
Appears in Proceedings of the 35th International Conference on Very Large Data Bases (VLDB), Lyon, France (August 2009)

A Scalable, Predictable Join Operator for
Highly Concurrent Data Warehouses

George Candea
EPFL & Aster Data Systems

george.candea@epfl.ch

Neoklis Polyzotis
U.C. Santa Cruz
alkis@ucsc.edu

Radek Vingralek
Aster Data Systems

radek.vingralek@asterdata.com

ABSTRACT
Conventional data warehouses employ the query-at-a-time model,
which maps each query to a distinct physical plan. When several
queries execute concurrently, this model introduces contention, be-
cause the physical plans—unaware of each other—compete forac-
cess to the underlying I/O and computation resources. As a result,
while modern systems can efficiently optimize and evaluate asingle
complex data analysis query, their performance suffers significantly
when multiple complex queries run at the same time.

We describe an augmentation of traditional query engines that
improves join throughput in large-scale concurrent data warehouses.
In contrast to the conventional query-at-a-time model, ourapproach
employs a single physical plan that can share I/O, computation, and
tuple storage across all in-flight join queries. We use an “always-
on” pipeline of non-blocking operators, coupled with a controller
that continuously examines the current query mix and performs
run-time optimizations. Our design allows the query engineto scale
gracefully to large data sets, provide predictable execution times,
and reduce contention. In our empirical evaluation, we found that
our prototype outperforms conventional commercial systems by an
order of magnitude for tens to hundreds of concurrent queries.

1. INTRODUCTION
Businesses and governments rely heavily on data warehousesto

store and analyze vast amounts of data; the information within is
key to making sound strategic decisions. Data warehousing has re-
cently penetrated the domains of Internet services, socialnetworks,
advertising, and product recommendation, where complex queries
are used to identify behavioral patterns in users’ online activities.
These systems query ever increasing volumes of data—hundreds
of terabytes to petabytes—and the owners of the data scramble to
“monetize” it, i.e., distill the data into social or financial profit.

Unlike in the past, modern data warehouse (DW) deployments
require support for many concurrent users. Commercial customers
today require support for tens of concurrent queries, with some
even wishing to concurrently process hundreds of reports for the
same time period. Moreover, such customers desire that going
from one query to several concurrent ones should not drastically

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ’09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

increase query latency. For example, one of our large DW clients
specifically asked that increasing concurrency from one query to 40
should not increase latency of any given query by more than a fac-
tor of six. Large organizations employing DWs indicate thattheir
data warehouses will have to routinely support many hundreds of
concurrent queries in the near future.

We know of no general-purpose DW system that can meet these
real-world requirements today. Adding a new query can have un-
predictable effects or predictably negative ones. For instance, when
going from 1 to 256 concurrent queries, the query response time in
a widely used commercial DBMS increases by an order of mag-
nitude; in open-source PostgreSQL, it increases by two orders of
magnitude. Queries that take hours or days to complete are no
longer able to provide real-time analysis, since, depending on isola-
tion level, they may need to operate on hours-old or days-olddata.

This situation leads to “workload fear”: users of the DW are pro-
hibited from submitting ad-hoc queries and only sanctionedreports
can be executed. In order to achieve better scalability, organizations
break their data warehouse into smaller data marts, performaggres-
sive summarization, and batch query tasks. These measures,how-
ever, delay the availability of answers, restrict severelythe types
of queries that can be run (and consequently the richness of the in-
formation that can be extracted), and increase maintenancecosts.
In effect, the available data and computation resources endup be-
ing used inefficiently, preventing the organization from taking full
advantage of their investment. Workload fear acts as a barrier to
deploying novel applications that use the data in imaginative ways.

This phenomenon is not necessarily due to faulty designs, but
merely indicates that most existing DBMSes were designed for
a common case that is no longer common—workloads and data
volumes, as well as hardware architectures, have changed rapidly
in the past decade. Conventional DBMSes employ the query-at-
a-time model, where each query is mapped to a distinct physi-
cal plan. This model introduces contention when several queries
execute concurrently, as the physical plans compete in mutually-
unaware fashion for access to the underlying I/O and computation
resources. As a result, concurrent queries result in randomI/O;
for a 1-petabyte DW, even a query that touches only 0.1% of the
database will still retrieve on the order of 100GB of data, thus likely
performing a crippling number of random I/O operations.

Contributions. This paper introduces a query processing architec-
ture that enables DW systems to scale to hundreds of concurrent
users, issuing ad-hoc queries and receiving real-time answers. Our
goal is to enable a new way of using data warehouses, in which
users shed their workload fear and experiment freely with ad-hoc
data analysis, drill arbitrarily deep, and broaden their queries.

More concretely, we introduce CJOIN, a physical operator that
can evaluate concurrent join queries efficiently. The design of CJOIN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147953121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

achieves deep sharing of both computation and resources, and it is
well suited to the characteristics of modern DW platforms: star
schema design, many-core systems, fast sequential scans, and large
main memories. Using CJOIN as the basis, we build a query pro-
cessing engine that scales gracefully to highly concurrent, dynamic
workloads. The query engine employs a single physical plan that
is “always on” and is optimized continuously based on run-time
statistics. A new query can latch onto the single plan at any point
in time, and it immediately starts sharing work with concurrent
queries in the same plan. This deep, aggressive sharing is key to
CJOIN’s efficiency and sets it apart from prior work.

Measurements indicate that CJOINachieves substantial improve-
ment over state-of-the-art commercial and research systems. For
256 concurrent queries on a star schema, CJOIN outperforms ma-
jor commercial and open-source systems by a factor of 10 to 100
on the Star Schema Benchmark [17]. For 32 concurrent queries,
CJOIN outperforms them by up to 5x. More importantly, when
going from 1 to 256 concurrent queries, CJOIN’s response time in-
creases by less than 30%, compared to over 500% for a leading
commercial system.

The rest of the paper is structured as follows: §2 describes our
target data warehousing setting and summarizes related work; §3
details the CJOIN operator and the new query processing engine
built around it; §4 describes the deployment of CJOIN on modern
DW platforms; §5 presents several extensions; §6 evaluatesvarious
aspects of performance and scalability; and §7 concludes.

2. BACKGROUND AND STATE OF THE ART
In this section, we provide background on the central problem

addressed in our paper: improving support for concurrent queries
in large data warehouses (§2.1). We then survey related workthat
has approached this or similar challenges (§2.2).

2.1 Our Target Domain

Data Warehousing Model.Below, we describe the model targeted
by our solution; in §5 we show how specific assumptions behind
this model can be lifted without affecting our techniques.

We consider a DW that organizes information using a star schema,
which has become standard in the data warehousing industry.We
assume a fact tableF that is linked through foreign keys tod di-
mension tablesD1, . . . , Dd. Following common practice, we as-
sume thatF is too large to fit in main memory and is considerably
larger than the dimension tables.

The warehouse supports a workload of SQL queries, including
periodic updates. Following common industrial practice, we as-
sume that the concurrency control protocol provides snapshot iso-
lation guarantees. In this setting, each transaction is “tagged” with
a snapshot identifier, which is inherited by each query and update
statement in the transaction.

We distinguish the class of SQLstar queriesthat are common
in DW workloads, particularly in ad-hoc data analytics. As will
be seen later, this specific query structure enables us to develop
efficient techniques for answering concurrent queries. Formally, a
star query conforms to the following template:

SELECTA, Aggr
1
, . . . ,Aggrk

FROMF , Dd1
,. . . ,Ddn

WHERE
V

1≤j≤n

F 1 Ddj
AND

V

1≤j≤n

σcj
(Ddj

) AND σc0(F)

GROUP BYB

SymbolsA and B denote attribute sets from the referenced ta-
bles, andAggr

1
, . . . , Aggrk are standard SQL aggregate functions,

e.g., MIN, MAX, AVG. The WHERE clause is a conjunction of

fact-to-dimension joins and selection predicates. A join predicate
F 1 Ddj

has the standard form of a key/foreign-key equi-join. A
selection predicatecj can be arbitrarily complex (e.g., contain dis-
junction or sub-queries), but can reference solely the tuple variable
of Ddj

from the star query. For convenience of notation, we setcj

to TRUE if the query does not place a predicate on the correspond-
ing table. Note that we allow for the case whereB = ∅ (i.e., there
is no GROUP BY clause, so eitherk = 0 or A = ∅) or A = ∅.
In the remainder of the paper, we assume the most general case,
whereA 6= ∅, B 6= ∅, andk > 0.

Problem Statement.We consider the problem of efficiently eval-
uating a large number of concurrent star queries in a single data
warehouse. These queries can either be submitted directly by users,
or constitute sub-plans of more complex queries.

An effective solution to this problem should yield high query
throughput, as well as enable graceful degradation of queryre-
sponse time as the number of concurrent queries increases (i.e.,
avoid thrashing). This goal also implies a notion of predictability:
Query response time should be determined primarily by the char-
acteristics of the query, and not by the presence or absence of other
queries executing concurrently in the system. Existing general-
purpose DWs do not fare well in this setting, hence our motivation
to find a solution suitable for highly concurrent data warehouses.

