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Abstract

Wireless adhoc networks consist of users that want to communicate with each
other over a shared wireless medium. The users have transmitting and re-
ceiving capabilities but there is no additional infrastructure for assisting com-
munication. This is in contrast to existing wireless systems, cellular networks
for example, where communication between wireless users heavily relies on an
additional infrastructure of base stations connected with a high-capacity wired
backbone. The fact that they are infrastructureless makes wireless adhoc net-
works inexpensive, easy to build and robust but at the same time technically
more challenging. The fundamental challenge is how to deal with interference:
many simultaneous transmissions have to be accommodated on the same wire-
less channel when each of these transmissions constitutes interference for the
others, degrading the quality of the communication.

The traditional approach to wireless adhoc networks is to organize users so
that they relay information for each other in a multi-hop fashion. Such multi-
hopping strategies face scalability problems at large system size. As shown by
Gupta and Kumar in their seminal work in 2000, the maximal communication
rate per user under such strategies scales inversely proportional to the square
root of the number of users in the network, hence decreases to zero with
increasing system size. This limitation is due to interference that precludes
having many simultaneous point-to-point transmissions inside the network.

In this thesis, we propose a multiscale hierarchical cooperation architecture
for distributed MIMO communication in wireless adhoc networks. This novel
architecture removes the interference limitation at least as far as scaling is
concerned: we show that the per-user communication rate under this strategy
does not degrade significantly even if there are more and more users entering
into the network. This is in sharp contrast to the performance achieved by the
classical multi-hopping schemes.

However, the overall picture is much richer than what can be depicted by
a single scheme or a single scaling law formula. Nowadays, wireless adhoc net-
works are considered for a wide range of practical applications and this trans-
lates to having a number of system parameters (e.g., area, power, bandwidth)
with large operational range. Different applications lie in different parameter
ranges and can therefore exhibit different characteristics. A thorough under-
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standing of wireless adhoc networks can only be obtained by exploring the
whole parameter space. Existing scaling law formulations are insufficient for
this purpose as they concentrate on very small subsets of the system param-
eters. We propose a new scaling law formulation for wireless adhoc networks
that serves as a mathematical tool to characterize their fundamental operating
regimes.

For the standard wireless channel model where signals are subject to power
path-loss attenuation and random phase changes, we identify four qualitatively
different operating regimes in wireless adhoc networks with large number of
users. In each of these regimes, we characterize the dependance of the capacity
on major system parameters. In particular, we clarify the impact of the power
and bandwidth limitations on performance. This is done by deriving upper
bounds on the information theoretic capacity of wireless adhoc networks in
Chapter 3, and constructing communication schemes that achieve these upper
bounds in Chapter 4. Our analysis identifies three engineering quantities that
together determine the operating regime of a given wireless network: the short-
distance signal-to-noise power ratio (SNRs), the long-distance signal-to-noise
power ratio (SNRl) and the power path-loss exponent of the environment.
The right communication strategy for a given application is dictated by its
operating regime. We show that conventional multi-hopping schemes are op-
timal when the power path-loss exponent of the environment is larger than 3
and SNRs ≪ 0 dB. Such networks are extremely power-limited. On the other
hand, the novel architecture proposed in this thesis, based on hierarchical coop-
eration and distributed MIMO, is the fundamentally right strategy for wireless
networks with SNRl ≫ 0 dB. Such networks experience no power limitation.
In the intermediate cases, captured by the remaining two operating regimes,
neither multi-hopping nor hierarchical-MIMO achieves optimal performance.
We construct new schemes for these regimes that achieve capacity.

The proposed characterization of wireless adhoc networks in terms of their
fundamental operating regimes, is analogous to the familiar understanding
of the two operating regimes of the point-to-point additive white Gaussian
noise (AWGN) channel. From an engineering point of view, one of the most
important contributions of Shannon’s celebrated capacity formula is to identify
two qualitatively different operating regimes on this channel. Determined by
its signal-to-noise power ratio (SNR), an AWGN channel can be either in a
bandwidth-limited (SNR ≫ 0 dB) or a power-limited (SNR ≪ 0 dB) regime.
Communication system design for this channel has been primarily driven by
the operating regime one is in.

Keywords: Wireless Adhoc Networks, Scaling Laws, Linear Scaling, Ca-
pacity of Wireless Networks, Hierarchical Cooperation, Multi-hopping, Dis-
tributed MIMO, Operating Regimes, Throughput-Delay Tradeoff, Random
Matrix Theory



Résumé

Les réseaux ad hoc sans fil sont composés d’utilisateurs qui désirent commu-
niquer entre eux sur une même bande de fréquence. Chaque utilisateur est
capable d’émettre et de recevoir, mais il n’y a pas d’infrastructure fixe pour
relayer les communications. Ces réseaux diffèrent donc des systèmes sans fil
existants, comme les réseaux cellulaires par exemple, dans lesquels les commu-
nications entre utilisateurs sont relayées par des stations de base reliées entre
elles par un réseau câblé. L’absence d’infrastructure dans les réseaux ad hoc
présente des avantages en termes de coût, de fabrication et de robustesse, mais
représente en même temps un défi du point de vue technologique. Le plus
important de ces défis concerne la bonne gestion des interférences: plusieurs
communications doivent être relayées simultanément sur une même bande de
fréquence, alors que chaque communication constitue de l’interférence pour les
autres, contribuant à dégrader la qualité des transmissions.

L’approche traditionnelle des réseaux ad hoc sans fil consiste à organiser les
utilisateurs de sorte à ce qu’ils relayent de proche en proche l’information des-
tinée aux uns et aux autres. De telles stratégies ne fonctionnent malheureuse-
ment pas à grande échelle. Ce fait a été mis en évidence par le travail de Gupta
et Kumar en 2000: plus précisément, il a été établi qu’avec de telles stratégies,
le taux maximal de communication par utilisateur décrôıt comme l’inverse de
la racine carrée du nombre d’utilisateurs dans le réseau, et donc tend vers
zéro lorsque le système grandit. Cette limitation provient de l’interférence qui
empêche d’effectuer plusieurs transmissions simultanées d’utilisateur à utilisa-
teur dans le réseau.

Dans la présente thèse, nous proposons un nouvelle stratégie multi-échelle
pour établir des communications multi-utilisateurs distribuées dans un réseau
ad hoc sans fil. Cette nouvelle architecture permet de supprimer (en termes de
loi d’échelle) la limitation imposée par l’interférence: nous montrons en effet
qu’en utilisant cette stratégie, le taux de communication par utilisateur ne se
dégrade pas significativement, même lorsque le nombre d’utilisateurs augmente
dans le réseau. Ce résultat contraste donc fortement avec la performance des
schémas traditionnels évoqués plus haut.

Cependant, l’étude de la capacité des réseaux ad hoc sans fil ne se résume
pas à un seul schéma de communication, ni à une seule loi d’échelle. De nom-
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breuses applications où de tels réseaux démontreraient leur utilité sont en-
visagées actuellement, ce qui se traduit par des grandes variations des valeurs
des paramètres caractérisant le système (puissance, largeur de bande, aire du
réseau, etc.). En fonction de l’application considérée, le système peut ex-
hiber des caractéristiques très différentes. Une description complète du com-
portement de ces réseaux passe donc par l’exploration de tout l’espace des
paramètres du système. Les lois d’échelle existant dans la littérature ne per-
mettent pas d’obtenir une telle description, car elles ne se concentrent que sur
une petite fraction de l’espace des paramètres. Nous proposons une nouvelle
formulation qui permet de caractériser les régimes opératoires fondamentaux
des réseaux ad hoc sans fil.

Pour le modèle standard de transmission sans fil, dans lequel on considère
que l’amplitude des signaux décrôıt avec la distance en loi de puissance et
que les changements de phase sont aléatoires, nous identifions quatre régimes
opératoires qualitativement différents. Dans chacun de ces régimes, nous car-
actérisons la dépendance de la capacité dans les principaux paramètres du
système. En particulier, nous clarifions l’impact des limitations de puissance
et de largeur de bande sur la performance. Pour ce faire, nous dérivons des
bornes supérieures sur la capacité des réseaux ad hoc sans fil dans le chapitre 3;
puis nous décrivons au chapitre 4 des schémas de communication qui permet-
tent d’atteindre ces bornes supérieures (en termes de loi déchelle). Notre anal-
yse permet d’identifier trois quantités qui déterminent les différents régimes
opératoires d’un réseau: le rapport signal sur bruit à courte distance (SNRs),
le rapport signal sur bruit à longue distance (SNRl) et l’exposant d’atténuation
des signaux avec la distance (α). Le bon schéma de communication à adopter
est dicté par le régime sans lequel on se trouve. Nous montrons que les schémas
de communication traditionnels (relayage des communications de proche en
proche) sont optimaux lorsque α ≥ 3 et SNRs ≪ 0 dB. De tels réseaux sont
fortement limités en puissance. A l’autre extrême, le nouveau schéma de com-
munication proposé dans cette thèse, basé sur une coopération hiérarchique
et des communications multi-utilisateurs distribuées, est la bonne stratégie à
adopter dans les réseaux ad hoc lorsque SNRl ≫ 0 dB. De tels réseaux ne
sont pas limités en puissance. Pour les cas intermédiaires, qui correspondent
aux deux régimes restants, aucune des deux stratégies mentionnées ci-dessus
n’est optimale. Nous construisons de nouveaux schémas de communication qui
atteignent la capacité dans ces deux cas.

La caractérisation des réseaux ad hoc sans fil proposée ici en termes de
ses quatre régimes opératoires fondamentaux est analogue à la description
familière des deux régimes opératoires du canal avec bruit blanc gaussien ad-
ditif (AWGN). Du point de vue de l’ingénieur, l’une des contributions les plus
importantes du célèbre théorème de Shannon sur la capacité est d’identifier
deux régimes qualitativement différents pour ce canal. En fonction de son
rapport signal sur bruit (SNR), un canal AWGN est limité soit en fréquence
(si SNR ≫ 0), soit en puissance (si SNR ≪ 0). Le design de schémas de com-
munication pour ce canal est déterminé en prioriété par le régime opératoire
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dans lequel on se trouve.

Mots-clés: réseaux sans fil “ad hoc”, lois déchelle, capacité de reśeaux sans fil,
comportement linéaire, coopération hiérarchique, communications avec relais
multiples, systèmes multi-antennes distribués, régimes opératoires, compromis
délai-débit.
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Introduction 1
The last decade has witnessed the rise of wireless technology in everyday life.
The most prominent examples of this technology are cellular networks and
wireless LANs (local area networks), which have made cellular phones and
laptops our daily companions. The rise in practice has been preceded by a
surge of research activity in wireless communication theory, which has led
to an understanding of the fundamental trade-offs involved in the design of
such systems and the possible techniques to achieve high performance. This
understanding has enabled the design of wireless systems offering comparable
quality of service to their wireline counterparts. With the inherent advantage
of mobility and ease of deployment, these wireless systems have become more
popular today than their wireline alternatives.

Nevertheless, the role of wireless technology in current communication ser-
vices remains still very limited. In cellular networks and wireless LANs, the
wireless system provides only the last stage of communication, from the so
called base stations (in cellular networks) or access points (in wireless LAN)
to the end users. The communication between the base stations or access
points is carried by wired high-capacity links. The need to install an extensive
infrastructure of base stations, access points and a high capacity backbone,
makes these systems expensive, difficult to build and not robust enough for
certain applications.

Why not get rid of the heavy burden of installing an expensive infrastruc-
ture and just let users communicate among themselves? That is the basic
motivation for the so called wireless adhoc networks studied in this thesis.
Wireless adhoc networks differ from the conventional infrastructure-based net-
works above by the fact that they rely completely on wireless communication.
They are simply formed by a group of users, usually called nodes, that have
transmitting and receiving capabilities. The nodes can be the mobile phones
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2 Introduction

of the cellular topology, laptops like in WLANs, or sensors that measure some
physical data. Whatever the application is, the common characteristic is the
following: A group of nodes want to communicate with each other over the
shared wireless medium but there is no additional infrastructure for assist-
ing communication or for coordinating traffic. The users need to self-organize
and relay information for each other while all communication must happen
exclusively over the wireless channel.

Obviously, designing such stand-alone wireless networks is technically much
more challenging than designing networks that can rely heavily on an addi-
tional infrastructure for coordination and communication. First of all, the
adhoc nature of these networks gives rise to a number of unique challenges in
coordinating the nodes in a decentralized fashion. However, the all-wireless
nature of the network poses a much more fundamental challenge. Even if the
nodes were able to coordinate and follow such a strategy, is there any efficient
strategy at all for wireless adhoc networks? The challenge is that many simul-
taneous transmissions have to be accommodated on the same wireless channel
when each of these transmissions constitutes interference for the others, de-
grading the quality of the communication.

Indeed, the phenomenon of interference lies at the heart of every multi-user
wireless communication problem. However, in infrastructure-based networks,
this problem is circumvented by constraining wireless communication to be
only of local nature. In such networks, the gateways to the wired backbone
(base stations or access points) are spread densely over the network area so that
wireless users have to communicate only to a nearby gateway. Since wireless
signals get attenuated over distance, many simultaneous local communications
can be established over the same wireless channel. In other words, gateways
that are sufficiently separated in space can serve their users simultaneously
on the same wireless channel without creating too much interference for each
other. In case there are multiple users that want to access the same gateway,
resources are shared among users. More precisely, signaling dimensions such
as time, frequency and code space are divided between users so that commu-
nications with different users are orthogonal to each other, i.e., they do not
interfere. If the number of users served by a gateway is small, which is en-
sured by the dense installation of gateways over the network area, this simple
strategy of sharing resources yields acceptable performance.

The problem of interference poses a greater challenge in wireless adhoc net-
works. Typically, the traffic requirements of the network are such that there are
many long-distance communications that need to be established over the same
wireless channel. Dividing resources among users is not a good strategy any-
more. Resources are scarce and simply dividing them among the many users
in the network leads poor performance. Innovative approaches to interference
management are required in order to design efficient and high performance
wireless adhoc networks. On the other hand, long-distance wireless commu-
nication is also challenging from the power point of view. Even if there were
no interference, direct communication between two distant users might not be
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possible. Wireless signals get attenuated over distance and may not be able
to reach a destination far away with sufficient power.

Given these technical challenges, which seem unbearable at first sight, one
may be surprised to see how much interest wireless adhoc networks have at-
tracted from the networking, communication and information theory commu-
nities over the last 15 years. They have been subject to intensive research,
leading to an increasing number of conferences, journals and books special-
izing particularly on this topic. The motivation for the persistent research,
despite the technical challenge, comes from a number of critical advantages
offered by these networks. The fact they do not require any infrastructure
makes them inexpensive, easy to build and robust. They can be incorporated
inside the existing cellular or WLAN topologies for assisting communication
in a cost-efficient way. They are also envisaged to enable a new collection of
exciting wireless applications in near future. Such applications include emer-
gency and military applications, sensor networks, vehicular communication,
smart homes, etc.

Before these exciting ideas become reality, however, a number of critical
open problems need to be resolved. One of the most important open problems
in this field is to develop a fundamental understanding of these networks from
a capacity point of view. Given a particular wireless adhoc network topology,
what is the best communication rate we can get for every user in this network?
How does this rate depend on system parameters like the total number of users
inside the network, the power budget per user, the total bandwidth allocated
for communication, the area of the network etc.? How should we design our
transmitters and receivers and how should we organize communications to
approach this ultimate limit? How do different strategies compare to each
other and what are the right strategies for different wireless adhoc network
applications? An understanding of the capacity of wireless adhoc networks
will yield critical intuition about the answer of such fundamental engineering
questions. It will provide operating principles and architectural guidelines for
the design and deployment of wireless adhoc systems. The aim of the current
dissertation is to contribute in this direction.

1.1 Current vs. Future Wireless Technology

From the point of view of this dissertation, the literature on wireless adhoc
networks can be divided into two main groups. The first group reflects the
“networking” approach to wireless adhoc networks. This line of research stud-
ies wireless adhoc networks in the light of the theories and methods developed
for traditional wired networks. Roughly speaking, the aim here is to mimic
the operation of a wired network inside a wireless network. As wired networks
form graphs, packets are relayed from one node on the graph to another by
multi-hopping on a path connecting these two nodes. At each hop, the relay
nodes fully decode the transmitted packets, re-encode and forward them to
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the next node on the path. The “networking” approach suggests to apply
the same multi-hopping strategy in wireless adhoc networks. However, there
are a number of challenges due to fundamental differences between wireless
and wired networks. The first obvious difficulty is that while a wired network
naturally induces a graph, there is no graph corresponding to a wireless net-
work. Hence, one needs to start by artificially associating a graph with the
wireless network. The common approach is to draw a connectivity graph. A
link between two nodes on this graph indicates that these nodes are within the
transmission range of each other. However, this graph is not unique as in the
wired case. For the same physical placement of nodes, the connectivity graph
of a wireless adhoc network can look very different under different choices of
operational power and rate. Moreover, the links in this graph are not inde-
pendent. The links that are sufficiently separated in space can be activated
at the same time, but there is interference between neighboring links. The
main focus of this line of research is to overcome such additional challenges
introduced by the wireless and also decentralized nature of the setup and ex-
tend the well-established techniques in medium access control, routing, etc.,
for wired multi-hop networks, to wireless networks.

The “networking” approach is also motivated by the state-of-the-art physi-
cal-layer wireless technology. Although a number of multi-user techniques are
known for wireless communication, current wireless systems are mostly re-
stricted to point-to-point communication. Usually, the aim is to replace the
wire between a source point and a destination point by providing a wireless link
of certain capacity between them. Motivated by this fact, the “networking”
approach views the wireless network as a collection of such point-to-point links,
which yields a connectivity graph as discussed earlier. However, this is a very
restrictive treatment of wireless adhoc networks. A wireless network is inher-
ently much more complex than a collection of point-to-point links and indeed
this complex structure opens many other possibilities for enhancing informa-
tion transfer. The fact that point-to-point communication with single-user
encoding and decoding of messages is prominent in current wireless systems
does not necessarily imply that future wireless systems should confine to the
same physical-layer technology. Principles rooted in the current engineering
practice may not be applicable in general, and can lead to very suboptimal
designs. This is the motivation for the second group of research, that can be
called the “wireless” approach, since the emphasis now is on the wireless na-
ture of the problem. This approach views wireless adhoc networks as a brand
new multi-user wireless communication problem and seeks specific solutions
for them. It is rooted in network information theory and is often called the
information theoretic approach, as it studies wireless adhoc networks without
making any a priori assumption on how they are to operate.

Of special interest to the current dissertation is the the seminal work of
P. Gupta and P. R. Kumar in 2000 [27]. This work has introduced a simple
yet insightful model for wireless adhoc networks with a large number of users.
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The model explicitly takes into consideration important features of wireless
networks, such as the spatial distribution of nodes and the traffic requirement
between them as well as the attenuation of wireless signals with distance and
the broadcasting and superposition nature of wireless media. Using this model,
Gupta and Kumar have characterized the potentials and the limitations of the
“networking” approach in large wireless networks. The result has also raised
interest in the wireless research community as it naturally leads to the question
of whether there are more efficient strategies to operate wireless networks.
Next, we discuss the results of this work in more detail, as well as the random
network model it introduces, as this model forms the starting point for the
current thesis. A more detailed overview of the literature on wireless adhoc
networks is given in the beginning of each chapter. A general overview of the
subject can be found in the survey paper [50].

A Random Network Model

As wireless network applications become large, complex and diverse, there is
a need to derive fundamental operating principles that can serve as a rule of
thumb in their design and deployment. This requires a fundamental under-
standing that can not be attained by studying particular instances of such
networks. An abstraction is required that captures the essential aspects of
the problem while stripping out the less important details. Such an abstract
model has been proposed by Gupta and Kumar in [27] that has turned out be
tractable and yet useful.

Instead of worrying about the exact placement of nodes inside the network,
Gupta and Kumar propose to consider a random model where n nodes are
randomly distributed over a two dimensional area of unit size. The traffic is
also random: Every node is both a source and a destination and the sources
and destinations are randomly paired up one-to-one without any consideration
on node locations. Each source has the same traffic rate R to send to its
destination node. On the physical side, signals transmitted from one user to
another at distance r apart are assumed to experience a power loss of r−α and
a random rotation in the phase.1 The parameter α ≥ 2 is called the power
path loss exponent of the environment, α = 2 corresponding to free space
propagation. Every user has a fixed power budget of P Watts, and the wireless
system is allocated a fixed bandwidth of W Hz. The question of interest is the
maximally achievable total throughput T = nR in such a network. In order to
make the problem tractable, Gupta and Kumar restrict attention to the scaling
of this maximally achievable total throughput T (n) with increasing system size
n. Such a scaling law formulation puts the emphasis on large system size and
can be used to understand the behavior of large wireless adhoc networks.

