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Abstract. Combinatorial optimization problems have recently emerged in the
design of controllers for OLED displays. The objective is to decompose an image
into subframes minimizing the addressing time and thereby also the amplitude of
the electrical current through the diodes, which has a direct impact on the life-
time of such a display. To this end, we model this problem as an integer linear
program. Subsequently, we refine this formulation by exploiting the combinato-
rial structure of the problem. We propose a fully combinatorial separation routine
for the LP-relaxation based on matching techniques. It can be used as an oracle
in various frameworks to derive approximation algorithms or heuristics. We es-
tablish NP-hardness and hardness of approximation. Nevertheless, we are able to
work around this issue by only focusing on a subsets of the variables and provide
experimental evidence that they are sufficient to come up with near optimal solu-
tions in practice. On this basis, one can derive custom-tailored solutions adapting
to technical constraints such as memory requirements. By allowing the address-
ing of distributed doublelines, we improve the addressing time in cases where
previous approaches fall short due to their restriction to consecutive doublelines.

1 Introduction

Organic Light Emitting Diodes (OLEDs) have been a hot topic on the display market
in the last years as the sizes of commercially available displays increased significantly.
Moreover, they provide many advantages over current technology, such as Liquid Crys-
tal Display (LCD).The image and video displayed has a very high contrast and a view-
ing angle of nearly 180 degrees. It reacts within 10 microseconds, which is much faster
than the human eye can catch and is therefore well suited for video applications. More-
over, the display is physically flexible.

There are two different OLED technologies called active matrix (AM) and passive
matrix (PM). The former is more expensive but offers a longer lifetime than the latter.
Their limited lifetime is one major reason why there are only small-sized displays on
the mass market. For mobile phones or digital cameras, large state of the art OLED
displays are either too expensive or suffer from insufficient lifetime.

While a lot of research is conducted on the material science side, the so-called Con-
secutive Multiline Addressing Scheme for passive matrix OLED displays [1] tackles
the lifetime-problem from an algorithmic point of view. It is based on the fact that
equal rows can be displayed simultaneously with a lower electrical current than in
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a serial manner [2, 3]. Here we restrict ourselves to an informal description for self-
containment.

Fig. 1. Schematic electrical circuit of a display

A (passive matrix) OLED display has a matrix structure with n rows and m columns
as depicted in Figure 1. At any crossover between a row and a column there is a vertical
diode which works as a pixel. The image itself is given as an integral non-negative
n×m matrix. For the sake of simplicity, we first consider the case of binary matrices,
i.e. black/white images, and generalize to greyscale and colored images later on.

Consider the contacts for the rows and columns as switches. For the time the switch
of row i and column j is closed, an electrical current flows through the diode of pixel
(i, j) and it shines. Hence, we can not control each pixel directly. Therefore, such pas-
sive matrix displays are traditionally driven row by row in a round-robin fashion. At a
sufficiently high framerate, say 50 Hz, the human eye perceives for each pixel only the
average over time. Since, we may skip rows that are completely dark, the addressing
time varies from to image to image. To maintain the brightness at the same level, we
lower the amplitude of electrical current that is sourced into the columns. This proce-
dure has two desired side effects: The power consumption is reduced and their lifetime
is extended since high amplitudes of the electrical current are the major issues with
respect to the lifetime of the diodes [4]. We can even save more time per frame, if we
drive two rows simultaneously. However, this only works, if their content is equal as in
the following example. As one can see, we need 5 units of time to display the image in
the traditional way, i.e. row by row, whereas 3 units of time are sufficient with so-called
Distributed Doubleline Addressing (DDA).

0 1 1 0
1 0 0 1
1 1 1 1
1 0 0 1
1 0 0 1

 =


0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 0
0 0 0 0

 +


0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0
0 0 0 0

 +


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 1
1 0 0 1


We thereby gain 40% of the time to display this image and as said before we may de-
crease the amplitude of the electrical current by that amount. Hence, it remains to find
an algorithm that computes such a decomposition to benefit from Distributed Double-
line Addressing (DDA). We use the term distributed to distinguish from previous work
where it is only allowed to combine consecutive lines. That is, we have to display the
first matrix on the right-hand side of our example in two steps, which therefore only
permits a reduction of the electrical current by 20% in that case.