We emphasize that the overall workload need not be restricted
solely to star queries. On the contrary, we envision a systemarchi-
tecture where concurrent star queries are diverted to a specialized
query processor (such as the one presented in this paper) andany
other SQL queries and update statements are handled using conven-
tional infrastructure. While it is clearly desirable to support high
concurrency across all types of queries, there are significant chal-
lenges even in doing so for just the subset of star queries. Moreover,
this focus does not restrict the practicality of our solution, since star
queries are common in DW workloads. Finally, our query evalua-
tion techniques can be employed as sub-plans, to evaluate the star
“portion” of more complex queries.

Physical Data Storage.We develop our techniques assuming that
the DW employs a conventional row-store for data storage. This as-
sumption is driven by the design of existing commercial DW solu-
tions, including Oracle, IBM, Microsoft, Teradata, and theproduct
within which CJOIN was developed. However, our approach can
be applied equally well to different architectures. For instance, it
is possible to implement CJOIN within a column store or a system
employing compressed tables. We examine these cases in §5.

We do not make any specific assumptions about the physical de-
sign of the DW, such as partitioning, existence of indices, or mate-
rialized views. However, as we show in §5, CJOIN can take advan-
tage of existing physical structures (e.g., fact table partitioning).

2.2 Related Work
Our work builds builds upon a rich body of prior research and in-

dustrial efforts in addressing the concurrency problem. Wereview
here primarily techniques that enable work sharing, which is key in
achieving high processing throughput.

Multi-Query Optimization. When a batch of queries is optimized
as a unit, it becomes possible to identify common sub-expressions
and generate physical plans that share the common computation [21].
This approach requires queries to be submitted in batches, which
is incompatible with ad-hoc decision support queries. Moreover,
common computation can be factored only within the batch of opti-
mized queries, thus making it impossible to share work with queries
that are already executing. In contrast, our approach shares work
among the currently executing queries regardless of when they were

2

submitted and without requiring batch submission.

Work Sharing. Staged database systems [11, 12] enable work
sharing at run-time through an operator-centric approach.Essen-
tially, each physical operator acts as a mini query engine that ser-
vices several concurrent queries, which in turn enables dynamic
work sharing across several queries. A hash join operator, for in-
stance, can share the build phase of a relation that participates in
different hash joins in several queries. This design was shown to
scale well to tens of complex queries. Our approach adopts a sim-
ilar work-sharing philosophy, but customizes it for the common
class of star queries. As a result, our design can scale to a sub-
stantially larger number of concurrent queries.

In the Redbrick DW [9], a shared scan operator was used to share
disk I/O among multiple scan operations executing concurrently on
multiple processors; however, the in-memory data and the state of
other operators were not shared. Cooperative scans [24] improve
data sharing across concurrent scans by dynamically scheduling
queries and their data requests, taking into account current sys-
tem conditions. Qiao et al. [18] have investigated shared memory
scans as a specific form of work sharing in multi-core systems: by
scheduling concurrent queries carefully, tuple accesses can be co-
ordinated in the processor’s cache. Our approach also leverages a
form of scan sharing, but targets large warehouses, where the fact
relation cannot fit in main memory. In addition to I/O, our approach
also shares substantial computation across concurrent queries.

Recent work [8, 18] has investigated work-sharing techniques for
the computation of aggregates on chip multiprocessors. Thedevel-
oped techniques essentially synchronize the execution of different
aggregation operators in order to reduce contention on the hash ta-
bles used for aggregate computation. As discussed later, CJOINcan
be combined with these techniques in an orthogonal fashion.

Finally, work sharing has been investigated extensively inthe
context of streaming database systems [3, 6, 7, 14, 15, 16]. By shar-
ing work (or state) among continuous-query operators, a streaming
DBMS can maintain a low per-tuple processing cost and thus han-
dle a large number of continuous queries over fast streams. These
techniques are specific to streaming database systems and cannot
be applied directly to the environment that we target. An interest-
ing aspect of our proposed architecture is that it incorporates ele-
ments from continuous query processing, which in turn allowus
to transfer techniques from streaming databases to a DW setting.
For instance, CJOIN adopts the Grouped Filter operator of Mad-
den et al. [15], but extends it to support fact-to-dimensionjoins and
arbitrary selection predicates; the original operator only supported
range predicates on ordered attributes.

In summary, CJOIN enables a deeper form of work sharing than
any prior work we know of: CJOIN employs a single plan that
shares I/O, join computation, and tuple storage across all CJOIN

queries that are in-flight at any given point in time.

Materialized Views. Materialized views enable explicit work shar-
ing by caching the results of sub-expressions that appear inconcur-
rently executing queries. The selection of materialized views is
typically performed off-line, by examining a representative work-
load and identifying common sub-expressions [10, 20]. Capturing
a representative workload is a challenging task in the context of ad-
hoc decision-support queries, due to the volatility of the data and
the diversity of queries. Moreover, materialized views addto the
maintenance cost of the warehouse, and hence they do not offer
clear advantages for the problem considered in this paper.

Constant Time Query Processing.BLINK [19] is a query pro-
cessing architecture that achieves constant response timefor the
type of queries considered in our work. The idea is to run each

query using the same plan—a single pass over a fully de-normalized,
in-memory fact table—thus incurring more or less the same ex-
ecution cost. CJOIN achieves a similar goal, in that it enables
predictable execution times for star queries. The key differences
compared to BLINK are that we do not require the database to
be memory-resident, we do not require the fact table to be de-
normalized, and our design directly supports high query concur-
rency, whereas BLINK targets the execution of one query at a time.

3. THE CJOIN PIPELINE
This section details the design of CJOIN. We first provide an

overview of CJOIN, using an illustrative example (§3.1) and then
describe the various components in more detail (§3.2-§3.4). For
clarity, we initially assume a query-only workload that references
the same snapshot of the data. We then expand our discussion to
mixed workloads of both queries and updates in §3.5.

Notation. In what follows, we writeQ to denote the set of con-
current star queries that are being evaluated. We assume that each
query is assigned a unique positive integer identifier, and we use
Qi to denote the query with idi. These identifiers are specific to
CJOIN and can be assigned when queries are registered with the
operator. Also, an identifier can be reused after a query finishes its
evaluation. The maximum query id inQ is denoted asmaxId(Q).
We note thatmaxId(Q) ≥ |Q| in the general case, since we do not
require query identifiers to be consecutive. Moreover, we expect
thatmaxId(Q) is bounded by a system parametermaxConc that
limits the total number of concurrent queries.

We usecij to denote the selection predicate placed byQi on a di-
mension tableDj that it references. We assume thatcij ≡ TRUE

if no explicit predicate is placed. We also defineci0 similarly with
respect to the fact tableF . Finally, we useb to denote a bit-vector
of bounded length, andb[l] to denote thel-th bit. The symbol0
denotes the bit vector with all bits set to0.

3.1 Design Overview
CJOIN leverages the observation that star queries have a common

structure: they “filter” the fact table through dimension predicates.
Correspondingly, the architecture of CJOIN consists of a pipeline
of components, as shown in Figure 1.

Fact
Table

Preprocessor Filter Distributor

Continuous Scan

Pipeline

Manager

Filter...

...

Aggr.
Operator

Aggr.
Operator

Aggr.
Operator

Figure 1: General architecture of the CJOIN pipeline.

The CJOIN pipeline receives its input from a continuous scan of
the fact table and pipes its output to aggregation operators(either
sort-based or hash-based) that compute the query results. In be-
tween, the fact tuples are processed through a sequence of Filters,
one for each dimension table, where each Filter encodes the cor-
responding dimension predicates ofall queriesin Q. In this way,
CJOIN can share I/O and computation among all queries inQ.

The continuous scan implies that the operator is “always on,” i.e.,
a new queryQ can be registered with the operator at any point in
time. The Preprocessor marks the point in the scan whereQ enters
the operator and then signals the completion ofQ when the scan
wraps around at that same point. This design turns the fact table
into a “stream” that is filtered continuously by a dynamic setof

3

dimension predicates.
We illustrate the operation of the pipeline and the basic ideas be-

hind the design of CJOIN using the simple workload shown below:
two star queries that join fact tableF with dimension tablesD1 and
D2. The queries compute different aggregates and apply different
selection predicates onD1 andD2.

Q1

SELECTAggr
1

FROMF τ , D1 δ, D2 δ′

WHEREτ 1 δ 1 δ′ AND σc11(δ) AND σc12(δ
′)

Q2

SELECTAggr
2

FROMF τ , D1 δ, D2 δ′

WHEREτ 1 δ 1 δ′ AND σc21(δ) AND σc22(δ
′)

Figure 2 shows a possible CJOIN pipeline for this workload. The
following paragraphs describe the functionality of each component
for this specific example.