1The conclusions of [27] hold regardless of whether the channel model includes a random
phase rotation or not.
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Gupta and Kumar use the above random network model to study the per-
formance of classical multi-hop architectures in wireless adhoc networks. They
show that such strategies based on single-user encoding-decoding and forward-
ing of packets cannot achieve a total throughput scaling better than O(

√
n) and

this maximal scaling can only be achieved if such strategies confine transmis-
sions to take place between nearest neighbors. Single user encoding-decoding
implies that the signals received from nodes other than one particular trans-
mitter are interference and should be regarded as noise, degrading the quality
of the communication. Given this assumption, long-range communication be-
tween source and destination pairs is not a good idea, as the interference gen-
erated would preclude most of the other nodes from communicating. Instead,
the optimal strategy is to communicate between nearest neighbors and maxi-
mize the number of simultaneous transmissions (spatial reuse). However, this
means that each packet has to be retransmitted many times before getting to
its final destination, leading to a sub-linear scaling of the system throughput.

A total throughput of O(
√

n) implies that the rate R(n) per source-destina-
tion pair has to decrease to zero as O(1/

√
n) when the system size n is large.

Therefore, this result casts doubt on the feasibility of multi-hop wireless net-
works on a large scale. The O(

√
n) limitation is the consequence of the inter-

ference in the wireless media that precludes source nodes to simply transmit
their messages simultaneously to their destination nodes. The conclusions of
the work [27] lead to the question of whether this interference barrier can be
surpassed with more complex communication strategies. The present disser-
tation answers this question in the affirmative.

1.1.1 A Hierarchical Cooperation Scheme

One of the main results of this thesis is that one can in fact achieve arbitrarily
close to linear total throughput scaling: for any ǫ > 0, we present a scheme
that achieves an aggregate rate of Θ(n1−ǫ). This is a surprising result: a linear
scaling means that there is essentially no interference limitation; the rate for
each source-destination pair does not degrade significantly, even as one puts
more and more nodes in the network. Using tools from information theory, it
is easy to show that one cannot get a better capacity scaling than O(n log n),
so the suggested scheme is very close to optimal.

To achieve linear scaling, one must be able to perform many simultane-
ous long-range communications. A physical-layer technique achieving this is
MIMO (multi-input multi-output), i.e., the use of multiple transmit and receive
antennas to multiplex several streams of data and transmit them simultane-
ously. MIMO was originally developed in the point-to-point setting, where the
transmit antennas are co-located at a single transmit node, each transmitting
one data stream, and the receive antennas are co-located at a single receive
node, jointly processing the vector of received observations at the antennas. A
natural approach to apply this concept to the network setting is to have both
source nodes and destination nodes cooperate in clusters to form distributed
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Figure 1.1: The figure illustrates the salient features of the three phase hierar-
chical scheme in Section 4.4.

transmit and receive antenna arrays, respectively. This way, mutually inter-
fering signals can be turned into useful ones that can be jointly decoded at the
receive cluster and spatial multiplexing gain can be realized. In fact, if all the
nodes in the network could cooperate for free, then a classical MIMO result
[17, 49] says that a sum rate scaling proportional to n could be achieved. How-
ever, this may be over-optimistic : communication between nodes is required to
set up the cooperation and this may drastically reduce the useful throughput.
The contribution of this dissertation is to introduce a new multi-scale, hier-
archical cooperation architecture that does not introduce significant overhead
to communication. Such cooperation first takes place between nodes within
small local clusters that can operate simultaneously, since the decay of signals
with distance allows simultaneous local communications. The cooperation fa-
cilitates MIMO communication over a larger spatial scale. This can then be
used as a communication infrastructure for cooperation within larger clusters
at the next level of the hierarchy. Continuing in this fashion, cooperation can
be achieved at an almost global scale. At the highest level of the hierarchy,
long-range MIMO communications can be performed between clusters almost
as large as the whole network. By increasing the number of levels in such
a hierarchical architecture, one can get arbitrarily close to linear aggregate
throughput scaling. Figure 1.1 illustrates the hierarchical architecture with a
focus on the top two levels.

1.2 A New Scaling Law Formulation for Wireless

Ad-hoc Networks

The classical capacity formula

CAWGN(W,Pr/N0) = W log2

(

1 +
Pr

N0W

)

bits/s (1.1)

of a point-to-point additive white Gaussian noise (AWGN) channel with band-
width W Hz, received power Pr Watts, and white noise with power spectral
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density N0/2 Watts/Hz plays a central role in communication system design.
The formula not only quantifies exactly the performance limit of communica-
tion in terms of system parameters, but perhaps more importantly also iden-
tifies two qualitatively different operating regimes depending on the signal-to-
noise power ratio

SNR :=
Pr

N0W
.

In the power-limited (or low SNR) regime, where SNR ≪ 0 dB, the capacity
is approximately linear in the power and the performance depends critically
on the power available, but not so much on the bandwidth. In the bandwidth-
limited (or high SNR) regime, where SNR ≫ 0 dB, the capacity is approxi-
mately linear in the bandwidth and the performance depends critically on the
bandwidth, but not so much on the power. This understanding of the two
operating regimes of the AWGN channel can be summarized by the following
approximation formula for the capacity

CAWGN(W,Pr/N0) ∝
{

W SNR ≫ 0 dB
Pr/N0 SNR ≪ 0 dB.

(1.2)

The design of good communication schemes is primarily driven by the operat-
ing regime one is in.

Now, imagine the capacity formula (1.1) were not at our disposal and
we were interested in finding (1.2) that approximates the dependence of the
capacity to the two resources in the channel and identifies two different oper-
ating regimes depending on SNR. The approximation (1.2) can be obtained
by studying the interplay between the two resources, the bandwidth and the
power. Suppose Pr/N0 and W are coupled to each other via a parametric
formula, Pr/N0 = W0m

γ1 and W = W1m
γ2 with γ1, γ2 fixed real numbers and

m the dummy parameter. W0 and W1 are positive constants of appropriate
units. Assume further that for any γ1, γ2, we are able to characterize the scal-
ing exponent of the spectral efficiency ρAWGN = CAWGN/W , in bits/s/Hz,
with m,

eAWGN(γ1, γ2) := lim
m→∞

log ρAWGN(γ1, γ2)

log m
.

For the AWGN, we would find

eAWGN(γ1, γ2) =

{

0 γ1 − γ2 ≥ 0
γ1 − γ2 γ1 − γ2 < 0.

.

The above expression can be written in a simpler form,

eAWGN(γ) =

{

0 γ ≥ 0
γ γ < 0.

.

if we define γ = γ1 − γ2 and SNR = Pr/N0W = mγ. (From now on, we ignore
the constants W0, W1 that are required for matching the units in the parametric
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formula above, but do not change the scaling law.) This characterization of
the scaling exponent can be used to deduce the approximation (1.2) for the
capacity. Note that the scaling law is not of interest in its own right here. It is
used as a tool to discover the operating regimes of the AWGN channel. Even
though (1.2) is obtained from a scaling law analysis, (1.2) itself provides an
approximation for the capacity of any given AWGN channel. One of the main
contributions of this dissertation is to provide an analogous approximation for
the capacity of wireless adhoc networks with a large number of users.

The literature on scaling laws for wireless networks has exclusively concen-
trated on two particular models of how the geometry of the network changes
with increasing number of nodes. The first one is the dense scaling introduced
in Section 1.1. It assumes that the n users are distributed on a unit area, A = 1,
that remains constant as the number of users in the network increases. The
second scaling that has been studied in the literature is the extended scaling.
In this case, the area of the network extends linearly with increasing number
of users, A = n, while the rest of the assumptions are same as in the dense
scaling. A major effort has been made to characterize the capacity scaling of
dense and extended wireless networks in the literature. The extended scaling
has been characterized for α ≥ 4, while the dense scaling has been open. A
detailed overview of the literature can be found in the beginning of Chapters 3
and 4.

In this dissertation, we give a complete characterization of both the dense
and the extended scalings. In the previous section, we have already discussed
that the total capacity scales like Θ(n) with the number of users n in the
dense scaling. This linear scaling is achieved with hierarchical cooperation and
MIMO communication. This is not the case in extended scaling. In Chapters 3
and 4, we will show that the capacity scaling of extended networks exhibits
a dichotomy depending on the power path loss exponent of the environment.
When 2 ≤ α < 3, the capacity scales like Θ(n2−α/2) and this scaling is achieved
by the hierarchical cooperation scheme introduced in the previous section.
When α ≥ 3, the capacity scales like Θ(

√
n) and the optimal strategy is

to confine to nearest neighbor point-to-point transmissions and relay packets
through multi-hopping inside the network.

Given these two different scaling law results, what can be inferred about a
particular wireless network of interest with given number of users (large but
finite), area, power and bandwidth budgets, path loss exponent, etc.? Assume
for example that α = 4. What is the right strategy to operate this wireless
network, hierarchical cooperation or multi-hopping? The difficulty is that we
do not know which scaling law result, dense or extended, we should take as a
basis to design our network. Recall that the motivation for studying this rather
abstract formulation of scaling laws for wireless networks was to develop an
intuition about the answers to such fundamental engineering questions. The
only intuition suggested by these two qualitatively different results obtained for
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two different couplings of the system parameters is that the right strategies can
be different for different wireless networks. In other words, these two different
scaling law results hint the existence of two different operating regimes in
wireless networks.

However, the picture is far from complete for wireless networks: First of
all, it is not obvious whether there are only two operating regimes in wireless
networks. There can be some other operating regimes exhibiting a completely
different behavior with neither of the above schemes, hierarchical cooperation
or multi-hopping, achieving optimal capacity scaling. Moreover, it is not clear
what engineering quantities determine the operating regime a wireless network
is in. The characterization of two particular scalings that couple the system
resources in two particular ways, does not suffice to develop a comprehensive
understanding of wireless networks.

This fact should not be surprising, considering the diversity of wireless
adhoc network applications. Wireless networks have a number of parameters
with large range that can lead to different behaviors in different applications.
With the scaling law formulation, we restrict attention on networks with large
number of users, but the area, power and bandwidth of such large networks
can still be diverse. For example, we can have wireless network applications
where the large number of users are distributed on a large geographical area.
Such networks can potentially face a power limitation since signals loose a lot
of power traveling over large distances. However, if the allocated bandwidth
is small or the available power per node is large, such networks can still be
bandwidth-limited rather than power-limited. On the other hand, one can
also imagine wireless network applications where the large number of users are
distributed on a relatively small area so that all users are within the trans-
mission range of each other. One expects not to observe any power limitation
in such networks. In the wide-band regime however, such a network can still
be power limited rather than bandwidth limited. We expect from our dis-
cussion on the operating regimes of the AWGN channel that the capacity of
the network behaves differently depending on whether the network is power
or bandwidth limited. Thus, the right strategies for these different wireless
network applications will naturally be different. Moreover, these are the varia-
tions we imagine in the light of our understanding of the operating regimes of
a point-to-point AWGN channel. Wireless networks comprise a huge number
of such point-to-point links. It is also possible that these links have differ-
ent characteristics, some links may be power limited when some others are
bandwidth limited. For example, a wireless network can be locally bandwidth
limited while power limited on the global scale. Such a network may exhibit
a behavior that can not be anticipated with our understanding of the point-
to-point channel. Therefore, one of the main ideas to be conveyed by this
dissertation is that the dominant scaling law formulation of wireless networks
in the current literature, that focuses on one particular coupling of the area
and the number of users in the network, is insufficient in classifying wireless
networks. This formulation has created the expectation to describe wireless
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networks with a single scaling law formula and to devise a single universal
scheme that is optimal for any application. Wireless networks turn out to be
far more complicated than this.

In this thesis, we propose to identify system parameters that can have a
large range in wireless networks and study all possible interplay between them.
These parameters are the area of the network, the bandwidth, the power and
the number of users. In complete analogy with the AWGN case, we formulate
the interplay as a scaling law problem focusing on the large n limit, but we
study now all possible interplays between A, P , W and n. In the most general
sense, we let A = nβ1 , P = nβ2 , W = nβ3 and identify the scaling exponent,

e(α, β1, β2, β3) := lim
n→∞

log ρ(α, β1, β2, β3)

log n

of the spectral efficiency ρ in bits/s/Hz, for any β1, β2, β3. Note that the
capacity is given by C = Wρ in bits/s. Indeed in parallel to the AWGN case,
the scaling law problem can be expressed in a simpler form. Recall that the
transmitted signals are assumed to experience a power path loss of r−α and
a random rotation in their phase. For this channel model, it turns out that
the spectral efficiency depends on the area of the network, the power and the
bandwidth only through a single SNR parameter. In the case of networks there
are many SNRs, and one can take any of these different SNRs as reference.
Here, without loss of generality, we choose to work with the received SNR
over the typical nearest neighbor distance in the network, denoted by SNRs.
Thus, the scaling law problem can be equivalently stated as characterizing the
scaling exponent

e(α, β) := lim
n→∞

log ρ(α, β)

log n

of the spectral efficiency ρ for any real β where SNRs = nβ. In the first
and the second chapters of this dissertation, we characterize the scaling ex-
ponent e(α, β) for any real β and α ≥ 2. This characterization leads to an
approximation of the capacity of large wireless networks, analogous to (1.2)
for the AWGN case. The approximation, together with its implications on the
operating regimes of large wireless networks, is discussed in the next section.

1.2.1 Operating Regimes of Large Wireless Networks

The scaling law formulation suggested in the previous section allows us to
obtain an approximation for the capacity of wireless networks, which identifies
four qualitatively different operating regimes, depending on three engineering
quantities that stand out in the analysis: the power path loss exponent, the
short-distance SNR, and the long-distance SNR. The short-distance SNR is
the received SNR in a point-to-point transmission over the typical nearest
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neighbor distance inside the network,

SNRs :=
Pr

N0W
, (1.3)

where Pr is the received power from a node at the typical nearest neighbor
distance. The long-distance SNR is defined as,

SNRl := n
n−α/2Pr

N0W
, (1.4)

where n−α/2Pr is the received power from a node at distance equal to the
diameter of the network. Note that in a network where users are uniformly
distributed over the two dimensional network area, the typical nearest neighbor
distance is 1/

√
n times the diameter of the network. This yields the expression

n−α/2Pr for the received power in a point-to-point transmission over a diameter
distance. The total capacity C of large wireless networks, in bits/s, exhibits
four different behaviors depending on these three parameters:

C ∝























nW SNRl ≫ 0 dB
n2−α/2Pr/N0 SNRl ≪ 0 dB and 2 ≤ α ≤ 3√

nPr/N0 SNRs ≪ 0 dB and α > 3√
nW

α−3
α−2 (Pr/N0)

1
α−2 SNRl ≪ 0 dB, SNRs ≫ 0 dB

and α > 3.

(1.5)

Note two immediate observations. First, there are two SNR parameters of
interest in networks, the short and the long distance SNR’s, as opposed to the
point-to-point case, where there is a single SNR parameter. Second, the most
natural way to measure the long-distance SNR in networks is not the SNR of
a pair separated by a distance equal to the diameter of the network, but it is n
times this quantity as defined earlier in (1.4). There are order n nodes located
at a diameter distance to any given node in the network, hence n times the SNR
between farthest nodes is the total SNR that can be transferred to this node
across this large spatial scale. On the other hand, a node has only a constant
number of nearest neighbors, and hence the short-distance SNR in (1.3) is
simply the SNR between a nearest neighbor pair. Note that since α ≥ 2, the
long-distance SNR is always smaller than or equal to the short-distance SNR.

The first regime in (1.5) is a degrees of freedom limited regime. The band-
width and the number of nodes in the network together constitute the avail-
able degrees of freedom in the system. In this regime, the network does not
face any power limitation, since even the long-distance SNR in the network
is large. Thus, long-distance communication is feasible and good communica-
tion schemes should exploit this feasibility. On the other hand, the network
is degrees of freedom limited, so good communication schemes for this regime
should also achieve the full degrees of freedom in the system. These are the
properties of the MIMO scheme based on hierarchical cooperation presented
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in the previous section: With the help of the hierarchical cooperation archi-
tecture, the communication in the network is done via cooperative MIMO
transmissions between large clusters of nodes (of size almost of order n) and
at distance of the order of diameter of the network. The performance of the
MIMO transmissions is linear in the number of nodes, implying that inter-
ference limitation is removed by cooperation, and full degrees of freedom are
achieved, at least as far as scaling is concerned. The performance in this regime
is qualitatively the same as that obtained in the dense scaling.

In all the other regimes, the long-distance received SNR is less than 0
dB. Hence, the network is power-limited and the transfer of power becomes
important in determining performance. In the second regime, i.e., when α ≤
3, signal power decays slowly with distance and the total power transfer is
maximized by global cooperation. Cooperative MIMO communication not
only achieves the full degrees of freedom in the system but it also provides a
power gain, obtained by combining signals received at different nodes. With
the hierarchical cooperation architecture, it allows to combine the received
signals by a cluster of nodes, almost the size of the network. This power
gain becomes important in this regime and in Chapter 4 of this thesis, we
show that a modification of the hierarchical cooperation scheme can achieve
optimal capacity scaling. Note that this is a power-limited regime, hence the
performance depends critically on the available power, but not so much on the
bandwidth.

When α > 3, signals decay fast with distance, and the transfer of power
is maximized by cooperating at smaller scales. In this case, there is no ben-
efit in combining the signals received by a large cluster of nodes. The total
power received by such a large cluster is already dominated by the power re-
ceived by few nodes in the cluster, located closest to the transmitting nodes.
It is more beneficial to perform shorter-range communication between clusters
containing fewer nodes. Then, the rest of nodes in the network can undertake
simultaneous transmissions, suggesting the idea of spatial reuse. When the
nearest-neighbor SNRs ≪ 0 dB (third regime), the communication scale re-
duces to the nearest neighbor distance. The optimal strategy in this regime is
to confine to nearest neighbor transmissions and multi-hop information across
the network. The point-to-point nearest-neighbor transmissions are power lim-
ited since SNRs ≪ 0 dB, so the overall capacity of the network is also power
limited. The extended scaling considered in the literature is qualitatively sim-
ilar to the second and third regimes.

The most interesting regime and the one that is most counter-intuitive,
given our understanding of the point-to-point AWGN channel, is the fourth
regime, when α > 3 and SNRl ≪ 0 dB, but SNRs ≫ 0 dB. Note that since
SNRl ≪ 0 dB, this is still a power limited regime and optimal schemes for
this regime should transfer power efficiently across the network. The nearest-
neighbor transmissions are now bandwidth-limited and not power-efficient in
translating the power gain into capacity gain. There is the potential of increas-
ing throughput by spatially multiplexing transmission via cooperation within
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clusters of nodes and performing distributed MIMO. Yet, the clusters cannot
be as large as the size of the network, since power attenuates rapidly for α > 3.
The exact cooperation scale is dictated by the power path loss exponent and
the short-distance SNR in the network.

It turns out that the optimal scheme in this regime is to cooperate hierar-
chically within clusters of an intermediate size, perform MIMO transmission
between adjacent clusters and then multi-hop across several clusters to get
to the final destination. This multi-hop-MIMO scheme is introduced and an-
alyzed in Chapter 4 of the thesis. The optimal cluster size is chosen such
that the received SNR in the MIMO transmission is at 0 dB. Any smaller
cluster size results in power inefficiency. Any larger cluster size reduces the
amount of spatial reuse without providing any extra benefit in terms of power
transfer. The two extremes of this architecture are precisely the traditional
multi-hop scheme, where the cluster size is 1 and the number of hops is

√
n,

and the long-range cooperative MIMO scheme, where the cluster size is of or-
der n and the number of hops is 1. Note also that because short-range links
are bandwidth-limited and long-range links are power-limited, the network ca-
pacity is both bandwidth and power-limited. Thus, the capacity is sensitive
to both the amount of bandwidth and the amount of power available. This
regime is fundamentally a consequence of the heterogeneous nature of links
in a network and does not occur in point-to-point links, nor in the dense or
extended scalings.

1.3 Throughput-Delay Trade-off for Hierarchical

Cooperation

In Chapter 5 of the present dissertation, a scaling law formulation is used to
study the throughput-delay trade-off for the hierarchical cooperation scheme.
We show that a modification of the scheme achieves a throughput-delay trade-
off D(n) = (log n)2T (n) for T (n) between Θ(

√
n) and Θ(n1−ǫ) for arbitrarily

small ǫ > 0, where D(n) and T (n) are the average delay experienced by bits
traveling inside the network and the aggregate throughput, respectively. This
result implies that the delay scaling of the hierarchical cooperation scheme
is roughly equal to its aggregate throughput scaling. In other words, larger
aggregate throughput comes at the expense of larger delay. This trade-off
complements the previous results of [21, 22], which show that the throughput-
delay trade-off for multi-hopping is given by D(n) = T (n), where T (n) lies
between Θ(1) and Θ(

√
n).