To benefit from this decomposition in practice, we should adhere to the following
design criteria. Since the algorithm has to be implemented on a driver chip attached
to the display, it must have low hardware complexity allowing small production costs.
Consequently it has to rely only on a small amount of memory and it should be fully
combinatorial, i.e. only additions, subtractions, and comparisons are used. Though it
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has to solve or approximate the optimization problem, which is formally described in
Section 2, in real-time. We do not fulfill all these requirements in one shot. We rather
apply an algorithm engineering process that approaches these goals in several iterations.

Previous Work

Algorithmic questions on the restriction to Consecutive Doubleline Addressing (CDA)
have been discussed by Eisenbrand et al. [2, 5]. In these papers, the authors also consid-
ered to combine more than two lines simultaneously, but only consecutive ones. Other
approaches based on Non-negative Matrix Factorization [6, 7] have been outlined by
Smith et al. [8] and Smith [9].

Contributions of this paper

We describe an algorithm engineering process to develop efficient solutions for a real-
world problem. That is, we first model the matrix decomposition problem of Distributed
Doubleline Addressing as an integer program. On this basis, we improve the formulation
by exploiting its combinatorial structure until we achieve a solution which is applica-
ble in practice. On the theory side, we prove that computing optimal decompositions
is NP-complete and also hard to approximate within a certain constant factor. To this
end, we introduce the Matchable Subset Problem as a special case of our real-world
problem. Though the complexity results sound discouraging, they give useful insight
into the structure of the problem and also hints to the applicable methods. That is,
we adopt approximation techniques such as LP-rounding to come up with a promising
method in practice. We derive two LP formulations of our problem: A concise one and
one with exponentially many constraints. Though the former is of polynomial size, it
is impractical and inferior to the latter. This interesting and on the first glance counter-
intuitive behavior is due to the fact that we apply techniques known from b-matching to
develop an efficient fully combinatorial algorithm for the separation problem of the ex-
ponentially many constraints. Finally, we propose parameterized heuristics to achieve a
solution, which is applicable in practice. We conclude with a presentation of some com-
putational results showing the improvement with respect to previous work. We thereby
show that methods from combinatorial optimization are well-suited to tackle algorith-
mic challenges in the design of flat panel display drivers.

2 A Linear Programming Formulation

In this section, we will briefly introduce a linear programming model for DDA. The
interested reader is referred to [2] for a more profound elaboration on the technical
details. For the sake of simplicity, we restrict ourselves to the special case of black/white
images given by binary matrices R = (rij) ∈ {0, 1}n×m for time being. Let the binary
variables fj(i, k) ∈ {0, 1} denote whether the switch for column j is closed while the
switches of the rows i and k are closed. Note that if i equals k, then the corresponding
variables represent a single line. Moreover, fj(i, k) and fj(k, i) represent the same



4 Andreas Karrenbauer

switches and hence we implicitly require fj(i, k) = fj(k, i) in the following. To get a
lossless decomposition of the image R, the following constraints must hold.

n∑
k=1

fj(i, k) = rij for all i, j

Recall that our objective is to minimize the addressing time for each given image.
Clearly, if we have for some pair {i, k} that fj(i, k) = 0 for all j ∈ {1, . . . ,m}, we can
skip this doubleline (or singleline if i equals k). Hence, the total number of subframes
is given by ∑

i≤k

max{fj(i, k) : j = 1, . . . ,m}.

We apply the standard trick to derive a linear programming formulation by replacing
each maximum by an auxiliary variable u(i, k). This yields

min
∑
i≤k

u(i, k)

s.t.
n∑

k=1

fj(i, k) = rij for all i, j (1)

0 ≤ fj(i, k) ≤ u(i, k) for all i, j, k.

