

Robust pedestrian navigation for challenging applications

Workshop LCPC: Localisation précise pour les transports terrestres

Paris, 16 juin 2009

Pierre-Yves Gilliéron

Valérie Renaudin

Ecole Polytechnique Fédérale de Lausanne

Laboratoire de Topométrie

9-0-0-0-0-0

TEPFU

Sommaire

- Problématique de la navigation pédestre
- Exigences de navigation
 - Pompiers
 - Personnes malvoyantes
- Concept de Navigation
- Réponses technologiques
 - MEMS (navigation à l'estime)
 - MEMS + tags RFID
 - MEMS + carte
- Bilan et perspectives

Problématique

- Un statut ambigu
 - Dimension essentielle dans la mobilité des personnes, mais enjeu secondaire dans l'organisation des déplacements
 - Le piéton est vulnérable et l'accès aux espaces publics reste problématique pour les personnes handicapées

Les choses changent...lentement

 Les initiatives de mobilité durable se multiplie et la notion de mobilité douce devient une réalité

TEPFU

Problématique

- Caractéristiques de la marche
 - Elle n'a rien de technique
 - C'est un moyen de déplacement simple
 - Elle permet une grande souplesse de déplacement
 - Elle est associée à de multiples activités
 - Elle est liée à une expérience multisensorielle
 - Elle résulte de l'influence des forces physiques
- Questions
 - Place de la technologie vs simplicité ?
 - Rôle de la technologie vs capacité du piéton ?

CEPFU

Problématique

- Performances critiques des systèmes
 - Radio navigation
 - Environnements urbain et intérieur: hostiles à la propagation des signaux
 - Faible disponibilité du signal
 - Le corps humain eut faire écran à la propagation
 - Risque élevé d'interférences

- Infrastructure

- Les bâtiments et infrastructures: utopie de prévoir un équipement spécifique à la navigation
- Selon les applications, il est nécessaire d'être indépendant d'une infrastructure (ex. urgences, pompiers)

- Précision

- Exigences élevées compte tenu de l'environnement construit
- Disponibilité de données cartographiques

TEPFU

Exigences de Navigation

Pompiers

- Environnement
 - Zone (urbaine) restreinte
 - Construit, intérieur
 - Plusieurs niveaux
 - Perturbé et dégradé
- Situation
 - Urgence
 - Terrain/bâtiment pas connus a priori
 - Déplacement en équipe et liaison avec un chef
 - Déplacements relativement courts (50-200m)
 - Orientation par rapport au bâtiment
 - Localisation relative des membres de l'équipe

TEPFU

Exigences de Navigation

Pompiers: fonctions principales « Fil d'Ariane »

- Localiser une équipe dans un bâtiment/pièce
- Déterminer la posture d'une personne
- Guider la personne vers une sortie
- Se déplacer dans un environnement sans visibilité

Performances attendues

- Précision
 - Horizontal: 1 à 3m (largeur d'un couloir), fréquence 1Hz
 - Vertical: Identification de l'étage
- Intégrité
 - Haute: typique des applications d'urgence et secours
 - Une posture immobile après 30s déclenche une alarme
 - Système autonome de navigation, indépendant d'une infrastructure

CEPFU

Exigences de Navigation

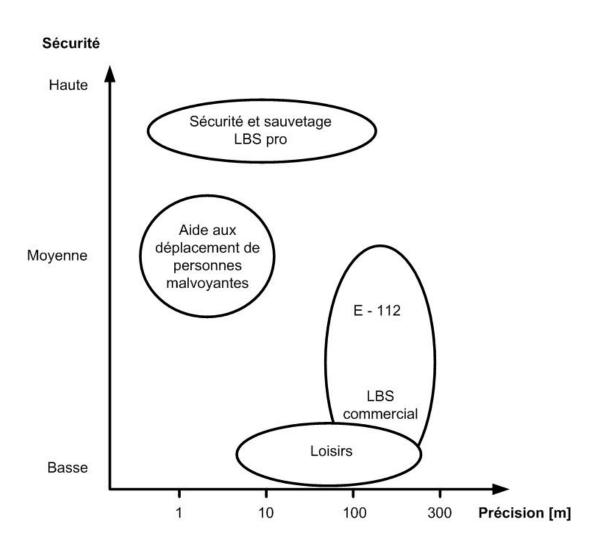
- Personnes malvoyantes
 - Environnement
 - Urbain, grands complexes (bâtiments, transports)
 - Multimodal (transports publics)
 - Sensoriel (bruit, odeurs, température)
 - Sécurisé ou dangereux
 - Situation
 - Parcours connus, effectués quotidiennement
 - Exploration de nouvelles zones
 - Apprentissage, ergothérapie
 - Degré de handicap et capacité de locomotion très variables