Besides establishing the throughput-delay trade-off for the hierarchical co-
operation scheme, the aim of Chapter 5 is to demonstrate that there is a lot of
room for improving the original form of the scheme introduced in Section 4.4.
Establishing the throughput-delay tradeoff above requires one such improve-
ment. The presentation in Section 4.4 is focused only on the throughput
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performance of the hierarchical cooperation scheme and yields an architecture
which is optimal from throughput scaling point of view. The scheme achieves

an aggregate throughput Th(n) = Θ(n
h

h+1 ) for any integer h > 0, where h cor-
responds to the number of hierarchical levels used in the scheme. Increasing
h, the scheme gets arbitrarily close to linear scaling. However, the delay of
the scheme scales like Dh(n) = Θ(n

h
2 ); in other words, it grows arbitrarily

fast as the throughput approaches linear scaling. In Chapter 5, we present
a modification of the scheme that achieves the same aggregate throughput

Th(n) = Θ(n
h

h+1 ) with much smaller delay Dh(n) = Θ(n
h

h+1 ).
The key to the modification is a more careful treatment of the cooperation

problem for distributed MIMO communication. The cooperation problem is
modeled by the following traffic pattern: Assume that each of the nodes in the
wireless network wants to communicate an independent message of length L
bits to each of the other nodes in the network, for a constant L independent
of n. This uniform traffic pattern is different from the permutation traffic
that is of main interest in this dissertation. In the case of permutation traffic
defined earlier in Section 1.1, each node in the network is source for exactly one
communication request and destination for another. Moreover, the interest is
in the scaling of the rate of communication, in which case the number of bits
communicated between each source-destination pair can increase arbitrarily
with the number of users in the network. In the uniform traffic problem
considered in Chapter 5, we constrain the number of bits to be communicated
between every pair of nodes in the network, to fixed L bits. We are interested
in minimizing the total time required to complete this task. We propose a two-
phase hierarchical scheme that solves this uniform traffic problem in Θ(n

h+1
h )

time-slots, for any h > 0. This particular result may be of interest in its own
right.





Model 2
In this chapter we introduce the model considered in this dissertation and some
basic definitions and properties that are commonly used in the following three
chapters.

2.1 Model

There are n nodes with transmitting and receiving capabilities that are uni-
formly and independently distributed in a rectangle of area

√
A ×

√
A. Each

node has an average transmit power budget of P Watts and the network is
allocated a total bandwidth of W Hertz around a carrier frequency of fc,
fc ≫ W . Every node is both a source and a destination for some traffic re-
quest. The sources and destinations are randomly paired up one-to-one into
n source-destination pairs without any consideration on node locations. Each
source wants to communicate to its destination node at the same rate R in
bits/s/Hz. (Note that R corresponds to the spectral efficiency per node as dis-
cussed earlier in Section 1.2.) The total throughput of the system is T = nR
bits/s/Hz.

We assume that communication takes place over a flat channel and the
complex baseband-equivalent channel gain between node i and node k at time-
slot m is given by

Hik[m] =
√

Gr
−α/2
ik exp(jθik[m]) (2.1)

where rik is the distance between the nodes i and k, and θik[m] is the random
phase at time m, uniformly distributed in [0, 2π]. We assume that {θik[·], 1 ≤
i, k ≤ n, i 6= k} is a collection of independent identically distributed random
processes that are also independent of the locations rik, 1 ≤ i, k ≤ n, i 6=
k. Note that the channel is random, depending on the location of the users
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and the phases. The locations are assumed to be fixed over the duration of
the communication. The phases are assumed to vary in a stationary ergodic
manner (fast fading). We assume that the channel gains are known at all the
nodes.

The parameters G and α ≥ 2 are assumed to be constants; α is called
the power path loss exponent. For example, under free-space line-of-sight
propagation, Friis’ formula applies and

|Hik[m]|2 =
GTx · GRx

(4πrik/λc)
2 (2.2)

so that

G =
GTx · GRx · λ2

c

16π2
, α = 2

where GTx and GRx are the transmitter and receiver antenna gains respectively
and λc is the carrier wavelength. The discrete-time complex baseband signal
received by node i at time m is given by

Yi[m] =
n
∑

k=1
k 6=i

Hik[m]Xk[m] + Zi[m] (2.3)

where Xk[m] is the signal sent by node k at time m subject to an average
power constraint

E(|Xk|2) ≤ P/W

and Zi[m] is complex white circularly symmetric Gaussian noise of variance
N0.

The channel model we introduce above is a well-established one, used in
almost all works in wireless communication and all the earlier works on scaling
laws. Several comments about this model are in order:

• The path loss model is based on a far-field assumption: the distance
rik is assumed to be much larger than the carrier wavelength. This is
typically the case in wireless network applications. When the distance
is of the order or shorter than the carrier wavelength, the simple path
loss model obviously does not hold anymore as path loss can potentially
become path “gain”. The reason is that near-field electromagnetics now
come into play.

• The phase θik[m] depends on the distance between the nodes modulo the
carrier wavelength. The random phase model is thus also based on a far-
field assumption: we assume the nodes’ separation is at a much larger
spatial scale compared to the carrier wavelength, so that the phases
can be modeled as completely random and independent of the actual
positions. When the nodes are packed close together, the independence
assumption of the phases breaks down. This case has been addressed
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in the work [42], which has been conducted as a part of this thesis, but
the results are not included in the current write-up. By considering
the extremal model with no random phases, or equivalently when all
the phases are fully correlated and equal to each other, we show in [42]
that the conclusions can differ significantly from those presented in this
dissertation based on the i.i.d. random phase channel model. A more
refined result has been reported in a recent work [19], which roughly
implies that the conclusions of the i.i.d. phase model hold as long as the
separation between nodes is larger than λc

√
n. For a carrier frequency

of 3 GHz, corresponding to a carrier wavelength of 0.1 m, the result of
[19] implies that the average separation between users should be at least
3 m in a network of 1000 nodes and 10 m in a network of 10000.

• It is realistic to assume the time-variation of the phases, since they vary
significantly when users move a distance of the order of the carrier wave-
length (fractions of a meter). The positions determine the path losses
and they, on the other hand, vary over a much larger spatial scale. So
the positions are assumed to be fixed. The results of this dissertation can
also be extended to the slow fading setting where the phases are drawn
from an independent uniform distribution and are kept fixed during com-
munication. The slow fading assumption allows for a simpler derivation
of the results in Chapter 3 and requires an extra technical step to extend
the results of Chapters 4 and 5. These extensions are not included in
the current dissertation. The key insight behind the extension is the
self-averaging effect of a large number of independent random variables.

• The random phase model essentially corresponds to a line-of-sight type
environment and ignores multipath effects. The randomness in phases
is sufficient to achieve full degrees of freedom in the network. With
multipaths, there is a further randomness due to random constructive
and destructive interference of these paths. The extension of the results
in this dissertation to the multipath case is straightforward.

2.2 Definitions

Given the network model in Section 2, let us define the received SNR in a
point-to-point transmission over the typical nearest neighbor distance to be,

SNRs :=
GP

N0W (
√

A/n)α
. (2.4)

where
√

A/n is the typical nearest neighbor distance in the network. This
quantity will be often referred to as the short-distance SNR in the network.
Let us analogously define the long-distance SNR in the network as

SNRl := n
GP

N0 W (
√

A)α
. (2.5)



20 Model

The conclusions derived in this dissertation on the capacity scaling and opti-
mal operation of wireless networks will depend on these two SNR parameters.
However, for the derivations in the next two chapters, it will be also useful
to define a more general version of these quantities, namely the received SNR
over any spatial scale

√
Ac, where

√
Ac can range from the nearest neighbor

distance
√

A/n to the diameter of the network
√

A. We define

SNR(Ac) :=
Acn

A

GP

N0 W (
√

Ac)α
, for

A

n
≤ Ac ≤ A. (2.6)

Note that GP
N0 W (

√
Ac)α is the received SNR in a point-to-point transmission over

the distance
√

Ac. In (2.6), we multiply this quantity by Acn
A

, the number of
nodes typically contained in a cluster of area Ac. Thus, the quantity SNR(Ac)
can be interpreted as the total SNR that can be transferred to a node over
the spatial scale

√
Ac since Acn

A
is an order estimate of the total number of

nodes in the network located at distance
√

Ac to a given node. Note that
the short-distance SNR and the long distance SNR are the two extremes of
SNR(Ac): when

√
Ac is the minimal possible spatial scale in the network, the

nearest-neighbor distance, SNRs = SNR(A/n) and when
√

Ac is the largest
possible scale in the network, the diameter, SNRl = SNR(A). Note also that
in a network with uniformly distributed nodes, the short-distance SNR and
the long-distance SNR are related by the equation,

SNRl = n1−α/2SNRs. (2.7)

Note that since α ≥ 2, SNR(Ac) is non-increasing in its argument Ac. When
α = 2, SNRs = SNR(Ac) = SNRl for any A

n
≤ Ac ≤ A. Otherwise for α > 2,

SNR(Ac) is strictly decreasing in Ac.

The interest in this thesis is to devise schemes that achieve optimal through-
put scaling in wireless networks. A scheme and its throughput are defined as
follows.

Definition 2.2.1 (Scheme). A scheme for the random network model described
in the previous section is a sequence Πn of communication techniques and
coordinated network protocols, where Πn describes how communication between
the n source-destination pairs takes place in any random realization of the
network with n nodes.

Definition 2.2.2 (Throughput of a Scheme). A scheme Πn is said to achieve
an aggregate throughput T bits/s/Hz with high probability, if in a given real-
ization of the network each of the n source-destination pairs communicates at
least B(t) bits in t time slots under this scheme and

lim
n→∞

P

(

lim inf
t→∞

1

t
B(t) ≥ T

n

)

= 1.

where the probability is over the random realizations of the network, i.e., the
random distribution of nodes over the network area and the random source-
destination pairings.
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In this dissertation, we restrict attention to the scaling of the throughput
achieved by a particular scheme with the number of users in the network. The
scaling exponent of the total throughput T is defined as,

e(α, β) := lim
n→∞

log T

log n
. (2.8)

where

β := lim
n→∞

log SNRs

log n
. (2.9)

is the scaling exponent of SNRs. We assume that β is a finite real number.
Note that the scaling of SNRs is jointly dictated by the scalings of system
parameters P , A and W with n.

To describe limiting behavior of functions, we often adopt the following no-
tation throughout this dissertation: For two functions f(n) and g(n), the nota-
tion f(n) = O (g(n)) means that |f(n)/g(n)| remains bounded as n increases.
We write g(n) = Θ (f(n)) to denote that f(n) = O (g(n)) and g(n) = O (f(n)).
Finally, f(n) = Ω (g(n)) if |g(n)/f(n)| remains bounded as n increases.

2.3 Properties of the Random Network

In the following lemma we state several properties that are satisfied with high
probability in a random realization of the network. For a sequence of random
variables An and a sequence of numbers bn,

An ≤ bn, with high probability (w.h.p.)

if
lim

n→∞
P(An ≤ bn) = 1.

The regularity properties given below arise from the assumption that nodes are
distributed uniformly at random over the network area and source-destination
pairings are also formed randomly without any consideration of node locations.
These properties will be used repeatedly in the following chapters. The proof
of the lemma is given in Appendix 2.A.

Lemma 2.3.1. The random network of n nodes with area A and random
source-destination pairings satisfies the following properties:

a) Consider a cut dividing the network area into two equal halves. The num-
ber of source-destination pairs with sources on the left-half network and
destinations on the right-half network is in the interval ((1 − δ)n/4, (1 + δ)n/4),
for any δ > 0, w.h.p.

b) The minimal distance between any two nodes in the network is larger
than

√
A/n1+δ, for any δ > 0, w.h.p.
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c) Let the network area be divided into n cells of area A/n. Then, there are
less than log n nodes inside each cell, w.h.p.

d) Let the network area be divided into n/2 log n cells each of area 2A log n/n.
Then, there is at least one node inside each cell, w.h.p.

e) Let us partition the network area A into cells of area Ac, where Ac can
be a function of n and A. For any 0 < δ < 1, the number of nodes inside
each cell is in the interval

(

(1 − δ)Ac

A
n, (1 + δ)Ac

A
n
)

with probability larger

than 1 − 2A
Ac

e−Λ(δ)Ac
A

n, where Λ(δ) is independent of n, A and Ac, and
satisfies Λ(δ) > 0 when δ > 0.

2.A Regularity Properties of Random Networks

In this section, we prove some regularity properties satisfied with high prob-
ability in a random realization of the network. Recall that we have n nodes,
paired up into n source-destination pairs. These n nodes are independently
distributed on the network area A, such that the position of each node is a
uniform random variable over the network area.

Proof of Lemma 2.3.1: Parts-(a) and (c) of the lemma are proven after
part-(e).

b) Consider one specific node in the network which is at distance larger
than

√
A/n1+δ to all other nodes in the network for some δ > 0. This is

equivalent to saying that there are no other nodes inside a circle of area
πA/n2+2δ around this node. The probability of such an event is

(

1 − π

n2+2δ

)n−1

.

Moreover, the minimum distance between any two nodes in the network
is larger than

√
A/n1+δ if and only if this condition is satisfied for all

nodes in the network. Thus by the union bound we have,

P

(

minimum distance in the network is smaller than

√
A

n1+δ

)

≤ n

(

1 −
(

1 − π

n2+2δ

)n−1
)

which decreases to zero as 1/n2δ with increasing n. Therefore, the
minimal distance between any two nodes in the network is larger than√

A/n1+δ, for any δ > 0 w.h.p.

d) The probability that a given cell is empty is given by
(

1 − log n
n

)n
. The

probability that there exists an empty cell is bounded above by

n

(

1 − 2 log n

n

)n

,
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hence decreases to zero as 1/n when n is large.

e) The proof of the statement is a standard application of the exponential
Chebyshev’s inequality. Note that the number of nodes in a given cell is
a sum of n i.i.d Bernoulli random variables Bi, such that P(Bi = 1) = Ac

A
.

For any s > 0, we have

P

(

n
∑

i=1

Bi ≥ (1 + δ)
Ac

A
n

)

= P

(

es
Pn

i=1 Bi ≥ es(1+δ)Ac
A

n
)

(2.10)

≤
(

E[esB1 ]
)n

e−s(1+δ)Ac
A

n

=

(

es Ac

A
+ (1 − Ac

A
)

)n

e−s(1+δ)Ac
A

n

≤ e
Ac
A

n(es−1) e−s(1+δ)Ac
A

n

= e−
Ac
A

nΛ+(δ) (2.11)

by choosing s = ln(1+ δ), where Λ+(δ) = (1+ δ) ln(1+ δ)− δ. Note that
Λ+(δ) > 0 when δ > 0. The probability of having a cell with more than
(1 + δ)Ac

A
n nodes is upperbounded by the union bound as

P

(

∃ a cell with # of nodes ≥ (1 + δ)
Ac

A
n

)

≤ A

Ac

e−
Ac
A

nΛ+(δ).

The proof for the lower bound follows similarly and yields

P

(

n
∑

i=1

Bi ≤ (1 − δ)
Ac

A
n

)

= P

(

e−s
Pn

i=1 Bi ≥ e−s(1−δ)Ac
A

n
)

≤ e−
Ac
A

nΛ−(δ)

by choosing s = − ln(1 − δ), where Λ−(δ) = (1 − δ) ln(1 − δ) + δ. The
conclusion follows by defining Λ(δ) = min(Λ−(δ), Λ+(δ)).

a) A straightforward application of part-(c) shows that the number of nodes
contained in the left-half network, nl, is such that (1 − δ1)n/2 ≤ nl ≤
(1 + δ1)n/2 w.h.p for any 0 < δ1 < 1. All these nodes are sources
for some traffic. Let nlr of the nl destination nodes corresponding to
these nl source nodes be located in the right half network. A second
application of part-(c) yields (1 − δ2)nl/2 ≤ nlr ≤ (1 + δ2)nl/2 w.h.p.
for any 0 < δ2 < 1. The result follows by combining the two bounds,
yielding (1 − δ3)n/4 ≤ nlr ≤ (1 + δ3)n/4 w.h.p. for any 0 < δ3 < 1.

c) The statement can be proved by following the upperbound derivation in
(2.11). The probability that a given cell of area A/n contains more than
log n nodes is given by

P

(

n
∑

i=1

Bi ≥ log n

)

≤ ees−1 e−s log n,
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for any s > 0. Choosing s > 2 and applying the union bound, it can be
shown that the probability that there exist a cell containing more than
log n nodes decreases to zero as 1/n when n increases.



Upper Bound 3
In this chapter, we derive an information theoretic upper bound on the ca-
pacity scaling of wireless networks. The upper bound is information theoretic
because it emerges from basic assumptions on the physical channel and the
network, and no specific assumption is made about the communication or net-
working technique employed. As such, it characterizes the ultimate limit of
performance in wireless networks and applies globally to any possible network
communication scheme. We will see in the next chapter that the upper bound
is indeed tight, as there are communication schemes that can achieve this per-
formance. Thus, the current and the next chapter together characterize the
capacity scaling of wireless networks for the model described in Chapter 2.
This model is a generalization of the model initially suggested by [27]. Sec-
tion 3.1 presents an overview of the results of [27], as well as the follow-up work
in the literature on upper bounds for wireless networks. Section 3.1 contains
the main derivation of the upper bound. The derivation reveals four qualita-
tively different operating regimes in wireless networks. In the last section of
this chapter, we discuss the insights suggested by the upper bound derivation
on the properties of optimal schemes for each regime. These optimal schemes
are constructed in the next chapter.

3.1 Existing Upper Bounds on the Capacity of

Wireless Networks

The random network model presented in the previous section has been first
proposed by [27], though in a more restricted form. The restriction is that
independent parameters such as the area of the network, the number of nodes
contained in the network, the power and bandwidth budget are coupled to-

25
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gether in a specific way: The area 2A, the power P and the bandwidth W
remain constant as the number of nodes n increases in the network. This
particular way of scaling the parameters of the network has been widely re-
ferred to as dense scaling or dense network later on. The work [27] derives a
“semi-information theoretic” upper bound on the capacity scaling of such dense
networks. The upper bound is “semi-information theoretic”, as all communi-
cation in the network is a priori restricted to be of the form of point-to-point
communication: the signals received from nodes other than one particular
transmitter are to be regarded as noise degrading the communication link. As
such, the upper bound of [27] shows that classical network architectures with
conventional single-user decoding and forwarding of packets cannot achieve a
total throughput scaling better than O(

√
n). Equivalently, the rate of commu-

nication between any source-destination pair in the network has to decrease
to zero as O( 1√

n
), when the number of users n becomes large. The intuition

behind this upper bound is the following: Given the restriction to point-to-
point communication, the only way to deliver packets to their destinations is
via multi-hopping and essentially, the only flexibility left in the design is the
range of these hops. It turns out that long-range communication is not ben-
eficial, as the interference generated would preclude most of the other nodes
from communicating. Instead, it is better to stick to nearest neighbor com-
munication and maximize the number of simultaneous transmissions (spatial
reuse). However, this means that each packet has to be retransmitted many
times before getting to its final destination, leading to a sub-linear scaling of
system throughput.

The work [27] gives a very good insight on the potential, as well as the limi-
tations of the current physical-layer technology in wireless networks. However,
from an information theoretic perspective, this is a very restricted treatment
of wireless networks. The inherent broadcasting and superposition nature of
wireless communication, as well as the fact that there are many nodes involved,
each with transmitting and receiving capabilities, makes this setup very rich in
terms of possibilities for enhancing information transfer. Hence, one wishes to
study wireless networks without making assumptions rooted in the current en-
gineering practice, since such assumptions may not be applicable in general and
thus essentially are arbitrary. This raises the question of whether the O(

√
n)

upper bound of [27] is indeed universal and applies to any possible scheme that
does not necessarily confine to point-to-point communication. This question
was first addressed in [54] where it was shown that whenever the power path
loss exponent α of the environment in (2.1) is greater than 6 (i.e. the received
power decays faster than r−6 with the distance r from the transmitter), O(

√
n)

upper bounds the total throughput scaling of any possible scheme. The work
[54] was followed by several others [30, 34, 53, 3]. Successively, they improved
the threshold on the path loss exponent α for which the O(

√
n) scaling law of

[27] could be confirmed information theoretically (α > 5 in [30], α > 4.5 in [3]
and α > 4 in [53]). The question has been open for the important range of α
between 2 and 4. A corollary of the results presented in the next section of
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this thesis fills this gap.
However, there is a subtle point that has received little attention in the

literature up-to now. Although [54] and the follow-up works set to confirm the
“semi-information theoretic” upper bound of [27] from an information theo-
retic point of view, they are based on different network models. The paper [27]
deals with dense networks while [54] and the subsequent works couple the net-
work parameters in a different way. The area 2A = n, while the power P and
the bandwidth W remain constant as the number of nodes n increases in the
network. This way of scaling the parameters of the network is referred to as ex-
tended scaling or extended network. The results of the next section will reveal
that the dense and the extended scalings are indeed fundamentally different
from each other. A way to understand the difference between the engineer-
ing implications of these two network scalings is by drawing a parallel with
the classical notions of interference-limitedness and coverage-limitedness, the
two operating regimes of cellular networks. Cellular networks in urban areas
tend to have dense deployments of base-stations, so that signals are received
at the mobiles with sufficient signal-to-noise ratio (SNR), but performance is
limited by interference between transmissions in adjacent cells. Cellular net-
works in rural areas, on the other hand, tend to have sparse deployments of
base-stations, so that performance is mainly limited by the ability to transmit
enough power to reach all the users with sufficient signal-to-noise ratio. Anal-
ogously, in the dense network scaling, all nodes can communicate with each
other with sufficient SNR; performance can only be limited by interference, if
at all. The O(

√
n) upper bound of Gupta-Kumar comes precisely from such

an interference limitation. In the extended network scaling, the source and
destination pairs are at increasing distance from each other, and so both inter-
ference limitation and power limitation can come into play. The network can be
coverage-limited and/or interference-limited. The information-theoretic limit
on performance proved in [54, 30, 34, 53, 3] are all based on the cutset bound
[12, Theorem 14.10.1], that assumes full cooperation between the transmitting
and receiving nodes. Hence, starting with a cooperative bound, the limitation
captured by these works is not due to interference. The limitation comes from
bounding the maximum amount of power that can be transferred across the
network. What was shown by these works is that for α > 4, when signals at-
tenuate fast enough, the extended network is fundamentally coverage-limited:
even with optimal cooperative relaying, the amount of power transferred across
the network does not allow to achieve a throughput scaling better than O(

√
n).

