
Transactors: Unifying Transactions and Actors
 Mohsen Lesani

Abstract
Composability and deadlock-freedom are important properties
that are stated for transactional memory (TM). Commonly, the
Semantics of TM requires linearization of transactions. It turns out
that linearization of transactions that have cyclic communication
brings incomposability and deadlock. Inspired from TM and
Actors, this work proposes Transactors that provide facilities of
isolation from TM and communication from Actors. We define
the semantics of Transactors including support for cyclic
transactional communication. An algorithm implementing this
semantics is offered. The soundness of the algorithm is proved.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming – Parallel programming

General Term Algorithms, Languages, Theory

Keywords Transactional memory, Actors

1 Introduction

To preserve consistency of data, concurrent operations involving a
sequence of accesses (reads and writes) to shared memory should
be executed in isolation. To coordinate cooperative tasks, threads
need to communicate. Therefore, a concurrent programming
model is expected to provide means of isolation and
communication.

As a concurrency programming model, Transactional Memory
(TM) [9] allows the programmer to declare blocks of code as
transactions and the TM runtime system guarantees that
transactions are linearized, i.e. run in isolation. In this paradigm,
communication among transactions should also be done by
reading and writing to shared memory. The sender transaction
writes to a memory location. The receiving transaction reads from
the memory location after the sender transaction commits. TM is
shown to be deadlock-free and composable [8] in provision of
isolation. Because of the linearization guarantee, as examples will
show, transactions with cyclic communication are incomposable
and can deadlock.

Actors concurrency programming model, support
communication elegantly by message passing mechanism. Actors
provide coarse-grained isolation by the fact that at any point of
time at most one thread is scheduled to execute code for each
actor instance [6]. This means that operations executed for an
actor instance are serialized and hence are done in isolation to
each other.

This work aims at merging the strengths of the two paradigms,
i.e. isolation from TM and communication from Actors. To this
end, we define the semantics of the new model including support
for transactional communication and propose an algorithm
realizing this semantics. The soundness of the algorithm is
proved. Especially, it is proved that every transaction is eventually
finalized, i.e. aborted or committed. This guarantees that the
algorithm is deadlock-free even while there are cyclic
dependencies.

Motivating examples are presented in the next section. In
subsequent sections, semantics of Transactors are defined and the
algorithm that implements the semantics is explained. Soundness
theorems come afterwards. Related works finalize the paper.
Some sections refer to the same section numbers of the appendix
of the accompanying technical report [11] for details or proofs.

2 Incomposability and Deadlock

To explain the problem of incomposability and deadlock in
transactional communication, two examples are presented in the
following subsections. First, as a simple example, roundtrip is
presented and then barrier is explained as a realistic case.

2.1 Transactions

2.1.1 Roundtrip

Consider the simple roundtrip example that exhibits the problem
abstractly. A transaction sends a message to another transaction
and then receives a message from it. This is implemented in
SSTM (Scala Software Transactional Memory) as follows. (We
have implemented SSTM very similar to [9].) The Semantics of
conditionWait in SSTM matches the semantics of retry of
Haskell STM [8]. (If the condition fails, the transaction is aborted
and not retried until one of the objects that the transaction has read
before being aborted is updated.)

Assume that two transactions �� and �� use respectively two
shared variables m1 and m2 to pass messages to each other:
val m1 = new Tint(0), m2 = new Tint(0)

The first transaction, ��, is
atomic {
 m1.value = 1
 conditionWait(m2.value == 1)
}

The second one, ��, is
atomic {
 conditionWait(m1.value == 1)
 m2.value = 1
}

We show that the execution of the two transactions leads to a
deadlock either with a deferred-update or direct-update STM
implementation. In a deferred-update STM implementation the
following happens. When �� is being executed, m1 is tentatively
updated and then the condition m2.value == 1 is checked.
Because m2 should be updated by �� and updates are deferred,
condition of �� is only satisfied when �� commits. When �� is
being executed, it checks for condition m1.value == 1. Since m1
should be updated by �� and updates are deferred, the condition of �� is satisfied only when �� commits. Therefore, neither of �� and �� can pass the condition. So both abort and go to the waiting
state that results in a deadlock. Explanation for direct-update STM
implementation is presented in the technical report [11].

To see where such roundtrips can happen in practice, we
present the implementation of a barrier abstraction with
transactions.

2.1.2 Barrier

Transactional communication can bring deadlock when classes
implemented by transactions are composed. Consider the
following example: Barrier, the simplest thread coordination the
we adopted from [12]. Barrier class is implemented as follows:
class Barrier(partiesCount: Int) {

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147953111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 val count = new TInt(0)
 def await() {
 atomic {
 count.value = count.value + 1
 }
 atomic {
 conditionWait(count.value == partiesCount)
 }
 }
}
class Party(barrier: Barrier) extends Thread {
 override def run {
 // Do some job
 barrier.await
 // Do some other job
 }
}

There are two atomic blocks in the await method. The first
one increments the value of count. count is a field of Barrier
class of type transactional integer that counts the number of
parties that have called the await method. The second atomic
block waits for equality of count to the number of expected
parties, partiesCount that is initialized in the constructor. If a
condition is not true, the thread is suspended until at least one of
the objects that the transaction has read is updated. When the
value of count is incremented to partiesCount, all of the
suspended parties retry the atomic block and as the condition is
satisfied, pass the atomic block. Effectively, the parties continue
together after calling the await method.

The implemented Barrier works properly if the await method
is not called inside a transaction. To see if Barrier is composable,
consider the following TParty class that calls await inside an
atomic block.
class TParty(barrier: Barrier) extends Thread {
 override def run {
 atomic {
 // Do some job
 barrier.await
 // Do some other job
 }
 }
}

For the purpose of presentation, the nesting can be written
syntactically as follows:
atomic {
 atomic {
 count.value = count.value + 1
 }
 atomic {
 conditionWait(count.value == partiesCount)
 }
}

There are two known semantics for nested atomic blocks:
closed nesting and open nesting. Barrier is composable neither
with closed nor open nesting semantics.

By the closed nesting semantics, the updates of the inner
transactions are all committed when the outermost transaction
commits. For a conditionWait in an inner transaction, there are
two approaches. Either the condition is moved to the beginning of
the outermost transaction [7] or the condition is evaluated in-place
and if the condition fails, the outer transaction aborts and before
retrying waits until at least one of the objects that it has read is
updated [12]. In both of these approaches, all of the parties that
call the await method go to deadlock:
• If the condition is checked at the beginning of the outermost

atomic block, it is never satisfied. This is because the
evaluation result of the condition can only change by the
updates that are inside the atomic block itself.

• Also if the outer transaction aborts and goes to waiting state
when the condition is failed, the parties go to deadlock. We
explain about deferred-update STM implementation here.

Explanation for direct-update STM implementation is presented
in the technical report [11]. If STM implementation is deferred-
update, the first transaction reads a value of zero from count
and tentatively updates it to one in its own copy. As the
condition fails, the transaction ignores its tentative update,
aborts and goes to the waiting state. As no transaction commits
and updates are deferred, any transaction that reads value of
count gets zero. Therefore, any later transaction also aborts and
goes to the waiting state resulting in a deadlock.
Explanation for open nesting is presented in the technical

report [11].
This means that the await method of Barrier cannot be used

inside nested atomic blocks and therefore Barrier implemented
by STM is not composable.

A solution to this problem based on closed nesting called TIC
is offered by Smaragdakis et al. [12]. TIC commits the transaction
and starts a new one before the wait statement. By their
terminology, the transaction is punctuated before the wait
statement. Committing before the wait statement exposes updates
to other transactions and thus provides means of communication.
But punctuation of an atomic block breaks its isolation.
Furthermore, if an atomic block �� is inside method �� and �� is
called by another method �� inside a nesting atomic block ��,
punctuating �� breaks isolation of not only �� but also ��. To
make this break explicit to the programmer, TIC designed a type
system that tracks methods that contain punctuated atomic blocks.
If the programmer wants to call such methods in an atomic block,
the type system forces him to call it inside expose() and to write
code to compensate the breaking of isolation in establish{}

block. The barrier case is implemented as follows in TIC:
class TICBarrier(partiesCount: Int) {
 val count = new TInt(0)
 def await() {
 atomic {
 count.value = count.value + 1
 wait(count.value == partiesCount)
 }
 }
}
class TParty(barrier: TICBarrier) extends Thread {
 override def run {
 atomic {
 // Do some job
 expose (barrier.await)
 establish { //... }
 // Do some other job
 }
 }
}

Even if any compensation is possible, re-establishing local
invariants is a burden on the programmer. More importantly, TIC
breaks isolation for communication while isolation is the main
promise of TM. Actually, TIC treats communication the same as
I/O. Side effects caused by I/O operations are out of control of
TM runtime system; thus they can break isolation and cannot be
rolled back and retried. This is in contrast to communication, for
which proper mechanisms can be designed to perform
communications tentatively and to discard and retry them on
aborts. Our proposal for semantics and implementation of these
mechanisms is explained in the following sections. By these
mechanisms, Transactors provide the facility for the programmer
to send and receive messages inside transactions while
composability and isolation are preserved.

2.2 Transactors

A transactor is essentially a thread that can send and receive
messages both outside and inside transactions. In fact, Transactor
model includes features from both TM and Actor models. An

atomic block inside a transactor can not only read from and write
to shared memory but also send messages to and receive messages
from other transactors. All of the required mechanisms to keep
track of messages sent by aborted transactions are maintained by
the Transactors runtime system.
class MyTransactor(peer: Transactor) extends Transactor {

val i1 = 0, i2 = 0 //Non-transactional objects
val ti1 = TInt(), ti2 = TInt() //Transactional objects
override def act {
 // Outside atomic block
 val v = i1 //Read non-transactional objects
 i2 = v //Write non-transactional objects
 peer ! new MessageClass //Send a message
 receive { //Receive a message
 case MessageClass1 => //...
 case MessageClass2 => //...
 }
 atomic {
 // Inside atomic block
 val tv = ti1.value //Read transactional objects
 ti2.value = tv //Write transactional objects
 peer ! new MessageClass //Send a message
 receive { // Receive a message
 case MessageClass1 => //...
 }
 }
}

}

Similar to actors, each transactor has a mailbox where
messages sent to the transactor are enqueued. A transactor can
dequeue messages from its mailbox by receive. The input
parameter to receive is a partial function which is defined for a
set of message types. When a transactor executes receive, if a
message of a type that the partial function is defined for is not in
the mailbox, it waits until such a message is enqueued.