EPFU

Exigences de Navigation

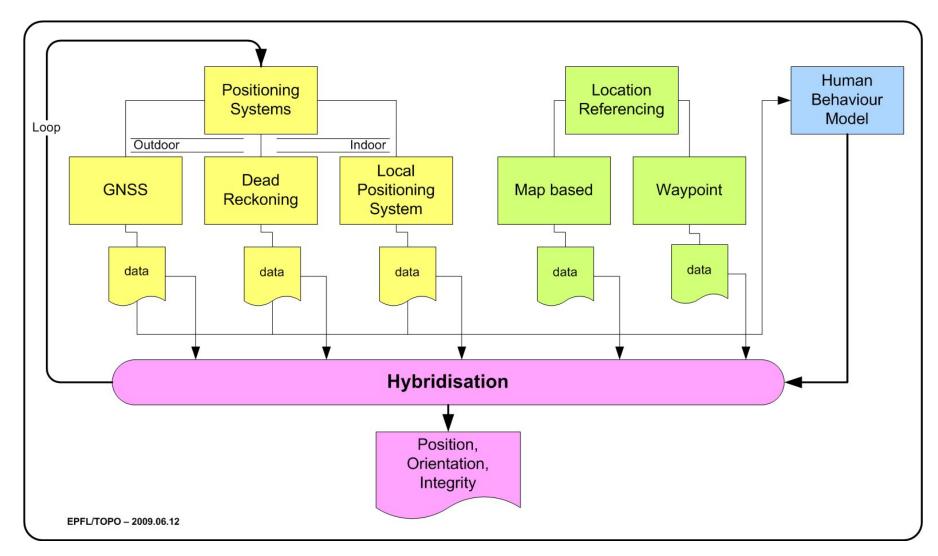
Personnes malvoyantes: fonctions principales « Guide virtuel »

- Se localiser par rapport à des points d'intérêt ou de décision
- Découvrir/apprendre un nouvel itinéraire
- S'orienter dans un grand espace (hall de gare)
- Localiser et être averti des dangers principaux


Performances attendues

- Précision
 - Horizontal: variable suivant les situations
 - 1 à 3m (largeur d'un trottoir), fréquence: variable
 - Orientation:
 - Guidage durant le trajet: qq degrés
 - Personne à l'arrêt: 20 degrés (localiser un POI dans une certaine direction)
- Intégrité
 - Moyenne: typique des applications d'aide à la navigation
 - Le système de navigation vient en appuis aux méthodes classiques d'aide à la locomotion (canne, bande rugueuse, écholocation,...)

Exigences de Navigation



Concept de navigation

- Réponse technologique adaptée face aux exigences du domaine d'applications
- Eléments clés
 - Recours à une référence spatiale absolue
 - Hybridation de technologies complémentaires afin d'augmenter la disponibilité
 - Association à des modèles de mouvements spécifiques à la marche du piéton

Concept de navigation

Concept de Navigation

Utilisation d'une référence spatiale

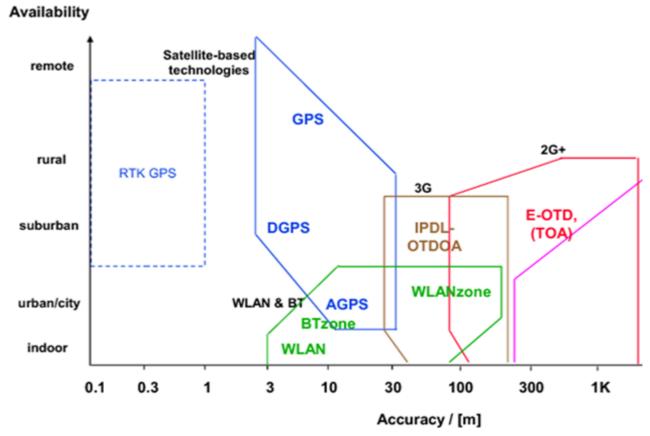
- Environnements urbains et intérieurs
- Développement croissant de la cartographie
 - Modèles spécifiques au déplacement des piétons
- Emplacements caractéristiques pour le recalage du système de navigation
- Association de la position à des contenus
 - Location Based Services (LBS)

