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ABSTRACT

Conventional data warehouses employ the query-at-a-tiogem
which maps each query to a distinct physical plan. When aéver
queries execute concurrently, this model introduces coiate, be-
cause the physical plans—unaware of each other—compegefor
cess to the underlying I/O and computation resources. Asudtre
while modern systems can efficiently optimize and evaluategle
complex data analysis query, their performance suffersfagntly
when multiple complex queries run at the same time.

We describe an augmentation of traditional query enginas th
improves join throughput in large-scale concurrent datehauses.
In contrast to the conventional query-at-a-time model.amoroach
employs a single physical plan that can share 1/0, compuuiaind
tuple storage across all in-flight join queries. We use awdgb-
on” pipeline of non-blocking operators, coupled with a cohér
that continuously examines the current query mix and perfor
run-time optimizations. Our design allows the query engfirexale
gracefully to large data sets, provide predictable exeoutimes,
and reduce contention. In our empirical evaluation, we btinat
our prototype outperforms conventional commercial systbynan
order of magnitude for tens to hundreds of concurrent gserie

1. INTRODUCTION

Businesses and governments rely heavily on data warehtuses
store and analyze vast amounts of data; the informationimigh
key to making sound strategic decisions. Data warehousisgd+
cently penetrated the domains of Internet services, snetalorks,
advertising, and product recommendation, where complexies
are used to identify behavioral patterns in users’ onlineities.
These systems query ever increasing volumes of data—Hisdre
of terabytes to petabytes—and the owners of the data sceatmbl
“monetize” it, i.e., distill the data into social or finantfofit.

Unlike in the past, modern data warehouse (DW) deployments
require support for many concurrent users. Commerciabousts
today require support for tens of concurrent queries, wiimes
even wishing to concurrently process hundreds of reportshi®
same time period. Moreover, such customers desire thaggoin
from one query to several concurrent ones should not dedistic
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increase query latency. For example, one of our large DWitdie
specifically asked that increasing concurrency from oneyooet0
should not increase latency of any given query by more thaca f
tor of six. Large organizations employing DWs indicate ttieir
data warehouses will have to routinely support many hursdoéd
concurrent queries in the near future.

We know of no general-purpose DW system that can meet these
real-world requirements today. Adding a new query can have u
predictable effects or predictably negative ones. Foaimst, when
going from 1 to 256 concurrent queries, the query responseiti
a widely used commercial DBMS increases by an order of mag-
nitude; in open-source PostgreSQL, it increases by tworsroe
magnitude. Queries that take hours or days to complete are no
longer able to provide real-time analysis, since, depandimisola-
tion level, they may need to operate on hours-old or daysiatd.

This situation leads to “workload fear”: users of the DW are-p
hibited from submitting ad-hoc queries and only sanctiomgrts
can be executed. In order to achieve better scalabilitgrorgtions
break their data warehouse into smaller data marts, pedggres-
sive summarization, and batch query tasks. These measares,
ever, delay the availability of answers, restrict sevetbby types
of queries that can be run (and consequently the richnese dfi
formation that can be extracted), and increase maintencosts.

In effect, the available data and computation resourcesupritk-
ing used inefficiently, preventing the organization frorking full

advantage of their investment. Workload fear acts as advawi
deploying novel applications that use the data in imagieatiays.

This phenomenon is not necessarily due to faulty desigrs, bu
merely indicates that most existing DBMSes were designed fo
a common case that is no longer common—workloads and data
volumes, as well as hardware architectures, have changatiyra
in the past decade. Conventional DBMSes employ the query-at
a-time model, where each query is mapped to a distinct physi-
cal plan. This model introduces contention when severatigsie
execute concurrently, as the physical plans compete in atiytu
unaware fashion for access to the underlying 1/0 and cortipata
resources. As a result, concurrent queries result in random
for a 1-petabyte DW, even a query that touches only 0.1% of the
database will still retrieve on the order of 100GB of datastlikely
performing a crippling number of random I/O operations.

Contributions. This paper introduces a query processing architec-
ture that enables DW systems to scale to hundreds of comturre
users, issuing ad-hoc queries and receiving real-time ensswour
goal is to enable a new way of using data warehouses, in which
users shed their workload fear and experiment freely withad
data analysis, drill arbitrarily deep, and broaden theerigs.

More concretely, we introduce XOIN, a physical operator that
can evaluate concurrent join queries efficiently. The desf@CJoIN
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achieves deep sharing of both computation and resourcest ian
well suited to the characteristics of modern DW platform&r s
schema design, many-core systems, fast sequential scanarge
main memories. Using OIN as the basis, we build a query pro-
cessing engine that scales gracefully to highly concurdymamic
workloads. The query engine employs a single physical glan t
is “always on” and is optimized continuously based on rumeti
statistics. A new query can latch onto the single plan at anigtp
in time, and it immediately starts sharing work with conemtr
queries in the same plan. This deep, aggressive sharingy ke
CJoIN's efficiency and sets it apart from prior work.

Measurements indicate that @IN achieves substantial improve-
ment over state-of-the-art commercial and research sgstétar
256 concurrent queries on a star schema @ outperforms ma-
jor commercial and open-source systems by a factor of 10 @ 10
on the Star Schema Benchmark [17]. For 32 concurrent queries
CJoIN outperforms them by up to 5x. More importantly, when
going from 1 to 256 concurrent queriesJ@nN's response time in-
creases by less than 30%, compared to over 500% for a leading
commercial system.

The rest of the paper is structured as follows: 82 describes o
target data warehousing setting and summarizes relatek} &8r
details the GOIN operator and the new query processing engine
built around it; 84 describes the deployment afd@N on modern
DW platforms; 85 presents several extensions; §6 evalvatesus
aspects of performance and scalability; and §7 concludes.

2. BACKGROUND AND STATE OF THE ART

In this section, we provide background on the central prable
addressed in our paper: improving support for concurreetigs
in large data warehouses (§2.1). We then survey related tatk
has approached this or similar challenges (82.2).

2.1 Our Target Domain

Data Warehousing Model.Below, we describe the model targeted
by our solution; in 85 we show how specific assumptions behind
this model can be lifted without affecting our techniques.

We consider a DW that organizes information using a stamasahe
which has become standard in the data warehousing indu&tey.
assume a fact tablg' that is linked through foreign keys wdi-
mension tabled, ..., D4. Following common practice, we as-
sume thatF’ is too large to fit in main memory and is considerably
larger than the dimension tables.

The warehouse supports a workload of SQL queries, including
periodic updates. Following common industrial practice as-
sume that the concurrency control protocol provides srapsh-
lation guarantees. In this setting, each transaction ggéd” with
a snapshot identifier, which is inherited by each query arthtgp
statement in the transaction.

We distinguish the class of SQdtar queriesthat are common
in DW workloads, particularly in ad-hoc data analytics. A#lw
be seen later, this specific query structure enables us &laev
efficient techniques for answering concurrent queriesmiadly, a
star query conforms to the following template:

SELECTA, Aggr,, ..., Aggr,
FROMF, Dy, ,....Da,
WHERE A FMXDg, AND A oc;(Da;) AND o, (F)

1<j<n 1<j<n

GROUP BYB

Symbols.A and B denote attribute sets from the referenced ta-
bles, anddggr,, ..., Aggr, are standard SQL aggregate functions,
e.g., MIN, MAX, AVG. The WHERE clause is a conjunction of

fact-to-dimension joins and selection predicates. A jaiediate

F X Dg, has the standard form of a key/foreign-key equi-join. A
selection predicate; can be arbitrarily complex (e.g., contain dis-
junction or sub-queries), but can reference solely theetuatiable

of Dy, from the star query. For convenience of notation, wecset

to TRUE if the query does not place a predicate on the correspo

ing table. Note that we allow for the case whée= 0 (i.e., there

is no GROUP BY clause, so eithér= 0or 4 = 0) or A = (.