2.2.1 Roundtrip

The roundtrip example can be coded simply in Scala Transactors
as follows:
class Transactor1(peer: Transactor) extends Transactor {
 override def act {
 atomic {
 peer ! new Message
 receive { case Message => }
 }
 }
}
class Transactor2(peer: Transactor) extends Transactor {
 override def act {
 atomic {
 receive { case Message => }
 peer ! new Message
 }
 }
}

Transactions inside Transactors can send and receive tentative
messages from each other. After completion, they are finally
committed together. The mechanisms behind transactors are
explained in the following sections.

2.2.2 Barrier

This subsection explains implementation of the barrier case by
Scala Transactors. Consider the following code snippet. A class
called BarrierActor that extends base class Transactor is
defined inside Barrier class. Inside an atomic block in its act

method, BarrierActor waits to receive JoinNotificationRequest
message from the parties and adds the sender transactor of each
received message to parties set. After receiving the request form
partiesCount parties, it sends a JoinNotification message to all
the parties in parties set. On construction of a Barrier, a new
object called barrierActor of type BarrierActor is created and

started. When a party calls the await method on a Barrier object,
an atomic block is executed that sends a
JoinNotificationRequest message to the barrierActor and
waits to receive JoinNotification message. In Transactor
model, transactions can communicate tentatively by the message
passing mechanism. Therefore, in contrast to the first barrier
implementation using TM transactions, the current
implementation does not go to deadlock waiting for messages
from others. The await method can be called inside a nested
atomic block and the implemented barrier is composable. In
addition, in contrast to TIC, composable communication is
supported without breaking isolation.
class Barrier(partiesCount: Int) {
 class BarrierActor extends Transactor {
 override def act {
 atomic {
 val parties = Set[Transactor]()
 for(i <- 0 until partiesCount) {
 val request = receive {
 case JoinNotificationRequest =>
 parties += request.sender
 }
 }
 for(party <- parties) {
 party ! new JoinNotification
 }
 }
 }
 }
 val barrierActor = new BarrierActor
 barrierActor.start
 def await() {
 atomic {
 barrierActor ! new JoinNotificationRequest
 self.receive { case JoinNotification => }
 }
 }
}
class TParty(barrier: Barrier) extends Transactor {
 override def act {
 atomic {
 barrier.await
 }
 }
}

As will be explained in the next sections, by the semantics, a
receiving transaction becomes dependent on the sender
transaction. A transaction can be aborted as a result of conflict
resolution with another transaction. When a transaction is aborted,
abortion is propagated to dependent transactions.

When a party has sent a message to the barrier transactor and
is waiting to receive a reply message, the transaction of the barrier
is dependent on the transaction of the party. If the transaction of
the party aborts, the abort is propagated to the transaction of the
barrier. While the transaction of barrier is aborting, the messages
from the other parties that are not aborted are restored to the
barrier’s mailbox. Therefore, on retry, the atomic block of the
barrier can receive the same set of request messages as its
previous execution other than the request from the aborted party.
This means that the barrier transactor effectively ignores the
aborted party and waits for another.

When the barrier has received request messages from all the
parties and the parties are released after receiving messages from
the barrier, the transaction of each party and the transaction of the
barrier are interdependent. If the transaction of one of the parties
aborts, abort propagates to the transaction of the barrier and then
transactions of all of the other parties. In other words, if one of the
parties aborts, the barrier and all of the parties are aborted and
retried. This matches the expected behavior from the barrier that
all of the parties together or none of them should pass the barrier.

3 Semantics

In this section, properties that are expected from a Transactor
algorithm are specified the first subsection. The lemmas needed as
the background for the operational semantic are established in the
second subsection. The last subsection presents the operational
semantics.

3.1 Algorithm Specification

A transaction starts from the running state and can change states
as shown in Figure 1.

Figure 1. State transitions of a transaction.

DEFINITION 1: A transaction is terminated iff it has reached the
end of its atomic block (but is not committed yet). A transaction is
committed iff its updates to shared memory are committed. A
transaction is aborted iff its execution is stopped and its tentative
updates to shared memory are discarded.

DEFINITION 2: A transaction is finalized iff it is aborted or
committed.

The first property that is expected from a transactor algorithm
is finalization that is defined as follows:

PROPERTY 1: Finalization: Every transaction is eventually
finalized.

DEFINITION 3: A message is stable iff its sender transaction is
committed.

If a transaction �� receives a message that is sent by another
transaction ��, as computation of �� is reliant on the message, it
cannot commit unless the message becomes stable. We say then
that the receiving transaction is dependent on the sending
transaction. The notion is formalized as follows:

DEFINITION 4: Transaction dependency relation: A transaction ��
is dependent on transaction ��, i.e. �� � ��, iff �� can be
committed only if �� is committed.

DEFINITION 5: A message is pending iff its sender transaction is
running or terminated.

DEFINITION 6: If transaction �� receives a pending message that is
sent by transaction ��, �� becomes dependent on ��, i.e. �� � ��.

The second property that is expected from a transactor algorithm
is that when a transaction is committed, no dependency is
violated. The property is formalized as follows:

PROPERTY 2: Commit Accuracy: For any committed transaction ��, all transactions �� that �� is dependent on are also committed.

To satisfy only PROPERTY 1 and PROPERTY 2, a trivial
algorithm can abort any transaction. The third property is non-
triviality of the algorithm.

DEFINITION 7: A transaction is non-committable iff its
commitment even in the future violates commit accuracy.

For example, a transaction that has dependency to an aborted
transaction is non-committable but a transaction that has
dependency to only running or committed transactions is not non-
committable.

PROPERTY 3: Non-triviality: Only transactions that are non-
committable are aborted.

Therefore soundness is defined as follows:

DEFINITION 8: A transactor algorithm is sound if it has the
following properties: PROPERTY 1: Finalization, PROPERTY 2:
Commit Accuracy, PROPERTY 3: Non-triviality.

3.2 Operational Semantics Background

LEMMA 1: Dependency is transitive, i.e. if �� � �� and �� � ��
then �� � ��. (We use �� to denote transitive dependency.)
PROOF: It is trivial from DEFINITION 4. 	

LEMMA 2: If �� � �� and �� is aborted, non-triviality is not
violated if �� is aborted.
PROOF: Aborted is a final state for a transaction. As �� is aborted,
it can never commit. By �� � �� and DEFINITION 4, �� can only
commit when �� is committed. Hence, �� is non-committable;
thus, aborting it does not violate non-triviality, PROPERTY 3. 	

DEFINITION 9: A transaction �� is called a failed transaction if
there is a transaction �� such that �� �� �� and �� is aborted.

LEMMA 3: Abort Propagation: Aborting a failed transaction does
not violate non-triviality.
PROOF: Direct from DEFINITION 9, LEMMA 1 and LEMMA 2. 	

DEFINITION 10: Transaction dependency relation � for the set of
transactions � corresponds to the transaction dependency graph
���, �� defined as follows: � � � and (���, ��� � �� � ����, ��� � ���. (1)

A path in the dependency graph corresponds to a transitive
dependency relation. So we use them interchangeably.

It is known that a subgraph of a directed graph is called
Strongly Connected Subgraph (SCS) if there is a path from each
vertex of the subgraph to every other vertex of it. The Strongly
Connected Components (SCC) of a directed graph are its maximal
SCSs. A node that is on no cycle is an SCC itself.

LEMMA 4: Any two transactions in an SCS of the transaction
dependency graph are interdependent.
PROOF: In an SCS of the dependency graph, for every two
transactions �� and ��, there is a path from �� to �� and a path
from �� to ��. By DEFINITION 10, �� �� �� and �� �� ��.
According to LEMMA 2, �� � �� and �� � ��. 	

LEMMA 5: To preserve commit accuracy, all of the transactions in
an SCS of the transaction dependency graph should only commit
together.
Proof: By Lemma 4, for any two transactions �� and �� in an
SCC, �� � �� and �� � ��. To preserve commit accuracy, by
Definition 4, �� can only be committed if �� is committed and
vice versa. This means that �� and �� can only be committed
together. 	

The lemma presents the fact that a sound algorithm should
perform collective commit when there are cyclic dependencies.
This means that transactions of an SCS should not be linearized to
distinct points but all of them should be linearized to a single
point.

DEFINITION 11: A dependency to a transaction is resolved if the
transaction is committed.

Running Terminated Committed

Aborted

LEMMA 6: To preserve commit accuracy and non-triviality, if a
transaction has dependency to no aborted but a running
transaction, it cannot be committed or aborted.
PROOF: If it is committed, as it has an unresolved dependency,
commit accuracy is violated. If all its dependencies are resolved
later, it can be committed; so, it is not non-committable. Hence
aborting it violates non-triviality. 	

DEFINITION 12: A set of transactions � is a cluster iff all its
transactions are terminated and any unresolved dependency of
them is to each other. Formally, a set of transactions � is a cluster
iff �� � �: �� �� �� !�"#��$�#"$ % ��& �
��:�� � �&� ' ���&�� ()!!����$�) ��& � ���* (2)

LEMMA 7: Collective Commit: Committing all transactions of a
cluster together does not violate commit accuracy.
PROOF: By DEFINITION 12, in a cluster, any dependency of each
transaction is either already resolved or will be resolved by
committing other transactions in the cluster. Committing all
transactions of the cluster together leaves no unresolved
dependency for them. Therefore committing them together does
not violate commit accuracy. 	

LEMMA 8: A Transactor algorithm is a sound algorithm if it has
the finalization property and only aborts failed transactions and
only commits transactions of clusters together.
PROOF: By DEFINITION 8, LEMMA 3, LEMMA 7.

3.3 Operational Semantics

The operational semantics is defined for the following language of
terms and values: � � +"�� | - | . | /.. � | � � Terms | �1 � | � 2 � | ! � | "#�)!�(" � | � "��"$" � | " �(��5�" | "#6) �" 5 � +"�� | - | /.. � | � Values � � 7#�, #�, #�, … 9 Actor names
Figure 2 and Figure 3 show the operational semantics. It
essentially represents abort propagation for failed transactions and
collective commit for transactions of clusters together. Therefore
by LEMMA 8, an algorithm is sound if it has the finalization

property and it satisfies the operational semantic of Figure 3 and
Figure 2. Before explaining the transition rules, we establish the
notational conventions.

3.3.1 Notational Conventions

Tuple: ": ;" denotes a tuple and “·” is used to separate elements
of a tuple. For instance :# · 6 · (; denotes a tuple of elements #, 6
and (. Sets and Multisets: Union and multiset union is denoted by = and > respectively. For a multiset ?, ? / . is a multiset that is
the same as ? except that an instance of . is removed. Map: A is
used to denote a mapping. For instance, # A 6 represents a
mapping from # to 6. A map is a set of mappings. For a map �, ��.� denotes the element to which � maps .. For a map �, the
set of elements that it maps from is called its domain and is
denoted by $)!���. � / . denotes a map �B that is the same as � except that . C $)!��&�.

