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Abstract
We describe a parameterized decision procedure that extends the
decision procedure for functional recursive algebraic data types
(trees) with the ability to specify and reason about abstractions of
data structures. The abstract values are specified using recursive
abstraction functions that map trees into other data types that have
decidable theories. Our result yields a decidable logic which can be
used to prove that implementations of functional data structures sat-
isfy recursively specified invariants and conform to interfaces given
in terms of sets, multisets, or lists, or to increase the automation in
proof assistants.

1. Introduction
Decision procedures for proving verification conditions have seen
great practical success in recent years. Systems using such deci-
sion procedures incorporated into SMT provers [15, 6] were used
to verify tens of thousands of lines of imperative code [13, 3] and
prove complex correctness conditions of imperative data structures
[62, 46]. While much recent work on automation was invested into
imperative languages, it is interesting to consider the reach of such
decision procedures when applied in functional programming lan-
guages, which were designed with the ease of reasoning as one of
the explicit goals [40]. Researchers have explored the uses of ad-
vanced type systems to check expressive properties [17, 61], and
have recently also applied automated provers to solve localized
type system constraints [24, 54]. The benefits of incorporating auto-
mated provers include the ability to efficiently deal with arithmetic
constraints and propositionally complex constraints.

In this paper we embrace a functional language as an implemen-
tation language, but also as the specification language. In fact, our
properties are expressed as executable assertions. Among the im-
mediate benefits is that the developer need not learn a new notation
for properties. Moreover, the developers can debug the properties
and the code using popular testing approaches such as Quickcheck
[12, 56]. The use of executable specification language avoids the
difficulties of adapting classical higher-order logic to run-time
checking [63]. In using programming language as the specifica-
tion language, our work is in line with soft typing approaches that
originated in untyped functional languages [11], although we use
ML-like type system as a starting point, focusing on properties that
go beyond the ML types.

Purely functional implementations of data structures [48]
present a well-defined and interesting benchmark for automated
reasoning about functional programs. Data structures come with
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well-understood specifications: they typically implement an or-
dered or unordered collection of objects or maps between objects.
When expressing the desired properties of data structures, it quickly
becomes evident that we need a rich set of data types to write spec-
ifications. In particular, it is desirable to have in the language not
only algebraic data types, but also finite sets and multisets. These
data types can be used to concisely specify the observable behav-
ior of data structures with the desired level of under-specification
[27, 35, 66, 16]. For example, if neither the order nor the repetitions
of elements in the tree matter, an appropriate abstract value is a set.
An abstract description of an add operation that inserts into a data
structure is the following identity:

α(add(e, t)) = {e} ∪ α(t) (1)

Here α denotes a function mapping a tree into the set of elements
stored in the tree. Other variants of the specification can use multi-
sets or lists instead of sets.

An important design choice is how to specify such mappings
α between the concrete and abstract data structure values. A pop-
ular approach [13, 63] does not explicitly define a mapping α but
instead introduces a fresh ghost variable to represent values α(t).
It then uses invariants to relate the ghost variable to the concrete
value of the data structure. Because developers explicitly specify
values of ghost variables, such approach yields simple verification
conditions. However, this approach can impose additional annota-
tion overhead. To eliminate such overhead we choose to use re-
cursively defined abstraction functions to map concrete data struc-
tures to their abstract view. As a result, our verification conditions
contain user-defined function definitions that manipulate rich data
types, along with equations and disequations involving such func-
tions. Our goal is to develop decision procedures that can reason
about interesting fragments of such language.

We present a decision procedure for reasoning about recursive
data types with user-defined abstraction functions, expressed as a
fold over trees, or a catamorphisms [42], over algebraic data types.
This decision procedure subsumes approaches for reasoning about
recursive data types [49]. It adds the ability to express constraints
on the abstract view of the data structure, as well as user-defined
mapping between the concrete and the abstract view of the data
structure. When using sets as the abstract view, our decision proce-
dure can naturally be combined with decision procedures for rea-
soning about sets of elements in the presence of cardinality bounds
[32, 28]. It also presents a new example of a theory that fits in the re-
cently described approach for combining decision procedures that
share sets of elements [60].

Our decision procedure is not limited to using sets as an ab-
stract view of data structure. The most important condition for ap-
plicability is that the notion of a collection has a decidable theory
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object BSTSet {
type E = Int
type C = Set[E]
sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left: Tree, value: E, right: Tree)

extends Tree

// abstraction function
def content(t: Tree): C = t match {

case Leaf() => Set.empty
case Node(l,e,r) => content(l) ++ Set(e) ++ content(r)
}

// returns an empty set
def empty: Tree = {

Leaf()
} ensuring (res => content(res) == Set.empty)

// adds an element to a set
def add(e: E, t: Tree): Tree = (t match {

case Leaf() => Node(Leaf(), e, Leaf())
case t @ Node(l,v,r) =>

if (e < v) Node(add(e, l), v, r)
else if (e == v) t
else Node(l, v, add(e, r))

}) ensuring (res => content(res) == content(t) ++ Set(e))

// user−defined equality on abstract data type (congruence)
def equals(t1 : Tree, t2 : Tree) : Boolean =

(content(t1) == content(t2))

}

Figure 1. A part of a binary search tree implementation of set

in which the catamorphism can be expressed. This includes in par-
ticular arrays [10], multisets with cardinality bounds [51, 52], and
even option types over integer elements. Each abstract value pro-
vides different possibilities for defining fold over trees.

We believe that we have identified an interesting point in the
space of automated reasoning approaches, because the technique
turned out to be applicable more widely than we had expected. We
intended to use the technique to verify the abstraction of values of
functional data structures using sets. It turned out that the decision
procedure is often complete not only for set abstraction but also for
lists and multisets, and even for boolean abstraction that encodes
data structure invariants. Beyond data structures used to implement
sets and maps, we have found that computing bound variables,
a common operation on the representations of lambda terms and
formulas, is also amenable to our approach. We thus expect that our
decision procedure can help increase the automation of reasoning
about operational semantics and type systems of programming
languages.

Contribution. This paper presents a parameterized decision pro-
cedure for the quantifier-free theory of (purely functional) recur-
sive tree data structures with a catamorphism function. We estab-
lish soundness of the general procedure and provide conditions on
the catamorphism under which the procedure is complete.

2. Example
Figure 1 shows Scala [47] code for a partial implementation of a
set of integers using a binary search tree. The class hierarchy

sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left:Tree, value:E, right:Tree) extends Tree

α

t1

t2 t3t4

e1

e2

α

α

α
α

Figure 2. Graphical representation of the constraint (2), where
edges labeled by α denote applications of content

describes an algebraic data type Tree with the alternatives Node
and Leaf. The use of the private keyword implies that the alterna-
tives are not visible outside of the module BSTSet. The keyword
sealed means that the hierarchy cannot be extended outside of the
module.

The module BSTSet provides its clients with functions to create
empty sets and to insert elements into existing sets. Because the
client has no information on the type Tree, he uses the abstraction
function content to view these trees as sets. Note that we call
it an abstraction function because of its conceptual role, but it
is declared and written like any other function, and therefore is
executable as well.