In the remainder of the paper, we assume the most general case
whereA # 0, B # (), andk > 0.

Problem Statement.We consider the problem of efficiently eval-
uating a large number of concurrent star queries in a sinala d
warehouse. These queries can either be submitted dirgcotiydrs,
or constitute sub-plans of more complex queries.

An effective solution to this problem should yield high guer
throughput, as well as enable graceful degradation of query
sponse time as the number of concurrent queries increases (i
avoid thrashing). This goal also implies a notion of prealidity:
Query response time should be determined primarily by tlze-ch
acteristics of the query, and not by the presence or absétkear
queries executing concurrently in the system. Existingegah
purpose DWs do not fare well in this setting, hence our mbtiva
to find a solution suitable for highly concurrent data warees.

We emphasize that the overall workload need not be reglricte
solely to star queries. On the contrary, we envision a systetm-
tecture where concurrent star queries are diverted to dadized
query processor (such as the one presented in this papegngnd
other SQL queries and update statements are handled usiwmgreo
tional infrastructure. While it is clearly desirable to gopt high
concurrency across all types of queries, there are signtficizal-
lenges even in doing so for just the subset of star querieseder,
this focus does not restrict the practicality of our solntisince star
queries are common in DW workloads. Finally, our query esxalu
tion techniques can be employed as sub-plans, to evaluatgah
“portion” of more complex queries.

Physical Data Storage We develop our techniques assuming that
the DW employs a conventional row-store for data storagés ds
sumption is driven by the design of existing commercial DWiso
tions, including Oracle, IBM, Microsoft, Teradata, and greduct
within which CioIN was developed. However, our approach can
be applied equally well to different architectures. Fortanse, it
is possible to implement IN within a column store or a system
employing compressed tables. We examine these cases in §5.
We do not make any specific assumptions about the physical de-
sign of the DW, such as partitioning, existence of indicesnate-
rialized views. However, as we show in 85)@n can take advan-
tage of existing physical structures (e.qg., fact tableipaning).

2.2 Related Work

Our work builds builds upon a rich body of prior research and i
dustrial efforts in addressing the concurrency problem.rgVieew
here primarily techniques that enable work sharing, wrsdtey in
achieving high processing throughput.

Multi-Query Optimization. When a batch of queries is optimized
as a unit, it becomes possible to identify common sub-esfoes
and generate physical plans that share the common conguf2ti].
This approach requires queries to be submitted in batchieishw
is incompatible with ad-hoc decision support queries. Mueg,
common computation can be factored only within the batctptif o
mized queries, thus making itimpossible to share work witbrigs
that are already executing. In contrast, our approach sheaoek
among the currently executing queries regardless of wheantiere



submitted and without requiring batch submission.

Work Sharing. Staged database systems [11, 12] enable wor
sharing at run-time through an operator-centric approdtsen-
tially, each physical operator acts as a mini query engiaégsér-
vices several concurrent queries, which in turn enableamyn
work sharing across several queries. A hash join operaipin$
stance, can share the build phase of a relation that paatésgn
different hash joins in several queries. This design wasveho
scale well to tens of complex queries. Our approach adogta-a s
ilar work-sharing philosophy, but customizes it for the coon
class of star queries. As a result, our design can scale th-a su
stantially larger number of concurrent queries.

In the Redbrick DW [9], a shared scan operator was used te shar
disk /0O among multiple scan operations executing concyr®n
multiple processors; however, the in-memory data and tite sff
other operators were not shared. Cooperative scans [24pimp
data sharing across concurrent scans by dynamically sthedu
queries and their data requests, taking into account dusies
tem conditions. Qiao et al. [18] have investigated sharechang
scans as a specific form of work sharing in multi-core systdms
scheduling concurrent queries carefully, tuple accesaede co-
ordinated in the processor’s cache. Our approach alsodgesra
form of scan sharing, but targets large warehouses, wherfath
relation cannot fit in main memory. In addition to I/O, our eqgch
also shares substantial computation across concurreriegue

Recent work [8, 18] has investigated work-sharing techesdor
the computation of aggregates on chip multiprocessors détel-
oped techniques essentially synchronize the executiofffefeht
aggregation operators in order to reduce contention ondhb ta-
bles used for aggregate computation. As discussed latetNEan
be combined with these techniques in an orthogonal fashion.

Finally, work sharing has been investigated extensivelyhm
context of streaming database systems [3, 6, 7, 14, 15, 16]h&-
ing work (or state) among continuous-query operators,eastng
DBMS can maintain a low per-tuple processing cost and thas ha
dle a large number of continuous queries over fast streafmsser
techniques are specific to streaming database systems andtca
be applied directly to the environment that we target. Aeriest-
ing aspect of our proposed architecture is that it incoresrale-
ments from continuous query processing, which in turn allswv
to transfer techniques from streaming databases to a D\Mgett
For instance, @oIN adopts the Grouped Filter operator of Mad-
den et al. [15], but extends it to support fact-to-dimensgadns and
arbitrary selection predicates; the original operatoy auipported
range predicates on ordered attributes.

In summary, GoIN enables a deeper form of work sharing than
any prior work we know of: GOIN employs a single plan that
shares 1/O, join computation, and tuple storage across &iiIC
queries that are in-flight at any given point in time.

Materialized Views. Materialized views enable explicit work shar-
ing by caching the results of sub-expressions that appeamicur-
rently executing queries. The selection of materializeslvgi is
typically performed off-line, by examining a representativork-
load and identifying common sub-expressions [10, 20]. Qapg
a representative workload is a challenging task in the coofed-
hoc decision-support queries, due to the volatility of tiaadand
the diversity of queries. Moreover, materialized views &aldhe

maintenance cost of the warehouse, and hence they do not offe

clear advantages for the problem considered in this paper.

Constant Time Query Processing.BLINK [19] is a query pro-
cessing architecture that achieves constant responsefdimbe

query using the same plan—a single pass over a fully de-rieda

K in-memory fact table—thus incurring more or less the same ex

ecution cost. GoIN achieves a similar goal, in that it enables
predictable execution times for star queries. The key diffees
compared to BLINK are that we do not require the database to
be memory-resident, we do not require the fact table to be de-
normalized, and our design directly supports high querycaon
rency, whereas BLINK targets the execution of one queryiate.t

3. THE Cioin PIPELINE

This section details the design ofi@N. We first provide an
overview of QJOIN, using an illustrative example (83.1) and then
describe the various components in more detail (83.2-834)
clarity, we initially assume a query-only workload thatexfnces
the same snapshot of the data. We then expand our discussion t
mixed workloads of both queries and updates in 83.5.

Notation. In what follows, we writeQ to denote the set of con-
current star queries that are being evaluated. We assurmeatia
query is assigned a unique positive integer identifier, anduge
Q) to denote the query with id These identifiers are specific to
CJoIN and can be assigned when queries are registered with the
operator. Also, an identifier can be reused after a quenhfisigts
evaluation. The maximum query id @ is denoted asnazld(Q).
We note thatnazId(Q) > | Q| in the general case, since we do not
require query identifiers to be consecutive. Moreover, waeek
that mazld(Q) is bounded by a system parameteazConc that
limits the total number of concurrent queries.

We usec;; to denote the selection predicate placedlyyn a di-
mension table); that it references. We assume thgt= TRUFE
if no explicit predicate is placed. We also defing similarly with
respect to the fact table. Finally, we useb to denote a bit-vector
of bounded length, anB[{] to denote thd-th bit. The symbolo
denotes the bit vector with all bits set@o

3.1 Design Overview

CJoiNleverages the observation that star queries have a common
structure: they “filter” the fact table through dimensiomgicates.
Correspondingly, the architecture ob@N consists of a pipeline
of components, as shown in Figure 1.

Aggr.
Operator

Aggr
Operator

Continuous Scan

| ,—‘
I _> Flller - M prrbuter ]
|

Pipeline
Manager

Figure 1: General architecture of the CIOIN pipeline.