Pattern matching: Pattern matching is used to determine the
applicability of a particular rule, and to match components of
terms to variables. Applying term constructors to variables makes
simple patterns. For instance :., D; matches tuples of two
elements where variables . and D match the first and second
elements respectively. The underscore character “_” matches any
term. The pattern �# A D� matches any map �B where # � �B, D matches �&�#� and � is bound to �B / #. The pattern ? > 7.9
matches any multiset ?B where . is bound to an element of ?B and ? is bound to ? / .. #) 6 matches either # or 6.

Transaction States: E, F, G and H denote running, aborted,
terminated and committed states of a transaction. Reduction
Context: In each transition rule, a particular redex term is reduced.
The redex is considered in a reduction context. IJ � denotes
reduction context for terms that are evaluated inside transaction �
and I � denotes reduction context for terms that are evaluated
outside transactions. We call IJ � and I � transactional and non-
transactional reduction contexts respectively. I � � | I � | 5 I | �1 I | ! I | I 2 � | 5 2 I | I ��"$ � | 5 ��"$ I | "#�)!�(" IJ IJ � � | IJ � | 5 IJ | �1 IJ | ! IJ | IJ 2 � | 5 2 IJ | IJ ��"$ � | 5 ��"$ IJ

Configuration: A configuration describes state of a program at
a single point at runtime. A configuration is a triple of the form :K · L · M;. K is a mapping from transactor ids 7#N9 to pairs of
the form :�N · I �$�.�N; where �N denotes the mailbox of
transactor #N and I �$�.�N denotes the current reduction context

Atomic: ��)!�(1:

� 1 ��P :K# A :_, I#�)!�(��;� · L · _; R� :K# A :_, IJ��;� · L� A :E, I#�)!�(��, 79;� · _; ��)!�(2:

:K# A :_, IJ5�;� · L� A :E, _, _;� · _; R� :K# A :_, IJ5�;� · L� A :G, _, _;� · _;
Send: ?�"$1:

:K#� A :_, IJ#� ��"$ 5�;�#� A :��, _;� · _ · _; R� :K#� A :_, IJ+"���;�#� A :�� > 7:5, �;9, _;� · _ · _; ?�"$2:

:K#� A :_, I#� ��"$ 5�;�#� A :��, _;� · _ · _; R� :K#� A :_, I+"���;�#� A :�� > 7:5, �TUVVNWWXY;9, _;� · _ · _;

Receive:

Z�(��5�1:

:K#� A :�� > 7:5, ��;9, I �(��5��;� · �� A :H, _, _;� · _; R� :K#� A :��, I5�;� · �� A :H, _, _;� · _; Z�(��5�2:

:K[#� A :�� > 7:5, ��;9, IJ\ �(��5��;] · L�� A :_, _, �̂;��� A :H, _, _;� · _; R� :K[#� A :��, IJ\5�;] · L�� A :_, _, �̂ > 7:5, ��;9;��� A :H, _, _;� · _; Z�(��5�3:

:K[#� A :�� > 7:5, ��;9, IJ\ �(��5��;] · L�� A :F, _, _;� · _; R� :K[#� A :��, IJ\ �(��5��;] · L�� A :F, _, _;� · _; Z�(��5�4:

:K[#� A :�� > 7:5, ��;9, IJ\ �(��5��;] · L�� A :_, _, �̂;��� A :E) G, _, _;� · M; R� :K[#� A :��, IJ\5�;] · L�� A :_, _, �̂ > 7:5, ��;9;��� A :E) G, _, _;� · M = 7�� � ��9;
Figure 2. Operational Semantics of Transactor Algorithm 1/2

and redex of #N. A mailbox � is a multiset of :!, �; pairs where ! is a message and � is the sender transaction of !. L is a
mapping from transaction names 7�N9 to triples of the form :��#��N, I �$�.�N , N̂;. ��#��N, a value from the set 7E, F, G, H9
denotes the current state of �N. I �$�.�N denotes the reduction
context and redex just before the atomic block of �N is started. As
will be explained, at the beginning of each atomic block,
reduction context and redex are saved in the second element of the
triple for the new transaction instance and it is restored when the
transaction is aborted and the atomic block needs to be retried. ̂ N
is a multiset of :!, �; pairs. N̂ is the multiset of messages
received by �N. As will be explained, if �N is aborted, ̂ N is added
to the mailbox multiset. L contains the dummy entry �TUVVNWWXY A :H, _, _; from the beginning. As will be explained, �TUVVNWWXY is set as the sender transaction of messages that are
sent outside transactions. M is the set of dependencies between
transactions of $)!�L�.

3.3.2 Reduction Rules

The relation
R� is a single-step transition on configurations.

Atomic: ��)!�(1: Reduction of #�)!�(� adds a new
mapping to L. The new mapping � A :E, I#�)!�(��; is from a
fresh transaction id �. The state of the new transaction is set to
running E and the current reduction context and redex are also
saved. The reduction context and redex are restored later if the
transaction is aborted and the atomic block is to be retried. #�)!�(� is reduced to � in the context of transaction �. ��)!�(2:
When a transaction reaches the end of the atomic block, i.e. it
evaluates to a value, the state of the transaction is changed from
running E to terminated G.

Send: Sending messages is asynchronous, i.e. nonblocking. A
sent message is enqueued to the recipient transactor’s mailbox and
can be received later. ?�"$1: When transactor #� ��"$s message ! to transactor #� inside the reduction context of transaction �,
the pair :!, �; is added to the mailbox of #�. The ��"$ statement
itself is then reduced to +"��. The sender transaction that is saved
here is checked not to be aborted when ! is being received. ?�"$2: When transactor #� ��"$s message ! to transactor #�
inside a non-transaction reduction context, the pair :!, �TUVVNWWXY; is added to the mailbox of #�. The dummy
transaction �TUVVNWWXY is a member of L and the status of it is
always committed H from the beginning. As the sender transaction
of messages that are sent outside transactions is set to �TUVVNWWXY,
these messages are immediately stable.

Receive: Z�(��5�1: If transactor #� �(��5�s inside a non-
transactional reduction context, it receives only stable messages.
If transactor #� �(��5�s inside the reduction context of
transaction �� and :!, ��; is an arbitrary member of its mailbox,

three different reductions can happen based on the state of the
sender transaction ��. Z�(��5�2: If �� is committed, i.e. if the
message is stable, the pair is eliminated from the mailbox and �(��5� is reduced to !. Z�(��5�3: If �� is aborted, the pair is
dropped from the mailbox and �(��5� reduces to itself, i.e. �(��5�ing should be retried. Z�(��5�4: If �� is running or
terminated, the pair is eliminated from the mailbox and �(��5� is
reduced to !, the same as when �� is committed, but also a
dependency from �� to ��, i.e. �� � �� is added to M. When a
message is received inside a transactional context, the pair of the
message and its sender transaction is added to the multiset ̂ of
the transaction. The elements of the multiset are added to the
mailbox if the transaction aborts.

Abort: A transaction � can be aborted in three ways. It can be
aborted by another transaction due to a shared memory conflict
resolution (�6) �1 and �6) �2). It can be aborted following
abortion of a transaction that � is dependent on (�6) �3�. Also, it
can be aborted by a user programmed abort statement inside the
atomic block (�6) �4). �6) �1 and �6) �2: It is notable that #6) � � is not a term of the language but is executed by the
transactors runtime system when a shared memory conflict is to
be resolved. �6) �1: Aborting a transaction that is already
aborted has no effect. �6) �2: If transactor #� is running
transaction �� and �� is running or terminated then evaluating #6) � ��, changes the redex of #� to #6) � statement regardless
of its current redex. This reduces �6) �2 to �6) �4. �6) �3:
This rule encodes abort propagation. If a transactor # is running
transaction �, � is running or terminated, and the state of a
transaction �& that � is dependent on is aborted, � is also aborted.
This case is also reduced to �6) �4 by changing the current redex
of # to #6) � statement. �6) �4: Reduction of #6) �, restores I#�)!�(�� that is saved at the beginning of the atomic block.
Restoring I#�)!�(�� effectively restarts the atomic block.
Besides, messages that are received throughout execution and are
in the multiset ̂ of the aborted transaction are added to the
mailbox. a)!!��: The commit rule encodes collective commit of a
cluster. If there is a set of terminated transactions that their
dependencies are either to committed transactions or to each
other, they are committed together and transactor reduction
contexts return back to non-transactional contexts.

4 Transactor Algorithm

4.1 Sending and Receiving Messages

When an atomic block starts, a new transaction descriptor is
created and stored in a thread local variable. Descriptor of a
transaction is a data structure that stores all the information

Abort: �6) �1:

:K[#� A :_, IJ\#6) � ���;] · L�� A :F, _, _;� · _; R� :K[#� A :_, IJ\+"���;] · L�� A :F, _, _;� · _; �6) �2:

:K[#� A :_, IJ\#6) � ���;][#� A :_, IJb_�;] · L�� A :E) G, _, _;� · _; R� :K[#� A :_, IJ\+"���;][#� A :_, IJb#6) ��;] · L�� A :E) G, _, _;� · _; �6) �3:

c�&: ��� � �&� � M� #"$ �L��&� � :F, _, _;��:K# A :_, IJ_�;� · L� A :E) G, _, _;� · M; R�:K# A :_, IJ#6) ��;� · L� A :E) G, _, _;� · M;

�6) �4:

:K# A :�, IJ#6) ��;� · L� A :_, I#�)!�(��, ^;� · _; R� :K# A :� > ^, I#�)!�(��;� · L� A :F, I#�)!�(��, 79;� · _;
Commit: a)!!��:

�� � 1. . ": �c�: ��N � �� � M�� ' ��L��� � :H, _, _;�) �cd � 1. . ": � � �e���:K[#N A :_, IJf5N�;]Ng�..h · L�N A :G, _, _;�Ng�..h · M; R�:K#N A :_, I5N�;�Ng�..h · L�N A :H, _, _;�Ng�..h · M;

Figure 3. Operational Semantics of Transactor Algorithm 2/2

regarding that transaction. To get the descriptor of the current
transaction, this thread local variable is checked. If the value of
the variable is null, evaluation is out of atomic blocks and if it is
not null, it is the descriptor of the current transaction. The value of
the variable is set to null after a transaction commits.

Transactors provide the facility for the programmer to send
and receive messages inside transactions. When a transaction
aborts, all its tentative effects should be discarded. Particularly, if
it has sent a message, the message should be discarded. A
message can have three different states: stable, annihilated and
pending. Stable is the state of messages sent by committed
transactions or sent outside transactions. Annihilated is the state of
messages sent by aborted transactions. Pending is the state of
messages that are sent by transactions that are running or
terminated, i.e. not committed or aborted yet.

