
Selective Symbolic Execution

Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

Symbolic execution is a powerful technique for analyz-
ing program behavior, finding bugs, and generating tests,
but suffers from severely limited scalability: the largestpro-
grams that can be symbolically executed today are on the
order of thousands of lines of code. To ensure feasibil-
ity of symbolic execution, even small programs must cur-
tail their interactions with libraries, the operating system,
and hardware devices. This paper introducesselective sym-
bolic execution, a technique for creating the illusion of full-
system symbolic execution, while symbolically running only
the code that is of interest to the developer. We describe a
prototype that can symbolically execute arbitrary portions
of a full system, including applications, libraries, operating
system, and device drivers. It seamlessly transitions back
and forth between symbolic and concrete execution, while
transparently converting system state from symbolic to con-
crete and back. Our technique makes symbolic execution
practical for large software that runs in real environments,
without requiring explicit modeling of these environments.

1 Introduction
Symbolic execution has recently gained popularity in au-

tomated software testing [4, 6, 14, 9, 3, 12, 11] as well as
for studying malware [10, 2]. Behaviors (such as bugs) dis-
covered with symbolic execution can be easily reproduced
using information collected during the corresponding sym-
bolic execution, making this approach a powerful and cost-
effective tool for developers and testers.

When a program is symbolically executed, it is provided
with a symbolicvalue for each input (λ, β, ...), instead of
theconcreteinputs (9, “foo”, ...) it would normally get. Ev-
ery assignment in the program along a given execution path
updates the program variables with a symbolic expression
(e.g.,x = λ − 2), instead of a concretely computed value
(x=9-2=7). A conditional statement (e.g., “if x>0 then...
else...”) splits the execution into two new paths—one for
the then-branch and one for the else-branch—with a com-
mon prefix. Along the then-path values are constrained by
the if condition (λ − 2 > 0) and along the else-path by
the else condition (λ − 2 ≤ 0). The conjunction of the
constraints collected along a path can be fed to a constraint
solver to find a concrete input (e.g.,λ = 9) that would take

the program along that path. For the paths that lead, for in-
stance, toassert statements, the solutions forλ, β, ... con-
stitute test cases that reproduce the corresponding crashes.

A symbolic execution engine will typically represent the
program’s memory in an engine-specific data structure and,
when the execution reaches a branch whose condition in-
volves symbolic values, the engineforks the program state,
such that each path has its private version of the program
state. In this way, the engine can explore both branches
independently and in parallel. The hierarchy of program
states forms anexecution tree, as in Figure 1.

 I = <input>;

 x = I-2;

 if (x > 0) {

 if (x < 8) {

 ...

 ...

 } else {

 if (x > -12) {

 ...

 ...

 }

x>0

x<8 x>-12

Figure 1. A program and its symbolic execution tree.

The size of the execution tree grows exponentially in the
number of conditionals, an effect calledpath explosion. The
total amount of state and number of constraints maintained
during symbolic execution grow correspondingly. While re-
searchers have proposed a variety of optimizations, current
symbolic execution engines [3, 6, 10, 12] still scale only to
small programs with thousands of lines of code. It is there-
fore not yet practical to execute symbolically the majority
of software we use today (Firefox, OpenOffice, MySQL,
Eclipse, etc.), each of which has millions of lines of code.

Another challenge in symbolic execution is the target
program’sinteraction with the environment. For example,
when a program like Firefox reads from a network socket, it
calls a function in libc, which in turn executes a system call,
which then invokes the NIC device driver, which then reads
data from the NIC device, and returns it up the stack (see
Figure 2). To symbolically execute Firefox would require
symbolically executing all the invoked libraries, OS, and
drivers, but doing so would compound path explosion and
require inordinate amounts of memory and CPU time. In-
stead, current tools build custom libraries and abstract mod-
els of the environment [2, 3], which isolate the program and
keep symbolic execution within the boundaries of the tar-

Appears in Proceedings of the 5th Workshop on Hot Topics in System Dependability (HotDep), Lisbon, Portugal, June 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147953122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

get program. Building complete models, however, is diffi-
cult and labor-intensive, since libraries and OSes have many
thousands of API functions with complex semantics. There
are few such models, so symbolic execution is limited to
programs that interact little with the outside world.

