
Drawing Binary Tanglegrams:
Hardness, Approximation, Fixed-Parameter Tractability?

Kevin Buchin1??, Maike Buchin1??, Jaroslaw Byrka2,3, Martin Nöllenburg4? ? ?,
Yoshio Okamoto5†, Rodrigo I. Silveira1??, and Alexander Wolff2

1 Dept. Computer Science, Utrecht University, The Netherlands.
{buchin, maike, rodrigo}@cs.uu.nl

2 Faculteit Wiskunde en Informatica, TU Eindhoven, The Netherlands.
http://www.win.tue.nl/algo

3 Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands.
j.byrka@cwi.nl

4 Fakultät für Informatik, Universität Karlsruhe, Germany.
noellenburg@iti.uka.de

5 Grad. School of Infor. Sci. and Engineering, Tokyo Inst. of Technology, Japan.
okamoto@is.titech.ac.jp

Abstract. A binary tanglegram is a pair 〈S, T 〉 of binary trees whose leaf sets are
in one-to-one correspondence; matching leaves are connected by inter-tree edges.
For applications, for example in phylogenetics, it is essential that both trees are
drawn with no edge crossing and that the inter-tree edges have as few crossings as
possible. It is known that finding a drawing with the minimum number of crossings
is NP-hard and that the problem is fixed-parameter tractable with respect to that
number.
We show that the problem is hard even if both trees are complete binary trees.
For this case we give an O(n3)-time 2-approximation and a new and simple fixed-
parameter algorithm. We prove that under the Unique Games Conjecture there
is no constant-factor approximation for general binary trees. We show that the
maximization version of the problem for general binary trees can be reduced to a
version of MaxCut for which the algorithm of Goemans and Williamson yields
a 0.878-approximation.

1 Introduction

In this paper we are interested in drawing so-called tanglegrams [16], that is, pairs of
trees whose leaf sets are in one-to-one correspondence. The need to visually compare

? Work started at the 10th Korean Workshop on Computational Geometry, organized by
H. Haverkort and Ch. Knauer in Schloss Dagstuhl, Germany, July 2007.

?? Supported by the Netherlands’ Organisation for Scientific Research (NWO) under
BRICKS/FOCUS project no. 642.065.503 and under the project GOGO.

? ? ? Supported by grant WO 758/4-3 of the German Research Foundation (DFG).
† Partially supported by Grant-in-Aid for Scientific Research and Global COE Program from

Ministry of Education, Science and Culture, Japan, and Japan Society for the Promotion of
Science.

(a) arbitrary drawing (b) drawing of our 2-approximation

Fig. 1: A binary tanglegram showing two evolutionary trees for pocket gophers [9].

pairs of trees arises in applications such as the analysis of software projects, phyloge-
netics, or clustering. In the first application, trees may represent package-class-method
hierarchies or the decomposition of a project into layers, units, and modules. The aim
is to analyze changes in hierarchy over time or to compare human-made decompositions
with automatically generated ones. Whereas trees in software analysis can have nodes
of arbitrary degree, trees from our second application, that is, (rooted) phylogenetic
trees, are binary trees. This makes binary tanglegrams an interesting special case, see
Fig. 1. Hierarchical clusterings, our third application, are usually visualized by a binary
tree-like structure called dendrogram, where elements are represented by the leaves and
each internal node of the tree represents the cluster containing the leaves in its subtree.
Pairs of dendrograms stemming from different clustering processes of the same data can
be compared visually using tanglegrams.

In this paper we consider binary tanglegrams if not stated otherwise. From the ap-
plication point of view it makes sense to insist that (a) the trees under consideration
are drawn plane (namely, with no edge crossing), (b) each leaf of one tree is connected
by an additional edge to the corresponding leaf in the other tree, and (c) the number
of crossings among the additional edges is minimized. As in the bioinformatics litera-
ture (e.g., [16, 14]), we call this the tanglegram layout (TL) problem; Fernau et al. [7]
refer to it as two-tree crossing minimization. Note that we are interested in the mini-
mum number of crossings for visualization purposes. The number is not intended to be
a tree-distance measure. Examples for such measures are nearest-neighbor interchange
and subtree transfer [3].

Related problems. In graph drawing the so-called two-sided crossing minimization prob-
lem (2SCM) is an important problem that occurs when computing layered graph layouts.
Such layouts have been introduced by Sugiyama et al. [18] and are widely used for draw-
ing hierarchical graphs. In 2SCM, vertices of a bipartite graph are to be placed on two
parallel lines (called layers) such that vertices on one line are incident only to vertices on
the other line. As in TL the objective is to minimize the number of edge crossings pro-
vided that edges are drawn as straight-line segments. In one-sided crossing minimization
(1SCM) the order of the vertices on one of the layers is fixed. 1SCM is also NP-hard [6].

2

In contrast to TL, a vertex in an instance of 1SCM or 2SCM can have several incident
edges and the linear order of the vertices in the non-fixed layer is not restricted by the
internal structure of a tree. The following is known about 1SCM. The median heuristic
of Eades and Wormald [6] yields a 3-approximation and a randomized algorithm of Nag-
amochi [15] yields an expected 1.4664-approximation. Dujmovič et al. [4] gave an FPT
algorithm that runs in O?(1.4664k) time, where k is the minimum number of crossings
in any 2-layer drawing of the given graph that respects the vertex order of the fixed
layer. The O?(·)-notation ignores polynomial factors.