When a message is being sent, instead of only the message
itself, a cell containing the message is enqueued to the mailbox.
The information that a receiving transaction needs later are stored
in the cell. Besides the message, the cell contains a reference to
the descriptor of the sender transaction, the state of the message
and a reference to a notifiable object. We explain about this data
as we proceed. Figure 4 and Figure 5 depict data structures and
their relations while sending and receiving a message.

Figure 4. Sending Message

Figure 5. Receiving Message

The state of a message sent respectively outside and inside a
transaction is stable and pending at the beginning. If a transaction
commits, the state of the messages that it has sent should be
changed to stable and if it aborts, the state should be changed to
annihilated. This is done by notifiable objects. When a transaction
sends a message, a new cell containing the message is enqueued
to the recipient’s mailbox and furthermore a notifiable object
having a reference to the new cell is created and registered to the
descriptor of the sender transaction. On abort or commit of a
transaction, all of the registered notifiables are notified of abortion

or commitment. Notifiables, when notified, update the state of the
cells that they reference. When a notifiable is notified of abortion,
it sets the state of the cell to annihilated. When it is notified of
commitment (also called dependency resolution), it sets the state
of the cell to stable.

If a message is to be received outside a transaction, a stable
message is required. If it is to be received inside a transaction, a
non-annihilated message is required. When a message is being
received, cells are dequeued from the mailbox and any annihilated
message is dropped until the required message is found. The
thread suspends if no required message exists in the mailbox until
one is enqueued.

The dependencies of each transaction are kept inside its
transaction descriptor. To track dependencies, when a transaction �R receives a pending message, a reference to the descriptor of the
sending transaction �i should be added to the dependency set of
descriptor of �R. Hence, when a pending message is being
received, a reference to the descriptor of the sending transaction is
needed. To have this reference, when a transaction is sending, it
saves a reference to the descriptor of itself in the new cell.

Finalization process of transactions is described in the
following subsection but for the purpose of completing the
explanation of this subsection, assume �R to be a transaction that
is terminated and j�k � 7�ifl\..m9 to be the set of transactions that
it is dependent on. �if ’s are transactions that �R has received
pending messages from. By LEMMA 6, if there is no aborted but
running transactions in j�k, �R cannot be committed or aborted.
Therefore �R goes to the waiting state to get notified of abortion
or commitment of �if ’s. Hence, a �if, i.e. a sender transaction,
when aborted or committed, should notify the transaction that has
received its sent message. Notifying waiting dependent
transactions is done by the same notifiables that update the state
of cells. After a transaction �R receives a pending message, the
notifiable object, when notified, should notify �R. Therefore,
when the message is received, the receiving transaction should be
subscribed to the notifiable object as a notification sink. This
means that a reference to the notifiable object is needed when the
message is being received. To have the notifiable while receiving,
it is saved in the cell when the message is being sent. When a
pending message is being received, the notifiable object that is
previously registered in the descriptor of the sender transaction is
obtained from the cell that contains the message and a reference to
the receiving transaction is subscribed to it. Pseudo code of the
send and receive methods is presented in the technical report [11].

When a transaction aborts, its effects should be rolled back.
While aborting, a transaction that has received messages from the
transactor mailbox should put the messages back. Therefore, to
track received messages, when a message is being received inside
a transaction, the cell that the message is obtained from is added
to a backup set in the transaction descriptor. The set is iterated
while the transaction is being aborted and any cell that is not
annihilated is put back to the mailbox. As the cell of a received
message may be later put back to the mailbox, a cell should be
notified to become stable or annihilated by its corresponding
notifiable object not only when it is in the mailbox but also when
the message is received and the cell is dequeued from the
mailbox. Thus, the notifiable object notifies the cell even after the
receiving transactor is subscribed.

4.2 Finalization

4.2.1 Abort Propagation

Consider a transaction �i and the set of transactions 7�Rfl\..m9 that
are dependent on �i. The state of a transaction �i can be set to

T1

Dependencies

Notifiables

Mailbox (of Transactor 2)

Transactor 1

Notifiable

Cell

ReceiverTrans

T2

Dependencies

Notifiables

Cell

Message m

State pending

SenderTrans T1

Notifiable

Transactor 2

T1

Dependencies

Notifiables

Mailbox (of Transactor 2)

T2

Dependencies

Notifiables

Transactor 1 Transactor 2

Cell

Message m

State pending

SenderTrans T1

Notifiable

Notifiable

Cell

ReceiverTrans

aborted in three different ways that were explained in the previous
section. In any of the ways that �i is aborted, �i propagates
abortion to dependent transactions 7�Rfl\..m9 by notifying
notifiables noRfl\..mp corresponding to n�Rfl\..mp. Every notifiable oRf , in turn, sets the status of the transaction descriptor of �Rf to
aborted state. By DEFINITION 9, �Rfs are failed transactions and by
LEMMA 3, aborting them does not violate non-triviality.

The same situation recurs on abortion of the �Rfs, i.e. each of
them notifies their own notifiables. Therefore, abortion is
propagated by an implicit traversal of the transaction descriptors
that are (transitively) dependent on �i. It is notable that by
notifiable objects, the traversal is done in reverse direction of
dependencies. Setting the status of an aborted transaction
descriptor to aborted returns without any action. Hence, the
traversal avoids infinite loops by terminating at previously aborted
transaction descriptors.

As previously explained, any non-annihilated cells of the
backup set are put back to the mailbox. Finally, after a transaction
is aborted, its atomic block is restarted as a new transaction.

4.2.2 Termination

Every transactor that reaches the end of the atomic block sets the
status of its descriptor to terminated. Then it starts the cluster
search to check if it is possible to commit at this time. If the
cluster search succeeds finding a cluster, it commits all of its
transactions together. Cluster search is explained in the next
subsection. If the cluster search returns failure, the transaction
goes to the waiting state. There are three different events that
wake up a transaction from the waiting state: Abort, Dependency
Resolution and Commit events.
• An Abort event is raised when the transaction descriptor is set to

aborted. On this event, the transaction aborts as explained
before.

• A Dependency Resolution event is raised when the transaction
descriptor is notified of a dependency resolution. As will be
explained in the next subsection, a transaction that commits
notifies all of the transactions that are dependent on it about the
dependency resolution. On this event, as a dependency of the
current transaction is known to be resolved, it may be able to
commit; therefore, the cluster search algorithm is retried.

• A Commit event is raised when the transaction is committed by
the cluster search of another transaction. On a Commit event,
the atomic block successfully returns.

4.2.3 Collective Commit

The dependencies of transaction descriptors can in general form a
cyclic graph. If the transactions in a cycle obliviously wait until
all of their dependencies are resolved, they may wait forever.
Therefore, without a cycle detection mechanism, deadlocks occur.
Cluster search tries to find cycles containing the current
transaction that make a cluster and to commit them collectively.

Cluster search employs the Tarjan algorithm [13] that given a
graph and a starting node, finds the set of SCCs of the graph
reachable from the starting node. For each SCC, Tarjan algorithm
obtains the set of vertices of the SCC. It performs a depth first
traversal of the graph to traverse all the reachable nodes. For each
present node, it gets the adjacent nodes and continues traversal by
moving to one of them. Getting the set of adjacent nodes of a node
is where cluster search hooks to Tarjan algorithm:
• If an adjacent transaction is aborted, the search is left and the

current transaction aborts itself. In this case, the current
transaction has a path to and hence is transitively dependent on
an aborted transaction. Therefore, by DEFINITION 9, it is a failed

transaction and by LEMMA 3, aborting it does not violate non-
triviality.

• If an adjacent transaction is running, the search is left and the
current transaction goes to the waiting state. In this case, since
the current transaction is transitively dependent on a running
transaction, by LEMMA 1 and LEMMA 6, it cannot be aborted or
committed. Therefore it goes to waiting state to get notified by
other transactions.

• As the dependency to committed transactions is previously
resolved, it is as if they didn’t exist. Therefore, adjacent
committed transactions are ignored.

• Any adjacent transaction that is terminated is returned as an
adjacent transaction.

The pseudo code of getting adjacent nodes is presented in the
technical report [11].

Let
�� denote the transaction dependency graph. The search
is left when an aborted or running transaction is reached and also
it ignores committed transactions. This means that Tarjan
algorithm effectively searches on a subgraph of
�� that is
induced by terminated transactions. Let
� denote this subgraph.
As
� is a subgraph of
��, any SCC of
� is an SCS of
��.
Therefore, if Tarjan algorithm finds an SCC of
�, the cluster
search has found an SCS of
��.

LEMMA 9: If the cluster search finds one SCS of the dependency
graph, it is a cluster.
PROOF: The cluster search is left when an aborted or running
transaction is reached. Therefore, none of the transactions of the
found SCS can be aborted or running and also they cannot have
dependency to any aborted or running transaction. The cluster
search also ignores committed transactions. Hence, all
transactions of the found SCS are terminated. As only one SCS is
found, any dependency from transactions of the SCS is either to
other transactions of the SCS or to the committed transactions that
are ignored in the traversal. Hence, by DEFINITION 12, the SCS is a
cluster. 	

If the cluster search finds only one SCS, the algorithm
commits all of its transactions together. As proved above, the
found SCS is a cluster. Therefore, by LEMMA 7, committing all its
transactions together does not violate commit accuracy.

If the cluster search finds more than one SCS, it is possible to
commit SCSs in the order that they are found. But for simplicity,
the transaction goes to the waiting state. (Please see the technical
report [11] for more explanation.)

According to LEMMA 5, all of the transactions of the SCS
should be committed together, i.e. committed atomically. Status of
the transaction descriptors is changed to committed after the locks
of the status of all of them are acquired. To prevent deadlock, the
locks are acquired in the order of the unique transaction descriptor
numbers.

When a transaction �i is set to committed, it sends dependency
resolution notification to all its registered notifiables 7oNg�..h9.
When a notifiable oN is notified of dependency resolution, it
performs two actions. It sets the status of the cell aN that it
references to stable. In addition, if a receiver transaction
descriptor �RN is subscribed to oN, oN notifies �RN about the
dependency resolution. This makes a Dependency Resolution
event for �RN.
5 Algorithm Soundness

The reader is invited to see the same section number in the
appendix of the technical report [11] for full proofs.

LEMMA 10: The Transactor algorithm has Commit Accuracy.

LEMMA 11: The Transactor algorithm has Non-triviality.

THEOREM 1: The Transactor algorithm has Finalization, i.e. every
transaction eventually finalizes.

Theorem 2: The Transactor algorithm is sound.
PROOF: Direct from DEFINITION 8, LEMMA 10, LEMMA 11 and
THEOREM 1.