In this sense, these works have not answered the original question of whether
the interference limitation implied by the “semi-information theoretic” upper
bound of [27] is fundamental or not, but they have introduced a new phe-
nomenon, power limitation in wireless networks, into the discussion. In the
following section, we will see that the extended scaling is not only power lim-
ited for α > 4, but for all α > 2. Though, the O(

√
n) upper bound holds only

for α ≥ 3. When 2 ≤ α < 3, the total capacity scaling is upper bounded by
O(n2−α/2). The key to our result on extended scaling is a careful evaluation
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of the maximum amount of power that can be transferred across the extended
network, by using techniques from random matrix theory. Earlier works [54]–
[3] are also based on bounding the maximum power transfer, but their upper
bounding techniques are loose for 2 ≤ α < 4, i.e., when attenuation is lower
and power transfer becomes easier.

However, the result presented in this chapter is much more general than a
tight upper bound on the extended scaling. We present a tight upper bound on
the capacity scaling of wireless networks with area A = nγ, for any γ. It turns
out that the problem is indeed much more interesting for 0 < γ < 1, than it is
for extended networks (corresponding to γ = 1) or dense networks (correspond-
ing to γ = 0). We will see that extended networks correspond to the special
case of SNRs = 0 dB, inside a larger class of networks with SNRs ≤ 0 dB. Such
networks are completely power-limited, since even the nearest-neighbor links
are in the power-limited regime. On the other hand, dense networks are one
special case of networks that experience no power-limitation, i.e., SNRl ≥ 0 dB.
Naturally, the most interesting case is when the the network is only partially
power-limited, i.e., when SNRs > 0 dB but SNRl < 0 dB. This models the
common scenario where the channels between different node pairs are in dif-
ferent SNR regimes, short scale links are bandwidth-limited while long-range
links are power-limited. Such networks exhibit an interesting behavior that
can not be anticipated by studying the dense or extended scalings.

The main result of this chapter is summarized in the next section.

3.2 Main Result

Recall the definition of the scaling exponent of the total throughput T defined
earlier in Chapter 2,

e(α, β) = lim
n→∞

log T

log n
.

where

β = lim
n→∞

log SNRs

log n
.

is the scaling exponent of

SNRs =
GP

N0W (
√

A/n)α
. (3.1)

The main result of this chapter is to establish the following tight upper bound
on the aggregate throughput scaling achieved by any scheme in the network.
The following section is devoted to the proof of this theorem.

Theorem 3.2.1. The scaling exponent of the aggregate throughput T is bounded
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above with high probability by,

e(α, β) ≤















1 β ≥ α/2 − 1
2 − α/2 + β β < α/2 − 1 and 2 ≤ α < 3
1/2 + β β ≤ 0 and α ≥ 3
1/2 + β/(α − 2) 0 < β < α/2 − 1 and α ≥ 3,

(3.2)

for α ≥ 2 and any real β where β is the scaling exponent of the nearest neighbor
SNR.

The upper bounds for the dense and extended scalings can be found as
special cases of the above result. In the dense scaling, the area, the bandwidth
and the power are constants that do not depend on n. It can be observed from
(3.1) that SNRs = Θ(nα/2), or equivalently dense networks correspond to β =
α/2 which falls in the first regime in (3.2) yielding an exponent e(α, α/2) ≤ 1.
In the extended scaling A = n while P and W are constants independent of n.
In (3.1), SNRs = Θ(1) or equivalently β = 0. Thus depending on the power
path loss exponent, extended networks fall in either the second or the third
regime in (3.2), with an exponent equal to

e(α, 0) ≤
{

2 − α/2 2 ≤ α ≤ 3
1/2 α > 3,

.

Note that neither the dense nor the extended scaling touches the fourth regime.

3.3 Cutset Upper Bound

We consider a cut dividing the network area into two equal halves. We are
interested in bounding above the sum of the rates of communications passing
through the cut from left to right. These communications with source nodes
located on the left and destination nodes located on the right half domain are
depicted in bold lines in Fig. 3.1. By Part-(d) of Lemma 2.3.1, this sum-rate is
equal to 1/4’th of the total throughput T with high probability. The maximum
achievable sum-rate between these source-destination pairs is bounded above
by the capacity of the MIMO channel between all nodes S located to the left of
the cut and all nodes D located to the right. Under the fast fading assumption,
we have

TL→R ≤ max
Q(H)≥0

E(Qkk(H))≤P/W, ∀k∈S

E

(

log det

(

I +
1

N0

HQ(H)H∗
))

(3.3)

where

Hik =

√
G ej θik

r
α/2
ik

, k ∈ S, i ∈ D.

The mapping Q(·) is from the set of possible channel realizations H to the set
of positive semi-definite transmit covariance matrices. The diagonal element



30 Upper Bound

DS
y

v̂

x

E VD

Figure 3.1: The cut-set considered in Section 3.3. The communication requests
that pass across the cut from left to right are depicted in bold lines.

Qkk(H) corresponds to the power allocated to the kth node for channel state
H. Let us simplify notation by introducing the nearest neighbor SNR defined
earlier in (2.4) and also rescale the distances in the network by this nearest
neighbor distance, defining

r̂ik :=
1

√

A/n
rik and Ĥik :=

ej θik

r̂
α/2
ik

. (3.4)

Note that the first transformation rescales space and maps our original network
of area

√
A ×

√
A to a network of area

√
n × √

n. Consequently, the matrix
Ĥ defined in terms of the rescaled distances relates to such a network with
area n. Normalizing the typical nearest neighbor distance to 1 provides the
convenience that the received SNR in a point-to-point transmission between
two nodes at rescaled distance r̂ can be simply written as SNRsr̂

−α. We can
thus rewrite (3.3) in terms of these new variables as1

TL→R ≤ max
Q(Ĥ)≥0

E(Qkk(Ĥ))≤1, ∀k∈S

E

(

log det(I + SNRs ĤQ(Ĥ)Ĥ∗)
)

. (3.5)

One way to upper bound (3.5) is through upper bounding the capacity by
the total received SNR, formally using the relation

log det(I + SNRs ĤQ(Ĥ)Ĥ∗) ≤ Tr
(

SNRs ĤQ(Ĥ)Ĥ∗
)

. (3.6)

1 Networks with area extending linearly in the number of users are usually called ex-
tended networks in the literature. By rescaling distances we map our original network to
such an extended network. However, the problem itself does not reduce to the extended
scaling problem, since here we do not necessarily assume SNRs = 1. Indeed, we keep full
generality and are interested in characterizing the whole regime SNRs = nβ , where β can
be any real number.
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The upper bound is tight only if the SNR received by each right-hand side
node, i.e, each diagonal entry of the matrix SNRs ĤQ(Ĥ)Ĥ∗, is small. (Note
that the relation in (3.6) relies on the inequality log(1 + x) ≤ x, which is
only tight if x is small.) Whether this is the case or not depends on SNRs.
It can be shown that if SNRs ≤ 1, the network is highly power-limited and
the received SNR is small, i.e., decays to zero with increasing n, for every
right-hand side node. Using (3.6) will yield a tight upper bound in that case.
However, in the general case SNRs can be arbitrarily large, which can result
in high received SNR for certain right-hand side nodes that are located close
to the cut or even for all nodes in D. Hence, before using (3.6), we need to
distinguish between those nodes in D that receive high SNR and those that
have poor power connections to the left-hand side.

Assumption 3.3.1. For the sake of simplicity in presentation, we assume in
this section that there is a rectangular region located immediately to the right
of the cut that is cleared of nodes. Formally, we assume that the set of nodes
E = {i ∈ D : 0 ≤ x̂i ≤ 1} is empty, where x̂i denotes the horizontal coordinate
of the rescaled position r̂i = (x̂i, ŷi) of node i. In fact, w.h.p this property
does not hold in a random realization of the network. However, making this
assumption allows to exhibit the central ideas in the following derivation in a
simpler manner. The extension of the analysis to the general case (without
this particular assumption) is given in Appendix 3.B.

Let VD denote the set of nodes located on a rectangular strip immediately
to the right of the empty region E. Formally, VD = {i ∈ D : 1 ≤ x̂i ≤ v̂},
where 1 ≤ v̂ ≤ √

n/2 and v̂ − 1 is the rescaled width of the rectangular strip
VD. See Fig. 3.1. We would like to tune v̂ so that VD contains the right-hand
side nodes with high received SNR from the left-hand side; i.e., those nodes
that receive SNR larger than a threshold, say 1. Note however that we do
not yet know the covariance matrix Q of the transmissions from the left-hand
side nodes, which is to be determined from the maximization problem in (3.5).
Thus, we cannot really compute the received SNR of a right-hand side node.
For the purpose of specifying VD however, let us arbitrarily look at the case
when Q is the identity matrix and define the received SNR of a right-hand side
node i ∈ D when left-hand side nodes are transmitting independent signals at
full power to be

SNRi :=
∑

k∈S

P

N0W
|Hik|2 = SNRs

∑

k∈S

|Ĥik|2 = SNRs d̂i. (3.7)

where we have defined
d̂i :=

∑

k∈S

|Ĥik|2. (3.8)

Later, we will see that this arbitrary choice of identity covariance matrix is
indeed a reasonable one (Lemma 3.3.1). A good approximation for d̂i is

d̂i ≈ x̂2−α
i (3.9)
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where x̂i denotes the rescaled horizontal coordinate of the right-hand side node
i ∈ D. (This fact is made precise in Lemma 3.3.3.) Recall that 1 ≤ x̂i ≤

√
n/2

and since α ≥ 2, d̂i is decreasing in x̂i. Using (3.7) and (3.9), we can identify
three different regimes and specify v̂ accordingly:

1) If SNRs ≥ nα/2−1, then SNRi & 1, ∀i ∈ D. Hence, let us choose
v̂ =

√
n/2 or equivalently VD = D in this case.

2) If SNRs ≤ 1, then SNRi . 1, ∀i ∈ D. Thus, let us choose v̂ = 1 or
equivalently VD = ∅.2

3) If 1 < SNRs < nα/2−1, then let us choose

v̂ =

{ √
n/2 if α = 2

SNR
1

α−2
s if α > 2

so that we ensure SNRi & 1, ∀i ∈ VD.

We now would like to break the information transfer from the left-half
domain S to the right-half domain D in (3.5) into two terms. The first term
governs the information transfer from S to VD. The second term governs the
information transfer from S to the remaining nodes on the right-half domain,
i.e., D \ VD. Recall that the characteristic of the nodes VD is that they have
good power connections to the left-hand side, that is, the information transfer
from S to VD is not limited in power, but can be limited in degrees of freedom.
Thus, it is reasonable to bound the rate of this first information transfer by
the cardinality of the set VD, rather than the total received SNR. On the other
hand, the remaining nodes in D \ VD have poor power connections to the left-
half domain and the information transfer to these nodes is limited in power,
hence using (3.6) is tight. Formally, we proceed by applying the generalized
block Hadamard’s inequality (also known as Fischer’s inequality) which yields

log det(I + SNRsĤQ(Ĥ)Ĥ∗) ≤ log det(I + SNRsĤ1Q(Ĥ)Ĥ∗
1 )

+ log det(I + SNRsĤ2Q(Ĥ)Ĥ∗
2 )

where Ĥ1 and Ĥ2 are obtained by partitioning the original matrix Ĥ: Ĥ1 is the
rectangular matrix with entries Ĥik, k ∈ S, i ∈ VD and Ĥ2 is the rectangular
matrix with entries Ĥik, k ∈ S, i ∈ D \ VD. In turn, (3.5) is bounded above by

TL→R ≤ max
Q(Ĥ1)≥0

E(Qkk(Ĥ1))≤1, ∀k∈S

E

(

log det(I + SNRsĤ1Q(Ĥ1)Ĥ
∗
1 )
)

+ max
Q(Ĥ2)≥0

E(Qkk(Ĥ2))≤1, ∀k∈S

E

(

log det(I + SNRsĤ2Q(Ĥ2)Ĥ
∗
2 )
)

(3.10)

2Note that here we make use of the earlier assumption of an empty strip E of width 1.
Without the assumption, we would need to choose v̂ < 1 in this part.
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The first term in (3.10) can be bounded by applying Hadamard’s inequality
once more, or equivalently, by considering the sum of the capacities of the
individual multiple-input single-output (MISO) channels between nodes in S
and each node in VD,

max
Q(Ĥ1)≥0

E(Qkk(Ĥ1))≤1, ∀k∈S

E

(

log det(I + SNRsĤ1Q(Ĥ1)Ĥ
∗
1 )
)

≤
∑

i∈VD

log(1 + n SNRs

∑

k∈S

|Ĥik|2) (3.11)

≤ (v̂ − 1)
√

n log n log(1 + n2+α(1/2+δ) SNRs) (3.12)

w.h.p. for any δ > 0. Inequality (3.11) comes from the fact that for any
covariance matrix Q of the transmissions from S, the SNR received by each
node i ∈ VD is smaller than n SNRsd̂i. Inequality (3.12) is obtained by using
the crude bound d̂i ≤ n1+α(1/2+δ), which follows from the fact that the rescaled
minimal separation between any two nodes in the network is larger than 1

n1/2+δ

w.h.p. for any δ > 0 (Lemma 2.3.1-(a)) and the number of nodes in S are
smaller than n. On the other hand, the number of nodes in VD is upper
bounded by (v̂ − 1)

√
n log n w.h.p (Lemma 2.3.1-(b)).

The second term in (3.10) is the capacity of the MIMO channel between
nodes in S and nodes in D\VD. The following lemma provides an upper bound
on the capacity of this channel. Though the main idea is to upper bound the
capacity by the total received SNR using inequality (3.6), this is not done
immediately as we first need to waive out the possibility of communicating
only through non-typically good channel matrices. Once (3.6) is applied, we
need to handle the maximization over all admissible covariance matrices that
are allowed to be functions of the channel state realizations.

Note that the upper bound given in the below lemma holds in general for
any choice of v̂, or equivalently D \ VD. However, recall our earlier discussion
that the upper bound will be tight only if the set D\VD is tuned appropriately.

Lemma 3.3.1. Let SNRtot be the total SNR received by all the nodes in D\VD,
when nodes in S are transmitting independent signals at full power, i.e.,

SNRtot :=
∑

i∈D\VD

SNRi = SNRs

∑

i∈D\VD

d̂i. (3.13)

Recall that SNRi has been defined in (3.7) as the SNR received by the node
i ∈ D under independent transmissions from the left hand side. Then for
every ǫ > 0,

max
Q(Ĥ2)≥0

E(Qkk(Ĥ2))≤1, ∀k∈S

E

(

log det(I + SNRsĤ2Q(Ĥ2)Ĥ
∗
2 )
)

≤ nǫSNRtot. (3.14)
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Moreover, if D \ VD 6= ∅ the scaling of the total received SNR can be evaluated
to be

SNRtot ≤
{

K1 SNRs n2−α/2(log n)3 2 ≤ α < 3

K1 SNRs v̂3−α
√

n (log n)3 α ≥ 3.
(3.15)

w.h.p., where K1 > 0 is a constant independent of SNRs and n.

Lemma 3.3.1 says couple of surprising things. First of all, it says that in-
dependent signaling at the transmit nodes is sufficient to achieve the cutset
upper bound. Note that, a priori, on the left-hand side of (3.14), nodes are
allowed to cooperate and do any sort of transmit beamforming over channel
state realizations. Lemma 3.3.1 says that this is not necessary. This explains
why we earlier based our choice of v̂ on the assumption of independent trans-
missions from the left-hand side nodes. Independent signalling is indeed good
enough, at least as far as scaling of the capacity is concerned.

Second, depending on α, the lemma identifies a dichotomy on how the
received SNR under independent transmissions scales with system size (3.15).
This dichotomy can be interpreted as follows. The total received SNR is
dominated either by the power transferred between node pairs separated by a
relatively short-distance (of the order of v̂) or by the power transferred between
nodes far away (at distance of the order of

√
n). There are relatively fewer

node pairs at distance v̂ but the channels between these pairs are considerably
stronger than the pairs at diameter distance. When the attenuation parameter
α is less than 3, the received power is dominated by the transfer between the
large number of node pairs at distance

√
n. There are n2 node pairs separated

by a rescaled distance of the order of
√

n, which yields a total SNR transfer
of SNRs × n2 × √

n
−α

between these pairs. This is the first term in (3.15)
up to the logarithmic terms. When α ≥ 3, the received SNR in the cutset
bound is dominated by the power transferred between node pairs at distance
v̂. There are an order of

√
n × v̂3 pairs located at distance of the order of v̂.

(Consider the nodes in S located up-to v̂ rescaled horizontal distance to the
cut and those nodes in D \VD located up-to 2v̂ horizontal distance to the cut.
Then count the number of node pairs that are separated with a distance of the
order of v̂.) Hence, the total SNR transfer between these node pairs is equal
to

√
nv̂3 × (v̂)−α. This argument yields the second term in (3.15) up to the

logarithmic terms.

Combining the upper bounds (3.12) and (3.14) together with our choices
for v̂ specified earlier, one can get an upper bound on TL→R in terms of SNRs

and n. Here, we state the final result in terms of scaling exponents: Recall the
definitions of the scaling exponents of the aggregate throughput in (2.8) and



3.3. Cutset Upper Bound 35

the nearest neighbor SNR in (2.9). We have,

e(α, β) ≤















1 β ≥ α/2 − 1
2 − α/2 + β β < α/2 − 1 and 2 ≤ α < 3
1/2 + β β ≤ 0 and α ≥ 3
1/2 + β/(α − 2) 0 < β < α/2 − 1 and α ≥ 3

(3.16)

where we identify four different operating regimes depending on α and β.
Note that in the first regime the upper bound (3.12) is active with v̂ =

√
n

(or equivalently VD = D) while (3.14) is zero. The capacity of the network
is limited by the degrees of freedom in an n × n MIMO transmission between
the left and the right hand side nodes. In the second regime, (3.14) with
the corresponding upper bound being the first line in (3.15), yields a larger
contribution than (3.12). The capacity is limited by the total received SNR
in a MIMO transmission between the left-hand side nodes and D \ VD. Note
that this total received SNR is equal (in order) to the power transferred in a
MIMO transmission between two groups of n nodes separated by a distance
of the order of the diameter of the network, i.e., n2 × (

√
n)−α × SNRs.

In the third regime, (3.14) is active with v̂ = 1, or equivalently VD = ∅
so (3.12) is zero. The corresponding upper bound is the second line in (3.15).
The capacity in this regime is still limited by the total SNR received by nodes
in D \ VD (= D now) but the total is now dominated by the SNR transferred
between the nearest nodes to the cut, i.e.,

√
n pairs separated by the nearest

neighbor distance (v̂ = 1), yielding
√

n × SNRs. Note that this is where we
make use of the assumption that there are no nodes located at rescaled distance
smaller than 1 to the cut. Due to this assumption, the choice v̂ = 1 vanishes
the upper bound (3.12) and simultaneously yields K1SNRs

√
n(log n)2 in the

last line in (3.15) for the total SNR transferred from S to D. If there were
nodes closer than rescaled distance 1 to the cut, we would need to choose v̂ < 1
to vanish the contribution from (3.12) which would yield a larger value for the
term K1SNRsv̂

3−α
√

n(log n)2. The difficulty is the following. We would like to
conclude that in this regime, the power transfer between left and right-hand
side nodes is dominated by the contribution of the order

√
n nearest neighbor

pairs located around the cut. However there can be a pair of nodes, one node
on the left and the other one on the right of the cut, that is separated by
a distance much smaller than the nearest neighbor distance in the network
and the capacity of the channel between these two nodes can be much larger
than the total contribution of the

√
n nearest neighbor pairs. However, even

though this may be the case for the cut considered, it is not possible to rely
on such pairs for communicating inside the network, since these pairs do not
form a path inside the network w.h.p. See how this fact is made precise in
Appendix 3.B.