013

2 11

1 10

dim tuple bitvec

Filter Distributor

Dimension
Hash Table

Aggr1

11

fact tuple bitvec

Aggr2

'
2 11

'
1 01

dim tuple bitvec
Dimension
Hash Table

Pipeline

Manager

Fact
Table

Continuous

 Scan

Preprocessor Filter

Figure 2: One possible instantiation of the CJOIN pipeline for
the example queries shown above.

ThePreprocessorreceives tuples from the continuous scan and
forwards them to the remainder of the pipeline. Each fact tuple τ is
augmented with a bit-vectorbτ that contains one bit for each query
in the workload. In this example, the bit-vector consists oftwo bits
such thatbτ [1] = bτ [2] = 1. This signifies that, initially, every
fact tuple is relevant for both queriesQ1 andQ2.

TheDistributor receives fact tuples that are relevant for at least
one query in the current workload. Given a received fact tuple τ ,
the Distributor examines its bit-vectorbτ and routes it to the ag-
gregation operators of queryQi if and only if bτ [i] = 1.

A Dimension hash tablestores a union of the tuples of a specific
dimension table that satisfy the predicates of the current queries. In
our example, say the predicates ofQ1 select exactly two tuplesδ1

andδ2 from tableD1 and one tupleδ′2 from D2, while Q2 selects
tuplesδ2 and δ3 from D1 and tuplesδ′1 and δ′2 from D2. Each
stored dimension tupleδ is augmented with a bit-vectorbδ , whose
length is equal to the bit-vectorbτ attached to fact tuples, with the
following interpretation:bδ[i] = 1 iff the dimension tuple satisfies
the predicates of queryQi. For instance, the bit-vector for tuple
δ1 is set asbδ1 [1] = 1 andbδ1 [2] = 0. Figure 2 illustrates the
bit-vectors for all the tuples in our example.

EachFilter retrieves fact tuples from its input queue and probes
the corresponding dimension hash table to identify the joining di-
mension tuples. Given a fact tupleτ , the semantics of the foreign
key join ensure that there is exactly one dimension tupleδ that cor-
responds to the foreign key value. Ifδ is present in the dimension
hash table, then its bit-vectorbδ is combined (using bitwiseAND)
with the bit-vectorbτ of τ . Otherwise,bτ is set to0. The Filter
forwardsτ to its output only ifbτ 6= 0 after the combining (i.e.,

only if the tuple is still relevant to at least one query), otherwise the
tuple is discarded. In this example, the first Filter outputsa tupleτ

only if it joins with one ofδ1, δ2, or δ3. The second Filter forwards
a fact tuple only if it joins with one ofδ′1 or δ′2. Since the two Fil-
ters work in sequence,τ appears in the output of the second Filter
only if its dimension values satisfy the predicates ofQ1 or Q2.

The Pipeline Managerregulates the operation of the pipeline.
This component is responsible for registering new queries with
CJOIN and for cleaning up after registered queries finish executing.
Another important function is to monitor the performance ofthe
pipeline and to optimize it on-the-fly to maximize query through-
put. For this reason and others that we mention below, it is desir-
able for the Pipeline Manager to operate in parallel with themain
pipeline. Therefore, this component has ideally its own execution
context (e.g., a separate thread or process).

Overall, the basic idea behind CJOIN is that fact tuples flow from
the continuous scan to the aggregation operators, being filtered in
between based on the predicates of the dimension tables. At ahigh
level, this is similar to a conventional plan that would employ a
pipeline of hash join operators to join the fact table with the di-
mension tables. However, CJOIN shares the fact table scan among
all queries, filters a fact tuple against all queries with a single di-
mension table probe, and stores the union of dimension tuples se-
lected by queries. Therefore, the fundamental difference from con-
ventional plans is that CJOIN evaluates all queries concurrently in
a single plan that shares I/O, computation, and data. The pro-
posed design also differs from previous operator-centric designs
(e.g., QPipe [11]) in that it takes advantage of the semantics of star
queries to provide a much tighter degree of integration and sharing.
For instance, QPipe would simulate two hash join operators with
different state for each query, whereas in our design there is only
one operator for all concurrent queries.

In this example we illustrated only one possible CJOIN pipeline
for the sample workload. As we discuss later, there are otherpos-
sibilities with potentially vast differences in performance. For in-
stance, it is possible to change the order in which the Filters are
applied. Another possibility is to have the Filter operators run in
parallel using a variable degree of parallelism, e.g., the first Filter
can employ two parallel threads while the second Filter can have
just one thread. We discuss these issues in §3.4 and §4.

3.2 Query Processing
We now discuss in more detail how the CJOIN operator evaluates

concurrent queries. For this part of our discussion, we assume that
the workloadQ remains fixed and that the operator uses a fixed
ordering of filters. We discuss later the admission of new queries
(§3.3) and the optimization of the pipeline’s filter order (§3.4).

3.2.1 Dimension Hash Tables
Each dimension tableDj referenced by at least one query is

mapped to a hash tableHDj , which stores those tuples ofDj that
are selected by at least one query in the workload. More formally,
a tupleδ ∈ Dj is stored inHDj if and only if there exists a query
Qi that referencesDj andδ satisfiescij . Tupleδ is also associ-
ated with a bit-vectorbδ of lengthmaxId(Q) that determines the
queries that selectδ. This bit-vector is defined as follows:

bδ[i] =

8

>

>

>

<

>

>

>

:

0 if there is no queryQi inQ
1 if Qi referencesDj ∧ δ satisfiescij

0 if Qi referencesDj ∧ δ does not satisfycij

1 if Qi does not referenceDj

4

The last case inserts an implicitTRUE predicate for a queryQi

that does not reference the dimension table. The reason is that Qi

does not filter fact tuples based onDj , so implicitly it selects all
the fact tuples inDj . The hash table also records a single comple-
mentary bitmapbDj

defined as follows:bDj
[i] = 1 if Qi does

not referenceDj andbDj
[i] = 0 otherwise. Essentially,bDj

is
the bitmap assigned to any tupleδ that does not satisfy any of the
predicates inQ and hence is not stored inHDj .

By definition,HDj stores only a subset ofDj . Each stored tuple
is further augmented with a bit-vector of sizemaxId(Q), which
is a moderate memory overhead. Given that the dimension tables
tend to grow at a much slower rate than the fact table (typically, by
a logarithmic rate [17, 23]), it is reasonable to expect thatthe hash
tables fit in main memory for modern hardware configurations.As
a concrete example, TPC-DS [23] employs 2.5GB of dimension
data for a 1TB warehouse; today, even a workstation-class machine
can be economically equipped with 16GB of main memory.

3.2.2 Processing Fact Tuples
We consider next the details of processing a fact tupleτ through

the CJOIN pipeline, starting with the Preprocessor. The Preproces-
sor attaches toτ a bit-vectorbτ of lengthmaxId(Q) that traces the
relevance of the tuple to different queries. This bit-vector is modi-
fied asτ is processed by Filters and it is used in the Distributor to
routeτ to aggregation operators.

The bit-vector is initialized based on the predicates placed on the
fact table, as follows:bτ [i] = 1 if Qi ∈ Qi ∧ τ satisfiesci0 (i.e.,
the selection predicate on the fact table) andbτ [i] = 0 otherwise.
After bτ is initialized, the Preprocessor forwards it to its output
queue ifbτ 6= 0. In the opposite case,τ can be safely dropped
from further processing, as it is guaranteed to not belong tothe
output of any query inQ. Computingbτ involves evaluating a set
of predicates onτ , and thus it is necessary to employ an efficient
evaluation mechanism to ensure that the Preprocessor does not be-
come the bottleneck. This issue, however, is less crucial inpractice,
since most queries place predicates solely on dimension tables.

Tuple τ passes next through the sequence of Filters. Consider
one such filter, corresponding to dimension tableDj . Let δ be the
joining dimension tuple forτ . The Filter probesHDj using the
foreign key ofτ and eventually computes (as explained in the next
paragraph) a “filtering bit-vector” denoted bybτ1HDj

, which re-
flects the subset of queries that selectδ through their dimension
predicates. The Filter thus joinsτ with Dj with respect toall
queries in the workload by performing asingleprobe toHDj . Sub-
sequently,bτ is bitwiseANDed withbτ1HDj

. If this updatedbτ

vector is0, then the fact tuple can safely be dropped from further
processing, since it will not belong to the output of any query inQ;
otherwise it is passed to the output of the Filter. As an optimization,
it is possible to avoid completely the probing ofHDj by checking
first whetherbτ AND ¬bDj

is 0 (i.e.,Dj does not appear in any
queryQi to whichτ is relevant). In this case,τ is not relevant to
any queries that referenceHDj and can be simply forwarded to the
next Filter.