6 Related Works

Argus [10] language provides programming with objects
called Guardians which implement a number of procedures that
are run in response to remote handler calls from other guardians.
Calling the handler of a procedure of a Guardian sends a message
to the Guardian. In addition to Guardians, the programmer is
provided with Actions that are essentially isolated and failure-
atomic transactions. If a handler is called inside an Action, Argus
runs the handler call as a subaction. It is guaranteed that none or
all of the topaction and its subactions are committed.

Sinfonia [1] provides support for a subset of distributed
transactions called minitransactions. A minitransaction is a one-
level distributed transaction that can be decomposed to
independent subcomputations on participant nodes. The
computation on each participant node is a number of condition
checks, reads and writes. This constraint on transactions allows
Sinfonia to piggyback sending requests to nodes and getting
results from them into the roundtrip of the first phase of the two-
phase commit protocol. Sinfonia provides various mechanisms for
fault tolerance.

A Reactor [4] consists of a collection of relations and rules
which constitute a stateful, reactive and atomic unit of
distribution. A reaction begins when an update bundle is received.
An update bundle is a map from the set of relations of the reactor
to sets of tuples to be added to or deleted. Evaluation of the rules
of the reactor according to current and tentatively updated state of
relations specifies the future state of the local relations and update
bundles for other relations. Update bundles initiate subsequent
reactions; thus they play a role similar to messages in message-
passing models. In the Reactor terminology, the scope of the
reaction is extruded to include subsequent reactions, i.e. the
reactions are interdependent. A whole reaction is committed when
each of the involved reactors reaches a state that satisfies its rules.
From the view of external reactors, a reaction is executed
atomically.

In fact, inside Argus actions, Sinfonia minitransactions and
Reactor reactions, messages can be sent, but cannot be received.
A message is always received at the beginning of each
subtransaction. In models that a message can only be received at
the beginning of a transaction, the distributed transaction takes the
form of a tree. To finalize tree-shaped distributed transactions,
hierarchical commit can be employed or it can be flattened to a
two phase commit as in Argus. But if messages can be received
inside transactions, dependencies can form a graph. Finalization
of transactions with a dependency graph gets more complicated
than with a dependency tree. We proposed cluster search,
collective commit and abort propagation for finalization of
transactions with dependency graphs.

Field and Varela [5] has proposed tau-calculus which extends
lambda calculus with facilities for getting and setting,
checkpointing and rolling back the state of transactors and also
sending and receiving messages. A transaction of a transactor is
started when the first message is received, commits on
checkpointing and aborts on rolling back. In this model, a receiver
is dependent on the sender. Transitive dependencies of a sender

transactor to other transactors are propagated with the sent
message. On arrival of a message, the dependencies in the
message jq and dependencies of the receiving transactor jR are
compared. If jq and jR do not invalidate each other, the
dependencies of the transactor are updated by jq. If jq is
invalidated by jR, the message is dropped. If jR is invalidated by jq, the transactor rolls back. By the semantic of tau-calculus,
checkpointing in a transactor succeeds only when all the
transactors that it is dependent on are checkpointed or are ready to
checkpoint. To make each participating transactor able to
checkpoint or rollback, the programmer should program
transactors so that each participant receives messages to know
about the state of other participants. Briefly, Tau transactors
provide the programmer with features to program but does not
automatically support distributed state atomicity, i.e. all-or-none
state update of the participating transactors. It also does not
support isolation of local concurrent transactions in each
transactor.

With Stabilizers [14], the programmer can mark locations of
code as stable checkpoints. Threads can send and receive
messages synchronously on definite channels. The sender and the
receiver of a message become interdependent. A dependency
graph is maintained throughout the program execution. The
checkpoint, sends and receives locations are nodes of the
dependency graph. Edges of the graph are of three different types:
1. Edges between corresponding send and receive nodes of two
threads. For each thread: 2. Edges from each send and receive
node to the latest passed checkpoint node, 3. Edges from each
node to the first node after it. On a transient fault, the programmer
calls stabilize in the fault experiencing thread. When stabilize is
called, the runtime system reverts back the current thread and
each of its dependent threads to their latest possible stable
location. This is done by finding the furthest reachable checkpoint
node of each thread from the latest node of the thread that calls
stabilize. The dependency graph maintained by Stabilizers is
interestingly in correspondence with the call stack of nested
atomic blocks where stable checkpoints correspond to the
beginning of atomic blocks. Essentially, Stabilizers support
program location recovery. Assume a transaction �h that is nested
inside transactions �Ng�..hr� and is dependent on aborted
transaction ��. Program location recovery is defined as follows:
For every such transaction �h, the thread executing �h is reverted
back to the beginning of the latest possible enclosing nested
transaction �N where �N � �� or �Nr� is not dependent on ��.

TE [2] provides the user with a sequencing combinator to
combine two events such as synchronous sending or receiving of
messages into one compound event. The combination essentially
makes a transaction in the sense that synchronizing on the
resulting event either performs both or neither of the events.
Therefore, TE supports isolation for a sequence of
communications but not for shared state manipulations.
Throughout the execution, the sender and the receiver events of a
message get interdependent. To try different synchronization
possibilities, a new search thread is spawned for each message
that a receiving event can receive from a channel and a message
sent to a channel can be received by several search threads
receiving on the same channel. In addition to sequencing, TE
supports the choice combinator, chooseEvt. Synchronizing on a
choice event succeeds if synchronizing on the event of either of its
branches succeeds. Employing chooseEvt, guarded (or
conditional) receive can be programmed. To support chooseEvt,
two search threads are spawned to tentatively try each branch of
chooseEvt. Each search thread maintains a path recording the path
of communication partners at points where it sends or receives

messages and also the alternatives it takes at chooseEvts. The
transitive dependencies of the path of each search thread specify
the set of threads that the search thread is dependent on and an
expected path for each of them. A set of search threads are
committable if all of the threads of the set are completed, the set is
closed under the transitive dependency and the path that each of
them expects from the others is consistent with the current path of
the them. The synchronizations of a set of committable search
threads are committed together. There is a nontrivial runtime
overhead to spawn search threads to match different senders and
receivers and chooseEvt branches, to track paths and to search for
committable search threads.

TE in ML [3] extends TE to support mutation of shared
memory in transactional events and also nested synchronizations.
A transactional event is logically divided into sections called
chunks. Chunks are delimited by sends and receives inside the
transactional event. Isolation of a synchronization is broken at the
end of chunks. At these points, i.e. before sends and receives, the
mutations done in the chunk can be seen by other
synchronizations. This semantics seems counterintuitive as it is
expected that all of the shared memory mutations of a transaction
be executed in isolation. Similar to TE, several search threads are
spawned to support nondeterministic choices of sender and
receiver matchings and chooseEvt branches. To support mutation,
chunks mutate heaps called search heaps tentatively. To let a
chunk read a value written by another chunk, chunks of different
synchronizations are allowed to interleave. To allow interleaving
of chunks, first, when a chunk is finished, its heap is entered to the
pool of search heaps and second, when a chunk is to be started, a
heap from the pool of search heaps is selected. The non-
determinism in choice of the heap from the heap pool leads to
spawn of a search thread for each of the possible heaps. For each
search heap, a path is maintained that records the path of search
threads that contributed toward producing it. When a set of search
threads are to be committed, not only consistency of their
dependencies to each other but also to the dependencies of the
path of the heap that is going to be committed is checked. Thus,
the runtime cost of TE in ML is even more than the cost of TE.
Semantics of nested synchronizations is similar to the semantics
of closed nesting. TIC [12] was explained in section 2.1.2.

It is elicited from each of the related works if they support
each of the features and guarantees defined as follows. The results

are presented in Table 1. Local state isolation: Intermediate state
updates of each transaction are hidden from other transactions.
Asynchronous (non-blocking) sends: Sending a message is non-
blocking. Receive inside transactions: Messages from other
transactions can be received inside a transaction. Distributed state
atomicity (consistency): The state updates of a transaction � are
committed only if the state updates of transactions that � is
dependent on are committed. Program location atomicity: We
define that a transaction is passed through, if its executing thread
has started executing the code after the transaction code. By this
definition, program location atomicity is defined as follows:
Every transaction � is passed through only if the transactions that � is dependent on are passed through.

7 Conclusion and Future Works

This work proposes Transactors that provide the programmer with
facilities of isolation from TM and facilities of communication
from Actors. In the Transactors model, asynchronous messages
can be sent and received inside transactions while the guarantee of
transaction isolation is still preserved. The semantics of the model
is defined, an algorithm implementing the semantics is proposed
and proven sound.

Our preliminary performance evaluations in [11] suggest that
Transactors perform competitive to TM for isolation and to Actors
for communication. Our future work is to program more case
studies and gain more performance evaluations.

References

[1] Aguilera, M. K., Merchant, A., Shah, M., Veitch, A., and
Karamanolis, C. 2007. Sinfonia: a new paradigm for building
scalable distributed systems. In Proc. of SOSP '07. 159-174.

[2] Donnelly, K. and Fluet, M. 2008. Transactional events. J. Functional
Programming. 18, 5-6 (Sep. 2008), 649-706.

[3] Effinger-Dean, L., Kehrt, M., and Grossman, D. 2008. Transactional
events for ML. In Proc. of ICFP '08. 103-114.

[4] Field, J., Marinescu, M., and Stefansen, C. 2009. Reactors: A data-
oriented synchronous/asynchronous programming model for
distributed applications. Theor. Comput. Sci. 410, 2-3, 168-201.

[5] Field, J. and Varela, C. A. 2005. Transactors: a programming model
for maintaining globally consistent distributed state in unreliable
environments. In Proc. of POPL '05. 195-208.

[6] Haller, P. and Odersky, M. 2009. Scala Actors: Unifying thread-
based and event-based programming. Theor. Comput. Sci. 410, 2-3
(Feb. 2009), 202-220.

[7] Harris, T. and Fraser, K. 2003. Language support for lightweight
transactions. SIGPLAN Not. 38, 11 (Nov. 2003), 388-402.

[8] Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M. 2005.
Composable memory transactions. In Proc. of PPoPP '05. 48-60.

[9] Herlihy, M., Luchangco, V., and Moir, M. 2006. A flexible
framework for implementing software transactional memory. In
Proc. of OOPSLA '06. 253-262.

[10] Liskov, B. 1988. Distributed programming in Argus. Commun.
ACM 31, 3 (Mar. 1988), 300-312.

[11] Unifying Transactions and Actors, Tech. Report LAMP-REPORT-
2009-003, IC, EPFL. http://infoscience.epfl.ch/record/139381

[12] Smaragdakis, Y., Kay, A., Behrends, R., and Young, M. 2007.
Transactions with isolation and cooperation. In Proc. of OOPSLA
'07. 191-210.