Concept de Navigation

Hybridation de technologies complémentaires

- Combinaison de sources de données non corrélées
 - Positions, orientation
 - Accélération, Vitesse, distance parcourue
- Typologie de systèmes
 - Dépendant d'une infrastructure (radio)
 - Autonomes ou embarqués (capteurs MEMS)

Comparaison des méthodes de localisation utilisée en indoor


- Technologie
- Méthode
- Précision
- Avantages
- Limites

Source: EPFL, Renaudin V., Indoor Navigation of Emergency Agents, European Journal of Navigation, 2007

Techn- ology	Processing	Accuracy	Advantages Limitations		Network based	Indepen- -dant
RFID Bluetooth	Cell identity	Relative to the cell size (10 - 20 m)	Simple and compatible with existing handset	Number and size of the cells	1	
WiFi	AOA	up to 100 m	2 AP provide a position	MultipathRange to the APAP antenna quality	1	
	TOA	1 - 50 m	High accuracy	 Multipath Clock offset between handset and AP 	< >	
	TDOA	1 - 50 m	High accuracyNo clock offset	MultipathNetworksynchronisation	1	
	RSS	Propagation modelling: ~ 10m Fingerprinting: 1- 5 m	High accuracy Compatible with existing hardware	Creation of RSS database or propagation models	1	
UWB	AOA	Few decimetres	Only 2 AP provide already a position	- Range to the AP - AP antenna quality	1	
	TDOA	Few decimetres	High accuracy	Low emission powerHigh AP density	1	
A-GNSS	Network assisted ranging	up 5 m	Improved time to first fix (TTFF) and signal trac-king sensitivity.	Multipath Not working in deep indoor	1	1
MEMS	Dead reckoning	5% of travelled distance	Autonomous system Position always available	Large errors (drift and bias) typical of these sensors affect the accuracy		1

Concept de Navigation

Réponses technologiques

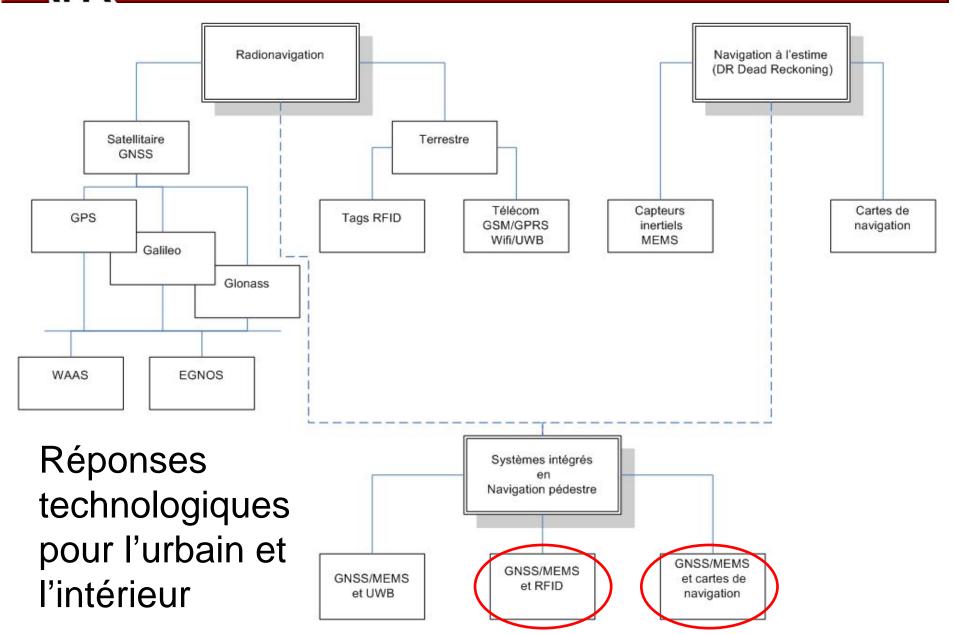
- Systèmes de radiolocalisation: précision vs environnement et disponibilité
- Systèmes dépendants d'une infrastructure