Additionally, the functions empty and add are annotated with
postconditions on which the client can rely, without knowing any-
thing about their concrete implementation. These postconditions do
not give any information about the inner structure of binary search
trees, as such information would be useless to a user who has no
access to this structure. Instead, they express properties on their re-
sult in terms of the abstraction function. The advantages of such an
abstraction mechanism are well-known; by separating the specifi-
cation, the functions signatures and their contracts, from the imple-
mentation, the concrete code, one keeps programs modular, allow-
ing for simpler reasoning, better opportunities for code reuse and
easier replacement of modules.

The parametrized type Set[E], accessed through the type alias
C and used in the abstraction function and the specifications, refers
to the Scala library class for immutable sets. The operator ++ com-
putes a set consisting of the union of two sets, and the constructor
Set(e) constructs a singleton containing the element e. We assume
the implementation of the library to be correct, and map these op-
erations to the corresponding ones in the theory of finite sets when
we reason about the programs.

The advantages of using an abstraction function in the specifi-
cations are clear, but it also makes the task of verification systems
harder, since they need to reason about these user-defined functions
which can appear in contracts, and therefore in verification condi-
tions. For example, using standard techniques to generate verifica-
tion conditions for functional programs, we would create for the
function add the following condition (among others):

∀t1, t2, t3, t4 : Tree, e1, e2 : Int
t1 = Node(t2, e1, t3)⇒
content(t4) = content(t2) ∪ {e2} ⇒
content(Node(t4, e1, t3)) = content(t1) ∪ {e2}

(2)

Such a formula combines constraints over algebraic data types
and over finite sets, as well as a non-trivial connection given by
the recursively defined abstraction function content. Such formula
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is therefore beyond the reach of currently known decision proce-
dures. In the following sections, we present a new decision pro-
cedure which can handle such formulas. As an illustration, Sec-
tion 4.5 applies our decision procedure precisely to the verification
condition (2).

3. Reasoning about Recursive Data Structures
and Abstraction Functions

Decision procedures for reasoning about recursive data structures
[49, 5] are concerned with proving and disproving quantifier-free
formulas that involve constructors and selectors of a tree algebraic
data type, such as the immutable version of heterogeneous lists
in LISP. Using the terminology of model theory, this problem
can be described as the satisfiability of quantifier-free first-order
formulas in the theory of term algebras [21, Page 14, Page 67].
A term algebra structure has as a domain of interpretation ground
terms over some set of function symbols, called constructors. The
language of term algebras includes application of constructors to
build larger terms from smaller ones, and the only atomic formulas
are comparing terms for equality.

In this paper, we extend the decision procedure for such recur-
sive data types with the ability to specify an abstract value of the
recursive data type. The abstract value can be, for example, a set,
relation, multiset (bag), or a list. A number of decision procedures
are known for theories of such abstract values, [32, 52, 51, 36, 23].
Such values purposely ignore issues such as tree shape, ordering,
or even the exact number of times an element appears in the data
structure. In return, they come with powerful algebraic laws and de-
cidability properties that are often not available for algebraic data
types themselves, and they often provide the desired amount of
under-specification for interfaces of data structures.

Our decision procedure enables proving formulas that relate
data structures implemented as algebraic data types to their abstract
values that specify the observable behavior of these data types. It
can thus greatly increase the automation when verifying correctness
of functional data structures.

3.1 Instances of the Decision Procedure
The choice of the type of data stored in the tree in our decision
procedure is largely unconstrained; the procedure works for any in-
finitely countable parameterized data type, which we will denote by
E in our discussion (it could be extended to finite data types using
techniques from [25]). The decision procedure is parameterized by

1. the element type E
2. a collection type C and

3. an abstraction function α (generalizing the content function in
Figure 1).

We require the abstraction function to be a catamorphism (general-
ized fold) [42]. In the case of binary trees on which we focus, for
some functions

empty : C
combine : (C, E , C)→C

the definition of the abstraction function is:

def α(t: Tree): C = t match {
case Leaf() ⇒ empty
case Node(l,e,r) ⇒ combine(α(l), e, α(r))
}

We next show that this requirement is naturally satisfied for many
abstraction functions over recursive data types.

object Lambda {
type ID = String
type C = Set[String]

sealed abstract class Term
case class Var(id: ID) extends Term
case class App(fun: Term, arg: Term) extends Term
case class Abs(bound: ID, body: Term) extends Term

def free(t: Term): C = t match {
case Var(id) => Set(id)
case App(fun, arg) => free(fun) ++ free(arg)
case Abs(bound, body) => free(body) -- Set(bound)
}
}

Figure 3. Computing the set of free variables in a λ-calculus term

object MinElement {
type E = Int

sealed abstract class Tree
case class Node(left: Tree, value: E, right: Tree) extends Tree
case class Leaf() extends Tree

def findMin(t: Tree): Option[E] = t match {
case Leaf() => None
case Node(l,v,r) =>

(findMin(l),findMin(r)) match {
case (None,None) => Some(v)
case (Some(vl),None) => Some(min(v, vl))
case (None,Some(vr)) => Some(min(v, vr))
case (Some(vl),Some(vr)) => Some(min(v, vl, vr))
}

}
}

Figure 4. Using the minimal element as an abstraction

Canonical Set Abstraction. The content function in Figure 1 is
an example of a catamorphism used as an abstraction function. In
this case, empty = ∅ and combine(t1, e, t2) = c1 ∪ {e} ∪ c2. We
found this example to be particularly useful and well-behaved, so
we refer to it as the canonical set abstraction.

Free Variables of Lambda Calculus Terms. Canonical abstrac-
tion is not the only interesting abstraction function whose result is
a set. Figure 3 shows another example, where the catamorphism
free computes a set by adding and removing elements as the tree
traversal goes. Such abstraction function can then be used to verify
that rewriting applied to a λ-calculus term preserves the set of free
variables in the term.

Minimal Element. Some useful abstractions map trees into a
single element rather than into a collection which depends on
the size of the tree. findMin in Figure 4 for instance is naturally
expressed as a catamorphism, and can be used to prove properties
of data structures which maintain invariants about the position of
certain particular elements (e.g. priority queues).

Sortedness of Binary Search Trees. Catamorphisms can also
compute properties about tree structures which apply to the com-
plete set of nodes and go beyond the expression of a container in
terms of another. Figure 5 shows the abstraction function sorted
which, when applied to a binary tree, returns a triple whose third
element is a boolean indicating whether the tree is sorted. While
this specification style may feel unnatural in that case, we consider
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object SortedSet {
type E = Int

sealed abstract class Tree
case class Leaf() extends Tree
case class Node(left: Tree, value: E, right: Tree) extends Tree

def sorted(t: Tree): (Option[Int],Option[Int],Boolean) =
t match {
case Leaf() => (None, None, true)
case Node(l, v, r) => {

(sorted(l),sorted(r)) match {
case (( , ,false), ) => (None, None, false)
case ( ,( , ,false)) => (None, None, false)
case ((None,None, ),(None,None, )) =>

(Some(v), Some(v), true)
case ((Some(minL),Some(maxL), ),(None,None, ))

if (maxL < v) => (Some(minL),Some(v),true)
case ((None,None, ),(Some(minR),Some(maxR), ))

if (minR > v) => (Some(v), Some(maxR), true)
case ((Some(minL),Some(maxL), ),

(Some(minR),Some(maxR), ))
if (maxL < v && minR > v) =>

(Some(minL),Some(maxR),true)
case => (None,None,false)
}
}
}
}

Figure 5. Using an abstraction function to check the sorted prop-
erty

this function to be a good example of the broad application spec-
trum of our decision procedure.