[13] Tarjan, Robert, 1971. Depth-first search and linear graph
algorithms. In Proceedings of the 12th Annual Symposium
on Switching and Automata Theory (13-15 Oct. 1971).,114-121.

[14] Ziarek, L., Schatz, P., and Jagannathan, S. 2006. Stabilizers: a
modular checkpointing abstraction for concurrent functional
programs. In Proc. of ICFP '06. 136-147.

Table 1. Related Works
1. Features:

1.1. Local state isolation
1.2. Asynchronous sends
1.3. Receive in transactions

2. Guarantees:
2.1. Finalization
2.2. Non-triviality
2.3. Commit Accuracy

2.3.1.Distributed state atomicity
2.3.2.Program location atomicity

+: Supported,
−−−−: Not Supported,
*: Semi-automatically
Supported

1 2

1 2 3 1 2 3

 1 2
Separate Memory Space (Distributed)
Argus Actions [10] + + −−−− + + + +
Sinfonia [1] + + −−−− + + + +
Reactors [4] + −−−− −−−− + + + −−−−
Tau Transactors [5] −−−− + + * * * −−−−
Shared Memory Space
Stabilizers [14] −−−− −−−− + −−−− + −−−− +
TE [2] −−−− −−−− + + + −−−− +
TE in ML [3] −−−− −−−− + + + −−−− +
TIC [12] −−−− + + + + −−−− −−−−
Current work + + + + + + +

Technical Report Appendix
The material presented in each section complements the section of
the paper with the same number.

 2 Incomposability and Deadlock

 2.1 Transactions

 2.1.1 Roundtrip

Second, for direct-update STM implementation, consider the
following execution schedule. �� updates m1 and then before
checking the condition, �� executes. �� checks the condition that
is satisfied because of direct updates and then updates m2. Thus
condition in �� is satisfied because of the direct update. Both
transactions can reach the end of the atomic block but because of
reading tentative updates of each other, each transaction waits for
the other one to commit. This leads to deadlock. Any other
schedule (i.e. if �� updates m1 and checks its condition before ��
executes or if �� executes first), the same situation as deferred-
update implementation of STM happens.

 2.1.2 Barrier

• If the outer transaction aborts and goes to waiting state when
the condition is failed,
• If STM implementation is direct-update, since count is

written by the transaction of each party, the write/write
conflict lets only one of them run at a time. Therefore
transactions cannot see direct updates of each other. Thus,
similar to the previous argument, each transaction reads a
value of zero from count, updates it to one and checks the
condition. Since the condition fails, the transaction aborts
and the update rolls back and the transaction goes to the
waiting state. As the value of count rolls back to zero, the
same happens to any later transaction.

By open nesting, the updates of an inner transaction are
committed on completion of the transaction itself. If we change
the first atomic block of the await method to an open transaction,
then parties can see the updates of each other to count field and
therefore, on completion of the first atomic block of the last party,
all of the suspended parties can retry and pass the condition check
of the second atomic block. It may seem that open nesting
provides the required behavior. But consider that after the barrier
releases the parties, if the outer transaction of a party aborts, on its
retry, count is incremented once more and becomes equal to
partiesCount + 1. This does not satisfy the condition and the
retrying party is blocked forever. Even if we change the condition
to

conditionWait(count.value >= partiesCount)

to let retrying transactions pass the condition, the problem is that
retrying transactions pass the barrier later than other transactions
that have passed the barrier and are not aborted. This contradicts
the expected behavior from a barrier to release all of the parties at
once.

 3 Semantics

 3.2 Operational Semantics Background

LEMMA 12: A terminated transaction with no unresolved
dependencies is a cluster.

PROOF: For a terminated transaction � with no unresolved
dependency ���& �
��: �� � �&� ' ��&�� ()!!����$�� (3)

Therefore, by DEFINITION 12, it is a singleton cluster. 	

 4 Transactor Algorithm

 4.1 Sending and Receiving Messages

Pseudo code of send and receive methods are as follows:
Send:
def send(msg: T) {
 val senderTransDesc =
 thread local variable for transaction descriptor
 val cell = new Cell(msg, senderTransDesc)
 if (senderTransDesc == null) //outside of atomic
 cell.setStable
 else { //inside atomic
 cell.setPending
 val notifiable = new Notifiable(cell)
 cell.setNotifiable(notifiable)

 senderTransDesc.addNotifiable(notifiable)
 }

 if (isReceiverSuspended) {
 cellForSuspendedReceiver = cell
 desuspendReceiver
 } else
 mailbox.enqueue(cell)
}

Receive:
def receive(): T = {
 val currentTransDesc =
 thread local variable for transaction descriptor
 if (currentTransDesc == null) //outside of atomic
 a stable cell is required
 else //inside atomic
 a non-annihilated cell is required

 iterate the mailbox to find a required cell
 while (a required cell is not found) {
 suspend
 cell = cellForSuspendedReceiver
 if (the cell is not a required cell)
 mailbox.enqueue(cell)
 }

 val msg = cell.message

 if (currentTransDesc == null) //outside of atomic
 return msg

 val senderTransDesc = cell.senderTransDesc
 val notifiable = cell.notifiable

 if (!cell.isStable) {
 currentTransDesc.addDependency(senderTransDesc)
 notifiable.addTransAsSink(currentTransDesc)
 }

 currentTrans.backupCell(cell)

 msg
}

The fact that pending messages in addition to stable messages
are also received inside transactions is to support cyclic
communication. As an instance, consider the roundtrip case: two
transactors running two transactions that one performs a send and
then a receive and the other performs a receive and then a send. If
a message could not be received until it became stable, the two
transactions would wait for each other for ever.

The reader may have noticed that a push mechanism is used to
update cell state in the sense that the cell is notified whenever its
state should change. This could be implemented by a pull
mechanism as well. The cell could check the state of the sender
transaction to determine its own state. But as the receiving
transaction should be notified by the sender transaction, the sender
pushes the update information anyways. Therefore, updating the
state of cells is also implemented by a push mechanism benefiting
the same notification.

 4.2 Finalization

 4.2.1 Abort Propagation

As an implementation detail, some messages may be sent in the
short period between when the transaction descriptor is set to
aborted and when executing the atomic block is stopped. The
notifiables corresponding to these messages were not notified of
the abortion when the transaction descriptor was being set to
aborted. They are notified after execution of the atomic block is
stopped.

 4.2.3 Collective Commit

The pseudo code of getting adjacent nodes is as follows. As an
implementation detail, Tarjan algorithm stores two values for each
graph node. These two values are stored in the graph nodes
themselves by Tarjan algorithm. As multiple instances of the
cluster search from different transactions can be active
simultaneously on the dependency graph, the two values cannot
be stored in the transaction descriptors. Therefore, each instance
of the cluster search maintains a map from transaction descriptors
to search nodes containing the values.
val nodes = Map[TransactionDescriptor, Node]()

def getNeighbors = {
 val deps = transDesc.getDependencies
 val neighbors = Set[Node]()
 for (depTransDesc <- deps) {
 if (n.transDesc.isActive)
 throw new WaitException(n.transDesc)
 if (n.transDesc.isAborted)
 throw new AbortException(n.transDesc)
 if (!depTransDesc.isCommitted)
 if (nodes.contains(depTransDesc))
 neighbors += nodes(depTransDesc)
 else {
 val node = new Node(depTransDesc)
 nodes += (depTransDesc -> node)
 neighbors += node
 }
 }
 neighbors
}

The Tarjan algorithm finds all of the SCCs that are reachable
from the starting node. It outputs SCCs in the sequence where any
later SCC can only reach earlier SCCs. The last SCC that is found
is the SCC containing the starting node. As explained before, any
SCC found by Tarjan algorithm is an SCS of the dependency
graph.

Consider the case when the cluster search finds more than one
SCS. Let ?a?s denote the last SCS that is found. The current
transaction is a member of ?a?s. Cluster search has found an least
an SCS before ?a?s. This means that the current transaction can
reach an SCS other than ?a?s. Thus, at least one of the
transactions of ?a?s is dependent on a terminated transaction �
that is not a member of ?a?s. Therefore all of the transactions of ?a?s are dependent on �. To preserve commit accuracy,

transactions of ?a?s cannot be committed before � is committed.
Therefore, for simplicity, the current transaction goes to the
waiting state. But, it is possible to commit SCSs in the order that
they are found.

LEMMA 13: Committing SCSs in the order that they are found by
the cluster search does not violate commit accuracy.
PROOF: Induction is on the position of the SCS in the found
sequence.
Base case: Transactions of the first SCS have dependency to only
transactions within the SCS itself or committed transactions.
Thus, by DEFINITION 12, the first SCS is a cluster. Therefore, by
LEMMA 7, its transactions can be committed together.
Induction case: If all of the SCSs before the current SCS are
committed, we show that the current SCS can be committed.
Any later SCS can only reach earlier SCSs in the sequence. All of
the earlier SCSs are already committed. Therefore, transactions of
the current SCS only have dependencies to other transactions of
the current SCS or committed transactions. Therefore, by
DEFINITION 12, the current SCS is a cluster. Thus, by LEMMA 7,
transactions of it can be committed together.

 5 Algorithm Soundness

5.1. Commit Accuracy

LEMMA 10: The Transactor algorithm has Commit Accuracy
property.

PROOF: As explained in the collective commit subsection, the
Transactor algorithm only commits when the cluster search finds
one SCS of the dependency graph and it commits all transactions
of the SCS together. By LEMMA 9, if the cluster search finds one
SCS of the dependency graph, it is a cluster. By LEMMA 7,
committing all transactions of a cluster together does not violate
commit accuracy. Therefore the Transactor algorithm has commit
accuracy. 	

5.2. Non-triviality

LEMMA 11: The Transactor algorithm has Non-triviality property.

PROOF: Throughout the algorithm explanation, whenever a
transaction is aborted by the algorithm, it is shown that it is a
failed transaction. The Transactor algorithm only aborts failed
transactions. Therefore, by LEMMA 3, it is non-trivial. 	

5.3. Finalization

The presented algorithm waits at some points for notification. We
show that this suspension cannot incur deadlocks. We prove that
each transaction is eventually finalized, i.e. it is eventually aborted
or committed. It is assumed that we do not have user programmed
deadlocks; thus every transaction is eventually terminated if not
aborted sooner.

5.3.1. Algorithm operations

Some operations of the algorithm are highlighted as ALGOPs in
this subsection. They are used in the following subsections for the
proof of finalization.

ALGOP 1: For any transaction �R that is dependent on �i, a
notifiable referencing �R is registered to �i.

