as a pair of fixed
random binary patterns created with coding level f = 0.01,
i.e., with probability f of each component of a pattern being
active and probability 1 − f of being inactive. This results
in a probability of 10−4 of having the same neuron acti-
vated by two patterns. This condition is imposed to model
the experimental results showing independence in learning
the patterns. A stimulus, either A or B, randomly chosen, is
presented to the network and the total synaptic input cL and
cR to the two competing output neurons “left” and “right”
is calculated. The probability of “left” winning over “right”
follows a sigmoidal function of the difference between the
synaptic inputs cL and cR , with the parameter σ controlling
the steepness of the sigmoid:

QL = 1

1 + e−(cL−cR)/σ
. (1)

The network chooses randomly one of the two saccadic
movements with equal probability when the inputs activated
by the visual stimuli to the two output neurons are perfectly
balanced. Any imbalance in the input would bias the deci-
sion. As the difference increases in favor of, e.g., the left
neuron, the probability for the model to choose left increases,
and eventually the model’s behavior becomes close to deter-
ministic. Reward is given if the answer is correct and the
weights are updated according to the learning rule. After a
random number of trials (between 30 and 60) the association
is reversed.

2.3 Learning rules

2.3.1 Reward-modulated adaptive Hebbian learning

Motivation for the rule. We choose a Hebbian-type learn-
ing rule that allows for bounding the synaptic weights, to
maintain a degree of biological realism. Many reinforcement
learning algorithms (Sutton and Barto 1998) described in
the REINFORCE framework (Williams 1992; Dayan 1990)
assume noise on the neuronal level in order to explore the
space of the network states. Here, we suggest that this explo-
ration could be mediated by the randomness induced by the
decision-making (probabilistic WTA) network, the stochas-
ticity in choosing the pattern or the induction of synaptic
modifications which is inherently stochastic (see also Amit
and Fusi 1994).

Rule formulation. The (total) synaptic input hµ
i of a neuron

is calculated according the following equation:

hµ
i = 1

N + 1

⎛
⎝

N∑
j=1

wi j yµ
j − bi

⎞
⎠ (2)

where yµ
j is the activity of the presynaptic neuron with j tak-

ing values from 1 to N , wi j is the synaptic weight from the
presynaptic neuron j to the postsynaptic neuron i , bi is the
bias to neuron i , and µ is an index over the patterns presented
in the network. The activity of the neuron i is given by:

yµ
i = H(hµ

i), (3)

where H is the Heaviside (step) function.
The synaptic changes are given by the equation:

�w0
i j =

{
q+ (yµ

i − P11
i j) yµ

j if successful trial

−q− (yµ
i − P11

i j) yµ
j if unsuccessful trial,

(4)

where q+ is the learning rate in rewarded trials, q− is the
learning rate in failures, and P11

i j is the probability of the
postsynaptic neuron being active given that the presynaptic
neuron is active, i.e.,

123

150 Biol Cybern (2009) 100:147–158

P11
i j =

〈
yµ

i = 1|yµ
j = 1

〉
µ

. (5)

This probability reflects the averaged postsynaptic activity
across all pattern presentations. It plays the role of an long-
term potentiation (LTP)/long-term depression (LTD) thresh-
old as, depending on its value, it determines the amount of
LTP or LTD to be induced. To calculate the P11 threshold
we use a running mean, which could be locally implemented
in the synapse:

�˜P11
i j = ρ

(
yµ

i −˜P11
i j

)
yµ

j , (6)

where ρ defines the update rate of the running mean and˜P11
i j

is our estimate of P11
i j . Since˜P11

i j is a conditional probability,

the update ∆˜P11
i j is zero in the case that the presynaptic neu-

ron is inactive. We assume that in between these updates˜P11
i j

does not decay in time, and hence implicitly assume a long

memory time constant for˜P11
i j compared with the rhythm of

pattern presentation, as is also assumed for wi j .
For biological realism and consistency with previous the-

ory (Senn and Fusi 2005a) we require that the synapses are
soft-bounded, i.e., that the synaptic changes (Eq. 4) are mod-
ified through the effect of the synaptic boundaries wmin and
wmax:

∆w̃i j =
{

∆w0
i j (wmax − wi j) if ∆w0

i j > 0

∆w0
i j (wi j − wmin) if ∆w0

i j < 0,
(7)

where wmax and wmin are, respectively, the maximum and
minimum values that a synapse can take. This equation
restricts synaptic weights between [wmin, wmax], as long as
the learning rate is sufficiently small.

In addition, the algorithm requires the implementation of
a stop-learning criterion (similar to Senn and Fusi 2005a)
which restrict the updates in rewarded cases to those syn-
apses whose postsynaptic neuron has a total synaptic input
−δ0 < hµ

i < δ0, δ0 being a small positive number:

∆wi j =
⎧⎨
⎩

∆w̃i j if unsuccessful trial
∆w̃i j if successful trial and −δ0 < hµ

i < δ0

0 elsewhere.

(8)

The importance of implementing a stop-learning criterion
will be further discussed in Sect. 3.3.