Previous work. Dwyer and Schreiber [5] studied drawing a series of tanglegrams in
2.5 dimensions, i.e., the trees are drawn on a set of stacked two-dimensional planes.
They considered a one-sided version of the TL problem by fixing the layout of the first
tree in the stack, and then, layer-by-layer, computing the leaf order of the next tree in
O(n2 log n) time each. Fernau et al. [7] showed that the TL problem is NP-hard and
gave a fixed-parameter algorithm that runs in O?(ck) time, where c is a constant that
they estimate to be 1024 and k is the minimum number of crossings in any drawing of
the given tanglegram. They showed that the problem can be solved in O(n log2 n) time
if the leaf order of one tree is fixed. This improves the result of Dwyer and Schreiber [5].
They also made the simple observation that the edges of the tanglegram can be directed
from one root to the other. Thus the existence of a planar drawing can be verified using
a linear-time upward-planarity test for single-source directed acyclic graphs [1]. Later,
apparently not knowing these previous results, Lozano et al. [14] gave a quadratic-time
algorithm for the same special case, to which they refer as planar tanglegram layout.
Holten and van Wijk [11] presented a visualization tool for two (partially) matched
hierarchical data sets that uses a barycenter-like heuristic for crossing reduction prior to
applying an edge bundling step that yields their final layout.

Our results. We first take a closer look at the complexity of the TL problem, see Sec-
tion 2. By a new reduction from Max2Sat we show that the TL problem is NP-hard
even when restricted to complete binary trees. We further show that without this restric-
tion, the TL problem is essentially as hard as the MinUncut problem. If the (widely
accepted) Unique Games Conjecture holds, it is NP-hard to approximate MinUncut
and thus TL within any constant factor.

We then give a simple recursive heuristic for binary TL. It works very well in practice
and is very fast when combined with branch-and-bound. For an experimental evaluation,
see the companion paper [10]. Our main result in this paper is that our heuristic is
in fact a 2-approximation for complete binary TL, see Section 3. On complete binary
tanglegrams our algorithm runs in O(n3) time. When drawing pairs of complete d-ary
trees our algorithm achieves a factor-(1 +

(
d
2

)
) approximation in O(n1+2 logd(d!)) time.

For d ≥ 3 the running time is upper-bounded by O(n2d−1.7).
Finally, we give a new fixed-parameter algorithm for complete binary TL that is both

much simpler and much faster than the FPT algorithm for general binary TL by Fernau
et al. [7]. The running time of our algorithm is O(4kn2), see Section 4.

Formalization. We denote the set of leaves of a tree T by L(T). We are given two rooted
trees S and T with n leaves each. We require that S and T are uniquely leaf-labeled,

3

that is, there are bijective labeling functions λS : L(S) → Λ and λT : L(T) → Λ, where
Λ is a set of labels, for example, Λ = {1, . . . , n}. These labelings define a set of new
edges {uv | u ∈ L(S), v ∈ L(T), λS(u) = λT (v)}, the inter-tree edges. The TL problem
is to find plane drawings of S and T that minimize the number of induced crossings
of the inter-tree edges, assuming that edges are drawn as straight-line segments. We
additionally insist that the leaves in L(S) are placed on the vertical line x = 0 and those
in L(T) on the line x = 1. The trees S and T themselves are drawn to the left of x = 0
and to the right of x = 1, respectively. For an example, see Fig. 1. We use the notation
〈S, T 〉 when referring to such an instance of the TL problem.

The TL problem is purely combinatorial: Given a tree T , we say that a linear order
of L(T) is compatible with T if for each node v of T the nodes in the subtree of v form
an interval in the order. Given a permutation π of {1, . . . , n}, we call (i, j) an inversion
in π if i < j and π(i) > π(j). For fixed orders σ of L(S) and τ of L(T) we define
the permutation πτ,σ, which for a given position in τ returns the position in σ of the
leaf having the same label. Now the TL problem consists of finding an order σ of L(S)
compatible with S and an order τ of L(T) compatible with T such that the number of
inversions in πτ,σ is minimum.

2 Complexity

In this section we consider the complexity of the TL problem for complete and for
general binary trees. Fernau et al. [7] have shown that the TL problem is NP-complete
for general binary trees. Their proof, however, uses extremely unbalanced trees and does
not extend to complete binary trees. We show that the TL problem remains hard even
when restricted to complete binary trees. We reduce from Max2Sat with at most 3
occurrences of each variable. Our construction (see the appendix) is completely different
from that of Fernau et al., who reduce from MaxCut. We construct a TL instance
in which one pair of aligned subtrees contains the variable gadgets. The two pairs of
aligned subtrees to both sides of the variable gadgets contain the clause gadgets. The
fourth pair of aligned subtrees on the same level has no crossings. Each clause gadget
is modeled by a pair of smaller subtrees, see Fig. 12. These are connected by inter-tree
edges to the gadgets of the two corresponding variables. These edges cause exactly one
additional crossing for each unsatisfied clause in an optimal solution. Thus we can infer
the maximum number of satisfied clauses from an optimal TL solution.

Theorem 1. The TL problem is NP-complete even for complete binary trees.

Next we consider the complexity of the TL problem for two (not necessarily complete)
binary trees. We show that this problem is essentially as hard as the MinUncut problem.
As a result, we relate the existence of a constant-factor approximation for TL to the
Unique Games Conjecture (UGC) by Khot [12]. The UGC became famous when it was
discovered that it implies optimal hardness-of-approximation results for problems such
as MaxCut and VertexCover, and forbids constant factor-approximation algorithms
for problems such as MinUncut and SparsestCut. We reduce the MinUncut problem
to the TL problem, which, by the result of Khot and Vishnoi [13], makes it unlikely that
an efficient constant-factor approximation for TL exists.