Figure 6 summarizes some of the specific cases to which our
decision procedure applies. It shows the type of the abstract value
C, the definition of the functions empty and combine that define
the catamorphism, some of the operations available on the logic
LC of C values, and points to one of the references that can be
used to show the decidability of LC . Figure 6 illustrates that our
decision procedure covers a wide range of collection abstractions
of interest, as well as some other relevant functions definable as
catamorphisms.

4. The Decision Procedure
4.1 Preliminaries
To simplify the presentation, we present our decision procedure for
the specific algebraic data type of binary trees, corresponding to the
case classes in Figure 1, which in ML syntax, would correspond to
the algebraic data type

datatype Tree = Leaf | Node of Tree ∗ E ∗ Tree

Our procedure naturally extends to data types with more construc-
tors.

If t1 and t2 denote values of type Tree, by t1 = t2 we denote
that t1 and t2 are structurally equal that is, either they are both
leaves, or they are both nodes with equal values and equal subtrees.

For the purpose of soundness, we leave the collection type C
and the language LC of decidable constraints on C largely uncon-
strained. As explained below, the conditions for completeness are
relatively easy to satisfy when the image are sets and become some-
what more involved for multisets and lists.

In our exposition, we use the notation

distinct(x1
1, x

1
2, . . . , x

1
I(1); . . . ;x

n
1 , . . . , x

n
I(n))

For a conjunction φ of literals over the theory of trees parametrized
by LC and α:

1. apply purification to separate φ into φT ∧ φB ∧ φC where:
• φT contains only literals over tree terms
• φC contains only literals over terms from LC
• φB contains only literals of the form c = α(t) where c is a

variable from LC and t is a tree variable

2. flatten all terms and eliminate the selectors left and right

3. apply unification on the tree terms, potentially detecting unsat-
isfiability

4. if unification did not fail, propagate the result from unification
to the relevant parts of φC , yielding a new formula φ′C in LC

5. establish the satisfiability of φ with a decision procedure for LC
applied to φ′C

Figure 7. Overview of the decision procedure

T ::= t | Leaf | Node(T,E, T ) Tree terms
| left(T ) | right(T )

C ::= c | α(t) | TC C-terms
FT ::= T = T | T 6= T Equations over trees
FC ::= C = C | FC Formulas of LC
E ::= variables or constants of type E
φ ::=

V
FT ∧

V
FC Conjunctions

ψ ::= φ | ¬φ | φ ∨ φ | φ ∧ φ Formulas
| φ⇒ φ | φ⇔ φ

TC and FC represent terms and formulas of LC respectively. For-
mulas are assumed to be closed under negation.

Figure 8. Syntax of the parametric logic

as a syntactic shorthand for the following conjunction of disequal-
ities

n̂

i=1

n̂

j=i+1

I(i)^
k=1

I(j)^
l=1

xi
k 6= xj

l

For example, distinct(x, y; z) reads as x 6= z ∧ y 6= z, and
distinct(x1; . . . ;xn) means that all xi are different.

4.2 Overview of the Decision Procedure
The high-level summary of our procedure is that it solves the
constraints over trees using unification, then derives all relevant
consequences on the type C of collections that abstracts the trees.
It thus effectively reduces a formula over trees and their contents
expressed using terms of LC to a formula in LC , for which a
decision procedure is assumed to be available. Figure 7 gives a
high-level view of the process. We next define our parametrized
decision problem more precisely, present our decision procedure,
and show its soundness and completeness.

4.3 Syntax and Semantics of Recursive Data Structures with
Abstraction Functions

The syntax of our logic is given in Figure 8, and Figure 9 gives a
description of its semantics. The description refers to the semantics
of the parameter theory LC , which we write J KC , as well as the
definition of the catamorphism α.
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C empty combine(c1, e, c2) abstract operations
(apart from ∧,¬,=)

complexity follows from

Set ∅ c1 ∪ {e} ∪ c2 ∪,∩, \, cardinality NP [32]
Multiset ∅ c1 ] {e} ] c2 ∩,∪, \,], setof, cardinality NP [51, 52]

N 0 c1 + 1 + c2 +,≤ NP [50]
List List() a) c1++ List(e)++ c2 (in-order) ++(concat), List( )(singleton) PSPACE [53]

List() b) List(e)++c1++ c2 (pre-order)
List() c) c1++ c2++ List(e) (post-order)

Tree Leaf Node(c2, e, c1) (mirror) Node, Leaf NP [49]
Option None a) Some(e) Some,None NP [45]

None b) (computing minimum) see Figure 4 Some,None,+,≤, if NP [44, 45, 50]
(Option,
Option,

Boolean)

(None,
None,
true)

c) (checking sortedness) see Figure 5

Figure 6. Example Instances of our Decision Procedure for Different Catamorphisms

JNode(T1, e, T2)K = Node(JT1K, JeKC, JT2K)
JLeafK = Leaf

Jleft(Node(T1, e, T2))K = JT1K
Jright(Node(T1, e, T2))K = JT2K

Jα(t)K given by the catamorphism
JT1 = T2K = JT1K = JT2K
JT1 6= T2K = JT1K 6= JT2K
JC1 = C2K = JC1KC = JC2KC

JFCK = JFCKC
J¬φK = ¬JφK

Jφ1 ? φ2K = Jφ1K ? Jφ2K
where ? ∈ {∨,∧,⇒,⇔}

Figure 9. Semantics of the parametric logic

4.4 Key Steps of the Decision Procedure
We describe here a decision procedure for a conjunction of literals
in our parametric theory. Such a decision procedure can be adapted
to handle formulas of arbitrary boolean structure [19].

Purification. In the first step of our decision procedure, we sep-
arate all tree terms from literals from LC . By construction, such
terms can only occur as the argument of the abstraction function α.
It therefore suffices to replaces all such applications by fresh vari-
ables of LC and add the appropriate equalities (T denotes any tree
term, cF and tF are fresh in the new formula):

FC ; tF = T ∧ cF = α(tF) ∧ FC [α(T ) 7→ cF]

Flattening of Tree Terms. We then flatten tree terms in a straight-
forward way. If t and tF denote tree variables, T1 and T2 non-
variable tree terms and T an arbitrary tree term, we repeatedly ap-
ply the following five rewrite rules until none applies ( .= denotes
one of {=, 6=}):
T
.
= Node(T1, E, T2) ; tF = T1 ∧ T

.
= Node(tF, E, T2)

T
.
= Node(t, E, T2) ; tF = T2 ∧ T

.
= Node(t, E, tF)

T
.
= left(T1) ; tF = T1 ∧ T

.
= left(tF)

T
.
= right(T1) ; tF = T1 ∧ T

.
= right(tF)

T1
.
= t ; t

.
= T1

t 6= T1 ; tF = T1 ∧ t 6= tF

where tF is always a fresh variable. It is straightforward to see that
this rewriting always terminates.