This LP formulation is not integral in general, which can be verified by an example
with three rows and a single column with R = (1, 1, 1)T . The fractional optimum of
3
2 is attained at u(1, 2) = u(2, 3) = u(1, 3) = 1

2 , whereas the integer optimum is 2.
This comes to no surprise regarding the hardness results of Section 4 for integer DDA.
However, we stick to the LP formulation as it can be used with well-known approxi-
mation techniques, e.g. randomized rounding. We can also work around this issue on
the technical side. To this end our display controller must work with a higher preci-
sion than the input data. Let us assume for now that it has an arbitrary precision. Then
u(i, k) denotes the fraction of time for which the row-switches i and k are simultane-
ously closed. Moreover, fj(i, k) is the fraction of time for which the column-switch j is
closed while the switches for rows i, k are simultaneously closed. Now the generaliza-
tion to greyscale images becomes straightforward by taking R ∈ [0, 1]n×m. Since the
images usually have a fixed resolution, we may assume that the input data is scaled to
integers in {0, . . . , %} for some integer %, e.g. % = 255 for 8-bit resolution. Mathemat-
ically, there is no difference between greyscale and colored images. In the latter case,
we just have differently colored OLEDs at the respective pixels.

Experimental Evaluation

This basic LP formulation permits a first evaluation of the DDA approach using stan-
dard software. Though it is clear that we will not be able to implement a general purpose
LP-solver on a chip that drives such a display, we can use the LP-solutions as a bench-
mark for our further algorithms and heuristics. Although the formulation (1) is concise
in the theoretical sense as only a polynomial number (with respect to the input size) of
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variables and constraints are used, the programs get huge for typical OLED displays.
To give the reader a figure, we present the numbers for QQVGA resolution, e.g. sub-
displays for mobile phones. There, we have n = 120 rows and m = 3 · 160 = 480
columns. This means that we have (m + 1)n(n + 1)/2 ≈ 3.5 · 106 variables and about
the same number of constraints in our LP. Hence, it comes to no surprise that CPLEX
10.0 takes for a much smaller LP of 30 rows already about 4 minutes on a 2.8 GHz Du-
alcore AMD Opteron with 16 GB RAM and the run for QQVGA did not finish within
300 hours. Clearly, we must have a deeper look at the theoretical properties of our
problem to make any progress. To this end, we refine the formulation of our problem
by exploiting its combinatorial structure.

3 Combinatorial Refinement

A closer look at the LP formulation (1) reveals that the objective only depends on the u-
variables. Moreover, if those variables were fixed, then the problem would decompose
into m independent parts. Hence, we wish to have an efficient method to solve the
separation problem for the u-variables. That is, given an assignment to the u-variables,
to decide whether all the independent parts are feasible, and if not, to return a violated
inequality.

To this end, we introduce a combinatorial formulation of our problem. It is straight-
forward to consider an undirected graph G = (V,E) where each vertex i ∈ V corre-
sponds to a row of the display and the edgeset E represents the pairs of row-switches.
Note that we allow self-loops in G to model the singlelines. If no further restrictions are
given, then G is the complete graph on n nodes.

In the following, we consider the column vectors of an image R as functions rj :
V → Z≥0. A lossless decomposition is then considered as a perfect rj-matching prob-
lem for each column j = 1, . . . ,m. That is, the set of feasible timings for column j is
given by the polyhedron

Pj := {f ∈ R|E|
≥0 : f(δ(i)) = rj(i) ∀i ∈ V }

where δ(·) denotes the set of incident edges and f(δ(·)) means the sum over variables
of these edges.

Recall that the timings for the row-switches is determined by the maxima over all
columns. That is, we have a variable u(e) for each edge e ∈ E. A row-timing u :
E → Z≥0 is feasible, if and only if for each column j ∈ {1, . . . ,m} there is a feasible
matching fj ∈ Pj with fj ≤ u. Hence, a row-timing u is feasible for a column j if and
only if it is contained in the up-hull of Pj , i.e. u ∈ P ↑

j := Pj + R|E|
≥0 . Thus, the set of

feasible row-timings is given by the polyhedron

P :=
m⋂

j=1

P ↑
j .