Aggr.
Operator

The Ci0IN pipeline receives its input from a continuous scan of
the fact table and pipes its output to aggregation operdgéittser
sort-based or hash-based) that compute the query resultse-|
tween, the fact tuples are processed through a sequenckestFi
one for each dimension table, where each Filter encodesoihe ¢
responding dimension predicatesadf queriesin Q. In this way,
CJoIN can share 1/0 and computation among all querie€.in

The continuous scan implies that the operator is “always @n,

a new queryQ can be registered with the operator at any point in
time. The Preprocessor marks the point in the scan wlezaters
the operator and then signals the completiorfQofvhen the scan
wraps around at that same point. This design turns the fat ta

type of queries considered in our work. The idea is to run each jnto a “stream” that is filtered continuously by a dynamic s&t



dimension predicates.

We illustrate the operation of the pipeline and the basiasdwe-
hind the design of @oIN using the simple workload shown below:
two star queries that join fact tablewith dimension table® and
D,. The queries compute different aggregates and apply eiffer
selection predicates ab; and D-.

SELECT Aggr,

Q1 FROMF 7,D16,Ds ¢
WHERET X § M §" AND o,, (6) AND 0c,,(8")
SELECT Aggr,

Q2 FROMFT, D1 (5, D2 (5’

WHERET 5 § X 6’ AND 0y, (§) AND o, (5')

Figure 2 shows a possiblesGiN pipeline for this workload. The
following paragraphs describe the functionality of eacmponent
for this specific example.

r—-—-—"—"—-—-"——" — — — — =
| Dimension dim tuple  bitvec |
3
Continuous | fact tuple bitvec Hash Table 61 1 |
Scan i 2 "
DN S 5 o I
— i Aggry
Fact |yl .y , istri l/
=-| Preprocessor |==p | Filter | ==»| Filter | == | Distributor
Table | INL
| | Aggrp
— v I
Pipeline dim tuple bitvec | | pimension
Manager 4 01 Hash Table [
| 5, 11 |

Figure 2: One possible instantiation of the QOIN pipeline for
the example queries shown above.

The Preprocessoreceives tuples from the continuous scan and
forwards them to the remainder of the pipeline. Each fadetujs
augmented with a bit-vectds, that contains one bit for each query
in the workload. In this example, the bit-vector consistsnd bits
such thatb,[1] = b-[2] = 1. This signifies that, initially, every
fact tuple is relevant for both queriés andQ-.

The Distributor receives fact tuples that are relevant for at least
one query in the current workload. Given a received factetupl
the Distributor examines its bit-vectdr. and routes it to the ag-
gregation operators of quefy; if and only if b [i] = 1.

A Dimension hash tablstores a union of the tuples of a specific
dimension table that satisfy the predicates of the curreetigs. In
our example, say the predicates@f select exactly two tuple
andd from tableD; and one tuplé’, from D2, while Q- selects
tuplesd, and d; from D; and tuples’; and s, from D,. Each
stored dimension tupléis augmented with a bit-vectdrs, whose
length is equal to the bit-vectar, attached to fact tuples, with the
following interpretationbs [i] = 1 iff the dimension tuple satisfies
the predicates of quer§;. For instance, the bit-vector for tuple
01 is set asbs, [1] = 1 andbg, [2] = 0. Figure 2 illustrates the
bit-vectors for all the tuples in our example.

EachFilter retrieves fact tuples from its input queue and probes
the corresponding dimension hash table to identify thengimli-
mension tuples. Given a fact tupte the semantics of the foreign
key join ensure that there is exactly one dimension tdptet cor-
responds to the foreign key value.dlfis present in the dimension
hash table, then its hit-vectdrs is combined (using bitwisaND)
with the bit-vectorb of 7. Otherwiseb.- is set to0. The Filter
forwardsr to its output only ifb, ## 0 after the combining (i.e.,

only if the tuple is still relevant to at least one query),athise the
tuple is discarded. In this example, the first Filter outmutspler
only if it joins with one ofé, d2, or §3. The second Filter forwards
a fact tuple only if it joins with one o} or 65. Since the two Fil-
ters work in sequence, appears in the output of the second Filter
only if its dimension values satisfy the predicategafor Q-.

The Pipeline Managerregulates the operation of the pipeline.
This component is responsible for registering new querigh w
CJioiNand for cleaning up after registered queries finish exegutin
Another important function is to monitor the performancethod
pipeline and to optimize it on-the-fly to maximize query tigb-
put. For this reason and others that we mention below, it s&de
able for the Pipeline Manager to operate in parallel withrttan
pipeline. Therefore, this component has ideally its owrcakien
context (e.g., a separate thread or process).

Overall, the basic idea behindiGiNis that fact tuples flow from
the continuous scan to the aggregation operators, beiegefiltin
between based on the predicates of the dimension tableshigha
level, this is similar to a conventional plan that would eayph
pipeline of hash join operators to join the fact table wite df-
mension tables. However,JOIN shares the fact table scan among
all queries, filters a fact tuple against all queries withrayk di-
mension table probe, and stores the union of dimensiondigade
lected by queries. Therefore, the fundamental differerma ton-
ventional plans is that @IN evaluates all queries concurrently in
a single plan that shares I/O, computation, and dafghe pro-
posed design also differs from previous operator-centeigighs
(e.g., QPipe [11]) in that it takes advantage of the semawfistar
queries to provide a much tighter degree of integration &adisg.
For instance, QPipe would simulate two hash join operatétis w
different state for each query, whereas in our design treonly
one operator for all concurrent queries.

In this example we illustrated only one possiblediN pipeline
for the sample workload. As we discuss later, there are qtber
sibilities with potentially vast differences in perforntn For in-
stance, it is possible to change the order in which the Biltee
applied. Another possibility is to have the Filter operatoun in
parallel using a variable degree of parallelism, e.g., et Filter
can employ two parallel threads while the second Filter careh
just one thread. We discuss these issues in §3.4 and §4.

3.2 Query Processing

We now discuss in more detail how the@N operator evaluates
concurrent queries. For this part of our discussion, werasghat
the workloadQ remains fixed and that the operator uses a fixed
ordering of filters. We discuss later the admission of newrigse
(83.3) and the optimization of the pipeline’s filter ordeB&).

3.2.1 Dimension Hash Tables

Each dimension tabl®; referenced by at least one query is
mapped to a hash tablD ;, which stores those tuples &i; that
are selected by at least one query in the workload. More filyma
atupleé € D; is stored inHD; if and only if there exists a query
Q; that referenced; and¢ satisfiesc;;. Tupled is also associ-
ated with a bit-vectobs of lengthmaxzId(Q) that determines the
queries that seleét This hit-vector is defined as follows:

if there is no quen®; in Q

if Q; referenced; A ¢ satisfies:;;

if Q; referencedD; A § does not satisfy;;
if Q; does not referenc®);

bs[i] =

= o = O



The last case inserts an implicitR UF predicate for a querg);
that does not reference the dimension table. The reasoati@th
does not filter fact tuples based @, so implicitly it selects all
the fact tuples inD;. The hash table also records a single comple-
mentary bitmagbp, defined as followsbp;[i] = 1 if Q; does
not referenceD; andbp;[i] = 0 otherwise. Essentiallypp; is
the bitmap assigned to any tupig¢hat does not satisfy any of the
predicates i@ and hence is not stored D ;.

By definition, HD ; stores only a subset @;. Each stored tuple
is further augmented with a bit-vector of sizeazId(Q), which
is a moderate memory overhead. Given that the dimensioagabl
tend to grow at a much slower rate than the fact table (tylyiday
a logarithmic rate [17, 23]), it is reasonable to expect thathash
tables fit in main memory for modern hardware configuratidys.
a concrete example, TPC-DS [23] employs 2.5GB of dimension
data for a 1TB warehouse; today, even a workstation-clas$ime
can be economically equipped with 16GB of main memory.