TEPFU

Concept de Navigation

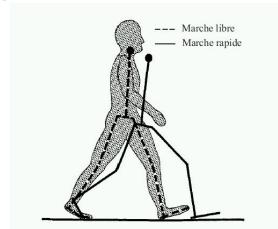
Modèles de mouvements spécifiques

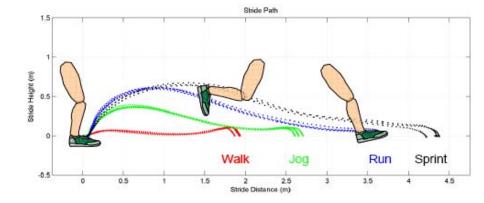
- Description des cycles de marche du piéton (biomécanique)
- Identification de paramètres: vitesse max, accélération, force centripète,...
- Recherche de conditions limites
 - Le piéton ne peut pas changer rapidement de position ou de vitesse
 - L'accélération est nulle sur un court laps de temps
- Equations de conditions permettant le filtrage d'observations



Concept de Navigation

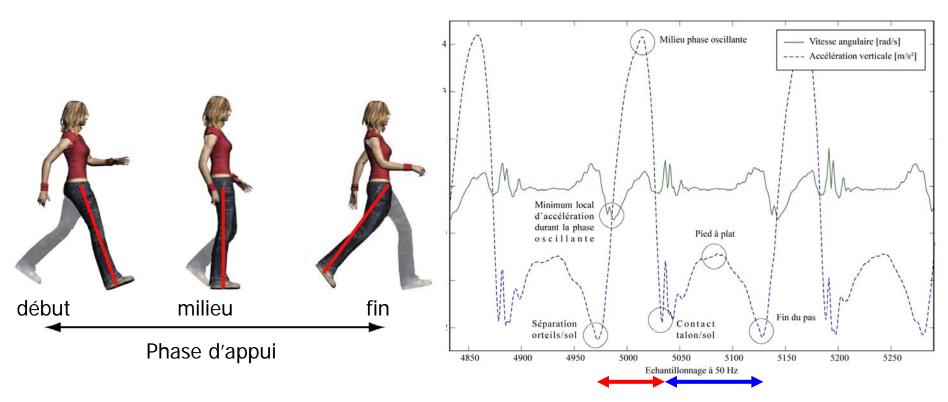
Hybridation	Référence spatiale	Mouvements spécifiques	Autonomie
MEMS (estime)	×	✓	
RFID	✓	×	
Carte	✓	×	





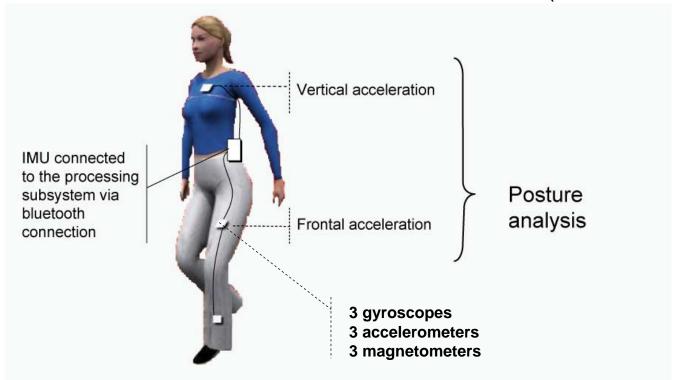
MEMS: Principe

Principe


- Typologie de la marche
- La gravité induit des mouvements spécifiques
- Identification des forces principales
- Architecture matérielle: MEMS
 - Mono capteur ou distribuée
 - Accéléromètres
 - Capteurs magnétiques
 - Gyromètres
- Approche
 - Détection des pas
 - Distance parcourue
 - Orientation du trajet
 - Détection de postures particulières

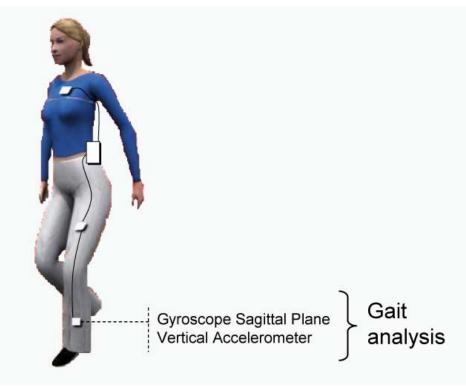
MEMS: Biomécanique de la marche

Phase oscillante Phase d'appui


- Analyse des signaux accélérométriques
- Variation de la vitesse angulaire

MEMS: Architecture distribuée

- Analyse de la posture
 - Approche distribuée
 - Debout, assis, couché
- Aspects sécuritaire pour le pompier
 - Déclenchement d'une alarme en cas de posture immobile (couché, assis)

