
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. R. Urbanke, président du jury
Prof. M. A. Shokrollahi, directeur de thèse

Dr M. Fresia, rapporteur
Dr G. Shamir, rapporteur

Prof. E. Telatar, rapporteur

SOURCE AND CHANNEL CODING USING
FOUNTAIN CODES

THÈSE NO 4488 (2009)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 18 DÉCEMBRE 2009

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE D'ALGORITHMIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2009

PAR

Bertrand Ndzana NDzANA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147953608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Je dédie ce travail à tous mes proches et plus particulièrement A

Caroline Menyé, ma compagne et nos enfants

Laurent Ndzana Ahanda, mon feu père, imprescriptiblement mon héros
Anastasie Ongola Bougou, ma mère

Mes soeurs et frères

Antoinette Claude Edzimbi, ma grand-tante maternelle et sa progéniture

Acknowledgements

First of all, I am extremely grateful to my PhD1 thesis advisor, Prof. Amin
Shokrollahi, for his unwavering professional and personal support. On the pro-
fessional level, Amin is the most brillant scientist I have interacted with, and
I am lucky to have had his guidance and his help regarding both practical and
theoretical problems that I encountered during my work. I would also like to
acknowledge his efforts to improve my presentation and writing skills which
were lacking before. On a personal level, I would like to express my gratitude
to him, for his understanding and kindness during difficult times. It would not
have been possible to write this thesis without his insights and contributions.

I am also very grateful to Prof. Andrew Eckford for supervising and pro-
viding me with the guidance and support that I needed during my internships
at York university. I would like to thank Dr. Gil Shamir for his suggestions
and his help that contributed greatly to this work. I also wish to thank Prof.
Giuseppe Caire and Dr. Maria Fresia who have taken time to provide advices
on my work and for the various interesting discussions that we had. I would
also like to thank Dr. Harm Cronie with whom I had many fruitful discussions
and collaboration during the last part of my thesis period.

I thank a great deal Prof. Rüdiger Urbanke, Prof. Emre Telatar, Dr. Maria
Fresia and Dr. Gil Shamir for kindly agreeing to be in my thesis committee
and acknowledge the work they have put into reading my thesis and providing
constructive comments.

My stay in Lausanne during my PhD was comfortable mainly due to the
care taken by Mrs Natascha Fontana. She has helped me during my doctoral
studies with all administrative issues, from finding a flat to printing my the-
sis. I also wish to thank Dr. Giovanni Cangiani and M. Damir Laurenzi for
solving problems I had with computers. I would like to thank them for their
kindness and friendship.

1This work was supported by Grant 228021-ECCSciEng of the European Research Coun-
cil and by Grant 200020-115983/1 of the Swiss National Fund.

3

4

On a more personal level, thanks to the students and my colleagues from the
school of computer and communication sciences at EPFL. In particular, Amin
Shokrollahi, Emre Telatar, Rüdiger Urbanke, Serge Vaudenay, Philippe Oech-
slin, Bixio Rimoldi, Muriel Bardet, Francoise Behn, Yvonne Huskie, Chantal
Francois, Jean-Pierre Wassmer, Jean-Cédric Chappelier, Natascha Fontana,
Evelyn Duperex, Corinne Degott, Giovanni Cangiani, Damir Laurenzi, Cyril
Measson, Dinkar Vasudevan, Abdelaziz Amraoui, Henri Pfister, Andrew Brown,
Lorenz Minder, Christina Fragouli, Gérard Maze, Mehdi Molkaraie, Mahdi
Cheraghchi, Frédéric Didier, Frédérique Oggier, Payam Pakzad, Pooya Pakzad,
Masoud Alipour, Harm Cronie, Bertrand Meyer, Hesam Salavati, Etienne Per-
ron, Christine Neuberg, Raj Kumar, Luoming Zhang, Ghid Maatouk, Eren
Sasoglu, Ayfer Ozgur, Marius Kleiner, Vojislav Gajic, Soheil Mohajer, Satish
Korada, Shrinivas Kudekar, Nicolas Macris, Sanket Dusad, Vishwambhar rathi,
Peter Berlin, Jasper Goseling, Manfred Hauswirth, Amina Chebira, Olivier
Roy, Olivier Levêque, Roman Schmidt, Iryna Andriyanova, Shahram Yousefi
and Sofiane Sarni.

I would like to thank some friends who were close during all these years
of “exile”: Franck Felgbo, Henoc Agbota, Olivier Mouangué, Mehdi Touati,
Alain Golay, Paulette Akamba, Ignace Wafo, Etoa Christian, Mbarga Thierry,
Kana Stéphane, Rodrigue Deuboué, Fred Letang, Simon Olinga, Jean-Marie
Abomo, Loicq Bakay, Stella Foaleng, Claire Burdet, Sofiane Sarni, Delphine
Aebi, Nadège Chevallier, Sarah Richard, Christophe Ukegbu-oji Bassey, Anouk
Zbinden, Katia Serdyuk, Charlotte Crettenand, Dorine Rouiller, Eric Mbomo,
Clyde Fohouo, Lambert Sonna, Murielle Tiambo, Essomba Hervé and his wife
Lucie, my aunt Tang Jeanne and her offspring, Krystel Tchoungui, Rufine
Fankam, Marie Victorine Onana and Patience Eyenga.

I will never thank enough my late father Laurent Ndzana and my mother
Anastasie Ongola for providing me with a solid education and for their in-
valuable support. I would like to thank my sisters and my brothers for their
constant encouragement during this long endeavor. I wish to express my grat-
itude to my grandaunt Antoinette Edzimbi and her progeny, for their precious
support during my stay in Switzerland.

Finally, I feel greatly indebted to my fiancée Caroline Menyé for all her
trust, love and encouragement especially at the end of my PhD. The final year
of this work was enriched by your influence in my life.

Contents

Acknowledgements 3

Abstract 7

Résumé 9

1 Introduction 1
1.1 Outline . 1
1.2 Notation and Definitions . 2
1.3 Fountain Codes . 3

1.3.1 LT-Codes and Raptor Codes 3
1.3.2 Systematic LT Codes 6
1.3.3 Sum-Product Decoding for Binary Alphabets 8
1.3.4 Prerequisites for Non Binary Decoding Algorithms . . 11
1.3.5 Sum-Product Decoding for Non Binary Alphabets . . 11
1.3.6 Hadamard-Based SP Decoding for Non Binary Alphabets 14

2 Binary LT Codes for Nonbinary Channels 17
2.1 Introduction . 17
2.2 SP Decoding Algorithm using Linear Forms 20

2.2.1 Overview of the algorithm 21
2.2.2 Detailed description of the algorithm 21
2.2.3 Linear Forms and Hadamard-Based SP 25
2.2.4 Complexity of the SP decoding using linear forms . . . 27

2.3 Performance Comparison . 28
2.3.1 Symmetric Channels 29
2.3.2 Non-Symmetric Channels 31
2.3.3 Conclusions . 33

3 LT Codes on Piecewise Stationary Channels 35
3.1 Piecewise Stationary Memoryless Channels 35

3.1.1 Introduction . 35
3.1.2 Models and Definitions 36

5

6 Contents

3.1.3 Estimation of Channel Statistics 39
3.1.4 Sequential Channel Estimation Algorithm 40
3.1.5 The Expectation Maximization Method 41
3.1.6 Decoding using the Block Partitioning segmentation . 44
3.1.7 Decoding using a Recursive Decision segmentation . . . 45
3.1.8 Performance Comparison 46
3.1.9 Hard-Information Optimization 49

3.2 Markov Modulated Channels 53
3.2.1 Markov-modulated binary symmetric channels 53
3.2.2 SP based Estimation-Decoding Algorithms 55

3.3 Conclusions . 59

4 Systematic LT Codes for Lossless Coding 63
4.1 Burrows-Wheeler Text Compression 64

4.1.1 Motivation . 64
4.1.2 Text Preprocessing . 67
4.1.3 Modeling . 69
4.1.4 Encoder . 70
4.1.5 Decoder . 74
4.1.6 Numerical Results . 75

4.2 Distributed Source Coding . 76
4.2.1 Scheme using Multilevel based SP Decoding 76

4.3 Conclusions . 80

Bibliography 81

Curriculum Vitae – Bertrand NDZANA NDZANA 87

Abstract

The invention of Fountain codes is a major advance in the field of error cor-
recting codes. The goal of this work is to study and develop algorithms for
source and channel coding using a family of Fountain codes known as Raptor
codes.

From an asymptotic point of view, the best currently known sum-product
decoding algorithm for non binary alphabets has a high complexity that limits
its use in practice. For binary channels, sum-product decoding algorithms
have been extensively studied and are known to perform well. In the first part
of this work, we develop a decoding algorithm for binary codes on non-binary
channels based on a combination of sum-product and maximum-likelihood
decoding. We apply this algorithm to Raptor codes on both symmetric and
non-symmetric channels. Our algorithm shows the best performance in terms
of complexity and error rate per symbol for blocks of finite length for symmetric
channels.

Then, we examine the performance of Raptor codes under sum-product
decoding when the transmission is taking place on piecewise stationary memo-
ryless channels and on channels with memory corrupted by noise. We develop
algorithms for joint estimation and detection while simulataneously employing
expectation maximization to estimate the noise, and sum-product algorithm
to correct errors. We also develop a hard decision algorithm for Raptor codes
on piecewise stationary memoryless channels. Finally, we generalize our joint
LT estimation-decoding algorithms for Markov-modulated channels.

In the third part of this work, we develop compression algorithms using
Raptor codes. More specifically we introduce a lossless text compression al-
gorithm, obtaining in this way competitive results compared to the existing
classical approaches. Moreover, we propose distributed source coding algo-
rithms based on the paradigm proposed by Slepian and Wolf.

Keywords : Raptor codes, LT codes, non-binary, Sum-Product, Maximum-
Likelihood, Piecewise Stationary Memoryless Channels, Gilbert-Elliot chan-
nels, Slepian-Wolf

7

Résumé

L’invention des Fountain codes est une véritable révolution dans dans le do-
maine des codes correcteurs d’erreurs. Le but de ce travail est d’étudier et
de développer des algorithmes de codage de source et de canal à l’aide d’une
famille de codes Fountain appelée Raptor.

Du point de vue asymptotique, le meilleur algorithme actuel de décodage
sum-product pour des alphabets non binaires a une complexité considérable qui
limite son utilisation pour des problèmes pratiques de communication. Dans
la littérature, les algorithmes de décodage sum-product pour des alphabets
binaires connaissent un succès considérable pour des canaux à alphabets bi-
naires. Dans la première partie de ce travail, nous développons un algorithme
de décodage basé sur la combinaison des algorithmes conjoints sum-product et
maximum-likelihood utilisant des codes binaires dédiés à des canaux de com-
munication non-binaires. Nous appliquons cet algorithme à des codes Raptor
sur des canaux de communication symmétrique et a-symmétrique. Nous con-
statons que notre algorithme présente une meilleur performance en terme de
complexité et de taux de correction d’erreurs par symbole pour des blocs de
données de taille finie.

Nous examinons ensuite les performances des codes Raptor avec l’algorithme
sum-product lorsque la transmission se déroule sur des canaux sans mémoire
stationnaires par morceau et sur des canaux avec mémoire avec l’hypothèse que
le bruit est inconnu. Nous avons ainsi developpé des algorithmes d’estimation
et de détection conjoints utilisant simultanément la maximisation de la moyenne
afin d’estimer le bruit et le décodage sum-product afin de corriger les er-
reurs. Nous développons aussi des algorithmes Raptor de décodage sum-
product quantifié du point de vue asymptotique pour des canaux sans mémoire
stationnaires par morceau. Finalement, nous développpons des algorithmes
d’estimation et de détection pour des canaux à mémoire de type markovien
appelés Gilbert-Elliot.

Dans la troisième partie de ce travail, nous développons des algorithmes de
compression sans pertes utilisant des codes Raptor. Plus spécifiquement nous
avons introduit un algorithme sans pertes de compression de textes, obtenant
ainsi des résultats compétitifs et robustes en comparaison aux algorithmes clas-
siques existants. Par ailleurs, un algorithme de codage de sources distribuées

9

10 Contents

est proposé suivant le paradigme établi par Slepian et Wolf.

Mots-clés: Raptor codes, LT codes, Non-Binaire, Sum-Product, Maximum-
Likelihood, Canaux sans mémoire stationnaires par morceau, Canaux de Gilbert-
Elliot, Slepian-Wolf

List of Figures

1.1 Decoding graph of an LT code . 4
1.2 LT communication system for binary alphabets. 5
1.3 A systematic LT code: Matrices S and G 8
1.4 Sum-Product decoding for binary alphabets 10
1.5 Sum-Product decoding for q-ary alphabets 13

2.1 GF(q)-LT Codes: Encoding . 20
2.2 GF(q)-LT Codes: Transmission 20
2.3 LT communication system for q-ary alphabets. 21
2.4 GF(q)-LT Codes: Linear forms 22
2.5 GF(q)-LT Codes: Decoding using linear forms 22
2.6 Comparison between our algorithms, HSP60 and MSP100 decoding

over GF(24) for varying q−SC(p) parameters. 29
2.7 Comparison between our algorithms, HSP60 and MSP100 decoding

over GF(24) for varying overheads and fixed q−SC(p) parameter. 30
2.8 Comparison between our algorithms, HSP60 and MSP100 decoding

over GF(28) for varying q−SC(p) parameters. 31
2.9 Comparison between our algorithms, HSP60 and MSP100 decoding

over GF(24) for varying overheads and fixed q−SC(p) parameter. 32
2.10 Comparison between our algorithms andHSP60 decoding over GF(24)

for fixed overhead and varying SNRs. 33
2.11 Comparison between our algorithms andHSP60 decoding over GF(24)

for varying overheads and fixed SNR. 33

3.1 Graphical representation of a PSM-BSC 37
3.2 LT joint estimation-decoding system. 39
3.3 Recursive block partitioning for a three-level decision algorithm. . 46
3.4 Decoding graph of an LT code for a PSMC-BSC({τ1}, [ν1, ν2]) . . 47
3.5 Message flow related to BSC({τ1}) 47
3.6 Message flow related to BSC({τ2}) 48
3.7 BER performance with varying bad channel. 49
3.8 Redundancy performance with varying bad channel. 50
3.9 Error probability convergence using Gallager’s majority decoding 54
3.10 Markov-LT factor graph . 56

11

12 List of Figures

3.11 Message flow through the Markov-subgraph 56
3.12 BER Performance comparison with varying good state channel

crossover. 60
3.13 BER Performance comparison with varying overhead. 61

4.1 Source coding scheme for text compression 66
4.2 Symmetric distributed source coding scenario 76
4.3 Graphical Slepian-Wolf region . 77
4.4 Tanner graph for the Two-layer LT approach 79
4.5 Performance of LT-BLID codes of length 396 bits over BSC . . . 80

List of Tables

4.1 BWT: Cyclic shifts . 65
4.2 BWT: Sorting . 65
4.3 Calgary results . 75
4.4 Canterbury results . 76

13

List of Acronyms

Acronym Description
SP Sum-Product
LT Luby Transform
PSMC Piecewise Stationary Memoryless Channel
GEC Gilbert-Elliot Channel
BWT Burrows-Wheeler Transform
CLID Closed-Loop Iterative Doping
BEC(p) Binary Erasure Channel with erasure probability p
BSC(p) binary symmetric channel with crossover probability p
q−SC(p) q-ary symmetric channel with parameter p
LLR Log-Likelihood Ratio
BIMSC Binary Input Memoryless Symmetric Channel
ML Maximum Likelihood
PAM Pulse Amplitude Modulation
EM Expectation Maximization
BP Block Partitioning
RD Recursive Decision
PSMC Piecewise Stationary Memoryless Channel
MM-BSC Markov-Modulated Binary Symmetric Channel
GE Gilbert-Elliott
BWT Burrows-Wheeler Transform
BWCA Burrows-Wheeler compression algorithm
GST Global Structure Transformation
EC Entropy Coding
WFC Weighted Frequency Count
IFC Incremental Frequency Count
FC Fountain Coder
CLID Closed-Loop Iterative Doping
BID Blind Iterative Doping

15

List of Notations

Symbol Description
Iba set {a, a+ 1, · · · , b}
m strict positive integer
q integer equal to 2m

GF(q) Galois field of order q
k number of input symbols
N number of output symbols
f
′
(x) derivative of f(x) with respect to x

Ωi probability that a randomly chosen
output node is of degree i

Ω output node degree distribution
ωi probability that a randomly chosen

edge is connected to an output node of degree i
ω output edge degree distribution
Ij probability that a randomly chosen

input node is of degree j
I input node degree distribution
ιj probability that a randomly chosen

edge is connected to an input node of degree j
ι input edge degree distribution
R rate of the code
C or [n, k] linear code of block

length n and dimension k
α average degree of an input symbol
β average degree of an output symbol
ε reception overhead
Cq q-ary channel
Cap(Cq) capacity of a q-ary channel Cq
Pr[A] probability of event A occuring by itself
x̂ estimate of x
H−1 inverse matrix of H
inbi input node of degree i
outbj output node of degree j

17

18 List of Tables

MC LLR associated with channel C

Φ Set of linear forms from GF(2m) to GF(2)
CΦ linear [n,m]2-code defined by Φ
G(CΦ) generator matrix of CΦ

dim〈A〉 dimension of space generated by elements of A
dim(A) dimension of vector space A

Introduction 1
1.1 Outline

The invention of Fountain codes is a major event in the field of error cor-
recting codes during the last decade. Raptor codes are a family of Fountain
codes proven to have good asymptotic and non-asymptotic properties.
The goal of this work is to study and develop algorithms for source and chan-
nel coding using Raptor codes.
In what follows we give the outline of the thesis and provide a road map of
our major results.

Chapter 2 We introduce a class of decoding algorithms for binary Raptor
codes used for transmission over q-ary channels, where q = 2m. The algorithms
provide a trade-off between complexity and decoding capability. Whereas the
running time of the q-ary sum-product algorithms is m2m times that of its
binary counterpart, in our case the complexity factor can be chosen between
m and 2m, depending on the error-correction capability required. As such,
the running time can be much better than the q-ary sum-product algorithm.
The main idea behind our algorithm is to apply an appropriate set of GF(2)-
linear forms of GF(q) to the Raptor code to obtain a set of binary codes
which can be decoded independently in parallel. After a prescribed number
of iterations, for each of the input symbols of the Raptor code and each of
the linear forms, an estimate is obtained on the probability that this linear
form applied to the input symbol is zero. By gathering these probabilities and
performing a maximum-likelihood decoding on a suitable code of very small
blocklength, we are able to obtain a good estimate of the value of the input
symbol. Simulation results are provided for families of q-ary symmetric chan-
nels and non-symmetric channels that show the performance of our decoding

1

2 Introduction

algorithms.

Chapter 3 Two fixed per-information symbol complexity lossless source
coding algorithms are modified for estimation and incremental Luby Transform
(LT) decoding over Piecewise Stationary Memoryless Channels (PSMC’s) with
a bounded number of abrupt changes in channel statistics. In particular, as a
class of PSMC’s, binary symmetric channels are considered with a crossover
probability that changes a bounded number of times with no repetitions in the
statistics. Simulation results illustrate the benefits of using our algorithms,
both in terms of probability of error and in terms of redundancy.
We also investigate the performance of Raptor codes using Gallager’s majority
decoding algorithm on the PSMC. We obtain equations which relate the error
probability to the ouput node degree distribution.
In the last part of this chapter, we adapt the sum-product algorithm to Raptor
estimation-decoding over a class of Markov-modulated channels called Gilbert-
Elliot channels.

Chapter 4 We present an algorithm in a purely lossless text compression
setting based on Raptor codes and the Burrows-Wheeler Transform. The al-
gorithm proceeds as follows. First we apply a Text Preprocessing; secondly,
after applying the Burrows-Wheeler Transform (BWT), we reduce the number
of symbols by applying a run length encoding scheme; then, we transform the
local context of the symbols into a global context by an incremental frequency
count stage; and finally, we separately encode the run-length data stream with
an entropy coder and the incremental frequency count-index stream with a
layered Fountain Coder. The proposed scheme follows the Closed-Loop Iter-
ative Doping (CLID) algorithm together with the multilevel stage decoding
Sum-Product at the fountain coder stage. Our algorithm offers encouraging
compression rates performance for large files.
We also present a scheme to the multiple user Slepian-Wolf problem in a cer-
tain part of the achievable region using Raptor codes.

1.2 Notation and Definitions

Throughout the manuscript, we use the following notation.
We use Cq to denote a noisy channel for q-ary alphabets, BEC(p) to denote

the binary ersaure channel with erasure probability p, BSC(p) to denote the
binary symmetric channel with crossover probability p, q−SC(p) to denote the
q-ary symmetric channel with parameter p, where 0 ≤ p ≤ 1. If A is an event,
Pr[A] is the probability of event A occurring by itself. Let x denote the row
vector (x1, · · · , xn) of length n, x̂ = (x̂1, · · · , x̂n) is a row vector estimate of x.
For any set F , F k denotes the set of row vectors u = (u1, · · · , uk) where for
j = 1, · · · k, we have uj ∈ F . If H is an invertible k × k matrix, H−1 is the

1.3. Fountain Codes 3

inverse matrix of H. GF(q) is the Galois field of order q, typically, q = 2m and
m > 0. If a and b denote two integers, where a ≤ b, then we denote Iba as the
set of integers {a, a+ 1, · · · , b}. If A is a set, dim〈A〉 is the dimension (i.e. the
cardinality of a basis) of the space generated by elements of A. If A is a space
itself, dim(A) is the deimension of A. We denote by 1() an indicator function
defined by

1(a = b) =

{
1 if a = b
0 if a 6= b

A PAM (Pulse Amplitude Modulation) signal constellation is a constellation
with a uniform spacing and a uniform distribution on the constellation sym-
bols.

1.3 Fountain Codes

Fountain codes are codes for which the rate is not fixed in advance, and new
code symbols can be generated as needed. This family of codes was origi-
nally [4] designed for transmission over computer networks. These codes are
used to transmit information over channels for which the noise level is not
known in advance. They can be used for transmission over BEC(p) when
the parameter p is unknown. A Fountain code produces a potentially limit-
less stream of output symbols z1, z2, · · · for a given sequence of input symbols
x1, · · · , xk of length k.

A decoding algorithm for a well designed Fountain code can recover the
original k input symbols from any set of N output symbols with high prob-
ability, where N is close to k. In what follows we assume that symbols are
binary.

1.3.1 LT-Codes and Raptor Codes

LT codes are one of the first classes of Fountain codes [34], in which each
coded bit is the exclusive-or of a randomly selected subset of the input bits.
The number of input bits in this set is called the degree of the output bit.

An LT code has parameters (k,Ω), where k > 0 is the length of input
sequence and Ω denotes a probability distribution on the set Ik1. The decoding
graph of an LT code of length k with parameters (k,Ω) is a bipartite graph
(as can be seen in Fig. 1.1) with k nodes on one side (called input nodes which
correspond to the input bits) and N nodes on the other side (called output
nodes which correspond to output bits), where N > 0. We sometimes say that
a node has value v if the bit corresponding to that node has value v. There is
an edge from each output node to all those input nodes whose sum is equal to
the value of the output node before transmission.