For the bias, we assume an additional input unit always
active (with yµ

j = 1) and treat its synapse just like another
weight that changes according to the Eqs. 4–8. The only
source of stochasticity is the probabilistic winner-takes-all
and the randomness in choosing the input pattern. It is empha-
sized that the RAH rule is an ad hoc rule and cannot be proven
to improve task performance in general. The rule with a fixed

value for P11
i j corresponds to the one used in Fusi et al. (2007)

(cf. also Soltani et al. 2006b).

Simulation parameters for reproducing the monkey data:
Stimuli are represented as random binary patterns. We
employ sparse coding, i.e., the random patterns were created
with code level f = 0.01. Parameters were chosen as fol-
lows: probabilistic WTA σ = 0.02, learning rate in absence
of reward q− = 0.02, learning rate in case of reward q+ =
0.005, and time constant of the running mean τ = 10−3.
The parameter δ0 was set to half of the mean value of the
absolute synaptic current for the input layer, i.e., 0.5×10−4.
Synaptic weights are uniformly distributed in [−1, 1]. Syn-
aptic boundaries are set to wmax = 1 and wmin = −1.

2.3.2 Node perturbation

NP (Werfel et al. 2005) is a non-Hebbian algorithm based on
the idea that random search can lead to sophisticated learning.
Unlike Hebbian learning, this rule does not exploit presynap-
tic and postsynaptic correlations. The synaptic modifications
are governed by the random fluctuations in the postsynap-
tic neuron independently of the postsynaptic activity per se.
If reward is given to the system, the synaptic modifications
follow the direction of the random fluctuations; if not, they
follow the opposite direction.

We implemented NP is its pure form, where the synaptic
changes are given by the equation:

∆wi j =
{

q+ ξ yµ
j if successful trial

−q− ξ yµ
j if unsuccessful trial

(9)

with q+ being the learning rate in a successful trial, q− the
learning rate in an unsuccessful trial, y j the presynaptic neu-
ronal activity, and ξ Gaussian-distributed noise inserted at
the postsynaptic neuron. To be consistent with the other algo-
rithms, neuronal activities are binary, and are calculated from
Eqs. 2–3.

Simulation parameters for reproducing the monkey data:
Setup was similar to RAH but, in order to improve the per-
formance of NP, we allowed a deterministic WTA and noise
decay. Noise ξ is Gaussian with σ = 1 and decays propor-
tionally to 1 − 〈R〉, where 〈R〉 is the mean network perfor-
mance with values between 0 and 1 (R = 1 in a successful
trial and R = 0 in an unsuccessful trial). The learning rate in
both successful and unsuccessful trials is q+ = q− = 0.01.
Initial synaptic weights are uniformly distributed in [−1, 1].
In NP we relieved the synapses from their bounds to allow
for an improvement of the signal-to-noise ratio by an uncon-
straint growth of the weights.

123

Biol Cybern (2009) 100:147–158 151

2.3.3 Associative reward penalty

ARP (Mazzoni et al. 1991; Barto 1985, 1989; Barto and
Jordan 1989) is a Hebbian-type algorithm, well established
in machine learning.

We can rewrite the ARP equation (Mazzoni et al. 1991)
as follows:

∆w0
i j =

{
q+(yµ

i − pµ
i)yµ

j if trial successful

−q−(yµ
i −(1 − pµ

i))yµ
j if unsuccessful,

(10)

where yµ
i is the binary output of the i th neuron, pµ

i =
〈yµ

i 〉yµ
i =0,1 its probability of firing given the applied pattern

µ, wi j the synaptic weight from neuron j to neuron i , q+
the learning rate in rewarded trials, and q− the learning rate
in nonreward trials. The probability pµ

i is assumed to be a
sigmoidal function of hµ

i (Eq. 2),

pi = 1

1 + e−hµ
i /σ

. (11)

Typically σ = 1, but in the following we will treat σ

as a parameter of the learning rule. In case of reward, the
LTP/LTD threshold is the term pi , corresponding to our P11

i j .
In case of punishment, the LTP/LTD threshold is 1 − pi .

We restrict the synaptic weights according to the following
equation (soft bounds):

∆wi j =
{

∆w0
i j (wmax − wi j) if ∆w0

i j > 0

∆w0
i j (wi j − wmin) if ∆w0

i j < 0.
(12)

This algorithm is closely related to our novel rule. Under
certain constraints, they become identical, as we show in
Sect. 3.1.3. Their main differences are the stochastic nature
of the neuron in ARP and the way in which the LTP/LTD
threshold is calculated. In RAH this threshold depends on
the average activity of the postsynaptic neuron, while in ARP
it depends on the postsynaptic current at the particular time
step.

Simulation parameters for reproducing the monkey data:
Setup was similar to RAH with q+ = 0.025, q− = 0.3, and
σ = 2 × 10−4. Synaptic weights are uniformly distributed
in [−1, 1]. Synapses are soft bounded as in RAH.