The filtering bit-vector is computed as follows: if the probefinds
δ in HDj thenbτ1HDj

= bδ, similar to the example of Figure 2;
otherwise,bτ1HDj

is set tobDj
, the bit-vector of any tuple that

is not stored inHDj . Given the definitions ofbδ andbDj
, we

can assert the following key property for the filtering bit-vector:
bτ1HDj

[i] = 1 if and only if eitherQi referencesDj and δ is
selected byQi, or Qi does not reference tableDj . This property
ensures thatbτ AND bτ1HDj

results in a bit-vector that reflects
accurately the relevance ofτ to workload queries up to this point.
This can be stated formally with the following invariant:

CJOIN Filtering Invariant LetDd1
,..., Ddm be the dimension ta-

bles corresponding to the firstm Filters in the CJOIN pipeline,
m ≥ 1. If a tuple τ appears in the output of the Filter corre-
sponding toDdm , then we havebτ [i] = 1 if and only ifQi ∈ Q
and τ satisfies the predicates ofQi on the fact table andτ joins
with those dimension tuples in{Dd1

, . . . , Ddm} that also satisfy
the predicates ofQi.

Tupleτ eventually reaches the Distributor if its bit-vector is non-
zero after passing through all the Filters. Given that the Filters
cover all the dimension tables referenced in the current workload,
the invariant guarantees thatbτ [i] = 1 if and only if τ satisfies all
the selection and join predicates ofQi.

The Distributor routesτ to the aggregation operator of each query
Qi for whichbτ [i] = 1. The aggregation operator can directly ex-
tract any needed fact table attributes fromτ . If the operator needs
to access the attributes on some dimensionDj , then it can use the
foreign key inτ to probe for the joining dimension tuple. A more
efficient alternative is to attach toτ memory pointers to the joining
dimension tuples as it is processed by the Filters. Specifically, let
δ be a tuple ofDj that joins toτ and assume thatQi references
Dj . Based on our definition ofHDj , it is possible to show thatδ is
in HDj whenτ is processed through the corresponding Filter and
remains in memory untilτ reaches the Distributor. This makes it
possible to attach toτ a pointer toδ afterHDj is probed, so that the
aggregation operator can directly access all the needed information.

3.2.3 Cost ofCJOIN Query Processing
The design of CJOIN has specific implications on the cost of

query processing, which we discuss below.
We consider first the end-to-end processing for a single facttuple

through the CJOIN operator. Once a tuple is initialized in the Pre-
processor, ifK is the total number of Filters in the pipeline, then
processing the fact tuple involvesK probes andK bit-vectorAND
operations in the worst case. Since the probe and theAND opera-
tion have limited complexity, and assuming that the Preprocessor
can initialize efficiently the bit-vector of the tuple, CJOIN can sus-
tain a high throughput between the continuous scan and the aggre-
gation operators. Moreover, the reliance on sequential scans as the
sole access method allows CJOIN to scale gracefully to large data
sets, without incurring the costs of creating and maintaining mate-
rialized views or indices on the fact table, or maintaining statistics.

We discuss now the cost of a single query. The response time of
a query evaluated with CJOIN is dominated by the time required to
loop around the continuous scan. This cost is relatively stable with
respect to the total number of queries in the workload, because the
I/O is shared across all queries and the cost of probing in each Fil-
ter (cost of a hash table lookup and cost of a bitwiseAND) grows
at a low rate with the number of queries. Thus, as long as the rate
of query submission does not surpass the rate of query completion,
CJOIN yields response times with low variance across different de-
grees of concurrency. This property is crucial if we are to scale
effectively to a large number of concurrent queries.

An added bonus is that the current point in the continuous scan
can serve as a reliable progress indicator for the registered queries,
and it is also possible to derive an estimated time of completion
based on the current processing rate of the pipeline. Both ofthese
metrics can provide valuable feedback to users during the execution
of ad-hoc analytic queries in large data warehouses.

The predictability property implies that query response time is
bounded below by the cost of a full sequential scan of the factta-
ble. Conventional physical plans for star queries are likely to have
the same property; for instance, a common plan in commercialsys-
tems is a left-deep pipeline of hash joins with the fact tableas the

5

outer relation. In principle, the large table scan can be avoided
by the use of indices or materialized views, but these structures
are generally considered too expensive in the DW setting, because
fact table indices have a prohibitively high maintenance cost, and
ad-hoc data analysis workloads may not be stable enough to iden-
tify useful views to materialize. A common method in practice is
to limit queries on specific partitions of the fact table; as will be
discussed in §6, this method can also be integrated in CJOIN with
similar benefits. In any case, we stress that CJOIN becomes yet one
more choice for the database query optimizer; it is always possi-
ble to execute queries with conventional execution plans ifthis is
estimated to be more efficient.

3.3 Query Admission and Finalization
Up to this point, we have examined the processing of fact tu-

ples assuming that the CJOIN pipeline has been initialized correctly
with respect to a given workload. In this section, we discusshow
the state of the CJOIN pipeline is updated when a new query is ad-
mitted, or when an existing query finishes its processing.

We usen to denote the id of the query in question. For a new
query, n is assigned as the first unused query id in the interval
[1, maxConc], wheremaxConc is the system-wide limit on the
maximum number of concurrent queries. To simplify our presenta-
tion, we assume without loss of generality thatn ≤ maxId(Q).

3.3.1 Admitting New Queries
The registration ofQn is done through the Pipeline Manager,

which orchestrates the update of information in the remaining com-
ponents. This approach takes advantage of the fact that the Pipeline
Manager executes in parallel with the CJOIN pipeline, thus mini-
mizing the disruption in the processing of fact tuples.

The registration is performed in the Pipeline Manager thread us-
ing Algorithm 1. The first step is to update bitn of bDj

for each
dimension table that is referenced byQi or appears in the pipeline
(line 3). Subsequently, the algorithm updates the hash tables for
the dimensions referenced in the query (line 11). For each such di-
mension tableDj , the Pipeline Manager issues the queryσcnj

(Dj)
and updatesHDj with the retrieved dimension tuples. If a retrieved
tupleδ is not already inHDj , thenδ is inserted inHDj and its bit-
vector initialized tobDj

. We then setbδ[n]← 1 to indicate thatδ
is of interest toQn. At the end of these updates, all the dimension
hash tables are up to date with respect to the workloadQ ∪ {Qn}.

Having updated the dimension tables, the algorithm completes
the registration by installingQn in the Preprocessor and the Dis-
tributor. This involves several steps. First, the PipelineManager
suspends the processing of input tuples in the Preprocessor, which
stalls the pipeline (line 17). This enables the addition of new Fil-
ters in the pipeline to cover the dimension tables referenced by the
query. (While new Filters are appended in the current pipeline,
their placement may change as part of the run-time optimization—
see §3.4.)Q is also updated to includeQn, which allows bitn of
the fact tuple bit-vector to be initialized correctly. Next, the first
unprocessed input fact tuple, sayτ , is marked as the first tuple of
Qn, so that it is possible to identify the end of processingQn (see
next paragraph). Finally, a special “query start” control tuple τn

that containsQn is appended to the output queue of the Preproces-
sor, and the Preprocessor is resumed. The control tuple precedes
the starting tupleτ in the output stream of the Preprocessor and is
forwarded without filtering through the Filters and on to theDis-
tributor. In turn, the latter uses the information inτQn to set up the
aggregation operators forQn. SinceτQn precedes any potential
results forQn (the pipeline preserves the order of control tuples
relative to data tuples), we guarantee that the aggregationoperators

Algorithm 1 : Admitting a new query to the CJOIN pipeline.
Input : QueryQn

Data: A list L of dimension hash tables, initially empty
LetD be the set of dimension tables referenced byQn1
LetD′ be the set of dimension tables in the pipeline2
foreach Dj ∈ D ∪ D

′ do3
if Dj is not in the pipelinethen4

Initialize HDj andbDj
based onQ∪ {Qn}5

AppendHDj to L6
else ifDj is referenced byQn then7

bDj
[n] = 08

else9
bDj

[n] = 110

foreach Dj ∈ D do11
foreach δ ∈ σcnj

(Dj) do12
if δ is not inHDj then13

Insertδ in HDj14
bδ ← bDj15

bδ[n]← 1;16

Stall Preprocessor;17
foreachHDj in L do insert a Filter forHDj18
Q ← Q ∪ {Qn};19
Set start ofQn to next tuple in Preprocessor’s input20
Append a control tupleτQn

in Preprocessor’s output21

Resume Preprocessor22

will not miss any relevant fact tuples.
It is important to note that query registration occurs in thePipeline

Manager thread and thus it can proceed, up to line 17, in parallel
with the processing of fact tuples through the pipeline. This ensures
that other queries are minimally disrupted during the registration of
Qn. The concurrent update of the bit-vectors in dimension hashta-
bles does not compromise the correctness of results, since the Pre-
processor continues to mark each fact tuple as irrelevant toquery
Qn (bτ [n] = 0). Thus, even ifbδ[n] is switched on for some tuple
δ (line 16), it does not lead to the generation of results forQn until
after it becomes part of the workload in line 19, because bitn in
the fact tuples’ bit-vectors will be 0 until that point.