Let Din ∈ IN1 be the maximum input node degree, Dout ∈ Ik1 the maximum
output node degree, Ii be the probability that a randomly chosen input node

4 Introduction

Ω

k input nodes

N output nodes

Figure 1.1: Decoding graph of an LT code

is of degree i and Ωj be the probability that a randomly chosen output node
is of degree j, where i ∈ IDin1 and j ∈ IDout1 .

I = (I1 , I2 , · · · , IDin) and Ω = (Ω1,Ω2, · · · ,ΩDout) are called degree distri-
butions and can be represented by their generating functions :

I (x) =

Din∑
i=1

Iix
i,Ω(x) =

Dout∑
j=1

Ωjx
j.

Let ιi be the probability that a randomly chosen edge is connected to an
input node of degree i and ωj be the probability that a randomly chosen edge
is connected to an output node of degree j in the decoding graph.

ι = (ι1, ι2, · · · , ιDin) and ω = (ω1, ω2, · · · , ωDout) are called degree distribu-
tions and can also be represented by their generating functions as

ι(x) =

Din∑
i=1

ιix
i−1, ω(x) =

Dout∑
j=1

ωjx
j−1.

Degree distributions Ω(x), ω(x), I (x) and ι(x) are called output node de-
gree distribution, output edge degree distribution, input node degree distri-
bution and input edge degree distribution respectively; they are associated
as:

ι(x) =
I ′(x)

I ′(1)
, ω(x) =

Ω′(x)

Ω′(1)
,

where I ′(x) and Ω′(x) are the derivatives of Ω(x) and I (x), with respect
to x, respectively.

Let α be the average degree of an input symbol and β be the average degree
of an output symbol. The nominal rate of the code is

R ,
k

N
=
β

α
.

1.3. Fountain Codes 5

x1, · · · , xk
LT encoder

z1, · · · , zN
Channel

y1, · · · , yN
LT decoder

bx1, · · · , bxk

Figure 1.2: LT communication system for binary alphabets.

By assuming that the number of output nodes is large, input node degree
distribution is binomial by construction and can be approximated by a Poisson
distribution with parameter α (Proposition 1 of [17]). Thus, the input node
degree distribution is replaced by

I (x) = eα(x−1)

and the associated input edge degree distribution is

ι(x) =
I ′(x)

I ′(1)
= eα(x−1).

A row vector of k bits is encoded using a specific LT code x = (x1, · · · , xk)
into the row vector z = (z1, · · · , zN).

To generate an output bit, the encoder works as follows.

Algorithm 1. LT encoder rule
Input: Row vector of input bits x = (x1, · · · , xk) and the output node degree
distribution Ω.
Output: Row vector of output bits z = (z1, · · · , zN).

For l = 1, · · ·N , do

1. Randomly choose the degree j of the output bit using Ω.

2. Choose uniformly at random j distinct input bits.

3. The value of the output bit zl is the exclusive-or of these j input bits.

As shown in Fig. 1.2, the vector z is then transmitted over a particular
channel C2. We denote by y = (y1, · · · , yN) the received row vector and by x̂ =
(x̂1, · · · , x̂k) an estimate of x obtained after the decoding. The transmission
is done bit-by-bit. The value of N does not need to be known in advance.

The performance of LT codes with respect to a given decoding algorithm
is measured in terms of the error rate as a function of the reception overhead
denoted by ε. The reception overhead is the number of output bits that the
decoder needs to collect in excess of the absolute minimum in order to recover
the input bits with high probability. The decoder collects output bits and
estimates for each received output bit the amount of information in that bit.
This measure of information can be obtained from the log-likelihood ratio
(LLR) of the received bit. The receiver stops collecting output bits as soon as

6 Introduction

the accumulated information carried by the observed channel outputs exceeds
(1 + ε)k, where ε is the overhead associated with the LT code, and k is the
number of input bits. For a given channel C2 with capacity Cap(C2), the rate
R is associated to ε as

R =
Cap(C2)

1 + ε
.

Raptor codes [47] are an extension of the family of LT codes. A Raptor
code is a code formed by concatenating a given linear code C (usually a high-
rate LDPC code) of block length n > 0 and dimension k > 0, with an LT
code [47]. The Raptor code is encoded by first encoding k information bits
into an n-bit codeword in C. Subsequently, each of the n bits is re-encoded as
an LT codeword. The code C is called the pre-code of the Raptor code.

Since the code C may be trivial (i.e., the output sequence is always equal to
the input sequence), an LT code is a special case of a Raptor code. A Raptor
code has parameters (k, C,Ω).

In this work, we will concentrate on LT codes.

1.3.2 Systematic LT Codes

The design of systematic LT codes was introduced in [47]. A systematic LT
code is an LT code for which the input bits appears as part of the output bits;
these input bits are called systematic bits.

In what follows, x and w are row vectors of length k, z and y are row
vectors of length N , and ε > 0.

The systematic LT encoding requires two steps. First the computation of
systematic positions i1, · · · , ik that can be done as follows.

Algorithm 2. Calculation of systematic positions
Input: LT code with parameters (k,Ω).
Output: If successful, row vectors v1, · · · , vk(1+ε) ∈ GF(2)k, indices i1, · · · , ik
between 1 and k(1 + ε), and an invertible k × k matrix G such that G is the
matrix formed by rows vi1 , · · · , vik .

1. Sample k(1 + ε) times independently from the distribution Ω on GF(2)k

to obtain v1, · · · , vk(1+ε) .

2. Let S be the k(1 + ε)× k matrix consisting of rows v1, · · · , vk(1+ε).

3. Calculate rows i1, · · · , ik such that the submatrix G of S consisting of
these rows is invertible, and calculate G−1.

4. If i1, · · · , ik don’t exist, goto 1.

The calculation of rows i1, · · · , ik is done by removing kε redundant rows
in S. The author [47] suggested to use Gaussian elimination to obtain G.

The second step is to generate output bits z1, · · · , zN such that zi1 =
x1, · · · , zik = xk.

1.3. Fountain Codes 7

The following algorithm describes how to generate the output bits for a
systematic LT code.

Algorithm 3. Systematic LT encoder rule
Input: Row vector of systematic bits x = (x1, · · · , xk) and LT code with pa-
rameters (k,Ω).
Output: Row vector of output bits z = (z1, · · · , zN) such that z1 = x1, · · · , zk =
xk.

1. Use Algo. 2 to obtain G and calculate the intermediate bit vector w =
(w1, · · · , wk) given by

w = G−1 · x.

2. Generate the output bits zk+1, zk+2, · · · , zN by applying the LT code with
parameters (k,Ω) to the row vector w.

Example 1. We illustrate calculation of systematic positions and LT system-
atic encoding rules in Fig. 1.3, where k = 7 and ε = 4

7
.

Let us denote the upper white nodes (with no dashed circles) by nodei where
i ∈ I7

1. Let us denote the lower 11 nodes by nodevj , where j ∈ I11
1 . A row vector

vj = (vj1, ..., vj11) is obtained by looking at the connection between nodevj and
nodes nodei as follows.

vji =

{
1 if there is a connection between nodei and nodevj
0 if there is no connection between nodei and nodevj

S is the matrix consisting of rows v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, and G
is the matrix consisting of rows v2, v4, v5, v7, v8, v10, v11. Matrices S and G are
given by

S =

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

=

1 0 1 0 1 0 1
0 0 1 0 0 0 0
1 1 1 1 0 0 0
0 1 0 1 0 0 0
1 0 0 0 0 1 0
0 0 0 1 1 1 1
0 0 0 1 0 1 0
0 1 0 0 1 0 0
0 0 1 0 0 1 1
0 0 0 0 1 0 1
0 0 1 0 0 0 1

, G =

v2

v4

v5

v7

v8

v10

v11

=

0 0 1 0 0 0 0
0 1 0 1 0 0 0
1 0 0 0 0 1 0
0 0 0 1 0 1 0
0 1 0 0 1 0 0
0 0 0 0 1 0 1
0 0 1 0 0 0 1

The systematic LT decoding is done as follows.

8 Introduction

Ω

i1 = 2 i2 = 4 i3 = 5 i4 = 7 i5 = 8 i6 = 10 i7 = 11

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

Figure 1.3: A systematic LT code: Matrices S and G

Algorithm 4. Systematic LT decoder rule
Input: Row vector of noisy output bits y = (y1, · · · , yN) of an LT code with
parameters (k,Ω).
Output: Row vector of estimates of input bits x̂ = (x̂1, · · · , x̂k).

1. Decode the output bits using a decoding algorithm for the original LT
code to obtain the row vector of estimates of intermediate bits ŵ =
(ŵ1, · · · , ŵk).

2. Calculate x̂ = G · ŵ, where x̂ = (x̂1, · · · , x̂k) and ŵ = (ŵ1, · · · , ŵk)

For BEC(p) channels with parameter p, the decoder for the systematic LT
code collects N = k(1 + ε)([47]) output bits and recovers the input bits with
negligible error probability.

1.3.3 Sum-Product Decoding for Binary Alphabets

The LT decoder can use the Sum-Product (SP) algorithm (see [17] and [29])
to recover the input bits from the information contained in the output bits.
In this part, we describe the SP algorithm for BIMSCs.

The SP algorithm is the standard decoding algorithm for graph-based
codes. In the case of finite cycle-free graphs, it is finite and exact. For con-
nected graphs with cycles, the SP-based decoding algorithm is suboptimal.

Under the SP algorithm, messages are passed along edges, and are func-
tions of the variables incident to the edge. The messages are probabilities of
the incident variable xs and can be represented as LLRs

ln
Pr[xs = 0]

Pr[xs = 1]

where s ∈ Ik1.
The SP decoding algorithm proceeds in rounds. At every round d ≥ 0,

1.3. Fountain Codes 9

messages are passed from input nodes to output nodes, and then from output
nodes back to input nodes along the edges of a decoding graph for the given
LT code.

Let us denote the input node of degree i by inbi , the output node of degree
j by outbj , the message sent from input node inbi to output node outbj at
round d by M

(d)

inbi→outbj , the message sent from output node outbj to input

node inbi at round d by M
(d)

inbi←outbj and

MC2 =
(
MC2,1 , · · · ,MC2,N

)
,

(
ln

Pr[z1 = 0|y1]

Pr[z1 = 1|y1]
, · · · , ln Pr[zN = 0|yN]

Pr[zN = 1|yN]

)
as the LLR information row vector of length N of the channel C2, where
z = (z1, · · · , zN) is the vector sent on the channel and y = (y1, · · · , yN) the
received vector.

For j, s ∈ Ik1 and i, r ∈ IN1 , we assume that outbj is associated to the
variable yr, inbi is associated to the variable xs and MC2,rr

is the LLR of the

channel C2 for outbj . In the very first round, output nodes with degree 1,
outb1 , send their values to their unique neighbours in the set of the input
nodes, which can be written as

For r ∈ IN1 , do

M
(0)

inbi←outbj =

{
MC2,r if the degree of outbj is 1,

0 if the degree of outbj is bigger than 1.

For d ≥ 0, the SP update rules (see Fig. 1.5) for the next steps are given
as follows.

Algorithm 5. Sum-Product decoding rule
Input: Row vector of noisy output bits y = (y1, · · · , yN) and the corresponding
graph for an LT code with parameters (k,Ω).
Output: Row vector of estimates of input bits x̂ = (x̂1, · · · , x̂k).

1. Update rule for input nodes.
Set the components of the message M

(d)

inbi→outbj
from input node inbi to

output node outbj as follows.
For s ∈ Ik1, do

M
(d)

inbi→outbj
=

i−1∑
p=1

M
(d)

inbi←outbj ′p

where the messages M
(d)

inbi←outbj ′1
, · · · ,M (d)

inbi←outb
j ′
i−1

are related to all out-

put nodes outbj ′p adjacent to inbi other than outbj , p ∈ Ii−1
1 and j′p ∈ Ik1.

2. Update rule for output nodes.
Set the components of the message M

(d+1)

inbi←outbj from output node outbj to

10 Introduction

input node inbi as follows.
For r ∈ IN1 , do

M
(d+1)

inbi←outbj = 2arctanh

(
tanh

(
MC2,r

2

)
.

j−1∏
l=1

tanh

(
M

(d)

inb
i′
l→outbj

2

))

where the messages M
(d)

inbi′1→outbj
, · · · ,M (d)

inb
i′
j−1→outbj

are related to all in-

put nodes inbi ′l adjacent to outbj other than inbi , l ∈ I
j−1
1 and i′l ∈ IN1 .

M
(d+1)

inbi←outbj

M
(d)

inb
i′
l→outbj

inbi inbi
′
l

outbj

M
(d)

inbi→outbj

M
(d)

inbi←outbj ′p

inbi

outbj
′
p outbj

Figure 1.4: Sum-Product decoding for binary alphabets

In practical settings, the decoder stops after a fixed number of SP decod-
ing rounds and computes at each input node inbi a maximum a posteriori
estimation of the sth transmitted information bit xs, i.e.,

argxs,s∈IN1
max

(
Pr(xs|y1, · · · , yN)

)
.

Let us define the function F (x) , ex

1+ex
, where x is a real. If a real t is a

message sent from (or to) an input node, then F (t) (1 − F (t), respectively)
represents an estimate of the a posteriori probability that the corresponding
code bit is 0 (1, respectively), given the LLR channel observations in the cor-
responding decoding graph. The decoder decides on the bit 0 (1, respectively)
that maximizes F (t) (1− F (t), respectively). The decision associated with x
is defined as follows.

The MAP estimation of the transmitted information bit xs associated to
the input node inbi is computed by the SP decoding as

x̂s =

{
0 if P0 > P1

1 if P0 < P1

1.3. Fountain Codes 11

where

P0 = 1− P1 , F
(i∑
r=1

M
(dend)

inbi←outbj ′r

)
the sum being over all output nodes outbj ′r adjacent to inbi , r ∈ Ii1, j′r ∈ Ik1,
i ∈ IN1 and dend > 0 is the last round of the SP decoding.

In what follows, we generalize the binary SP algorithm to the non binary
case.

1.3.4 Prerequisites for Non Binary Decoding Algorithms

Let us denote an integer m ≥ 0, and q = 2m. Given a binary LT code with
parameters (k,Ω), we construct non binary LT codes over GF(q). We assume
that symbols of the code are elements of GF(q). We fix a bijection between
GF(q) and I

q−1
0 , and a bijection between GF(q) and GF(2)m. In other words,

we map every element x ∈ GF(q) to an unique integer a ∈ I
q−1
0 . We also map

each element x ∈ GF(q) to the bit row vector of length m

b(x) = [b1(x), · · · , bm(x)],

where bτ (x) ∈ GF(2); τ ∈ Im1 refers to the τ th bit-plane position of x and bτ (x)
is the bit corresponding to the τ th bit-plane of x.

In what follows, each element x ∈ GF(q) is identified with b(x) ∈ GF(2)m

or a ∈ I
q−1
0 . ∀x, y ∈ GF(q), it is then clear that b(x+ y) = b(x) + b(y),

Definition 1. A q-dimensional probability row vector is a row vector v =
(v0, · · · , vq−1) of non negative real numbers, where

∑
h∈Iq−1

0
vh = 1.

1.3.5 Sum-Product Decoding for Non Binary Alphabets

For q-ary LT SP decoders, messages are multidimensional vectors rather than
scalar values as in the standard binary LT code. Assuming that the underlying
alphabet is GF(q), where q = 2m and m > 0, the messages that are passed
along the edges of the graph are probability distributions on GF(q), and can be
described by a vector of (q − 1) non-negative real numbers with sum at most
equal to 1. The message passing algorithm performs convolutions of these
probability distributions on one side of the graph, and point-wise products
(and renormalization) on the other side.

The multidimensional channel information vector of a received row vector
of symbols y = (y1, · · · , yN) is defined as

MCq , (MCq,0 , · · · ,MCq,q−1)

=

(
Pr[yr|zr = 0]∑q−1
k=0 Pr[yr|zr = k]

, · · · , Pr[yr|zr = q − 1]∑q−1
k=0 Pr[zr|zr = k]

)
where r ∈ IN1 .

12 Introduction

As for the binary case, the q-ary LT SP decoding algorithm proceeds in
rounds. At every round d > 0, we denote the input node of degree i by inbi ,
the output node of degree j by outbj , the multidimensional message sent from
inbi to outbj at round d by M

(d)

inbi→outbj and the multidimensional message sent

from outbj to inbi at round d by M
(d)

inbi←j
:

M
(d)

inbi→outbj , (M
(d)

inbi→outbj
,0
, · · · ,M (d)

inbi→outbj
,q−1

)

M
(d)

inbi←outbj , (M
(d)

inbi←outbj
,0
, · · · ,M (d)

inbi←outbj
,q−1

)

The decoder attempts to recover input symbols x1, · · · , xk. The decoding
consists of the iterative sending of messages from output nodes to input nodes
and from input nodes to output nodes as follows.

For j, s ∈ Ik1 and i, r ∈ IN1 , we assume that outbj is associated to the
variable yr, inbi is associated to the variable xs and MCq is the LLR of the
channel Cq for outbj . In the very first round, output nodes with degree 1,
outb1 , send their values to their unique neighbours in the set of the input
nodes, which can be written as

For r ∈ IN1 set

M
(d)

inbi←outbj =

{
MCq if the degree of outbj is 1

0 if the degree of outbj is bigger than 1

For d ≥ 0, the SP update rules for the next steps are given as follows.

Algorithm 6. Sum-Product decoding rule
Input: Row vector noisy output symbols y = (y1, · · · , yN) and the corresponding
graph for an LT code with parameters (k,Ω).
Output: Row vector of estimates of input symbols x̂ = (x̂1, · · · , x̂k).

1. Update rule for input nodes.
Set the components of the message M

(d)

inbi→outbj from input node i of degree
di to output node j as follows.
For s ∈ Ik1 and for h ∈ I

q−1
0 set

M
(d)

inbi→outbj
,h

=

∏i−1
p=1M

(d)

inbi←outbj ′p
,h∑

h′∈Iq−1
0

∏di−1
p=1 M

(d)

inbi←outbj ′p
,h′

where the messages M
(d)

inbi←outbj ′1 ,h
, · · · ,M (d)

inbi←outb
j ′
i−1

,h

are related to all

output nodes outbj ′p adjacent to inbi other than outbj , p ∈ Ii−1
1 and j′p ∈

Ik1.

2. Update rule for output nodes.
Set the components of the message M

(d)

inbi←outbj from output node j of

1.3. Fountain Codes 13

degree dj to input node i as follows.
For r ∈ IN1 and for h ∈ I

q−1
0 set

M
(d+1)

inbi←outbj
,h

= MCq,r

∑
a1,··· ,aj−1∈GF(q),

yj+
Pdj−1

l=1
al=h

j−1∏
l=1

M
(d)

inb
i′
l→outbj

,al

where the messages M
(d)

inbi′1→outbj
,a1

, · · · ,M (d)

inb
i′
j−1→outbj

,aj−1

are related to

all input nodes inbi ′l adjacent to outbj other than inbi , al ∈ I
q−1
0 , l ∈ I

j−1
1

and i′l ∈ IN1 .

In practical settings, the decoder stops after a fixed number of SP decoding
rounds and computes at each input node inbi a maximum a posteriori estimate
of the sth transmitted information symbol xs, where s ∈ Ik1 .

The maximum a posteriori estimate of the transmitted information symbol
xs associated to input node inbi is computed by the SP decoding as

x̂s = argh∈Iq−1
0

max

(∏i−1
p=1M

(dend,q)

inbi←outbj ′p
,h∑

h′∈Iq−1
0

∏di−1
p=1 M

(dend,q)

inbi←outbj ′p
,h′

)

where the messages M
(d)

inbi←outbj ′1 ,h
, · · · ,M (d)

inbi←outb
j ′
i−1

,h

are related to all output

nodes outbj ′p adjacent to inbi ,h ∈ I
q−1
0 , j′p ∈ Ik1 and dend,q is the last round of

the SP decoding.

M
(d+1)

inbi←outbj

M
(d)

inb
i′
l→outbj

inbi inbi
′
l

outbj

M
(d)

inbi→outbj

M
(d)

inbi←outbj ′p

inbi

outbj
′
p outbj

Figure 1.5: Sum-Product decoding for q-ary alphabets

14 Introduction

1.3.6 Hadamard-Based SP Decoding for Non Binary
Alphabets

Definition 2. The Hadamard-Walsh matrix of size q = 2m is the 2m × 2m

matrix recursively defined by

Hm =

[
Hm−1 Hm−1

Hm−1 −Hm−1

]
where H0 = 1 and m > 0.

Example 2. Matrices H1 and H2 are given by

H1 =

[
1 1
1 −1

]
, H2 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

The Hadamard-Walsh matrix Hm has the following properties :

• Hm = Hm
>, where Hm

> is the transpose of the matrix Hm

• The inverse of Hm is 1
q
Hm.

Definition 3. Let v = (v0, · · · , vq−1) and w = (w0, · · · , wq−1) be two q-
dimensional row vectors of real numbers. The multiplication of v and w per-
formed component-wise is the vector v ∗ w = (u0, · · · , uq−1) defined as

u = (v0w0, · · · , vq−1wq−1)

Definition 4. Let v = (v0, · · · , vq−1) be a 1× q vector. The Hadamard trans-
form of v is the vector

vHm.

Theorem 1. Let d > 0, and suppose that X1, · · · , Xd are d independent ran-
dom variables defined over GF(q). For i ∈ Id1, we define by Pr(Xi), the distri-
bution of Xi:

Pr(Xi) ,
(

Pr[Xi = 0], · · · ,Pr[Xi = q − 1]
)
.

Then, the probability density of Y = X1 + · · ·+Xd denoted by Pr(Y), is given
by

Pr(Y) ,
(

Pr[Y = 0], · · · ,Pr[Y = q − 1]
)

(1.1)

=
1

q

(d∏
i=1

(
Pr(Xi)Hm

))
Hm

where Pr(xi)Hm is the Hadamard transform vector of Pr(xi) and the multipli-
cation of the Hadamard transform vectors is performed component-wise.

1.3. Fountain Codes 15

Proof: See, e.g., in [30].

In the decoding algorithm we previously presented, at each output node
outbj the update rule for input nodes step performs convolutions of proba-
bility distributions at cost proportional to jqj−1. These convolutions can be
performed at cost proportional to jq log2(q) using a Hadamard-Walsh trans-
form [36, 39]. Using the formula (1.1), one can change the update rule for
output node into a product node in the decoding graph and then obtain an-
other version of SP decoding, called the Hadamard-based SP, which is given
as follows.

In the very first round (see the formula before Algo.6), output nodes with
degree 1 send the values to whatever is coming from the channel to their unique
neighbours in the set of the input nodes.

Algorithm 7. Hadamard-based SP decoding rule
Input: Row vector noisy of output symbols y = (y1, · · · , yN) and the corre-
sponding graph for an LT code with parameters (k,Ω).
Output: Row vector of estimates of input symbols x̂ = (x̂1, · · · , x̂k).