3 Results

3.1 Reproducing the experimental data with a multilayer
network

We apply the RAH algorithm on the network described in
Sect. 2, and reproduce with very good accuracy the experi-
mental data from Asaad et al. (1998), Fusi et al. (2007). We
plot four performance-related curves and compare them to

0 20
0

0.2

0.4

0.6

0.8 A

Trials from reversal

P
ro

po
rt

io
n

co
rr

ec
t

0 10
0.2

0.4

0.6

0.8
B

Consecutive correct trials

0 10 20
0

0.2

0.4

0.6

0.8 D

Trials from any error

0 10
0.2

0.4

0.6

0.8
C

Correct trials before an error

P
ro

po
rt

io
n

co
rr

ec
t

Fig. 3 Reproducing experimental results (circles) with a two hidden
layers network 100 × 30 × 30 × 2 (solid line) and the RAH algorithm.
a Performance versus number of trials after the reversal of associations.
The curve starts at a proportion of 0.2 correct because this represents
the counter probability of 0.8 for correctness after successful learning,
immediately before the reversal. b Probability of having a correct trial
after a sequence of N consecutively correct trials. c Performance in the
next trial after an error in any pattern versus the length of consecutively
correct trials before the error. Every single mistake resets the monkey’s
performance to almost chance level, independently of the previous suc-
cess history. d Development of the average performance in the following
trials after any error. The error bars for the data points are negligible

the outcome of the simulation. The fitting is done by tuning
two parameters: the learning rate q− in nonrewarded trials
and the learning rate q+ in rewarded trials. These parame-
ters are chosen such that there is a good match between the
experimental results and simulations shown in Fig. 3a and c.
The matching for the rest of the curves follows without any
additional parameter tuning. Further, we present simulations
using NP (Werfel et al. 2005) and ARP (Mazzoni et al. 1991;
Barto 1985, 1989; Barto and Jordan 1989) and analyze the
results.

3.1.1 Reward-modulated adaptive Hebbian learning

The model learns the left–right assignment task within 30
trials, similar to the monkey behavior (Fig. 3a). Figure 3b
shows the probability of a successful trial versus the num-
ber of past consecutively correct trials. Figure 3c shows the
probability of having a successful trial after a mistake that
follows a number of consecutively correct trials. We observe
that, after a single mistake, the response of the monkey is
almost random (reset), regardless of the recent history. To
reproduce this effect, we set the learning rate in absence of
reward four times higher than in rewarded trials. Figure 3d
shows learning after any error onwards. Statistics are per-
formed on 500 different sequences of trial length between
300 and 600, with ten reversals in each sequence.

123

152 Biol Cybern (2009) 100:147–158

2 4 6

0.6

0.8

1

Correct trials before an error

P
ro

po
rt

io
n

co
rr

ec
t

A

2 4 6 8 10 12

0.6

0.8

1

Number of layers

P
ro

po
rt

io
n

co
rr

ec
t

B

Fig. 4 Results of RAH algorithm on a multilayer network. a The
mistake in one pattern does not affect the classification of the other
pattern in the case where learning is almost achieved. To produce the
graph, we extract from the end of a trial block a number of consecutive
correct answers, mostly of pattern A, followed by a single error in B,
followed by a trial where A is again presented. b The performance of
the network is retained as we increase the number of layers, without
retuning the parameters. Learning can be generalized in a network of
many layers

In Fig. 4a, we show in simulations the effect of an error
in the classification of pattern B on classifying pattern A,
versus the previous history of subsequent correct trials of
pattern A (and vice versa). The data are extracted from the
end of the trial block, i.e., when performance is over 70%.
The plot shows that the mistake in one pattern does not affect
the classification of the other pattern, after learning is almost
achieved. We attribute this behavior to our choice of sparse-
coded input patterns, which possibly leads to different path-
ways carrying out the information from the input to the output
layer for each pattern.

Further, we investigate how the performance changes as
the number of layer increases. It is worth noting that adding
layers does not require further parameter tuning; the perfor-
mance remains the same and the monkey data always fit well.
Since the monkey learns the task within 30 trials, we plot the
performance of the 30th trial versus the number of network
layers (Fig. 4b) and demonstrate that it is almost a straight
line.

In summary, the network allows us to reproduce the exper-
imental results with very good accuracy, as long as the syn-
aptic changes in case of punishment are four times stronger
than in the case of reward and sparse coding is used to create
the random patterns.

3.1.2 Node perturbation

NP, implemented in its original formulation (see Sect. 2), is at
least two orders of magnitude slower than the monkey perfor-
mance (Fig. 5) with all parameter sets we tried. We attribute
this slow performance to the fact that the algorithm does not
exploit the correlations between presynaptic and postsynap-
tic activity, and therefore searches a larger parameter space
for appropriate solutions. In addition, as we demonstrate in
Sect. 3.2, the number of layers significantly slows down the
performance of NP, at least for our architectural choices. The

0 10 20 30
0

0.2

0.4

0.6

0.8

Trials from reversal

P
ro

po
rt

io
n

co
rr

ec
t

Fig. 5 Reproducing the experimental data with NP. The learning in
simulations is two orders of magnitude slower than the experimental
data. The network learns equally from successful and unsuccessful tri-
als. Learning mainly from unsuccessful trials did not improve perfor-
mance

2 4
0

500

1000

1500
A

T
ria

ls
 u

nt
il

78
%

co

rr
ec

t c
la

ss
ifi

ca
tio

n

Number of reversals
0 500

0

0.5

1

1.5

Number of reversals

M
ea

n
A

bs
ol

ut
e

W
ei

gh
t

B

Fig. 6 Learning and forgetting associations with NP. a Learning slows
down as the number of reversals is increased. b Growth of weights
versus number of association reversals for NP. It was not possible to
add soft bounds, at least with this particular implementation of NP,
because the synaptic weights tend to grow outside the initial distribution.
Unbounded weights are related to difficulties in forgetting. Statistics for
500 initial conditions

slow performance by itself excludes NP as a candidate for
reproducing the monkey data, and as a consequence we repro-
duce neither other behavioral data nor the performance with
many layers (see also Fig. 8).