3.2.2 Processing Fact Tuples
We consider next the details of processing a fact tuplerough

the CJOIN pipeline, starting with the Preprocessor. The Preproces-

sor attaches to a bit-vectorb - of lengthmaxId(Q) that traces the
relevance of the tuple to different queries. This bit-vetanodi-
fied ast is processed by Filters and it is used in the Distributor to
router to aggregation operators.

The bit-vector is initialized based on the predicates planethe
fact table, as followsb, [i] = 1if Q; € Q; A 7 satisfieso (i.e.,
the selection predicate on the fact table) &ndi] = 0 otherwise.
After b, is initialized, the Preprocessor forwards it to its output
queue ifb, # 0. In the opposite case, can be safely dropped
from further processing, as it is guaranteed to not belonth¢o
output of any query ir@. Computingb.- involves evaluating a set
of predicates o, and thus it is necessary to employ an efficient
evaluation mechanism to ensure that the Preprocessor dbbs-n
come the bottleneck. This issue, however, is less crucjaidatice,
since most queries place predicates solely on dimensidestab

CJoINFiltering Invariant LetDg, ,..., Dq,, be the dimension ta-
bles corresponding to the first: Filters in the CJoIN pipeline,
m > 1. If a tuple 7 appears in the output of the Filter corre-
sponding taDg,,, then we havé.[i] = 1 if and only ifQ; € Q
and 7 satisfies the predicates @J; on the fact table and- joins
with those dimension tuples {Dq,, ..., Dq,, } that also satisfy
the predicates of);.

Tupler eventually reaches the Distributor if its bit-vector is non
zero after passing through all the Filters. Given that tHeeis
cover all the dimension tables referenced in the currenkioad,
the invariant guarantees tHat [i] = 1 if and only if 7 satisfies all
the selection and join predicates@©f.

The Distributor routes to the aggregation operator of each query
Q. for whichb[i{] = 1. The aggregation operator can directly ex-
tract any needed fact table attributes fremlf the operator needs
to access the attributes on some dimendignthen it can use the
foreign key int to probe for the joining dimension tuple. A more
efficient alternative is to attach tomemory pointers to the joining
dimension tuples as it is processed by the Filters. Speltyfidat
0 be a tuple ofD; that joins tor and assume tha; references
D;. Based on our definition oD, it is possible to show thatis
in HD; whenr is processed through the corresponding Filter and
remains in memory untit reaches the Distributor. This makes it
possible to attach to a pointer ta) after HD ; is probed, so that the
aggregation operator can directly access all the needediation.

3.2.3 Cost ofsoin Query Processing

The design of GoIN has specific implications on the cost of
query processing, which we discuss below.

We consider first the end-to-end processing for a singletfigbe
through the GoiN operator. Once a tuple is initialized in the Pre-
processor, ifK is the total number of Filters in the pipeline, then
processing the fact tuple involvés probes andk bit-vectorAND
operations in the worst case. Since the probe and\K opera-
tion have limited complexity, and assuming that the Pregssor
can initialize efficiently the bit-vector of the tuple JGIN can sus-

Tuple 7 passes next through the sequence of Filters. Consider tain a high throughput between the continuous scan and tire-ag

one such filter, corresponding to dimension table Letd be the
joining dimension tuple for-. The Filter probesHD; using the
foreign key ofr and eventually computes (as explained in the next
paragraph) a “filtering bit-vector” denoted by xp;, which re-
flects the subset of queries that selédhrough their dimension
predicates. The Filter thus joins with D; with respect toall
queries in the workload by performingsangleprobe toHD ;. Sub-
sequentlyb. is bitwiseANDed withb.wzp, . If this updatedb,
vector is0, then the fact tuple can safely be dropped from further
processing, since it will not belong to the output of any guerQ;
otherwise it is passed to the output of the Filter. As an ojzttion,

it is possible to avoid completely the probing 8D ; by checking
first whetherb, AND —bp, is 0 (i.e., D; does not appear in any
query @; to which 7 is relevant). In this case; is not relevant to
any queries that referenééD ; and can be simply forwarded to the
next Filter.

The filtering bit-vector is computed as follows: if the prdals
din HD; theanNHDj = by, similar to the example of Figure 2;
otherwise,b-xpp; is set tobp,, the bit-vector of any tuple that
is not stored inHD;. Given the definitions ob; andbp,, we
can assert the following key property for the filtering béetor:
bwmp,[i] = 1 if and only if eitherQ; referencesD; and¢ is
selected byQ;, or Q; does not reference table;. This property
ensures thab, AND brxpp; results in a bit-vector that reflects
accurately the relevance ofto workload queries up to this point.
This can be stated formally with the following invariant:

gation operators. Moreover, the reliance on sequentialssaa the
sole access method allowss@N to scale gracefully to large data
sets, without incurring the costs of creating and maintgjmate-
rialized views or indices on the fact table, or maintainitegistics.

We discuss now the cost of a single query. The response time of
a query evaluated with ©IN is dominated by the time required to
loop around the continuous scan. This cost is relativelylstaith
respect to the total number of queries in the workload, bee#e
1/0 is shared across all queries and the cost of probing ih Ede
ter (cost of a hash table lookup and cost of a bitwisid) grows
at a low rate with the number of queries. Thus, as long as tiee ra
of query submission does not surpass the rate of query ctiomple
CJoiNyields response times with low variance across different de
grees of concurrency. This property is crucial if we are talesc
effectively to a large number of concurrent queries.

An added bonus is that the current point in the continuous sca
can serve as a reliable progress indicator for the regibtgueries,
and it is also possible to derive an estimated time of corigplet
based on the current processing rate of the pipeline. Bothese
metrics can provide valuable feedback to users during theugion
of ad-hoc analytic queries in large data warehouses.

The predictability property implies that query responsgestiis
bounded below by the cost of a full sequential scan of thetéact
ble. Conventional physical plans for star queries areyikelhave
the same property; for instance, a common plan in commesgsal
tems is a left-deep pipeline of hash joins with the fact tadehe



outer relation. In principle, the large table scan can bdadaeb
by the use of indices or materialized views, but these sirast
are generally considered too expensive in the DW settincause
fact table indices have a prohibitively high maintenancst,cand
ad-hoc data analysis workloads may not be stable enougleme id
tify useful views to materialize. A common method in praetis
to limit queries on specific partitions of the fact table; afl e
discussed in 86, this method can also be integratedymiiCwith
similar benefits. In any case, we stress thab @ becomes yet one
more choice for the database query optimizer; it is alwayssipo
ble to execute queries with conventional execution plankisfis
estimated to be more efficient.

3.3 Query Admission and Finalization

Up to this point, we have examined the processing of fact tu- 13

ples assuming that theJGIN pipeline has been initialized correctly
with respect to a given workload. In this section, we disduss
the state of the @IN pipeline is updated when a new query is ad-
mitted, or when an existing query finishes its processing.

We usen to denote the id of the query in question. For a new 17
query, n is assigned as the first unused query id in the interval 18

[1, mazConc], wheremazConc is the system-wide limit on the
maximum number of concurrent queries. To simplify our pnése
tion, we assume without loss of generality that mazld(Q).

3.3.1 Admitting New Queries

The registration ofQ,, is done through the Pipeline Manager,
which orchestrates the update of information in the remagiobom-
ponents. This approach takes advantage of the fact thatphbrfe
Manager executes in parallel with the@n pipeline, thus mini-
mizing the disruption in the processing of fact tuples.

The registration is performed in the Pipeline Manager tthies
ing Algorithm 1. The first step is to update hitof bp; for each
dimension table that is referenced @y or appears in the pipeline
(line 3). Subsequently, the algorithm updates the haslegafolr
the dimensions referenced in the query (line 11). For each dis
mension table;, the Pipeline Manager issues the quety; (D)
and update$/D ; with the retrieved dimension tuples. If aretrieved
tupled is not already inFZD;, thend is inserted indD; and its bit-
vector initialized tobp . We then sebs[n] < 1 to indicate that
is of interest toQ),,. At the end of these updates, all the dimension
hash tables are up to date with respect to the workidad{Q., }.