1. Update rule for input nodes.
Set the components of the message M

(d)

inbi→outbj from input node i of degree
di to output node j as follows.
For s ∈ Ik1 and for h ∈ I

q−1
0 set

M
(d)

inbi→outbj
,h

=

∏i−1
p=1M

(d)

inbi←outbj ′p
,h∑

h′∈Iq−1
0

∏di−1
p=1 M

(d)

inbi←outbj ′p
,h′

where the messages M
(d)

inbi←outbj ′1 ,h
, · · · ,M (d)

inbi←outb
j ′
i−1

,h

are related to all

output nodes outbj ′p adjacent to inbi other than outbj , p ∈ Ii−1
1 and j′p ∈

Ik1.

2. Update rule for output nodes.
Set the components of the message M

(d)

inbi←outbj from output node j of
degree dj to input node i as follows.
For r ∈ IN1 and for h ∈ I

q−1
0 set

M
(d+1)

inbi←outbj =
1

q

((
MCqHm

)
∗
j−1∏
l=1

(
M

(d)

inb
i′
l→outbj

Hm

))
Hm

where the q-dimensional messages M
(d)

inbi′1→outbj
, · · · ,M (d)

inb
i′
j−1→outbj

are re-

lated to all input nodes inbi ′l adjacent to outbj other than inbi , l ∈ I
j−1
1 ,

i′l ∈ IN1 , and the product of the Hadamard transform vectors is performed
component-wise.

Binary LT Codes for
Nonbinary Channels 2
In Chapter 1, we gave descriptions of binary Sum-Product (SP) decoding al-
gorithms that are used in the decoding process of LT codes, respectively for
binary alphabets and non binary alphabets. In this chapter, we address the
problem of decoding non binary LT codes over finite fields of large order. We
propose a new decoding algorithm for non binary channels that provides a
trade-off between complexity and decoding capability in contrast to the ex-
isting well-known non-binary SP algorithm. An introduction is given in Sec-
tion 2.1. In Section 2.2, we introduce our new decoding algorithm for LT
codes used for the transmission over non-binary channels using linear forms
that combine binary SP and Maximum Likelihood (ML) decoding algorithms.
Simulation results showing the performance of the new decoding algorithms as
compared to the non binary SP and multilevel decoding algorithms are finally
provided in 2.3.

2.1 Introduction

The success of iterative decoding algorithms for graph-based codes on binary
memoryless channels has for some time invited the question whether it is
possible to generalize binary decoding algorithms, tools for their design and
the analysis to non binary alphabets. Such generalizations are needed in a
variety of applications, such as communication applications that require higher
modulation than binary and applications to compression of files where the
alphabet elements are naturally bytes.

It is relatively straightforward to generalize the binary SP algorithm to the
non binary case as we saw in Section 1.3.5 ([11]).

However, despite the improvements reported in [12], the problem of de-
coding graphical codes over GF(q) remains a difficult computational problem,

17

18 Binary LT Codes for Nonbinary Channels

particularly when the field size q increases. SP based methods are rendered
completely ineffective when the field size q is very large, as is for example
the case in packet based transmissions where q can have a value of 28192 or
more. In these cases, under the assumption that the transmission is per-
formed on the q-ary symmetric channel (q-SC), several algorithms have been
provided [32, 48, 27]. However, these algorithms are ineffective when q is not
too large, say in the range of a few hundreds to a few thousands.

In this chapter, we are going to ask a slightly different question: to what
extent can we use binary codes on non-binary channels and how can we de-
sign efficient decoding algorithms? It is quite clear that if the q-ary channel
introduces independent errors on the bits of a transmitted element, then the
error correction capability of binary codes is similar to that of binary codes
on binary channels. However, if the channel does not introduce independent
errors at the bit-level (something that is common for q-ary channels), then
binary codes could have an advantage. We introduce a class of decoding al-
gorithms for binary LT codes used for transmission over q-ary channels. The
algorithms provide a trade-off between complexity and decoding capability.
Whereas the running time of the q-ary SP algorithm is m2m times that of its
binary counterpart (see the paragraph after Thoerem 1 in Chapter 1), in our
case the complexity factor can be chosen between m and 2m, depending on the
error-correction capability required. As such, the running time can be much
better than the q-ary SP algorithm. The main idea behind our algorithm is
to apply an appropriate set of GF(2)-linear forms of GF(q) to the LT code to
obtain a set of binary codes which can be decoded independently in parallel.
After a prescribed number of iterations, for each of the input symbols of the LT
code and each of the linear forms, an estimate is obtained on the probability
that this linear form applied to the input symbol is zero. By gathering these
probabilities and performing a ML decoding on a suitable code of very small
block-length, we are able to obtain a good estimate of the value of the input
symbol.

In the following, let X be a random variable over GF(q), and

p = (p0, · · · , pq−1)

denote a probability mass function on GF(q) defining the distribution of a
random variable X, i.e,

Pr[X = x] = px

for each x ∈ GF(q). Furthermore, let ϕ : GF(q)→ GF(2), a linear form. Then
ϕ can be reprensented as

ϕ(x) = ϕ
(

[b1(x), · · · , bm(x)]
)

= ϕ(1)b1(x) + · · ·+ ϕ(m)bm(x)

where x ∈ GF(q), ϕ(τ) ∈ GF(2) and τ ∈ Im1 . We identify the linear form ϕ with
the bit row vector of length m, (ϕ(1), · · · , ϕ(m)). A linear form ϕ identified by

2.1. Introduction 19

(ϕ(1), · · · , ϕ(m)) is called non zero linear form if there exists i ∈ Im1 such that
ϕ(i) 6= 0.

The quantity Pr[ϕ(X) = 0] is defined as the probability that ϕ(X) = 0 is
zero for all non zero linear forms on GF(q). We remark that this probability
equals

Pr[ϕ(X) = 0] =
∑

h∈GF(q)

Pr[X = h]1
(
ϕ(X) = 0

)
.

Let Φ = {ϕ1, . . . , ϕn} be a set of n linear forms from GF(q) to GF(2).
Assume that dim〈Φ〉 = m. The code CΦ defined by

CΦ = {(ϕ1(x), . . . , ϕn(x)) | x ∈ GF(q)}

is a linear code of block-length n. Since we have assumed that dim〈Φ〉 = m, it
follows that dim(CΦ) = m. Hence, CΦ is an [n,m]2-code. An m× n generator
matrix G(CΦ) for the [n,m]2-code CΦ is given by

G(CΦ) =

ϕ
(1)
1 . . . ϕ

(1)
n

...
...

...

ϕ
(m)
1 . . . ϕ

(m)
n

 ,
if each linear form ϕυ is identified with the bit row vector (ϕ

(1)
υ , · · · , ϕ(m)

υ).
A special case is obtained when ϕ1, . . . , ϕn are all the nonzero linear forms of
GF(q). In this case, Cφ is the Hadamard code of dimension m and block-length
q − 1.
Another special case is obtained with only fundamental linear forms, i.e.,

ϕ
(j)
i =

{
1 if i = j,
0 if i 6= j.

where i, j ∈ Im1 . In this case, Cφ is a [m,m]2-code.

Example 3. GF(q) = GF(22).
Let Φ = {ϕ1, ϕ2, ϕ3} where

G(CΦ) =

[
1 0 1
0 1 1

]
CΦ is a [3, 2]2-code called the Hadamard-code of dimension 2.

Example 4. GF(q) = GF(24).
Let Φ = {ϕ1, ϕ2, ϕ3 ϕ4, ϕ5 ϕ6, ϕ7} where

G(CΦ) =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1

CΦ is a [7, 4]2-code called the Hamming-code.

20 Binary LT Codes for Nonbinary Channels

m
Ω

Ω

Ω

Ω

Ω

x = (x1, · · · , xk)

b1(xk)· · ·b1(x1)

· · ·· · ·· · ·
· · ·· · ·· · ·
· · ·· · ·· · ·

bm(xk)· · ·bm(x1)

z = (z1, · · · , zN)

b1(zN)· · ·· · ·b1(z1)

· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·

bm(zN)· · ·· · ·bm(z1)

Figure 2.1: GF(q)-LT Codes: Encoding

z = (z1, · · · , zN)

Cq Cq Cq Cq

y = (y1, · · · , yN)

b1(zN)· · ·· · ·b1(z1)

· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·

bm(zN)· · ·· · ·bm(z1)

Figure 2.2: GF(q)-LT Codes: Transmission

Example 5. GF(q) = GF(28).
Let Φ = {ϕ1, ϕ2, ϕ3 ϕ4, ϕ5, ϕ6, ϕ7, ϕ8} where

G(CΦ) =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

CΦ is a [8, 8]2-code obtained with only fundamental linear forms.

2.2 SP Decoding Algorithm using Linear Forms

Let L be a binary LT-code with parameters (k,Ω). A row vector x = (x1, · · · , xk) ∈
GF(q)k can be encoded with L into a row vector z = (z1, · · · , zN), as can be

2.2. SP Decoding Algorithm using Linear Forms 21

x1, · · · , xk
LT encoder

z1, · · · , zN
Channel

y1, · · · , yN
LT decoder

bx1, · · · , bxk

Figure 2.3: LT communication system for q-ary alphabets.

seen in Fig. 2.1. These output symbols are sent over a q-ary channel Cq, and
are received as symbols y = (y1, · · · , yN). The transmission (see Fig. 2.2) is
done symbol-by-symbol. The value of N does not need to be known in ad-
vance. The row vector x̂ = (x̂1, · · · , x̂k) denotes an estimate of x obtained
after the decoding. The complete LT communication system is illustrated in
Fig. 2.3. We will map the symbols of GF(q) to bit-vectors of length n using a
linear error-correcting code CΦ of dimension m and block-length n (as can be
seen in Fig. 2.4).

2.2.1 Overview of the algorithm

The main observation is that for a fixed position r ∈ IN1 , the bits of all the
symbols of the codeword in that position are elements of the specific chosen LT
code. Once the codeword y = (y1, · · · , yN) is received (with soft information
about each coordinate position), then we apply the linear forms ϕ correspond-
ing to the code CΦ, and consider the vector (ϕ(y1), . . . , ϕ(yN)). This vector is
an element of the chosen LT code, and can be decoded using binary decoding
algorithms. By repeating the decoding process for all the linear forms corre-
sponding to the code CΦ , we obtain for every position r ∈ IN1 an estimate
on the codeword (in CΦ) corresponding to yr. The ML decoding in CΦ will
give for each such position a candidate codeword, which can be decoded to
an element of GF(q). Row vectors x̂ = (x̂1, · · · , x̂k) representing estimates of
x = (x1, · · · , xk) are obtained after the decoding.

This algorithm has the advantage that its running time scales with the
length n of CΦ; in the worst case, where CΦ is the Hadamard code, the running
time scales with q and not with q log2(q), as is the case for the q-ary belief-
propagation algorithm. Moreover, we can choose the code CΦ as a function
of the application, thereby reducing the complexity of the decoding process at
the expense of a worse error-correction capability.

2.2.2 Detailed description of the algorithm

Taking binary linear combinations of the GF(q)-elements yields binary sym-
bols defined over GF(q). Every output symbol of the code is a binary linear
combination of some of the input symbols. By applying the same binary linear
combination to the GF(q)-input symbols, we obtain GF(q)-output symbols of

22 Binary LT Codes for Nonbinary Channels

n

y = (y1, · · · , yN)

ϕ1(yN)· · ·· · ·ϕ1(y1)

· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·

ϕn(yN)· · ·· · ·ϕn(y1)

m

ϕ ∈ Φ ϕ ∈ Φ ϕ ∈ Φ ϕ ∈ Φ

b1(yN)· · ·· · ·b1(y1)

· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·

bm(yN)· · ·· · ·bm(y1)

Figure 2.4: GF(q)-LT Codes: Linear forms

n

y = (y1, · · · , yN)

ϕ1(yN)· · ·· · ·ϕ1(y1)

· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·
· · ·· · ·· · ·· · ·

ϕn(yN)· · ·· · ·ϕn(y1)

Ω

Ω

Ω

Ω

Ω

x̂ = (x̂1, · · · , x̂k)

ϕ1(xk)· · ·ϕ1(x1)

· · ·· · ·· · ·
· · ·· · ·· · ·
· · ·· · ·· · ·

ϕn(xk)· · ·ϕn(x1)

Figure 2.5: GF(q)-LT Codes: Decoding using linear forms

this LT code. This is the special type of non-binary LT codes that we study
in this section. The following remark is an immediate consequence of the fact
that the code is defined by binary linear forms.

Remark 1. Let x1, · · · , xk be k q-ary source symbols of an LT code with pa-
rameters (k,Ω(x)), and let y1, · · · , yN be N q-ary output symbols received.
Let G denote the corresponding decoding graph. Then for every linear form
ϕ : GF(q) → GF(2) the graph G is the decoding graph between the input bits
ϕ(x1), . . . , ϕ(xk) and the output bits ϕ(y1), . . . , ϕ(yN), as illustrated in Fig. 2.5.

This remark is the key observation leading to the decoding algorithms
described in this section. We will call the code with the source symbols
ϕ(x1), · · · , ϕ(xk) the marginalized LT code with respect to ϕ.

2.2. SP Decoding Algorithm using Linear Forms 23

We will use the code CΦ and Remark 1 to develop a decoding algorithm
for non-binary LT codes as described above.

Suppose that Pr(zr | yr) is the probability of having sent zr ∈ GF(q)
provided that yr ∈ GF(q) is received, where r ∈ IN1 . Suppose now that yr is
received, and let ϕ be a linear form on GF(q). Then, the posterior probability
that ϕ(zj) is zero given that yr is received is a marginal probability equal to

Pr[ϕ(zr) = 0 | yr] =
∑

u∈GF(q)
ϕ(u)=0

Pr(u | yr), (2.1)

where the marginalization is obtained by summing over all probabilities of
having sent symbols u ∈ GF(q) provided that yr is received and ϕ(u) is zero.

With these preparations, we are ready to describe our decoding algorithms
for non-binary LT codes. The set Φ = {ϕ1, . . . , ϕn} of linear forms is assumed
to be fixed throughout the algorithm.

For i ∈ In1 and s ∈ Ik1, we define Gi as the decoding graph between input
bits ϕi(x1), . . . , ϕi(xk) and output bits ϕi(y1), . . . , ϕi(yN) .
Let us define Sϕi(xs) as the log-likelihood ratio expressing a soft belief in the
current value of ϕi(xs) associated to the decoding graph Gi. The a-priori
probability that ϕi(xs) is zero is given by

Pr[ϕi(xs) = 0] ,
exp(Sϕi(xs))

1 + exp(Sϕi(xs))
(2.2)

The n graphs G1, · · · , Gn, built with the same degree distribution Ω, have the
same graphical representation, i.e, connections between edges and nodes are
identical.

Our algorithms proceed in two main steps: the SP step and the ML step.
In what follows, we will describe the first variant of our decoding algorithms.

Algorithm 8. Linear Forms based SP and ML decoding rules - First variant
Input: Row vector noisy output symbols y = (y1, · · · , yN) and the corresponding
graph for an LT code with parameters (k,Ω).
Output: Row vector of estimates of input symbols x̂ = (x̂1, · · · , x̂k).

1. Sum-Product Step :
For i ∈ In1 and r ∈ IN1 ,

a) Initialization:
We initialize the value of each output symbol yr with

ln

(
pi,r

1− pi,r

)
where pi,r , Pr[ϕi(zr) = 0 | yr] is calculated according to (2.1) and
is associated to decoding graph Gi.

24 Binary LT Codes for Nonbinary Channels

b) Message passing:
Then, at every step of the algorithm, we perform independently for
every coordinate position i associated with the respective decoding
graph Gi, an update of messages according to the binary SP algo-
rithm.

2. Maximum Likelihood Step:
After a prescribed number of SP rounds, for every linear form ϕi ∈ Φ
and every input symbol xs ∈ GF(q), we calculate Pr[ϕi(xs) = 0], the
a-priori probability that ϕi(xs) is zero, according to (2.2).
Next, we calculate for every element c = (c1, . . . , cn) ∈ CΦ the quantity

Pr[xs = c] =
n∏
i=1

Pr[ϕi(xs) = 0](1−ci)Pr[ϕi(xs) = 1]ci .

where i ∈ In1 and s ∈ Ik1.
Next, we pick the codeword c for which this value is largest, and finally
we pick for x the element α ∈ GF(q) whose image is the codeword c.

The algorithm stops after κ1 rounds of the message passing step, where
κ1 > 0 is a design parameter.

This algorithm can be extended in the following manner. At each step,
when the input symbols have gathered information about their values, these
values can be used to update the belief of the input symbols in their value
using an ML-decoding on the code CΦ. A relaxation of this method would
do the inner ML-decoding every κ2 rounds of the message passing step, where
κ2 > 0 is a design parameter which provides yet another trade-off between the
running time and the correction capability of the decoder. This new algorithm
proceeds as follows.

Algorithm 9. Linear Forms based SP and ML decoding rules - Second variant
Input: Row vector noisy output symbols y = (y1, · · · , yN) and the corresponding
graph for an LT code with parameters (k,Ω).
Output: Row vector of estimates of input symbols x̂ = (x̂1, · · · , x̂k).

1. Sum-Product Step :
For i ∈ In1 and r ∈ IN1 ,

a) Initialization:
We initialize the value of each output symbol yr with the value

ln

(
pi,r

1− pi,r

)
where pi,r , Pr[ϕi(zr) = 0 | yr] is calculated according to (2.1) and
is associated to decoding graph Gi.

2.2. SP Decoding Algorithm using Linear Forms 25

b) Message passing:
Then, at every step of the algorithm, we perform independently for
every coordinate position i associated with the respective decoding
graph Gi, an update of messages according to the binary SP algo-
rithm.

2. Maximum Likelihood Step :
After a prescribed number of SP rounds, for every linear form ϕi ∈ Φ
and every input symbol xs ∈ GF(q), we calculate Pr[ϕi(xs) = 0], the
a-priori probability that ϕi(xs) is zero, according to (2.2).
Next, we calculate for every element c = (c1, . . . , cn) ∈ CΦ the quantity

Pr[xs = c] =
n∏
i=1

Pr[ϕi(xs) = 0](1−ci)Pr[ϕi(xs) = 1]ci .

where i ∈ In1 and s ∈ Ik1.
Next, we pick the codeword c for which this value is largest, and finally
we pick for x the element α ∈ GF(q) whose image is the codeword c.

3. We go to the SP step or stop the process after a prescribed number of
iterations.

In these algorithms, the formula we use to pick the codeword c is equal
to the probability that xs = c, provided that the events ϕi(xs) = 0 are in-
dependent. In our algorithm, this may not be the case, since the a-priori
probabilities Pr[ϕi(xs) = 0] for different ϕi are correlated (they come from
decoding on identical decoding graphs). However, our experiments reported
below suggest that the correlations are weak.

2.2.3 Linear Forms and Hadamard-Based SP

In this section, we show how the Hadamard-based SP can be related to the
marginalization to all linear forms.

Definition 5. Let Tm be a linear transformation of size 2m × 2m recursively
defined by the matrix

1

2
(Hm + Jm)

where Jm is the 2m × 2m matrix in which all entries are 1.

The backward transform T−1
m is the inverse of the forward transform Tm.

Both can be implemented in a recursive fashion. Computation costs are
O(m2m).

Theorem 2. A probability density on GF(2m) is uniquely determined by the
marginalization to all non zero linear forms defined from GF(2m) to GF(2) .

26 Binary LT Codes for Nonbinary Channels

Proof: We first show by simple induction reasoning that a marginalization
to all linear forms can be computed by the forward transform Tm. Let us prove
that for m = 1 (meaning that q = 2), a marginalization to all linear forms can
be computed by the forward transform T1. The distribution of x is defined as

Pr(x) = (p0, p1).

The transform T1 is given by

T1 =

(
1 1
1 0

)
By applying the transform T1 to Pr(x), we obtain(

p0 + p1

p0

)
.

Let Φ = {(ϕ1(x)}, which contains the unique non zero linear form from
GF(2) to GF(2), the margi-
nalization of the probability distribution Pr(x) to ϕ1(x) is given by

Pr[ϕ1(x) = 0] = p0,

where ϕ1(x) = x1.
Now assume, by induction hypothesis, that a marginalization to all linear

forms can be computed by the linear transform Tm−1 over the field GF(2m−1).
Let us show that we can compute a marginalization to all linear forms by the
forward transform Tm over the field GF(2m).
The distribution of x ∈ GF(2m) is given by

Pr(x) = (p0, · · · , p2m−1−1, p2m−1 , · · · , p2m−1)

= [Pr(A),Pr(B)]

where Pr(A) , (p0, · · · , p2m−1−1)
and Pr(B) , (p2m−1 , · · · , p2m−1)

By applying the transform Tm to [Pr(A) , Pr(B)], we obtain a column vec-
tor Cm defined by(

Pr(A)Tm−1 + Pr(B)Tm−1

Pr(A)Tm−1 + Pr(B)[−Tm−1 + Jm−1]

)
.

By using the induction hypothesis Pr(A)Tm−1+Pr(B)Tm−1 produces the marginal-
ization to 2m−1−1 linear forms related to the field GF(2m−1) and Pr(A)Tm−1 +
Pr(B)(−Tm−1 +Jm−1) produces the marginalization to other 2m−1 linear forms
built from the previous 2m−1−1 linear forms with the linear form representing
the augmenting bit-plane representation of elements over the field GF(2m) in
comparison to elements over GF(2m−1).We remark that Cm is the vector of

2.2. SP Decoding Algorithm using Linear Forms 27

marginalizations.
The transform Tm is full rank since it can be row reduced to

Tm =

(
Tm−1 Tm−1

0 −2Tm−1 + Jm

)
and −2Tm−1 + 1 is a negative Hadamard matrix which is full rank. Thus,
given a marginalization to all non zero linear forms, we can compute a proba-
bility density on GF(2m) using the backward transform T−1

m , which ends the
proof.
The consequence of this theorem is as follows. Let us consider an output
symbol node of an LT code defined on GF(2m). The idea is that for a particular
output message (probability density), we do not find it directly, but first find
the marginalization to all non-zero linear forms using the transform Tm. A
backward transform T−1

m gives the actual probability density we are looking for.
To decode an ouput symbol, we can perform the following optimal decoding.

• We first apply the forward transform Tm (similar to the Hadamard trans-
form) of the incoming probability density. This transform marginalizes
to all non zero linear forms, i.e., CΦ is only the Hadamard-code of di-
mension m. Then, we can just decode as if we had a set of 2m parallel
binary codes.

• Finally we perform the backward transform T−1
m to the results of indepen-

dent binary decoding previously obtained to find the output probability
density.

2.2.4 Complexity of the SP decoding using linear forms

The running time of these algorithms can be easily assessed. The two variants
(Algo. 9 and Algo. 10) of our decoding algorithms have a time and space
complexity of the same order. In what follows, we derive a complexity analysis
only for the the first variant.