Explanation: If �R is dependent on �i, �R has received a pending
message from �i. By the algorithm, when the pending message is

being received, �R is subscribed to the notifiable object. The
notifiable object is previously registered to �i since the message
has been sent. Therefore, a notifiable referencing �R is registered
in �i. 	

ALGOP 2: If a transaction �i is aborted, any transaction �R such
that �R � �i is eventually aborted.

Explanation: By ALGOP 1, for any transaction �R that is
dependent on �i, a notifiable referencing �R is registered in �i. By
the algorithm, all notifiables registered to �i are notified of
abortion when �i is aborted. So �i notifies the notifiable that
references �R that in turn aborts �R. Therefore, any �R that is
dependent on �i is eventually aborted. 	

ALGOP 3: Any failed transaction is eventually aborted.

Explanation: By DEFINITION 9, A transaction �R is called a failed
transaction if there is a transaction �i such that �R �� �i and �i is
aborted. That any failed transaction is eventually aborted is
evident from the implicit traversal that was explained but it can
also be shown by induction on length of transitive dependency. If
the length is one, by ALGOP 2, any �R such that �R � �i is
eventually aborted. If any �R that is transitively dependent on �i
with a length of " is aborted, again by ALGOP 2, any transaction
that is dependent on �i with a length of " t 1 is also eventually
aborted.	

AlgOp 4: If a transaction in an SCC is aborted, all of the
transactions in that SCC are eventually aborted.

Explanation: By LEMMA 4 and ALGOP 3. 	

ALGOP 5: If the cluster search starts from a transaction in an SCC �, it commits all of the transactions of � if
• All of the transactions of � are terminated and
• If there is any dependency from transactions inside � to

transactions outside of it, the dependency is to a committed
transaction.

Explanation: In this setting, the cluster search traverses in an SCC
of terminated transactions and the only edges out of the SCC are
to committed transactions. Thus, no running or aborted transaction
can be reached; therefore, the search is not prematurely
terminated. As all of the transactions of an SCC are reachable
from each other, the search can reach all of the transactions of the
SCC. As any dependency from a transaction inside the SCC to
outside transactions is to committed transactions and committed
transactions are not traversed, the search can only traverse within
the SCC. Therefore the cluster search finds only this SCC. Hence,
as explained, the algorithm commits all of the transactions of the
SCC. 	

ALGOP 6: If a transaction is committed, all of the transactions that
are directly dependent on it are notified about the dependency
resolution. Formally �i �� ()!!����$ u % ��R � �vwx ��R, �i� � �vwx:�R �� ")��1��$)1 $�k�"$�"(D ��)-+��)"*. EQ. 4

Explanation: From ALGOP 1, for any transaction �RN that is
dependent on �i, a notifiable, oN, referencing �RN is registered in �i. By the algorithm, when a transaction �i is set to committed, it
sends dependency resolution notification to all its registered
notifiables 7oNg�..h9. oN notifies �RN about the dependency

resolution. Therefore, any transaction �R that is dependent on �i is
notified about the dependency resolution. 	

5.3.2. Background

DEFINITION 13: For every directed graph
�v , �v�, its
condensation (or component) graph y�
��y�v�, �y�v�� is defined
as follows:
Assuming that 7?aaNg�..h9 is the set of strongly connected
components of
, there is a bijective function 1 (or a one to one

correspondence) between �y�v� � 75Ng�..hy�v� 9 and 7?aaNg�..h9, i.e. �� � 1. . ": 1�?aaN� � 5Ny�v� #"$ 1r� z5Ny�v� { � ?aaN EQ. 5

(contracting each ?aaN into a supervertex 5Ny�v�) and ��, d � 1. . ", � | d:
} ~z5Ny�v� , 5ey�v�{ � �y�v�� �

� c5�v , 5�v � �v: 5�v � ?aaN #"$ 5�v � ?aae #"$ �5�v , 5�v� � �v��
EQ. 6

 [15].

THEOREM 3: Condensation graph is a DAG (directed acyclic
graph). [15]

DEFINITION 14: The reverse (or transpose) graph of a directed
graph
�, �� is a directed graph ��
��, ���v�� such that �5, + � �: [�5, +� � ���v� � �+, 5� � �] EQ. 7
 [15].

DEFINITION 15: A topological ordering (or topological sort) of a
DAG
�, �� is a permutation � of � (a bijective function from 71. . |�|9 to �) such that �5, + � �: �r��5� � �r��+� u �+, 5� C �� EQ. 8
or equivalently �5, + � �: �+, 5� � � u �r��+� � �r��5�� EQ. 9

 [15].

5.3.3. Finalization Theorems

THEOREM 1: The Transactor algorithm has the Finalization
property, i.e. every transaction eventually finalizes.

PROOF: The dependencies of transaction descriptors form a
directed graph
�v , �v�. Let ?aa� denote the set of strongly
connected components of
. Obviously, For every 5v � �v, there
is an ?aa � ?aa� that 5v � ?aa. Therefore the theorem is
reduced to the following theorem. 	

The theorem shows that communicating transactions never go
to deadlock.

DEFINITION 16: We say that an SCC of the dependency graph is
aborted iff all of its transactions are aborted and we say that it is
committed iff all of its transactions are committed. An SCC is
finalized iff it is aborted or committed.

THEOREM 4: All SCCs of the transaction dependency graph
eventually finalize.

PROOF: If one of the nodes in an SCC eventually aborts, by AlgOp
4, all of the transactions of the SCC eventually abort, i.e. finalize.

If none of the transactions in the SCC abort, the theorem reduces
to the following theorem. 	

THEOREM 5: If none of the transactions in an SCC of the
transaction dependency graph abort, the SCC eventually finalizes.
PROOF: If none of the transactions of an SCC abort, then all of
them eventually go to the terminated state. We prove that all of
them eventually finalize.
Let
�v , �v� be the dependency graph of transaction descriptors.
Let
& be the condensation graph of
, i.e.
& � y�
��y�v� , �y�v� �. Let
&& be the reverse of the
condensation graph, i.e.
&& � ��y�
���y�v� , ���y�v���. By
THEOREM 3,
B is a DAG, therefore
&& is also a DAG. Let � be a
topological order of
&& and for � � 1. . |�y�v�|, let 5Ny�v� � �y�v�
be the �th element in �, i.e. ���� � 5Ny�v�. For � � 1. . ��y�v��, let ?aaN denote the SCC of
 that corresponds to 5Ny�v� � �y�v�.
We prove that for � � 1. . ��y�v��, if none of 5v � ?aaN abort, ?aaN is eventually finalized.

Proof is by induction on �.
1. Base case: � � 1: 5�y�v� is the first node in �. �� � 2. . ��y�v��: �r� z5�y�v�{ � �r� z5Ny�v�{ EQ. 10

By DEFINITION 15, �� � 2. . ��y�v��: �5Ny�v�, 5�y�v�� C ���y�v�� EQ. 11

By DEFINITION 14, �� � 2. . ��y�v��: �5�y�v�, 5Ny�v�� C �y�v� EQ. 12

By DEFINITION 13, �� � 2. . ��y�v��: �5�v , 5�v � �v: 5�v � ?aa� #"$ 5�v � ?aaN #"$ �5�v , 5�v� � �v
EQ. 13

That is equivalent to: �� � 2. . ��y�v��: �5�v , 5�v � �v: 5�v C ?aa�) 5�v C ?aaN) �5�v , 5�v� C �v � �� � 2. . ��y�v��: �5�v , 5�v � �v #"$ 5�v � ?aa� #"$ 5�v � ?aaN: �5�v , 5�v� C �v

EQ. 14

This means that nodes in ?aa� have no dependency to
any node in other SCCs.
By the assumption of the theorem, none of the transactions
in ?aa� abort; therefore, all of them eventually go to
terminated state.

When cluster search is started from the last terminated
transaction in ?aa�, all transactions in it are already
terminated. Besides, as there is no dependency from ?aa�
to any other SCC, this cluster search can only reach nodes
in ?aa�. Hence by ALGOP 5, the cluster search started from
the last terminated transaction commits all of the nodes in ?aa�. Hence, by DEFINITION 2, all of them are eventually
finalized.

2. Inductive step:
If for � � 1. . d, all ?aaN are eventually finalized, i.e.
aborted or committed, we prove that ?aae�� is eventually
finalized. Formally �1 EQ. 15

�k � 1. . ��y�v��: �k � d t 1
u ��?aa� �� �5�"�+#--D #6) ��$�) �?aa� �� �5�"�+#--D ()!!����$��� �P�" ?aae�� �� �5�"�+#--D 1�"#-���$.

By DEFINITION 15, for 5e��y�v� � �y�v�: �5�y�v� � �y�v�, k � 1. . ��y�v��:
�z5�y�v�, 5e��y�v�{ � ���y�v�� u�r��5�y�v�� � �r��5e��y�v�� � EQ. 16

By DEFINITION 14, �5�y�v� � �y�v� , k � 1. . ��y�v��:
� z5e��y�v� , 5�y�v�{ � �y�v� u�r� z5�y�v�{ � �r� z5e��y�v�{�
� �5�y�v� � �y�v� , k � 1. . ��y�v��: ~z5e��y�v� , 5�y�v�{ � �y�v� u k � d t 1�

EQ. 17

By induction hypothesis, �5�y�v� � �y�v�, k � 1. . ��y�v��:
� z5e��y�v� , 5�y�v�{ � �y�v� u
� �?aa� �� �5�"�+#--D #6) ��$�) �?aa� �� �5�"�+#--D ()!!����$����

EQ. 18

2.1. If there is a 5�y�v� � �y�v� that z5e��y�v�, 5�y�v�{ � �y�v�
and ?aa� �� �5�"�+#--D #6) ��$:

From z5e��y�v� , 5�y�v�{ � �y�v� and DEFINITION 13: c5�v , 5�v � �v: 5�v � ?aae�� #"$ 5�v � ?aa� #"$ �5�v , 5�v� � �v
EQ.
19

From the fact that ??a� is eventually aborted, 5�v � ?aa� and DEFINITION 16, we have that 5�v is
eventually aborted. From the fact that 5�v is eventually
aborted, �5�v , 5�v� � �v and ALGOP 1, we have that 5�v is
eventually aborted. From the fact that 5�v is eventually
aborted, 5�v � ?aae�� and AlgOp 4, all of the nodes in ?aae�� are eventually aborted. So by DEFINITION 16, ?aae�� is eventually finalized.