Having updated the dimension tables, the algorithm coraplet
the registration by installing., in the Preprocessor and the Dis-
tributor. This involves several steps. First, the Pipelitenager
suspends the processing of input tuples in the Preproceeisizh
stalls the pipeline (line 17). This enables the addition ef il
ters in the pipeline to cover the dimension tables referghgethe
query. (While new Filters are appended in the current pigeli
their placement may change as part of the run-time optinoizat
see 83.4.)Q is also updated to includ@,,, which allows bitn of
the fact tuple bit-vector to be initialized correctly. Neste first
unprocessed input fact tuple, sayis marked as the first tuple of
@, so that it is possible to identify the end of procesding (see
next paragraph). Finally, a special “query start” contuglé 7,
that containg),, is appended to the output queue of the Preproces-
sor, and the Preprocessor is resumed. The control tuplegssc
the starting tuple- in the output stream of the Preprocessor and is
forwarded without filtering through the Filters and on to is-
tributor. In turn, the latter uses the informationsig,, to set up the
aggregation operators f@p,,. Sincerg, precedes any potential
results for@,, (the pipeline preserves the order of control tuples
relative to data tuples), we guarantee that the aggregagierators

11

Algorithm 1: Admitting a new query to the @IN pipeline.

Input: QueryQn,
Data: A list L of dimension hash tables, initially empty

1 Let D be the set of dimension tables referencedy
2 Let D’ be the set of dimension tables in the pipeline
3 foreach D; € DU D’ do
4 if D; is not in the pipelinghen
5 Initialize HD; andbp; based orQ U {Qr}
6 AppendHD; to L
7 else if D; is referenced by, then
8 | bDj [n} =0
9 else
10 | bp;[nl=1

foreach D; € Ddo
2 foreach ¢ € o,,; (D) do
if § is notin HD; then

14 Inserts in HD ;
15 bs — bDj
16 bs[n] — 1;

Stall Preprocessor;
foreach HD in L do insert a Filter fordD ;

9 Q—oU{Qn};

20 Set start ofY),, to next tuple in Preprocessor’s input
21 Append a control tupleg,, in Preprocessor’s output
22 Resume Preprocessor

will not miss any relevant fact tuples.

Itis important to note that query registration occurs inRliggeline
Manager thread and thus it can proceed, up to line 17, inlparal
with the processing of fact tuples through the pipeline sEmisures
that other queries are minimally disrupted during the tegfi®n of
Q@». The concurrent update of the bit-vectors in dimension tash
bles does not compromise the correctness of results, siedere-
processor continues to mark each fact tuple as irrelevagtiéoy
Qn (b-[n] = 0). Thus, even ibs[n] is switched on for some tuple
o (line 16), it does not lead to the generation of resultJaruntil
after it becomes part of the workload in line 19, because:hit
the fact tuples’ bit-vectors will be 0 until that point.

3.3.2 Finalizing Queries

Query @, is finalized when the continuous scan wraps around
the starting fact tuple. Upon encountering in its input, the Pre-
processor first remove®,, from Q, which ensures that the bit-
vector ofr (and of any subsequent tuple) will have hiswitched
off. This ensures thaf),, becomes irrelevant for the filtering of
fact tuples. Subsequently, the Preprocessor emits an fequboy”
control tuple that precedesin the output stream. The control tu-
ple is handled in a fashion similar to the query-start tupld &
forwarded through the pipeline to the Distributor, whichafines
the aggregation operators@f, and outputs their results. Since the
control tuple precedes, we ensure that the aggregation operators
of @, will not consume any fact tuple more than once.

The final step is to clear the dimension hash tables from any in
formation pertinent ta,,. This is handled in the Pipeline Man-
ager thread according to Algorithm 2, which essentiallyerses
the updates performed when the query was admitted. Thiaclea
up may render certain information in the hash tables useless
instance, if for some tuplé in HD; we havej[:] = 0, thend can
be removed. In turn, ifHD; becomes empty, then it can be re-
moved from the pipeline along with the corresponding Filt©f
course, the latter requires a stall of the pipeline in ordeeton-
figure the Filter sequence. Note that this “garbage cobetttan



Algorithm 2: Removing a finished query from the pipeline. imizes the expected processing cost of each stream tupéecdrh
Input: QueryQn. respondence to LOIN appears when viewing Filters as predicates,

Data: A list L of dimension hash tables, initially empty. and the continuous scan as an infinite stream. Moreoveg siach
1 Let D be the set of dimension tables referencedby Filter has a fixed cost—one probe of the in-memory hash table
2 LetD’ be the set of dimension tables in the pipeline ; and one bitwis&ND operation—minimizing the expected process-
3 foreach D; € D' do ing cost is equivalent to minimizing the expected numberitieF
4 | bpjlnl=1 probes. In our work, we employ the techniques of Babu et &l. [5
5 foreach D; € D do to implement the run-time optimization of the Filter orcheyi A
g fOFGiChﬁE hg?,' do detailed discussion of these techniques is beyond the sifoper

n] — 0 : .

8 L i (Sbg — 0 then removes from HD, paper. We do note, however, that other techniques are apjsgic

] too, such as those introduced by Liu et al. [13].
9 | if HD; = (then AppendHD; to L

10 if L # 0 then 3.5 Handling Updates
11 | Stall pipeline; o Up to this point, we have considered the case of read-onhgtra
12 foreach HD; € L doremove corresponding Filter;

actions that reference the same data snapshot. This emngblgs
ing all queries of these transactions in the sam®I8 operator
that performs a single continuous scan of the specific siapsh
In the remainder of this section we examine adaptationsJafi €

be done asynchronously (as long as the query identifiersaare ¢ When this assumption is relaxed, i.e., when the queriesspand
rectly handled): one could also maintain usage bits and évic to transactions with different snapshot ids. (As mentiomeg2,

13 | Resume pipeline;

least-recently-used tuples according to memory needs. we assume snapshot-based isolation, since this is the nqurag-
tice.) This scenario arises when read-only transactioesrder-
3.3.3 Correctness leaved with updates, or when the same transaction contaits b

queries and updates. In all cases that we examine, we focug-on
dates that reference only the fact table. In the rare evempddtes
on dimension tables, we assume that the admission of neveguer
in CJoINis serialized with the transaction of the update.

We consider two possibilities for adaptingg@N to this sce-
nario, that depend on the functionality of the continuousnsop-
erator. The first possibility is that the continuous scarraipe can
return all fact tuples corresponding to the snapshots irctineent
query mix. This essentially requires the scan to expose thié-m
version concurrency control information for the retrieviadt tu-
ples. Then, the association of a qué}yto a specific snapshot can
be viewed as a virtual fact table predicate, and it can beiated by
the Preprocessor over the concurrency control informaifaach
3.4 Pipeline Optimization fact tuple. The remaining ©IN mechanism remains unchanged.
Of course, the benefits of thesGIN operator are decreased as the
snapshots referenced by the transactions become didjointye
believe this case to be infrequent in practice.

The second possibility is when the previous functionaktyot
provided, i.e., the scan only returns tuples of a specifipsimat. In
this case, we create several@n operators, one for each snapshot
that is referenced, and register queries to the respeqieeator.
This approach could degenerate into a single plan per qgifieach
transaction in our workload mix referenced different siapsds.
This, however, is an exceptionally rare event in practice.

The correctness of INwith respect to query finalization hinges
upon two properties. First, the continuous scan returrigdgtes in
the same order once resumed. This is necessary so that firePre
cessor can identify correctly when the fact table has beenrsx
exactly once for each query. Itis reasonable to expectligptop-
erty holds for real-world systems. The second propertyas ftha
control tupler’ is placed in the output queue of the Preprocessor
before (respectively after) a fact tuptethenr’ is not processed in
the Distributor after (respectively before) This property guaran-
tees that the aggregation operators of a query neither elsgnt
tuples nor process them more than once. This property nedus t
enforced by the implementation of the@N pipeline.