Since at each iteration of the SP step n values are updated, the running
time will be proportional to the number of edges in each decoding graph Gi

with i ∈ In1 . The running time of the ML-part of the decoding process depends
on the algorithm used. The straightforward implementation of Pr[x = c] for
all c ∈ CΦ uses ≤ n2m operations on real numbers: for every vector c we
need to calculate a product of at most n terms. A more accurate estimate
of the number of operations is

∑
c∈C wgt(c), where wgt(c) is the Hamming

weight of c; hence, if CΦ contains the all-one codeword, the running time of
this algorithm will be at most n2m/2.

A more efficient algorithm, along the ideas used in Theorem 2, uses the
Hadamard-Walsh transform. Let v ∈ R2m be the row vector defined as v =
(λϕ1 , · · · , λϕ2m

) where

λϕi =

{
ln(Pr[ϕi(x) = 1]/Pr[ϕi(x) = 0]) if ϕi ∈ Φ

0 if ϕi /∈ Φ

28 Binary LT Codes for Nonbinary Channels

The vector v can be computed using Theorem 2, and hence the q-ary vector
(
∏n

i=1(Pr[ϕi(x) = 1]/Pr[ϕi(x) = 0]) | x ∈ GF(q)), which will eventually give
the values Pr[x = c] for all c ∈ CΦ. The cost of this approach is O(m2m),
regardless of n. Hence, for n > 2m, one may want to use this method instead
of the former.

In total, the running time of the decoder is O(Nanl+m2m), where l is the
number of iterations of the SP , a is the average output degree of the LT code.
For N large, the running time is dominated by O(Nanl).

Depending on how we choose CΦ, the running time can be anywhere be-
tween O(Nam) and O(Na2m). Even in the worst case of O(Na2m) the running
time is by a factor of m better than the running time of the SP algorithm over
GF(q) (which is O(Nam2m)).

In contrast to the q-ary SP algorithm, the new algorithm offers a tradeoff
between the running time and the decoding capability.

2.3 Performance Comparison

In this section, we present simulation results of the proposed LT-code of block
length N over GF(2m), whose parameters are (k,Ω).

Algo1
κ1

refers to the first variant of our decoding algorithm where the ML
step is performed once after κ1 rounds of the message passing of the SP step.
Algo2

κ2
refers to the second variant of our decoding algorithm where the ML

is performed after every κ2 rounds of the message passing of the SP step until
convergence.

We also compare the performance of our algorithms to the non binary SP
[11] and a multilevel decoding algorithm in terms of symbol error rate (SER).
HSPκ3 refers to the Hadamard-based SP decoding algorithm, performed dur-
ing κ3 rounds. MSPκ4 refers to a variant of multilevel-based SP decoding
algorithm (which will be described below), performed during κ4 rounds.
Assume the symbol z has been sent provided that y is received, where z, y ∈
GF(2m). Let B(z) = (b1(z), . . . , bτ (z), . . . , bm(z)) be the binary representation
of the symbol z, where τ denotes the bit-plane representation of z and bτ (s)
the bit corresponding to this representation. The multilevel decoding is based
on belief propagation at each stage τ , and the bit-by-bit posterior marginal
log-likelihood ratio is initialized with

log

(
Pr[bτ (z) = 0, bτ+1(z), . . . , bm(z)|b1(z), . . . , bτ−1(z), y]

Pr[bτ (z) = 1, bτ+1(z), . . . , bm(z)|b1(z), . . . , bτ−1(z), y]

)
where the conditioning is with respect to already decoded bit-planes and the
received noisy symbol.

All experimental results are obtained using the output degree distribu-
tion Ω(x) = 0.007690 + 0.493570x + 0.166220x2 + 0.072646x3 + 0.082558x4 +
0.056058x7 + 0.037229x8 + 0.055590x18 + 0.025023x64 + 0.003135x65.

2.3. Performance Comparison 29

2.3.1 Symmetric Channels

We consider the transmission over the q−SC(p). The q−SC(p) with param-
eter p, takes a q-ary symbol as its input and outputs either the unchanged
input symbol, with probability 1− p, or any of the other q − 1 symbols, with
probability p

q−1
. The capacity of the q−SC(p) with crossover probability p is

Cap(q − SC(p)) = log2(q)− h(p)− p log2(q − 1)

bits per channel use, where h(p) denotes the binary entropy function. The
number of output symbols is related to the overhead ε by

N = (1 + ε)
mk

Cap(q−SC(p))

where q = 2m.

Fig. 2.6 compares the SER of our schemes with q-ary HSP60 and MSP100

decoding over the field GF(24), for fixed overhead and varying q−SC(p) pa-
rameters. Our algorithm was tested by choosing for CΦ the [15, 4]-Hadamard
code, the [7, 4]-Hamming code and the [4, 4]-code. The values of k and N are
chosen to be 6000 and 15000, respectively.

Fig. 2.7 compares the SER of our schemes with q-ary HSP60 and MSP100

decoding over the field GF(24), for varying overheads and a fixed q−SC(p)
parameter. Our algorithm was tested by choosing for CΦ the [15, 4]-Hadamard
code, the [7, 4]-Hamming code and the [4, 4]-code. The values of k and p are
chosen to be 6000 and 0.89, respectively.

0.100.120.140.160.18 0.2 0.220.240.260.280.30

100

10−1

10−2

10−3

10−4

10−5

[15, 4]Algo21

[4, 4]Algo1100

MSP100

[7, 4]Algo1100

[15, 4]Algo1100

[4, 4]Algo2100

HSP100

[7, 4]Algo2100

[15, 4]Algo2100

[15, 4]Algo210

q-SC(p) parameter

R
es

id
u
al

er
ro

r

Figure 2.6: Comparison between our algorithms, HSP60 and MSP100 decoding
over GF(24) for varying q−SC(p) parameters.

30 Binary LT Codes for Nonbinary Channels

8250 10000 11750 13500 15250

100

10−1

10−2

10−3

10−4

10−5

[4, 4]Algo1100

MSP100

[7, 4]Algo1100

[15, 4]Algo1100

[4, 4]Algo2100

HSP60

[7, 4]Algo2100

[15, 4]Algo2100

Number of output symbols

R
es

id
u
al

er
ro

r

Figure 2.7: Comparison between our algorithms, HSP60 and MSP100 decoding
over GF(24) for varying overheads and fixed q−SC(p) parameter.

Fig. 2.8 compares the SER of our schemes with q-ary HSP60 and MSP100

decoding over the field GF(28), for fixed overhead and varying q−SC(p) pa-
rameters. Our algorithm was tested by choosing for CΦ the [255, 8]-Hadamard
code, a [29, 8]-code and a [17, 8]-code. The [17, 8]-code is obtained by short-
ening a cyclic [18, 9, 6]-code. The 8 × 17 generator matrix G(CΦ) for this
[17, 8]-code CΦ is given by

1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 1
0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1
0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1
0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1
0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1
0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1
0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1
0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1

The [29, 8]-code is obtained by shortening an extended [32, 11, 12]-BCH

code on three positions.The 8 × 29 generator matrix G(CΦ) for this [29, 8]-
code CΦ is given by

1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1
0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 1
0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1
0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1
0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1
0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1
0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1

Both these codes are optimal in the sense that they have the largest mini-

mum distance given their blocklength and dimension. The values of k and N
are chosen to be 4000 and 10000, respectively.

2.3. Performance Comparison 31

Fig. 2.9 compares the SER of our schemes with q-ary HSP60 and MSP100

decoding over the field GF(28), for varying overheads and a fixed q−SC(p) pa-
rameter. Our algorithm was tested by choosing for CΦ the [255, 8]-Hadamard
code, a [29, 8]-code and a [17, 8]-code, defined above.

As can be seen from the figures, there is a monotonic improvement as we
increase the number of linear forms related to CΦ, for a given order of the
field. Also for finite block-length simulations, the second variant of our decod-
ing algorithm (Algo. 9) performs better than the first variant. Moreover, our
algorithm has a decoding performance close to that of SP as we increase the
order of the field; the algorithms become closer in terms of decoding perfor-
mance while maintaining a significant gap in terms of complexity. For example,
for channels over the field GF(28), the [255, 8]-Hadamard code and the chosen
[29, 8]-code for the proposed algorithm have symbol error rates that approach
remarkably that of the q-ary SP with much lower complexity than the q-ary
SP algorithm.

0.060.08 0.1 0.120.140.160.18 0.2 0.220.240.260.28

100

10−1

10−2

10−3

10−4

10−5

[29, 8]Algo22

MSP100

[17, 8]Algo1100

[29, 8]Algo1100

[255, 8]Algo1100

HSP60

[17, 8]Algo210

[29, 8]Algo210

q-SC(p) parameter

R
es

id
u
al

er
ro

r

Figure 2.8: Comparison between our algorithms, HSP60 and MSP100 decoding
over GF(28) for varying q−SC(p) parameters.

2.3.2 Non-Symmetric Channels

In this section, we consider a family of q-ary non-symmetric channels derived
from PAM signal constellations transmitted on the AWGNC (Additive White
Gaussian Noise Channel). We consider power and bandwidth efficient com-
munication over the AWGNC which is defined by

Y = Z + T,

32 Binary LT Codes for Nonbinary Channels

6000 7000 8000 9000 10000

10−1

10−2

10−3

10−4

10−5

MSP100

[17, 8]Algo1100

[29, 8]Algo1100

[255, 8]Algo1100

HSP60

Number of output symbols
R

es
id

u
al

er
ro

r

Figure 2.9: Comparison between our algorithms, HSP60 and MSP100 decoding
over GF(24) for varying overheads and fixed q−SC(p) parameter.

where the channel input Z is disturbed by a random variable T which has a
zero-mean Gaussian distribution with variance σ2.

The energy expanded per channel use is equal to the mathematical expec-
tation of Z2 : Es = E[Z2].

The capacity of the AWGN channel is given by the formula

CAWGN =
1

2
log2(1 + SNR)

bits per use, where SNR is the signal to noise ratio and is defined as

SNR =
Es
σ2
,

We transmit Z from the PAM constellation S given by

S = {−2m + 2i+ 1|i = 0, · · · , 2m − 1}.

The probability of having sent z provided that y is received is given by

Pr(Z = z | Y = y) =
1√

2πσ2
e−

(y−z)2

2σ2 .

Fig. 2.10compare the SER of our schemes with q-ary HSP60 decoding over
the field GF(24), for fixed overhead and varying SNRs. Our algorithm was
tested by choosing for CΦ the [15, 4]-Hadamard code, the [7, 4]-Hamming code
and the [4, 4]-code. The values of k and N are chosen to be 6000 and 15000,
respectively.

Fig. 2.11 compare the SER of our schemes with q-ary HSP60 decoding over
the field GF(24), for varying overheads and a fixed SNR. Our algorithm was

2.3. Performance Comparison 33

tested by choosing for CΦ the [15, 4]-Hadamard code, the [7, 4]-Hamming code
and the [4, 4]-code. The values of k and SNR are chosen to be 6000 and 19.3
(in dB), respectively.

We remark from the figures, that there is still a monotonic improvement
as we increase the number of linears forms related to CΦ, as observed for q-ary
symmetric channels. However the q-ary SP performs better for non symmetric
channels.

15 16.25 17.5 18.75 20

100

10−1

10−2

10−3

10−4

[15, 4]Algo1100

[7, 4]Algo1100

[4, 4]Algo1100

HSP60

SNR(in dB)

R
es

id
u
al

er
ro

r

Figure 2.10: Comparison between our algorithms and HSP60 decoding over
GF(24) for fixed overhead and varying SNRs.

10000 12500 15000 17500 20000

100

10−1

10−2

10−3

10−4

[15, 4]Algo1100

[7, 4]Algo1100

[4, 4]Algo1100

HSP60

Number of Output symbols

R
es

id
u
al

er
ro

r

Figure 2.11: Comparison between our algorithms and HSP60 decoding over
GF(24) for varying overheads and fixed SNR.

2.3.3 Conclusions

We provided a class of algorithms for decoding binary LT codes on q-ary chan-
nels. In contrast to the well-known q-ary SP algorithm, the new algorithm

34 Binary LT Codes for Nonbinary Channels

provides a tradeoff between the complexity and the decoding capability of the
algorithm. Several simulation results have been provided to show the perfor-
mance of the new algorithms as compared to the q-ary SP algorithm.

It is important to note that our algorithms cannot be used when the un-
derlying code is not binary (i.e., if it is not the tensor product of a binary code
with GF(q)). On the other hand, one cannot expect binary codes to perform
as well as q-ary ones, so that the question arises to what extent the algorithms
of this paper are interesting for practical code design. One answer to this
question is that our algorithms are expected to perform well on non-standard
channels, for example channels that arise in practical loss-less and lossy coding
algorithms.

Our algorithms can be extended in several directions. It has surely not
escaped the attention of the reader that the proposed algorithms is applicable
to any binary linear code, not just LT codes. In particular, if we have a binary
code with an efficient binary decoding algorithm, we can use the same code
and the methods proposed here to decode the code when used with q-ary sym-
bols rather than binary ones. These schemes can be used for any binary code
with an efficient soft-decision decoder; thus, for example, one could use con-
volutional codes with trellis decoding, LDPC and Turbo codes with quantized
SP, Raptor codes with quantized SP.

LT Codes on Piecewise
Stationary Channels 3
In Chapter 1, we gave descriptions of SP decoding algorithms that are used
in the decoding process of LT codes for stationary binary memoryless sym-
metric channels with assumed known channel statistics. In this chapter, we
provide algorithms for joint LT estimation-decoding over Piecewise Stationary
Memoryless Channels (PSMC’s) with a bounded number of abrupt changes
in channel statistics. In particular, as a class of PSMC’s, binary symmetric
channels are considered with a crossover probability that changes a bounded
number of times with no repetition in the statistics. We also provide joint LT
estimation-decoding over Markov-modulated channels. Simulation results are
given which illustrate the benefits of using our algorithms, both in terms of
probability of error and in terms of redundancy.

3.1 Piecewise Stationary Memoryless Channels

3.1.1 Introduction

Many communication channels such as the well-known Gilbert-Elliott channel
[16, 38], or more general finite-state Markov channel [19] models explicitly al-
low for sudden changes in the channel state during a transmission period. An
abruptly changing channel model may be used to describe any system that
experiences sudden, and persistent, bursts of interference or degradation, such
as a mobile wireless channel, an optical CDMA channel, or a military com-
munication channel in the presence of jamming. In many cases, the Markov
channel model is useful for abruptly changing channels, but its use implies
that the abrupt changes in the channel state have a statistical structure that
is well-modeled by a hidden Markov chain. In many cases of interest, this
assumption is not correct; for instance, there is no good statistical model that

35

36 LT Codes on Piecewise Stationary Channels

reflects the possibility that a mobile terminal enters a tunnel or passes behind
a building. A general model-free approach to abruptly changing channels,
known as piecewise-symmetric memoryless channels (PSMCs), was given for
binary-output channels in [52], and for Gaussian channels in [51]. In these
works, a method from source coding, intended for abruptly changing sources
[44], was adapted to give a channel estimation algorithm, which was incorpo-
rated into iterative decoding using Turbo codes. Although it was shown that
large gains could be obtained by estimating the channel in this manner, the use
of Turbo codes ([52],[51]) did not make use of the full power of the algorithms
from [44], since their rates were not adaptive.

The main contributions of this chapter are threefold. First, we implement
a version of this estimation algorithm for LT codes [17]for piecewise-symmetric
memoryless channels. In particular, the variable rates of the LT code require
us to make novel modifications to the algorithm in [44] to account for them,
which were not required in the fixed-block-length scenario using Turbo codes in
[52, 51]. Next, we study a quantized version of the SP for piecewise-symmetric
memoryless channels. This algorithm was introduced by Gallager[18] for reg-
ular ldpc codes, and generalized to irregular ldpc codes[33] and LT codes[37]
for symmetric channels. We derive density evolution equations to compute
the probability of error. Finally, we generalized joint LT estimation-decoding
algorithms for Markov-modulated channels.

3.1.2 Models and Definitions

First, a brief remark about notation. Realizations of a random variable X will
be denoted by x. If a random process contains a sequence X0, X1, . . . of random
variables, a vector of these variables will be denoted by Xj

i = [Xi, Xi+1, . . . , Xj]
for j > i, with realization xji = [xi, xi+1, . . . , xj].

Consider a channel with random input Xt ∈ {+1,−1}, and random output
Yt ∈ Y, where t = 0, 1, 2 . . . represents a time index. At each time t, the
conditional probability function of Yt given Xt is a function of some parameter
νu denoted by

Pr[Yt = yt |Xt = xt; νu] , Pr[yt | xt; νu],

where u = 1, 2, . . . , |T| and T is defined below. We call Pr[yt |xt; νu] the family
corresponding to the PSMC. Throughout this chapter Pr[yt | xt; νu] belongs to
the binary symmetric channel family, with crossover probability νuf.

A PSMC is a channel where X and Y have the following properties:

• There exists a set T of transition points,

T = [τ1, τ2, . . . , τ|T|],

such that νu 6= νu+1 if and only if u ∈ T. That is, ν changes at transition
points, and nowhere else.

3.1. Piecewise Stationary Memoryless Channels 37

BSC(ν1) BSC(ν2) BSC(νn)

d1 d2 dn

Figure 3.1: Graphical representation of a PSM-BSC

• If νji is known, then

Pr[yji | x
j
i ; ν

j
i] =

j∏
t=i

∏
u∈T

Pr[yt | xt; νu]. (3.1)

The first property captures the piecewise stationary nature of the channel,
since the channel parameter remains constant until a time in T is reached.
The second property captures the memoryless nature of the channel, since
(3.1) represents a memoryless channel, so long as the channel parameters are
all known.

Example 6. Let Pr[yt |xt; νu] represent a BSC family, such that Y ∈ {+1,−1},
and νt represent the crossover probability. That is,

Pr[yt | xt; νu] =

{
1− νu, yt = xt;
νu, yt 6= xt.

Suppose T = {τ1}, i.e., there is exactly one transition point at time τ1. Letting
ν1 and ν2 represent the crossover probability before and after τ1, respectively,
and for N > τ1, we may write

Pr[yN1 | xN1 ; νN1] =

τ1∏
t=1

Pr[yt | xt; ν1]
N∏

t=τ1+1

Pr[yt | xt; ν2].

From the example, we see that we may parameterize a PSMC by T, and
a (|T| + 1)-dimensional vector of channel behaviors ν. We will write R to
represent such a vector, so that any PSMC from a given family is parameterized
by (T, R). In Example 6, we have that (T, R) = ({τ1}, [ν1, ν2]).

In this work, a PSM-BSC(T, R) (see Fig. 3.1) denotes a BSC channel
divided into n = |T| + 1 consecutive BSC channels, with crossover prob-
abilities ν1, ν2 · · · νn and respective fractional durations d1, d2, . . . , dn, where∑n

i=1 di = 1. The number of abrupt transitions between BSC(νi) channels is
assumed to be fixed and also the cross-over probability νi is constant on each
BSC(νi).

We use the following notation.

• The LT-code with input parameters (k,Ω) has N output bits.

38 LT Codes on Piecewise Stationary Channels

• β is the average degree of the output symbols.

• α is the average degree of an output node. α(j) denotes the average degree
of an input symbol connected to an ouput node related to BSC(νj).

• I(x)(j) is the node degree distribution of input nodes connected to ouput
nodes related to BSC(νj).

• ι(x)(j) is the edge degree distribution of input nodes connected to ouput
nodes related to BSC(νj),

where j ∈ In1 refers to the channel number

Proposition 1. Let an LT code with parameters (k,Ω) be given. Suppose that
we have collected N output bits produced by this LT code sent over a PSM-BSC
parameterized by (T, R) = ([τ1, τ2, . . . , τ|T|], [ν1, ν2, . . . , ν|T+1|]). Then

• α(j) = djα.

• I(x)(j)and ι(x)(j) can be approximated by Poisson distribution generating
functions of mean α(j).

Proof: The proof is organized in two parts.

• By looking only at input nodes connected to output nodes related to
BSC(νj), it’s immediate that α(j) = djα.

• For every generated output symbol sent over a BSC(νj), fix an input
symbol. The probability that this input symbol is a neighbor of the
output symbol which have been sent over a BSC(νj) is pj =

(βdj)

k
= α(j)

N
.

By looking the subgraph induced by the connection between input nodes
connected to output nodes related to BSC(νj) and those output nodes,
the remainder of the proof follows from manipulations similar to those
of [17](Proposition 1).

A row vector of k bits is encoded using a specific LT code x = (x1, · · · , xk)
into the row vector z = (z1, · · · , zN). We denote by y = (y1, · · · , yN) the
received row vector and by x̂ = (x̂1, · · · , x̂k) an estimate of x obtained after
the joint estimation-decoding. The transmission is done bit-by-bit and the
value of N does not need to be known in advance. As shown in Fig. 3.2,
the vector z is then transmitted over a particular PSM-BSC(T, R), whose pa-
rameters take value ν0 from τ1 to τ2 − 1, ν1 from τ2 to τ3 − 1, and so on.
Finally, from time τn−1 to τn , N + 1, the PSM-BSC parameter is νn. The
vectors (yτ1 , · · · , yτ2−1), (yτ2 , · · · , yτ3−1), · · · , (yτn−1 , · · · , yN) will be referred as
stationary segments, and correspondingly, ν1, ν2, · · · , νn will be called segmen-
tal parameters.

In what follows, we describe the modifications to LT decoding algorithms

3.1. Piecewise Stationary Memoryless Channels 39

x1, · · · , xk
LT encoder

z1, · · · , zN
PSM-BSC

y1, · · · , yN
LT decoder

bx1, · · · , bxk

Estimator

Figure 3.2: LT joint estimation-decoding system.

useful to use these codes on PSMCs with unknown parameters. First, we de-
scribe the estimation of channel statistics, assuming the transition points are
known. Finally, we give several methods for estimating the location of the
transition points assuming the transitions points are unknown. All of these al-
gorithms are described in terms of jointly estimating the channel and decoding
the LT code.

3.1.3 Estimation of Channel Statistics

During the decoding, we estimate the crossover probability ν in each PSM-
BSC segment (each segment being a BSC channel), assuming that the transi-
tion points between these segments are known: ν̂ is the crossover probability
estimate of ν. The discussion about the location of transition points is left for
the next section.

For i ∈ IN1 , if qi denotes the LLR expressing a soft belief in the current
value of zi ∈ {0, 1}, and Pr[Zi = zi], an a-priori probability given by this
extrinsic information, qi is associated to Pr[Zi = zi] as

qi , log
Pr[Zi = 0]

Pr[Zi = 1]
.

The posteriori probability for each zi, by assuming that the crossover proba-
bility ν is equal to its estimate ν̂, is given by the formula

Pr[zi | yi; ν̂] =
Pr[yi | zi; ν̂]Pr[Zi = zi]∑

zi∈{0,1} Pr[yi | zi; ν̂]Pr[Zi = zi]
.

The LLR of a received symbol yi is defined as

Z(bν) , log
Pr[Zi = 0 | yi; ν̂]

Pr[Zi = 1 | yi; ν̂]
.