Firefox
libgtk

libpthread

libc

kernel device drivers

hw device firmware

libX11

libpng

libz

...
...

...

...

...

Figure 2. The execution space of a full system.

Our observation is that developers generally do not
test/study an entire system at a time, but rather focus on
only a small portion of it—a kernel module, a pair of user
programs, recently-added functionality, code that touches a
recently-modified data structure, etc. Thus, the results of
symbolically executing the entire system are not necessary.

This paper introducesselective symbolic execution
(S2E), a technique for providing the illusion of full-system
symbolic execution. Our virtual execution platform allows
users to specify a scope of interest within a system’s exe-
cution space, and then focuses CPU and memory resources
on symbolically executing that scope only. In-scope execu-
tions are explored symbolically, as if the full system was ex-
ecuting symbolically, while out-of-scope ones are run con-
cretely. Execution flows seamlessly back and forth between
the symbolic domain (i.e., in-scope execution paths) and the
concrete domain (i.e., out-of-scope paths), and system state
is suitably converted on every boundary crossing.

The main challenge in S2E is how to provide this back
and forth flow transparently, while ensuring a consistent and
efficient execution.

S2E helps scale symbolic execution by a priori pruning
parts of the execution tree that the developer would not even
look at once execution completed. Approaches like hybrid
concolic testing [9] and symbolic JPF [12] are specific in-
stances of such pruning, and selective symbolic execution
generalizes and advances beyond prior work. S2E enables
the productive use of symbolic execution in large software
systems with complex environment interactions, without re-
quiring explicit environment modeling.

2 Use Cases

S2E can be used for many challenging software develop-
ment tasks; we present some of them in this section.
Testing in complex environments: Real programs, like
Firefox, link against many libraries. Running a real

program with symbolic values requires executing the li-
braries/OS/etc. in a way that can handle symbolic values.
While state-of-the art symbolic execution engines could do
a one-way conversion of symbolic data into concrete data
upon calling a library, they cannot handle the return path;
e.g., it is not possible for a program to pass a buffer pointer
to read() and then read the returned data as symbolic. In
S2E, the developer can specify the program of interest and
S2E will execute it symbolically and correctly regardless
of how many calls are made into libraries or the kernel. In
terms of the symbolic execution tree, this use case illustrates
sound pruning of all subtrees rooted at calls to the environ-
ment, thus substantially reducing the overall tree size.
Fine-grain module testing: When testing large programs
like Firefox, a developer typically wants to focus attention
on a particular area of the code, such as a module that
is known to deadlock, or code that was recently added or
modified (e.g., “the password management module”). S2E
allows indicating which functions or portion of the exe-
cutable’s text segment is to be run symbolically, and then
the rest of the program can run concretely. In this use
case, all paths that do not intersect with the designated code
are pruned away from the symbolic execution tree. Com-
pared to unit-testing approaches [12], S2E offers substan-
tially more flexibility: execution can enter and leave the
module more than once and can span multiple layers (li-
braries, operating system kernel, drivers, etc.).
Data-driven testing: Often developers modify a data struc-
ture (e.g., alter the size of a field in a C++ class) and want
to testall code that touches that data structure, regardless
of which module the code is in. S2E enables the selective
symbolic execution of the code in question, without having
to specify the code blocks explicitly. The approach works
even in the presence of pointer aliasing and can guarantee
that all desired code paths are covered. In this use case, S2E
soundly prunes from the symbolic execution tree all paths
that do not touch the modified data structure.
Hybrid-input testing: Another way to select execution
paths a priori is by placing constraints on program inputs.
For instance,0 ≤ λ ≤ 99 may encode knowledge of the
ranges of representative values for inputλ (e.g., “purchase
price will not exceed $99”), and the program will be sym-
bolically executed starting with this constraint. Stricter con-
straints, likeλ = 1, make the input fully concrete. Some
inputs can be fully concrete, some hybrid, and others fully
symbolic (i.e., initially unconstrained). Similar testing can
be done with grammar-based fuzz testers [7] or hybrid con-
colic engines [9], but they require that the program be re-run
with each set of concrete inputs. S2E is more efficient, be-
cause it does not retrace any of the common execution pre-
fixes. As observed in [9], some bugs lurk deep down in the
execution tree, where a regular symbolic execution engine
may take long to reach. By using the initial constraints on
inputs, S2E can allow other inputs, such as network packets,
to be symbolic, while reducing path explosion: conditionals