The order of Filters in the pipeline influences performaree,
cause it determines the expected number of probes for eath fa
tuple. Drawing a correspondence to the ordering of joins sina
gle query plan, we expect that a good order will apply the most
selective Filters first, in order to drop fact tuples earlye Were-
fore face the following optimization problem: Given a warét Q
and a QoIN pipeline for Q, determine an ordering of the Filters
that minimizes the expected number of probes for each fat#.tu

One complicating factor is that the selectivity of eachédvilte-
pends on the workloa@, since a Filter encodes the join predicates
of several queries on a specific dimension table. Thus, iWvbr-
load is unpredictable, as is the case with ad-hoc analytiesdata 4.  CJOIN IMPLEMENTATION
warehouse, then the optimal order might change as the quigry m In this section, we discuss the implementation afoGi on a

changes. This observation suggests an online approacthinoinp multi-core system, the predominant hardware architedgtureal-
ing the order of Filters in the @INpipeline. The ideais to monitor  world deployments today and in the near future. Nevertlseles
at run-time the selectivity of each Filter and then optintteeorder expect QOIN to yield significant benefits on single-core/single-
based on the gathered statistics. This continuous prod¢essre CPU hardware as well.
itoring and re-optimizing can be performed asynchronousdide An efficient implementation of @IN on a multi-core architec-
the Pipeline Manager thread. ture requires that the operator’s components (Preprogdsters,
Previous work introduced several techniques for optingjzime and Distributor) be mapped to multiple threads, which imtare
execution order of relational operators on-the-fly [4, 5, 113 par- mapped by an operating system to different processor cAsesn
ticular, the optimization of the @IN pipeline maps precisely to  example, one obvious mapping is to assign each component to a
the following problem that has been investigated in the ednbf different thread and then employ tuple queues to link thelpip.
streaming database systems: We are given a conjunctioredf pr  However, the mapping of ©IN components to threads must strike
icates that are applied on the tuples of an infinite strearmh,tha a balance between the degree of parallelism, the overheaaisef
goal is to determine an order for evaluating the predicétatsmin- ing tuples between the threads, and the utilization of Eeoe



caches. Passing a tuple from one thread to another reqyines s thread retrieve or deposit tuples in batches, wheneveilpges§i-
chronization between the threads and also results in dataeca nally, we reduce the cost of memory management synchraorizat
misses if the two threads execute on different cores. Onttiero by using a specialized allocator for fact tuples. The spizeid al-

hand, executing components in different threads improeehe locator preallocates data structures for all in-flight asplwhose

locality if the internal state is read-mostly (such as thaatision number is determined based on the upper bound on the length of

hash tables) and can be partitioned among multiple threads. tuple queue and the upper bound on the number of threadsn Give
Since the internal states of the Preprocessor and Digbrilawe the pool of preallocated tuples, the allocator reservesrelegises

frequently updated, we chose to map each to a single thread agtuples using bitmap operations, which entail a single nrelm-
shown in Figure 3. Filters, where the bulk ofi@N processing struction on most CPUs, thus being both atomic and efficient.
happens, do not have any internal state other than the diomens

hash tables, which are read-mostly. Our implementati@walifor

a flexible mapping of Filters to threads by collapsing mudtiad- 5. E.XTE.NS|ONS. ) ) )
jacent Filters to Stage(to reduce the overhead of passing tuples  In this section, we revisit some of the assumptions made in §2
between the threads) and assigning multiple threads to®tagie Ve discuss ways in which JOIN can be adapted to accommodate

(to increase parallelism). This approach gives rise tooHeviing the lifting of these assumptions.

possible configurations: Galaxy Schemata. A galaxy schema involves several fact rela-

« A vertical configuration assigns a single Stage to each Filter, with tions, each of which is the center of a star schema. Staregieri

a (potentially) different number of threads per Stage. Heaisign remain common in this setting and can thus be evaluated using
favors the affinity of Stages to cores so that instruction dath CJoin, but itis also common to observe queries involving the join
locality is maximized. On the other hand, we expect a largeer ~ Of several fact tables (typically two). .

of data cache misses when tuples are transferred betweersFil ~ CJOIN can benefit the evaluation of these queries even though
Moreover, the problem of pipeline optimization now acqgien it was not designed for this specific case. Concretely, densi
extra free variable: the number of threads per Stage. query@ with a single fact-to-fact join predicate. By using the fact

to-fact join as a pivot, we can express the evaluatiod@ds the
join between the results of two star queries, §ayandQ,, over
the corresponding fact tables. It now becomes possiblegistes
each@; with the CioIN operator that handles the concurrent star
queries on the corresponding fact table, the differencegb#iat
the Distributor pipes the results ¢f; to a fact-to-fact join operator
instead of an aggregation operator. Notice that eaxd KCoperator

e A horizontal configuration assigns a single Stage to the entire
sequence of Filters, and all the threads are assigned tgitigke
Stage. This implies that several copies of the Filter secpiame
running in parallel (one for each thread) and accessing dhees
hash tables. This scheme avoids data cache misses whes aople
passed between Filters, but may incur more misses on thesasce

of the hash tables, since each thread needs to access mare dat,y;|| pe evaluating concurrently several star queries thatigipate
Pipeline optimization involves solely ordering the Fitter in concurrent fact-to-fact join queries. Thus, the oveidsi is to

e A hybrid configuration employs several Stages and an assign- use QJOIN as a physical operator that can evaluate efficiently the
ment of threads per Stage. This configuration can strike anbal “star sub-plans” of bigger query plans.

between the two extremes of a horizontal vs. vertical corditjn. Column Stores. Column stores have been gaining traction as a
More concretely, the cost of tuple passing is incurred oelyieen  gq5|apie system architecture for large data warehous@s 22]. It
Stages, and each thread needs to access solely the dimémsion 5 hossible to adapt @nin this setting as follows: The continuous
bles that exist within a Stage. However, the run-time optation fact table scan can be realized with a continuous scan/noéayey
becomes more complex, as there are now three free varighes: 1,056 fact table columns that are accessed by the currenyt e
order of Filters, the boxing of Filters in Stages, and thegassent Thus, QJOIN can take advantage of the columnar store in order
of threads to Stages. to reduce the volume of data transferred by the scan. The othe
Stage Stage case that we need to examine is the evaluation of filter gaiesier
dimension tables, which occurs as part of a new query regjistr.
§§§§ %g This case is readily handled by the column store, sinoeI€uses
g grensssssasasa yTTTTTTTTTTTTTs \ % the existing query processing infrastructure to retriéeeresulting
: ; ! dimension tuples.
| Prepmcessorl_ﬂ F”[eH Fmehﬂ FII@H F”u+—| i ! Dlsmbuni Compressed Tables.Data warehouses may employ compression
P ; . to reduce the amount of 1/0O and memory bandwidth used for data
transfer [1, 19]. GoIN makes no assumptions about the physi-
Figure 3: An example mapping of a CJOIN pipeline to threads. cal storage of tuples, except that it is possible to evalpateli-
cates, extract fields, and retrieve result tuples for dinoerngueries.
Thus, compression of tables is an orthogonal techniquectirabe
easily incorporated in @IN. For instance, the continuous scan
can bring in compressed tuples and decompress on-demar-and
the-fly as needed for probing the dimension hash tables. henot
option is to use the partial decompression technique peabds
BLINK [19] in order to evaluate predicates efficiently on t@m-
pressed fact table.

Our experiments indicate that the extra parallelism resyftom
using multiple Stages does not outweigh the cost of forwmarttie
tuples between them. Consequently, we henceforth ass@heth
izontal configuration, and we achieve parallelism by allimgpsev-
eral threads to the single Stage.