3.3.2 Finalizing Queries
QueryQn is finalized when the continuous scan wraps around

the starting fact tupleτ . Upon encounteringτ in its input, the Pre-
processor first removesQn from Q, which ensures that the bit-
vector ofτ (and of any subsequent tuple) will have bitn switched
off. This ensures thatQn becomes irrelevant for the filtering of
fact tuples. Subsequently, the Preprocessor emits an “end of query”
control tuple that precedesτ in the output stream. The control tu-
ple is handled in a fashion similar to the query-start tuple and is
forwarded through the pipeline to the Distributor, which finalizes
the aggregation operators ofQn and outputs their results. Since the
control tuple precedesτ , we ensure that the aggregation operators
of Qn will not consume any fact tuple more than once.

The final step is to clear the dimension hash tables from any in-
formation pertinent toQn. This is handled in the Pipeline Man-
ager thread according to Algorithm 2, which essentially reverses
the updates performed when the query was admitted. This clean-
up may render certain information in the hash tables useless. For
instance, if for some tupleδ in HDj we haveδ[i] = 0, thenδ can
be removed. In turn, ifHDj becomes empty, then it can be re-
moved from the pipeline along with the corresponding Filter. Of
course, the latter requires a stall of the pipeline in order to recon-
figure the Filter sequence. Note that this “garbage collection” can

6

Algorithm 2 : Removing a finished query from the pipeline.
Input : QueryQn.
Data: A list L of dimension hash tables, initially empty.
LetD be the set of dimension tables referenced byQn ;1
LetD′ be the set of dimension tables in the pipeline ;2
foreach Dj ∈ D

′ do3
bDj

[n] = 1;4

foreach Dj ∈ D do5
foreach δ ∈ HDj do6

bδ[n]← 0;7
if bδ = 0 then removeδ from HDj8

if HDj = ∅ then AppendHDj to L9

if L 6= ∅ then10
Stall pipeline;11
foreachHDj ∈ L do remove corresponding Filter;12
Resume pipeline;13

be done asynchronously (as long as the query identifiers are cor-
rectly handled); one could also maintain usage bits and evict the
least-recently-used tuples according to memory needs.

3.3.3 Correctness
The correctness of CJOINwith respect to query finalization hinges

upon two properties. First, the continuous scan returns fact tuples in
the same order once resumed. This is necessary so that the Prepro-
cessor can identify correctly when the fact table has been scanned
exactly once for each query. It is reasonable to expect that this prop-
erty holds for real-world systems. The second property is that, if a
control tupleτ ′ is placed in the output queue of the Preprocessor
before (respectively after) a fact tupleτ , thenτ ′ is not processed in
the Distributor after (respectively before)τ . This property guaran-
tees that the aggregation operators of a query neither miss relevant
tuples nor process them more than once. This property needs to be
enforced by the implementation of the CJOIN pipeline.

3.4 Pipeline Optimization
The order of Filters in the pipeline influences performance,be-

cause it determines the expected number of probes for each fact
tuple. Drawing a correspondence to the ordering of joins in asin-
gle query plan, we expect that a good order will apply the most
selective Filters first, in order to drop fact tuples early. We there-
fore face the following optimization problem: Given a workloadQ
and a CJOIN pipeline forQ, determine an ordering of the Filters
that minimizes the expected number of probes for each fact tuple.

One complicating factor is that the selectivity of each Filter de-
pends on the workloadQ, since a Filter encodes the join predicates
of several queries on a specific dimension table. Thus, if thework-
load is unpredictable, as is the case with ad-hoc analytics in a data
warehouse, then the optimal order might change as the query mix
changes. This observation suggests an online approach to optimiz-
ing the order of Filters in the CJOINpipeline. The idea is to monitor
at run-time the selectivity of each Filter and then optimizethe order
based on the gathered statistics. This continuous process of mon-
itoring and re-optimizing can be performed asynchronouslyinside
the Pipeline Manager thread.

Previous work introduced several techniques for optimizing the
execution order of relational operators on-the-fly [4, 5, 13]. In par-
ticular, the optimization of the CJOIN pipeline maps precisely to
the following problem that has been investigated in the context of
streaming database systems: We are given a conjunction of pred-
icates that are applied on the tuples of an infinite stream, and the
goal is to determine an order for evaluating the predicates that min-

imizes the expected processing cost of each stream tuple. The cor-
respondence to CJOIN appears when viewing Filters as predicates,
and the continuous scan as an infinite stream. Moreover, since each
Filter has a fixed cost—one probe of the in-memory hash table
and one bitwiseAND operation—minimizing the expected process-
ing cost is equivalent to minimizing the expected number of Filter
probes. In our work, we employ the techniques of Babu et al. [5]
to implement the run-time optimization of the Filter ordering. A
detailed discussion of these techniques is beyond the scopeof our
paper. We do note, however, that other techniques are applicable
too, such as those introduced by Liu et al. [13].

3.5 Handling Updates
Up to this point, we have considered the case of read-only trans-

actions that reference the same data snapshot. This enablesgroup-
ing all queries of these transactions in the same CJOIN operator
that performs a single continuous scan of the specific snapshot.
In the remainder of this section we examine adaptations of CJOIN

when this assumption is relaxed, i.e., when the queries correspond
to transactions with different snapshot ids. (As mentionedin §2,
we assume snapshot-based isolation, since this is the norm in prac-
tice.) This scenario arises when read-only transactions are inter-
leaved with updates, or when the same transaction contains both
queries and updates. In all cases that we examine, we focus onup-
dates that reference only the fact table. In the rare event ofupdates
on dimension tables, we assume that the admission of new queries
in CJOIN is serialized with the transaction of the update.

We consider two possibilities for adapting CJOIN to this sce-
nario, that depend on the functionality of the continuous scan op-
erator. The first possibility is that the continuous scan operator can
return all fact tuples corresponding to the snapshots in thecurrent
query mix. This essentially requires the scan to expose the multi-
version concurrency control information for the retrievedfact tu-
ples. Then, the association of a queryQi to a specific snapshot can
be viewed as a virtual fact table predicate, and it can be evaluated by
the Preprocessor over the concurrency control informationof each
fact tuple. The remaining CJOIN mechanism remains unchanged.
Of course, the benefits of the CJOIN operator are decreased as the
snapshots referenced by the transactions become disjoint,but we
believe this case to be infrequent in practice.

The second possibility is when the previous functionality is not
provided, i.e., the scan only returns tuples of a specific snapshot. In
this case, we create several CJOIN operators, one for each snapshot
that is referenced, and register queries to the respective operator.
This approach could degenerate into a single plan per query,if each
transaction in our workload mix referenced different snapshot ids.
This, however, is an exceptionally rare event in practice.

4. CJOIN IMPLEMENTATION
In this section, we discuss the implementation of CJOIN on a

multi-core system, the predominant hardware architecturein real-
world deployments today and in the near future. Nevertheless, we
expect CJOIN to yield significant benefits on single-core/single-
CPU hardware as well.

An efficient implementation of CJOIN on a multi-core architec-
ture requires that the operator’s components (Preprocessor, Filters,
and Distributor) be mapped to multiple threads, which in turn are
mapped by an operating system to different processor cores.As an
example, one obvious mapping is to assign each component to a
different thread and then employ tuple queues to link the pipeline.
However, the mapping of CJOIN components to threads must strike
a balance between the degree of parallelism, the overhead ofpass-
ing tuples between the threads, and the utilization of processor

7

caches. Passing a tuple from one thread to another requires syn-
chronization between the threads and also results in data cache
misses if the two threads execute on different cores. On the other
hand, executing components in different threads improves cache
locality if the internal state is read-mostly (such as the dimension
hash tables) and can be partitioned among multiple threads.

Since the internal states of the Preprocessor and Distributor are
frequently updated, we chose to map each to a single thread as
shown in Figure 3. Filters, where the bulk of CJOIN processing
happens, do not have any internal state other than the dimension
hash tables, which are read-mostly. Our implementation allows for
a flexible mapping of Filters to threads by collapsing multiple ad-
jacent Filters to aStage(to reduce the overhead of passing tuples
between the threads) and assigning multiple threads to eachStage
(to increase parallelism). This approach gives rise to the following
possible configurations:

•A vertical configuration assigns a single Stage to each Filter, with
a (potentially) different number of threads per Stage. Thisdesign
favors the affinity of Stages to cores so that instruction anddata
locality is maximized. On the other hand, we expect a large number
of data cache misses when tuples are transferred between Filters.
Moreover, the problem of pipeline optimization now acquires an
extra free variable: the number of threads per Stage.