The most interesting regime is the fourth one. Both (3.12) and (3.14), with

the choice v̂ = SNR
1

α−2
s , yield the same contribution. Note that (3.12) upper

bounds the information transfer to VD, the set of nodes that have bandwidth-
limited connections to the left-hand side. This information transfer is limited
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in degrees of freedom. On the other hand, (3.14) upper bounds the information
transfer to D \VD, the set of nodes that have power-limited connections to the
left-hand side. This second information transfer is power-limited. Therefore
in this regime, the network capacity is both limited in degrees of freedom
and power, since increasing the bandwidth increases the first term (3.12) and
increasing the power increases the second term (3.14). This behavior is a
consequence of the heterogeneous nature of links in a network and does not
occur in point-to-point links. �

Proof of Lemma 3.3.1: We are interested in the scaling of the MIMO
capacity,

max
Q(Ĥ2)≥0

E(Qkk(Ĥ2))≤1, ∀k∈S

E

(

log det
(

I + SNRsĤ2Q
(

Ĥ2

)

Ĥ∗
2

))

. (3.17)

A natural way to upper bound (3.17) is to first relax the individual power
constraint

E

(

Qkk

(

Ĥ2

))

≤ 1, ∀k ∈ S

to a total power constraint,

E

(

Tr Q
(

Ĥ2

))

≤ |S|

where |S| denotes the cardinality of the set S. In the present context however,
this is not convenient, since the matrix Ĥ2 is badly conditioned: some nodes
in S are close to the cut and some are far apart, so the impact of their 1 Watt
power on the system performance is quite different. A total transmit power
constraint allows the transfer of power from the nodes far away from the cut
to those nodes that are located close to the cut, resulting in a loose bound.
Instead, we will relax the individual power constraints to a total weighted power
constraint, where the weight assigned to a node is proportional to the impact
of its unit power. The impact is measured by the total received power on the
right-hand side of the cut per watt of transmit power from that left-hand side
node.

Let us normalize the columns of the matrix Ĥ2 by dividing each column k
by its norm. Let wk denote the squared L2-norm of the k’th column

wk =
∑

i∈D\VD

|Ĥik|2,

We define the normalized matrix

H̃ik =
1√
wk

Ĥik i ∈ D \ VD, k ∈ S. (3.18)
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The expression (3.17) is then equal to

max
Q̃(H̃)≥0

E(Q̃kk(H̃))≤wk, ∀k∈S

E

(

log det
(

I + SNRsH̃Q̃
(

H̃
)

H̃∗
))

.

Note that SNRswk corresponds to the total received SNR by the nodes D \VD

of the signal sent by the user k ∈ S. Having weighted each of the individual
power constraint in (3.17) by their impact, we now relax them to a total power
constraint which yields the following upper bound for (3.17),

max
Q̃(H̃)≥0

E(TrQ̃(H))≤Wtot

E

(

log det(I + SNRsH̃Q̃(H̃)H̃∗)
)

,

where
Wtot =

∑

k∈S

wk =
∑

k∈S, i∈D\VD

|Ĥik|2.

Let us now define, for given n ≥ 1 and ε > 0, the event

Bn,ε = {‖H̃‖2 > nε},

where ‖A‖ denotes the largest singular value of the matrix A. Note that the
matrix H̃ is better conditioned than the original channel matrix Ĥ2: all the
diagonal elements of H̃H̃∗ are roughly of the same order (up to a factor log n),
and it can be shown that there exists K2 > 0 such that

E(‖H̃‖2) ≤ K2 (log n)3

for all n. In Appendix 3.A, we show the following more precise statement.

Lemma 3.3.2. For any ε > 0 and p ≥ 1, there exists K2 > 0 such that for all
n,

P(Bn,ε) ≤
K2

np
.

It follows that

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

log det(I + SNRsH̃Q̃(H̃)H̃∗)
)

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

log det(I + SNRsH̃Q̃(H̃)H̃∗) 1Bn,ε

)

+ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

log det(I + SNRsH̃Q̃(H̃)H̃∗) 1Bc
n,ε

)

(3.19)
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The first term in (3.19) refers to the event that the channel matrix H̃ is acci-
dentally ill-conditioned. Since the probability of such an event is polynomially
small by Lemma 3.3.2, the contribution of this first term is actually negligible.
In the second term in (3.19), the matrix H̃ is well conditioned, and this term is
actually proportional to the maximum SNR transfer from S to D\VD. Details
follow below.

For the first term in (3.19), we use Hadamard’s inequality and obtain

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

log det(I + SNRs H̃Q̃(H̃)H̃∗) 1Bn,ε

)

= max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

log det(I + SNRs H̃Q̃(H̃)H̃∗)
∣

∣

∣Bn,ε

)

P(Bn,ε)

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

∑

i∈D\VD

log(1 + SNRs H̃iQ̃(H̃)H̃∗
i )
∣

∣

∣Bn,ε

)

P(Bn,ε)

where H̃i is the ith row of H̃. By the fact that

H̃iQ̃(H̃)H̃∗
i = Tr

(

H̃iQ̃(H̃)H̃∗
i

)

≤ ‖H̃i‖2 Tr
(

Q̃(H̃)
)

where ‖H̃i‖2 is the squared norm of H̃i, and using Jensen’s inequality, this
expression in turn is bounded above by

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

∑

i∈D\VD

log
(

1 + SNRs E

(

‖H̃i‖2 TrQ̃(H̃)
∣

∣

∣Bn,ε

))

P(Bn,ε)

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

∑

i∈D\VD

log
(

1 + SNRs E

(

‖H̃i‖2 TrQ̃(H̃)
)/

P(Bn,ε)
)

P(Bn,ε)

≤ n log

(

1 + SNRs
nWtot

P(Bn,ε)

)

P(Bn,ε).

The last inequality follows from upper-bounding ‖H̃i‖2 as

‖H̃i‖2 =
∑

k∈S

|Ĥik|2
1

wk

≤
∑

k∈S

1 ≤ n.

which follows from the definition of H̃ in (3.18). The fact that the rescaled
minimum distance between the nodes in S and D \ VD is at least 1 yields

Wtot =
∑

k∈S, i∈D\VD

|Ĥik|2 < n2.
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Sm

Sm+1

Sm−1

S D \ VD

v̂

Figure 3.2: The displacement of the nodes inside the squarelets to squarelet
vertices, indicated by arrows.

Noting that x 7→ x log(1 + 1/x) is increasing on [0, 1] and using Lemma 3.3.2,
we obtain finally that for any p ≥ 1, there exists K2 > 0 such that

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

log det(I + SNRsH̃Q̃(H̃)H̃∗) 1Bn,ε

)

≤ K2 n1−p log

(

1 + SNRs
n3+p

K2

)

,

which decays polynomially to zero with arbitrary exponent as n tends to in-
finity.

For the second term in (3.19), we simply have

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

log det(I + SNRsH̃Q̃(H̃)H̃∗) 1Bc
n,ε

)

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

Tr(SNRsH̃Q̃(H̃)H̃∗) 1Bc
n,ε

)

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E

(

SNRs‖H̃‖2TrQ̃(H̃) 1Bc
n,ε

)

≤ nε SNRsWtot.

The last thing that needs therefore to be checked is the scaling of Wtot stated
in Lemma 3.3.1.

Let us divide the rescaled network area of size n into n squarelets of area
1. By Part (b) of Lemma 2.3.1, there are no more than log n nodes in each
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squarelet with high probability. Let us consider grouping the squarelets on
the left of the cut into

√
n rectangular areas of height 1 and width

√
n/2, as

shown in Figure 3.2. Let Sm denote the nodes in S that are located on the

m’th rectangle so that S =
⋃

√
n

m=1 Sm. We are interested in bounding above

Wtot =
∑

k∈S

wk =

√
n

∑

m=1

∑

k∈Sm

wk.

Let us consider

∑

k∈Sm

wk =
∑

k∈Sm,i∈D\VD

|Ĥik|2 =
∑

k∈Sm,i∈D\VD

r̂−α
ik (3.20)

for a given m. Note that if we move the points that lie in each squarelet of
Sm together with the nodes in the squarelets of D \ VD onto the squarelet
vertex as indicated by the arrows in Figure 3.2, all the (positive) terms in the
summation in (3.20) can only increase since the displacement can only decrease
the Euclidean distance between the nodes involved. Note that the modification
results in a regular network with at most log n nodes at each squarelet vertex
on the left and at most 2 log n nodes at each squarelet vertex on the right.
Considering the same reasoning for all rectangular slabs Sm, ,m = 1, . . . ,

√
n

allows to conclude that Wtot for the random network is with high probability
less than the same quantity computed for a regular network where nodes are
located on a square grid of distance 1, with log n nodes at each left-hand side
vertex and 2 log n nodes at each right-hand side vertex.

The most convenient way to index the node positions in a regular network
is to use double indices. The left-hand side nodes are located at positions
(−kx, ky) for kx = 0, . . . ,

√
n/2, ky = 0, . . . ,

√
n and those on the right at

positions (ix, iy) where ix = v̂, . . . ,
√

n/2 for v̂ ≥ 1 and iy = 0, . . . ,
√

n, so that

Ĥik =
ej θik

((ix + kx)2 + (iy − ky)2)α/4

and

wkx,ky =

√
n/2
∑

ix=v̂

√
n

∑

iy=0

1

((ix + kx)2 + (iy − ky)2)α/2
(3.21)

which yields the following upper bound for Wtot of the random network,

Wtot ≤ 2(log n)2

√
n/2
∑

kx=0

√
n

∑

ky=0

wkx,ky . (3.22)

The following lemma establishes the scaling of wkx,ky defined in (3.21).
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Lemma 3.3.3. There exist constants K3, K4 > 0 independent of kx, ky and n
such that

wkx,ky ≤
{

K3 log n if α = 2,
K3 (v̂ + kx)

2−α if α > 2,

and
wkx,ky ≥ K4 (v̂ + kx)

2−α for α ≥ 2.

The rigorous proof of the lemma is given at the end of Appendix 3.A. A
heuristic way of thinking about the approximation

wkx,ky ≈ (v̂ + kx)
2−α

can be obtained through Laplace’s principle. The summation in wkx,ky scales
the same as the maximum term in the sum times the number of terms which
have roughly this maximum value. The maximum term is of the order of
1/(v̂ + kx)

α. The terms that take on roughly this value are those for which
ix runs from v̂ to the order of 2v̂ + kx and iy runs from ky to ky plus or
minus the order of v̂ + kx. There are roughly (v̂ + kx)

2 such terms. Hence
wkx,ky ≈ 1/(v̂ + kx)

α · (v̂ + kx)
2 = (v̂ + kx)

2−α.
We can now use the upper bound given in Lemma 3.3.3 which gives

√
n

∑

kx,ky=0

wkx,ky ≤















K5 n log n if α = 2,
K5 n2−α/2 if 2 < α ≤ 3,
K5

√
n log n if α = 3,

K5 v̂3−α
√

n if α > 3

for another constant K5 > 0 independent of n. This upper bound combined
with (3.22) yields (3.15) and completes the proof of Lemma 3.3.1. �

3.4 Discussion

In the next chapter, we search for communication schemes whose performance
meets the upper bound derived in the current chapter. In this section, we
would like to summarize the insights provided by the upper bound derivation
on the properties of such optimal schemes.

In the first two regimes, we have seen that the capacity of the network is
limited by the degrees of freedom and received SNR respectively, in a network
wide MIMO transmission. Hence, we expect the optimal schemes for these
regimes to imitate such cooperative MIMO transmissions. However at this
point, it is not at all obvious that such cooperative MIMO transmissions can
be realized efficiently in a distributed network setup. Note that in the deriva-
tion of the upper bound, we have assumed that the transmitting nodes in S
and the receiving nodes in D can cooperate for free among themselves. In
reality, establishing cooperation between these nodes may be overwhelming.
We will see in Section 4.4 that this is not the case, as efficient architectures
for establishing cooperation can be devised.
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In the third regime, the information transfer between the two halves of
the network is limited by the power transferred between the closest nodes to
the cut. This observation suggests the following idea: if the objective is to
transfer information from the left-half network to the right-half, it is enough
to employ only those pairs that are located closest to the cut and separated
by the nearest neighbor distance. The rest of the nodes in the network can
undertake simultaneous transmissions, suggesting the idea of spatial reuse. In
other words, the upper bound derivation suggests that efficient transmissions
in this regime are the point-to-point transmissions between nearest neighbors.
Indeed, this is how the well-known nearest neighbor multi-hopping scheme
transfers power across the network, so the multi-hopping scheme arises as a
natural candidate for optimality in the third regime.

In the derivation of the upper bound for the fourth regime, we have seen
that the two terms (3.12) and (3.14), governing the information transfer from S
to VD and D \VD respectively, yield the same contribution with the particular

choice ŵ = SNR
1

α−2
s . Since the contributions of the two terms are equal (and

since we are interested in scaling here) the derivation of the upper bound
suggests the following idea: information can be transferred optimally from
the left-half network to the right-half by performing MIMO transmission only
between those nodes on both sides of the cut that are located up to ŵ =

SNR
1

α−2
s rescaled distance to the cut. Note that (3.12) corresponds to the

degrees of freedom in such a MIMO transmission. As in the case of multi-
hop, we can have spatial reuse and allow the rest of the nodes in the network
to perform simultaneous transmissions. Thus, the derivation of the upper
bound suggests that efficient transmissions in the fourth regime are MIMO

transmissions at the scale ŵ = SNR
1

α−2
s . Combined with the idea of spatial

reuse, this understanding suggests to transfer information in the network by

performing MIMO transmissions at the particular (local) scale of ŵ = SNR
1

α−2
s

and then multi-hopping at the global scale. The MIMO transmissions are again
based on the cooperation architecture that will be presented Section 4.4. This
hybrid scheme combining MIMO with multi-hopping will be introduced in
Section 4.6.

3.A Largest Eigenvalue of the Equalized Channel

Matrix H̃

In this appendix, we give the proofs of Lemma 3.3.2 and Lemma 3.3.3. We
start with Lemma 3.3.2. The proof of the second lemma is given at the end of
the section.

Proof of Lemma 3.3.2: Let us start by considering the 2mth moment of
the spectral norm of H̃ given by (see [29, Ch. 5])

‖H̃‖2m = ρ(H̃∗H̃)m = lim
l→∞

{Tr((H̃∗H̃)l)}m/l,
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where ρ(A) is the largest eigenvalue of the positive-semi-definite matrix A
which is called the spectral radius of A. By dominated convergence theorem
and Jensen’s inequality, we have

E(‖H̃‖2m) ≤ lim
l→∞

{E(Tr((H̃∗H̃)l))}m/l.

In the subsequent paragraphs, we will prove that the following upper bound
holds with high probability,

E(Tr((H̃∗H̃)l)) ≤ tl n (K ′
2 log n)3l (3.23)

where tl = (2l)!
l!(l+1)!

are the Catalan numbers and K ′
2 > 0 is a constant inde-

pendent of n. By Chebyshev’s inequality, this allows to conclude that for any
m,

P(Bn,ε) = P

(

‖H̃‖2 > nǫ
)

≤ E(‖H̃‖2m)

nmε

≤ 1

nmε
lim
l→∞

(tl n (K ′
1 log n)3l)m/l

≤ (4(K ′
2 log n)3)

m

nmε
,

since liml→∞ t
1/l
l = 4. For any ε > 0, choosing m sufficiently large shows

therefore that P(Bn,ε) decays polynomially with arbitrary exponent as n → ∞,
which is the result stated in Lemma 3.3.2.

There remains to prove the upperbound in (3.23). Expanding the expres-
sion gives

E(Tr((H̃∗H̃)l))

=
∑

i1,...,il∈D\VD
k1...,kl∈S

E

(

H̃i1k1H̃i1k2H̃i2k2H̃i2k3 . . . H̃ilkl
H̃ilk1

)

. (3.24)

Recall that the random variables H̃ik are independent and zero-mean, so the
expectation is only non-zero when the terms in the product form conjugate
pairs. Therefore, in order to upper bound (3.24) we first need to identify the
nonzero terms in the summation.

Let us consider the case l = 2 as an example. We have,

E(Tr((H̃∗H̃)2))

=
∑

i1,i2∈D\VD
k1,k2∈S

E

(

H̃i1k1H̃i1k2H̃i2k2H̃i2k1

)

(3.25)

=
∑

i1,i2∈D\VD
k∈S

|H̃i1k|2|H̃i2k|2 +
∑

i∈D\VD
k1 6=k2∈S

|H̃ik1 |2|H̃ik2|2 (3.26)
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H̃i1k2
H̃i2k2

H̃i2k1

i2

H̃i1k1

k2

k1

i1

Figure 3.3: The product in Eq. 3.25 illustrated as a ring.

since the expectation is non-zero only when either k1 = k2 = k or i1 = i2 =
i. Note that we have removed the expectations in (3.26) since |H̃ik|2 is a
deterministic quantity in our case. The expression can be bounded above by

E(Tr((H̃∗H̃)2))

≤
∑

i1,i2∈D\VD
k∈S

|H̃i1k|2|H̃i2k|2 +
∑

i∈D\VD
k1,k2∈S

|H̃ik1 |2|H̃ik2|2 (3.27)

where we now double-count the terms with i1 = i2 = i and k1 = k2 = k, that
is, the terms of the form |H̃ik|4.

The non-vanishing terms in the sum in (3.25) can also be determined by the
following approach, which generalizes to larger l: let each index be associated
to a vertex and each term in the product in (3.25) to an edge between its
corresponding vertices. Note that the resulting graph is in general a ring with
4 edges as depicted in Figure 3.3. A term in the summation in (3.25) is only
non-zero if each edge of its corresponding graph has even multiplicity. Such
a graph can be obtained from the ring in Figure 3.3 by merging some of the
vertices, thus equating their corresponding indices. For example, merging the
vertices k1 and k2 into a single vertex k gives the graph in Figure 3.4-a; on the
other hand, merging i1 and i2 into a single vertex i gives Figure 3.4-b. Note
that in the first figure i1, i2 can take values in D \ VD and k can take values
in S, thus the sum of all such terms yields

∑

i1,i2∈D\VD
k∈S

|H̃i1k|2|H̃i2k|2. (3.28)

Similarly, the terms of the form in Figure 3.4-b sum up to

∑

i∈D\VD
k1,k2∈S

|H̃ik1|2|H̃ik2|2. (3.29)

Note that another possible graph composed of edges with even multiplicity
can be obtained by further merging the vertices i1 and i2 into a single vertex i
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i1
i2

k2

k1k1 = k2 = k

i1 = i2 = i

a) b)

Figure 3.4: Two possible graphs corresponding to the non-zero terms in (3.25).

k1

k2

i2

k3

i3

k4

i4

i1
H̃i1k1

H̃i1k2

H̃i2k2

H̃i2k3

H̃i3k3

H̃i3k4

Figure 3.5: The product in Eq. 3.24 illustrated as a ring.

in Figure 3.4-a, or equivalently merging k1 and k2 into k in Figure 3.4-b. This
will result in a graph with only two vertices k and i and a quadruple edge in
between which corresponds to terms of the form |H̃ik|4 with i ∈ D \ VD and
k ∈ S. Note however that such terms have already been considered in both
(3.28) and (3.29) since we did not exclude the case i1 = i2 in (3.28) and k1 = k2

in (3.29). In fact, terms corresponding to any graph with number of vertices
less than 3 are already accounted for in either one of the sums in (3.28) and
(3.29), or simultaneously in both. Hence, the sum of (3.28) and (3.29) is an
upper bound for (3.25) yielding again (3.27).

In the general case with l ≥ 2, considering (3.24) leads to a larger ring
with 2l edges, as depicted in Figure 3.5. Similarly to the case l = 2, the
non-vanishing terms in (3.24) are those that correspond to a graph having
only edges of even multiplicity. Since each edge can have at least double
multiplicity, such graphs can have at most l edges. In turn, a graph with l
edges can have at most l + 1 vertices which is the case of a tree. Hence, let us
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k1 = k2 = k3 = p1

i1 = p2

i3 = p3

i2 = p2

k1 = p1

k2 = p3 k3 = p4

i1 = i2
= i3 = p2

k1 = k2 = p1

i1 = p2

k3 = p4

i2 = p4

k1 = p1

k2 = k3 = p3

i1 = i3 = p2

i2 = i3 = p3

k1 = k3 = p1

k2 = p3

i3 = p4i1 = i2 = p2

Figure 3.6: Planar rooted planted trees with 3 branches. Note that each edge
is actually a double edge in our case, although depicted with a single line in the
figure.

first start by considering such trees; namely, planar trees with l branches that
are rooted (at k1) and planted, implying that rotating asymmetric trees around
the root results in a new tree. See Figure 3.6 which depicts the five possible
trees with l = 3 branches where we relabel the resultant l + 1 = 4 vertices
as p1, . . . , p4. In general, the number of different planar, rooted, planted trees
with l branches is given by the l’th Catalan number tl [48]. In each of these
trees, the l + 1 vertices p1, . . . , pl+1 take values in either D \ VD or S. Hence,
each tree T l

q , q = 1, . . . , tl corresponds to a group of non-zero terms,

T l
q =

∑

p1,...,pl+1

fT l
q
(p1, . . . , pl+1), q = 1, . . . , tl. (3.30)

Note that if a non-vanishing term in (3.24) corresponds to a graph with
less than l + 1 vertices, then the corresponding graph possesses either edges
with multiplicity larger than 2 or cycles, and this term is already accounted
for in either one or more of the terms in (3.30). This fact can be observed
by noticing that both edges with large multiplicity as well as cycles can be
untied to get trees with l branches, with some of the l + 1 indices constrained
however to share the same values (see Figure 3.7). Note that such cases are
not excluded from the summations in (3.30), thus we have

E(Tr((H̃∗H̃)l)) ≤
tl
∑

q=1

T l
q. (3.31)
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p1

p2

p3

p5p4

a)

p1

p5

p6

p3

p2

p4

p1

p4

p5

p6

p3

p2

b)

p1

p2

p5p4

p3p3

p4

Figure 3.7: The graphs with a) cycles and b) edges with large multiplicity, can
be untied to get trees with some vertices constrained to share the same indices.