A few well-known design principles turned out to be crucial t
achieving good QoIN performance in our prototype. To reduce
the overhead of thread scheduling, we wake up a consumexdthre Fact Table Partitioning. The organization of the fact table in parti-

only when its input queue is almost full. Similarly, we resthe tions may arise naturally from the operational semantich@DW,
producer thread only when its output queue is almost empty. W e.g., the fact table may be range-partitioned by a datdatéicor-
also reduce the overhead of queue synchronization by haaoly responding to the loading of new data. The optimizer can aake



vantage of this partitioning in order to limit the executiafra query

to a subset of the fact table. Thus, a query that sets a raege pr
icate on the partitioning date attribute will need to exasnamly a
subset of the partitions. In principle, this approach catuce sig-
nificantly the response time of an individual query, but eonent
queries can still lead to random 1/O, which has cripplinget§ on
overall performance.

CJOIN can take advantage of partitioning in order to reduce the
volume of data accessed by the continuous scan and alsoutcered
query response time. More concretely, the query registratigo-
rithm can be modified to tag each new query with the set of parti
tions that it needs to scan. This set can be determined bglating
the selection predicates on the fact table with the spedfititjpn-
ing scheme. The Preprocessor can then realize the contirscan
as a sequential scan of the union of identified partitionghAtend
of each partition, the end-of-query control tuple can beteaifor
the queries that have covered their respective set of jpaditthus
allowing queries to terminate early.

Efficient Aggregate Computation. The current GoIN design for-
wards the resulting tuples to aggregation operators thaipote
the final query results. There may be opportunities to opgertiis
final stage, e.g., by sharing work among aggregation ops;ate-
pending on the current query mix. This optimization is ogibioal
to CJoIN and can be performed using existing techniques [8, 18].

Memory-resident DatabasesThe design of GoINwas motivated
by large-scale data warehouses, where the fact table issoode
magnitude larger that the available main memory. Howevas, i
straightforward to employ @iNfor a memory-resident data set as
well. One difference is that the sharing of the continuownsoay
not have as significant an effect as when the fact table reside
disk. Still, CioiN will enable work sharing among the concurrent
queries, which is important in achieving high throughput.

Indexes and Materialized Views.As discussed earlier, fact table
indexes are not likely to be useful in the DW setting that we-co
sider, due to their high maintenance cost. Similarly, tHeerent
volatility of ad-hoc queries limits the appearance of comrpat-
terns and hence the importance of materialized views tkatia
the fact table. It is more common (and affordable) for dataewa
houses to maintain indexes and views on dimension tablesINC
takes advantage of these structures transparently, siegean op-
timize the dimension filter queries that are part of new quegys-
tration (see also Algorithm 1).

6. EVALUATION

This section reports the results of an experimental evialuatf
our CJOIN prototype. We investigate the performance characteris-

6.1.1 Systems

Our CJOIN prototype is implemented as a multi-threaded pro-
cess executing on top of the PostgreSQL database systeoiNC
uses PostgreSQL to issue queries over the dimension tailteef
registration of new queries. The continuous scan is impteete
by issuing successiVEELECT = FROM F queries to PostgreSQL.
To increase the throughput of the scan, we have implemented a
fast tuple copy mechanism between PostgreSQL araiiCusing
a shared memory buffer. Our prototype supports both thebiotal
(one Stage for all Filters) and vertical (one Stage per fyittenfig-
urations described in 84.

We compare GoIN to both a widely used commercial database
system (henceforth referred to as “System X”) and Postgte 3@
tune both systems (e.g., computation of optimization stiafi, al-
lowing a high number of concurrent connections, scans Uaigg
data chunks, etc.) to ensure that the experimental workleael
executed without obvious performance problems. We havie ver
fied that both systems employ the same physical plan steitbur
evaluate the star queries in the experimental workloadsgha a
pipeline of hash joins that filter a single scan of the facteabhe
small size of the dimension tables implies that they can bbeaxh
efficiently in main memory and hence their processing is etque
to be very fast. As a result, we do not tune the physical design
any of the database systems with indices or materializesisvan
the dimension tables, since this would not improve quergorse
time (we verified this claim for the experimental workloadsye
also avoid using indices and views on the fact table, for the-o
ous reasons mentioned in previous sections. For PostgreS8€L
enable the shared-scans feature to maximize its work gharin

Our experimental server has two quad-core Intel Xeon CPUs,
with a unified 6 MB L2 cache on each CPU shared among all 4
cores and 8 GB of shared RAM. The machine has four HP 300GB
15K SAS disks, arranged in a hardware-controlled RAID-ayarr

6.1.2 Data Set and Workload

We employ the data set and queries defined in the Star Schema
Benchmark (SSB) [17]. We choose this particular benchmark b
cause it models a realistic DW scenario and targets exdmlglass
of queries that we consider in our work.

We generate instances of the SSB data set using the datagener
tor supplied with the benchmark. The size of each instanceris
trolled by a scale factor parameter denotedfasA valuesf = X
results in a data set of siZé GB, with 94% of the data correspond-
ing to the fact table. We limit the maximum value of the scaletdr
to 100 (i.e., a 100GB data set) to ensure the timely execution of the
test workloads on our single experimental machine.

We generate workloads of star queries from the queries speci

tics of CyoiN and compare it to real-world database systems using fied in the benchmark. Specifically, we first convert each benc

workloads of different characteristics. In particular, feeus on
the following high-level questions:

e Which is the best way to map the components ofil@® pipeline

to CPUs? (86.2.1)

e How does QoIN throughput scale with increasing numbers of
concurrent queries? (86.2.2)

e How sensitive is the throughput ofiGIN to workload character-
istics? (86.2.3)

e How does the size of a data warehouse impamI®s perfor-
mance? (§86.2.4)

6.1 Methodology

We describe here the systems, data sets, workloads, ancgeval
tion metrics that characterize our experiments.

mark query to a template, by substituting each range predioa
the query with an abstract range predicate, @.qyear >= 1992
and d_year <= 1997isconvertedta_year >= X and d_year
<= Y, whereX andY are variables. To create a workload query, we
first sample a query template and then substitute the abstrages
with concrete predicates based on a parameteat controls the se-
lectivity of the predicate. Thus;, allows us to control the number
of dimension tuples that are loaded byddn per query, as well as
the size of the hash tables in the physical plans of Postdre®@Q
System X.

Note that the original benchmark specification containsuedigs
of varying complexity. We excluded queries Q1.1, Q1.2 and3Q1
from the generation of workload queries because they aoise
lection predicates on fact table attributes, and this fonelity is
not yet supported by our prototype. This modification doesafio



fect the usefulness of the generated workloads, since thiteom
queries are the simplest ones in the SSB benchmark and the onl
ones that do not have a group-by clause.

6.1.3 Evaluation Metrics

We measure the performance of a system with respect to a spe-

cific workload using query throughput (in queries per houd the
average and standard deviation of response times for edbh &0
SSB query templates. We employ the standard deviation to-qua
tify performance stability and predictability.

For each tested system, we execute the workload using a&singl
client and a cold cache. The degree of query concurrencynis co
trolled by an integer parameter, as follows: the client initially
submits the first queries of the workload in a batch, and then sub-
mits the next query in the workload whenever an outstandirggyq
finishes. This way, there are alwaysqueries executing concur-
rently. To ensure that we evaluate the steady state of eaténsy
we measure the above metrics over quezigs..512 in the work-
load (» = 256 is the highest degree of concurrency in our experi-
ments). The fact that we measure a fixed set of queries allews u
make meaningful comparisons across different values of

6.2 Experiments

This section presents a subset of the experiments that we con
ducted to evaluate the effectiveness of thGi operator.

6.2.1 Pipeline Configuration

We begin with a comparison of the vertical and horizontabGi
configurations that are supported by our prototype. Theocabrt
configuration maps each Filter to a distinct Stage, whichliesp
that Filters work in parallel with each other. The horizdrdan-
figuration boxes all Filters in a single Stage that is assigreveral
threads. Thus, each thread evaluates in parallel the seguen
Filters for a subset of the fact tuples. As discussed in & yér-
tical and horizontal configurations represent the two exé® for
mapping the GoIN operator to a multi-core system.