40 LT Codes on Piecewise Stationary Channels

We describe two methods for estimating the statistics in a PSM-BSC seg-
ment. The first is based on the expectation-maximization ([13]) algorithm
that has access to the complete segment for estimating the change point. The
other is more restrictive and assumes only sequential access to the data for
estimating the crossover statistics. We make the following assumptions :

• The set of transition points T is known.

• The capacity Cap(PSM-BSC(T, R)) of the given PSM-BSC(T, R) is known.

• The sequence of extrinsic messages q is independent of R and y.

3.1.4 Sequential Channel Estimation Algorithm

The first method of estimating the statistics in a PSM-BSC segment is an
adaptation of an algorithm that was recently proposed in [46] for sequential
probability estimation. The algorithm generalizes the well-known Krichesvky-
Trofimov(KT) [28] sequential estimator in the binary case for parameters that
are confined within a smaller interval than the standard [0, 1] interval, i.e.
crossover can only take values smaller than 1/2.

In the context of compressing binary sequences, if n > 0, t ∈ In−1
1 ,

st = (s1, · · · , st) a sequence of independent and identical distributed bits,
0 < α < β < 0.5, nt(b) is the occurrence count of bit b in the sequence st,
then the probability assigned to a binary sequence s = (s1, · · · , sn) given by
the generalized KT estimator can be updated as

Pr[st+1] = Pr[st]
nt(st+1) + 0.5

(t+ 1)
+

−α
nt(1)+0.5(1− α)n

t(0)+0.5

C · (t+ 1)
−

−β
nt(1)+0.5(1− β)n

t(0)+0.5

C · (t+ 1)
(3.2)

where Pr[y0 = 1] is the initial step and C = 2(sin−1
√
β − sin−1√α).

In the case α = 0, β = 1, C = π, then (3.2) reduces to the binary form of
the standard KT ([28]) estimator given as ,

Pr[st+1] = Pr[st]
nt(st+1) + 0.5

(t+ 1)
. (3.3)

In our context (channel estimation), we would like to use the soft count
on each assumed memoryless BSC(νj), or more generally on a segment j of
channel, to estimate the probability of the next bit, where j ∈ In1 .

If we use the standard KT(3.3) approach, we can use the soft count to
estimate the probability of the next bit. This is because the KT recursion

3.1. Piecewise Stationary Memoryless Channels 41

gives an explicit expression of the probability of the next bit, that depends
only on its occurrences thus far. So, we can count the bits (using their soft
values) in each time unit, adding 1/2 to each of the counts, and estimating
the probability like that. This is a soft add-1

2
estimator for the probability of

the next bit. The difficulty, however, is if we are on a limited interval which
is not [0, 1]. Then, this will give an initial estimate for each probability of 1

2
.

Thus, we need an estimator of the form presented in (3.2). The problem with
the estimator (3.2) is the recursion format of the equation. The probability of
the next bit must be computed as the ratio of the probability of adding one to
each count compared to the previous counts. Since we do soft counts, we do
not add 1 in each step because each bit occurs a fraction of 1 times at a given
time unit, according to its soft estimate. This is what ruins the possibility to
use the equation (3.3) in a soft count scenario, because there is not really a
recursion if the 1 bit added is spread between a part 0 and a part 1.

One solution is as follows. Since we can do something like standard KT
in the soft decision setting, we can switch to it after the KT estimator is
relatively reliable. So, we can code, say, the 100 or even 10 first bits using the
estimator (3.2), and then switch to the soft add-1

2
estimator for the remainder

of the hypothesized segment. This can be done for every state representing a
new segment. Now, during the first bits, we either use hard decisions or do
the following. The Generalized KT estimator is a function of the number of
occurrences. It does not matter in which order things occur. So, at each time
point when we come up with a soft count, we can round its value to the closest
integer counts. Then, we do the complete recursion with the rounded values
of the counts to get the estimate of the next probability.

3.1.5 The Expectation Maximization Method

The second crossover estimation technique in a PSM-BSC segment is based on
the expectation-maximization ([13]) method. The expectation-maximization
(EM) is an iterative optimization method to compute the maximum likelihood
estimates in the presence of missing or hidden data in probabilistic models.
This method is used for learning for variables whose value is never directly
observed.

In what follows, we apply the EM ([13]) to estimate the crossover probabil-
ity νj on each channel BSC(νj) given the received sequence y and the sequence
of extrinsic messages (obtained from the SP decoding) q = [q1, · · · , qN] . Using
the terminology of [13] , we designate y the incomplete data, [x, y] the complete
data, and R = [ν1, ν2, . . . , νn] the set of parameters to estimate.

The EM method described here proceeds in four main steps: the initial-
ization (Init-step), the Sum-Product (SP-step), the expectation step (E-step)
and the maximization step (M-step). In what follows, ν(`,j) is the crossover
probability of a BSC(νj) at step number ` ≥ 0, where j ∈ In1 , ν̂(`,j) is estimate.

Algorithm 10. EM method

42 LT Codes on Piecewise Stationary Channels

Input: Row vector of noisy output bits y = (y1, · · · , yN) and the corresponding
graph for an LT code with parameters (k,Ω).

Output: Row vector of crossover probability estimates R̂ = [ν̂1, ν̂2, . . . , ν̂n].

• Init-step: First, at step ` = 0, arbitrarily choose an estimate ν̂(0,j) of νj.
It does not matter how this estimate is chosen; it could be a wild guess.
In this work, we obtain ν̂(0,j) by making the wrong assumption that the
given PSM-BSC(T, R) is a stationary BSC(ν̂(0,j)),.

• SP-step: Perform several SP decoding iterations. Messages are passed at
each round d ≥ 0 as

M
(d,ν(`,a))

inbi→outbj
=

n∑
b=1

i−1∑
p=1

M
(d,ν(`,b))

inbi←outbj ′p
,

M
(d+1,ν(`,a))

inbi←outbj = 2arctanh

(
tanh

(
Z(ν(`,a))

2

)
.

j−1∏
l=1

tanh

(
M

(d,ν(`,a))

inb
i′
l→outbj

2

))
,

where M
(d,ν(`,b))

inbi←outbj ′1
, · · · ,M (d,ν(`,b))

inbi←outb
j ′
i−1

are messages related to all output

nodes outbj ′p , related to BSC(ν(`,b)), adjacent to inbi other than outbj ,

p ∈ Ii−1
1 ; M

(d,ν(`,a))

inbi′1→outbj
, · · · ,M (d,ν(`,a))

inb
i′
j−1→outbj

are messages related to all input

nodes inbi ′l connected to output nodes related to BSC(ν(`,a)), adjacent to

outbj other than inbi , l ∈ I
j−1
1 , Z(ν(`,a)) being the initial LLR related to

BSC(ν(`,a)), a ∈ In1 , b ∈ In1 , j′p ∈ Ik1 and i′l ∈ IN1 .

• E-step: For each stationary segment (yτa , · · · , yτa+1−1), calculate

Q(ν|ν̂(`,a)) , E
[

log Pr[yτa+1−1
τa , zτa+1−1

τa ; ν]|yτa+1−1
τa

]
, (3.4)

where a ∈ In−1
1 and the subscript ν(`,a) indicates that the expectation is

taken under the assumption that ν = ν̂(`,a).
We can dispose of any terms of Q(ν|ν̂(`,a)) that are not functions of ν,
so the expectation becomes

Q(ν|ν̂(`,a)) = E
[

log Pr[zτa+1−1
τa |yτa+1−1

τa ; ν]|yτa+1−1
τa

]
. (3.5)

3.1. Piecewise Stationary Memoryless Channels 43

Now the expression (3.4) is written as

Q(ν|ν̂(`,a)) =
∑

z
τa+1−1
τa ∈{0,1}τa+1−τa

Pr[zτa+1−1
τa |yτa+1−1

τa ; ν̂(`,a)] log Pr[zτa+1−1
τa |yτa+1−1

τa ; ν]

=
∑

z
τa+1−1
τa ∈{0,1}τa+1−τa

τa+1−1∏
i=τa

Pr[zi|yi; ν̂(`,a)]

τa+1−1∑
i=τa

log Pr[zi|yi; ν]

=

τa+1−1∑
i=τa

∑
zi∈{0,1}

Pr[zi|yi; ν(`,a)] log Pr[zi|yi; ν]

=

τa+1−1∑
i=τa

(log(1− ν))Pr[zi = yi|yi; ν̂(`,a)] +

(log ν)(1− Pr[zi = yi|yi; ν̂(`,a)])

= (log(1− ν)

τa+1−1∑
i=τa

Pr[zi = yi|yi; ν̂l] +

(log ν)

τa+1−1∑
i=τa

(1− Pr[zi = yi|yi; ν̂(`,a)])

(3.6)

where the fourth line follows from the fact that zi is either the same as
yi, or its opposite value.

• M-step: For each stationary segment, find the value of νmax maximizing
Q(ν|ν̂(`,a)). This value is given as the average over all posteriori proba-
bilities that each bit is decoded correctly, i.e.,

ν̂max =
1

(τa+1 − τa)

τa+1−1∑
i=τa

f(zi 6= yi | yi; ν̂(`,a)).

Finally, we set ν̂(`+1,a) = ν̂max.

• Let ` := `+ 1, and go to the E-step until convergence.

Now for each zi, we can calculate Pr[zi | yi; ν̂(`,a)], where i ∈ Iτa+1−1
τa .

In what follows, we present two segmentation strategies(appeared in [44]-
[45]), one that partitions the data into equal length blocks, assuming changes
between the blocks. The other employs a recursive algorithm to identify a
point that is relatively close to the change. We assume the following:

• The set of transition points T is unknown.

• The capacity of the given PSM-BSC(T, R), Cap(PSM-BSC(T, R)) is
known.

• The sequence of extrinsic messages q is independent of R and y.

44 LT Codes on Piecewise Stationary Channels

3.1.6 Decoding using the Block Partitioning segmentation

The Block Partitioning (BP) algorithm partitions the data into blocks of equal
length and estimate the parameters within each block, under two assumptions:

• The parameter within the block is always the same (which is actually
not true if a transition point occurs within the block, but we consider
this acceptable to keep the algorithm simple);

• Parameters within different blocks are independent.

The length can be determined to minimize the tradeoff between two types
of penalties. One is caused by lack of statistics for blocks of insufficient length.
The other is caused by the worst case in which a change occurs in the midpoint
of a block. The first requires longer blocks, while the second requires shorter
ones. Roughly blocks of the order of

√
N achieve optimal tradeoff (as in [45],√

N is a guideline, but we choose a fixed block length).
The LT estimation-decoding in conjunction with the BP works as follows:

• Initialization phase: We choose ν̂(0,j) by making the assumption that the
given PSM-BSC(T, R) is a stationary BSC(ν̂(0,j)).

• Sum-Product phase: The decoder performs several sum-product itera-
tions.Messages are passed at each round d ≥ 0 as

M
(d,ν(`,a))

inbi→outbj =
n∑
b=1

i−1∑
p=1

M
(d,ν(`,b))

inbi←outbj ′p
,

M
(d+1,ν(`,a))

inbi←outbj = 2arctanh

(
tanh

(
Z(ν(`,a))

2

)
.

j−1∏
l=1

tanh

(
M

(d,ν(`,a))

inb
i′
l→outbj

2

))
,

where M
(d,ν(`,b))

inbi←outbj ′1
, · · · ,M (d,ν(`,b))

inbi←outb
j ′
i−1

are messages related to all output

nodes outbj ′p , related to BSC(ν(`,b)), adjacent to inbi other than outbj ,

p ∈ Ii−1
1 ; M

(d,ν(`,a))

inbi′1→outbj
, · · · ,M (d,ν(`,a))

inb
i′
j−1→outbj

are messages related to all input

nodes inbi ′l connected to output nodes related to BSC(ν(`,a)), adjacent to

outbj other than inbi , l ∈ I
j−1
1 , Z(ν(`,a)) being the initial LLR related to

BSC(ν(`,a)), a ∈ In1 , b ∈ In1 , j′p ∈ Ik1 and i′l ∈ IN1 .

• Transition Point Estimation phase: Next, the decoder applies the BP on
the noisy sequence yN1 . The sequence yN1 is partitioned into equal length
segments.

• PSM-BSC statistics estimation phase: An estimate of crossover prob-
abilities ν1, · · · , νn is obtained by using the soft values of x̂N1 and the
received noisy sequence yN1 . This crossover estimation is done by using
either the EM algorithm, or the sequential channel estimation algorithm
discussed above, on each of the obtained PSM-BSC segments.

3.1. Piecewise Stationary Memoryless Channels 45

• Go to the Sum-Product phase phase. This process stops when successful
decoding is achieved, or when the maximum number of iterations has
expired.

3.1.7 Decoding using a Recursive Decision segmentation

The recursive decision (RD) algorithm attempts to estimate up to a bounded
number of changes within the error sequence hypothesized by the current esti-
mates of the vector denoted X̂N

1 . The parameter S, provided to the algorithm,
determines the total number of distinct transition estimates to be obtained.
The components of the error sequence are the current a-posteriori probabilities
that xi 6= yi. The algorithm, taken from [44], functions iteratively at levels,
starting with level ` > 0. The hypothesized (soft) error sequence is partitioned
into blocks, referred as β`, of equal length κ` > 0, for some top level `. Then
for each block β` , the statistical distance, called metric, is measured between
the data in the two blocks surrounding the block. These results are used to
divide the blocks β` with the highest metrics into sub-blocks β`−1, of length
κ`−1 (generally an integer divisor of κ`), for which the metrics are calculated
again, and the highest metric blocks subdivided. The algorithm terminates at
level 0, where the transition point is estimated to occur in the middle of the
block with the highest metric.

The metric for each block, at any level, is calculated as follows. Let Pr[β1]
and Pr[β2] be the average bit error probabilities for blocks β1 and β2, re-
spectively, found from the bit error probability estimation algorithm. The
empirical entropy of the concatenation of blocks β1 and β2 is given by

H(β1, β2) =
1

2

(
(Pr[β1] + Pr[β2]) log

1

2
(Pr[β1] + Pr[β2])

+ (2− Pr[β1]− Pr[β2]) log
1

2
(2− Pr[β1]− Pr[β2])

)
.

The empirical entropy of the block β is given simply by H(β, β). The met-
ric M(β) of a block β , is obtained from the empirical soft values of both
neighboring blocks β − 1 and β + 1 as

M(β) , H(β − 1, β + 1)− 1

2
H(β − 1, β − 1)− 1

2
H(β + 1, β + 1).

If some block β has a large metric, it is likely that a change occurred within
the block or its neighborhood. Theoretically, for the universal lossless cod-
ing point of view, Shamir and Costello [44] showed that if κ1 = O(log(N))
and κ0 = O(log log(N)), two levels of the algorithm are sufficient, however, in
practical applications, the algorithm can be performed with more levels, where
N > 0 is the length of the hypothesized sequenceto to code. Figure 3.3 (taken
from [43]) illustrates a three level segmentation mechanism for ` = 2. For
level v ∈ {0, 1, 2}, the level-v near neighborhood of block βv is defined as the

46 LT Codes on Piecewise Stationary Channels

concatenation of the data that constitute blocks βv − 1, βv and βv + 1. An
error sequence of length N , on which a level of the algorithm is performed, is
represented by a bold horizontal line, which is partitioned into the respective
blocks by vertical lines. Thick vertical lines in level-0 represent level-1 parti-
tioning points and thick vertical lines in level-1 represent level-2 partitioning.
On the top level (level-2), blocks β1

2 and β2
2 have the largest metrics. Level-1 is

performed on each of the near neighborhoods of the two blocks. In Figure 3.3,
level-1 is illustrated only for the level-2 near neighborhood of β2

2 . At level-1,
β3

1 and β4
1 are the highest metrics blocks in the near neighborhood of level-2.

Block β4
1 has the largest metric in the near neighborhood of level-2 and block

β4
0 has the largest level-1 metric in the near neighborhood of level-1 block β4

1 .
The transition point t̂4 is thus estimated as the middle of the block β4

0 .
Estimation-Decoding in conjunction with the RD method follows the same

steps as with the BP algorithm, modifying only the Transition Point Estima-
tion step.

M 2{β2
1}

k 2

β2
1

N 2 = N

N 1

N 1

Level 2

Level 1

N 0

Level 0

N 0

k 1

k 1

k 0

X
t4
^

X

X

M 2{β2
2}

β2
1+1β2

1−1

β2
2

β2
2+1β2

2−1

X

β2
2−1

M 1{β1
4}

β2
2

β2
2+1

M 1{β1
3}

k 2

β1
4 β1

4+1β1
4−1β1

3 β1
3+1β1

3−1

X

XX

β1
4−1

M 0{β0
4}

β1
4 β1

4+1

β0
4−1 β0

4 β0
4+1

2k1

Figure 3.3: Recursive block partitioning for a three-level decision algorithm.

Example 7. We illustrate the SP decoding calculations for a PSMC-BSC({τ1},
[ν1, ν2]) in Fig. 3.4, Fig. 3.5 and Fig. 3.6.

3.1.8 Performance Comparison

In this section, we compare the performance of the proposed schemes with
perfect knowledge of the PSM-BSC in terms of bit error rate (BER) and in
terms of redundancy. All results were obtained using the output degree distri-
bution Ω given by its generating function Ω(x) = 0.1629+0.3530x+0.0941x2+
0.0455x3 + 0.0942x4 + 0.097x5 + 0.0154x10 + 0.0875x11 + 0.0004x86 + 0.05x87.
The length of the LT code must be at least Nmin , where Nmin := k

Cap(PSM-BSC)

is the capacity required length, and any additional bits are called redundant

3.1. Piecewise Stationary Memoryless Channels 47

Ω

k input nodes

N output nodes

Figure 3.4: Decoding graph of an LT code for a PSMC-BSC({τ1}, [ν1, ν2])

M
(d+1,ν(`,2))

inbi←outbj

M
(d,ν(`,2))

inb
i′
l→outbj

inbi inbi
′
l

outbj

M
(d,ν(`,2))

inbi→outbj

M
(d,ν(`,2))

inbi←outbj ′p

M
(d,ν(`,1))

inbi←outbj ′p

inbi

outbj
′
p outbj

Figure 3.5: Message flow related to BSC({τ1})

bits. A PSM-BSC is constructed in such a way that ndi bits are sent through a
BSC with crossover probability νi, and the r redundant bits are all sent through
the channel with crossover probability ν|T|+1. The length Nmin of the consid-

ered LT code is thus obtained by Nmin = r+(
∑|T|+1

i=1 Nmindi) = r+Nmin. That
is, the redundant bits are all sent in the nth channel, and no transitions are
allowed while the redundant bits are being transmitted. The RDA algorithm
is performed with 3 levels and parameterized by L, where LRD = (L2,L1,L0).
The BP algorithm is parametrized by LBP which represents the blocks length.

BER results

We compare the information BER performance of the system illustrated in
Fig. 3.7 where full PSM-BSC statistics are unknown to which PSM-BSC statis-
tics are perfectly known by the decoder. The LT code parameters (k,Ω) =

48 LT Codes on Piecewise Stationary Channels

M
(d+1,ν(`,1))

inbi←outbj

M
(d,ν(`,1))

inb
i′
l→outbj

inbi inbi
′
l

outbj

M
(d,ν(`,1))

inbi→outbj

M
(d,ν(`,1))

inbi←outbj ′p

M
(d,ν(`,2))

inbi←outbj ′p

inbi

outbj
′
p outbj

Figure 3.6: Message flow related to BSC({τ2})

(7000,Ω1) where N = 20000 (N is known in advance) and Ω1 is defined previ-
ously. The PSM-BSC parameters are (T, R) = ({5000, 8000}, [0.25, 0.49, P3]),
where 0.01 ≤ P3 ≤ 0.1. The RDA parameter is LRD = (500, 100, 20). The
BP parameter is LBP = 100.

Redundancy results

In Fig. 3.8, we compare the information redundancy performance of the de-
coder in which perfect PSM-BSC statistics are provided to the decoder with BP
and RD algorithms. The LT code parameters (k,Ω) = (6000,Ω), where Ω has
been defined above. The PSM-BSC parameters are (T, R) = ({6150, 10000},
[0.305, 0.105, P3]), where 0.415 ≤ P3 ≤ 0.46. The RDA parameter is LRD =
(500, 100, 20) and the BP one is LBP = 100 as before.

We start with a fixed absolute length for segments 1 and 2. Then we add
redundancy bits in segment 3 until decoding is complete. The stop criteria
here is a BER of 0. Thus we compute the relative duration of each segment
in the final block length. The capacity required length is then evaluated for
the computed relative duration. The redundancy is the number of bits beyond
this length.

Discussion

As can be seen in Fig. 3.7 and Fig. 3.8, the performance with estimation, using
a recursive decision segmentation is very close to that with perfect knowledge of
the channel statistics, and is better than using the block partitioning segmen-
tation approach. These resuls are a demonstration of the power and potential
approaches we proposed.

3.1. Piecewise Stationary Memoryless Channels 49

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P3

R
e

s
id

u
a

l
B

it
 E

r
r
o

r
 R

a
t
e

Known PSMC−BSC
RD
BP

Figure 3.7: BER performance with varying bad channel.

3.1.9 Hard-Information Optimization

In this section, we investigate the performance of LT codes using Gallager’s
majority decoding ([18],[33],[37]) algorithms on PSM-BSC’s channels. We will
first describe this algorithm. Then we will obtain some recursive equations for
the probability of error in terms of the degree distributions.

Gallager’s Majority Decoding

We adapt the Gallager’s majority decoding algorithm using LT-codes for PSM-
BSC’s channels. We first describe the different calculations that occur at each
node, and subsequently we give the message passing schedules over the graph.

50 LT Codes on Piecewise Stationary Channels

0.41 0.415 0.42 0.425 0.43 0.435 0.44 0.445 0.45 0.455 0.46
3800

4000

4200

4400

4600

4800

5000

5200

5400

5600

P3

R
e

d
u

n
d

a
n

c
y

Known PSM−BSC
RD
BP

Figure 3.8: Redundancy performance with varying bad channel.

At the beginning of the decoding, each output node has value +1 or −1 ac-
cording to the output of the PSM-BSC channel. The messages passed in this
algorithm come from the alphabet {−1, 0, 1}, where 0 denotes erasure, and
1 and −1 correspond to the usual antipodal signalling, where 0 denotes an
erasure [37].
We denote C(νa) ∈ {−1, 1} as the channel observation for a given output node
related to BSC(νa).

At the very first round of the decoding, where there is no message from
the input nodes, output nodes with degree 1 send their values to their unique
neighbours in the set of the input nodes. Other output nodes which can not
estimate their neighbours value, send 0 to the input nodes.

Algorithm 11. Gallager’s Majority Decoding Algorithm
Input: Row vector noisy output symbols y = (y1, · · · , yN) and the corresponding
graph for an LT code with parameters (k,Ω).
Output: Row vector of estimates of input symbols x̂ = (x̂1, · · · , x̂k).