• A horizontal configuration assigns a single Stage to the entire
sequence of Filters, and all the threads are assigned to thissingle
Stage. This implies that several copies of the Filter sequence are
running in parallel (one for each thread) and accessing the same
hash tables. This scheme avoids data cache misses when tuples are
passed between Filters, but may incur more misses on the accesses
of the hash tables, since each thread needs to access more data.
Pipeline optimization involves solely ordering the Filters.

• A hybrid configuration employs several Stages and an assign-
ment of threads per Stage. This configuration can strike a balance
between the two extremes of a horizontal vs. vertical configuration.
More concretely, the cost of tuple passing is incurred only between
Stages, and each thread needs to access solely the dimensionta-
bles that exist within a Stage. However, the run-time optimization
becomes more complex, as there are now three free variables:the
order of Filters, the boxing of Filters in Stages, and the assignment
of threads to Stages.

Preprocessor Filter Filter Filter Filter Filter Distributor

Stage Stage

Figure 3: An example mapping of a CJOIN pipeline to threads.

Our experiments indicate that the extra parallelism resulting from
using multiple Stages does not outweigh the cost of forwarding the
tuples between them. Consequently, we henceforth assume the hor-
izontal configuration, and we achieve parallelism by allocating sev-
eral threads to the single Stage.

A few well-known design principles turned out to be crucial to
achieving good CJOIN performance in our prototype. To reduce
the overhead of thread scheduling, we wake up a consumer thread
only when its input queue is almost full. Similarly, we resume the
producer thread only when its output queue is almost empty. We
also reduce the overhead of queue synchronization by havingeach

thread retrieve or deposit tuples in batches, whenever possible. Fi-
nally, we reduce the cost of memory management synchronization
by using a specialized allocator for fact tuples. The specialized al-
locator preallocates data structures for all in-flight tuples, whose
number is determined based on the upper bound on the length ofa
tuple queue and the upper bound on the number of threads. Given
the pool of preallocated tuples, the allocator reserves andreleases
tuples using bitmap operations, which entail a single machine in-
struction on most CPUs, thus being both atomic and efficient.

5. EXTENSIONS
In this section, we revisit some of the assumptions made in §2.

We discuss ways in which CJOIN can be adapted to accommodate
the lifting of these assumptions.

Galaxy Schemata. A galaxy schema involves several fact rela-
tions, each of which is the center of a star schema. Star queries
remain common in this setting and can thus be evaluated using
CJOIN, but it is also common to observe queries involving the join
of several fact tables (typically two).

CJOIN can benefit the evaluation of these queries even though
it was not designed for this specific case. Concretely, consider a
queryQ with a single fact-to-fact join predicate. By using the fact-
to-fact join as a pivot, we can express the evaluation ofQ as the
join between the results of two star queries, sayQa andQb, over
the corresponding fact tables. It now becomes possible to register
eachQi with the CJOIN operator that handles the concurrent star
queries on the corresponding fact table, the difference being that
the Distributor pipes the results ofQi to a fact-to-fact join operator
instead of an aggregation operator. Notice that each CJOINoperator
will be evaluating concurrently several star queries that participate
in concurrent fact-to-fact join queries. Thus, the overallidea is to
use CJOIN as a physical operator that can evaluate efficiently the
“star sub-plans” of bigger query plans.

Column Stores. Column stores have been gaining traction as a
scalable system architecture for large data warehouses [1,2, 22]. It
is possible to adapt CJOIN in this setting as follows: The continuous
fact table scan can be realized with a continuous scan/mergeof only
those fact table columns that are accessed by the current query mix.
Thus, CJOIN can take advantage of the columnar store in order
to reduce the volume of data transferred by the scan. The other
case that we need to examine is the evaluation of filter queries over
dimension tables, which occurs as part of a new query registration.
This case is readily handled by the column store, since CJOIN uses
the existing query processing infrastructure to retrieve the resulting
dimension tuples.

Compressed Tables.Data warehouses may employ compression
to reduce the amount of I/O and memory bandwidth used for data
transfer [1, 19]. CJOIN makes no assumptions about the physi-
cal storage of tuples, except that it is possible to evaluatepredi-
cates, extract fields, and retrieve result tuples for dimension queries.
Thus, compression of tables is an orthogonal technique thatcan be
easily incorporated in CJOIN. For instance, the continuous scan
can bring in compressed tuples and decompress on-demand andon-
the-fly as needed for probing the dimension hash tables. Another
option is to use the partial decompression technique proposed in
BLINK [19] in order to evaluate predicates efficiently on thecom-
pressed fact table.

Fact Table Partitioning. The organization of the fact table in parti-
tions may arise naturally from the operational semantics ofthe DW,
e.g., the fact table may be range-partitioned by a date attribute cor-
responding to the loading of new data. The optimizer can takead-

8

vantage of this partitioning in order to limit the executionof a query
to a subset of the fact table. Thus, a query that sets a range pred-
icate on the partitioning date attribute will need to examine only a
subset of the partitions. In principle, this approach can reduce sig-
nificantly the response time of an individual query, but concurrent
queries can still lead to random I/O, which has crippling effects on
overall performance.

CJOIN can take advantage of partitioning in order to reduce the
volume of data accessed by the continuous scan and also to reduce
query response time. More concretely, the query registration algo-
rithm can be modified to tag each new query with the set of parti-
tions that it needs to scan. This set can be determined by correlating
the selection predicates on the fact table with the specific partition-
ing scheme. The Preprocessor can then realize the continuous scan
as a sequential scan of the union of identified partitions. Atthe end
of each partition, the end-of-query control tuple can be emitted for
the queries that have covered their respective set of partitions, thus
allowing queries to terminate early.

Efficient Aggregate Computation.The current CJOIN design for-
wards the resulting tuples to aggregation operators that compute
the final query results. There may be opportunities to optimize this
final stage, e.g., by sharing work among aggregation operators, de-
pending on the current query mix. This optimization is orthogonal
to CJOIN and can be performed using existing techniques [8, 18].

Memory-resident Databases.The design of CJOINwas motivated
by large-scale data warehouses, where the fact table is orders of
magnitude larger that the available main memory. However, it is
straightforward to employ CJOIN for a memory-resident data set as
well. One difference is that the sharing of the continuous scan may
not have as significant an effect as when the fact table resides on
disk. Still, CJOIN will enable work sharing among the concurrent
queries, which is important in achieving high throughput.

Indexes and Materialized Views.As discussed earlier, fact table
indexes are not likely to be useful in the DW setting that we con-
sider, due to their high maintenance cost. Similarly, the inherent
volatility of ad-hoc queries limits the appearance of common pat-
terns and hence the importance of materialized views that involve
the fact table. It is more common (and affordable) for data ware-
houses to maintain indexes and views on dimension tables. CJOIN

takes advantage of these structures transparently, since they can op-
timize the dimension filter queries that are part of new queryregis-
tration (see also Algorithm 1).

6. EVALUATION
This section reports the results of an experimental evaluation of

our CJOIN prototype. We investigate the performance characteris-
tics of CJOIN and compare it to real-world database systems using
workloads of different characteristics. In particular, wefocus on
the following high-level questions:

•Which is the best way to map the components of a CJOINpipeline
to CPUs? (§6.2.1)
• How does CJOIN throughput scale with increasing numbers of
concurrent queries? (§6.2.2)
• How sensitive is the throughput of CJOIN to workload character-
istics? (§6.2.3)
• How does the size of a data warehouse impact CJOIN’s perfor-
mance? (§6.2.4)

6.1 Methodology
We describe here the systems, data sets, workloads, and evalua-

tion metrics that characterize our experiments.

6.1.1 Systems
Our CJOIN prototype is implemented as a multi-threaded pro-

cess executing on top of the PostgreSQL database system. CJOIN

uses PostgreSQL to issue queries over the dimension tables for the
registration of new queries. The continuous scan is implemented
by issuing successiveSELECT * FROM F queries to PostgreSQL.
To increase the throughput of the scan, we have implemented a
fast tuple copy mechanism between PostgreSQL and CJOIN using
a shared memory buffer. Our prototype supports both the horizontal
(one Stage for all Filters) and vertical (one Stage per Filter) config-
urations described in §4.

We compare CJOIN to both a widely used commercial database
system (henceforth referred to as “System X”) and PostgreSQL. We
tune both systems (e.g., computation of optimization statistics, al-
lowing a high number of concurrent connections, scans usinglarge
data chunks, etc.) to ensure that the experimental workloads are
executed without obvious performance problems. We have veri-
fied that both systems employ the same physical plan structure to
evaluate the star queries in the experimental workloads, namely, a
pipeline of hash joins that filter a single scan of the fact table. The
small size of the dimension tables implies that they can be cached
efficiently in main memory and hence their processing is expected
to be very fast. As a result, we do not tune the physical designof
any of the database systems with indices or materialized views on
the dimension tables, since this would not improve query response
time (we verified this claim for the experimental workloads). We
also avoid using indices and views on the fact table, for the obvi-
ous reasons mentioned in previous sections. For PostgreSQL, we
enable the shared-scans feature to maximize its work sharing.