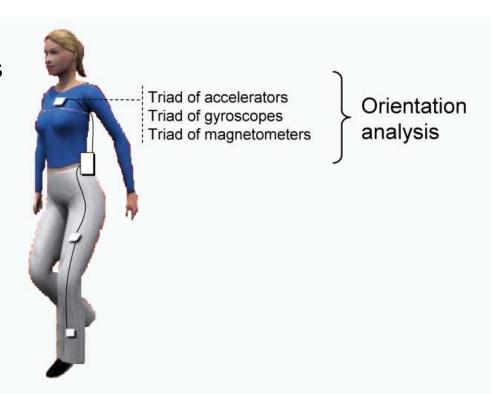

MEMS: Architecture distribuée

Analyse de l'allure

- Classification par logique floue
- Marche en avant, montée d'escaliers, descente d'escaliers (en avant ou à reculons)

Déplacements

- Estimation indirecte des déplacements horizontaux et verticaux provenant des capteurs inertiels
- Relation entre variance/fréquence des accélérations et la longueur des pas

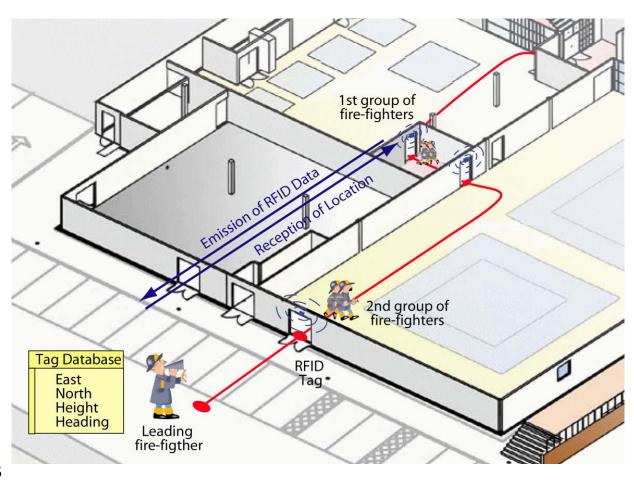


MEMS: Architecture distribuée

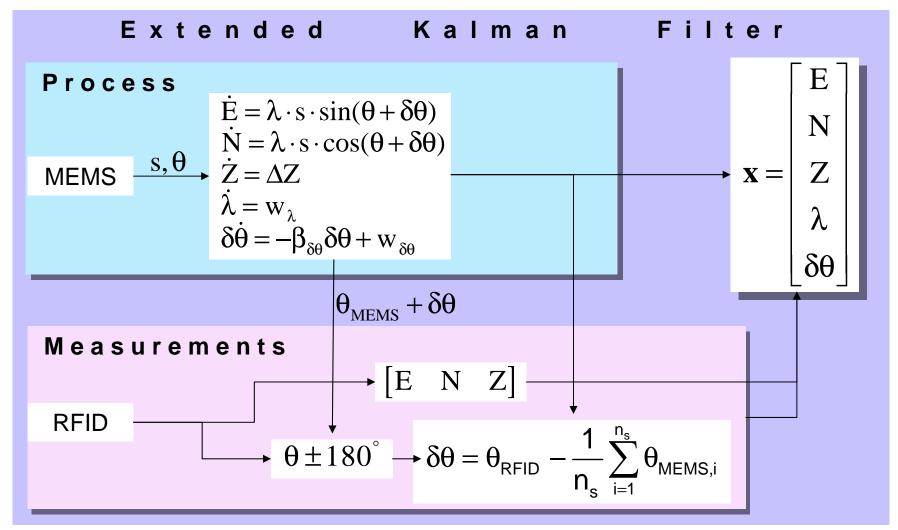
Analyse de l'orientation

- Filtre de Kalman adaptif étendu
- Signaux accélérométriques et des magnétomètres complétés de l'orientation dérivée des gyroscopes
- Réponse adaptive sous différentes conditions dynamiques et selon les perturbations magnétiques