We evaluate the performance of each configuration as we vary
the total number of threads inJGIN. Each configuration has the
minimum number of threads needed for its execution; we a$0 s

an upper limit so that each CPU core does not execute more than

one “active” thread. Specifically, we always set aside tlv@es
for the PostgreSQL process and the Preprocessor and Distrib
threads. This leaves five cores out of the eight availablewn o
experimental machine, so we use this number as the uppérfdmi
the number of Stage threads. For the horizontal configuratit
available threads go to the single Stage. The vertical corstgpn
requires at least four threads (there are four Filters spmeding
to the dimension tables in the SSB data set) and, if there ftha fi
thread available, we assign it to the first Stage.

Figure 4 shows the query throughput of the two configurations
as we vary the number of Stage threads. The results showyclear
that the horizontal pipeline configuration consistentlypeuforms
the vertical configuration, as long as it has more than oneathr
assigned to the single Stage. Upon closer inspection, welfthat
the overhead of passing tuples between threads, whichdiesIL2
data cache misses and thread synchronization, outweighzeti
efits gained by the parallelism of the vertical configuratiBased
on these results, we focus the subsequent experiments bothe
zontal configuration for the £OIN operator.

6.2.2 Influence of Concurrency Scale

M Horizontal Config Vertical Config

1 2 3 4 5

Number of threads

1200
1000
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Throughput (queries/hour)

0

Figure 4: The effect of pipeline configuration on performane.

Ideally, a system with infinite resources would exhibit &necal-

ing: an increase of by a factork would increase throughput by the

same factor. In practice, we expect a sub-linear scaleugtalthe

limited resources and the interference among concurresrieg
Figure 5 shows query throughput for the three systems asca fun

tion of n (measurements are gathered with a 100GB data set and

selectivitys = 0.01). An immediate observation is thatGIN de-

livers a significant improvement in throughput comparedytst&m

X and PostgreSQL. The improvement can be observed for32

and reaches up to an order of magnituderfee 256.

*CJOIN @eSystemX &PostgreSQL
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Figure 5: Query throughput scale-up with number of queries.

CJoIN achieves the ideal linear scale-up foK n < 128. In-
creasing: from 128 to 256 results in a sub-linear query throughput
increase of 133%. We profiled thesGIN executable and found that
bitmap operations took up a large fraction of running timetfos
particularn, and so we believe that the sub-linear scale-up is due
mostly to the specific bitmap implementation we employ. 8inc
the efficiency of bitmap operations is crucial foo@N's scalabil-
ity, we plan to replace the bitmap implementation.

Unlike CJoIN, the query throughputs of System X and Post-
greSQL actuallydecreasevhen the number of concurrent queries
increases past 32. As expected, this decrease is a conseqfam
increased competition among all concurrently executireyigs for
both 1/0 bandwidth (for scan) and main memory (for hash &ble

We examine next the predictability of each system with respe
to query response time. A system with predictable perfonman
delivers a constant query response time independentlyeafidim-
ber of queries that execute concurrently. To quantify tliSam
of predictability, we report the response times of querisagated

The next set of experiments evaluates the performance of thefrom the template corresponding to SSB query Q4.2, whicmés o

three systems as we increasethe degree of query concurrency.
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of the most complex queries in the benchmark (it joins withreno



dimension tables than most other queries and the cardirudlits
Group-By is among the largest). The results are qualitigtitree
same for the other templates in the benchmark.

Figure 6 shows the average response time for queries coimgrm
to template Q4.2 as a function af When increasing the number
of concurrent queries from 1 to 256, the response time of System
X grows by a factor of 19 and the response time of PostgreSQL
grows by a factor of 66. These are precisely the undesiradfep
mance patterns that lead to “workload fear” in existing DVatpl
forms. CJOIN response time, on the other hand, grows by less than
30%, which is a small degradation in performance if one tahkies
account that the number of queries range over two orders gf ma
nitude. Our measurements of deviation indicate that allesys
deliver relatively stable query response times in steadtestl-
though GQoIN does better: the standard deviation of response time
is within 0.5% of the average forX0IN, 5% for System X, and 9%
for PostgreSQL.

4CJOIN @eSystemX  &PostgreSQL
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@ c
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Figure 6: Predictability of query response time.

At this point, we quantify the overhead of query submission i
CJoIN as we varyn. We focus again on queries matching tem-
plate Q4.2 and measure the total time from the submissioheof t
query up until the point the “start query” control tuple isénted
in the pipeline. This period represents the interval dusiigch
the submitted query competes for resources with the rerariofd
the pipeline, and thus it is interesting to examine its miamgia for
different parameters of the workload.

Figure 7 shows query throughput for all three systems as@ fun
tion of s (we again use a 100 GB data set with= 128 concur-
rent queries). First, we observe that@@N continues to outper-
form System X and PostgreSQL for all settingssof However,
we observe that the gap is reduced whkes 10%, which we in-
vestigate below. Second, query throughputs 0@ and System
X do indeed drop approximately linearly withas expected. We
cannot draw any conclusions about PostgreSQL, becausewee ha
only two data points: fos = 10%, we terminated the experiment,
because PostgreSQL took excessive amounts of time. Quegall
find CJoIN reacts predictably to changes in workload selectivity.

4CJOIN  eSystemX #PostgreSQL
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Figure 7: Influence of query selectivity on throughput.

As noted above, the performance of@N decreases signifi-
cantly for higher values of. Essentially, the dimension hash ta-
bles have to hold an increased number of tuples, which hasselv
effects on cache locality and hence access times. Moreasave
explain below, the overhead of submitting new queries greuts
stantially, which contributes to the slow down of the operat

Table 2 reports the overhead of new query submission faerdiff
ent values ok. Whens increases, it is more expensive to evaluate
the predicates of newly submitted queries. The dimensish ke
bles also grow larger, and hence it is more expensive to ajtdam
when a new query arrives. On the other hand, there are fixe¢d cos
of new query admission that do not dependspincluding the de-
lay to submit predicate queries to the underlying PostgteSQ
disconnect and drain the pipeline, and to update the metakat

Table 1 shows that the time to submit a query does not depend ontracks active queries in the system. As shown in the tabéefatr

the number of active queries. Moreover, the “interfereringrval
is small compared to the total execution time of each quengse
results indicate a negligible overhead for registeringergu

[n | 32] 64] 128] 256|
Submission time (sec| 2.4 2.4 2.4 2.3
Response time (sec) || 724.8 | 723.1| 759.0 | 861.2

Table 1: Influence of concurrency on query submission time.

6.2.3 Influence of Predicate Selectivity

In the next set of experiments we evaluate the performance of
the three systems as we increasethe selectivity of the query
template predicates. Increasindorces all evaluated systems to
access more data to answer queries. Therefore, we expgutrithe
formance to degrade at least linearly witiHowever, other factors
may contribute to a super-linear degradation, e.g., hddbganay
not fit into L2 caches, or System X and PostgreSQL may thrash by
spilling data to temporary disk files.
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tors independent of are significant fors < 1%, but the factors
dependent on become dominant fos = 10%.

[ Predicate selectivity (%) 0.1 ] 1] 10 |
Submission time (sec) 1.6 2.4 11.6
Response time (sec) 707.2 | 759.0 | 3418.0

Table 2: Influence of predicate selectivity on query submisen
time.

6.2.4 Influence of Data Scale

In the next set of experiments, we evaluate the performahce o
the three systems as we increagethe scale factor that controls
the size of the SSB data set. A scale factbr= « implies a data
set of o GB. Ideally, query throughput is inversely proportional
to sf, since queries should takketimes longer to complete on a
k-times larger data set. Consequently, we expechtivenalized
query throughputdefined as a product of query throughput afid
to remain approximately constant g5increases.
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