2

that only access concrete values do not fork new states, thus
pruning the corresponding symbolic paths from the tree.
Reproducing user-reported bugs: When users file bug re-
ports, they try to provide details about symptoms, inputs,
and configuration in an effort to help developers reproduce
the failure in-house. Such reproduction is a key first step
in debugging the problem, but can be quite difficult, espe-
cially in parallel programs. Symbolic execution can search
for a path that evidences the failure, and selective symbolic
execution can make this search efficient: concrete inputs
and configuration parameters trim away paths that could not
have occurred during the failure, while all other inputs are
symbolic (e.g., data read from disk). In other words, the de-
tails in the bug report define an envelope of executions, and
S2E searches for the culprit path only within that envelope.
Dynamic failure analysis: Consider a program that is run
inside a virtual machine and checkpointed periodically. If
the program crashes, S2E can selectively execute it sym-
bolically from the last checkpoint and find the path that led
to the present crashed state, entirely automatically. The fact
that S2E simulates a full-system symbolic execution enables
it to find paths that are specific to the environment in which
the program runs, without incurring undue overhead.
Failure avoidance: Analogously to the use case above, S2E
can symbolically execute a program a few steps ahead of the
current state, to identify any potential failures lurking in the
near future, akin to [15]. For example, a program could use
S2E to determine whether a deadlock is likely to occur if it
takes a particular lock and, if yes, avoid acquiring that lock.
Reverse-engineering programs: S2E can selectively exe-
cute symbolically a closed-source binary device driver with
high coverage. If we collect its hardware interaction traces,
they can be used to reverse-engineer the state machine en-
coded in the driver. The challenge for S2E comes from the
fact that drivers lie deep inside the system and are tightly
coupled with the kernel and the hardware. Our S2E engine
executes drivers symbolically by providing them with sym-
bolic inputs fromboththe OS kernel side and the hardware
device side. As a result, the driver is unaware that the ker-
nel is running concretely and the kernel is unaware that the
driver is running symbolically. S2E can even impersonate
the hardware, obviating the need for a real device.

3 Selective Symbolic Execution

We view a system (i.e., a collection of applications, li-
braries, kernel, device firmware, etc.) as one big program.
Selective symbolic execution is a way to specify which parts
of this big “program” should run concretely and which ones
should run symbolically. Such selectivity—running sym-
bolically only the strictly necessary—is a key ingredient to
scaling symbolic execution to real systems.

There are two dimensions along which path selection can
be made a priori: code and data. In S2E, one can specify a
code regionof interest by indicating an executable name, an

object file, or a [min, max] range of program counters in the
kernel’s or a process’ text segment. S2E will then execute
that code symbolically and make all variables involved in
conditional branches symbolic, thus ensuring that all paths
within the code region are explored. One can also designate
aportion of system stateas being of interest, by indicating a
data structure by name or a [min, max] address range in the
kernel’s or a process’ data segment. S2E will then mark the
data symbolic and symbolically execute all code that reads
or writes that data. Everything else runs concretely.

The main challenge is to make this mix of symbolic/con-
crete data and execution coexist in a way that preserves cor-
rectness and is efficient. In principle, we can treat all system
state as symbolic, with varying numbers of constraints on
each byte range; a “concrete” variable is merely one with
a constraint of the formλ = constant. However, there
is a substantial efficiency difference when we distinguish
qualitatively between the concrete and non-concrete state:
instructions operating on concrete state can run natively,
while those operating on symbolic state must be emulated.
We therefore have a hard boundary between the concrete
domain and the symbolic domain, and data must be suit-
ably converted back and forth when execution crosses this
boundary. Therein lies S2E’s contribution: correctly execut-
ing a real system along with the requisite state conversions,
in a way that maximizes the amount of native execution.