Elimination of Selectors. The next step is to eliminate terms of
the form left(t) and right(t). We do this by applying the following

rewrite rules:
t = left(t1) ; t1 = Node(tL, e, tR) ∧ t = tL
t = right(t1) ; t1 = Node(tL, e, tR) ∧ t = tR

Here we use an assumption that the original formula was well-
typed, which ensures that selectors are not applied to Leaf nodes.
Again, e, tL and tR denote fresh variables of the proper types.

These first three steps yield a normalized conjunctive formula
where all literals are in exactly one of following three categories:

• literals over tree terms, which are of one of the following forms:

t1 = t2, t = Node(t1, E, t2), t1 6= t2

(Note that disequalities are always between variables.)
• binding literals, which are of the form:

c = α(t)

• literals over terms of LC , which do not contain tree variables
or applications of α, and whose specific form depends on the
parameter theory LC

Case Splitting. For simplicity of the presentation, we describe
our procedure non-deterministically by splitting the decision prob-
lem into a collection of problems of simpler structure (this
is a non-deterministic polynomial process). Consider the set
{t1, . . . , tn, Leaf} of tree variables appearing in the normalized
formula, augmented with the constant term Leaf. We solve the de-
cision problem for each possible partitioning of this set into equiva-
lence classes. Let ∼ denote an equivalence relation defining such a
partitioning. We generate our subproblem by adding to the original
problem, for each pair of terms (Ti, Tj) in the set, the constraint:(

Ti = Tj if Ti ∼ Tj

Ti 6= Tj otherwise

Consider now the set {e1, . . . , em} of variables denoting elements
of type E . We again decompose our subproblem according to all
possible partitionings over this set, that is we add equalities and
disequalities for all pairs (ei, ej) in the same way as for tree
variables.

The original problem is satisfiable if and only if any of these
subproblems is satisfiable. The remaining steps of the decision
procedure are applied to each subproblem separately.

Unification. At this point, we apply unification on the positive
tree literals. Following [2], we describe the process using inference
rules consisting of transformations on systems. A system is the
pair, denoted P ;S, of a set P of equations to unify, and a set
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Trivial:
T

?
=T ∪ P ′;S
P ′;S

Symbol Clash:

Leaf
?
= Node( . . . ) ∪ P ′;S

⊥
Node( . . . )

?
= Leaf ∪ P ′;S
⊥

Orient:
{T1

?
= t} ∪ P ′;S

{t ?
=T1} ∪ P ′;S

if T1 is not a variable

Occurs Check:

{t ?
=T} ∪ P ′;S
⊥ if t appears in T but t 6= T

Term Variable Elimination:

{t ?
=T} ∪ P ′;S

P ′[t 7→ T ];S[t 7→ T ] ∪ {t = T} if t does not appear in T

Element Variable Elimination:

{e1
?
= e2} ∪ P ′;S

P ′[e1 7→ e2];S[e1 7→ e2] ∪ {e1 = e2}
Decomposition:

{Node(T1, e, T2)
?
= Node(T ′1, e

′, T ′2)} ∪ P ′;S
{T1

?
=T ′1, T2

?
=T ′2, e

?
= e′} ∪ P ′;S

Figure 10. Unification Rules

S of solution equations. Equations range over tree variables and
element variables. The special system ⊥ represents failure. The
set of equations S has the property that it is of the form {t1 =
T1, . . . , tn = Tn, e1 = ei, . . . , em = ej}, where each tree
variable ti and each element variable ei on the left-hand side of
an equality does not appear anywhere else in S. Such a set is said
to be in solved form, and we associate to it a substitution function
σS . Over tree terms, it is defined by σS = {t 7→ T | (t = T ) ∈ S}.
The definition over element variables is similar. The inference rules
are the usual rules for unification adapted to our particular case, and
are shown in Figure 10.

Any concrete algorithm implementing the described inference
system will have the property that on a set of equations to unify, it
will either fail, or terminate with no more equations to unify and a
system ∅;S describing a solution and its associate function σS .

If for any disequality ti 6= tj or ei 6= ej , we have that
respectively σS(ti) = σS(tj) or σS(ei) = σS(ej), then our
(sub)problem is unsatisfiable. Otherwise, the tree constraints are
satisfiable and we move on to the constraints on the collection type
C.

Normal Form After Unification. After applying unification, we
can represent the original formula as a disjunction of formulas
in a normal form. Let σS be the substitution function obtained
from unification. Let ~t be the vector of variables ti for which
σS(ti) = ti; we call such variables parameter variables. Let ~u
denote the remaining tree variables; for these variable σS(uj) is an
expression built from~t variables using Node and Leaf, they are thus
uniquely given as a function of parameter variables. By the symbol
vi we denote a term variable that is either a parameter variable ti or
a non-parameter variable ui. Using this notation, we can represent

(a disjunct of) the original formula in the form:

~u = ~T (~t) ∧N(~u,~t) ∧M(~u,~t,~c) ∧ FE ∧ FC (3)

where

1. ~T are vectors of expressions in the language of recursive data
structures, expressing non-parameter term variables ~u in terms
of the parameter variables ~t;

2. N(~u,~t) denotes a conjunction of disequalities of term variables
ui, ti that, along with ~T , completely characterize the equalities
and disequalities between the term variables. Specifically, N
contains:

(a) a disequality ti 6= tj for every pair of distinct parameter
variables;

(b) a disequality ti 6= uj for every pair of a parameter variable
and a non-parameter variable for which the term Ti(~t) is not
identical to ui

(c) a disequality ti 6= Leaf for each parameter variable ti.

Note that for the remaining pairs of variables ui and uj , ei-
ther the equality holds and Ti(~t) = Tj(~t) or the disequal-
ity holds and follows from the other disequalities and the
fact that Ti 6= Tj . Note that, if ~u = u1, . . . , um and
~t = t1, . . . , tn, then the constraint N(~u,~t) can be denoted by
distinct(u1, . . . , um; t1; . . . ; tn; Leaf);

3. M(~u,~t,~c) denotes a conjunction of formulas ci = α(vi) where
vi is a term variable and ci is a collection variable;

4. FE is a conjunction of literals of the form ei = ej and ei 6= ej

for some element variables ei, ej ;

5. FC is a formula of the logic of collections (Figure 8).

Partial Evaluation of the Catamorphism. We next partially eval-
uate the catamorphism α with respect to the substitution σS ob-
tained from unification. More precisely, we repeatedly apply the
following rewriting on terms to terms contained in the subformula
M(~u,~t,~c):

α(u) ; α(σS(u))
α(Node(t1, e, t2)) ; combine(α(t1), e, α(t2))

α(Leaf) ; empty

After this transformation, α applies only to parameter variables.
We introduce a variable ci of LC to ensure that for each parameter
ti we have an equality of the form ci = α(ti), unless such con-
junct is already present. After adding conjuncts ci = α(ti) we can
replace all occurrences of α(ti) with ci. We can thus replace, with-
out changing the satisfiability of the formula (3), the subformula
M(~u,~t,~c) with

M1(~t,~c) ∧ F 1
C

where M1 contains only conjunctions of the form ci = α(ti) and
F 1

C is a formula in LC .