3.1. Piecewise Stationary Memoryless Channels 51

1. Update rule for intput nodes.
Set the components of the message M

(d,νa)

inbi→outbj from input node i of degree
di to output node j, related to BSC(νa) as follows :

M
(d,νa)

inbi→outbj = sign

(
n∑
b=1

i−1∑
p=1

M
(d,νb)

inbi←outbj
′
p

)

where M
(d,νb)

inbi←outbj
′
1
, · · · ,M (d,νb)

inbi←outbj
′
i−1

are messages related to all output

nodes outbj
′
p, related to BSC(νb), adjacent to inbi other than outbj, p ∈

Ii−1
1 , b ∈ In1 , j′p ∈ Ik1 .

2. Update rule for output nodes.
The message sent from an output node to an input node is equal to the
channel output times the multiplication of the received message from in-
put nodes in the last round of the algorithm. Set the components of the
message M

(d,νa)

inbi←outbj from output node j of degree dj, related to BSC(νa),
to input node i as follows:

M
(d+1,νa)

inbi←outbj = C(νa).

j−1∏
l=1

M
(d,νa)

inb
i′
l→outbj

where M
(d,νa)

inbi
′
1→outbj

, · · · ,M (d,νa)

inb
i′
j−1→outbj

are messages related to all input

nodes inbi
′
l connected to output nodes related to BSC(νa), adjacent to

outbj other than inbi, l ∈ I
j−1
1 , a ∈ In1 and i′l ∈ IN1 .

In practical settings, the decoder stops after a fixed number of SP decoding
rounds and computes at each input node inbi a maximum a posteriori estimate
of the sth transmitted information symbol xs, where s ∈ Ik1 .

The estimation of the transmitted information symbol xs associated to
input node inbi is computed by the decoding algorithm by taking the majority
of all the received messages in the same round as

M
(dend,νa)

inbi→outbj = sign

(
n∑
b=1

i∑
p=1

M
(dend,νb)

inbi←outbj
′
p

)
,

where M
(d,νb)

inbi←outbj
′
1
, · · · ,M (d,νb)

inbi←outbj
′
i−1
,M

(d,νb)

inbi←outbj
′
i

are messages related to all

output nodes outbj
′
p , related to BSC(νb), adjacent to inbi including outbj, p ∈

Ii1, b ∈ In1 , j′p ∈ Ik1 and dend is the last round of the SP decoding.

Density Evolution

Density evolution is a tool to study the asymptotic evolution of the distribu-
tion of the messages during the iterative decoding. In this part, we derive
the probability of sending a symbol s ∈ {−1, 0, 1} along an edge in each

52 LT Codes on Piecewise Stationary Channels

round of the algorithm. We use an LT code to transmit information via a
PSM-BSC parameterized by ([τ1, τ2, . . . , τn−1], [ν1, ν2, . . . , νn]) and respective
fractional durations d1, d2, . . . , dn, where

∑n
i=1 di = 1 . Due to the symmetry,

we assume that the all +1 codeword has been transmitted. We expect that a∑n
i=1 di(1− νi) fraction of the channel outputs are equal to +1, and a fraction∑n
i=1 diνi of them are equal to −1. We use N output bits to decode the k

information bits. The error correction will succeed if and only if all the input
nodes send +1 to their neighbours after a large enough number of rounds. We
use the following notation throughout.

• If G(z) ,
∑+∞

f=−∞ gfz
f , then G(z)f<0 ,

∑
f<0 gf , G(z)f=0 , g0 and

G(z)f>0 ,
∑

f>0 gf ,

• P j(s) denotes the probability of sending s along an edge from an ouput
node node related to BSC(νj) to an input node,

• Qj(s) denotes the probability of sending s along an edge from an input
node to an output node related to BSC(νj),

where s ∈ {−1, 0, 1} and j ∈ In1 .
The density evolution calculations corresponding to each type of message are
given as follows.

Algorithm 12. Density Evolution of the Messages

1. Messages passed from output nodes to input nodes.
We have

P j(−1) = ω
(

1−Qj(0)
)(1− (1− 2νj)ω(1− 2Qj(0))

2

)
,

P j(+1) = ω
(

1−Qj(0)
)(1 + (1− 2νj)ω(1− 2Qj(0))

2

)
,

P j(0) = 1− ω
(
Qj(+1) +Qj(−1)

)
.

2. Messages passed from input nodes to output nodes.
We have

Qj(−1) = F (z)
(j)
f<0,

Qj(+1) = F (z)
(j)
f>0,

Qj(0) = F (z)
(j)
f=0.

where F (z)(j) =
∑

dj≥1 ι
(j)
dj

[P j(−1)z−1 + P j(0) + P j(+1)z]dj∏
h∈Sj I

(h)
dh

[P h(−1)z−1 + P h(0) + P h(+1)z]dh

and Sj = {h 6= j, dh ≥ 0, h ∈ In1}

3.2. Markov Modulated Channels 53

Numerical Results

In Fig. 3.9, we present some simple examples to illustrate the behavior of
the previous density evolution algorithm in terms of error probability versus
the number of iterations. All results were obtained using the output degree
distribution Ω 1 given by its generating function Ω(x) = 0.1629 + 0.3530x2 +
0.0941x3 +0.0455x4 +0.0942x5 +0.097x6 +0.0154x11 +0.0875x12 +0.0004x87 +
0.05x88.

We assume all +1 codeword is sent. The decoder will correct the error
if and only if the expression

∑n
i=1 diQ

i(+1) converges to 1 after a bounded
number of iterations. PSM-BSC([0.25N], ν1, ν2) refers to a PSM-BSC with
the parameter (T, R) = ({0.25N}, [ν1, ν2]), meaning that respective fractional
durations are d1 = 0.25 and d2 = 0.75 for an assumed large value of N . We
notice a convergence to an error floor after about 10 iterations.

3.2 Markov Modulated Channels

In the previous section, we provided SP decoding algorithms for a class of
PSMC’s. In this part, we give an estimation-decoding algorithm for LT codes
over a class of channels that generalizes PSMC’s making the channel state
equal to the state of a hidden Markov chain.

3.2.1 Markov-modulated binary symmetric channels

A row vector of k > 0 bits is encoded using a specific LT code x = (x1, · · · , xk)
into the row vector z = (z1, · · · , zN). This vector z is then transmitted over a
particular markov-modulated binary symmetric channel, which the description
is given below. We denote by y = (y1, · · · , yN) the received row vector and by
x̂ = (x̂1, · · · , x̂k) an estimate of x obtained after the decoding.

Assume there exists a random variable s ∈ S, called the channel state,
where S = [s1, s2, . . . , s|S|] is a discrete set of channel behaviors and let V =
[ν1, ν2, . . . , ν|S|] be the vector of parameters corresponding to these behaviors.
Let a Markov chain M of length n, with a hidden vector s = (s1, · · · , sn) ∈ Sn.
Consider a channel with random input Yt ∈ {0, 1}, and random output Zt ∈
{0, 1}, where t ∈ IN1 (N > 0), represents a time index. At each time t, the
conditional probability function of Yt given Zt is a function of some parameter
sa ∈ S denoted by

Pr[Yt = yt | Zt = zt; sa] , Pr[yt | zt; sa],

where a ∈ I
|S|
1 , S is the set of states of the hidden Markov chain M with a state

transition probability matrix P and |S| its cardinality.

1Optimized degree distributions for transmission over a BSC(0.11) taken from [37].

54 LT Codes on Piecewise Stationary Channels

0 2 4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

Number of Iterations

P
r
o

b
a

b
il
it
y
 o

f
E

r
r
o

r

PSM−BSC([0.25N], [0.14, 0.02])

PSM−BSC([0.25N], [0.02, 0.14])

BSC(0.11)

PSM−BSC([0.25N], [0.21, 0.0852])

PSM−BSC([0.25N], [0.14, 0.02])

PSM−BSC([0.25N], [0.11, 0.33])

Figure 3.9: Error probability convergence using Gallager’s majority decoding

If b ∈ N and rb ∈ S, a markov-modulated binary symmetric channel (MM-
BSC) is a channel where r = (r1, · · · , rN), z = (z1, · · · , zN) and y = (y1, · · · , yN)
have the following properties:

• There exists a Markov chain with a set of states S and a state transi-
tion probability matrix P such that the probability mass function of the
channel state process can be written as

Pr(r) = Pr(r1)
N∏
i=1

Pr(ri+1|ri). (3.7)

• The underlying channel represents a BSC(ν) family, parameterized by
the crossover probability ν. If rb = sa, then the conditional channel

3.2. Markov Modulated Channels 55

probability mass function is given by

Pr[yt | zt; rb] =

{
1− νa, yt = zt,
νa, yt 6= zt.

• The channel state vector s is independent of the transmitted vector z
(channel input vector) and the members of z are conditionally indepen-
dent given the channel vector y. Thus if V is known, then

Pr[y | z; r] = Pr(r1)
N∏
i=1

Pr(ri+|ri)Pr[yi | zi; ri]. (3.8)

We will concentrate on MM-BSC with two states called Gilbert-Elliott
(GE) channel, with state alphabet S = [B,G], where the state labeled B
refered sometimes to the bad state and G refered sometimes to the good state.
States B and G are assigned respectively crossover probabilities νB and νG, so
that

Pr[yt 6= zt|s = rb] =

{
νB, rb = B,
νG, rb = G.

The matrix P is given as

P =

(
1− g g
b 1− b

)
.

The GE channel is parameterized by the 4-tuple (b, g, νB, νG), where g is the
transition probability from state B to state G, b is the transition probability
from state G to state B, 0 < b, g < 1 and 0 ≤ νG < νB ≤ 1.

3.2.2 SP based Estimation-Decoding Algorithms

Definition 6. A factor graph ([29]) is a bipartite graph that represents the
graphical structure of a factorization. A factor graph has a variable node for
each variable v, a factor node for each local function f , and an edge-connecting
variable node v to factor node f if and only if v is an argument of f .

The factor graph representation of the LDPC codes over GE channels have
been derived in [3]. Estimation-decoding of LT codes on GE channels can also
be represented by a factor graph; we denote this factor graph as Markov-LT
factor (see Fig. 3.10) graph. The Markov-LT factor graph can be divided into
two subgraphs. The first part related to the Markov chain is the Markov sub-
graph (Fig. 3.11), where factor nodes and variables nodes refer respectively
to channel factor nodes and state variable nodes. The second part is the LT
subgraph, where factor nodes and variables nodes refer respectively to input
and output nodes.
In what follows, it is assumed that the GE parameter (b, g, ηB, ηG) is perfectly

56 LT Codes on Piecewise Stationary Channels

Input nodes

Ω

Output nodes

rf−1 rf rf+1 rf+2 rf+3

Pr(yf−1 | rf−1, zf−1)Pr(rf | rf) Pr(yf+2 | rf+2, zf+2)Pr(rf+3 | rf+3)

Figure 3.10: Markov-LT factor graph

zf

β β αα
rf rf+1

χ ξ

Figure 3.11: Message flow through the Markov-subgraph

known. We give a description of the SP algorithm that is used in the decoding
process of LT codes over GE channels.

The SP decoding algorithm proceeds in rounds. At every round d ≥ 0,
messages are passed from input nodes to output nodes, and then from output
nodes back to input nodes along the edges of a decoding graph for the given
LT code.

Let us denote the input node of degree i by inbi , the output node of degree
j by outbj , the message sent from input node inbi to output node outbj at
round d by M

(d)

inbi→outbj , the message sent from output node outbj to input

3.2. Markov Modulated Channels 57

node inbi at round d by M
(d)

inbi←outbj and

ξ =
(
ξ1, · · · , ξN

)
as the LLR information row vector of the given GE channel, and

χ =
(
χ1, · · · , χN

)
as the extrinsic information row vector. The descriptions of ξ and χ are given
below.

For f ∈ IN1 , do

M
(0)

inbi←outbj =

{
ξf if the degree of outbj is 1,
0 if the degree of outbj is bigger than 1.

For d ≥ 0, the SP update rules for the next steps are given as follows.

Algorithm 13. Sum-Product decoding rule
Input: Row vector of noisy output bits y = (y1, · · · , yN) and the corresponding
graph for an LT code with parameters (k,Ω).
Output: Row vector of estimates of input bits x̂ = (x̂1, · · · , x̂k).

1. LT-subgraph messages :
In the LT subgraph (as described in Chapter 1), set the components of

the message M
(d)

inbi→outbj
from input node inbi to output node outbj and

those of the message M
(d+1)

inbi←outbj from output node outbj to input node

inbi as follows :

M
(d)

inbi→outbj
=

i−1∑
p=1

M
(d)

inbi←outbj ′p
,

M
(d+1)

inbi←outbj = 2arctanh

(
tanh

(
ξf
2

)
.

j−1∏
l=1

tanh

(
M

(d)

inb
i′
l→outbj

2

))
,

where the messages M
(d)

inbi←outbj ′1
, · · · ,M (d)

inbi←outb
j ′
i−1

are related to all out-

put nodes outbj ′p adjacent to inbi other than outbj , p ∈ Ii−1
1 , j′p ∈ Ik1;

M
(d)

inbi′1→outbj
, · · · ,M (d)

inb
i′
j−1→outbj

are related to all input nodes inbi ′l adja-

cent to outbj other than inbi , l ∈ I
j−1
1 and i′l ∈ IN1 .

2. Markov-subgraph messages :
In the Markov subgraph (see Fig. 3.11), we have two type of mes-
sages: forward messages and backward messages. For i ∈ IN1 , we denote
Pr(zf |χf) being the probabilistic form of χf given by

Pr(zf |χf) =

{
1
2

+ 1
2
tanh

χf
2
, zf = 0;

1
2
− 1

2
tanh

χf
2
, zf = 1;

58 LT Codes on Piecewise Stationary Channels

where χ carries the belief message from an output symbol to a channel
factor node, excluding the channel information. The forward message,
represented by α = (α(r1), · · · , α(rN)), is passed from a channel factor
node to a state variable node and carries channel state information from
all previous channel observations.

α(d+1)(rf+1) =
∑
rf∈S

Pr(rf+1 | rf)α(d)(rf)
∑

zf∈{0,1}

Pr(zf |χ)Pr(yf | rf , zf),

where rf+1 ∈ S.
The backward message, represented by β = (β(r1), · · · , β(rN)), is passed
from a channel factor node to a state variable node and carries channel
state information from all future channel observations.

β(d+1)(rf) =
∑
rf+1∈S

Pr(rf+1 |rf)β(d)(rf+1)
∑

zf+1∈{0,1}

Pr(zf+1|χ)p(yf+1 |rf+1,

zf+1), where rf ∈ S.

3. Messages from LT-subgraph to Markov-subgraph :
Messages sent from LT-subgraph to Markov-subgraph are denoted as ex-
trinsic messages. The extrinsic message χf is passed from an output
node outbj of degree dj to a channel factor node; it’s represented by χ.

χf = 2arctanh

(
j∏
l=1

tanh

(
M

(d)

inb
i′
l→outbj

2

))
,

where M
(d)

inbi′1→outbj
, · · · ,M (d)

inb
i′
j→outbj

are related to all input nodes inbi ′l

adjacent to outbj and i′l ∈ IN1 .

4. Messages from Markov-subgraph to LT-subgraph :
Messages sent from Markov-subgraph to LT-subgraph are denoted as chan-
nel messages. The channel message ξf is passed from channel factor to
an ouput node; its carrries the belief of the value of the symbol, which
corresponds to that output node, based on all available channel state in-
formation.

ξf = log

(
Pr(zf = 0|α, β)

Pr(zf = 1|α, β)

)
,

where

Pr(zf = 0|α, β) =
∑
rf∈S

∑
rf+1∈S

Pr(yf | rf , zf = 0)Pr(rf+1 | rf)α(rf)β(rf+1)

and Pr(zf = 0|α, β) = 1− Pr(zf = 1|α, β)

3.3. Conclusions 59

The SP-based decoding algorithm proceeds in rounds. Every round pro-
ceeds in two steps. First the algorithm updatws messages at the LT-subgraph,
and passes the appropriate messages to the Markov-subgraph. Then the algo-
rithm updates messages at the Markov-subgraph, and passes the appropriate
messages to the LT-subgraph.

Numerical Results

Fig. 3.12 and Fig. 3.13 illustrate the performance of the joint estimation-
decoding (ED) method in comparison to the SP with the perfect knowledge
(PK) of the GE channel statistics and the location of channels states G and B.
Genie refers to the joint-decoding decoder where it’s assumed that extrinsic
messages are provided to the decoder.

All experimental results were obtained using the output degree distribu-
tion Ω(x) = 0.007690 + 0.493570x + 0.166220x2 + 0.072646x3 + 0.082558x4 +
0.056058x7 + 0.037229x8 + 0.055590x18 + 0.025023x64 + 0.003135x65.
The GE channel is parameterized by the 4-tuple (b, g, νB, νG) = (0.01, 0.1, 0.4,
νG). In Fig. 3.12, the values of k and N are chosen to be 22500 and 40000. In
Fig. 3.13, the values of k and νG are chosen to be 22500 and 0.01. Generally
speaking, as can be seen in the figures, the SP with the perfect location and
knowledge (PK) of GE statistics perform better than our estimation-decoding
algorithm. Moreover, our algorithm perform very close to the SP decoding
with PK, as we provide extrinsic information to the decoder during decoding.

3.3 Conclusions

In this chapter, we considered implementations of the density evolution algo-
rithms used in the decoding process of LT codes for stationary binary memory-
less symmetric channels with assumed known channel statistics. We provided
algorithms for joint LT estimation-decoding over piecewise stationary memory-
less channels with a number of abrupt changes in channel statistics, considering
binary symmetric channels with a crossover probability that changes a bounded
number of times with no repetition in the statistics. We obtained that the de-
coding algorithm based on recursive segmentation performs almost as well as
the decoding algorithm with the perfect knowledge of statistics. We also pro-
vided joint LT estimation-decoding over a family of Markov-modulated chan-
nels, called Gilbert-Elliot channels. For varying good state channel crossover
νG , empirical results illustrated that our joint-decoding algorithm is close to
the sum-product decoding where Gilbert-Elliot channels parameters and the
location of channel states are assumed perfectly known, for large values of νG
in terms of bit error probability.

60 LT Codes on Piecewise Stationary Channels

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Good channel state parameter

R
e
s
id

u
a
l
E

r
r
o

r
 R

a
t
e

ED
Genie
PK

Figure 3.12: BER Performance comparison with varying good state channel
crossover.

3.3. Conclusions 61

5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Overhead

R
e
s
id

u
a
l
E

r
r
o

r
 r

a
t
e

ED
Genie
PK

Figure 3.13: BER Performance comparison with varying overhead.

Systematic LT Codes for
Lossless Coding 4
In this chapter, we address the problem of practical lossless source coding us-
ing systematic LT codes. In Section 4.1, we provide a compression algorithm
by using a multilevel approach based on systematic LT codes. Our algorithm
is based on the Burrows-Wheeler Transform, an invertible permutation trans-
form that has been suggested for lossless data compression. The algorithm
proceeds as follows. After applying the Burrows-Wheeler Transform, we re-
duce the number of symbols by applying a Run Length Encoding scheme.
Then, we transform the local context of the symbols into a global context by
the Incremental Frequency Count stage. At the end, we separately encode
the run-length data stream with an Entropy Coder and the Incremental Fre-
quency Count-index stream with a layered Fountain Coder. The proposed
scheme follows the Closed-Loop Iterative Doping algorithm together with the
multilevel stage decoding Sum-Product at the Frequency Count stage. Our
algorithm offers encouraging compression rate performance for large files. In
Section 4.2, we describe one solution to the two-user Slepian-Wolf problem
in a certain part of the achievable region using fountain codes. Symmetric
case of memoryless compression of two correlated sources is considered and
modeled by binary symmetric channels. The compression is done by two sep-
arate compressors without any exchange of information between them. The
decompressor uses the Sum-Product decoding algorithm in conjunction with
the Blind Iterative Doping strategy. Simulation results indicate performance
close to the Slepian-Wolf limit.

63

64 Systematic LT Codes for Lossless Coding

4.1 Burrows-Wheeler Text Compression

4.1.1 Motivation

The Burrows-Wheeler compression algorithm[35] (BWCA) achieves strong com-
pression rates and a high throughput. In contrast to many other compression
approaches, the BWCA is a block oriented compression algorithm. A file to
be compressed is first divided into data blocks of a fixed size and all blocks
are processed separately. The size of a block is in the range of 1 to 10 MB in
general. Since each block is processed separately, no context information of the
previous block is used in the following blocks. For files larger than the block
size, this is a disadvantage compared to streaming compression algorithms,
which are able to exploit the context of the whole file.

The BWCA itself consists of several stages, which are performed sequen-
tially. Each stage transforms the symbols of an input buffer into symbols of
an output buffer, which is used as the input buffer for the next stage. A basic
BWCA consists of three stages, one of which is the so called Burrows-Wheeler
Transformation (BWT) stage, the second is the Global Structure Transforma-
tion (GST) stage, and the third is the Entropy Coding (EC) stage [41]. An
introduction into BWCA is given by Fenwick in [42].

Consider a q-ary source S with alphabet A = {A0, . . . Aq−1} with cardinal-
ity |A|, where q = 2d and d > 0.

The first stage, the BWT, performs a permutation of the input symbols,
which is the basis for the next stages. The symbols are reordered according to
their context. The output of the BWT stage contains many runs of repeated
symbols. During the last years, many fast and efficient algorithms for the
BWT have been presented by Larsson and Sadakane [24], Sadakane [25], Itoh
and Tanaka [20], Kao [21] and Kärkkäinen and Sanders [23].
We assume that the BWT has in input sequence bwtin = (bwtin,1, · · · , bwtin,N)
and an ouput sequence bwtout = (bwtout,1, · · · , bwtout,n) , where N > 0,
bwtin,i, bwtout,i ∈ A and i ∈ In1 . the BWT works in three steps.

Algorithm 14. BWT
Input: Row vector of symbols bwtin = (bwtin,1, · · · , bwtin,N) .
Output: Row vector of symbols bwtout = (bwtout,1, · · · , bwtout,N) and an index
I, which we described below.

1. Reverse the sequence bwtin and then obtain the sequence c = (c1, · · · , cN),
where cj = bwtout,n−j+1 and j ∈ In1 .

2. Compute N cyclic shifted versions of c, and sort the cyclic shifts.

3. Output the last column of the sorted cyclic shifts along with the index I
of the cyclic shift corresponding to the sequence c.

4.1. Burrows-Wheeler Text Compression 65

Cyclic shifts
version1: a, l, g, o,m, a, t, h
version2: h, a, l, g, o,m, a, t
version3: t, h, a, l, g, o,m, a
version4: a, t, h, a, l, g, o,m
version5: m, a, t, h, a, l, g, o
version6: o,m, a, t, h, a, l, g
version7: g, o,m, a, t, h, a, l
version8: l, g, o,m, a, t, h, a

Table 4.1: BWT: Cyclic shifts

Sorted shifts
version1: a, l, g, o,m, a, t, h
version4: a, t, h, a, l, g, o,m
version7: g, o,m, a, t, h, a, l
version2: h, a, l, g, o,m, a, t
version8: l, g, o,m, a, t, h, a
version5: m, a, t, h, a, l, g, o
version6: o,m, a, t, h, a, l, g
version3: t, h, a, l, g, o,m, a

Table 4.2: BWT: Sorting

Example 8. We compute the BWT of bwtin = (h, t, a,m, o, g, l, a).
We reverse the input to form C = (a, l, g, o,m, a, t, h) and compute the cyclic
shifts and sorted shifts as in Tab. 4.1 in Tab. 4.2.