We illustrate these conversions with an example in which
we test a closed-source binary network device driver; the
driver machine code runs symbolically, while applications,
kernel, and firmware run concretely. To simplify presen-
tation, assume the goal of testing is to check whether the
driver reaches anyassert() statements that cause a crash;
if yes, the corresponding driver arguments are saved as a test
case. A simple application can provide the test workload.

Concrete → Symbolic: When the application reads data,
it invokesread(fd,buf,len) in libc, which in turn re-
sults in a system call, which leads to a call to the NIC de-
vice driver to DMAlenbytes into a kernel buffer, which will
subsequently be copied into the userspace buffer pointed to
by buf. This requires that the driver write certain values
into the NIC’s hardware registers. The application calls the
library functionread() with concrete arguments, which
eventually get passed to the kernel, which will invoke the
drv read function in the driver’s interface.

S2E can be used to explore the full execution tree rooted
at drv read, in order to fully test this entry point in the
driver: S2E converts alldrv read parameters to symbolic
and explores all paths. Alternatively, one may want to test
the driver only on specific workloads, in which case all or
some of the parameters todrv read are kept concrete.

drv read parameters are not the only inputs to the
driver. First, there are hardware responses, which S2E con-
verts to symbolic. Second, there are non-data inputs, such
as timer and hardware interrupts, which to our knowledge

3

have never before been considered in the symbolic execu-
tion literature. A “symbolic interrupt” has a symbolic time-
of-delivery, i.e., could be delivered to the driver at any point,
subject to constraints derived from the execution.

Regardless of whetherdrv read parameters are kept
concrete or symbolic, all other inputs are symbolic. Thus,
symbolically executing with symbolic parameters will ex-
plore all paths rooted at thedrv read entry point. Con-
versely, symbolically executing with concrete parameters
will explore all possible ways in which that concrete call
could execute, finding all its success and failure paths.

Notice that the presence of the real hardware is not re-
quired, since the returned results can all be simulated by
the S2E engine, based on what the driver expects. This is
akin to providing an implicit model of the hardware, which
we refer to as “symbolic hardware” in§4. Of course, there
may be hardware behaviors that the driver is not expect-
ing, which cannot be simulated without the presence of the
real hardware. Providing symbolic interrupts requires sim-
ply a general model of hardware to be embedded in the S2E
engine; this model encodes generic behaviors, such as fol-
lowing a DMA setup with an eventual DMA completion
interrupt. S2E identifies constraints on the time of interrupt
delivery, corresponding to equivalence classes of interrupt
handling behavior. Symbolic interrupts are a key feature for
finding concurrency bugs in kernels and device drivers.

Symbolic → Concrete: Two important challenges re-
main: First, the symbolic domain (driver) must return a
concrete value to the concrete domain (kernel). Second, the
symbolic domain may call into the concrete domain, such
as when the driver callskmalloc to get a temporary buffer,
or when it places values into the hardware registers. All of
these require converting symbolic values to concrete ones.

In the first case, the only consistency requirement is that
the returned value be feasible given the supplied concrete
parameters. This is satisfied by concretely executing the
driver in addition to its symbolic execution and returning the
concrete result. Since the symbolic execution tree contains
a superset of the paths that can be executed with the con-
crete parameters, S2E could theoretically just return a value
corresponding to a path whose symbolic inputs satisfy all
constraints imposed by the concrete parameters. Using the
additional concrete execution, however, allows the resultto
be returned before the symbolic execution completes; the
latter can continue asynchronously in the background.

In the second case, when the symbolic domain calls into
the concrete domain, symbolic call arguments (e.g.,λ) can
be concretized, as above, by choosing concrete values for
them that satisfy the current constraints (e.g., settingλ =

5). But this concretization must correspondingly subject all
subsequent paths to the addedλ = 5 constraint.