The problem can now be divided into two parts and understood as follows.

1. Find a row-timing u ∈ P that minimizes the sum u(E).
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2. For each column j = 1, . . . ,m, compute a u-capacitated perfect rj-matching fj

representing the timings for the corresponding column switches.

Note that in the second step, the columns become independent and the matching prob-
lems could be solved in parallel. Moreover, there are several combinatorial algorithms
known from literature to solve this task.

It remains to find a good characterization of P , e.g. by an efficient combinatorial
algorithm for the separation problem. That is, given a vector u′ determine an inequality
that is valid for all elements of P but violated for u′, or assert that no such inequality
exists and hence u′ is contained in P .

Theorem 1. The polyhedron P is determined by the inequalities

2u(E[X]) + u(δ(X) \ δ(Y )) ≥ rj(X)− rj(Y ) (2)

for all X ⊆ V , Y ⊂ N(X), j = 1, . . . ,m where E[X] denotes the inner edges of X
excluding the self-loops, δ(·) also contains the self-loops of X , and N(X) ⊂ V is the
neighborhood of X in G.

We sketch the proof in the following, since it reveals our implementation of the
separation routine for these inequalities. We show first that each of the Inequalities (2)
is valid for P . To this end, arbitrarily fix u ∈ P , X ⊆ V , Y ⊂ N(X), and j ∈
{1, . . . ,m}. Since u ∈ P , there is a f ∈ Pj with f ≤ u. Hence,

rj(X)− rj(Y ) = 2f(E[X]) + f(δ(X))− 2f(E[Y ])− f(δ(Y ))
≤ 2u(E[X]) + u(δ(X) \ δ(Y )).

To prove sufficiency, we transform the problem to the uncapacitated case. To this
end, we split each edge e = {i, k} ∈ E by two new nodes e1, e2 such that we get a new
graph G′ = (V ′, E′) with

V ′ := V ∪̇ {e1, e2 : e ∈ E}
E′ :=

{
{i, e1}, {e1, e2}, {e2, k} : e = {i, k} ∈ E

}
.

Note that the self-loops transform into 3-cycles as depicted in Figure 2.

i k ⇒ i e1 e2 k

i ⇒ i

e1 e2

Fig. 2. Transformation to the uncapacitated case

Consider j to be fixed for time being. We define b : V ′ → Z≥0 with b(i) := rj(i)
for all i ∈ V , b(e1) := b(e2) := u(e) for all e ∈ E that are no self-loops, and
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b(e1) := b(e2) := u(e)/2 for all self-loops e. It is easy to verify that a fractional
perfect b-matching in G′ corresponds to a fractional u-capacitated perfect rj-matching
in G and vice versa. The value attributed to the middle segment in G′ determines the
slack of the corresponding edge in G. The transformation to the uncapacitated case
allows us to use a well-known characterization of the existence of perfect 2b-matchings
(cf. Corollary 31.5a in [10]) that we can state in our context as follows.

Lemma 1. There is a fractional perfect b-matching for G′ if and only if

b(N ′(S)) ≥ b(S)

for each stable set S of G′ where N ′ denotes the neighborhood in G′.

Let S be a stable set in G′. Define the set X := S∩V , i.e. the nodes of S that correspond
to nodes in the original graph G. Moreover, let Y := N ′(S \ X) ∩ V and F ⊆ δ(Y )
such that its edges correspond to the nodes of S \X in G′. Hence,

b(S) = b(X) + b(S \X) = rj(X) + u(F )

and
b(N ′(S)) = 2u(E[X]) + u(δ(X) \ F ) + u(F ) + rj(Y ).

It follows that b(N ′(S)) ≥ b(S) is equivalent to

2u(E[X]) + u(δ(X) \ δ(Y )) ≥ rj(X)− rj(Y ).

It remains to show that it is sufficient to consider only Y ⊆ N(X) in the original graph.
However, this is easy to see since any y ∈ Y \N(X) would weaken the right-hand side
and would leave the left-hand side unchanged.