Our experimental server has two quad-core Intel Xeon CPUs,
with a unified 6 MB L2 cache on each CPU shared among all 4
cores and 8 GB of shared RAM. The machine has four HP 300GB
15K SAS disks, arranged in a hardware-controlled RAID-5 array.

6.1.2 Data Set and Workload
We employ the data set and queries defined in the Star Schema

Benchmark (SSB) [17]. We choose this particular benchmark be-
cause it models a realistic DW scenario and targets exactly the class
of queries that we consider in our work.

We generate instances of the SSB data set using the data genera-
tor supplied with the benchmark. The size of each instance iscon-
trolled by a scale factor parameter denoted assf . A valuesf = X

results in a data set of sizeX GB, with 94% of the data correspond-
ing to the fact table. We limit the maximum value of the scale factor
to 100 (i.e., a 100GB data set) to ensure the timely execution of the
test workloads on our single experimental machine.

We generate workloads of star queries from the queries speci-
fied in the benchmark. Specifically, we first convert each bench-
mark query to a template, by substituting each range predicate in
the query with an abstract range predicate, e.g.,d_year >= 1992

and d_year <= 1997 is converted tod_year >= X and d_year
<= Y, whereX andY are variables. To create a workload query, we
first sample a query template and then substitute the abstract ranges
with concrete predicates based on a parameters that controls the se-
lectivity of the predicate. Thus,s allows us to control the number
of dimension tuples that are loaded by CJOIN per query, as well as
the size of the hash tables in the physical plans of PostgreSQL and
System X.

Note that the original benchmark specification contains 13 queries
of varying complexity. We excluded queries Q1.1, Q1.2 and Q1.3
from the generation of workload queries because they contain se-
lection predicates on fact table attributes, and this functionality is
not yet supported by our prototype. This modification does not af-

9

fect the usefulness of the generated workloads, since the omitted
queries are the simplest ones in the SSB benchmark and the only
ones that do not have a group-by clause.

6.1.3 Evaluation Metrics
We measure the performance of a system with respect to a spe-

cific workload using query throughput (in queries per hour) and the
average and standard deviation of response times for each ofthe 10
SSB query templates. We employ the standard deviation to quan-
tify performance stability and predictability.

For each tested system, we execute the workload using a single
client and a cold cache. The degree of query concurrency is con-
trolled by an integer parametern, as follows: the client initially
submits the firstn queries of the workload in a batch, and then sub-
mits the next query in the workload whenever an outstanding query
finishes. This way, there are alwaysn queries executing concur-
rently. To ensure that we evaluate the steady state of each system,
we measure the above metrics over queries256...512 in the work-
load (n = 256 is the highest degree of concurrency in our experi-
ments). The fact that we measure a fixed set of queries allows us to
make meaningful comparisons across different values ofn.

6.2 Experiments
This section presents a subset of the experiments that we con-

ducted to evaluate the effectiveness of the CJOIN operator.

6.2.1 Pipeline Configuration
We begin with a comparison of the vertical and horizontal CJOIN

configurations that are supported by our prototype. The vertical
configuration maps each Filter to a distinct Stage, which implies
that Filters work in parallel with each other. The horizontal con-
figuration boxes all Filters in a single Stage that is assigned several
threads. Thus, each thread evaluates in parallel the sequence of
Filters for a subset of the fact tuples. As discussed in §4, the ver-
tical and horizontal configurations represent the two extremes for
mapping the CJOIN operator to a multi-core system.

We evaluate the performance of each configuration as we vary
the total number of threads in CJOIN. Each configuration has the
minimum number of threads needed for its execution; we also set
an upper limit so that each CPU core does not execute more than
one “active” thread. Specifically, we always set aside threecores
for the PostgreSQL process and the Preprocessor and Distributor
threads. This leaves five cores out of the eight available on our
experimental machine, so we use this number as the upper limit for
the number of Stage threads. For the horizontal configuration, all
available threads go to the single Stage. The vertical configuration
requires at least four threads (there are four Filters corresponding
to the dimension tables in the SSB data set) and, if there is a fifth
thread available, we assign it to the first Stage.

Figure 4 shows the query throughput of the two configurations
as we vary the number of Stage threads. The results show clearly
that the horizontal pipeline configuration consistently outperforms
the vertical configuration, as long as it has more than one thread
assigned to the single Stage. Upon closer inspection, we found that
the overhead of passing tuples between threads, which includes L2
data cache misses and thread synchronization, outweighs the ben-
efits gained by the parallelism of the vertical configuration. Based
on these results, we focus the subsequent experiments on thehori-
zontal configuration for the CJOIN operator.

6.2.2 Influence of Concurrency Scale
The next set of experiments evaluates the performance of the

three systems as we increasen, the degree of query concurrency.

0

200

400

600

800

1000

1200

1 2 3 4 5

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s/
h

o
u

r)

Number of threads

Horizontal Config Ver cal Config

Figure 4: The effect of pipeline configuration on performance.

Ideally, a system with infinite resources would exhibit linear scal-
ing: an increase ofn by a factork would increase throughput by the
same factor. In practice, we expect a sub-linear scale-up, due to the
limited resources and the interference among concurrent queries.

Figure 5 shows query throughput for the three systems as a func-
tion of n (measurements are gathered with a 100GB data set and
selectivitys = 0.01). An immediate observation is that CJOIN de-
livers a significant improvement in throughput compared to System
X and PostgreSQL. The improvement can be observed forn ≥ 32
and reaches up to an order of magnitude forn = 256.

0

200

400

600

800

1000

1200

1400

1600

0 32 64 96 128 160 192 224 256

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s/
h

o
u

r)

Number of concurrent queries

CJOIN System X PostgreSQL

Figure 5: Query throughput scale-up with number of queries.

CJOIN achieves the ideal linear scale-up for1 ≤ n ≤ 128. In-
creasingn from 128 to 256 results in a sub-linear query throughput
increase of 133%. We profiled the CJOIN executable and found that
bitmap operations took up a large fraction of running time for this
particularn, and so we believe that the sub-linear scale-up is due
mostly to the specific bitmap implementation we employ. Since
the efficiency of bitmap operations is crucial for CJOIN’s scalabil-
ity, we plan to replace the bitmap implementation.

Unlike CJOIN, the query throughputs of System X and Post-
greSQL actuallydecreasewhen the number of concurrent queries
increases past 32. As expected, this decrease is a consequence of an
increased competition among all concurrently executing queries for
both I/O bandwidth (for scan) and main memory (for hash tables).

We examine next the predictability of each system with respect
to query response time. A system with predictable performance
delivers a constant query response time independently of the num-
ber of queries that execute concurrently. To quantify this notion
of predictability, we report the response times of queries generated
from the template corresponding to SSB query Q4.2, which is one
of the most complex queries in the benchmark (it joins with more

10

dimension tables than most other queries and the cardinality of its
Group-By is among the largest). The results are qualitatively the
same for the other templates in the benchmark.

Figure 6 shows the average response time for queries conforming
to template Q4.2 as a function ofn. When increasing the number
of concurrent queriesn from 1 to 256, the response time of System
X grows by a factor of 19 and the response time of PostgreSQL
grows by a factor of 66. These are precisely the undesirable perfor-
mance patterns that lead to “workload fear” in existing DW plat-
forms. CJOIN response time, on the other hand, grows by less than
30%, which is a small degradation in performance if one takesinto
account that the number of queries range over two orders of mag-
nitude. Our measurements of deviation indicate that all systems
deliver relatively stable query response times in steady state, al-
though CJOIN does better: the standard deviation of response time
is within 0.5% of the average for CJOIN, 5% for System X, and 9%
for PostgreSQL.

0

5

10

15

20

25

30

0 32 64 96 128 160 192 224 256

Q
u

e
ry

 r
e

sp
o

n
se

 �
m

e

(x
 1

,0
0

0
 s

e
co

n
d

s)

Number of concurrent queries

CJOIN System X PostgreSQL

Figure 6: Predictability of query response time.

At this point, we quantify the overhead of query submission in
CJOIN as we varyn. We focus again on queries matching tem-
plate Q4.2 and measure the total time from the submission of the
query up until the point the “start query” control tuple is inserted
in the pipeline. This period represents the interval duringwhich
the submitted query competes for resources with the remainder of
the pipeline, and thus it is interesting to examine its magnitude for
different parameters of the workload.

Table 1 shows that the time to submit a query does not depend on
the number of active queries. Moreover, the “interference”interval
is small compared to the total execution time of each query. These
results indicate a negligible overhead for registering a query.

n 32 64 128 256

Submission time (sec) 2.4 2.4 2.4 2.3
Response time (sec) 724.8 723.1 759.0 861.2

Table 1: Influence of concurrency on query submission time.