Example. This is a crucial step of our decision procedure, and we
illustrate it with a simple example. If ~u = ~T (~t) is simply the
formula u = Node(t1, e, t2), then a possible formula N is

distinct(t1; t2;u; Leaf)

A possible formula M is

c = α(u) ∧ c1 = α(t1)

After the partial evaluation of the catamorphism and introducing
variable c2 for α(t2), we can replace M with

c1 = α(t1) ∧ c2 = α(t2) ∧ c = combine(c1, e, c2)
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where we denote the first two conjuncts byM1(c1, c2) and the third
conjunct byF 1

C . (Here, combine is an expression inLC defining the
catamorphism.)

Normal form After Evaluating Catamorphism. We next replace
~u by ~T (~t) in (3) and obtain formula of the form

D ∧ E (4)

where

1. D ≡ N(~T (~t),~t) ∧M1(~t,~c)

2. E ≡ FE ∧ FC ∧ F 1
C

Expressing Existence of Distinct Terms. Note that E already
belongs to the logic of collection LC . To reduce (4) to a formula
in LC , it therefore suffices to have a mapping from D to some LC-
formulaDM . Observe that by using true asDM we obtain a sound
procedure for proving unsatisfiability. While useful, such procedure
is not complete. To ensure completeness, we require that D and
DM are equisatisfiable. The appropriate mapping from D to DM

depends on LC , and the properties of α. In sections 4.8, 4.9, 4.10
we give such mappings that ensure completeness for a number of
logics LC and catamorphisms α.

Invoking Decision Procedure for Collections. Having reduced
the problem to a formula in LC we invoke a decision procedure for
LC .

4.5 Example of Decision Procedure Run
We next give an example of the application of our decision proce-
dure for the canonical set abstraction. Recall (2), our example from
Section 2, now written as

∀t1, t2, t3, t4 : Tree, e1, e2 : E
t1 = Node(t2, e1, t3)⇒
α(t4) = α(t2) ∪ {e2} ⇒
α(Node(t4, e1, t3)) = α(t1) ∪ {e2}

(5)

To prove the validity of (5), we show the unsatisfiability of the
following quantifier free formula

t1 = Node(t2, e1, t3)

∧ α(t4) = α(t2) ∪ {e2} (6)
∧ α(Node(t4, e1, t3)) 6= α(t1) ∪ {e2}

After the application of purification and flattening, we get the
following

t1 = Node(t2, e1, t3) ∧ t5 = Node(t4, e1, t3)

∧ c1 = α(t4) ∧ c2 = α(t2) ∧ c3 = α(t5) ∧ c4 = α(t1)

∧ c1 = c2 ∪ {e2} ∧ c3 6= c4 ∪ {e2}

We now have to guess a partitioning over the set {t1, . . . , t5, Leaf}.
Out of those we can pick, many will fail at unification, for instance
if t1 = t2, or if t1 = t5 ∧ t2 6= t4. As a more interesting case, we
pick ^

1≤i<j≤5

ti 6= tj

We also pick that e1 6= e2, although this has no consequence on the
rest of this example.

Unification does not merge any term or variables and we obtain
the following substitution function σS

σS(t1) = Node(t2, e1, t3)

σS(t5) = Node(t4, e1, t3)

Applying σS on the disequalities over trees does not yield any
contradiction, so the constraints over tree terms are satisfiable.

For the sake of clarity, we now rename our tree variables so that
the letters used in the description of the decision procedure and in
this example match

t1 7→ u1 t2 7→ t1 t3 7→ t2 t4 7→ t3 t5 7→ u2

Our formula in normal form now reads as

u1 = Node(t1, e1, t2) ∧ u2 = Node(t3, e1, t2)

∧ distinct(u1, u2; t1; t2; t3; Leaf)

∧ c1 = α(t3) ∧ c2 = α(t1) ∧ c3 = α(u2) ∧ c4 = α(u1)

∧ e1 6= e2

∧ c1 = c2 ∪ {e2} ∧ c3 6= c4 ∪ {e2}
We can now partially apply α. The transformation on c3 =

α(u2), for instance, is as follows

c3 = α(u2)

; c3 = α(Node(t3, e1, t2))

; c3 = α(t3) ∪ {e1} ∪ α(t2)

The completed application yields (note that we introduced c5)

distinct(Node(t1, e1, t2),Node(t3, e1, t2); t1; t2; t3; Leaf)

∧ c1 = α(t3) ∧ c2 = α(t1) ∧ c5 = α(t2)

∧ c3 = c1 ∪ {e1} ∪ c5 ∧ c4 = c2 ∪ {e1} ∪ c5
∧ e1 6= e2

∧ c1 = c2 ∪ {e2} ∧ c3 6= c4 ∪ {e2}
Notice that replacing the first two lines of this formula (which
correspond to D in the normal form (4)) by true gives us a formula
in the theory of finite sets which is unsatisfiable. This subproblem is
therefore unsatisfiable. To show that (6) is unsatisfiable, we would
still have to try all other possible arrangements of equalities on
the tree variables. In this case though, it is not difficult to see that
adding more equalities between tree terms cannot make the formula
satisfiable. We therefore conclude that our verification condition (5)
is valid.

4.6 Soundness of the Decision Procedure
We show that each of our reasoning steps results in a logically
sound conclusion. The soundness of the purification and flattening
steps is straightforward: each time a fresh variable is introduced, it
is constrained by an equality, so any model of the original formula
will naturally extend to a model for the rewritten formula which
contains additional fresh variables. Conversely, the restriction of
any model for the rewritten formula to the initial set of variables
will be a model for the original formula.

Our decision procedure relies on two case splittings. We will
give an argument for the splitting on the partitioning of tree vari-
ables. The argument for the splitting on the partitioning of content
variables is then essentially the same. Let us call φ the formula
before case splitting. Observe that for each partitioning, the result-
ing subproblem contains a strict superset of the constraints of the
original problem, that is, each subproblem is expressible as a for-
mula φ ∧ ψ, where ψ does not contain variables not appearing in
φ. Therefore, if, for any of the subproblems, there exists a model
M such thatM |= φ ∧ ψ, thenM |= φ andM is also a model
for the original problem. For the converse, assume the existence of
a modelM for the original problem. Construct the relation ∼ over
the tree variables t1, . . . , tn of φ as follows:

ti ∼ tj ⇐⇒ M |= ti = tj

Clearly,∼ is an equivalence relation and thus there is a subproblem
for which the equality over the tree variables is determined by ∼.
It is not hard to see that M is a model for that subproblem. It is
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therefore sound to reduce the satisfiability of the main problem to
the satisfiability of at least one of the subproblems.

Our unification procedure is a straightforward adaptation from a
textbook exposition of the algorithm and the soundness arguments
can be lifted from there [2, Page 451].