This constraint can limit the number of paths that will
be explored upon return from the concrete domain. There-
fore, S2E keeps track of which constraints are due to con-

cretizations vs. due to branches. If, at a subsequent point,
a concretization constraint limits the choice of paths (e.g.,
λ = 5 may prevent S2E from taking a then-branch which
requiresλ 6= 5), then S2E remembers this juncture. S2E
uses the constraint solver to find a minimal set of additional
concrete values forλ that would permit the exploration of
all skipped paths; it then re-executes the calls into the con-
crete domain with these values and explores the remaining
paths, provided the path constraints are satisfiable.

If these repeated calls have side effects (such as
kmalloc), they can perturb the concrete domain (e.g., run
out of memory), so system state must be forked at the point
when the extra calls are made. As will be seen in§4, S2E
has full control over system state, so this is feasible. How-
ever, it can be expensive, so we use on-demand conversion
(described below) and a caching scheme (described in§4).

On-Demand Conversion: There exist many situations
in which, although execution is crossing the con-
crete/symbolic boundary, conversion of the data is not nec-
essary. Consider, for instance, the case of an application that
reads data from a socket and writes it out to another. The
network data crosses from the concrete domain of the NIC
into the symbolic domain of the driver, then into the con-
crete domain of the kernel, libc, and the application, then
back down through libc, kernel, into the symbolic domain,
and back out to the NIC. If the data is merely copied sev-
eral times from one buffer to another and never really used
in any control flow decisions, there is no reason to make it
symbolic. Similarly, if a driver allocates a buffer by calling
the kernel, then uses a kernel function to copy some sym-
bolic data into that buffer, and then uses the data without the
kernel ever doing anything but copying it from one place to
another, there is no need for concretizing the symbolic data.
A similar situation arises when a complex data structure is
passed between symbolic/concrete domains, but only one
field of the data structure is actually read, which means that
only the accessed field needs to be converted.

For this reason, S2E performs all conversions on-
demand. Conceptually, each memory byte and CPU reg-
ister has associated metadata indicating whether it is con-
crete or symbolic and, if symbolic, it also contains the as-
sociated constraints. When the bytes are copied from one
place to another, by either concretely or symbolically run-
ning code, the associated metadata is copied as well. The
conversion is performed only when the data is read as part
of a branch condition or when doing arithmetic on it, i.e.,
when the value of the data would actually make a differ-
ence. S2E must keep track of where metadata was copied
from, because a conversion must propagate to all related
memory bytes. In this way, concretely running code can
handle symbolic data transparently.

Needless conversions can be costly, as illustrated ear-
lier, and on-demand conversion reduces their number. Static
analysis could reduce needless conversions even further, by

4

analyzing the code and determining a priori which variables
are guaranteed to never require conversion.

4 S2E Prototype for x86 Binaries

We are currently developing a S2E engine that can se-
lectively execute x86 binaries symbolically. We opted for
machine code-level execution in order to have maximum
flexibility, including the ability to use S2E on closed-source
systems, such as commercial applications and OSes.

Our prototype builds upon the QEMU virtual ma-
chine [1] and the KLEE symbolic execution engine [3].
QEMU uses dynamic binary translation to turn guest ma-
chine instructions into host-suitable instructions; it supports
a wide variety of guest architectures, including x86, MIPS,
and ARM. Our prototype currently supports only x86 bina-
ries, but it is straightforward to extend it to other architec-
tures. KLEE is an efficient engine for symbolically execut-
ing LLVM [8] bytecode. As will be seen below, this com-
bination enables S2E to take full control of system state,
including interfacing with the hardware.

We wrote a new target for QEMU that dynamically trans-
lates x86 into LLVM, building upon an earlier effort [13].
We modified QEMU to select the guest x86 instructions
that need to be executed symbolically and translate them
to LLVM and then pass them on to KLEE; all other in-
structions run untranslated. As a further optimization, even
from among the instructions that must run symbolically, we
translate to LLVM only those that operate on symbolic reg-
isters or memory. Symbolically-executing code that oper-
ates on concrete operands runs natively; we borrowed this
optimization from earlier work [4, 6, 2].