Furthermore, we note that the algorithm has difficulties
in forgetting the previously learned associations (Fig. 6a).
The time it takes to learn the task increases with the num-
ber of the prior reversals. This slowing down arises due to
the continuous growth of the synapses with each reversal
(Fig. 6b), which prevented us from applying soft bounds. In
fact, applying the same synaptic weight bounds to NP as we
did for the RAH rule reduced the performance of NP even
more. The tendency for strong weight growth is inherent to
NP. It can be explained by the fixed stochasticity, which pre-
vents NP from yielding 100% correct classification. To fur-
ther improve the reliability of the classification the weights
are increased during ongoing learning, which itself increases
the signal-to-noise ratio and therefore the performance. The
Hebbian-type algorithms (RAH and ARP), which allow for
zero or low noise levels, on the other hand, can cope with

123

Biol Cybern (2009) 100:147–158 153

0 10 20 30
0

0.2

0.4

0.6

0.8

Trials from reversal

P
ro

po
rt

io
n

co
rr

ec
t

Fig. 7 Reproducing the experimental data with ARP. Successful repro-
duction of the performance can only be achieved with a steep activation
function. Solid line step activation function, dashed line sigmoidal
activation function with σ = 2 × 10−4 and q− = 12 q+

1 2 3 4

10
2

10
4

Number of layers

T
ria

ls
 u

nt
il

99
%

co
rr

ec
t c

la
ss

ifi
ca

tio
n

Fig. 8 Learning a simple problem with a multilayer network. For NP,
which uses an external noise to explore the solution space, performance
drops as the number of layer is increased. For the Hebbian-type learn-
ing rates, performance quickly saturates. Under all conditions, RAH
and ARP perform much faster than NP for this task. Solid line RAH,
dashed line ARP with little stochasticity, dash–dotted line NP.
Parameters optimized for each layer using GAs. Weights are set to
arbitrary initial conditions

bounded synapses, and as a result the network easily for-
gets the previous associations while quickly learning the new
ones (see Figs. 3a, 7 and section below). For a discussion of
learning and forgetting with bounded synapses see Senn and
Fusi (2005b), Fusi and Senn (2006).

3.1.3 Associative reward penalty

ARP is fast enough to reproduce all the learning curves of
Fig. 3 with reasonable accuracy, and to maintain its perfor-
mance with many layers (see also Fig. 8). However, it requires
tuning of an additional parameter, the slope of the neuronal
transfer function (expressed by its inverse, σ , in Eq. 11). Fur-
ther, parameter tuning brings the algorithm close to the natu-
rally emerging characteristics of RAH. The tuning results in

12 times more synaptic changes (i.e., learning rates) in case
of punishment than reward and a sharp activation function.
With these parameters, the algorithm behaves approximately
as if we had replaced the sigmoidal activation function with a
step function (Fig. 7). Under these conditions, we were able
to both soft-bound the synapses and reproduce the monkey
data under the assumption of sparse coding and normalized
inputs, i.e., low synaptic currents.

Formally, in the limit of a step function (σ = 0), positive
postsynaptic currents hµ

i lead to a probability of firing pµ
i =

1 and negative postsynaptic current to pµ
i = 0. however,

since these two cases are characterized by yµ
i = 1 and yµ

i =
0, respectively, we get that yi = pi . For this setting the
original rule (Eq. 10) becomes:

∆wi j =
{

0 if successful trial
−2q−(yi − 0.5)y j if unsuccessful trial.

(13)

In this deterministic limit, the algorithm learns from pun-
ishment only. It also becomes very similar to the RAH algo-
rithm, when we approximate the LTP/LTD threshold by P11

i j= 0.5, and when we assume a tight stop-learning criterion
(δ0 = 0), i.e., no synaptic changes in case of reward. Such
a strategy is reasonable if the chance for a reward is already
high so that learning can be based on the rare and informa-
tive nonrewarded events. Learning from mistakes is not a new
idea; an algorithm that makes synaptic changes only in the
case of punishment was previously suggested by Narendra
and Thathacher (1989) and Bak and Chialvo (2001), Chialvo
and Bak (1999).

3.2 Performance of the learning algorithms in networks
of many layers

3.2.1 Linearly separable problem

We further investigate the performance of the three learning
rules on the simple, linearly separable task of learning two
random associations as the number of layers is increased.
This task is in fact a simplified version of the monkey prob-
lem without association reversals and allows to compare the
three rules without being concerned about the possible influ-
ence of the reversals on the results.