The soundness of the evaluation of α follows from its definition
in terms of empty and combine. Introducing fresh variables ci
in the form of equalities ci = α(ti) is again sound, following
the same argument as for the introduction of tree variables during
flattening. The subsequent replacement of terms of the form α(ti)
by their representative variable ci is sound: any model for the
formula without the terms α(ti) can be trivially extended to include
a valuation for them. Finally, the replacement of the tree variables
~u by the terms ~T (~t) is sound, because unification enforces that any
model for the formula before the substitution must have the same
valuation for ui and the corresponding term Ti. Therefore, there is
a direct mapping between models for the formula before and after
the substitution.

4.7 Complexity of the Reduction
Our decision procedure reduces formulas to normal form in non-
deterministic polynomial time because it performs guesses of
equivalence relations on polynomially many variables, runs the uni-
fication algorithm, and does partial evaluation of the catamorphism
at most once for each appropriate term in the formula. The reduc-
tion is therefore in the same complexity class as the pure theory of
recursive data structures [5]. In addition to the reduction, the over-
all complexity of the decision problem also depends on the formula
DM , and on the complexity of solving the resulting constraints in
the collection theory.

4.8 Canonical Set Abstraction
We next give a complete procedure for the canonical set abstrac-
tion, where C is the structure of all finite sets with standard set
algebra operations, and α is given by

empty = ∅
combine(c1, e, c2) = c1 ∪ {e} ∪ c2

Observations about α. Note that, for each term t 6= Leaf, α(t) 6=
∅. Let e ∈ E and consider the set S = α−1({e}) of terms that map
to {e}. Then S is the set of all non-leaf trees that have e as the only
stored element, that, is, S is the least set such that

1. Node(Leaf, e, Leaf) ∈ S, and

2. t1, t2 ∈ S→Node(t1, e, t2) ∈ S.

Thus, α−1({e}) is infinite. More generally, α−1(c) is infinite for
every c 6= ∅, because each tree that maps into a one-element subset
of c extends into some tree that maps into c.

Expressing Existence of Distinct Terms using Sets. We can now
specify the formula DM that is equisatisfiable to the formula D
in (4).

Definition 1. If c1, . . . , cn are the free variables in D, then (for
theory C and α given above) define DM as

n̂

i=1

ci 6= ∅

To argue why this choice gives a complete decision procedure,
it will be useful to review the following.

Lemma 2. (Independence of Disequations Lemma, variant of [38],
[14, Page 178]) Let D0 be a conjunction of disequations of terms
built from tree variables t1, . . . , tm and symbols Node, Leaf. Sup-
pose that D0 does not contain a trivial disequation T 6= T for any

term T . If A1, . . . , Am are infinite sets of trees, then D0 has a sat-
isfying assignment such that for each i where 1 ≤ i ≤ m, the value
ti belongs to Ai.

Proof. We first show that we can reduce the problem to a simpler
one where the disequalities all have the form ti 6= Tj , then show
how we can construct a satisfying assignment for a conjunction of
such disequalities.

We start by rewriting each disequality ¬(T = T ′) in the form:

¬

0B@ . . .
∧ ti = Ci(ti,k, . . . , ti,l)
∧ tj = Cj(tj,k, . . . , tj,l)
∧ . . .

1CA
where the conjunction of equalities is obtained by unifying the
terms T and T ′. Here, the expressions of the form C(ti,k, . . . , ti,l)
denote terms built using Node, Leaf and the variables ti,k, . . . , ti,l.
Note that each of these variables does appear at least once in the
term. After applying this rewriting to all disequalities and convert-
ing the resulting formula to disjunctive normal form, we obtain a
problem of the form _^

K

where each conjunct K is of the form

ti 6= Ci,j(ti,j,k, . . . , ti,j,l)

In other words, each variable ti can be on the left-hand side of
several disequalities in the same conjunction. Due to the form of
the equations obtained from unification, the set of variables {ti,j,k,
. . . , ti,j,l} never contains ti. This formula is logically equivalent
to the original one from the statement of the lemma. To show that
it is satisfiable, we now need to show that one of its disjuncts is
satisfiable.

We construct a satisfying assignment for such a conjunction
as follows: we start by collecting all disequalities of the form
t1 6= T , where T is a ground term. We pick for t1 a value T1 in
A1 different from all such T s. This is always possible as there are
finitely many disequalities in the conjunction and infinitely many
trees in A1. We substitute in all disequalities T1 for t1. For all
indices i ∈ {2, . . . ,m} we now do the following: we collect all
disequalities of the forms ti = T and T = C(ti) (in the second
form, C(ti) denotes a term built with Leaf, Node, at least one
occurrence of ti, and no other variable). Note that for each of these
disequalities, there is at most one value for ti which contradicts
it. Therefore, we can always pick a value Ti in Ai for ti which
satisfies all the disequalities. We then substitute Ti for ti in the
conjunction and proceed with ti+1. It is not hard to see that this
procedure terminates once all variables have been assigned a value
and that the complete assignment is a satisfying one.

Lemma 3. For C denoting the structure of finite sets and α given
as above, ∃~t.D is equivalent to DM .

Proof. Let ~t be t1, . . . , tn. Fix values c1, . . . , cn. We first show
∃~t.D implies DM . Pick values t1, . . . , tn for which D holds.
Then ti 6= Leaf holds because this conjunct is in D. Therefore,
α(ti) 6= ∅ by property of α above. Because ci = α(ti) is a
conjunct in D, we conclude ci 6= ∅. Therefore, DM holds as well.

Conversely, suppose DM holds. This means that ci 6= ∅ for
1 ≤ i ≤ n. Let Ai = α−1(ci) for 1 ≤ i ≤ n. Then the sets Ai are
all infinite by the observation above. By Lemma 2 there are values
ti ∈ Ai for 1 ≤ i ≤ n such that the disequations in N(~T (~t),~t)
hold. By definition of Ai, M1(~t,~c) is also true. Therefore, D is
true in this assignment.

Complexity for the Canonical Set Abstraction. We have ob-
served earlier that reduction to LC is an NP process. There are
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several decision procedures that support reasoning about sets of el-
ements and support standard set operations. One of the most direct
approaches to obtain such a decision procedure [31] is to use an en-
coding into first-order logic, and observe that the resulting formu-
las belong to the Bernays-Schönfinkel-Ramsey class of first-order
logic with a single universal quantifier. Checking satisfiability of
such formulas is NP-complete [9]. It is also possible to extend this
logic to allow stating that two sets have the same cardinality, and
the resulting logic is still within NP [32]. Because the reduction, the
generation of DM and the decision problem for LC are all in NP,
we conclude that the decision problem for recursive data structures
with the canonical set abstraction belongs to NP.

4.9 Infinitely Surjective Abstractions
The canonical set abstraction is a special case of what we call
infinitely surjective abstractions, for which we can compute the
formula DM .

Definition 4 (Infinitely Surjective Abstraction). If S is a set of
trees, we call a domain C and a catamorphism α an infinitely
surjective S-abstraction iff for every tree t /∈ S, the set α−1(α(t))
is infinite.

We can compute DM for an infinitely surjective S-abstraction
whenever S is finite.