Algorithmically, a violated inequality for a given assignment u : E → Z≥0 can
be found by a further transformation of the uncapacitated perfect b-matching problem
to a transportation problem. That is, we construct a bipartite graph G′′ such that each
part of the bipartition consists of a copy of V ′, say V ′′ := V ′

1 ∪̇V ′
2 , and for each edge

{v, w} ∈ E′ we have the two edges {v1, w2} and {v2, w1} in E′′. By directing the
edges from V1 to V2 and considering the nodes of V1 as supplies and the nodes of
V2 as demands, the separation problem becomes a transshipment problem, which can
be solved by a maximum flow computation. If and only if the value of the maximum
flow equals b(V ′), then there exist a fractional perfect b-matching in G′. If the value
of the maximum flow, or by duality the minimum cut, is smaller, then the nodes of G′′

constituting a minimum cut also represent a vertex cover y : V ′′ → {0, 1} of the same
weight. By setting z(v) := y(v1) + y(v2), we get a 2-vertex cover of G′ with∑

v∈V ′

b(v)z(v) < b(V ′).

Moreover, the set S := {v ∈ V ′ : z(v) = 0} yields a stable set, while N ′(S) = {v ∈
V ′ : z(v) = 2}. Hence,

b(V ′) > 2b(N ′(S)) + b(V ′ \N ′(S) \ S) = b(N ′(S)) + b(V ′ \ S),

which gives the equivalent violated inequality b(S) > b(N ′(S)).
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3.1 Further Improvements

In principle, we could start the separation with the zero-vector. However, it is much
more efficient to provide a starting set of valid inequalities which is of moderate size
and easy to solve but still yields a dual solution which is not too far from the optimum.

It is straightforward to select the inequalities arising from the sets X = {i} and
Y = ∅ for each i ∈ V . This means, we simply bound the variables in the perfect
matching constraints by the corresponding capacities and get

u(δ(i)) ≥ ri (3)

where ri := max{rij : j = 1, . . . ,m}.
For our application, it is easy to see that the optimal objective value of this partial

solution is at least half of the optimum of the whole problem, since u(i, i) := ri and
u(i, k) := 0 for all i 6= k is a feasible solution and

2u(E) ≥
n∑

i=1

ri

holds by summing up the inequalities (3) and the non-negativity constraints for u(i, i).
Note that these inequalities together with the non-negativity constraints determine

the fractional r-edge cover polytope. This has the following two consequences for us:
Firstly, there is a fully combinatorial algorithm to compute a minimum fractional b-edge
cover. Secondly, the integer r-edge cover polyhedron is contained in the integer hull PI

of P . Hence, we may also add the valid inequalities

u(E[X] ∪ δ(X)) ≥
⌈r(X)

2

⌉
for all X ⊆ V (4)

to the description of PI . Recall that we made the temporary assumption that our display
controller works with arbitrary precision. But in the real world, this is hardly possible
since our digital circuit shall work with a fixed clock frequency. Hence, there is a min-
imum amount of time for which switches can be closed and opened again. Thus, we
only have fixed precision, which is equivalent to require the variables to be integer by
appropriate scaling.

Nevertheless, the separation routine has not become useless since we already get a
very simple approximation algorithm by simply rounding each fractional variable to the
next greater integer. Note that then the obtained integer solution has an objective value
within an additive error of |E|. Moreover, the separation routine can be used within the
framework of [2] to come up with fully combinatorial heuristics.

It is natural to ask whether there is a completely different approach to solve the prob-
lem exactly in polynomial time. But there is little hope because of the NP-completeness
result of Section 4. Before we come to this section, we give a brief overview of the
experimental results with respect to the combinatorial separation.

3.2 Experimental Evaluation

We implemented the combinatorial separation using the LEDA 6.1 library to solve the
transportation problem by the built-in MAXFLOW routine. We can use this separation
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to speed up the solution time of CPLEX. For example, the instance with 30 rows men-
tionend before is now solved in 14 seconds instead of 240 seconds. However, it is still
not possible to solve the LP relaxation of a full QQVGA instance in timely manner.