2.2. If for none of 5�y�v� � �y�v� that z5e��y�v� , 5�y�v�{ � �y�v�, ?aa� �� �5�"�+#--D #6) ��$, i.e.: �5�y�v� � �y�v�, k � 1. . ��y�v��:
� z5e��y�v�, 5�y�v�{ � �y�v� u")��?aa� �� �5�"�+#--D #6) ��$��. EQ. 20

By EQ. 18, we have: �5�y�v� � �y�v�, k � 1. . ��y�v��:
� z5e��y�v� , 5�y�v�{ � �y�v� u�?aa� �� �5�"�+#--D ()!����$�� EQ. 21

On the other hand, by DEFINITION 13, for all k � 1. . ��y�v��,

� c5�v , 5�v � �v:5�v � ?aae�� #"$ 5�v � ?aa� #"$�5�v , 5�v� � �v �u ~z5e��y�v� , 5�y�v�{ � �y�v��
EQ.
22

that is equivalent to �k � 1. . ��y�v��:
��c5�v � ?aae��, c5�v � ?aa�: �5�v , 5�v� � �v�uz5e��y�v� , 5�y�v�{ � �y�v� � EQ. 23

By EQ. 21: �k � 1. . ��y�v��:
��c5�v � ?aae��, c5�v � ?aa�: �5�v , 5�v� � �v�u�?aa� �� �5�"�+#--D ()!����$� � EQ. 24

By DEFINITION 16, �k � 1. . ��y�v��:
��c5�v � ?aae��, c5�v � ?aa�: �5�v , 5�v� � �v�u��5�v � ?aa�: 5�v �5�"�+#--D ()!!���� � EQ. 25

By ALGOP 6: �k � 1. . ��y�v��:

���
���
��c5�v � ?aae��, c5�v � ?aa�: �5�v , 5�v� � �v�u

�
��

�5�v � ?aa�:�5 v � �v , �5 v , 5�v� � �v:5 v �� �5�"�+#--D ")��1��$)1$�k�"$�"(D ��)-+��)" ¡
¢£ ¤¥¥

¥¥¥
¦

EQ. 26

Since 5�v � ?aae��, obviously 5�v � �v. 5�v � ?aa�
and 5�v � �v; therefore, 5�v and 5�v are proper
substitutions for respectively 5�v and 5 v. After
substitution, we have �k � 1. . ��y�v��:
���
��c5�v � ?aae��, c5�v � ?aa�, �5�v , 5�v� � �v�u5�v �� �5�"�+#--D ")��1��$)1$�k�"$�"(D ��)-+��)" ¤¥¥

¦

EQ. 27

This means that if there is any dependency from a
transaction 5�v inside ?aae�� to a transaction in any other
SCC, 5�v is eventually notified of dependency resolution.
By the assumption of the theorem, none of the
transactions in ?aae�� abort; hence all of them are
eventually terminated. Consider when the last
dependency resolution notification of the transactions
inside ?aae�� is received. At this time, transactions
inside ?aae�� have no dependency other than
dependencies to other transactions inside ?aae��. When
the transaction that receives the last notification performs
the cluster search, by ALGOP 5, all of the transactions in ?aae�� are committed. Therefore by DEFINITION 16, ?aae�� is eventually finalized. 	

 6 Related Works

A CAA [17] is essentially a set of processes that start together,
can send messages to and receive messages from each other, can
access shared memory and finally commit atomically together.
The limitation of CAA is that the processes are statically

interdependent from the beginning. Dependencies are not tracked
dynamically. So, all of the processes of a CAA are always
committed together, even if they do not communicate at runtime.

7 Performance Evaluations

To compare performance of our Scala implementation of
Transactors with Scala Actors and STM in provision of isolation
and communication, experimentations are conducted with two
fundamental cases.

Each case is implemented with Scala Actors, Scala STM,
Scala Transactors and Locks. The code snippets of the
implementations of the two cases with each paradigm are
presented in the following subsections.

Cases

Bank Account Credit Transfer

To compare performance for isolation, the classical case of
transferring credit between bank accounts is experimented. To
transfer credit from an account to another, both balances should
be read and written in isolation.

Coarse-grained locking

In the coarse-grained locking, all of the transfers even if they are
not conflicting are serialized by the bank intrinsic lock.

this.synchronized {
 account1.withdraw(amount)
 account2.deposit(amount)
}

Fine-grained locking

In the fine-grained locking, instead of having a lock for the whole
bank, each account has a lock. It is notable that locks are always
acquired in the same order.

if (accNo1 <= accNo2) {

account1.lock.lock
account2.lock.lock

} else {
account2.lock.lock
account1.lock.lock

}

account1.withdraw(amount)
account2.deposit(amount)

account1.lock.unlock
account2.lock.unlock

Actors

Each account is modeled as an actor that handles withdraw and
deposit requests. As messages are handled one at a time by actors,
withdraw, deposit and balance requests are done is isolation.

// From Account actor:
def act() {
 react {
 case Withdraw(amount) =>

 b -= amount
 sender ! WithdrawDone
 act
 case Deposit(amount) =>
 b += amount
 sender ! DepositDone
 act
 case BalanceRequest =>
 sender ! Balance(b)

 act
 case TerminateRequest =>
 }
}

The transfer operation of the bank sends withdraw and deposit
requests to account actors and wait for their acknowledgments
before returning.

// Transfer operation from Bank class
accounts(accNo1) ! Withdraw(amount)
accounts(accNo2) ! Deposit(amount)
receive {
 case WithdrawDone =>
 receive {
 case DepositDone =>

}
}

This implementation provides an eventual guarantee. Finally,
the sum of all of the account balances is the same as the sum
before the transfers. We also experimented with an
implementation that provides isolation for each transfer but it
turned out to be very inefficient. This implementation is more
efficient and hence, it is used in performance comparisons.

Transactions and Transactors

The code for Transactions and Transactors is the same: Credit
transfer is simply an atomic block. Basically, only the
“Transaction part” of Transactors in used for this case.

atomic {

accounts(accNo1).withdraw(amount)
accounts(accNo1).deposit(amount)

}

Token Ring

To compare performance for communication, token ring is
simulated. In token ring LAN DLL protocol, stations are
organized in a ring topology with a control token being passed
sequentially from one station to the next. The token ring
simulation essentially employs the communication mechanism of
each paradigm.

Locks and Conditions

The station waits on the intrinsic condition of the incoming port
while the token is not inside the port yet. When the station finds
the token inside the incoming port (maybe after being notified by
the neighbor station), it takes the token from the incoming port
and puts it inside the outgoing port. The next station may have
been suspended after a wait on the outgoing port. To awake the
next station, the station notifies on the outgoing port after putting
the token in it.

inPort.synchronized {
 while (inPort.value == null)
 inPort.wait
 outPort.synchronized {
 outPort.value = inPort.value
 outPort.notify
 inPort.value = null
 }
}

Actors

The token ring is very straightforward with Actors. The actor
reacts to receiving of the token by sending it to the next station.

def act {
 if (currentRound != roundCount)
 react {

 case Token =>
 nextStation ! Token
 currentRound += 1
 act
}

}

Transactions

Port is defined as a transactional object. Inside an atomic block,
the station reads the value of the incoming port. If its value is null,
i.e. there is no value inside it, conditionWait aborts the
transaction. The transaction is retried only after the incoming port
object is updated. When a (retrying) transaction succeeds in
reading the token from the incoming port, it updates values of
incoming and outgoing ports to null and the token respectively.

atomic {
 conditionWait (inPort.value != null)
 outPort.value = inPort.value
 inPort.value = null
}

Transactors

Each station is modeled as a transactor which receives the token
and sends it to the next station. Essentially, only the “Actor part”
of Transactors is employed for this case.

def act {
 while (currentRound != roundCount) {
 val token = receive
 nextStation ! token
 currentRound += 1
 }
}

Experiments

The experiments are done on Dell Latitude E6400 Intel® Core™2
Duo CPU P8600 @2.40GHz.

Figure 6. Bank Credit Transfer

Figure 6 depicts performance evaluations for the credit transfer

case where the number of transferers is 20 and the number of
accounts is 100. For each paradigm, throughput is shown against
number of transfers where throughput is transfer count per
milliseconds. The plot shows that aside from locking, STM
outperforms the other paradigms for isolation. Besides, it shows
that performance of Transactors is close to STM for isolation.

Figure 7. Token Ring

Figure 7 depicts performance evaluations for the token ring

case where number of stations is 20. Throughput is number of
token passings per milliseconds. The throughput of each paradigm
is shown against number of token passings. This plot shows that
Actors have almost the same performance as locking for
communication. It also shows that Transactors perform very close
to Actors for communication.

The experiments suggest that Transactors merge performance
benefits of STM and Actors.

More information about comparison of paradigms can be
found in [20].

References
[15] Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L..

Introduction to Algorithms. MIT Press and McGraw-Hill., Section
22.5, pp.552–557, ex. 22.1–3, p. 530, pp.549–552.

[16] Donnelly, K. and Fluet, M. 2006. Transactional events. SIGPLAN
Not. 41, 9 (Sep. 2006), 124-135. DOI=
http://doi.acm.org/10.1145/1160074.1159821

[17] Gallina, B., Guelfi, N., and Romanovsky, A. 2007. Coordinated
Atomic Actions for Dependable Distributed Systems: the Current
State in Concepts, Semantics and Verification Means.
In Proceedings of the the 18th IEEE international Symposium on
Software Reliability (November 05 - 09, 2007). ISSRE. IEEE
Computer Society, Washington, DC, 29-38. DOI=
http://dx.doi.org/10.1109/ISSRE.2007.5

[18] Harary, Frank; Norman, Robert Z.; Cartwright, Dorwin (1965),
Structural Models: An Introduction to the Theory of Directed
Graphs, John Wiley & Sons, p. 63.

[19] Herlihy, M., Luchangco, V., Moir, M., and Scherer, W. N. 2003.
Software transactional memory for dynamic-sized data structures. In
Proceedings of the Twenty-Second Annual Symposium on Principles
of Distributed Computing (Boston, Massachusetts, July 13 - 16,
2003). PODC '03. ACM, New York, NY, 92-101. DOI=
http://doi.acm.org/10.1145/872035.872048

[20] Lesani, M., Odersky, M. and Guerraoui, R. Concurrent Programming
Paradigms, A Comparison in Scala. LAMP-REPORT-2009-002,
School of Computer and Communication Sciences, EPFL.

[21] Scholliers, C., Van Cutsem, T., and De Meuter, W. 2008. Ambient
transactors. In Proceedings of the 6th international Workshop on
Middleware For Pervasive and Ad-Hoc Computing (Leuven,
Belgium, December 01 - 05, 2008). MPAC '08. ACM, New York,
NY, 49-53. DOI= http://doi.acm.org/10.1145/1462789.1462798

[22] Ziarek, L., Schatz, P., and Jagannathan, S. 2007. Modular
Checkpointing for Atomicity. Electron. Notes Theor. Comput. Sci.
174, 9 (Jun. 2007), 85-115.