Canonical set abstraction is an infinitely surjective {Leaf}-
abstraction. Another infinitely surjective {Leaf}-abstraction is the
term size abstraction, which for a given tree computes its size, as
the number of internal nodes.

An example of infinitely surjective ∅-abstractions is the function
that computes the set of free variables in an abstract syntax tree
representing a lambda expression or a formula. Note that for each
finite set of variables, there exist infinitely many terms that have
these bound variables.

Among other important examples of infinitely surjective ∅-
abstractions are most non-trivial recursively defined invariants,
such as the property that a tree is sorted or that it has the heap
ordering.

The general idea for computing DM for an infinitely surjective
S-abstraction is to add the elements T1, . . . , Tm of S into the
unification algorithm and guess arrangements over them. This will
ensure that, in the resulting formula, all parameters are distinct
from any Ti. The formula DM then states the condition ci /∈
α[S] where α[S] denotes the image of S under the catamorphism.
We omit the details, but we note that the algorithm for {Leaf}-
abstractions works also for ∅-abstractions.

4.10 Completeness for Lists and Multisets
We finally examine certain natural abstractions of trees using lists
and multisets. The common feature for these catamorphisms is
that the combine function always produces a collection whose
size is strictly larger than the sizes of its first and third argument.
Because there are only finitely many binary trees of a given size, it
follows that there are only finitely many trees that map to any given
collection. Consequently, such catamorphisms are not infinitely
surjective and the method of the previous section does not apply.

Nonetheless, we can still obtain decidability in these cases be-
cause the number of terms that map to a given collection grows as
the size of the collection grows. That is, if |c| denotes some notion
of size of a collection c, then

lim
n→∞

„
inf

c:|c|≥n
|α−1(c)|

«
=∞

For a tree t, let |t| be defined by |Leaf| = 0, |Node(t1, e, t2)| =
|t1|+ 1 + |t2|.

Lists with concatenation. Consider the structure of all fi-
nite lists with the concatenation operator ++ and the operation
List(e1, . . . , en) to denote the finite list with the specified elements
e1, . . . , en. Consider the catamorphism for infix traversal of the
tree, given by

empty = List()

combine(c1, e, c2) = c1 ++ List(e) ++ c2

(catamorphisms for pre-order and post-order traversal can be han-
dled analogously). Let |c| denote the number of elements in the list.
Clearly |t| = |α(t)|.

For a fixed c, the number of trees t for which α(t) = c is equal
to the number of binary trees with k = |c| nodes (denoted Ck) and
grows exponentially with k.

Consider a formula N(~T (~t),~t) where ~T is T1, . . . , Tm and ~t is
t1, . . . , tn. Let k be the least positive integer such that Ck ≥ m+
n.1 For each 1 ≤ i ≤ n let ei

1, . . . , e
i
k be fresh element variables,

and let ri
1, . . . , r

i
p be the enumeration over all expressions denoting

finite trees ri with α(ri) = List(ei
1, . . . , e

i
l) for l < k. Consider

the formula

D ∧
n̂

i=1

(|ti| ≥ k ∨
p_

j=1

ti = ri
j) (7)

LetDw be a disjunct in the disjunctive normal form of (7). Observe
that inDw, every variable ti is either assigned to some constant tree
ri

j , or the constraint |ti| ≥ k is present. For all ti assigned to a tree,
substitute ri

j for ti in D (D always appears as a conjunct of Dw)
and partially evaluate the catamorphism over ri

j . The remaining tree
variables in Dw must satisfy the constraint |ti| ≥ k.

In the language of lists, we represent |ti| ≥ k by ci =
List(ei

1, . . . , e
i
k) ++ c′i (note that ci = α(ti) is a conjunct inDw be-

cause it is a conjunct of D). Notice that the number of disequations
between parameters does not increase, since they only appear inD.
Because ti is sufficiently large, even for the satisfying assignment
where all α(ti) are assigned to the same collection, it is possible to
pick the values for ti to be distinct. It then remains to check whether
Dw is satisfiable and derive equalities between element variables
ei

j , similarly to the unification algorithm in Section 4.4. Since we
can do this for any disjunct Dw, we can take as the disjunct of DM

the satisfiable disjuncts Dw
M containing the appropriate conditions

ci = List(ei
1, . . . , e

i
k) ++ c′i and the result of partially evaluating

the catamorphisms over the substituted terms ri
j . By construction,

these satisfiable disjuncts will cover all possible assignments to the
variables ti and therefore DM will be equisatisfiable to D, as re-
quired by our completeness argument.

Multisets with disjoint union. Consider now similarly the struc-
ture of all finite multisets with the disjoint union operator], such as
the one in [52, 51]. Consider the catamorphism given by empty =
∅ and combine(c1, e, c2) = c1 ]{e}] c2 that is similar to canoni-
cal set abstraction but preserves the number of occurrences of each
element in the data structure. Let |c| denote the number of elements
in the multiset, counting each element as many times as it appears.
Then also |t| = |α(t)|. Note that if a multiset c has the total num-
ber of occurrences k then the number of trees that map into c is
the number Ck of trees that map into one fixed list corresponding
to the multiset times the number of distinct lists that map into the
same multiset. Thus, there are at least Ck trees that map into the
multiset c. Therefore, the previous argument and the definition of
DM applies in this case as well. The differences is simply that the
catamorphism is different and that the bound |t| ≥ k is expressed
in DM by α(ci) = {ei

1, . . . , e
i
k} ] c′i. Besides, the bound p in the

enumeration of finite trees mapping to a given collection is larger.

1 Note that k ∼ O(log(m+ n)).
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Example Consider the following formula where α is the multiset
abstraction:

c1 = α(t1) ∧ c2 = α(t2) ∧ c3 = α(t3)

∧ distinct(t1; t2; t3; Leaf)

∧ c1 = c2 ∧ c2 = c3 ∧ c3 = c1 ∧ |c1| < 2

The formula is already in its normal form after partial evaluation as
described in Section 4.4. We have that:

N ≡ distinct(t1; t2; t3; Leaf)

M1 ≡ c1 = α(t1) ∧ c2 = α(t2) ∧ c3 = α(t3)

FC ≡ c1 = c2 ∧ c2 = c3 ∧ c3 = c1 ∧ |c1| < 2

We need to pick the smallest k such that Ck ≥ 4, which is 3
(C2 = 2, C3 = 5). The enumeration over the finite trees r is as
follows:

r11 = Node(Leaf, e11, Leaf)

r12 = Node(Node(Leaf, e12, Leaf), e11, Leaf)

r13 = Node(Node(Leaf, e11, Leaf), e12, Leaf)

r14 = Node(Leaf, e11,Node(Leaf, e12, Leaf))

r15 = Node(Leaf, e12,Node(Leaf, e11, Leaf))

. . . and similarly for the trees r2j and r3j .
The disjunctive normal form of (7) for our example looks as

follows:

DM ≡ (N ∧M1 ∧ t1 = r11 ∧ t2 = r21 ∧ t3 = r31

∨ N ∧M1 ∧ t1 = r12 ∧ t2 = r21 ∧ t3 = r31

∨ N ∧M1 ∧ . . .
∨ N ∧M1 ∧ |t1| ≥ 3 ∧ t2 = r21 ∧ t3 = r31

∨ N ∧M1 ∧ . . .
∨ N ∧M1 ∧ |t1| ≥ 3 ∧ |t2| ≥ 3 ∧ |t3| ≥ 3)

Note that all (216) disjuncts of DM are satisfiable, since we can
always pick the values ei

j to be distinct for different values of i
and we have no constraints on the trees except that they need to be
distinct.