MEMS: Bilan

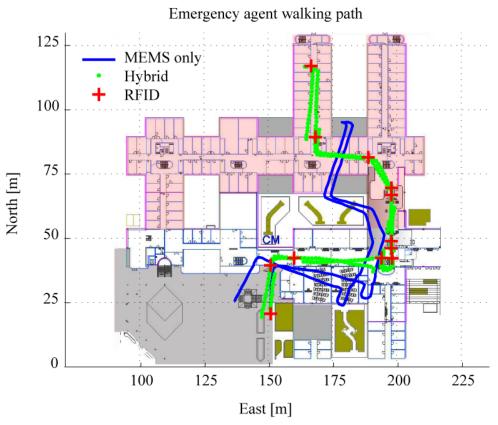


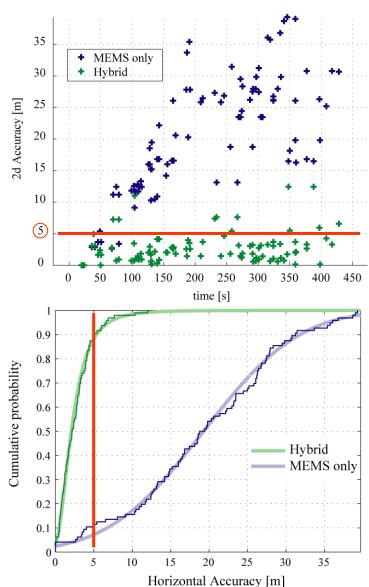
- Système indépendant de toute infrastructure
- ✓ Plusieurs possibilités de montage des capteurs
- Très bonne estimation de la distance parcourue
- Possibilité de détection de postures/activités
- X Erreurs grossières typiques des MEMS drift, bias, scale factor
- X L'erreur de position croit à chaque pas
- X Nécessité de recaler périodiquement les capteurs

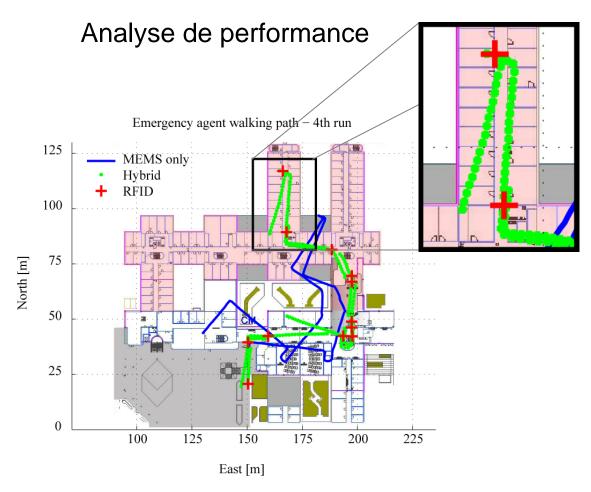


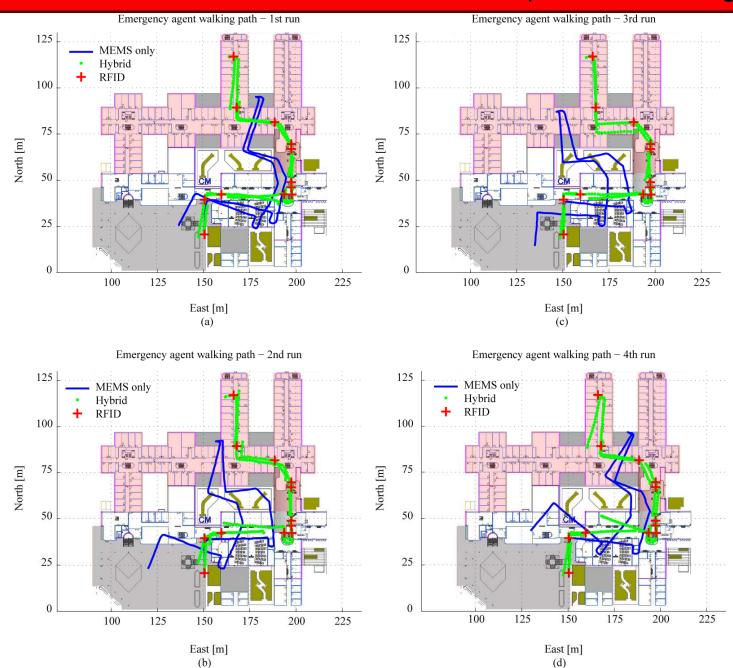
Concept de localisation

- Placement de tags
 RFID le long du parcours à des endroits
 stratégiques (porte)
- Les coordonnées de tags RFID sont connues (BD bâtiment) et l'orientation du trajet au droit du tag
- Les capteurs MEMS
 estime le parcours
 qui est
 périodiquement
 recalé aux passages
 des tags RFID