4 Hardness Results

We show in this section that already the restriction to the black/white case, i.e. binary
matrices R ∈ {0, 1}n×m, is NP-complete and also hard to approximate. To this end,
we define the Matchable Subset Problem and analyze its complexity.

Definition 1 (Matchable Subset Problem). Given an undirected graph G = (V,E)
and m subsets of the nodes V1, . . . , Vm ⊆ V , find an edgeset Ẽ ⊂ E of minimum
cardinality such that for each j ∈ {1, . . . ,m} the set Vj is matchable in G̃ = (V, Ẽ),
i.e. there is a perfect matching in the subgraph of G̃ induced by Vj .

Theorem 2. The Matchable Subset Problem is NP-complete, even when restricted to
complete graphs (with or without self-loops).

Proof. Clearly, the problem is in NP. We show hardness by a reduction from vertex
cover. Given an undirected graph G = (V,E), we construct an undirected graph G′ =
(V ′, E′) as follows. Let

V ′ := {s} ∪̇ V ∪̇ {te : e ∈ E}
E′ :=

{
{s, u} : u ∈ V

}
∪̇

{
{u, te}, {v, te} : e = {u, v} ∈ E

}
and let the matchable subsets be induced by the nodes {s, u, v, te} for each original
edge e = {u, v} ∈ E. An illustration is given in the left of Figure 3.

s

u v

te

R =

0BBBBBBBBB@

1 · · · 1

A

1
. . .

1

1CCCCCCCCCA
Fig. 3. The construction for the hardness-proof is illustrated on the left and the one for the de-
composition problem on the right.

Given an edgeset Ẽ ⊆ E′ such that for every e = {u, v} ∈ E the set {s, u, v, te} is
matchable in the graph (V ′, Ẽ), we define the nodeset C := {u ∈ V : {s, u} ∈ Ẽ}. By
construction, we have that |C| = |Ẽ|− |E|. We show next that C is a vertex cover in G.
Let e = {u, v} be an arbitrary edge. This implies that

{
{s, u}, {s, v}

}
∩ Ẽ 6= ∅, since

{s, u, v, te} has a perfect matching within Ẽ. Hence, {u, v}∩C 6= ∅, which proves that
C is a vertex cover in G.
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Conversely, if C is a vertex cover in G, then we define Ẽ ⊆ E′ as follows. We
distinguish the two cases if an edge of G is covered by one or two vertices in C. If
e = {u, v} ∈ E is covered by exactly one vertex in C, say C ∪ e = {u}, we include
the edges {s, u} and {v, te} in Ẽ. If both of ends of an edge e = {u, v} are contained
in the cover C, then we include {s, u}, {s, v}, and an arbitrary edge of {u, te} and
{v, te}. This yields |Ẽ| = |C| + |E| and moreover for each edge e = {u, v} ∈ E the
set {s, u, v, te} has a perfect matching within Ẽ.

Including also the edges {u, v} and {s, te} in E′ does not help as they are only
contained in one induced subgraph. Moreover, it is easy to see that self-loops are not
suited to improve the solution. ut

The relation to DDA is as follows. Consider the complete graph and subsets V1, . . . , Vm

of its nodes. For each j = 1, . . . ,m, let rj be the characteristic vector of Vj . The shortest
DDA timing for the matrix R made up by the column vectors rj is then equal to the
minimum-cardinality edgeset solving the Matchable Subset Problem. Hence, the vertex
cover problem for a graph G = (V,E) can be solved as follows. From the node-edge-
incidence matrix A ∈ {0, 1}|V |×|E|, we construct the image R ∈ {0, 1}(1+|V |+|E|)×|E|

as shown on the right of Figure 3. The optimum number of timesteps to display the
image using DDA is equal to the minimum size of a vertex cover of G plus the number
of edges in G. Note that the constructed graph G′ does not contain odd cycles and thus
constraining the input to bipartite graphs is not a restriction. Furthermore, it does not
make the problem easier if we also consider fractional perfect matchings.