The last column of the sorted matrix is (h,m, l, t, a, o, g, a), and c is in row
1 in this matrix. BWT(bwtin) = [(h,m, l, t, a, o, g, a), 1].
The second stage of the BWCA transforms the local structure of the BWT
output stream into an index stream with a global structure and is called a
Global Structure Transformation (GST).The most common approach is the
fast Move To Front (MTF) stage, which was used in the original scheme by
Burrows and Wheeler [35].
The MTF converts a sequence of characters to a list of numbers. A se-
quence mtfin = (mtfin,1, · · · ,mtfin,N) is encoded to a list of numbers mtfout =
(mtfout,1, · · · ,mtfiout,N) using the MTF as follows.

Algorithm 15. MTF
Input: Row vector of symbols mtfin = (mtfin,1, · · · ,mtfin,N) .
Output: Row vector of numbers mtfout = (mtfout,1, · · · ,mtfiout,N).

1. Maintain a list L = (L1, · · · , LN) of the N symbols in the alphabet A.

66 Systematic LT Codes for Lossless Coding

2. For each symbol in mtfin,i,

• Encode the position Li of this symbol in the list L.

• Modify the list by moving the symbol to the front of the list L..

Example 9. Assume A = {o, p, q, r}. We compute the MTF of mtfin =
(q, o, r, o, o, p) and obtain mtfout = (3, 2, 4, 2, 1, 4)

Better compression rates are achieved by the more complex Weighted Fre-
quency Count (WFC) stage from Deorowicz [40] and the Incremental Fre-
quency Count (IFC) stage by Abel [22].

The IFC is one of several stages inside the BWCA. In our scheme, it is
located between the BWT at the beginning of the algorithm and the FC at
the end of the algorithm (Fig. 4.1).

For higher speed and better compression rate, a Run Lengh Encoder (RLE)
stage is located directly in front of the IFC stage. The BWT places symbols
with a similar context close together and produces many runs of repeated sym-
bols. The RLE stage replaces all runs, which have a length of two or more
symbols, by a run consisting of exactly two symbols. The length of a run
is transmitted into a separate data stream (as indicated in Fig. 4.1) with an
EC [41]. Then, the length information does not disturb the context of the
main data stream. The basic idea of the IFC stage is the use of a rising in-
crement and of counters for each alphabet symbol, similar to the counters of
an arithmetic coder, which uses a fixed increment instead. The counters for
the alphabet symbols form a counter list. The counter of the current sym-
bol is increased by the increment and the counter list is resorted descendingly
so that the symbol with the highest counter stands at the front of the list.
Then, the increment is increased by the average value of the index values of
the near past. Since only one counter is changed for each symbol processed,
only one element needs to be resorted inside the counter list. This leads to an
implementation, which is much faster than the WFC [14] GST from Deorowicz
while still achieving strong compression rates. Similar to arithmetic coding,
the increment and counters are halved if a counter exceeds a fixed threshold.
The compression rates of the IFC stage are in the range of the results of the
WFC stage, while the speed is similar to the MTF stage.

Input data

Preprocessing
Text

Transform
Wheeler
Burrows Run Length Structure

 Transform

 Global
 Fountain

 Coder

Coder
Entropy

Encoder
Output data

Run length data stream

Figure 4.1: Source coding scheme for text compression

4.1. Burrows-Wheeler Text Compression 67

4.1.2 Text Preprocessing

The Text Preprocessing (TP) proposed [2] consists of six separate algorithms:
text categorizing, capital letter conversion, space stuffing, word replacement,
phrase replacement and alphabet reordering. The algorithms need no fixed
external information like dictionaries and are language independent. The dif-
ferent techniques are processed sequentially in order to complement and boost
each other. We note a compression improvement higher than the sum of the
improvements of the separate algorithms if all these algorithms are performed
behind each other. In what follows, we describe each algorithm of the TP used
in our text compression algorithm.

Text categorizing: Since TP hampers the compression rate of non text
files, it is important to recognize a file as a text file and to leave other files
unchanged. Here a simple but efficient algorithm is used [2]. In order for a
file to be recognized as a text file and to be preprocessed by the following
algorithms, it has to fulfill two conditions:

1. The percentage frequency share of alphanumerical symbols A · · · Z, a
· · · z, 0 · · · 9,’ ’ compared to all symbols must be greater than 66 percent.

2. The percentage frequency share of the space symbol compared to al-
phanumerical symbols must be greater than 10 percent.

The result of the categorizing is saved as the first byte in the output stream
followed either by the preprocessed text or by the unchanged data, in case the
file did not fulfill the two conditions.

Capital letter conversion: The basic idea of capital letter conversion is
to replace words, which begin sometimes with a capital letter and sometimes
with a lowercase letter, always by a starting lowercase letter in order to pro-
duce a more stable context. Capital letter conversion achieves a compression
improvement around 0.5 percent on the text files of the Calgary corpus. The
algorithm consists of two loops. In the first loop, all words of the text with
length 2 or more are saved in a ternary search tree. In the second loop, words,
which start with a capital letter and that occur at least once with a lowercase
letter inside the text and that second letter is a lowercase letter, are replaced
by a capital-letter escape symbol, followed by a space symbol and the corre-
sponding lowercase starting letter.

Space stuffing: The space stuffing algorithm used in this approach adds
a space symbol after each of the following symbols: ’>’, ’(’, ’”’. If the cur-
rent symbol is a TAB-symbol, space stuffing adds a space before and after the
TAB-symbol. Although the total length of the file is enlarged, the context of
the words is enhanced. The improvement achieved by this technique is only
small and usually less than 0.1 percent.

Word replacement: Word replacement produces the highest compres-
sion improvement on average, typically between 1 and 2 percent on the text

68 Systematic LT Codes for Lossless Coding

files of the Calgary corpus1. This scheme replaces frequently used words by
byte tokens. The words to replace are chosen by calculating the frequencies
of all words of the text with length of size 2 or more using a ternary search
tree. These words are weighted by their length and frequency. The words
with the highest weight are replaced by tokens. The tokens are indices into a
word dictionary. The dictionary is built adaptively and transmitted together
with the data stream in order to keep the approach language independent by
writing out the word the first time it appears. The size of the dictionary is
defined by the number of tokens available, i.e., the number of unused symbols
in the alphabet.

Phrase replacement: Besides word replacement, two most frequent bi-
grams and trigrams are also replaced by tokens. Therefore, four available to-
kens are reserved for phrase replacement. Using larger n-grams (where n ≥ 2)
than bigrams or trigrams does not lead to better compression rates in general,
since they are much less frequent than bigrams and trigrams. The compression
improvement is quite moderate with around 0.1 percent.

Alphabet reordering: For compression schemes based on sorting stages
like the BWCA [35], the lexicographic order of the alphabet symbols has an
influence on the output sequence. If the lexicographic order of the alphabet
symbols is changed so that symbols with a similar context are grouped closer
together, segments with similar context properties will also be grouped closer
together, resulting in less context changes. In the present implementation, an
alphabet order is used, which groups the vowels ”aoui” in the middle of the
consonants together and the ’e’ at the end of the consonants. The complete
alphabet order is presented in [2]. For BWCAs, alphabet reordering boosts the
compression rate typically by about 1 percent on the text files of the Calgary
corpus.

The probability distribution of a source output X is assumed to be Pr(X =
a) = Pr(a), for all a in A. Let B(a) = (b1(a), . . . , bτ (a), . . . , bd(a)) be the bi-
nary representation of the symbol a in A.

Definition 7. We define the conditional marginal probability at level τ ∈ Id1 as

Prτ (b1, . . . , bτ−1) = Pr(bτ (Y) = 1|b1(Y) = b1, . . . , bτ−1(Y) = bτ−1)

=

∑
y∈A:b1(y)=b1,...,bτ−1(y)=bτ−1,bτ (y)=1 Pr(y)∑

y∈A:b1(y)=b1,...,bτ−1(y)=bτ−1
Pr(y)

.

Definition 8. We denote the conditional entropy of Y at level τ ∈ Id1 given
its previous values at respective levels 1, · · · , τ − 1 as

H(bτ (Y)|b1(Y), . . . , bτ−1(Y)).

1The Calgary Corpus is a collection of files, commonly used for comparing compression
schemes. It was created by Ian Witten, Tim Bell and John Cleary from the University of
Calgary in 1987. In 1997, it was replaced by the Canterbury Corpus [1].

4.1. Burrows-Wheeler Text Compression 69

4.1.3 Modeling

Assume that the source sequence y = (y1, . . . , yn) takes values in a given q-ary
alphabet A. If the sources are i.i.d., we can estimate the probability distri-
butions empirically and plug the estimates into the entropy formula. If the
sources are piecewise i.i.d., the BWT maps the source output of a stationary
ergodic tree into a sequence that can be decomposed asymptotically into piece-
wise independent and identically i.i.d segments [26] as mentioned before. The
first step of statistical modeling for the source consists of finding an efficient
way of segmenting the source, and thus estimating the first order distribution
on each segment, and finally estimating the empirical entropy of our source.

A source statistics model is mainly given by the number of segments, the
distinct transition points between segments and by the model segment distribu-
tions. The cost of such a statistical model to represent y is the total number
of bits needed to describe y. In [7, 6], to find the most efficient piecewise
i.i.d. source model, the authors implemented a segment merging algorithm.
This algorithm (explained in [10]) uses the MDL principle that learns an ap-
proximation to the source tree, identifying segments by their context. Cai et
al. [5] used different approaches to approximate the source tree and proposed
two different segmentation models first appeared in [45] and [44].

The first one called the adaptive segmentation estimates the location of
the transitions of the BWT output sequence based on the empirical distribu-
tion of the symbols. This adaptive algorithm first obtains rough estimates for
transition locations, and refines the locations of the estimates at the second
pass. The numbers and lengths of the segments are adapted to the realization
of the source, and this results in segmentations of different lengths.

The second approach is the uniform segmentation, in which the BWT out-
put is partitioned so that each segment contains an equal number of symbols
from the sequence according to which segmentation is done. We denote this
number of symbols by w(n). By taking w(n) as O(

√
n), it has been established

that, as n tends to +∞, the entropy estimator converges to the entropy rate
with high probability for stationary ergodic sources [5]. From experimental re-
sults, it has been established that the uniform segmentation method performs
almost as well as the the adaptive method [5]. We will follow the uniform
segmentation. The advantage of using this segmentation is that the encoder
does not need to send the transition points between segments to the decoder.
The decoder needs only to know the number of segments.

The source modeling algorithm works as follows:

1. Apply BWT on the sequence, followed by RLE. The RLE stage replaces
all runs of repeated symbols length of two or more symbols, by a run
consisting of exactly two symbols. The output of the RLE consists of
two separate data streams, the run-symbols data stream (RSDS), and
the run-length data stream (RLDS).

2. Apply a GST on the RSDS.

70 Systematic LT Codes for Lossless Coding

3. For each binary representation level τ from 1 to d,

a) Let Γτ = {1, . . . , |Γτ |}, where |Γτ | is the number of segments. Par-
tition the BWT-RSDS-GST output sequence into |Γτ | = N

w(N)
seg-

ments, with w(N) = cτ
√
N , where cτ is a non negative number2.

b) Estimate the first order distribution within each segment. We esti-
mate the number of occurrences of symbol y in the k-th segment by
Nk(y), and the probability estimate of symbol y in the k-th segment

by Prk(y), as Prk(y) = Nk(y)+βP
z∈A(Nk(z)+β)

, where β a small non negative

number3.

c) Compute the contribution to the conditional entropy estimate of
the empirical distribution in the k-th segment as

Ck =
∑
z∈A

(Nk(z) + β) log2 Prkτ (b1, . . . , bτ−1),

with Prkτ (b1, . . . , bτ−1) defined as the conditional marginal probabil-
ity on the k-th segment, with Pr(y) = Prk(y).
Average the individual estimates. The estimate conditional entropy
is

H(bτ (Y)|b1(Y), . . . , bτ−1(Y)) =
−
∑

k∈Γτ
Ck

n
.

d) Compute the conditional probability Log-Likelihood Ratio (LLR)

for each symbol yj as log2(
1−Prkτ (b1(yj),...,bτ−1(yj))

Prkτ (b1(yj),...,bτ−1(yj))
).

4. Estimate the entropy as H(Y) =
∑d

τ H(bτ (Y)|b1(Y), . . . , bτ−1(Y)).

4.1.4 Encoder

In this part, the encoding part of the FC is described. The main building
block of the source coding scheme using Fountain Codes outlined before for
non binary Markov sources [6] is the main idea here. Let ψ = {Ω1, . . . ,Ω|Ψ|} be
a finite ensemble of LT code distributions optimized for erasure channels [17]
and (y1, . . . , yN) the BWT-RSDS-GST output sequence. Let the sequence
(bτ (y1), . . . , bτ (yN)) be the binary representation of the sequence (y1, . . . , yN)
at the τ -th binary representation level. Then the encoding proceeds as follows.

For each distribution Ωs of Ψ and each binary representation level τ from
1 to d:

2Here cτ is a design parameter of the algorithm which depends of the binary represen-
tation level and the length of the sequence.

3If the probability estimate in the segment k is 0, the logarithm of the probability tends
to −∞. The number β is introduced in order to deal with this issue.

4.1. Burrows-Wheeler Text Compression 71

1. Calculate from row vector of binary symbols (bτ (y1), . . . , bτ (yN)) a row
vector of binary intermediate symbols (zτ,1, . . . , zτ,N) through a linear
invertible N ×N matrix Gτ,s [7, 6]:

(zτ,1, . . . , zτ,N) = G−1
τ,s · (bτ (y1), . . . , bτ (yN)).

Gτ,s is obtained using Algo. 2 (see Chapter 1).

2. Generate ms symbols 4 (yτ,(N+1), . . . , yτ,(N+ms)) from (zτ,1, . . . , zτ,N)
through encoding with an LT-code with parameters (n,Ωs), using Algo. 2
in Chapter 1.

3. A bipartite graph is set up between the nodes corresponding to the row
vector of intermediate bits (zτ,1, . . . , zτ,N) and on the other side the nodes
corresponding to row vector of source bits (bτ (y1), . . . , bτ (yN)) and the
nodes corresponding to row vector of compressed bits (yτ,(N+1), . . . ,
yτ,(N+mτ,s)) obtained previously, where mτ,s = min(m1, . . . ,m|Ψ|).
Nodes corresponding to intermediates bits are called intermediate nodes;
those corresponding to source bits are called information source nodes
and those corresponding to compressed bits are compressed source nodes
as graphically illustrated below.

Compressed

source nodes

Ωs

Intermediate nodes

Gτ,s

Information
source nodes

4. The SP decoding algorithm is applied to this graph. The objective of
the SP algorithm is to decode the symbols (zτ,1, . . . , zτ,N) using the full
knowledge of the symbols (yτ,(N+1), . . . , yτ,(n+mτ,s)) and the absolute val-
ues of LLRs coming from the modeling part.
Let us denote the intermediate node of degree i by intbi , the informa-
tion source node of degree j by sourbj , the compressed source node of
degree k by comprbk the message sent from intermediate node intbi to
information source node sourbj at round d by M

(d)

intbi→sourbj , the message

4These ms output symbols, together with the doped symbols obtained from the CLID
algorithm constitute the output of the compressor; ms should be as close as possible to
n(H(bτ (Y)/b1(Y), . . . , bτ−1(Y)) + φ), where φ is a small non negative bias.

72 Systematic LT Codes for Lossless Coding

sent from intermediate node intbi to compressed source node comprbk

at round d by M
(d)

intbi→comprbk , the message sent from information source

node sourbj to intermediate node intbi at round d by M
(d)

intbi←sourbj and

the message sent from compressed source node comprbk to intermediate
node intbi at round d by M

(d)

intbi←comprk .

The initial LLR of (zτ,1, . . . , zτ,n), (bτ (y1), . . . , bτ (yN)) and (yτ,(n+1), . . . ,

yτ,(n+mτ,s)) are 0, LLRr,τ | log2(1−Prkτ (b1(yr),...,bτ−1(yr))

Prkτ (b1(yr),...,bτ−1(yr))
)| and LLRu = +∞,

where r ∈ IN1 , u ∈ I
mτ,s
1 .

For j, s, i, r,∈ IN1 and k, u ∈ I
mτ,s
1 , we assume that sourbj = sourbj ,r

is associated to the variable yr, intbi = intbi ,s,τ is associated to the
variable zτ,s and comprbk = comprbk ,u to the variable yu. In the very
first round, information source nodes and compressed source nodes with
degree 1, send their values to their unique neighbours in the set of the
input nodes, which can be written as

For r ∈ IN1 , do

M
(0)

intbi←sourbj =

{
LLRr,τ if the degree of sourbj is 1,

0 if the degree of sourbj is bigger than 1,

and for r ∈ I
mτ,s
1 , do

M
(0)

intbi←comprbk =

{
+∞ if the degree of comprbk is 1,

0 if the degree of comprbk is bigger than 1

For d ≥ 0, the SP update rules for the next steps are given as follows.

a) Messages from intermediate nodes to information source
nodes.
Set the components of the message M

(d)

intbi→sourbj from intermediate

node intbi to information source node sourbj as follows.
For s ∈ IN1 , do

M
(d)

intbi→sourbj =

i1−1∑
p=1

M
(d)

int i←sourbj ′p
+

i2∑
p′=1

M
(d)

intbi←comprb
j ′
p′

where the messages M
(d)

intbi←comprbj ′1
, · · · ,M (d)

inbt i←comprb
j ′
2

are related

to all compressed source nodes comprb
j ′
p′ , M

(d)

intbi←sourbj ′1
, · · · ,

M
(d)

inbt i←sourb
j ′
i−1

are related to all information source nodes sourbj ′p

adjacent to intbi other than sourbj , p ∈ Ii1−1
1 , p′ ∈ Ii21 , j′p, j

′
p′ ∈ IN1 ,

i1 > 0, i2 > 0 and i1 + i2 = i.

b) Messages from intermediate nodes to compressed source
nodes.

4.1. Burrows-Wheeler Text Compression 73

Set the components of the message M
(d)

intbi→comprbk from intermediate

node intbi to compressed source node comprbk as follows.
For s ∈ IN1 , do

M
(d)

intbi→comprbj =

k1−1∑
p=1

M
(d)

int i←comprbj ′p
+

k2∑
p′=1

M
(d)

intbi←sourb
j ′
p′

where the messages M
(d)

intbi←sourbj ′1
, · · · ,M (d)

inbt i←sourb
j ′
2

are related to

all information source nodes sourb
j ′
p′ adjacent to intbi , M

(d)

intbi←comprbj ′1
,

· · · ,M (d)

inbt i←comprb
j ′
i−1

are related to all compressed source nodes

comprbj ′p adjacent to intbi other than comprbj , p ∈ Ik1−1
1 , p′ ∈ Ik21 ,

j′p, j
′
p′ ∈ IN1 , k1 > 0, k2 > 0 and k1 + k2 = i.

c) Messages from source nodes to intermediate nodes.

Set the components of the message M
(d+1)

inttbi←sourbj from information

source node sourbj to intermediate node intbi as follows.
For r ∈ IN1 , do

M
(d+1)

intbi←sourbj = 2arctanh

(
tanh

(
LLRr,τ

2

)
.

j−1∏
l=1

tanh

(
M

(d)

intb
i′
l→sourbj

2

))

where the messages M
(d)

intbi′1→sourbj
, · · · ,M (d)

intb
i′
j−1→sourbj

are related

to all intermediate nodes intbi ′l adjacent to sourbj other than intbi ,
l ∈ I

j−1
1 and i′l ∈ IN1 .

d) Messages from compressed source nodes to intermediate
nodes.
Set the components of the message M

(d+1)

inttbi←comprbj from compressed

source node comprbj to intermediate node intbi as follows.
For u ∈ I

mτ,s
1 , do

M
(d+1)

intbi←comprbj = 2arctanh

(
tanh

(
LLRu

2

)
.

j−1∏
l=1

tanh

(
M

(d)

intb
i′
l→comprbj

2

))

where the messages M
(d)

intbi′1→comprbj
, · · · ,M (d)

intb
i′
j−1→comprbj

are related

to all intermediate nodes intbi ′l adjacent to comprbj other than intbi ,
l ∈ I

j−1
1 and i′l ∈ I

mτ,s
1 .

5. During the SP decoding algorithm, the Closed-Loop Iterative Doping [8]
(CLID) algorithm is applied. Every f -th 5 round of the iterations the

5Note that f is a design parameter of the algorithm.

74 Systematic LT Codes for Lossless Coding

intermediate bit with a smallest reliability is marked, and its LLR is set
to +∞ or −∞, depending on whether its value is 0 or 1. The precise
description of the CLID is as follows. For df = f, 2f, 3f, · · · iterations,

• For all intermediate nodes, compute

M
df

intbi,s,τ→sourbj =

i1∑
p=1

M
df

int i,s,τ←sourbj ′p
+

i2∑
p′=1

M
df

intbi,s,τ←comprb
j ′
p′

where the messages M
(d)

intbi←comprbj ′1
, · · · ,

M
(d)

inbt i←comprb
j ′
2

are related to all compressed source nodes comprb
j ′
p′

adjacent to intbi , M
(d)

intbi←sourbj ′1
,

· · · ,M (d)

inbt i←sourb
j ′
i−1

are related to all information source nodes sourbj ′p

adjacent to intbi , p ∈ Ii1−1
1 , p′ ∈ Ii21 , j′p, j

′
p′ ∈ IN1 , i1 > 0, i2 > 0 ,

i1 + i2 = i.

• For s ∈ IN1 , sort the values |Mdf

intbi,s,τ→sourbj | in increasing order.

• Feed the symbol zτ,opt to the decoder, where

opt = argzτ,s,s∈IN1
min{|Mdf

intbi,s,τ→sourbj |}

The SP decoding decoding together with CLID continues until the inter-
mediate symbols can be decoded from the LLRs of (bτ (y1), . . . , bτ (yN))
and the output (yτ,(N+1), . . . , yτ,(N+ms)).

6. In addition to the sequence (yτ,(N+1), . . . , yτ,(N+mτ,s)), the encoder sends
the number of segments |Γτ | and corresponding LLR values, the code
distribution Ωτ,s of Ψ for which the number of doped symbols is smallest,
a seed for the matrix construction of Gτ,s to the decoder using an adaptive
Huffman [41] coding.

4.1.5 Decoder

In this section, the decoding steps of the proposed scheme are described. The
decoder works as follows.