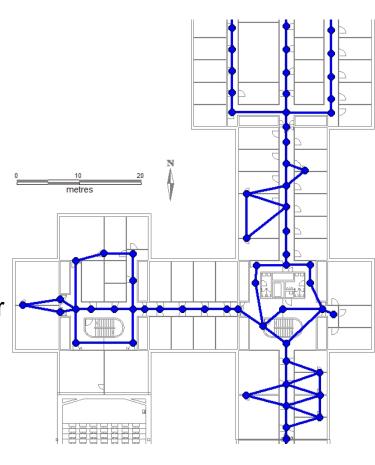

Analyse de performance



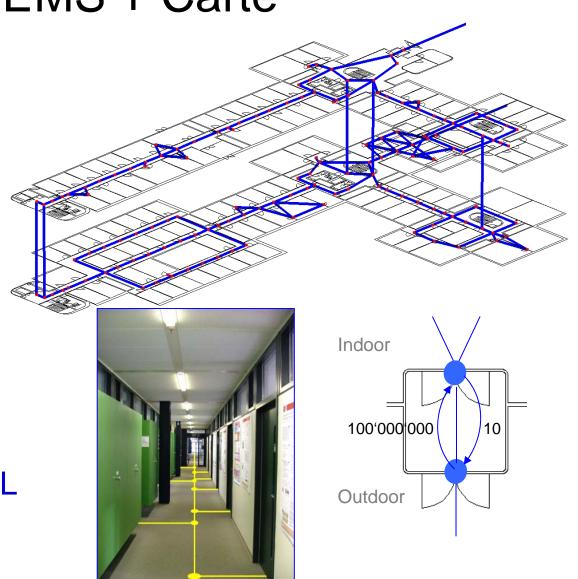
Précision inférieur à 5m Placement de tags RFID chaque 20 à 40 m

- Découplage des mises à jour des informations de position et de cap
- Problème rencontré: lorsque la personne tourne au droit d'un tag RFID
 - L'information
 d'orientation (cap)
 au droit du tag peut
 biaiser le calcul du trajet hybride

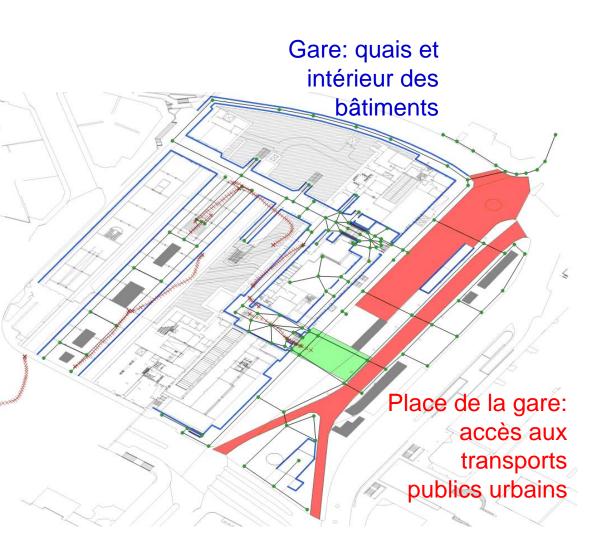
Réponses technologiques


MEMS + tags RFID : Bilan

- Système simple et facile à déployer
- ✓ Ne dépend pas d'une installation pré-existante liée à l'infrastructure
- ✓ Robustesse (Points fixes)
- X Nécessité de connaître les positions des tags
 - En principe, on peut s'appuyer sur les plans d'évacuation des bâtiments pour positionner les tags
- X Difficile à déployer suivant la typologie des espaces construits (grande halle)