However, the complete formulaDM ∧FC can now be shown to
be unsatisfiable: indeed none of the assignments of constant trees to
the variables ti can satisfy the additional constraints that the distinct
trees have the same multiset abstraction yet are of size less than 2.
(If we replace the constraint |c1| < 2 by |c1| ≤ 2, for example, the
formula becomes satisfiable.) Note that the incomplete procedure
mentioned at the end of Section 4.4 could not have detected the
unsatisfiability (or the satisfiability in the second case), since the
key here is to consider the exhaustive set of assignments with
sufficiently small trees.

Complexity for the Multiset Abstraction. The construction of
DM that we exposed does not immediately yield an algorithm in
NP. Note however that a non-deterministic algorithm would only
have to guess the values needed to build a satisfying assignment for
the tree variables. There are only polynomially many of these, since
the size of each tree is polynomial function of k, which itself grows
logarithmically with the number of distinct terms. The complexity
of the decision procedure for the multiset abstraction is therefore
NP.

Complexity for the List Abstraction. The best known decision
procedure for reasoning about lists with concatenation is already in
PSPACE and our combined decision procedure for that abstraction
is therefore in the same complexity class.

5. Related Work
One reason why we find our result useful is that it can leverage a
number of existing decidability results. In the area of recursive data
structures [5] presents an abstract approach that can be used to ob-
tain more efficient strategies for recursive data structures than the
one that we chose to present. For reasoning about sets and multi-
sets one expressive approach is the use of the decidable array frag-
ment [10]. Optimal complexity bounds for reasoning about sets and
multisets in the presence of cardinality constraints have been estab-
lished in [32, 52]. Building on these results, extensions to certain
operations on vectors has been presented in [36]. Reasoning about
lists with concatenation can be done using Makanin’s algorithm
[37] and its improvements [53]. A different class of constraints uses
rich string operations but imposes bounds on string length [8].

Our parameterized decision procedure presents one particular
approach to combining logics. Standard results in this field are
Nelson-Oppen combination [44]. Nelson-Oppen combination is not
sufficient to encode catamorphisms because the disjointness condi-
tions are not satisfied, but is very useful in obtaining interesting
decidable theories to which the catamorphism can map a recur-
sive data structure; such compound domains are especially of in-
terest when using catamorphisms to encode invariants. There are
combination results that lift the stable infiniteness restriction of the
Nelson-Oppen approach [57, 25, 18] as well as disjointness condi-
tion subject to a local finiteness condition [20]. An approach that
allows theories to share set algebra with cardinalities is presented
in [60]. None of these approaches handle the problem of reasoning
about a catamorphism from the theory of algebraic data types.

A technique for connecting two theories through homomorphic
functions has been explored in [1]. We were not able to derive our
decision procedure from [1], because the combination technique
in [1] requires the homomorphism to hold between two copies of
some shared theory Ω0 that is locally finite, but our homomor-
phisms (i.e. catamorphisms) are defined on term algebras (i.e. re-
cursive structures), which are not locally finite.

Related to our partial evaluation of the catamorphism is the phe-
nomenon of local theory extensions [22], where axioms are instan-
tiated only to terms that already exist syntactically in the formula.
In our case of tree data types, the decision procedure must apply
the axioms also to some consequences of the formula, obtained us-
ing unification, so an extension of the basic local theory framework
is needed. To the best of our knowledge, the machinery of local
theory extensions has not been applied the theory of algebraic data
types.

The proof decidability for term powers [29, 30] introduces ho-
momorphic functions that map a term into 1) a simplified “shape”
term that ignores the stored elements and 2) the set of elements
stored in the term. However, this language was meant to address
reasoning about structural subtyping and not transformation of al-
gebraic data types. Therefore, it does not support the comparison
of the set of elements stored in distinct terms, and it would not be
applicable to the verification conditions we consider in this paper.
Furthermore, it does not apply to multisets or lists.

In [65] researchers describe a decision procedure for recursive
data structures with size constraints and in [39] a decision proce-
dure for trees with numeric constraints that model invariants of
red-black trees. Our decision procedure supports reasoning about
not only size, but also the content of the data structure. We remark
that [65] covers also the case of a finite number of atoms, whereas
we have chosen to focus on the case of infinite set of elements E .
Overall term algebras have an extensively developed theory, and
enjoy many desirable properties, including quantifier elimination
[38]; quantifier elimination also carries over to many extensions of
term algebras [14, 30, 55, 65, 64]. We remark that in examples such
as multisets we cannot expect quantifier elimination to hold.
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Some aspects of our decision procedure are similar to folding
and unfolding performed when using types to reason about data
structures [24, 58, 46, 54, 61]. One of our goals was to under-
stand the completeness or possible sources of incompleteness of
such techniques. We do not aim to replace the high-level guidance
available in such successful systems, but expect that our results can
be used to further improve such techniques.

Several decision procedures are suitable for data structures in
imperative programs [34, 33, 41, 59, 43]. There is seemingly noth-
ing preventing such logics to be used also for functional programs.
However, these logics alone fail to describe algebraic data types be-
cause they cannot express extensional equality and disequality of
entire tree data structure instances, or the construction of new data
structures from smaller ones. Even verification systems that aim to
reason about imperative programs but use annotations [3, 7, 26, 62]
typically rely on declarative languages. In such situations, the abil-
ity to use recursive functions in the specification language is very
valuable.

The SMT-LIB standard [4] for SMT provers currently does
not support recursive data structures, even though several provers
support it in their native input languages [6, 15]. By providing
new opportunities to use decision procedures based on algebraic
data types, our results present a case in favor of incorporating such
data types into standard formats. Our new decidability results also
support the idea of using rich specification languages that admit
certain recursively defined functions.

6. Conclusions
We have presented a decision procedure that extends the well-
known decision procedure for algebraic data types. The extension
enables reasoning about the relationship between the values of the
data structure and the values of a recursive function (catamorphism)
applied to the data structure. The presence of catamorphisms gives
great expressive power and provides connections to other decidable
theories, such as sets, multisets, lists. It also enables the compu-
tation of certain recursive invariants. Our decision procedure has
several phases: the first phase performs unification and solves the
recursive data structure parts, the second applies the recursive func-
tion to the structure generated by unification. The final phase is
more subtle, is optional from the perspective of soundness, but en-
sures completeness of the decision procedure.

Automated decision procedures are widely used for reasoning
about imperative programs. Functional programs are claimed to
be more amenable to automated reasoning—this was among the
original design goals of functional programming, and has been
supported by experience from type systems and interactive proof
assistants. Our decision procedure further supports this claim, by
showing a wide range of properties that can be predictably proved
about functional data structures.
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