Now that we have identified the non-zero terms in the summation in (3.24),
we need to evaluate the order of these terms. Below we show that

T l
q ≤ n(K ′

2 log n)l, ∀q (3.32)

in a regular network and

T l
q ≤ n(K ′

2 log n)3l, ∀q (3.33)

with high probability in a random network for a constant K ′
2 > 0 independent

of n. We first concentrate on regular networks in order to reveal the proof idea
in the simplest setting. A binning argument then allows to extend the result
to random networks.

a) Regular network: In the regular case, we assume the nodes on the
left-half domain S are located at positions (−kx, ky) for kx = 0, . . . ,

√
n/2,

ky = 0, . . . ,
√

n and those on the right-half domain D at (ix, iy) for ix =
1, . . . ,

√
n/2, iy = 0, . . . ,

√
n. Recall that the matrix H̃ concerns the nodes in

S and nodes in D\VD. Therefore, the elements of the matrix H̃ corresponding
to a regular network are given by

H̃ik =
ej θik

((ix + kx)2 + (iy − ky)2)α/4

1
√

wkx,ky

,

for kx = 0, . . . ,
√

n/2, ky = 0, . . . ,
√

n and ix = v̂, . . . ,
√

n/2, iy = 0, . . . ,
√

n,
where

wkx,ky =

√
n/2
∑

ix=v̂

√
n

∑

iy=0

1

((ix + kx)2 + (iy − ky)2)α/2
.

In the discussion below, we will need an upper bound on the scaling of

∑

i∈D\VD

|H̃ik|2 =

√
n/2
∑

ix=v̂

√
n

∑

iy=0

|H̃ik|2 and
∑

k∈S

|H̃ik|2 =

√
n/2
∑

kx=0

√
n

∑

ky=0

|H̃ik|2.
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p4 pl+1

p1

p3p2

Figure 3.8: A simple tree with l branches.

By Lemma 3.3.3, we have

wkx,ky ≥ K4 (v̂ + kx)
2−α

for a constant K4 > 0 independent of n which, in turn, yields the upper bound

|H̃ik|2 ≤
1

K4

(v̂ + kx)
α−2

((ix + kx)2 + (iy − ky)2)α/2

≤ 1

K4

(v̂ + kx)
α−2

(ix + kx)2 + (iy − ky)2

(v̂ + kx)
α−2

((ix + kx)2 + (iy − ky)2)α/2−1

≤ 1

K4

1

(ix + kx)2 + (iy − ky)2
, (3.34)

where we make use of the fact that ix ≥ v̂. Summing (3.34) over either i or k,
and using the upper bound in Lemma 3.3.3 for α = 2 yields

√
n/2
∑

ix=v̂

√
n

∑

iy=0

|H̃ik|2,
√

n/2
∑

kx=0

√
n

∑

ky=0

|H̃ik|2 ≤ K ′
2 log n (3.35)

where K ′
2 = K3

K4
with K3 and K4 being the constants appearing in the lemma.

Let us now go back to evaluating the upper bound in (3.31). Let us first
consider the simplest case where the tree is composed of l height 1 branches
and denote it by T l

1 (see Figure 3.8). We have

T l
1 =

∑

p1,...,pl+1

fT l
1
(p1, . . . , pl+1)

=
∑

p1,...,pl+1

|H̃p2p1|2 |H̃p3p1|2 . . . |H̃pl+1p1 |2

=
∑

p1∈S





∑

p2∈D\VD

|H̃p2p1 |2




l

≤ n(K ′
2 log n)l (3.36)

which follows from the upper bound (3.35).
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Now let us consider the general case of an arbitrary tree T l
q having s leaves,

where 1 ≤ s ≤ l (see Figure 3.9). Let the indices corresponding to these leaves
be m1, . . . ,ms. Let us denote the “parent” vertices of these leaves by p1, . . . , ps′ .
Note that s′ ≤ s since some leaves may be sharing the same “parent” vertex.
Assume that p1 is the common parent vertex of leaves m1, . . . ,md1 ; p2 is the
common parent vertex of leaves m(d1+1), . . . ,md2 etc. and finally ps′ is the
parent of m(dt+1), . . . ,ms. The term T l

q corresponding to this tree is given by

T l
q =

∑

m1,...,ms
p1,...,p(l+1−s)

fT l
q
(p1, . . . , pl+1−s,m1, . . . ,ms)

=
∑

p1,...,p(l+1−s)

f
T

l−s
q′

(p1, . . . , p(l+1−s))

×
∑

m1,...,ms

|H̃m1p1|2 . . . |H̃md1
p1 |2 |H̃m(d1+1)p2 |2 . . . |H̃md2

p2|2

× . . . |H̃m(dt+1)ps′ |2 . . . |H̃msps′ |2 (3.37)

≤ T l−s
q′ (K ′

2 log n)s (3.38)

where T l−s
q′ corresponds to a smaller (and shorter) tree T

(l−s)
q′ with l − s

branches.3 The observation made in (3.38) is that the expression

fT l
q
(p1, . . . , pl+1−s,m1, . . . ,ms)

depends on a leaf index m only through a single term of the form |H̃mp|2
hence the summation

∑

m |H̃mp|2 can be readily evaluated. Once the terms
corresponding to all leaves of a parent node p are separated from the expression
fT l

q
(p1, . . . , pl+1−s,m1, . . . ,ms), in the remaining expression

f
T

l−s
q′

(p1, . . . , p(l+1−s)),

p is a leaf. The argument above decreases the height of the tree by 1, hence can
be applied recursively to get a simple tree composed only of height 1 branches
in which case the upper bound in (3.36) applies. Thus, given T l

q let h be the
number of recursions to get a simple tree and s1, . . . , sh denote the number of
leaves in the trees observed at each step of the recursion. We have

T l
q ≤ (K ′

2 log n)s1(K ′
2 log n)s2 . . . (K ′

2 log n)shT l−s1···−sh
1

≤ n(K ′
2 log n)l

since T l−s1···−sh
1 ≤ n(K ′

2 log n)l−s1···−sh by (3.36). Thus, (3.32) follows.

3Note that the term corresponding to a leaf m can be either |H̃mp|2 or |H̃pm|2 depending
on whether the height of the leaf is even or odd. However, in (3.37), we ignore this issue in
order to simplify the notation since the upper bound (3.38) applies in both cases.
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m1

m2
m3

m4 m5

ms

p1

p3

ps′

p2

Figure 3.9: A tree with leaves m1,m2, . . . ,ms.

b) Random network: We denote the locations of the nodes to the left
of the cut by ak = (−ax

k, a
y
k) where ax

k is the x-coordinate and ay
k is the y-

coordinate of node k ∈ S and those to the right of the cut are similarly
denoted by bi = (bx

i , b
y
i ) for i ∈ D \ VD. In this case, the matrix elements of H̃

are given by

H̃ik =
ej θik

((bx
i + ax

k)
2 + (by

i − ay
k)

2)α/4

1√
wk

and

wk =
∑

i∈D\VD

1

((bx
i + ax

k)
2 + (by

i − ay
k)

2)α/2
.

In parallel to the regular case, we will need an upper bound on
∑

i∈D\VD
|H̃ik|2

and
∑

k∈S |H̃ik|2. The upper bound can be obtained in two steps by first
showing that

wk ≥ K4
(v̂ + ax

k)
2−α

log n
(3.39)

with high probability for a constant K4 > 0 independent of n, which leads to

|H̃ik|2 ≤ 1

K4

log n
(v̂ + ax

k)
α−2

((bx
i + ax

k)
2 + (by

i − ax
k)

2)α/2

≤ 1

K4

log n
1

(bx
i + ax

k)
2 + (by

i − ay
k)

2
(3.40)

for all i ∈ S, k ∈ D \ VD. This, in turn yields

∑

k∈S

|H̃ik|2,
∑

i∈D\VD

|H̃ik|2 ≤ K ′
2(log n)3 (3.41)

with high probability for another constant K ′
2 > 0 independent of n. Recalling

the leaf removal argument discussed for regular networks immediately leads to
(3.33).
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Both the lower bound in (3.39) and the upper bound in (3.41) regarding
random networks can be proved using binning arguments that provide the
connection to regular networks. In order to prove the lower bound, we consider
Part (d) of Lemma 2.3.1, while the upper bound (3.41) is proved using Part
(c) of the same lemma.

Let us first consider dividing the right-half network into squarelets of area
2 log n. Given a left-hand side node k located at (−ax

k, a
y
k), let us move the

nodes inside each right-hand side squarelet onto the squarelet vertex that is
farthest to k. Since this displacement can only increase the Euclidean distance
between the nodes involved, and since by Part (d) of Lemma 2.3.1, we know
that there is at least one node inside each squarelet, we have

wk =
∑

i∈D\VD

1

((bx
i + ax

k)
2 + (by

i − ay
k)

2)α/2

≥

√
n/8 log n
∑

ix=v̂/
√

2 log n+1

√
n/2 log n
∑

iy=0

1

((ix
√

2 log n + ax
k)

2 + (iy
√

2 log n − ax
k)

2)α/2

≥ K4
(v̂ + ax

k)
2−α

2 log n

by using the lower bound in Lemma 3.3.3.
Now having (3.40) in hand, in order to show (3.41), we divide the network

into n squarelets of area 1. By Part (c) of Lemma 2.3.1, there are at most log n
nodes inside each squarelet. Considering the argument in Section 3.3 and the
displacement of the nodes as illustrated in Figure 3.2 yields a regular network
with at most 2 log n nodes at each vertex in the right-half network,

∑

i∈D\VD

|H̃ik|2 ≤
2

K4

log n
∑

i∈D\VD

1

(bx
i + ax

k)
2 + (by

i − ay
k)

2

≤ 4

K4

(log n)2

√
n/2
∑

ix=v̂

√
n

∑

iy=0

1

(ix + kx)2 + (iy − ky)2

≤ 4K ′
2(log n)3.

by employing the upper bound in Lemma 3.3.3 for α = 2. The same bound
follows similarly for

∑

k∈S |H̃ik|2, and hence the desired result in (3.41). �

Proof of Lemma 3.3.3: Both the lower and upper bound for wkx,ky can be
obtained by straightforward manipulations. Recall that

wkx,ky =

√
n/2
∑

ix=v̂

√
n

∑

iy=0

1

((ix + kx)2 + (iy − ky)2)α/2
.



52 Upper Bound

The upper bound can be obtained as follows:

wkx,ky =

√
n−ky
∑

y=−ky

kx+
√

n/2
∑

x=v̂+kx

1

(x2 + y2)α/2

≤
√

n−ky
∑

y=−ky

(

1

((v̂ + kx)2 + y2)α/2
+

∫ kx+
√

n/2

v̂+kx

1

(x2 + y2)α/2
dx

)

≤ (v̂ + kx)
−α +

∫ kx+
√

n/2

v̂+kx

1

xα
dx +

∫

√
n−ky

−ky

1

((v̂ + kx)2 + y2)α/2
dy

+

∫

√
n−ky

−ky

∫ kx+
√

n/2

v̂+kx

1

(x2 + y2)α/2
dx dy

≤ (v̂ + kx)
−α + (1 + π)(v̂ + kx)

1−α +

∫ π/2

−π/2

∫

√
2n

v̂+kx

1

rα
r dr dθ.

So

wkx,ky =



















(v̂ + kx)
−α + (1 + π)(v̂ + kx)

1−α + π log r
∣

∣

∣

√
2n

v̂+kx

if α = 2,

(v̂ + kx)
−α + (1 + π)(v̂ + kx)

1−α + π
(2−α)

r2−α
∣

∣

∣

√
2n

v̂+kx

if α > 2,

(3.42)

≤
{

K3 log n if α = 2,
K3 (v̂ + kx)

2−α if α > 2,

for a constant K3 > 0 independent of n, since the dominating terms in (3.42)
are the third ones.

The lower bound follows similarly:

wkx,ky =

√
n−ky
∑

y=−ky

kx+
√

n/2
∑

x=v̂+kx

1

(x2 + y2)α/2

≥
√

n−ky
∑

y=−ky

∫ kx+
√

n/2

v̂+kx

1

(x2 + y2)α/2
dx

≥
∫

√
n−ky

−ky

∫ kx+
√

n/2

v̂+kx

1

(x2 + y2)α/2
dx dy −

∫ kx+
√

n/2

v̂+kx

1

xα
dx

thus,

wkx,ky ≥
∫

√
n

0

∫ kx+
√

n/2

v̂+kx

1

(x2 + y2)α/2
dx dy +

x1−α

α − 1

∣

∣

∣

kx+
√

n/2

v̂+kx

≥
∫ arctan(1/2)

0

∫ kx+
√

n/2

√
2(v̂+kx)

1

rα
r dr dθ +

x1−α

α − 1

∣

∣

∣

kx+
√

n/2

v̂+kx

.
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Figure 3.10: The cut in Lemma 3.B.1 that is free of nodes on both sides up to
distance c/2 is illustrated in the figure.

So for all α ≥ 2, we have

wkx,ky =























arctan(1
2
) log r

∣

∣

∣

kx+
√

n/2

√
2(v̂+kx)

+ 1
α−1

x1−α
∣

∣

∣

kx+
√

n/2

v̂+kx

if α = 2,

arctan(1
2
) 1

2−α
r2−α

∣

∣

∣

kx+
√

n/2

√
2(v̂+kx)

+ 1
α−1

x1−α
∣

∣

∣

kx+
√

n/2

v̂+kx

if α > 2,

(3.43)

≥ K4(v̂ + kx)
2−α

where K4 > 0 is a constant independent of n, since the dominating terms in
(3.43) are the first ones. This concludes the proof of the lemma. �

3.B Removing Assumption 3.3.1

While proving the upper bound on network capacity in Section 3.3, we have
considered a vertical cut of the network that divides the network area into
two equal halves and assumed that there is an empty rectangular region to
the right of this cut, of width equal to the nearest neighbor distance in the
network (or of width equal to 1 in the corresponding rescaled network). With
high probability, this assumption does not hold in a random realization of the
network. Indeed for any linear cut of the random network, w.h.p. there will
be nodes on both sides of the cut that are located at a distance much smaller
than the nearest neighbor distance to the cut. In order to prove the result
in Section 3.3 rigorously for random networks, we need to consider a cut that
is not necessarily linear but satisfies the property of having no nodes located
closer than the nearest neighbor distance to it. Below, we show the existence of
such a cut using methods from percolation theory. See [18] for a more general
discussion of applications of percolation theory to wireless networks.

Lemma 3.B.1. For any realization of the random network and a constant
0 < c < 1/7

√
e independent of n and A, w.h.p. there exists a vertical cut of
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the network area that is not necessarily linear but is located in the middle of
the network in a slab not wider than L = c

√

A/n log n and is such that there

exists no nodes at distance smaller than c
2

√

A/n to the cut on both sides. See
Fig. 3.10.

The assumption of an empty region E in Section 3.3, allowed us to plug in
v̂ = 1 in the second line of (3.15) and conclude that when the left-hand side
nodes S are transmitting independent signals, the total SNR received by all
nodes D to the right of the linear cut is bounded above by

SNRtot =
∑

i∈D

SNRi

≤
{

K1 SNRs n2−α/2(log n)3 2 ≤ α < 3

K1 SNRs

√
n (log n)3 α ≥ 3,

(3.44)

where SNRi is defined in (3.7) as

SNRi = SNRs

∑

k∈S

|Ĥik|2. (3.45)

The same result can be proven for the cut given in Lemma 3.B.1 without
requiring any special assumption. Let B denote the set of nodes located to
the right of the cut but inside the rectangular slab mentioned in the lemma.
See Figure 3.10. Then

SNRtot =
∑

i∈B

SNRi +
∑

i∈D\B
SNRi. (3.46)

For any node i ∈ B, an approximate upper bound for SNRi is

SNRi . SNRs

∫ 2π

0

∫

√
n

c

1

r̂α
r̂dr̂dθ,

since Lemma 3.B.1 guarantees that there are no left-hand side nodes located at
rescaled distance smaller than c to a right-hand side node i. Moreover, nodes
are uniformly distributed on the network area so the summation in (3.45) over
the left-hand side nodes S can be approximated by an integral. A precise
upper bound on SNRi can be found by following the binning argument used
in the proof of (3.41), which yields

SNRi ≤ K1 SNRs log n.

Since there are less than
√

n log n nodes in B with high probability, the first
summation in (3.46) can be upperbounded by

∑

i∈B

SNRi ≤ K1 SNRs

√
n (log n)2.
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i

Figure 3.11: A closed left-right crossing.

Note that this contribution is smaller than any of the terms in (3.44). The
second summation

∑

i∈D\B SNRi in (3.46) is equal or smaller in order to (3.44)
since when the nodes B are removed there is a empty region of width at least
c between the nodes S and remaining nodes D \ B. Hence for the second
term in (3.46), we are back in the situation discussed in Section 3.3, hence the
upperbound (3.44) applies.

Proof of Lemma 3.B.1: Let us divide our network of area
√

A ×
√

A into
square cells of side length c

√

A/n where 0 < c < 1 is a constant independent
of A and n. We say that a cell is closed if it contains at least one node and open
if it contains no nodes. Since the n nodes are uniformly and independently
distributed on the network area A, the probability that a given cell is closed
is upper bounded by the union bound by

P[a cell is closed] ≤ c2.

Similarly, the probability that a given set of m cells {c1, . . . , cm} are simulta-
neously closed is upper bounded by

P[{c1, . . . , cm} is closed]

= P[c1 is closed] × P[c2 is closed|c1 is closed] × . . .

≤ c2 × c2 · · · × c2 = c2m (3.47)

since by the union bound we have,

P[ck+1 is closed|c1, . . . , ck is closed]

≤ (c2A/n)

A − k(c2A/n)
(n − k)

≤ c2

when 0 < c < 1.
Now let us consider a slab of width c

√

A/n log n in the middle of the
network. Equivalently, this is a rectangle of log n×√

n/c cells. By choosing c
properly, we will show that this slab contains at least one open path that crosses
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the network from top to bottom. Such a path is called an open top-bottom
crossing. A path is called open if it is composed of neighboring cells that are
open, a neighboring cell being one of the four cells located immediately to the
top, bottom, left and right of a cell. See Fig. 3.10. On the other hand, we
define a closed path in a slightly different manner: A closed path is composed
of neighboring cells that are closed but a neighboring cell can now be one of
the 8 cells located immediately at the top, top-left, left, bottom-left, bottom,
bottom-right, right, top-right of a cell. See Fig. 3.11. With these definitions
of closed and open paths, we have

P[the slab contains an open top-bottom crossing]

= 1 − P[the slab contains a closed left-right crossing]

where a closed left-right crossing refers to a closed path that connects the left-
boundary L of the slab to its right boundary R. Let P(i ↔ R) denote the
probability that there exists a closed path starting from a particular cell i ∈ L

and ending at the right-boundary. Note that such a path should be at least of
length log n cells. Denoting by Ni the number of closed paths of length log n
that start from the cell i, we have

P(i ↔ R) ≤ P(Ni ≥ 1).

By (3.47), a given path of length log n is closed with probability less than
c2 log n. By the union bound, we have

P(Ni ≥ 1) ≤ c2 log nσi(log n),

where σi(log n) denotes the number of distinct, loop-free paths of length log n
starting from i. This number is obviously not larger than σi(log n) ≤ 5 ×
7(log n−1). Combining the three inequalities, we have

P[the slab contains a closed left-right crossing]

≤
√

n/c
∑

i=1

P(i ↔ R) ≤ 5

7c

√
n(7c2)log n.