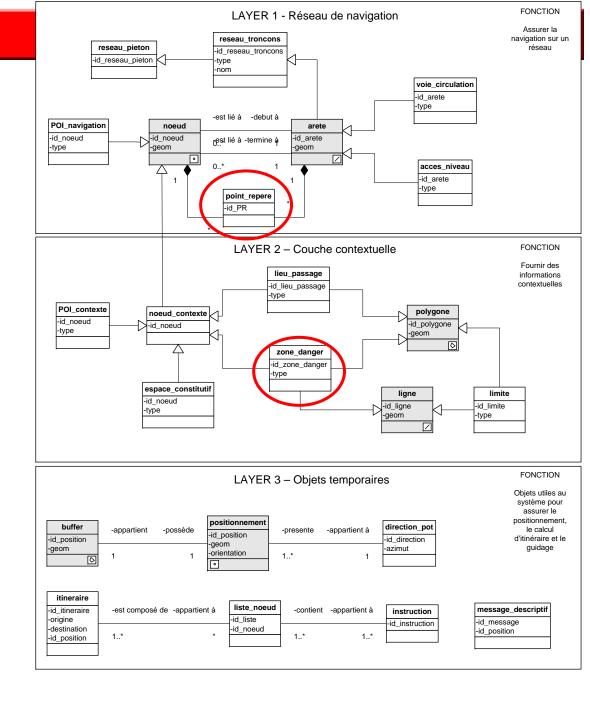

- La base de données cartographiques est nécessaire pour associer une position estimée à un contenu thématique (hall, local, escaliers,...)
- Construction d'un modèle de type Nœud - Arête
 - Avantage pour les applications de navigation
 - Principaux axes de circulation à l'intérieur des bâtiments
 - Portes représentées par leur projection ponctuelle sur l'axe central
 - Connexions extérieures entre les bâtiments

Modèle de base

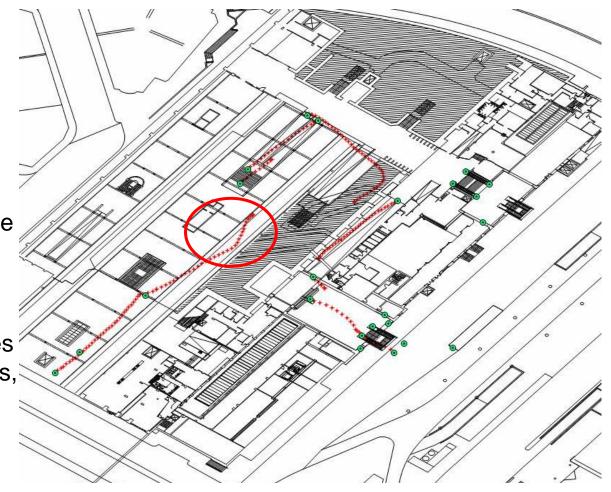

- Modèle 2D + liens verticaux
- Modélisation des escaliers et des ascenseurs
- Informations spécifiques sur l'accès à certains locaux
- Modèle développé pour le campus EPFL (aide à l'orientation, calculs d'itinéraires)

Modèle spécifique

- Modèle multimodal: réseaux piéton, transports publics,...
- Connexions intérieur et extérieur des bâtiments
- Intégration de points de repères, zones de dangers,...
- Organisation en couches d'information: réseau de navigation, contexte, localisation

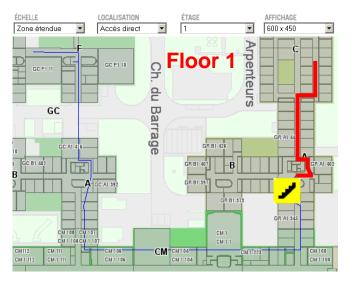


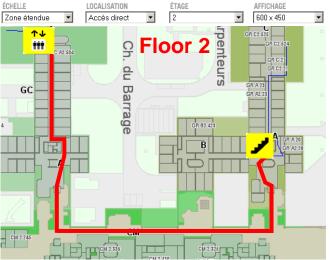
Modèle conceptuel de données


- Réseau de navigation
 - Arête, nœuds
 - POI
 - Points de repère
- Couche de contexte
 - Passages fréquentés
 - Zones de dangers
- Objets temporaires

Travail de recherche EPFL de Thomas Delavy: modèle de données spécifiques pour les personnes malvoyantes (2008)

- Superposition d'une trajectoire MEMS (brute) au contenu cartographique
 - Présence des éléments de contexte pour circonscrire la trajectoire
 - Usage de points de passage stratégiques (escaliers, escalators, portes principales)





Zones de quai, fortes perturbations (magnétiques) sur les MEMS

MEMS + carte : Bilan

- Système indépendant de toute infrastructure
- Richesse du contenu cartographique: réseau, contexte, POI
- Référentiel précis et fiable

- X Disponibilité des données
- X Coût de saisie et de mise à jour
- X Absence de formats et modèles standards

Bilan et perspectives

Mobilité piétonne sécurisée

- Besoins spécifiques et très variables: pas de système universel
- La navigation vient en appuis aux usages « métiers »
- La fiabilité du positionnement reste un défi majeur

Perspectives

- Accroissement de la présence de capteurs: téléphones, habits, infrastructure,...
- Amélioration des modèles de mouvements grâce aux tissus intelligents
- Développement des produits cartographiques spécifiques à la navigation pédestre
- Avènement des systèmes coopératifs de cartographie

TEPFU

Merci de votre attention et bonne navigation

Contacts: http://topo.epfl.ch Pierre-yves.gillieron@epfl.ch

000000