4

The MinUncut problem is defined as follows. Given an undirected graph G = (V,E),
find a partition (V1, V2) of the vertex set V that minimizes the number of edges that
are not cut by the partition, that is, min(V1,V2) |{uv ∈ E : u, v ∈ V1 or u, v ∈ V2}|.
Note that computing an optimal solution to MinUncut is equivalent to computing an
optimal solution to MaxCut. Nevertheless, the MinUncut problem is more difficult to
approximate.

Theorem 2. Under the Unique Games Conjecture it is NP-hard to approximate the TL
problem for general binary trees within any constant factor.

Proof. As mentioned above we reduce from the MinUncut problem. Note that our
reduction is similar to the one in the NP-hardness proof by Fernau et al. [7].

Consider an instance G = (V,E) of the MinUncut problem. We will construct a
TL instance 〈S, T 〉 as follows. The two trees S and T are identical and there are three
groups of edges connecting leaves of S to leaves of T . For simplicity we define multiple
edges between a pair of leaves. In the actual trees we can replace each such leaf by a
binary tree with the appropriate number of leaves.

Suppose V = {v1, v2, . . . , vn}, then both S and T are constructed as follows. There
is a backbone path (v1

1 , v2
1 , v1

2 , v2
2 , . . . , v1

n, v2
n, a) from the root node v1

1 to a leaf a. Addi-
tionally, there are leaves lS(vj

i) and lT (vj
i) attached to each node vj

i for i ∈ {1, . . . , n}
and j ∈ {1, 2} in S and T , respectively. The edges form the following three groups.

Group A contains n11 edges connecting lS(a) with lT (a).
Group B contains for every vi ∈ V n7 edges connecting lS(v1

i) with lT (v2
i), and n7

edges connecting lS(v2
i) with lT (v1

i).
Group C contains for every vivj ∈ E a single edge from lS(v1

i) to lT (v1
j).

Next we show how to transform an optimal solution of the MinUncut instance
into a solution of the corresponding TL instance. Suppose that in the optimal partition
(V ∗

1 , V ∗
2) of G there are k edges that are not cut. Then we claim that there exists a

drawing of 〈S, T 〉 such that k · n11 + O(n10) pairs of edges cross. It suffices to draw, for
each vertex vi ∈ V ∗

1 (vi ∈ V ∗
2), the leaves lS(v1

i) and lT (v2
i) above (below) the backbones,

and the nodes lS(v2
i) and lT (v1

i) below (above) the backbones. It remains to count the
crossings: there are k · n11 A–C crossings, no A–B crossings, O(n10) B–C crossings, and
O(n4) C–C crossings.

Now suppose there exists an α-approximation algorithm for the TL problem with
some constant α. Then it can produce a drawing D(S, T), for the above defined instance
〈S, T 〉, with at most α · k · n11 + O(n10) crossings. Let us assume that n is much larger
than α. We show that from such a drawing D(S, T) we would be able to reconstruct a
cut (V1, V2) in G with at most α · k edges uncut. First, observe that if a node lS(v1

i)
is drawn above (below) the backbone in D(S, T), then lT (v2

i) must be drawn on the
same side of the backbone, otherwise it would result in n18 A–B crossings. Similarly
lS(v2

i) must be on the same side as lT (v1
i). Then observe that if a node lS(v1

i) is drawn
above (below) the backbone in D(S, T), then lS(v2

i) must be drawn below (above) the
backbone, otherwise there would be O(n14) B–B crossings. Finally, observe that if we
interpret the set of vertices vi for which lS(v1

i) is drawn above the backbone as a set V1

of a partition of G, then this partition leaves at most α · k edges from E uncut.

5

T2

S1

S2

T1

S T

vS vT

11

1
S0

1

0

1

0

1

101 000
0010010011

100100 001010

100101 001011

1000

11
0

0011

01
1

0
0

0T

Fig. 2: Context of subproblem
〈S, T 〉 = 〈(S1, S2), (T1, T2)〉.

Fig. 3: Labels for a particular subproblem 〈S, T 〉. The
numbers at the nodes show the choice taken (swap/do
not swap children) at that step of the recursion that led
to S and T .

Hence, an α-approximation for the TL problem provides an α-approximation for the
MinUncut problem, which contradicts the UGC. ut

3 Approximation

We now present our main result, a 2-approximation algorithm for TL that runs in O(n3)
time. The idea is to split the problem recursively at the root of the trees into two
subproblems, each consisting of a pair of complete binary trees.

Let 〈S0, T0〉 be the TL instance we want to solve. At a given level 〈S, T 〉 in the
recursion, we have two trees S and T , typically part of larger trees (that is, S ⊆ S0 and
T ⊆ T0). Let the roots of S and T be vS and vT , respectively. Besides the two trees, we
will use some additional information.

Firstly, associated with vS and vT we will have labels `S and `T that indicate what
choices in the recursion so far led to the current subproblems. A label is a binary string,
where ‘0’ or ‘1’ represents each of the two choices at each node in the path from the root
of the original tree, to the current root. The length of the labels (denoted |`S | and |`T |)
gives the depth of the recursion (see Fig. 3).

We also assign labels to some other subtrees of 〈S0, T0〉 besides S and T . Given a
leaf v ∈ T0 \ T , we define the nc-subtree of v, with respect to T , as the largest complete
binary subtree of T0 that does not contain T and contains v (defined analogously for
leaves in S0). Each different nc-subtree receives a label, in the same way as S and T . For
a given 〈S, T 〉, there are 2(|`S | + 1) = 2(|`T | + 1) different labels. Note that the labels
of the nc-subtrees are relative to the labels of vS and vT (different S or T will lead to
different labels). We will sometimes refer to the label of leaf v, meaning the label of the
nc-subtree of v.