6.2.3 Influence of Predicate Selectivity
In the next set of experiments we evaluate the performance of

the three systems as we increases, the selectivity of the query
template predicates. Increasings forces all evaluated systems to
access more data to answer queries. Therefore, we expect theper-
formance to degrade at least linearly withs. However, other factors
may contribute to a super-linear degradation, e.g., hash tables may
not fit into L2 caches, or System X and PostgreSQL may thrash by
spilling data to temporary disk files.

Figure 7 shows query throughput for all three systems as a func-
tion of s (we again use a 100 GB data set withn = 128 concur-
rent queries). First, we observe that CJOIN continues to outper-
form System X and PostgreSQL for all settings ofs. However,
we observe that the gap is reduced whens = 10%, which we in-
vestigate below. Second, query throughputs of CJOIN and System
X do indeed drop approximately linearly withs as expected. We
cannot draw any conclusions about PostgreSQL, because we have
only two data points: fors = 10%, we terminated the experiment,
because PostgreSQL took excessive amounts of time. Overall, we
find CJOIN reacts predictably to changes in workload selectivity.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s/
h

o
u

r)

Predicate selec vity (%)

CJOIN System X PostgreSQL

Figure 7: Influence of query selectivity on throughput.

As noted above, the performance of CJOIN decreases signifi-
cantly for higher values ofs. Essentially, the dimension hash ta-
bles have to hold an increased number of tuples, which has adverse
effects on cache locality and hence access times. Moreover,as we
explain below, the overhead of submitting new queries growssub-
stantially, which contributes to the slow down of the operator.

Table 2 reports the overhead of new query submission for differ-
ent values ofs. Whens increases, it is more expensive to evaluate
the predicates of newly submitted queries. The dimension hash ta-
bles also grow larger, and hence it is more expensive to update them
when a new query arrives. On the other hand, there are fixed costs
of new query admission that do not depend ons, including the de-
lay to submit predicate queries to the underlying PostgreSQL, to
disconnect and drain the pipeline, and to update the metadata that
tracks active queries in the system. As shown in the table, the fac-
tors independent ofs are significant fors ≤ 1%, but the factors
dependent ons become dominant fors = 10%.

Predicate selectivity (%) 0.1 1 10

Submission time (sec) 1.6 2.4 11.6
Response time (sec) 707.2 759.0 3418.0

Table 2: Influence of predicate selectivity on query submission
time.

6.2.4 Influence of Data Scale
In the next set of experiments, we evaluate the performance of

the three systems as we increasesf , the scale factor that controls
the size of the SSB data set. A scale factorsf = α implies a data
set of α GB. Ideally, query throughput is inversely proportional
to sf , since queries should takek times longer to complete on a
k-times larger data set. Consequently, we expect thenormalized
query throughput, defined as a product of query throughput andsf ,
to remain approximately constant assf increases.

11

Figure 8 shows normalized query throughput for the three sys-
tems as a function ofsf (we use a workload of selectivitys = 1%
and n = 128 concurrently executing queries). We observe that
CJOIN outperforms System X forsf ≥ 1 and PostgreSQL for all
values ofsf . Moreover, the performance gap increases withsf :
CJOIN delivers only 85% of query throughput of System X when
sf = 1, but outperforms System X by a factor of 6 whensf = 100.
Similarly, CJOIN outperforms PostgreSQL by a factor of two when
sf = 1, and by a factor of 28 whensf = 100.

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

(q
u

e
ri

e
s/

h
o

u
r

x
 1

0
,0

0
0

)

Scale factor

CJOIN System X PostgreSQL

Figure 8: Influence of data scale on throughput.

Comparing the trends of query throughput, we observe that the
normalized query throughput of System X and PostgreSQLde-
creaseswith sf , as expected, yet the normalized query through-
put of CJOIN actually increaseswith sf . The explanation lies in
the overhead of new query submission. As shown in Table 3, the
overhead drops relative to the query response time assf increases.
The reason is twofold: (a) the fixed overhead of query submission
(e.g., pipeline disconnection, or submission of predicatequeries to
the underlying PostgreSQL) becomes less significant as query re-
sponse time grows withsf , and (b) the overhead that depends on di-
mension table size (e.g., evaluating dimension table predicates and
updating dimension hash tables) does not grow linearly withsf , be-
cause some SSB dimension tables are fixed in size (e.g., date), and
some grow logarithmically withsf (e.g., supplier and customer).
Consequently, the cost of query submission becomes less signifi-
cant assf increases, and this has a positive effect on total perfor-
mance.

Scale factor 1 10 100

Submission time (sec) 0.4 0.7 2.4
Response time (sec) 18.8 105.1 759.0

Table 3: Influence of data scale on query submission overhead.

7. CONCLUSIONS AND FUTURE WORK
We presented the design of CJOIN, a novel operator for the con-

current evaluation of large numbers of star-schema queries. The
CJOIN design leverages sharing common parts of execution plans
of multiple star-schema queries that use the same fact table. More-
over, such sharing does not require the queries to be optimized or
even submitted in a batch. We presented an empirical study of
CJOIN using the Star-Schema Benchmark. Our results demonstrate
that CJOIN consistently outperforms both a widely used commer-
cial database system and PostgreSQL on a variety of workloads.
Furthermore, CJOIN delivers one to two orders of magnitude im-
provement when executing 256 concurrent queries.

8. REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and

execution in column-oriented database systems. InACM SIGMOD
Intl. Conf. on Management of Data, 2006.

[2] D. J. Abadi, D. S. Myers, D. J. Dewitt, and S. R. Madden.
Materialization strategies in a column-oriented DBMS. InIntl. Conf.
on Data Engineering, 2007.

[3] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient
pattern matching over event streams. InIntl. Conf. on Data
Engineering, 2008.

[4] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive query
processing. InACM SIGMOD Intl. Conf. on Management of Data,
2000.

[5] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom.
Adaptive ordering of pipelined stream filters. InACM SIGMOD Intl.
Conf. on Management of Data, 2004.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. A. Shah. TelegraphCQ: continuous dataflow processing. InACM
SIGMOD Intl. Conf. on Management of Data, 2003.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a scalable
continuous query system for internet databases.SIGMOD Record,
29(2), 2000.

[8] J. Cieslewicz and A. Ross, Kenneth. Adaptive aggregation on chip
multiprocessors. InIntl. Conf. on Very Large Data Bases, 2007.

[9] P. M. Fernandez. Red Brick warehouse: A read-mostly RDBMS for
open SMP platforms. InACM SIGMOD Intl. Conf. on Management
of Data, 1994.

[10] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data
cubes efficiently. InACM SIGMOD Intl. Conf. on Management of
Data, 1996.

[11] S. Harizopoulos and A. Ailamaki. StagedDB: Designing database
servers for modern hardware.IEEE Data Eng. Bulletin, 28(2), 2005.

[12] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: a
simultaneously pipelined relational query engine. InIn ACM
SIGMOD Intl. Conf. on Management of data, 2005.

[13] Z. Liu, S. Parthasarathy, A. Ranganathan, and H. Yang. Ageneric
flow algorithm for shared filter ordering problems. InSymp. on
Principles of Database Systems, New York, NY, USA, 2008.

[14] Z. Liu, S. Parthasarathy, A. Ranganathan, and H. Yang. Near-optimal
algorithms for shared filter evaluation in data stream systems. In
ACM SIGMOD Intl. Conf. on Management of Data, 2008.

[15] S. Madden, M. Shah, M. Hellerstein, Joseph, and V. Raman.
Continuously adaptive continuous queries over streams. InACM
SIGMOD Intl. Conf. on Management of Data, 2002.

[16] A. Majumder, R. Rastogi, and S. Vanama. Scalable regular
expression matching on data streams. InIntl. Conf. on Data
Engineering, 2008.

[17] E. B. O. Patrick O’Neil and X. Chen. The Star Schema Benchmark.
http://www.cs.umb.edu/∼poneil/StarSchemaB.PDF, 2007.

[18] L. Qiao, V. Raman, F. Reiss, P. Haas, and G. Lohman. Main-memory
scan sharing for multi-core CPUs. InIntl. Conf. on Very Large Data
Bases, 2008.

[19] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann,
I. Narang, and R. Sidle. Constant-time query processing. InIntl.
Conf. on Data Engineering, 2008.

[20] N. Roussopoulos, C.-M. Chen, S. Kelley, A. Delis, and
Y. Papakonstantinou. The ADMS project: Views R Us.IEEE Data
Eng. Bulletin, 18(2), 1995.

[21] T. K. Sellis. Multiple-query optimization.ACM Trans. Database
Systems, 13(1):23–52, 1988.

[22] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era (it’s time
for a complete rewrite). InIntl. Conf. on Very Large Data Bases,
2007.

[23] TPC benchmark DS (decision support), draft specification, revision
32. http://www.tpc.org/tpcds/spec/tpcds32.pdf.

[24] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperativescans:
dynamic bandwidth sharing in a DBMS. InIntl. Conf. on Very Large
Data Bases, 2007.

12