For this comparison, we use the genetic algorithms (GAs)
toolbox of Matlab to find one optimal set of parameters per
layer for each algorithm. The fitting function is the summa-
tion of the error in the first 200 trials, repeated over 1,000
instances of the network. For consistency with our previous
architectural choices, we again created the patterns with cod-
ing level f = 0.01. The weights are set to arbitrary initial
conditions. In Fig. 8 we observe that the performance of NP
significantly deteriorates with the number of layers, but the
performance of RAH and ARP quickly saturates. This result

123

154 Biol Cybern (2009) 100:147–158

Table 1 Parameters found by the genetic algorithm for the simple asso-
ciation task

Layer q+ q−

RAH
1 3.98 × 10−4 0.995

2 9.02 × 10−5 0.2255

3 1.625 × 10−4 0.1625

4 9.9 × 10−5 0.0990

Layer q σ

NP

1 0.2281 4.5100

2 0.1375 0.6250

Layer q+ q− σ

ARP

1 0.9632 0.9276 4 × 10−5

2 0.9262 0.0690 2 × 10−5

3 0.3789 0.0379 1 × 10−5

4 0.3749 0.0258 2 × 10−5

Coding level of the input patterns f = 0.01

is consistent with the previously observed inability of NP to
reproduce the monkey results with a three-layer network.

If we use a baseline subtraction, i.e., modify the learn-
ing equations such that we include a term R − 〈R〉 (where
R = 1 in rewarded cases and R = 0 in nonrewarded cases),
learning speeds up. Though the learning times increase less
dramatically for NP, we can still observe the deterioration of
its performance as the number of layers is increased, also for
a coding level f = 0.1 (with one layer it takes 41 trials to
learn the task and with two layers 791 trials).

These results indicate that, for simple associative prob-
lems and learning rules that heavily depend on noise to
explore the solution space, increasing the number of lay-
ers may eventually prevent learning. The noise should be
continuously decreased, as layers are added, to preserve the
information from input to output layers, at least for a network
with random initial synaptic efficacies. This would progres-
sively lead to deterioration and eventually prohibit the net-
work learning (Table 1).

3.2.2 Complex problem

We have seen that RAH copes well with the linearly separa-
ble problem as the number of layers is increased. To see if
our conclusions hold for a more complex problem, we further
investigate its performance on a nonlinearly separable task,
starting again from random initial synaptic efficacies.

It is well known that one can store up to 2N uncorrelated
patterns in a simple perceptron with N input neurons (Bethge
et al. 1994). To construct a nonlinearly separable problem,

2 3 4 5 6
1

1.2

1.4

1.6

1.8

2
x 104

Number of layers

T
ria

ls
 u

nt
il

95
%

 c
or

re
ct

 c
la

ss
ifi

ca
tio

n

Fig. 9 Learning a complex problem with a multilayer network and
the RAH algorithm. Performance is maintained for at least six layers.
Number of inputs was 10, and number of neurons per hidden layer was
50. Learning rates are uniformly distributed between 0 and 0.01; 95%
confidence intervals for the mean are negligible

we store 30 random patterns of dimension N = 10 using a
multilayer network.

To address this more complex problem with a network of
many layers, we assign to each synapse a learning rate drawn
from a uniform distribution with minimum 0 and maximum
0.01. Due to this setup, we are not obliged to fine-tune a learn-
ing parameter depending on the number of layers but we can
keep the same parameters throughout our simulations. Such
an approach would allow a dynamic growth of the network in
general cases, without being concerned about how the syn-
apses would adapt their learning rate, and is inspired from
the theoretical work on learning in multiple timescales (Fusi
et al. 2005). In this setting, we observe that the global per-
formance does not drop as the number of layers increases
up to six layers (Fig. 9). There is a systematic increase in
the performance from two layers to three layers, which we
attribute to the fact that in multilayer perceptrons with Heav-
iside activation functions, three layers (two hidden layers)
are required for full generality (Sontag 1992). For a network
structure with more than six layers, retuning the maximum
learning rate is required. Nevertheless, we consider this result
reasonably good for solving a complex problem with such a
deep network structure.

3.3 Importance of the stop-learning criterion
for the RAH algorithm

In what follows, we show the importance of implement-
ing a stop-learning criterion for the present network archi-
tecture when the RAH algorithm is applied. For this pur-
pose, we use the XOR problem as the simplest nontrivial
problem, and demonstrate that optimal performance requires
either learning from mistakes or a stop-learning criterion.
Further, we show that our results are also valid for a complex

123

Biol Cybern (2009) 100:147–158 155

problem, namely the modified National Institute of Standards
and Technology (MNIST) database.

3.3.1 Solving a problem with and without a stop-learning
criterion

We solve the XOR problem using a network with a three-
neuron input layer (two inputs and one bias unit), one hid-
den layer of 17 neurons, and a one-neuron output layer. The
number of neurons in the hidden layer is chosen to opti-
mize speed. Fewer neurons result in slower learning, while
adding more neurons results in equally fast learning, but per-
formance always reaches 100%. The task can be solved with
as few as two hidden neurons, but within the spirit of this
work we try to solve the problem with a large network. The
XOR example here is used to demonstrate the necessity of a
stop-learning criterion; without it, the algorithm fails to solve
more complex problems except for in the extreme condition
of having synaptic changes only in the case of punishment.

The learning curves presented in Fig. 10 are produced
by averaging the reward over 100 runs. In all simulations
we observe that, the smaller the synaptic changes in case of
reward, the better the performance (Fig. 10a). Best results are
produced if no synaptic synaptic modifications take place in
rewarded trials (Fig. 10a, black curve). The learning rate is
set to 0.03 and the synapses are soft bounded.