Secondly, since S and T are part of a larger tree, some of the leaves of S may not
have the matching leaf in T (and vice versa). This means that at some previous step
of the algorithm, it was decided that such leaves will be matched to leaves in some
other subtrees, above or below 〈S, T 〉. We will not know exactly to which leaves they

6

T2

S1

S2

T1
S T

vT

T2

S1

S2

T1
S T

vS vT

T2

S1

S2

T1
S T

vS vT

T2

S1

S2

T1
S T

vS vT

(a) (b) (c) (d)

vT ′

vT ′′

vS

Fig. 4: Different types of current-level crossings. For the fourth type, (d), the crossing is con-
sidered current-level only if the right leaves of the edges that cross have different labels, that
is, `T ′ 6= `T ′′ .

are matched, but we will know, for each leaf, the label of the subtree that contains the
matching leaf.

At each level of the recursion we have to choose between one out of four configura-
tions. At each node vS on the left side, we must choose between having S1 above S2

or the other way around. On the right side for vT , there are also two different ways of
placing T1 and T2. We will try each of them, invoking the algorithm recursively for the
top half and for the bottom half. Then we will return the configuration with the lowest
number of crossings.

When counting the crossings that each option creates, we will distinguish two types:
current-level and lower-level crossings.

Current-level crossings are crossings that can be avoided at this level by choosing one
of the four configurations for the subtrees, independently of the choices to be done else-
where in the recursion. Figure 4 illustrates the different types of current-level crossings.
For the fourth type, (d), shown in Fig. 4, we remark that the crossings are considered to
be current-level only if the nc-subtrees that contain the endpoints of the edges outside
S and T are different. Crossings that have the shape of type (d) but with both end-
points going to the same nc-subtree cannot be counted at this point, and will be called
indeterminate crossings.

Lower-level crossings are crossings that appear based on choices taken by solving the
subproblems of S and T recursively. We cannot do anything about them at this level,
but we know their exact number after solving the subproblems.

Here is a sketch of the algorithm.

1. For all four choices of arranging {S1, S2} and {T1, T2}, compute the total number of
lower-level crossings recursively. Before each recursive call 〈Si, Tj〉, we assign proper
labels to some of the leaves of S and T , as follows. All leaves in Si that connect to
T3−j (that is, T1 if j = 2, T2 otherwise) get the label `T with a 0 or 1 appended
depending on whether Tj is above or below T3−j . Then we do the analogue for all
leaves of Tj connected to S3−i.

2. For each choice 〈Si, Tj〉 compute the number of current-level crossings (details be-
low).

7

3. Return the choice that has the smallest sum of lower-level and current-level crossings.

It is important to notice that the labels are needed to propagate as much information
as possible to the smaller subproblems. For example, even though at this stage of the
recursion it is clear that the leaves of, say T3−j , are above the leaves of the subtrees below
T , once we recurse into the top subproblem, this information will be lost, implying that
what was a current-level crossing at this stage, will become an indeterminate crossing
later. The labeling allows to prevent this loss of information.

It remains to describe how to compute the number of current-level crossings effi-
ciently. This can be done as follows. We go through all inter-tree edges incident to leaves
of each of the four subtrees and put each edge into one of at most O(log n) different
classes depending on the labels of the other endpoints of the edges. Depending on where
(that is, above or below) the nc-subtrees go, all edge pairs belonging to a specific pair
of labels do or do not intersect. Hence we can count the total number of current-level
crossings in linear time.

The running time of the algorithm satisfies the recurrence relation T (n) ≤ 8T (n/2)+
O(n), which resolves to T (n) = O(n3) by the master method [2].

Theorem 3. The recursive algorithm computes a solution to the complete binary TL
problem in O(n3) time. The resulting drawing has at most twice as many crossings as
an optimal drawing.

Proof. The algorithm will try, for a given subproblem 〈S, T 〉, all four possible layouts of
S = (S1, S2) and T = (T1, T2). Hence we can assume we know the order of the children
of vS and vT in an optimal solution. Assume, w.l.o.g., that it is 〈(S1, S2), (T1, T2)〉. We
distinguish between four different areas for the endpoints of the edges: above 〈S, T 〉,
in 〈S1, T1〉, in 〈S2, T2〉, and below 〈S, T 〉. We number these regions from 0 to 3 (see
Fig. 5). This allows us to classify the edges into 16 groups (two of which, 0–0 and 3–3,
are not relevant). We will denote the number of edges from area i to area j by nij (for
i, j ∈ {0, 1, 2, 3}). Figure 6 shows the 14 different groups of edges.

The only edge crossings that our recursive algorithm cannot take into account are the
indeterminate crossings, which occur when the two edges connect to leaves above/below
〈S, T 〉, that are in the same nc-subtree (thus both leaves have the same label). The
occurrence of such a crossing cannot be determined from the current subproblem because
it depends on the relative location of the other two endpoints of the edges. However, we
can bound the number of these crossings.

We observe that any crossing of that type at the current subproblem was, in some
previous step of the recursion, a crossing between two 1,2-edges or two 2,1-edges. We can
upper-bound the number of these crossings by

(
n12
2

)
+

(
n21
2

)
. Let ALG be the number

of crossings in the solution produced by the algorithm, and OPT the one in an optimal
solution. We have

ALG ≤ OPT +
(

n12

2

)
+

(
n21

2

)
≤ OPT + (n2

12 + n2
21)/2 (1)

Since our (sub)trees are complete, we have n10 + n12 + n13 = n01 + n21 + n31 and
n01 +n02 +n03 = n10 +n20 +n30. These two equalities yield n12 ≤ n01−n10 +n21 +n31

8

S1

S2

vS vT

T2

T1

S T

2,3-edge

2,0-edge
1,2-edge 0

3

1

2

Fig. 5: The possible loca-
tions for the endpoints of
the edges are divided into
four areas (numbered from
0 to 3). Each edge can be
classified according to the
areas of its endpoints.