The key element that makes S2E practical is ourshared
representation of machine state, used jointly by QEMU and
KLEE. The original QEMU virtual machine manages the
state of the virtual CPU, VM physical memory, and VM de-
vices. KLEE operates on roughly the same type of state, but
uses different data structures. We modified QEMU to use
KLEE’s state store, such that the symbolic domain (KLEE)
can be kept synchronized with the concrete one (QEMU)
with no copying. The concrete state can now be forked
whenever required by the symbolic execution. By operating
directly on the VM’s physical memory (instead of the guest
OS’ virtual memory), S2E can seamlessly support IPC and
shared memory both within and between the concrete and
symbolic domains. Zero-copy and the direct representation
of physical memory sets S2E apart from Bitscope [2].

We use a hierarchical caching scheme to speed up mem-
ory lookups. The frequent state-forking inherent in sym-
bolic execution leads to rapidly growing trees of machine
state objects; KLEE mitigates this through copy-on-write
semantics for memory objects. This means that an object
representing the machine state will contain pointers to ob-
jects in the parent states. When the hierarchy becomes
deep, as is the case for full-machine symbolic execution, the

chains of parent pointers can become long, making lookups
expensive. In S2E, every time a lookup is resolved through
a chain of pointers to an ancestor, we update the current
memory location’s parent pointer to point directly to the el-
dest ancestor. On all subsequent lookups, the chain of par-
ent pointers will be short-circuited by this updated pointer.

As mentioned before, S2E can run drivers entirely on
symbolic hardware. Initially, we modified individual vir-
tual devices (NE2000 network card, USB devices, etc.) to
return symbolic answers. Although the effort was minimal
(∼30 minutes for each device), we preferred a unified layer
in QEMU that mediates all accesses to hardware. In this
layer we return the symbolic hardware data as well as gen-
erate the symbolic interrupts. With this layer, it is not nec-
essary to have the hardware at all, be it virtual or real. Note
that the use of modified virtual devices still presents the ad-
vantage of being able to store symbolic data in them. E.g.,
a disk could store metadata-enhanced data, which captures
whether bytes are concrete or symbolic and, if symbolic,
include the associated constraints. When applications sub-
sequently read this data, S2E could properly interpret the
metadata and perform any conversions that may be required.

Preliminary Results: We successfully used our S2E
prototype to symbolically execute closed-source device
driver binaries in full Windows, with the goal of reverse-
engineering them. The smallest one, a NE2000 network
driver, calls 37 different kernel functions (spinlock op-
erations, memory allocation, handler registration for I/O
and timers, NDIS management, HAL calls, etc.). Model-
ing each of these kernel functions would have been pro-
hibitively labor-intensive. Measurements using the Dhry-
stone benchmark in S2E on a quad-core Intel Xeon CPU
with 4GB of RAM resulted in a 1.7x slowdown compared
to unmodified QEMU, suggesting that S2E is feasible.

5 Discussion

The selective symbolic execution technique is not tied
to the implementation sketched in this paper. An alternative
implementation can be applied at the source code level, with
the transitions between concrete and symbolic being em-
bedded in the compiled executable. Yet another approach is
to use binary instrumentation to control the domain transi-
tions. Of course, the underlying representation of machine
state will likely be different from the one presented here.

Even though running a program on a full system inside
S2E obviates the need for modeling most of the program’s
environment, there are cases where such modeling can help.
For example, Windows maintains its registry in compressed
form. If a test application writes symbolic data to the reg-
istry, the current S2E would accumulate many superfluous
constraints on that data as it gets transformed and com-
pressed by the OS. If, instead, we used a model of the reg-
istry, the constraint metadata would no longer be necessary.

Repeated calls to a function (e.g., a library API call) that

5

is symbolically executed could result in large amounts of
redundant exploration, especially if the parameters are sym-
bolic every time. S2E could save to disk the execution trees
of functions that have no side effects and page them back
in when the function is re-executed; this would speed up
computation of the path constraints and of the final state.
In essence, an execution tree is an explicit representationof
the function encoded by a body of code, so it can be reused
any time that code is invoked, as was done in [5].

6 Related Work

S2E builds upon previous efforts to scale symbolic ex-
ecution. One of the first was concolic testing [14], which
runs a program concretely, while at the same time collecting
path constraints along the explored paths. These constraints
are used to find inputs that would take the program on al-
ternate concrete paths. Hybrid concolic testing [9] com-
bines random input generation with symbolic execution to
improve coverage over classic concolic testing.