However such a configuration may raise questions about
the biological plausibility of the network, as synaptic changes
are also recorded in case of reward (Asaad et al. 1998).
Further, learning by mistakes leads to learning the patterns
only marginally, with no tolerance to noise. Weight changes
stop when the current is above or below the firing thresh-
old, and thus the distance from the threshold can be arbi-
trary small. Thus, a small amount of noise could lead to the
wrong response. The binary perceptron theory (Senn and Fusi
2005b) allows for a margin in learning, which we also adopt
here. Weights will be modified upon correct classification
while the synaptic current is lower than the firing threshold
plus a predefined margin δ0, if firing is the desirable behav-
ior of the neuron. Weights will be also modified while the
synaptic current is higher than the firing threshold minus
the margin δ0, if silence is the desired behavior (see Eq. 8).
This margin, induced by a stop-learning criterion, provides
robustness to noise; for example, if the current is reduced by
some amount due to sources of noise, as long as the quantity
is smaller than the margin, the neuronal response will still be
correct.

In Fig. 10b we show how these two issues can be addressed
by implementing an explicit stop-learning criterion (with
δ0 = 0.01, i.e., mean value of the absolute synaptic current).
In this case, performance becomes again optimal, regard-
less of our choice of learning rate in rewarded cases. Within
the framework of the stop-learning criterion, learning from

0 100 200 300 400 500
0.4

0.6

0.8

1

Pattern presentations

P
ro

po
rt

io
n

co
rr

ec
t A

0 100 200 300 400 500
0.4

0.6

0.8

1

Pattern presentations

P
ro

po
rt

io
n

co
rr

ec
t B

Fig. 10 Solving the XOR Problem without and with a stop-learning
criterion. a Without a stop-learning criterion, learning from mistakes
only is optimal. However, it is not robust to noise since the net-
work only learns the patterns marginally. Black curve learning from
mistakes only. Light gray curve learning when synaptic changes
in absence of reward are 20 times stronger than in case of reward
(q− = 20q+). Dark gray curve learning when synaptic changes
in absence of reward are two times stronger than in case of reward
(q− = 2q+). b Implementing an explicit stop-learning criterion restores
speed while allowing for robustness. Black curve same parameters as
for the dark gray curve in a (q− = 2q+) but with a stop-learning cri-
terion. Performance is nearly optimal. Dark gray curve same param-
eter values as dark gray curve in a (q− = 2q+, no stop-learning cri-
terion). Learning curves are computed by averaging the reward over 100
repetitions. Learning rate in absence of reward q− = 0.03, ρ = 10−3

mistakes corresponds to an implicit, extreme stop-learning
criterion with δ0 = 0.

3.3.2 Learning a complex problem from mistakes

Since XOR is a simple problem of only two classes, we would
like to show that our conclusions are still valid for a complex,
real-world problem. For this purpose, we chose the MNIST
database, a collection of handwritten digits often used as a
benchmark for algorithmic performance (LeCun et al. 2001).

We use a network with 784 input neurons (image size
28 × 28), 25 hidden neurons, and 4 output neurons, since
the data we use for the training are limited to the digits 0–3.
The training dataset consists of 2,023 training samples and
the test dataset of 434 samples. In order to speed up learning,
we implement at the output layer a WTA mechanism as a
maximum (MAX) operator. Thus, the output which receives
the highest synaptic input is set to 1 and all the others to
0. Optimal performance is, again, achieved when either no

123

156 Biol Cybern (2009) 100:147–158

0 2000 4000 6000 8000 10000
0.2

0.4

0.6

0.8

1

Pattern presentations

P
ro

po
rt

io
n

co
rr

ec
t A

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Digits

P
ro

po
rt

io
n

co
rr

ec
t B

Fig. 11 Learning by mistakes for a reduced MNIST dataset of 2,023
training samples and 434 test samples. a Learning curve is computed
by averaging the reward over 100 repetitions. Network architecture:
one hidden layer of 50 neurons. Learning rate q− = 0.1, q+ = 0,

ρ = 10−3. Unbounded synapses. b Performance for previously unseen
(test) data. Worst performance is for digit 2, which can be confused with
0 and 3

synaptic changes are made in case of rewarded trials, or a
stop-learning criterion is implemented.

Learning is achieved in about 3,000 presentations for
unbounded synapses (Fig. 11a) and 30,000 for bounded syn-
apses (not shown here), since we have to choose a smaller
learning rate in the presence of synaptic bounds. Given that
the nature of the problem does not involve learning and for-
getting, network performance is faster with unbounded syn-
apses and a large learning rate.

The performance on previously unseen (test) data is
reported in Fig. 11b. No special preprocessing techniques or
fine-tuning was used. When P11

i j in the RAH learning rule is
replaced by a fixed value, e.g., 0.5, the learning performance
saturates at low levels.

4 Discussion

The experiment of Asaad et al. (1998) provides us with inter-
esting information on how the monkey behaves in a rapidly
changing environment. The monkey is not able to follow an
optimal game strategy, but instead takes 30 trials to learn the
task. Every time the associations are reversed, it completely
forgets the old associations and learns the new ones from the
beginning. This behavior can be attributed to the difficulty
of the task; the two noninverting associations confuse the

monkey, as they create uncertainty about the nature of the
mistakes.