Choosing c2 < 1
7
√

e
, the last probability decreases to 0 as n increases. This

concludes the proof of the lemma. �



Optimal Schemes 4
This chapter introduces four network communication schemes for wireless net-
works and derives their scaling performance. Each of these schemes achieves
optimal scaling of the capacity in one of the four operating regimes identified
in the previous chapter. The first scheme is the well-known multi-hopping
scheme in the literature. We provide a brief overview of this scheme and an-
alyze its performance in Section 4.3. We show that multi-hopping is scaling
optimal only when the network is completely power-limited SNRs ≤ 0 dB and
α ≥ 3 (Regime-III in (3.2)). The other three schemes are contributions of the
current dissertation. The distributed MIMO scheme with hierarchical coop-
eration presented in Section 4.4 is of particular interest, since it offers a way
to cope with interference in wireless networks and achieves linear scaling of
the capacity when the network is not power-limited SNRl ≥ 0 dB (Regime-I
in (3.2)). Linear scaling implies that the rate for each source-destination pair
does not degrade significantly even if there are more and more users entering
the system. In Section 4.5, we present a power-limited version of this scheme
that is optimal when the attenuation in the network is low, 2 ≤ α ≤ 3 and
SNRl < 0 dB (Regime-II in (3.2)). A wide range of system parameters is
still left out where neither of these two schemes, hierarchical cooperation nor
multi-hopping, achieves optimal capacity scaling. This last regime (Regime-IV
in (3.2)), has remain hidden due to the limitations of the existing scaling law
formulations in the literature. In Section 4.6, we develop an optimal scheme
for this regime that is a delicate combination of hierarchical cooperation and
multi-hopping. Given this last hybrid scheme, the earlier two schemes, hier-
archical cooperation and multi-hopping, can be viewed as the two extremes
of this single unifying architecture in the respective cases when the network
experiences no power-limitation SNRl ≥ 0 dB or when it is completely power-
limited SNRs ≤ 0 dB.

57
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4.1 Existing Schemes for Large Wireless Ad-Hoc

Networks

As discussed in the introduction of this thesis, the literature on wireless adhoc
networks can be divided into two main groups. The first group, reflecting the
networking approach to wireless adhoc networks, concentrates exclusively on
the multi-hopping strategy, where packets are relayed inside the network by
hopping (decoding and forwarding) from one node to the next. This approach
restricts the physical layer to perform simple point-to-point encoding and de-
coding and concentrates on the networking challenges involved. The intensive
research activity in this line, especially starting from the nineties, has created
a large volume of publications that lead to the establishment of numerous
conferences (IEEE MASS 2009, IEEE SECON 2009, ICST AdhocNets 2009,
ACM Mobihoc 2009), journals (Ad hoc Networks, Ad Hoc and Sensor Wire-
less Networks) and books that almost exclusively specialize on multi-hopping
wireless adhoc networks.

The second line of research is rooted in network information theory. Tra-
ditionally, the aim in network information theory is to characterize the funda-
mental limits of performance in multi-user communication problems, usually
ignoring constraints that are imposed by the current-day technology, as such
constraints may not apply in general and thus are somewhat arbitrary. This
approach to communication theory has been started by the seminal work [45]
of C. E. Shannon in 1948 that has led to elegant characterizations and deep
insights for point-to-point channels. Network information theory seeks similar
characterizations for multi-user communication problems. However, multi-user
communication is inherently much more complex than point-to-point commu-
nication, since even with the addition of a single helper node to the point-
to-point setup, the cooperation and thus communication possibilities become
diverse. Indeed, this particular setup of a network of three nodes, known as
the relay channel [51, 11], remains not completely understood after almost four
decades of research. Another setup that has been resistant to analysis and can
serve as a basis for understanding wireless networks is the interference chan-
nel, that is, a network of four nodes, where two pairs of nodes communicate in
the presence of interference from the other pair [46, 28]. The theory also has
its triumphs with some multi-user settings elegantly characterized such as the
multiple access channel [35, 2] and the scalar [10, 6, 7] or vector [52] Gaussian
broadcast channels. Moreover, some exciting recent progress has been made in
understanding the relay and interference networks, by asking coarser questions
than the precise capacity region, such as degrees of freedom characterization
[9] or capacity approximation within a constant number of bits [16, 4, 5].

With basic network models of three-four nodes not completely understood,
network information theory fails to point out optimal strategies for large wire-
less adhoc networks that we consider in this thesis. However, it definitely
hints the existence of alternative network communication schemes that can
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potentially outperform multi-hopping. Indeed, multi-hopping corresponds to
one particular form of cooperative communication, but many other forms of
cooperation are known in the network information theory literature, such as
amplify and forward, compress and forward, etc. See [32] and the references
therein for an excellent survey on the subject. From a network information
theory point of view, the contribution of the current chapter can be viewed as
carefully combining various ideas on cooperation developed in this field with
ideas from MIMO communication, to obtain network communication schemes
whose scaling performance dramatically outperforms multi-hopping in most
cases. These new strategies turn out to be more complicated than simple
multi-hopping, but future wireless systems may require trading complexity for
performance. The search for such schemes has been initiated by the work of
Gupta and Kumar [27] in 2000. We provide below an overview of the results
obtained in the literature since [27], by also discussing how they relate to the
contributions of the current chapter.

The aggregate throughput scaling of the multi-hopping strategy has been
characterized in [27] for the dense scaling, where the area of the network, the
power budget per node and the bandwidth are kept constant as the number
of users in the network increases. It has been show that the multi-hopping
scheme achieves a

√

n/ log n scaling of the aggregate throughput in such dense
networks. Simpler derivations of the same result have been later proposed in
[33], [21]. In [18], it has been shown that the log n term can be removed and
that an exact scaling of

√
n can be achieved by using methods from percolation

theory. An aggregate throughput scaling of
√

n implies that the per user rate
in the network should decrease to zero as 1/

√
n when the number of users in the

network increases. This understanding has started a new line of research that
seeks for schemes that achieve better throughput scaling than multi-hopping,
ideally, that scale with system size.

The first important result in this direction is the mobility scheme intro-
duced in [26] and later extended in [14]. These works propose a relaying
strategy that relies on the mobility of the users for transporting packets inside
the network. The packets are carried physically from a source node to its desti-
nation by relaying nodes roaming inside the network area. Since long-distance
transportation of packets is undertaken by mobility, wireless communication
between nodes needs to be only of local nature between nearest-neighbor pairs.
The attenuation of the signals with distance allows spatial reuse and an order
of n simultaneous local communications can be established inside the network.
This allows to achieve an aggregate throughput scaling linearly with the num-
ber of users. One major drawback of the scheme is that the communication
delay is dictated by the velocity of the users and is therefore orders of magni-
tude larger than the typical delays in wireless systems. The topic of delay is
further investigated in Chapter 5.

A later work [25] shows that artificial fading distributions can be con-
structed so that linear scaling becomes also possible in static wireless networks
where the locations of the users remain fixed during the time of communica-



60 Optimal Schemes

tion. Although the actual scheme proposed in [25] is different, it can be shown
that the mobility scheme of [26] can be applied as it is, and achieves linear
scaling in static networks with fading distributions from [25]. The role of mo-
bility in [26] is now undertaken by the fading distributions of [25], that are
designed carefully to allow long-distance wireless communication between two
nodes without creating too much interference to the other users in the network.

In a sense, both mobility in [26] and the fading in [25] allows to circum-
vent the problem of interference in wireless networks. In static networks with
standard fading distributions, the interference problem is central and cannot
be circumvented. In order to achieve linear scaling, many simultaneous long-
distance communications should be established when each of these commu-
nications constitutes interference for the others. In the point-to-point case, a
physical-layer technique that achieves this is MIMO. Installing multiple anten-
nas on both the transmitter and receiver allows to multiplex several streams
and transmit them simultaneously [17, 49]. A natural way to apply this idea
to networks is to group the users together to form clusters and perform MIMO
transmissions between clusters. However, there is a fundamental difference
between the point-to-point MIMO setup and the distributed MIMO setup in
networks. In the point-to-point case, all transmit antennas and all receive an-
tennas are located on the same device, so the streams can be jointly encoded
before transmission and the received observations can be jointly decoded at the
receiver. Joint processing at either the transmitter or receiver side is known
to be crucial for the linear scaling of the point-to-point MIMO capacity. In
the case of networks, each antenna is located on a different node and cooper-
ation between users requires extra communication. Establishing cooperation
is, therefore, the bottleneck in applying distributed MIMO ideas to wireless
networks.

In [1], Aeron and Saligrama propose cooperation architecture based on
coherent combining of received signals. The distributed MIMO transmissions
are followed by a cooperation phase during which the nodes in the receive
cluster amplify (through matched filtering) and forward their observations, so
that they coherently combine at the intended destination nodes. Such coherent
combining techniques have been earlier reported and analyzed in [8, 13, 36] for
relay networks. The overall scheme of [1] achieves a throughput scaling of n2/3

bits per second, as long as the received SNR in a point-to-point transmission
between the farthest nodes in the network remains larger than a constant. This
has been the first work to demonstrate that distributed MIMO based schemes
can indeed outperform multi-hopping. The limitation to n2/3 scaling, which is
still significantly worse than the linear scaling performance of point-to-point
MIMO, is precisely due to the overhead introduced by the cooperation phase.

In Section 4.4 of this chapter, we present a new multiscale, hierarchical
cooperation architecture for distributed MIMO transmission that does not in-
troduce significant overhead to communication. The key observation behind
the hierarchical architecture is that cooperation is itself another communica-
tion problem. This observation allows to use any known scheme for commu-
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nicating in wireless networks to establish cooperation for distributed MIMO
communication, which overall yields a better communication scheme for wire-
less networks than the scheme we begin with. Applying this idea recursively
builds a hierarchical architecture that achieves an aggregate throughput scal-
ing n1−ǫ for any ǫ > 0 in networks with SNRl ≥ 0 dB. Note that the condition
SNRl ≥ 0 dB is weaker than requiring a constant SNR in a point-to-point
transmission between farthest nodes by a factor of 1/n. Recall that SNRl was
defined in (2.5) as n times the SNR between farthest nodes. The power gain
comes from the MIMO effect.

When the network experiences a power limitation (SNRl < 0 dB), dis-
tributed MIMO communication can still be beneficial but the aggregate through-
put can not scale with system size anymore. Distributed MIMO based schemes
still outperform multi-hopping, unless the power limitation in the network is so
severe that nodes cannot communicate efficiently beyond their nearest neigh-
bors (SNRs < 0 dB). Nevertheless, hierarchical cooperation outperforms multi-
hopping when 2 ≤ α < 3 even if SNRs < 0 dB. In the power-limited regime,
distributed MIMO communication not only provides a degrees of freedom gain,
but also provides a power gain obtained by combining signals received at dif-
ferent nodes. However, the distributed MIMO scheme with hierarchical coop-
eration in Section 4.4 cannot be applied as it is to such power-limited networks.
To achieve optimal scaling, two different modifications of the scheme are pre-
sented in Section 4.5 and Section 4.6 for the respective cases where the power
path loss attenuation in the network is low (2 ≤ α < 3) or high (α ≥ 3).
The scheme presented in Section 4.6 is of particular interest, as it delicately
combines distributed MIMO communication with multi-hopping.

4.2 Main Result

The three main results of this chapter are summarized in the following three
theorems. The theorems characterize the performance achieved by the three
new schemes presented in this chapter. We consider the model introduced
in Section 2, except that we state the achievability results below in a slightly
more general setting. The results apply to any source-destination pairing in the
network. For example, each source node can be associated to the destination
node located farthest or nearest to itself. They also apply to pairings that
are obtained by random association of source nodes with destination nodes,
i.e., the random pairing introduced in Section 2. Note that even if the source-
destination pairing is arbitrary, the node locations are not; we still assume
that the n nodes are distributed uniformly and independently on the network
area.

Theorem 4.2.1. Let SNRl ≥ 0 dB for all n. For any ǫ > 0, there exists a
constant Kǫ > 0 independent of n such that w.h.p an aggregate throughput

T ≥ Kǫ n1−ǫ
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is achievable in a random realization of the network for all possible pairings
between sources and destinations.

This performance is achieved by distributed MIMO communication with
hierarchical cooperation and the theorem is proven in Section 4.4. Recall from
Definition 2.2.2 that a scheme and its throughput are defined in the scaling
sense.

Theorem 4.2.2. Let SNRl < 0 dB for all n. For any ǫ > 0, there exists a
constant Kǫ > 0 independent of n such that w.h.p an aggregate throughput

T ≥ Kǫ n1−ǫSNRl

is achievable in a random realization of the network for all possible pairings
between sources and destinations.

Note that SNRl < 0 dB, or SNRl = O(1). Hence, the aggregate throughput
in Theorem 4.2.2 does not scale linearly with the number of users. The exact
scaling depends on how fast SNRl decreases to 0 with increasing n. This perfor-
mance is achieved by a modification of the distributed MIMO communication
scheme with hierarchical cooperation. The theorem is proven in Section 4.5.

Theorem 4.2.3. Let α > 2, SNRs > 0 dB and SNRl < 0 dB for all n.1 For
any ǫ > 0, there exists a constant Kǫ > 0 independent of n such that w.h.p an
aggregate throughput

T ≥ Kǫ

√
n SNR

1
α−2

−ǫ
s , (4.1)

is achievable in a random realization of the network for all possible pairings
between sources and destinations.

Note that since SNRs > 0 dB, or SNRs = Ω(1), the aggregate throughput
in Theorem 4.2.3 is o(

√
n). On the other hand, recall that

SNRs = nα/2−1SNRl,

and SNRl = O(1), so it can be verified that the aggregate throughput in
(4.1) is O(n). Therefore, the aggregate throughput scaling achieved in Theo-
rem 4.2.3 is between

√
n and n and the exact scaling is dictated by the scaling

of SNRs. This performance is achieved by a hybrid architecture combining dis-
tributed MIMO communication with multi-hopping. The theorem is proven
in Section 4.6.

Combining the results of the three theorems with the scaling achieved by
multi-hopping in (4.3) yields the following lower bound on the scaling exponent

1α = 2 is excluded as SNRs = SNRl in that case.
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β = α/2 − 1Regime I

II

Regime IV

Regime III

Figure 4.1: The four operating regimes. The optimal schemes in these regimes
are I-Hierarchical Cooperation, II-Bursty Hierarchical Cooperation, III-Multihop,
IV- Multihop MIMO Hierarchical Cooperation.

of the aggregate throughput,

e(α, β) ≥







































1 β ≥ α/2 − 1 Hierarchical Cooperation
2 − α/2 + β β < α/2 − 1 Power-Limited HC

and 2 ≤ α < 3
1/2 + β β ≤ 0 Multihopping

and α ≥ 3
1/2 + β/(α − 2) 0 < β < α/2 − 1 Multihopping with HC,

and α ≥ 3
(4.2)

for any real β, where β is the scaling exponent of SNRs defined earlier in (2.9).
Together with (3.2), this result establishes the capacity scaling of wireless
networks. The four regimes in (4.2) are shown in Figure 4.1.

4.3 Nearest-Neighbor Multihopping

We start by briefly recalling the basic properties of the multi-hopping scheme
and deriving its scaling performance. In the light of the new formulation in-
troduced in this thesis, we will see that the nearest neighbor multi-hopping
scheme achieves a

√
n scaling of the aggregate throughput only when the near-

est neighbor SNRs ≥ 0 dB. When SNRs < 0 dB, it achieves a throughput scal-
ing of

√
n SNRs. The result can be rewritten in terms of the scaling exponent

of the aggregate throughput as

emultihop(α, β) =

{

1/2 β ≥ 0
1/2 + β β < 0,

(4.3)

where β is the scaling exponent of SNRs.

Let us start by dividing the network into square cells of area Ac = 2A log n/n.
According to Lemma 2.3.1, each cell contains at least one node w.h.p in a ran-
dom realization of the network. In the multi-hopping scheme, the messages
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a) b) c)

r

Figure 4.2: The Multihopping Scheme: a) The packets of a source node s are
delivered to its destination node d by multi-hopping from one cell to the next. b)
A 9-TDMA scheme is employed between cells to control inter-cluster interference.
The shaded cells are simultaneously active. c) The relaying traffic at node r is
originated from or destined to one of the nodes located in the shaded rectangles.

are relayed from source nodes to their destinations by hopping from one cell
to the next. See Figure 4.2-(a). The fact that all cells are non-empty ensures
that we can find a node in each cell to assign the relaying job. This relay
node decodes the messages transmitted from its neighboring cells, temporarily
stores, re-encodes and forwards them to the next cell in their respective di-
rection of transportation. Hence, the communication in the network is based
on point-to-point transmissions between pairs of nodes located in neighboring
cells. Most of these transmissions are from relay-to-relay nodes but we also
have source-to-relay and relay-to-destination node transmissions in the respec-
tive cases when a source node drains or a destination node collects its messages.
The signal-to-noise power ratio in these point-to-point transmissions is lower
bounded by

SNRrelay ≥ SNRs

(10 log n)α/2
,

since the separation between the transmitting and the receiving node is upper
bounded by

√
5Ac. In order to be able to control interference, not all cells

are allowed to operate simultaneously. Instead, a TDMA strategy is employed
between cells so that only a constant fraction of the cells are active in a given
time-slot and there are a number of inactive cells between every pair of active
cells. Nodes in a cell are allowed to transmit only when their cell is active
according to the TDMA scheme. Otherwise they remain silent. The mid-
figure in Figure 4.2 illustrates a 9-TDMA strategy. The interference-to-noise-
power ratio received by any node in the network from the simultaneously active
clusters according to the 9-TDMA scheme, is upper bounded by

INRrelay ≤ KI SNR(Ac) = KI
SNRs

(2 log n)α/2−1
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for a constant KI independent of n and SNRs. (This result can be shown by
a simple modification of Lemma 4.4.3 in the special case Ac = 2A log n/n.
The lemma is proven later in Section 4.4.1.) Therefore, the rate achieved in a
point-to-point transmission between two neighboring cells by treating all the
inter-cell interference as noise is lower bounded by

Rrelay = log

(

1 +
SNRrelay

1 + INRrelay

)

≥ log

(

1 +
SNRs(10 log n)−α/2

1 + KISNRs(2 log n)1−α/2

)

.

(4.4)
Note that the actual relaying rate is Rrelay/9 since each relay node gets to trans-
mit once in 9 time slots according to the 9-TDMA scheme. The draining rate
Rrelay/9 of a given relay node has to be shared between the source-destination
pairs whose path is routed through this relay node. We assume a simplis-
tic route between the source-destination pairs where packets are first relayed
through a horizontal slab containing the source node and then inside a verti-
cal slab containing the destination node. See Figure 4.2-(a). These horizontal
and vertical slabs of area

√
Ac ×

√
A contain less than

√
AcA× n

A
=

√
n log n

nodes w.h.p. (This can be seen by applying part-(e) of Lemma 2.3.1 to the
horizontal and vertical slabs.) With this routing strategy, the relaying traffic
generated at a relay node is due to source nodes located in the same horizontal
slab or destination nodes located in the same vertical slab. See Figure 4.2-(c).
Hence, the relaying rate of (4.4) has to be shared among at most 2

√
n log n

source-destination pairs. This leads to an overall rate

Rmultihop ≥
1

18
√

n log n
Rrelay. (4.5)

per source-destination pair. The aggregate throughput achieved by multi-
hopping is the lower-bounded by

Tmultihop ≥ K0

√

n

log n
log

(

1 + (log n)−α/2 SNRs

1 + KISNRs

)

for a constant K0 > 0 independent of n, which yields the scaling exponents in
(4.3). Using percolation theory, the above argument can be refined to yield an

aggregate throughput Tmultihop ≥ K0

√
n log

(

1 + SNRs

1+KISNRs

)

. Note that in the

above derivation, we have not made any assumption on the source-destination
pairing, so the lower bound (4.5) holds for all possible pairings of the source
nodes with destination nodes.

4.4 Distributed MIMO with Hierarchical

Cooperation

In this section, by proving Theorem 4.2.1, we will show that linear scaling is
achievable in wireless networks when SNRl ≥ 0 dB. Note that the traditional
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multi-hopping scheme achieves only an aggregate throughput scaling of
√

n
in this case. The proof of Theorem 4.2.1 relies on the construction of an
explicit scheme that realizes the promised scaling law. The construction is
based on recursively using the following key lemma, which addresses the case
when α > 2 and whose proof is relegated to Section 4.4.1.

Lemma 4.4.1. Consider α > 2 and the network with n nodes subject to in-
terference from external sources. The signal received by node i is given by

Yi =
∑

k 6=i

HikXk + Zi + Ii

where Ii is the external interference signal received by node i. Let the long
distance SNR in the network be lower bounded,

SNRl ≥ KS (4.6)

for a constant KS > 0 independent of n. Assume also that {Ii, 1 ≤ i ≤ n} is a
collection of uncorrelated zero-mean stationary and ergodic random processes
with interference to noise power ratio upper bounded by

INRex ≤ KI SNRl (4.7)

for a constant KI > 0 independent of n and SNRl. Let us assume that there
exists a scheme such that for each n, with probability at least 1 − e−nc1 , it
achieves an aggregate throughput

T ≥ K1 nb

for all possible source-destination pairings in a random realization of the net-
work. K1 and c1 are positive constants independent of n and the source-
destination pairing, and 0 ≤ b < 1.

Then one can construct another scheme for this network that achieves a
higher aggregate throughput scaling

T ≥ K2 n
1

2−b

for all possible source-destination pairings, where K2 > 0 is another constant
independent of n and the pairing. Moreover, the failure probability for the new
scheme is upper bounded by e−nc2 for another positive constant c2.