1. At the inverse FC part, the decompression is achieved level by level in
several steps which closely mimic the compression steps. For each binary
representation level τ from 1 to d, using the adaptive Huffman [41] de-
coding, the decoder obtains the code distribution Ωτ,s of Ψ for which the
number of doped symbols is smallest, a seed for the matrix construction
of Gτ,s and the use of Ωτ,s, the number of segments |Γτ | and correspond-
ing LLR values send by the encoder. Using (yτ,(N+1), . . . , yτ,(N+mτ,s)), the
decompression is applied to the level τ sequence (bτ (y1), . . . , bτ (yN)), all
the sequences at lower levels 1 though τ − 1 have been already recovered
and the conditional LLRs needed by the SP decoder at level τ are known:

4.1. Burrows-Wheeler Text Compression 75

a) From the row vector (yτ,(n+1), . . . , yτ,(N+mτ,s)), reconstruct the in-
termediate bits (zτ,1, . . . , zτ,N) using identical iterations of the com-
bined SP-CLID algorithm performed at the FC part.

b) Calculate the bits (bτ (y11), . . . , bτ (yN)) using the matrix Gτ,s (in-
verse matrix of G−1

τ,s) [7, 6]:

(bτ (y1), . . . , bτ (yN)) = Gτ,s · (zτ,1, . . . , zτ,N).

2. From the row vector (y1, . . . , yN), apply the inverse of transformation of
the GST to recover the original RSDS.

3. Separately, an inverse of the EC recovers the original RLDS.

4. Finally, apply an inverse BWT to recover the original text sequence using
the sequence reconstructed from the RSDS and the RLDS.

4.1.6 Numerical Results

We evaluated the compression rates of our scheme with the Calgary Corpus
and large Canterbury Corpus files and compared it to leading text compression
system gzip-b, bzip-9 and ppmd5 (see [1]). The results6 are summarized below;
ifount06 is the approach presented in this chapter, with the GST stage being
the IFC.
As can be seen in tables Tab. 4.3 and Tab. 4.4, the scheme proposed is com-
parable to schemes presented in the literature, for large files. However, our
scheme is better and more robust for joint source channel coding for transmis-
sion over noisy channels.

Compression rates for the Calgary Corpus
File Size ifount06 gzip-b bzip-9 ppmd5
bib 111261 2.39 2.51 1.95 1.89

book1 768771 2.62 3.25 2.40 2.34
book2 610856 3.31 2.70 2.04 1.98
geo 102400 4.96 5.34 4.48 4.96

news 377109 2.77 3.06 2.51 2.42
obj2 246814 2.88 2.63 2.46 2.35

Average 369536 3.15 3.24 2.64 2.65

Table 4.3: Calgary results

6A text compression rate is measured by dividing the number of bits of the compressed
text by the number of bytes of the uncompressed text.

76 Systematic LT Codes for Lossless Coding

Compression rates for the Large Canterbury Corpus
File Size ifount06 gzip-b bzip-9 ppmd5

E.coli 4638690 1.89 2.24 2.13 1.99
bible.txt 4047392 1.62 2.33 1.65 1.58

world192.txt 2473400 1.71 2.33 1.57 1.52
Average 3719828 1.74 2.30 1.79 1.70

Table 4.4: Canterbury results

4.2 Distributed Source Coding

It is well known that a rate R = H(X, Y) suffices to encode the sources X and
Y when the encoder compress these sources together. J. Wolf and D. Slepian
have demonstrated [49] that by even separately compressing X and Y , the
rate R is still sufficient to ensure lossless recovery of sources X and Y at the
decoder side. The Slepian-Wolf theorem has been proved using the random
binning strategy [9], which is not useful for practical applications such as video
or text source coding.

A. Liveris et al. [31] considered the compression of a memoryless source with
side information using the syndrome-LDPC based approach. The problem of
designing good practical source codes for correlated sources using rateless codes
has been investigated in [15, 50]. In [15], the authors optimized a rate-adaptive
source coding-they called Matrioshka codes-with side information, which sends
additional syndromes in layers in order to force the convergence of the decod-
ing, extending the approach considered in [31]. In [50], the authors introduced
another rate-adaptive scheme unifying LDPC and accumulate codes.

4.2.1 Scheme using Multilevel based SP Decoding

In this section, we consider the symmetric distributed source coding using
Fountain codes (Fig. 4.2). The objective is to recover the source X, and the
source Y based on the knowledge of X. The scheme proposed is strongly re-

 Decoder

 Correlation Y

 Channel Encoder2

 Encoder1
X

X

Figure 4.2: Symmetric distributed source coding scenario

lated to the Fountain-code-based single-source coding introduced in [7]. How-
ever, contrary to [7], the encoder could not necessarily verify before trans-
mitting whether the decoder could successfully decode. The proposed scheme

4.2. Distributed Source Coding 77

H(X)

H(Y)

Slepian−Wolf region

H(X | Y)

H(Y | X)

Rate for soure X

Rate for source Y

Figure 4.3: Graphical Slepian-Wolf region

follows a simple strategy called the Blind Iterative Doping (BID) together with
the SP decoding algorithm.

PROBLEM SET-UP

We assume that both encoders and the joint decoder know in advance the LT
probability distribution Ω during the transmission steps. Assumptions for the
the sources (X) = (x1, · · · , xN), (Y) = (y1, · · · , yN) are given as follows.

• The sources X and Y represent binary sources observed at different en-
coders, where the xi’s and yi’s are independent and not necessarily identi-
cally distributed, where Pr(xi) = 1−Pr(yi), where i ∈ IN1 , xi, yi ∈ {0, 1}.
For the pure Slepian-Wolf scenario, sources X and Y are separately en-
coded and jointly decoded, with rates RX , for source X (respectively,
RY , for source Y) such that

RX ≥ H(X|Y), RY ≥ H(Y |X), RX +RY ≥ H(Y,X) (4.1)

where H denotes the joint entropy of (X, Y).
If the source X is encoded on a perfect noiseless channel and the source
Y is source-channel encoded on a a given noisy channel with capacity C
(in bits per channel use), the relation (1) can be written

RX ≥ H(X|Y), C ≥ H(Y |X)RZ , RX +RY ≥ H(Y,X) (4.2)

where Z = (z1, · · · , zM) is the source-channel encoder output, the input
being Y , and RZ = N

M
is the corresponding source-channel rate.

78 Systematic LT Codes for Lossless Coding

• Let [(x1, y1), · · · , (xn, yn)] be a sequence of jointly distributed i.i.d. vari-
ables. The correlation between sources are not known at the two en-
coders. The two sources X and Y are encoded independently from each
other. For our experiments, we assume that the correlation between
sources is generated by considering the BSC channel correlation with

Pr(xi = yi) = 1− p, where 0 < p < 0.5. (4.3)

We assume that the parameter p is unknown by encoders 7 and the joint
decoder.

APPROACH

In this section, we describe how encoders and the joint decoding work, for a
given LT code with parameters (N,Ω).

Encoding: We compress X using the algorithm described in [31]. We
use the following strategy to compress Y , without any knowledge of X:

• First, we calculate a vector of binary intermediate bits I = (i1, · · · , iN),
from the binary symbols Y = (y1, · · · , yN) through a linear invertible
N ×N matrix G [7, 6]:

I = G−1 · Y

where G is obtained using Algo. 2 in Chapter 1.

• Apply the LT encoding rule to the sequence I (using Algo. 1 in Chap-
ter 1). We thus obtain a sequence of M bits S = (s1, · · · , sM).

• Next, we generate incrementally C = (c1, · · · , cM) such that c1 = s1, c2 =
s1 + s2, · · · , cM = sM−1 + sM .

• A bipartite graph BG (see Fig. 4.4) is set up between nodes correspond-
ing to I and those corresponding to Y , and between nodes corresponding
to I and those corresponding to C. The row vector of bits C constitutes
the payload of the compressed bits, which is sent to the decoder.

Decoding: The goal of the decoder is to recover losslessly the N -length
sequences X and Y . To decode X, we use the decoding strategy described
in [31]. To decode the sequence Y , the decoder proceeds as follows:

• Construct the bipartite graph BG.

• The SP decoding algorithm is applied to BG as follows. The objective
of the SP algorithm is to decode the symbols I using the full knowledge
of the symbols C and the LLR of Y based on the knowledge of C.
Initial LLRs of Y are log(

Pr(xj=0|yj)
Pr(xj=1|yj) = (1 − 2yj) log(1−pest

pest
)), those of

7This is only for our experiments. In general, one can assume that P (yi = 1|xi) is
unknown by encoders and the joint decoder

4.2. Distributed Source Coding 79

Compressed bits

Ω

Intermediate bits

G

Source bits

Figure 4.4: Tanner graph for the Two-layer LT approach

C are +∞ (if ck = 0) or−∞(if ck = 1) and those of I are 0, where
j ∈ IN1 , k ∈ IM1 and pest is an estimated cross-over probability. The way,
the estimation is done is described below.

• During the SP-algorithm, a strategy, called Blind Iterative Doping (BID)
is applied.
During the BID, the encoder randomly picks a bounded number of bits
among the bits i1, · · · , iN and sends them to the decoder to help the SP
decoding to converge. It’s assumed that, every f rounds, the encoder
sends g bits to the decoder, where f > 0 and g > 0 are design parame-
ters. These g randomly chosen bits are called pseudo-doped bits.
Recall that the parameter p is unknown by encoders and the joint de-
coder. The encoder starts transmitting M1 = NH(pe1) symbols c1, · · · ,
cnH(pe1) and pseudo-doped bits until the decoder has enough information
to decode, at which time an acknowledgement message is sent to the
encoder, where pe1 is a first estimated value of p. As soon as the decoder
has enough information, the encoder moves from pej > pej+1

, sending
n(H(pej+1

)−H(pej)) symbols in addition to the nH(pej) symbols previ-

ously sent to the decoder, where pej = H−1(
Mj

N
) and j > 0. This process

is repeated v times, where pev > · · · > pe1 , pev ≈ p and v > 0. It is
assumed that Encoder2 sends a seed to the decoder, allowing him to
locate pseudo-doped symbols that are chosen and the reconstruction of
the matrix G.

NUMERICAL RESULTS

Simulations results of the LT-BLID approach are evaluated and compared
with those of [50]. The codeword length is n = 396 for BSC(p) statistics
between X and Y , where X is Bernoulli(0.5)8 source and 0.2 < H(Y |X) < 0.7.

8X is Bernoulli(0.5), which means that the source X is available at the decoder and acts
as a side information for the decoding of Y

80 Systematic LT Codes for Lossless Coding

The proposed LT-BLID approach performs around within 10 per cent of the

0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H(Y|X)

R
at

e

LT−BLID
Slepian−Wolf bound

Figure 4.5: Performance of LT-BLID codes of length 396 bits over BSC

Slepian-Wolf bound which is as good as [50].

4.3 Conclusions

In this chapter, we provided a compression algorithm using a multilevel ap-
proach based on systematic LT codes. Our algorithm was based on the Burrows-
Wheeler Transform. The proposed scheme follows the Closed-Loop Iterative
Doping algorithm together with the multilevel stage decoding Sum-product at
the Frequency Count stage. Our algorithm offered encouraging compression
rate performance for large files. We also described one solution to the two-user
Slepian-Wolf problem in a certain part of the achievable region using fountain
codes. Symmetric case of memoryless compression of two correlated sources
was considered and modeled by binary symmetric channels. The compression
was done by two separate compressors without any exchange of information
between them. The decompressor used SP decoding algorithm in conjunction
with the Blind Iterative Doping strategy. Simulation results indicate perfor-
mance close to the Slepian-Wolf limit.

Bibliography

[1] The Canterbury Corpus link: http://corpus.canterbury.ac.nz.

[2] J. Abel and W. Teahan. Universal Text Preprocessing for Data Compres-
sion. IEEE Transactions on Computers, pages pages 497–507, 2005.

[3] A.W.Eckford, F.R.Kschischang, and S.Pasupathy. Analysis of Low-
Density parity-Check Codes for the Gilbert-Elliott Channel. IEEE Trans.
Inform. Theory, 51:3872–3889, 2005.

[4] J. Byers, M. G. Luby, M. Mitzenmacher, and A. Rege. A digital fountain
approach to reliable distribution of bulk data. In Proceedings of ACM
SIGCOMM, Vancouver, BC, Canada, pages 56–67, 1998.

[5] Haixiao Cai, Kulkarni S.R., and Verdu S. Universal entropy estimation
via block sorting. IEEE Transactions on Information Theory, 50:1551 –
1561, July 2004.

[6] G. Caire, S. Shamai A, A. Shokrollahi, and S. verdu. Fountain Codes for
lossless data compression. Dimacs Series in Discrete Mathematics and
Theoretical Computer Science, A. Barg and A. Ashkhimin, Eds. American
MathematicalSociety, 2005.

[7] G. Caire, S. Shamai A., A. Shokrollahi, and S. verdu. Universal variable-
length data compression of binary sources using Fountain Codes. Infor-
mation Theory Workshop, 2004. IEEE, pages 123–128, 29 Oct. 2004.

[8] G. Caire, S. Shamai, and S. Verdu. A new data compression algorithm
for sources with memory based on error correcting codes. pages pages
291–295, 2003.

[9] Thomas M. Cover. A proof of the data compression theorem of Slepian
and Wolf for ergodic sources. IEEE Trans. Inform. Theory, 21:pages 226–
228, jul. 1975.

[10] Baron D. and Bresler Y. An O(N) semipredictive universal encoder via
the BWT. IEEE Transactions on Information Theory, 50:928 – 937, May
2004.

81

82 Bibliography

[11] M. Davey and D. MacKay. Low Density parity Check Codes over GF(q).
IEEE Commun. Lett., 2(1):165–167, June 1998.

[12] D. Declerq and M. Fossorier. Decoding algorithms for nonbinary LDPC
codes over GF(q). IEEE Transactions on Communications, 55:633–643,
2007.

[13] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B, 39:1–38, 1977.

[14] S. Deorowicz. Universal lossless data compression algorithms. Doctoral
dissertation, Silesian University of Technology, Gliwice, Poland, 2003.

[15] A. Eckford and W. Yu. ‘Rateless Slepian-Wolf codes. In Proc. Asilomar
Conference on Signals, Systems and Computers, 2005.

[16] E. O. Elliott. Estimates of error rates for codes on burst-noise channels.
Bell System Technical Journal, 42:1977–1997, Sep. 1963.

[17] O. Etesami and M. A. Shokrollahi. Raptor codes on binary memoryless
symmetric channels. IEEE Transactions on Information Theory, 52:2033–
2051, 2006.

[18] R. G. Gallager. Low Density Parity Check Codes. MIT Press, 1963.

[19] A. J. Goldsmith and P. P. Varaiya. Capacity, mutual information, and
coding for finite-state Markov channels. IEEE Trans. Inform. Theory,
42(3):868–886, May 1996.

[20] Itoh H. and Tanaka H. An Efficient Method for in Memory Construc-
tion of Suffix Arrays. IEEE String Processing and Information Retrieval
Symposium (SPIRE’99), pages 81– 88, september 1999.

[21] Kao T. H. Improving Suffix-Array Construction Algorithms with Applica-
tions. Master’s thesis, Gunma University, Kiryu, Japan, pages 376–8515,
2001.

[22] Abel J. A fast and efficient post BWT-stage for the Burrows-Wheeler
Compression Algorithm. Proceedings of the IEEE Data Compression Con-
ference, Snowbird, Utah, J. A. Storer and M. Cohn, Eds., 449, 2005.

[23] Karkkainen J. and Sanders P. Simple Linear Work Suffix Array Con-
struction. 30th International Colloquium on Automata, Languages and
Programming, number 2719 in LNCS, Springer, pages 943–955, 2003.

[24] Larsson N. J. and Sadakane K. Faster Suffix Sorting. Technical report
1999, 1999.

Bibliography 83

[25] Sadakane K. Unifying Text Search and Compression - Suffix Sorting,
Block Sorting and Suffix Arrays. Ph.D. Dissertation, Department of In-
formation Science, Faculty of Science, University of Tokyo, 2000.

[26] Visweswariah K., Kulkarni S, and Verdu S. Output distribution of
the Burrows-Wheeler transform. Information Theory, 2000. Proceedings.
IEEE International Symposium on 25-30 June 2000 Page(s):53.

[27] R. Karp, M. Luby, and A. Shokrollahi. Verification decoding of Raptor
codes. In Proc. of ISIT 2005, pages 1310–1314, 2005.

[28] R. E. Krichevsky and V. K. Trofimov. The performance of universal
encoding. IEEE Transactions on Information Theory, 27:199–207, March
1981.

[29] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and
the sum-product algorithm. IEEE Transactions on Information Theory,
47:498–519, 2001.

[30] X. Li and M.R.Soleymani. A proof of the Hadamard Transform Decoding
of the Belief Propagation Decoding for LDPCC over GF(q). Vehic. Tech.
Conf., Sept. 2004.

[31] A. Liveris, Z. Xiong, and C. Georghiades. Compression of binary sources
with side information at the decoder using LDPC codes. IEEE Commun.
Lett., Lett. 6(10):pages 440–442, 2002.

[32] M. Luby and M. Mitzenmacher. Verification codes. In Proceedings of
the 40th Annual Allerton Conference on Communication, Control, and
Computing, 2002.

[33] M. Luby, M. Mitzenmacher, and A. Shokrollahi. Improved low-density
parity-check codes using irregular graphs. IEEE Trans. Inform. Theory,
47:585–598, 2001.

[34] M. G. Luby. LT codes. In Proceedings of 43rd IEEE Symposium Founda-
tions of Computer Science, pages 1–10, 2002.

[35] Burrows M and Wheeler D. J. A Block-Sorting Lossless Data Compression
Algorithm. Technical report, Digital Equipment Corporation, Palo Alto,
California, 1994.

[36] D. MacKay and M. Davey. Evaluation of Gallager codes for short block
length and high rate applications. In In Codes, Systems and Graphical
Models, pages 113–130. Springer-Verlag, 2000.

[37] S. Mohajer and A. Shokrollahi. Raptor Codes with Fast Hard Decision
Decoding Algorithms. In Information Theory Workshop, 2006. ITW ’06
Chengdu. IEEE, pages 56–60, 2006.

84 Bibliography

[38] M. Mushkin and I. Bar-David. Capacity and coding for the Gilbert-Elliott
channels. IEEE Trans. Inform. Theory, 35(6):1277–1290, Nov. 1989.

[39] T. Richardson and R. Urbanke. The capacity of low-density parity-check
codes under message-passing decoding. IEEE Transactions on Informa-
tion Theory, 47:599–618, 2001.

[40] Deorowicz S. Second step algorithms in the Burrows-Wheeler compres-
sion algorithm. Software - Practice and Experience, 2002.

[41] David Salomon. Coding for DATA AND COMPUTER COMMUNICA-
TIONS. Springer Science, pages pages 68–110, 2005.

[42] Khalid Sayood. Lossless Compression Handbook, Academic Press. 2003.

[43] G. I. Shamir. Universal coding for classes of nonstationary sources Lower
bounds and optimal schemes. Ph.D. Thesis, University of Notre Dame,
2000.

[44] G. I. Shamir and D. J. Costello. Asymptotically optimal low-complexity
sequential lossless coding for piecewise-stationary memoryless sources-
part I: the regular case. IEEE Transactions on Information Theory,
46(7):2444–2467, Nov. 2000.

[45] G. I. Shamir and N. Merhav. Low-complexity sequential lossless cod-
ing for piecewise-stationary memoryless sources. IEEE Transactions on
Information Theory, 45(5):1498–1519, Jul. 1999.

[46] G. I. Shamir, T. J. Tjalkens, and F. M. J. Willems. Universal noise-
less compression for noisy data. In Information Theory and Applications
Workshop, San Diego, California, 2007.

[47] A. Shokrollahi. Raptor codes. IEEE Transactions on Information Theory,
52:2551–2567, 2006.

[48] A. Shokrollahi and W. Wang. LDPC codes with rates very close to the
capacity of the q-ary symmetric channel for large q. In Proceedings of the
International Symposium on Information Theory, Chicago, 2004.

[49] D. Sleepian and J.K. Wolf. Noiseless coding of correlated information
sources. IEEE Trans. Inform. Theory, 19:pages 471–480, jul. 1973.

[50] D. Varodayan, A. Aaron, and B. Girod. Rate-adaptive codes for dis-
tributed source coding. In Signal Processing: Special Issue on Distributed
Source Coding.

[51] W. Zhang, D. J. Costello, T. E. Fuja, G. I. Shamir, and A. W. Eckford.
Iterative estimation and decoding for Gaussian channels with abruptly
changing statistics. In Proc. IEEE International Symposium on Informa-
tion Theory, Seattle, WA, USA, pages 2466–2470, 2006.

Bibliography 85

[52] W. Zhang, C. Koller, A. W. Eckford, D. J. Costello, T. E. Fuja, and G. I.
Shamir. Estimation and decoding strategies for channels with abruptly
changing statistics. In Proc. IEEE Information Theory Workshop, Ro-
torua, New Zealand, 2005.

Curriculum Vitae
Bertrand NDZANA NDZANA

Education:

• École Polytechnique Fédérale de Lausanne (EPFL)
Ph.D. in computer and communication sciences
Rresearch topic: Source and Channel problems using Fountain codes
2004 - 2009 (expected)

• EPFL
Swiss Federal diploma of engineering
Communication systems division
1998 - 2004

Professional Experience:

• École Polytechnique Féd’erale de Lausanne(EPFL)
Research assistant; research in small teams in applied
mathematics,teaching, supervision of semester projects
2004 - 2009

• University of York, Toronto, Canada
3 Internships of 6 weeks; Channel Coding
2006-2007-2008

• Orange Communications, Lausanne,Switzerland
Master thesis of 6 months; Research and developement in security/GPRS
attacks
2004

• IDQuantique, Geneva, Switzerland
Internship of 6 months; Quantic cryptography/BB84 protocol implemen-
tation

87

88 Bibliography

2003

• Motorola, Geneva,Switzerland
Internship of 3 weeks; Classic cryptography/Software developement
2001

• CREM, Martigny, Switzerland
Internship of 3 months, web-programmer
1999

Conference Publications:

1. H. Cronie, B. Ndzana Ndzana, A. Shokrollahi, “Decoding Algorithms
for Binary Raptor Codes over Nonbinary Chanels”, Proceedings IEEE
International Symposium on Information Theory, Seoul (Korea), June
28 - July 3, 2009

2. B. Ndzana Ndzana, A. Eckford, A. Shokrollahi, G. I. Shamir “Fountain
Codes for Piecewise Stationary Channels”, Proceedings IEEE Interna-
tional Symposium on Information Theory, Toronto, Ontario (Canada),
July 6-11, 2008

3. B. Ndzana Ndzana, A. Shokrollahi, “Fountain Codes for the Slepian-
Wolf problem”, Proceedings of Forty-Fourth Annual Allerton Conference
on Communication, Control, and Computing, Illinois (USA), September
27-29, 2006

4. B. Ndzana Ndzana, A. Shokrollahi, J. Abel, “Burrows-Wheeler Text
Compression with Fountain Codes”, Proceedings of Data Compression
Conference, Snowbird (USA), March 28-30, 2006