Fusi et al. (2007) have proposed a simple associative
model for reproducing this behavior, tested on a single-layer
network. The model however implies that learning could
take place through a multilayered network. Thus, we tested
the model, implementing it in a multilayer network using
one novel (RAH) and two well-known (NP and ARP) algo-
rithms. We showed that, for the considered network archi-
tecture, only the Hebbian-type algorithms (RAH and ARP)
allow us to reproduce the monkey behavior within reasonable
accuracy. In contrast, the performance of NP significantly
decreases as the number of association reversals increases.

Our simulations require that synaptic modifications in
case of an error must be larger than in case of a success-
ful trial to reproduce the experimental data. This imbalance
in the synaptic changes provides us with an explanation for
the strong reset observed after a mistake; strong synaptic
changes in unsuccessful trials cause the synapses to
rapidly forget their past memories and learn the new associ-
ations. The absence of pattern interference can be simulta-
neously achieved, as long as sparse coding in the input layer
is used.

The imbalance between the synaptic changes in rewarded
and nonrewarded trials may also cause undesired forgetful-
ness of past skills with each mistake. The sparseness in the
representation of the patterns can also limit this problem. If
sparseness is maintained through the structure, for different
stimuli there are different learning pathways with little over-
lapping. Nevertheless, the problem of memory preservation
while learning new features (stability–plasticity dilemma)
is common to all algorithms but appears more prominent
when synapses are bounded. There is no global solution to
this issue, but various suggestions have been made such as
smart stochastic selection of synaptic updates (Fusi and Senn
2006), the cascade model (Fusi et al. 2005), or modularity
(Calabretta and Parisi 2005; Calabretta et al. 1998).

In general, the Hebbian-type algorithms (RAH and ARP)
seem to generalize relatively well in large associative net-
works of input patterns with sparse representation. We inves-
tigated their behavior on a simple linearly separable problem,
without association reversals, and saw that both rules retain
their performance when adding layers, in contrast to the NP.
In addition, we saw that this conclusion still holds for RAH
(and ARP) for a more complex associative problem, since in
the limit of low neuronal stochasticity, the two rules become
identical. A similar type of reward-based Hebbian synap-
tic plasticity which depends on the pre- and postsynaptic
mean firing rates was used to learn the inputs to a recur-
rently connected decision network (Fusi et al. 2007; Soltani
et al. 2006a,b), but in these cases the effective potentiation
and depression rates were constant (corresponding to a fixed
value for P11

i j).

123

Biol Cybern (2009) 100:147–158 157

Despite the promising simulation results, a formal proof
that reward-modulated Hebbian learning follows the
expected reward gradient is lacking. In contrast, NP is gra-
dient ascending (Werfel et al. 2005), and this property can
also be proven for implementations of NP in spiking neurons
and arbitrary network architectures (Fiete and Seung 2006).
Hence, although for the selected problems and architectures
RAH surpasses NP in learning speed and performance, NP
will always raise the expected reward for sufficiently small
learning rates, unless the dynamics is already in a local reward
maximum. While with increasing number of layers within
the network the local gradient property seems to loose its
relevance, it remains an open question why synaptic modifi-
cations in Hebbian or anti-Hebbian directions seem to gain
importance.

5 Conclusion

We modeled the learning of visuomotor associations by mon-
keys (Asaad et al. 1998) using a multilayer neural network.
Three reinforcement learning algorithms have been used, one
novel and two from the literature. The simulation results
showed that:

(1) Learning in the case of punishment must be faster than
in the case of reward in order to recreate outcomes com-
parable to the monkey data. This is achieved by either
a very low learning rate for reward as compared with
punishment, or by the stop-learning criterion in case of
reward.

(2) In a multilayer feedforward network, the learning speed
of monkeys can be reached by the reward-modulated
Hebbian-type synaptic plasticity with a stop-learning
criterion (i.e., by our RAH algorithm, or by ARP with
an appropriately steep activation function).

(3) The high stochasticity used by reinforcement learning
rules to quickly learn in the case of a single hidden layer
may prevent the learning of simple associations within
a reasonable speed when adding more hidden layers.
When the level of stochasticity is low, or if stochastici-
ty is absent, adding a few other hidden layers does not
affect the speed of learning.

Acknowledgments We are grateful to Peter Dayan for discussions on
memory-preservation mechanisms and comments on the manuscript.
We also thank Denis Sheynikhovich and Gediminas Luksys for vari-
ous discussions and many constructive comments, and Eilif Mueller for
corrections on the text. This work was supported by the Swiss National
Science Foundation, grant no. 3152A0-105966 to W.S.