S1

S2

vS vT

0

3

1

2

T2

T1

S T

n22

n11

n10

n13n13

n13n20

n13n23
n13n32

n13n02

n13n31

n01

n03 n30

vT

T2

T1

T

S1

S2

vS

0

3

1

2

S

n12 n21

Fig. 6: The 14 different (relevant) groups of edges in
〈(S1, S2), (T1, T2)〉.

S TS T

1

m

2m

3m

4m

1

m

2m

3m

4m

Fig. 7: Example of trees for which the approximation algorithm can output a solution (left)
that has roughly twice as many crossings as the optimal one (right).

and n01 −n10 ≤ n20 + n30, respectively, and thus we obtain n12 ≤ n20 + n30 + n21 + n31

or, equivalently, n2
12 ≤ n12 · (n20 + n30 + n21 + n31).

It is easy to verify that all the terms on the right-hand side of the last inequality
count crossings that cannot be avoided and must be present in the optimal solution as
well. Hence n2

12 ≤ OPT , and symmetrically n2
21 ≤ OPT . Plugging this into (1), we get

ALG ≤ 2 ·OPT . ut

The approximation factor of 2 is tight: let n = 4m and let S have leaves ordered
1, . . . , 4m and let T have leaves ordered 1, . . . ,m, 3m, . . . , 2m + 1,m + 1, . . . , 2m, 3m +
1, . . . , 4m. Then our algorithm can construct a drawing with m2 + 2

(
m
2

)
= m(2m − 1)

crossings, while the optimal drawing has only m2 crossings (see Fig. 7).

9

General binary trees. Obviously, our recursive algorithm can also be applied to general,
non-complete tanglegrams. In this case, however, the approximation factor does not hold
any more, which is also indicated by Theorem 2. The companion paper [10] contains an
extensive experimental evaluation of several heuristic algorithms for TLs in which our
recursive algorithm turned out to be a successful method for both complete and general
binary tanglegrams.

Generalization to d-ary trees. The recursive algorithm can be generalized to complete
d-ary trees. The recurrence relation of the algorithm’s running time changes to T (n) ≤
d · (d!)2 · T (n/d) + O(n) since we need to consider all d! subtree orderings of both trees,
each of which triggers d subinstances of size n/d. Again, by the master method, this
resolves to T (n) = O(n1+2 logd(d!)). At the same time the approximation factor increases
to 1 +

(
d
2

)
.

Maximization version. Instead of the original TL problem, which minimizes the num-
ber of pairs of edges that cross each other, we may consider the dual problem TL? of
maximizing the number of pairs of edges that do not cross. The tasks of finding optimal
solutions for these problems are equivalent, but from the perspective of approximation it
makes quite a difference which of the two problems we consider. Now we do not assume
that we draw binary trees. Instead, if an internal node has more than two children, we
assume that we may only choose between a given permutation of the children and the
reverse permutation obtained by flipping the whole block of children.

In contrast to the TL problem, which is hard to approximate as we have shown
in Theorem 2, the TL? problem has a constant-factor approximation algorithm. We
show this (see the appendix) by reducing TL? to a constrained version of the MaxCut
problem, which can be approximately solved with a semidefinite programming rounding
algorithm by Goemans and Williamson [8].

Theorem 4. There exists a 0.878-approximation algorithm for the TL? problem.

4 Fixed-Parameter Tractability

We consider the following parameterized problem. Given a complete binary TL instance
〈S, T 〉 and a non-negative integer k, decide whether there exists a TL of S and T with
at most k induced crossings. Our algorithm for this problem uses a labeling strategy,
just as our approximation algorithm in Section 3. However, here we do not select the
subinstance that gives the minimum number of lower-level crossings, but we consider
all subinstances and recurse on them. Thus, our algorithm traverses a search tree of
branching factor 4. For the search tree to have bounded height, we need to ensure that
whenever we go to a subinstance, the parameter value decreases at least by one. For
efficient bookkeeping we consider current-level crossings only. At first sight this seems
problematic: if a subinstance does not incur any current-level crossings, the parameter
will not drop. The following key lemma shows that there is a way out. It says that
if there is a subinstance without current-level crossings, then we can ignore the other
three subinstances and do not have to branch. This could be seen as a preprocess at each

10

T2

S1 T1n11

n22

n21

l1

l2

r1

r2

S T

S2

(a) 〈(S1, S2), (T1, T2)〉

T

l1

l2

r1

r2

S

S1

T2

T1

S2

n11

n22

n21

(b) 〈(S2, S1), (T2, T1)〉

l1

l2

r1

S T
n22

n11

r2

n21S2

S1 T2

T1

(c) 〈(S1, S2), (T2, T1)〉

Fig. 8: Edge types and crossings of the instance 〈S, T 〉.

branching occasion, and is also exploited in some existing fixed-parameter algorithms.
Note that the lemma does not hold for general binary trees.

Lemma 1. Given a pair 〈S, T 〉 of two complete binary trees as an instance of the TL
problem and two nodes vS , vT of S, T , respectively, with the same distance to their re-
spective root. Let (S1, S2) be the subtrees incident to vS and (T1, T2) the subtrees inci-
dent to vT . If the subinstance 〈(S1, S2), (T1, T2)〉 does not incur any current-level cross-
ings, then any ordering of the leaves of this subinstance does not have more crossings
than the same ordering of the leaves of one of the other subinstances 〈(S1, S2), (T2, T1)〉,
〈(S2, S1), (T1, T2)〉, or 〈(S2, S1), (T2, T1)〉.