Symbolic Java Path Finder (SJPF) [12] is aimed at unit
testing: it executes a program concretely until the target
unit of code is reached, at which point execution switches
to symbolic. Since SJPF was designed to test functionally-
independent units, it does not track symbolic data across the
symbolic/concrete boundary.

S2E can be viewed as a generalization of prior work:
we aim to provide the functionality of these previous sys-
tems within a single framework. Additionally, S2E pro-
vides functionality that was previously not available, such
as whole-system symbolic execution, symbolic interrupts,
implicit modeling of the environment, etc.

Mixed-mode execution—running natively instructions
that do not involve symbolic operands—first appeared in
EXE [4] and DART [6], then in Bitscope [2]; we use it as
an optimization. Mixed-mode execution by itself does not
provide the necessary conversions and state tracking that
enable selective symbolic execution.

Finally, we complement earlier work on modeling the
environment [12, 2, 10, 3] with S2E’s symbolic state track-
ing and on-demand concretization.

7 Conclusion

There exists a spectrum of executions, framed by con-
crete execution on one end and symbolic execution on the
other end, each one with its pros and cons. We introduce se-
lective symbolic execution (S2E) as a technique for navigat-
ing this spectrum in order to optimize the tradeoff between
what users want vs. what is efficient to execute.

S2E offers the illusion of full-system symbolic execu-
tion, while symbolically running only the strictly necessary.
S2E helps scale symbolic execution to enable program be-
havior analysis, bug finding, and test generation for real sys-
tems in real environments, without requiring explicit mod-
eling of these environments.

S2E provides the illusion of symbolic execution of an
entire software stack, including applications, libraries, OS
kernel, device drivers, and even firmware. We argue that the
approach is practical and could open the door to the use of
symbolic execution for much larger systems than has been
done to date, which could bring symbolic execution into the
realm of testing real, general-purpose software.

Acknowledgments: We thank the anonymous reviewers
and Olivier Crameri, Rupak Majumdar, Ryan Johnson, and
members of DSLab for their feedback. We thank Daniel
Dunbar and Cristian Cadar for their support of KLEE.

References
[1] F. Bellard. QEMU, a fast and portable dynamic translator. In

USENIX Annual Technical Conference, 2005.
[2] D. Brumley, C. Hartwig, M. G. Kang, Z. L. J. Newsome,

P. Poosankam, D. Song, and H. Yin. BitScope: Auto-
matically dissecting malicious binaries. Technical report,
Carnegie Mellon University, 2007.

[3] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In8th Symp. on Operating Systems De-
sign and Implementation, 2008.

[4] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. In
13th ACM Conference on Computer and Communications
Security, 2006.

[5] P. Godefroid. Compositional dynamic test generation. In
Symp. on Principles of Programming Languages, 2007.

[6] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed au-
tomated random testing. InConf. on Programming Language
Design and Implementation, 2005.

[7] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
Whitebox Fuzz Testing. InNetwork and Distributed System
Security Symp., 2008.

[8] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis and transformation. InIntl.
Symp. on Code Generation and Optimization, 2004.

[9] R. Majumdar and K. Sen. Hybrid concolic testing. In29th
Intl. Conf. on Software Engineering, 2007.

[10] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple ex-
ecution paths for malware analysis. InIEEE Symposium on
Security and Privacy, 2007.

[11] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu. Finding and reproducing Heisenbugs in con-
current programs. In8th Symp. on Operating Systems Design
and Implementation, 2008.

[12] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level
symbolic execution and system-level concrete execution for
testing NASA software. InIntl. Symp. on Software Testing
and Analysis, 2008.

[13] T. Scheller. LLVM-QEMU Google Summer of Code.
http://code.google.com/p/llvm-qemu/, 2007.

[14] K. Sen. Concolic testing. InIntl. Conf. on Automated Soft-
ware Engineering, 2007.

[15] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak. Crys-
talBall: Predicting and preventing inconsistencies in de-
ployed distributed systems. InSymp. on Networked Systems
Design and Implementation, 2009.

6