References

Amit D, Fusi S (1994) Learning in neural networks with material syn-
apses. Neural Comput 6:957–982

Asaad WF, Rainer G, Miller EK (1998) Neural activity in the pri-
mate prefrontal cortex during associative learning. Neuron 21:
1399–1407

Bak P, Chialvo DR (2001) Adaptive learning by extreme dynamics and
negative feedback. Phys Rev E 63(3):031912

Barto AG (1985) Learning by statistical cooperation of self-inter-
ested neuron-like computing elements. Hum Neurobiol 4:
229–256

Barto AG (1989) From chemotaxis to cooperativity: abstract exercises
in neuronal learning strategies. In: Durbin R, Miall C, Mitchison
G (eds) The computing neuron. Addison-Wesley, Reading

Barto AG, Jordan MI (1989) Gradient following without back-
propagation in layered networks. In: Proceedings of the IEEE
first annual conference on neural networks, vol 2, San Diego,
pp 629–636

Bengio Y, LeCun Y (2007) Scaling learning algorithms towards AI.
In: Bottou L, Chapelle O, DeCoste D, Weston J (eds) Large-scale
kernel machines. MIT Press, Cambridge

Bethge A, Kuhn R, Horner H (1994) Storage capacity of a two-layer
perceptron with fixed preprocessing in the first layer. J Phys A
Math Gen 27:1929–1937

Calabretta R, Parisi D (2005) Evolutionary connectionism and
mind/brain modularity. In: Modularity. Understanding the devel-
opment and evolution of complex natural systems. The MIT Press,
Cambridge, pp 309–330

Calabretta R, Nolfi S, Parisi D, Wagner GP (1998) A case study of the
evolution of modularity: towards a bridge between evolutionary
biology, artificial life, neuro- and cognitive-science. In: Proceed-
ings of the sixth international conference on artificial life. The MIT
Press, Cambridge, 275–284

Chialvo DR, Bak P (1999) Learning from mistakes. Neuroscience
90(4):1137–1148

Dayan P (1990) Reinforcement comparison. In: Touretzky DS, Elman
JL, Sejnowski TJ, Hinton GE (eds) Proceedings of the 1990 con-
nectionist models summer school. Morgan Kaufmann, San Mateo,
pp 45–51

Dayan P, Willshaw DJ (1991) Optimising synaptic learning rules in
linear associative memories. Biol Cybern 65:253–265

Fahlman SE, Lebiere C (1991) The cascade-correlation learning
architecture. In: Touretzky DS (ed) Advances in neural information
processing systems, vol 2. Morgan Kaufmann, San Mateo

Fiete IR, Seung HS (2006) Gradient learning in spiking neural net-
works by dynamic perturbation of conductances. Phys Rev Lett
97(4):048104

Fusi S, Senn W (2006) Eluding oblivion with smart stochastic selection
of synaptic updates. Chaos, vol 16, 026112, pp 1–11

Fusi S, Drew PJ, Abbott LF (2005) Cascade models of synaptically
stored memories. Neuron 45:599–611

Fusi S, Asaad WF, Miller EK, Wang X-J (2007) A neural circuit model
of flexible sensori-motor mapping: learning and forgetting on mul-
tiple timescales. Neuron 54:319–333

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of
data with neural networks. Science 313(5786):504–507

Hopfield JJ (1984) Neurons with graded response have collective com-
putational properties like those of two-state neurons. Proc Natl
Acad Sci 81:3088–3092

LeCun Y, Bottou L, Bengio Y, Haffner P (2001) Gradient-based learning
applied to document recognition. In: Intelligent signal processing,
pp 306–351

Mazzoni P, Andersen RA, Jordan MI (1991) A more biologically
plausible learning rule for neural networks. Proc Natl Acad Sci
88:4433–443

Narendra K, Thathacher M (1989) Learning automata: an introduction.
Prentice-Hall, Englewood Cliffs

Senn W, Fusi S (2005a) Convergence of stochastic learning in percep-
trons with binary synapses. Phys Rev E 71(6):061907

123

158 Biol Cybern (2009) 100:147–158

Senn W, Fusi S (2005b) Learning only when necessary: better mem-
ories of correlated patterns in networks with bounded synapses.
Neural Comput 17:2106–2138

Soltani A, Lee D, Wang X-J (2006a) A biophysically-based neural
model of matching law behavior: melioration by stochastic syn-
apses. J Neurosci 26:3731–3744

Soltani A, Lee D, Wang X-J (2006b) Neural mechanism for stochas-
tic behavior during a competitive game. Neural Netw 19(8):
1075–1090

Sontag ED (1992) Feedback stabilization using two-hidden-layer nets.
IEEE Trans Neural Netw 3:981–990

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction.
MIT Press, Cambridge

Wang X-J (2002) Probabilistic decision making by slow reverberation
in cortical circuits. Neuron 36:955–968

Wang X-J (2005) A microcircuit model of prefrontal functions: Ying
and Yang of reverberatory neurodynamics in cognition. In: Risberg
J, Grafman J, Boller F (eds) The prefrontal lobes: development,
function and pathology, Cambridge University Press, London

Werfel J, Xie X, Seung SH (2005) Learning curves for stochastic gra-
dient descent in linear feedforward networks. Neural Comput
17:2699–2718

Williams RJ (1992) Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach Learn 8:229–256

Willshaw DJ, Dayan P (1990) Optimal plasticity in matrix memories:
what goes up must come down. Neural Comput 2:85–93

123

	Learning flexible sensori-motor mappings in a complex network
	Abstract
	1 Introduction
	2 Methods
	2.1 Monkey experiment
	2.2 The model
	2.3 Learning rules

	3 Results
	3.1 Reproducing the experimental data with a multilayer network
	3.2 Performance of the learning algorithms in networksof many layers
	3.3 Importance of the stop-learning criterionfor the RAH algorithm

	4 Discussion
	5 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