Proof. If the subinstance 〈(S1, S2), (T1, T2)〉 does not incur any current-level crossings,
the edges originating from these four subtrees are edges of the types shown in Fig. 8a
(or the symmetric case with no edges between S2 and T1). Let n11, n21, n22, l1, l2, r1, r2

be the numbers of edges as in Fig. 8. Since we consider complete binary trees we obtain
the following equalities: l1 = r1 + n21, r2 = l2 + n21, and r1 + n11 = l2 + n22.

Take any fixed ordering of the leaves of the subtrees S1, S2, T1, T2. We first compare
the number of crossings of the subinstance 〈(S1, S2), (T1, T2)〉 with the number of cross-
ings of the subinstance 〈(S2, S1), (T2, T1)〉 in Fig. 8b. The subinstance 〈(S1, S2), (T1, T2)〉
can have at most n21(n11 +n22) crossings that do not occur in 〈(S2, S1), (T2, T1)〉. How-
ever, 〈(S2, S1), (T2, T1)〉 has at least l1(l2 +n21 +n22)+ l2n11 +r2(r1 +n21 +n11)+r1n22

crossings that do not appear in 〈(S1, S2), (T1, T2)〉. Inserting the above equalities for l1
and r2 we get (r1 + n21)(l2 + n21 + n22) + l2n11 + (l2 + n21)(r1 + n21 + n11) + r1n22 ≥
n21(n11 + n22). Thus, the same ordering of leaves does not give more crossings for
〈(S1, S2), (T1, T2)〉 than it does for 〈(S2, S1), (T2, T1)〉.

Next, we compare the number of crossings of the subinstance 〈(S1, S2), (T1, T2)〉
with the number of crossings of the subinstance 〈(S1, S2), (T2, T1)〉 in Fig. 8c. Now
the number of additional crossings of 〈(S1, S2), (T1, T2)〉 is at most n21n22, and the
subinstance 〈(S1, S2), (T2, T1)〉 has at least (r1 + n11)(r2 + n22) + r2n21 crossings more.
With the equality r1 + n11 = l2 + n22 and the inequality r2 + n22 ≥ n21 we get
(r1 + n11)(r2 + n22) + r2n21 ≥ n22n21. Thus, again 〈(S1, S2), (T1, T2)〉 does not have
more crossings than 〈(S1, S2), (T2, T1)〉 for the same leaf ordering. By symmetric reason-
ing the same holds for 〈(S2, S1), (T1, T2)〉. ut

11

Thus, to decompose the instance to four subinstances we spend O(n2) time. Therefore
we spend O(4kn2) time to produce all leaves of our bounded-height search tree (omitting
details). At each leaf of the search tree, we obtain a certain layout of 〈S, T 〉, and the
accumulated number of current-level crossings is at most k. This, however, does not
mean that the total number of crossings is at most k since we did not keep track of the
indeterminate crossings. Therefore, at each leaf we still need to check how many crossings
the corresponding layout has. This can be done in O(n log n) time. If one of the leaves
yields at most k crossings, the algorithm outputs “Yes” and the layout; otherwise it
outputs “No.” We summarize:

Theorem 5. The algorithm sketched above solves the parameterized version of complete
binary TL in O(4kn2) time.

5 Conclusions and Open Problems

[something here?]

Acknowledgments. We thank Danny Holten and Jack van Wijk for introducing us to
this exciting problem and David Bryant for pointing us to the work of Roderic Page on
host and parasite trees.

References

[1] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal upward planarity
testing of single-source digraphs. SIAM J. Comput., 27(1):132–169, 1998.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

[3] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distances between phy-
logenetic trees. In Proc. 18th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA’97),
pages 427–436, 1997.

[4] V. Dujmovič, H. Fernau, and M. Kaufmann. Fixed parameter algorithms for one-sided
crossing minimization revisited. In G. Liotta, editor, Proc. 11th Internat. Sympos. Graph
Drawing (GD’03), volume 2912 of Lecture Notes Comput. Sci., pages 332–344. Springer-
Verlag, 2004.

[5] T. Dwyer and F. Schreiber. Optimal leaf ordering for two and a half dimensional phylo-
genetic tree visualization. In N. Churcher and C. Churcher, editors, Proc. Australasian
Sympos. Inform. Visual. (InVis.au’04), volume 35 of CRPIT, pages 109–115. Australian
Computer Society, 2004.

[6] P. Eades and N. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica,
10:379–403, 1994.

[7] H. Fernau, M. Kaufmann, and M. Poths. Comparing trees via crossing minimization. In
R. Ramanujam and S. Sen, editors, Proc. 25th Intern. Conf. Found. Softw. Techn. Theoret.
Comput. Sci. (FSTTCS’05), volume 3821 of Lecture Notes Comput. Sci., pages 457–469,
2005.

[8] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145,
1995.

12

[9] M. S. Hafner, P. D. Sudman, F. X. Villablanca, T. A. Spradling, J. W. Demastes, and
S. A. Nadler. Disparate rates of molecular evolution in cospeciating hosts and parasites.
Science, 265:1087–1090, 1994.

[10] D. Holten, M. Nöllenburg, M. Völker, and A. Wolff. Drawing binary tanglegrams: an exper-
imental evaluation. Submitted to GD’08, May 2008. Available at http://arxiv.org/abs/...

[11] D. Holten and J. J. van Wijk. Visual comparison of hierarchically organized data. In Proc.
10th Eurographics/IEEE-VGTC Sympos. Visualization (EuroVis’08), 2008. To appear.