Note that vertex cover is hard to approximate within a factor α > 1.36 [11]. More-
over, hardness of approximation also holds for graphs with bounded degree [12]. Thus,
we get the following theorem.

Theorem 3. There is a constant β such that it is NP-hard to approximate the Matchable
Subset Problem within a factor of β.

Proof. An approximation algorithm for the Matchable Subset Problem with guarantee
β yields an approximation algorithm for vertex cover with

|C| = |Ẽ| − |E| ≤ β(OPTvc + |E|)− |E| ≤ [(∆ + 1)β −∆]OPTvc

where ∆ denotes the maximum degree of G. Hence, if it is hard to approximate vertex
cover on a graph with maximum degree ∆ within an approximation factor α(∆), then
it is hard to approximate the matchable subset problem within an approximation factor

β =
α(∆) + ∆

∆ + 1

ut

We get β ≥ 261
260 = 1.00385 by the numbers from [12] and graphs with maximum

degree 4. By the previous considerations, this also holds for the shortest DDA timing.
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5 Cutting the Bandwidth

In the previous Section, we have seen that the problem is hard for complete graphs.
Moreover, the experimental evaluations have shown that the large number of variables
prevents ourselves from solving even the LP-relaxation in a timely manner. Hence, it
is natural to dismiss some (or most) of them, i.e. to consider a suitable subgraph. From
previous work [5], we know that Consecutive Doubleline Addressing (CDA) works
pretty well in practice. A close look reveals that CDA is a special case of DDA, when
we consider a path with n nodes (and self-loops at every node) as the corresponding
graph. It is easy to see that this graph has bandwidth 1. If we take the square of this
graph, i.e. inserting edges that skip one node on the path, we get bandwidth 2. The
third power yields bandwith 3, and so on. Note that the n-th power, i.e. bandwidth n,
is again the complete graph. We use the same testset of images as in [2] and [5] in
QQVGA resolution (i.e. n = 120 and m = 3 · 160 = 480) to compare the different
bandwidths b = 1, 2, 3, 4. We do so with a small uncertainty by taking the mean of the
LP-relaxation and the objective value after the naive rounding. This is justified since the
error is negligible and the running time for solving the integer linear program is much
higher, e.g. 27 seconds compared to 51.5 minutes. In fact, the error is so small that the
error bars would not exceed the symbol size in Figure 4.

Fig. 4. Comparison between CDA (b = 1) and DDA with b = 2, 3, 4. The line marks the break
even. The lower a symbol the better performs the algorithm.

The reduction factor of the worst instance for CDA dropped from 63% via 58% and 54%
to 52% for b = 2, 3, 4, respectively. As one can see in Figure 4, there is a saturation
with growing bandwidth for real-world instances. However, for artificial images like
icons, text, wallpapers for mobile displays, etc. where the mean reduction by CDA is
only 63% [5], we strongly believe that DDA with small bandwidth, e.g. b = 3, will be
of great interest. Moreover, it will decrease the number of bad instances.

Hence, future work includes the development of an efficient hardware implemen-
tation specialized for graphs with bounded bandwidth. To this end, it is usefull to in-
vestigate the black/white case. While the problem is NP-complete for general graphs as
shown in Section 4, is is solvable in polynomial time for b = 1 [5]. Since the theoret-
ical research to come up with the polynomial time algorithm for b = 1 has lead to an
efficient approximation algorithm in practice, the complexity of the Machable Subset
Problem on graphs with bounded bandwidth b > 1 is a relevant open problem. A long
term goal is to combine more than two distributed rows, but this is also more demanding
from the technical point of view.

Since CDA has recently entered the market as part of Dialog Semiconductor’s
SMARTXTENDTM technology, which is included a 3” W-QVGA OLED displays of
TDK, and the work presented in this paper further improves the addressing time, we
strongly believe that DDA will follow with the next version of the display driver.
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