[12] S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th Annu. ACM
Sympos. Theory Comput. (STOC’02), pages 767–775, 2002.

[13] S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems
and embeddability of negative type metrics into l1. In Proc. 46th Annu. IEEE Sympos.
Foundat. Comput. Sci. (FOCS’05), pages 53–62, 2005.

[14] A. Lozano, R. Y. Pinter, O. Rokhlenko, G. Valiente, and M. Ziv-Ukelson. Seeded tree
alignment and planar tanglegram layout. In R. Giancarlo and S. Hannenhalli, editors, Proc.
7th Internat. Workshop Algorithms Bioinformatics (WABI’07), volume 4645 of Lecture
Notes Comput. Sci., pages 98–110. Springer-Verlag, 2007.

[15] H. Nagamochi. An improved bound on the one-sided minimum crossing number in two-
layered drawings. Discrete Comput. Geom., 33(4):565–591, 2005.

[16] R. D. M. Page, editor. Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University
of Chicago Press, 2002.

[17] V. Raman, B. Ravikumar, and S. S. Rao. A simplified NP-complete MAXSAT problem.
Inform. Process. Lett., 65:1–6, 1998.

[18] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical
system structures. IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109–125,
1981.

13

Appendix

Theorem 1. The TL problem is NP-complete even for complete binary trees.

Proof. Recall the Max2Sat problem which is defined as follows. Given a set U =
{x1, . . . , xn} of Boolean variables, a set C = {c1, . . . , cm} of disjunctive clauses con-
taining two literals each, and an integer K, the question is whether there is a truth
assignment of the variables such that at least K clauses are satisfied. We consider a
restricted version of Max2Sat, where each variable appears in at most three clauses.
This version remains NP-complete [17].

Our reduction constructs two complete binary trees S and T , in which certain aligned
subtrees serve as variable gadgets and others as clause gadgets. We further determine
an integer K ′ such that the instance 〈S, T 〉 has less than K ′ crossings if and only if
the corresponding Max2Sat instance has a truth assignment that satisfies at least K
clauses.

The high-level structure of the two trees is depicted in Fig. 9. From top to bottom,
the four subtrees at level 2 on both sides are a clause subtree, a variable subtree, another
clause subtree, and finally a dummy subtree. The subtrees are connected to each other
by edges such that in any optimal solution they must be aligned in the depicted (or
mirrored) order. Each clause gadget appears twice, once in each clause subtree, and is
connected to the variable gadgets belonging to its two literals. Pairs of corresponding
gadgets in S and T are connected to each other. Finally, non-crossing dummy edges
connect unused leaves to complete S and T . In the following we describe the gadgets in
more detail.

Variable gadgets. The basic structure of a variable gadget consists of two complete
binary trees with 32 leaves each as shown in Fig. 10. Each tree has three highlighted
subtrees of size 2 labeled a, b, c and a′, b′, c′, respectively. From each of these subtrees
there is one red connector edge leaving the gadget at the top and one leaving it at the
bottom. As long as two connector edges from the same tree do not cross each other, they
transfer the vertical order of the labeled subtrees towards a clause gadget. We define
the configuration in Fig. 10a as true and the configuration in Fig. 10b as false. If the
configuration is in its true state, the induced vertical order of the connector edges is
a < b < c, otherwise the order is inverse: c < b < a. It can easily be verified that both
states have the same number of crossings. To see that it is optimal observe that each
pair of connector edges from the same subtree (for example, subtree a) always crosses
all 26 gray edges in the gadget. Furthermore all 24 crossings of two connector edges
in the figure are mandatory. Finally, the four crossings among the gray edges between
subtrees 1 and 2′ and subtrees 2 and 1′ are also optimal. (Otherwise, if subtree 1 is
opposite of subtree 2′, there are at least 120 gray–gray crossings in addition to the 24
red–red crossings and the 156 red–gray crossings as opposed to a total of 184 crossings
in either configuration of Fig. 10.)

Note that so far the gadget in the figure is designed for a single appearance of the
variable since the four connector-edge triplets are required for a single clause. However,
for the Max2Sat reduction each variable can appear up to three times in different
clauses. By appending a complete binary tree with four leaves as in Fig. 11 to each leaf

14

of the gadget in Fig. 10 and copying each edge accordingly the above arguments still
hold for the enlarged trees with 128 leaves each. Unused connector edges in opposite
subtrees are linked to each other (a to a′ etc.) as in Fig. 10b such that the number of
crossings in the gadget remains balanced for both states.

Clause gadgets. For each clause ci = li1∨ li2, where li1 and li2 denote the two literals, we
create two clause gadgets: one in the upper clause subtrees and one in the lower clause
subtrees (recall Fig. 9). Each gadget itself consists of two parts: one part that uses the
connectors from the first variable in the left tree and those from the second variable
in the right tree and vice versa. Fig. 12 shows one such part of the gadget in the lower
clause subtrees, where the connector edges lead upwards. The gadget in the upper clause
subtree is simply a mirrored version.

The basic structure consists of two aligned subtrees with eight leaves as depicted
in Fig. 12. Three of the leaves on each side serve as the missing endpoints for the
triplets of connector edges from the corresponding variables. Recall that for a positive
literal with value true the order of the connector edges is a < b < c, and for a positive
literal with value false it is c < b < a. (For negative literals the meaning of the orders
is inverted.) The two connector leaves for the edges labeled a and b are in the same
subtree with four leaves, the connector leaf for c is in the other subtree. Three cases
need to be distinguished. If (1) both literals are true, then the configuration in Fig. 12a
is optimal with 21 crossings. If (2) only one literal is true, then Fig. 12b shows an optimal
configuration with 21 crossings again. Here the tree on the right side is rotated in its root

...
...

x1

xn

c1

cm

...

x1

xn

c1

cm

...

c1

cm

...

c1

cm

...

...

...

...

}

}
}

clauses

variables

clauses

S T

red
green

gray

Edge color legend

Fig. 9: High-level structure of the two trees S and T . Red edges connect clause and variable
gadgets, green edges connect corresponding gadget halves, and gray edges are dummy edges to
complete the trees.

15

1

2

1′

2′

a

b

c

a′

b′

c′

a
b
c

a
b
c

a′

b′
c′

a′

b′
c′

(a) x = true

2

1

2′

1′

b

a

c

b′

a′

c′

c
b
a

c
b
a

c′

b′
a′

c′

b′
a′

(b) x = false

(a) A single gray edge.

(b) Two pairs of connector
edges for a variable used in
three clauses.

Fig. 10: The variable gadget in its two optimal config-
urations with 184 crossings. Red edges are drawn solid,
whereas dash-dot style is used for gray edges.

Fig. 11: Replacing each edge by
four edges.

node. Finally, if (3) both literals are false, there are at least 22 crossings in the gadget
as shown in Fig. 12c. Since this substructure is repeated four times for each clause we
have 84 induced crossings for satisfied clauses and 88 induced crossings for unsatisfied
clauses.

We construct the gadgets for all variables and clauses and link them together as two
trees S and T , which are filled up such that they become complete binary trees. The
general layout is as depicted in Fig. 9, where each dummy leaf in S is connected to the
opposite dummy leaf in T such that there are no crossings among dummy edges. In each

16

a
b
c

a′

b′
c′true { }true

(a) true ∨ true: 21 crossings.

c
b
a

a′

b′
c′false{ }true

(b) false ∨ true: 21 cross-
ings.

c′

b′
a′

c
b
a

false{ }false

(c) false ∨ false: 22 crossings.

S T

xi+1

xi

to xi−1

to xi+2

}
}

Fig. 12: The clause gadget for a
clause ci = li1 ∨ li2.

Fig. 13: Linking adjacent variable gadgets for xi and
xi+1.

of the four main subtrees all dummy edges are consecutive. Thus of all dummy edges
only those in the variable subtree have crossings with exactly half the connector edges.

It remains to compute the minimum number M of crossings that are always necessary,
even if all clauses are satisfied. Then the Max2Sat instance has a solution with at least
K satisfied clauses if and only if the constructed TL instance has a solution with at most
K ′ = M + 4(|C| −K) crossings. We get the corresponding variable assignment directly
from the layout of the variable gadgets.

The first step for computing M is to fix an order for the variable gadgets in the
variable subtree. Let this order be x1 < x2 < . . . < xn. To enforce this as the vertical
order of the variable gadgets we need to establish links between adjacent gadgets such

17

that any other order would increase the number of crossings. For these neighbor links
we need eight of the 128 leaves in each half of each variable gadget as shown in Fig. 13.
Since both subtrees below the root of xi in S and both subtrees below the root of xi+1

in T are connected to each other, the minimum number of crossings of those edges is
independent of the truth state of each gadget. However, separating two adjacent variables
by tree rotations at higher levels in S and T leads to a large number of extra crossings
since the eight neighbor links would cross all variable gadgets between xi and xi+1.

With the order of the variables fixed we sort all clauses lexicographically and place
smaller clauses towards the top of the clause subtrees. Consider two clause gadgets in the
same clause subtree. Then in the given clause order there are crossings between their
connector-edge triplets if and only if the intervals between their respective variables
intersect in the variable order. Since these crossings are unavoidable, the number of
connector-triplet crossings in the lexicographic order of the clauses is optimal. Now we
can finally compute all necessary crossings between connector edges, dummy edges and
intra-gadget edges which yields the number M .

Since each gadget is of constant size the two trees and the number M can be computed
in polynomial time.

The fact that the complete binary TL problem belongs to the class NP follows
immediately from the NP-completeness of the general TL problem [7]. ut

Theorem 4. There exists a 0.878-approximation algorithm for the TL? problem.

Proof. Fix any drawing of the two trees S and T in an instance of the TL? problem.
Any internal node of each of the trees corresponds to a decision variable. The decision
to make in each such node is whether to flip the subtree rooted in that node or not. We
model this situation by a graph; a flip decision corresponds to deciding to which side of
a cut the corresponding vertex is assigned.

For each internal node v of a tree in the instance of TL? the constructed graph G
contains two vertices v and v′. For each pair of edges connecting leaves of the two trees,
there is one edge in G. Let l1 and l2 (r1 and r2) denote the leaves of S (T) incident to this
pair of edges. Let l be the lowest common ancestor of l1 and l2 in S (l = LCA(l1, l2)) and
let r = LCA(r1, r2) in T . If the considered pair of edges crosses in the initial drawing,
then we have an edge {l, r} in G. If the pair of edges does not cross in the initial drawing,
then there is an edge {l, r′} in G.

It remains to observe that cuts in G that separate each pair v, v′ correspond to
drawings of S and T in the instance of the TL? problem. Moreover, edges that are cut
in G correspond to the pairs of edges that do not cross in the drawing of the two trees.

The resulting optimization problem is the MaxResCut problem (that is, the Max-
Cut problem with additional constraints forcing certain pairs of vertices to be separated
by the cut) studied by Goemans and Williamson [8]. Therefore, we may use their semidef-
inite programming rounding algorithm to compute a 0.878-approximation of the largest
constrained cut in the graph G. This cut determines which of the subtrees in the initial
drawing must be flipped to obtain a drawing that is a 0.878-approximation to TL?. ut

18