Lemma 4.4.1 is the key step to build a hierarchical architecture. Since 1
2−b

>
b for 0 ≤ b < 1, the new scheme is always better than the old one. We will
now give a rough description of how the new scheme can be constructed given
the old scheme, as well as a back-of-the-envelope analysis of the scaling law it
achieves. Next section is devoted to the precise description and performance
analysis of the scheme.
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The scheme that proves Lemma 4.4.1 is based on clustering and long-range
MIMO transmissions between clusters. We divide the network into clusters of
M nodes. Let us focus for now on a particular source node s and its destination
node d. s sends M bits to d in three steps:

(1) Node s distributes its M bits among the M nodes in its cluster, one for
each node;

(2) These nodes together can then form a distributed transmit antenna array,
sending the M bits simultaneously to the destination cluster where d lies;

(3) Each node in the destination cluster gets one observation from the MIMO
transmission and it quantizes and ships the observation to d, which can
then do joint MIMO processing of all the observations and decode the
M transmitted bits.

From the network point of view, all source-destination pairs have to even-
tually accomplish these three steps. Step 2 is long-range communication and
only one source-destination pair can operate at at a time. Steps 1 and 3 involve
local communication and can be parallelized across source-destination pairs.
Combining all this leads to three phases in the operation of the network:

Phase 1: Setting Up Transmit Cooperation Clusters work in parallel.
Within a cluster, each source node has to distribute M bits to the other nodes,
1 bit for each node, such that at the end of the phase, each node has 1 bit from
each of the source nodes in the same cluster. Since there are M source nodes
in each cluster, this gives a total traffic of exchanging M(M − 1) ∼ M2 bits.
(Recall our assumption that each node is a source for some communication
request and a destination for another.) The key observation is that this is
similar to the original problem of communicating between n source and desti-
nation pairs, but on a smaller network of size M . More precisely, this traffic
demand of exchanging M2 bits can be handled by setting up M sub-phases,
and assigning M source-destination pairs for each sub-phase to communicate
their 1 bit. Since our channel model is scale invariant, the scheme given in
the hypothesis of the lemma can be used in each sub-phase. With a scheme
achieving aggregate throughput M b, each sub-phase is completed in M1−b/2
time slots, so the whole phase takes M2−b time slots. See Figure 4.3.

Phase 2: MIMO Transmissions We perform successive long-distance
MIMO transmissions between source-destination pairs, one at a time. In each
one of the MIMO transmissions, say one between s and d, the M bits of s are
simultaneously transmitted by the M nodes in its cluster to the M nodes in
the cluster of d. Each of the long-distance MIMO transmissions are repeated
for each source-destination pair in the network, hence we need n time slots to
complete the phase. See Figure 4.4.

Phase 3: Cooperate to Decode Clusters work in parallel. Since there
are M destination nodes inside each cluster, each cluster has received M MIMO
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s1

s2

s3

G

F

J

H

d2

d1

d3

Figure 4.3: Nodes inside clusters F , G, H and J are illustrated while exchanging
bits in Phases 1 and 3. Note that in Phase 1 the exchanged bits are the source
bits whereas in Phase 3 they are the quantized MIMO observations. Clusters work
in parallel. In this and the following figure Fig. 4.4, we highlight three source-
destination pairs s1 − d1, s2 − d2 and s3 − d3, such that nodes s1 and d3 are
located in cluster F , nodes s2 and s3 are located in clusters H and J respectively,
and nodes d1 and d2 are located in cluster G.

F

G

H

G

J

F

Figure 4.4: Successive MIMO transmissions are performed between clusters. The
first figure depicts MIMO transmission from cluster F to G, where bits originally
belonging to s1 are simultaneously transmitted by all nodes in F to all nodes in G.
The second MIMO transmission is from H to G, while now bits of source node s2

are transmitted by nodes in H to nodes in G. The third picture illustrates MIMO
transmission from cluster J to F .
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transmissions in phase 2. Each MIMO transmission is intended for a different
destination node. Thus, each node in the cluster has M received observations,
one from each of the MIMO transmissions, and each observation is to be
conveyed to a different destination node in its cluster. Nodes quantize each
observation into fixed Q bits, so there are now a total of QM2 bits to exchange
inside each cluster. Using exactly the same scheme as in Phase 1, we conclude
the phase in QM2−b time slots. See again Figure 4.3.

Assuming that each destination node is able to decode the transmitted bits
from its source node from the M quantized signals it gathers by the end of
Phase 3, we can calculate the rate of the scheme as follows. Each source node
is able to transmit M bits to its destination node, hence nM bits in total are
delivered to their destinations in M2−b + n + QM2−b time slots, yielding an
aggregate throughput of

nM

M2−b + n + QM2−b

bits per time slot. Maximizing this throughput by choosing M = n
1

2−b yields

T (n) = 1
2+Q

n
1

2−b for the aggregate throughput, which is the result in Lemma 4.4.1.
Clusters can work in parallel in phases 1 and 3 because for α > 2, the

inter-cluster interference power to noise ratio experienced by any node in the
network is bounded by a constant fraction of the long-distance SNR in the
cluster. In other words, the condition (4.7) is satisfied simultaneously for all
clusters in the network. Moreover, the interference signals received by different
nodes in the cluster are zero-mean and uncorrelated, satisfying therefore the
assumptions of Lemma 4.4.1. For α = 2, the inter-cluster interference to noise
power ratio scales like log n times the long distance SNR in the cluster, leading
to a slightly different version of Lemma 4.4.1, whose proof is given at the end
of Section 4.4.1.

Lemma 4.4.2. Consider α = 2 and the network with n nodes subject to in-
terference from external sources. The signal received by node i is given by

Yi =
∑

k 6=i

HikXk + Zi + Ii

where Ii is the external interference signal received by node i. Let the long
distance SNR in the network be lower bounded,

SNRl ≥ KS

for a constant KS > 0 and independent of n. Assume also that {Ii, 1 ≤ i ≤
n} is a collection of uncorrelated zero-mean stationary and ergodic random
processes with interference to noise power ratio upper bounded by

INRex ≤ KI SNRl log n,
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for a constant KI > 0 independent of n and SNRl. Let us assume there exists
a scheme such that for each n with failure probability at most e−nc1 , achieves
an aggregate throughput

T ≥ K1
nb1

(log n)b2

for all possible source-destination pairings in the network, where K1 and c1

are positive constants independent of n and the source-destination pairing, and
0 ≤ b1 < 1, b2 ≥ 0.

Then, one can construct another scheme for this network that achieves a
higher aggregate throughput scaling

T ≥ K2
n

1
2−b1

(log n)b2+1

for every possible source-destination pairing in the network, where K2 > 0
is another constant independent of n and the pairing. Moreover, the failure
probability for the new scheme is upper bounded by e−nc2 for another positive
constant c2.

We can now use Lemma 4.4.1 and 4.4.2 to prove Theorem 4.2.1.

Proof of Theorem 4.2.1: We only focus on the case α > 2 and comment on
the extension to the case α = 2 at the end of the proof.

To prove Theorem 4.2.1 for the case α > 2, we consider Lemma 4.4.1. We
start by observing that the simple scheme of transmitting directly from source
nodes to their destination nodes in a round-robin fashion (TDMA) achieves
an aggregate throughput Θ(1) under the conditions of the lemma. If SNRl ≥
KS, the received SNR in a point-to-point transmission between any source-
destination pair in the network is lowerbounded by SNRl/n ≥ KS/n. Note that
the lower-bound SNRl/n corresponds to the case where the source-destination
pair is separated by the largest distance, the diameter of the network. In the
TDMA scheme, source nodes transmit only a fraction 1

n
of the time and remain

inactive otherwise. Therefore, when active, they can transmit with power Pn
instead of P and still satisfy their average power constraint P . This results in
received SNR equal to n× SNRl

n
≥ KS during transmission. Since the external

INR experienced by destination nodes is bounded above by KI × SNRl, each
source-destination pair can communicate at a rate, bounded below by

RTDMA ≥ 1

n
log

(

1 +
SNRl

1 + KISNRl

)

≥ 1

n
log

(

1 +
KS

1 + KIKS

)

, (4.8)

yielding an aggregate throughput Θ(1), or b = 0. The failure probability is 0,
since the strategy can be operated in any realization of the random network;
for arbitrary placement of nodes, arbitrary source-destination pairings and
arbitrary channel states.
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As soon as we have a scheme to start with, Lemma 4.4.1 can be applied
recursively, yielding a scheme that achieves higher throughput at each step of
the recursion. More precisely, starting with a TDMA scheme corresponding
to b = 0 and applying Lemma 4.4.1 recursively h times, one gets a scheme

achieving Θ(n
h

h+1 ) aggregate throughput. Given any ǫ > 0, we can now choose
h such that h

h+1
≥ 1− ǫ and we get a scheme that achieves Θ(n1−ǫ) aggregate

throughput scaling with high probability.
To prove Theorem 4.2.1 for the case α = 2, we consider Lemma 4.4.2.

The TDMA strategy achieves an aggregate rate Θ(1/ log n), corresponding to
b1 = 0 and b2 = 1, under the external interference given in the lemma. The
lemma can be applied recursively h times, and yields a scheme with aggregate

throughput Θ(n
h

h+1 /(log n)h+1). Given any ǫ > 0, we can now choose h such
that h

h+1
> 1−ǫ and we get a scheme that achieves Θ(n1−ǫ) aggregate through-

put scaling with high probability. This concludes the proof of Theorem 4.2.1.
�

Remark 4.4.1. The recursive application of Lemma 4.4.1 actually implies a
stronger result than the one stated in Theorem 4.2.1. The aggregate through-
put scaling Θ(n1−ǫ) is also achievable when the network experiences external
interference satisfying the conditions of Lemma 4.4.1.

Gathering everything together, we have built a hierarchical scheme to
achieve the desired throughput. At the lowest level of the hierarchy, we use
the simple TDMA scheme to exchange bits for cooperation among small clus-
ters. Combining this with longer range MIMO transmissions, we get a higher
throughput scheme for cooperation among nodes in larger clusters at the next
level of the hierarchy. Finally, at the top level of the hierarchy, the cooperation
clusters are almost the size of the network and the MIMO transmissions are
over the global scale to meet the desired traffic demands. Figure 4.5 shows the
resulting hierarchical scheme, with a focus on the top two levels.

4.4.1 Detailed Description and Performance Analysis

In this section, we concentrate in more detail on the scheme that proves
Lemma 4.4.1 and Lemma 4.4.2. We first focus on Lemma 4.4.1 and then
extend the proof to Lemma 4.4.2. As we have already seen in the previous
section, we start by dividing the network area A into smaller squares of area
Ac = M A

n
. Since the node density is n/A, there will be on average M nodes

inside each of these small squares. Lemma 2.3.1-(e) upperbounds the proba-
bility of having large deviations from the average. Applying Lemma 2.3.1-(e)
to the squares of area M A

n
, we see that all squares contain order M nodes

with probability larger than 1− n
M

e−Λ(δ)M . In the sequel, we assume M = nµ,
for a constant 0 < µ ≤ 1, in which case this probability tends to 1 as n in-
creases. This condition is sufficient for our below analysis on scaling laws to
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PHASE 1 PHASE 2 PHASE 3

PHASE 1 PHASE 2 PHASE 3 PHASE 1 PHASE 2 PHASE 3

PHASE 1
PHASE 2

PHASE 3

PHASE 1 PHASE 3PHASE 3PHASE 1
PHASE 2 PHASE 2

Figure 4.5: The upper figure illustrates the salient features of the three phase
hierarchical scheme. The time division in this hierarchical scheme is explicitly given
the figure below.

hold. However, in order to simplify the presentation, we will assume that there
are exactly M nodes in each square.

The clustering is used to realize a distributed MIMO system in three suc-
cessive steps:

Phase 1: Setting Up Transmit Cooperation In this phase, source
nodes distribute their data streams over their clusters and set up the stage
for the long-range MIMO transmissions that we want to perform in the next
phase. Clusters work in parallel according to the 9-TDMA scheme depicted
in Figure 4.6, which divides the total time for this phase into 9 time-slots and
assigns simultaneous operation to clusters that are sufficiently separated. The
shaded clusters in Figure 4.6 are operating simultaneously in the same time
slot while the other clusters stay inactive. Note that with this scheduling, in
every time slot there are at least two inactive clusters between any two clusters
that are active.

Let us focus on one specific source node s located in cluster S with des-
tination node d in cluster D. Node s will divide a block of length LM bits
of its data stream into M sub-blocks each of length L bits, where L can be
arbitrarily large and can depend on M or n. The destination of each sub-block
in Phase 1 depends on the relative positions of clusters S and D:

(1) If S and D are either the same cluster or are not neighboring clusters:
one sub-block is to be kept in s and the remaining M − 1 sub-blocks
are to be distributed among the other M − 1 nodes located in S, one
sub-block for each node.

(2) If S and D are neighboring clusters: Divide the cluster S into two halves,
each of area Ac/2, one half located close to the border with D and the
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Data Exchanges
in Phase 1

b1(M)

b2(M)

b1(3)

b2(3)

bM (3)

b1(2)

b2(2)

bM (2)

b1(1)

b2(1)

bM (1)

bM (1)

bM (2)

b3(1)

b3(2)

b2(1)

b2(2)

b3(M) b2(M) b1(M)

b1(2)

b1(1)

s = M

s = 1s = 1

s = M

s = 2 s = 2

bM (M) bM (M)

Figure 4.6: Buffers of the nodes in a cluster are illustrated before and after the
data exchanges in Phase 1. The data stream of the source nodes are distributed
to the M nodes in the network as depicted. bs(j) denotes the j’th sub-block of
the source node s. Note the 9-TDMA scheme that is employed over the network
in this phase.

second half located farther to D. The M sub-blocks of source node
s are to be distributed to the M/2 nodes located in the second half
cluster (farther to D), each node gets two sub-blocks. The fact that
each half cluster contains Θ(M/2) nodes w.h.p. can be concluded from
Lemma 2.3.1-(e).

The above traffic is required for every node in cluster S since every node
is a source for some communication request. Thus, each node in S needs to
distribute its data among the rest M − 1 nodes in the cluster, which gives a
highly uniform traffic demand of delivering M ×L(M −1) ∼ LM2 bits in total
to their destinations. A key observation is that the problem can be separated
into sub-problems, each similar to our original problem, but on a network of
size M and area Ac. More specifically, the traffic of transporting LM2 bits can
be handled by organizing M sessions and assigning M source-destination pairs
for each session. (Note that due to the non-uniformity arising from point (2)
above, one might be able to assign only M/2 source-destination pairs in some
sessions and hence need to handle the traffic demand of transporting LM2

bits by organizing up to 2M sessions instead of M .) The assigned source-
destination pairs in each session can then communicate their sub-block of L
bits. Since our channel model is scale invariant, the scheme assumed in the
hypothesis of Lemma 4.4.1 can be used to handle the traffic in each session.
However, we first need to verify that conditions (4.6) and (4.7) of the lemma
are satisfied for each cluster. Note that the long-distance SNR in each cluster,
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SNR(Ac), is larger than the long-distance SNR in the network,

SNR(Ac) > SNRl ≥ KS.

Hence, condition (4.6) is satisfied. The scheme is to be operated simultaneously
inside all the clusters in the 9-TDMA scheme, so we need to ensure that the
resultant inter-cluster interference satisfies the properties in Lemma 4.4.1.

Lemma 4.4.3. Consider clusters operating simultaneously according to the
9-TDMA scheme in Figure 4.6. Let the long-distance SNR in each cluster
be SNR(Ac). For α > 2, the interference experienced by each node from the
simultaneously operating clusters satisfies

INRic ≤ KI1 SNR(Ac),

where KI1 is constant independent of n and SNR(Ac). When α = 2, the inter-
cluster interference to noise power is bounded as

INRic ≤ KI2 log n SNR(Ac),

for a constant KI2 independent of n and SNR(Ac). Moreover, the interference
signals received by different nodes in the cluster are zero-mean and uncorre-
lated.

The proof of this lemma is given at the end of the present section. Let us for
now concentrate on the case α > 2. By Lemma 4.4.3, the inter-cluster inter-
ference to noise power ratio is bounded by a constant times the long-distance
SNR in the cluster and the interference signals experienced by different nodes
are uncorrelated. Hence, the strategy in the hypothesis of Lemma 4.4.1 can
achieve an aggregate rate K1M

b in each session for some constant K1 > 0, with
probability larger than 1 − e−Mc1 . Using the union bound, with probability
larger than 1−2ne−Mc1 , the aggregate rate K1M

b is achieved inside all sessions
in all clusters in the network. (Recall that the number of sessions in one cluster
can be 2M in the extreme case and there are n/M clusters in total.) With this
aggregate rate, each session can be completed in at most (L/K1)M

1−b channel
uses and 2M successive sessions are completed in (2L/K1)M

2−b channel uses.
Using the 9-TDMA scheme, the phase is completed in less than (18L/K1)M

2−b

channel uses all over the network with probability larger than 1 − 2ne−Mc1 .

Phase 2: MIMO Transmissions In this phase, we are performing suc-
cessive long-distance MIMO transmissions between clusters. A MIMO trans-
mission from source node s to destination node d involves the M (or M/2)
nodes in the cluster S of s, and the M (or M/2) nodes in the cluster D of d.
The cluster S is referred as the source cluster for this MIMO transmission and
D is the destination cluster.
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If S and D are the same cluster, we skip the step for this source-destination
pair s − d. Otherwise, we operate in two slightly different modes depending
on the relative positions of S and D. Each mode is a continuation of the
operations performed in the first phase. First consider the case where S and
D are not neighboring clusters. In this case, the M nodes in cluster S inde-
pendently encode the L bits-long sub-blocks they possess, originally belonging
to node s, into C channel symbols by using a randomly generated Gaussian
code C. The nodes then transmit their encoded sequences of length C symbols
simultaneously to the M nodes in cluster D. The nodes in cluster D quantize
the signals they observe during the C transmissions and store these quantized
signals(that we will simply refer to as observations in the following text), with-
out trying to decode the transmitted symbols. In the case where S and D are
neighbors, the strategy is slightly modified so that the MIMO transmission is
from the M/2 nodes in S, that possess the sub-blocks of s after Phase 1, to
the M/2 nodes in D that are located in the farther half of the cluster to S.
Each of these M/2 nodes in S possess two sub-blocks that come from s. They
encode each sub-block into C symbols by again using a Gaussian codebook.
The nodes then transmit the 2C symbols to the M/2 nodes in D that in turn
sample their received signals and store the observations. The observations ac-
cumulated at various nodes in D at the end of this step are to be conveyed to
node d during the third phase.

After concluding the step for the pair s−d, the phase continues by repeating
the same step for the next source node s + 1 in S and its destination d′. Note
that the destination cluster for this new MIMO transmission is, in general,
a different cluster D′, which is the one that contains the destination node d′.
The MIMO transmissions are repeated until the data originated from all source
nodes in the network are transmitted to their respective destination clusters.
Since the step for one source-destination pair takes either C or 2C channel
uses, completing the operation for all n source nodes in the network requires
at most 2C × n = 2Cn channel uses.

Note that we perform n MIMO transmissions in total, one for each source-
destination pair in the network. On the other hand, there are M source nodes
in each cluster so each node in the network is transmitting only during M of
these MIMO transmissions. In other words, each node is active only during a
fraction M/n of the total duration of the phase. Therefore, the nodes can use
a Gaussian codebook with elevated power nP/M and still satisfy their average
power constraint P . We make use of this fact while proving Lemma 4.4.4 that
is given in the sequel.

Phase 3: Cooperate to Decode In this phase, we aim to provide each
destination node, the observations of the symbols that have been originally
intended for it. With the MIMO transmissions in the second phase, these
observations are accumulated at the nodes of its cluster. As before, let us focus
on a specific destination node d located in cluster D. Note that depending on
whether the source node of d is located in a neighboring cluster or not, either
each of the M nodes in D have C observations intended for d, or M/2 of
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the nodes have 2C observations each. Note that these observations are some
real numbers that need to be quantized and encoded into bits before being
transmitted. Let us assume that we are encoding each block of C observations
into CQ bits, by using fixed Q bits per observation on the average. The
situation is symmetric for all nodes in D since they are all destinations for
some traffic. Hence, the cluster has received M MIMO transmissions in the
previous phase, one for each destination node. (The destination nodes that
have source nodes in D are exception. Recall from Phase 1 and Phase 2 that
in this case, each node in D possesses sub-blocks of the original data stream
for the destination node and not MIMO observations. We will ignore this case
by simply assuming L ≤ CQ in the below computation.) The resulting traffic
demand of transporting M × CQM bits in total is similar to Phase 1 and
can be handled by using exactly the same scheme in less than (2CQ/K1)M

2−b

channel uses. Recalling the discussion on the first phase, we conclude that the
phase can be completed in less than (18CQ/K1)M

2−b channel uses all over the
network with probability larger than 1 − 2ne−Mc1 .

Note that if it were possible to encode each observation into fixed Q bits
without introducing any distortion, which is obviously not the case, the fol-
lowing lemma on MIMO capacity, would imply that with the Gaussian code
C used in Phase 2 satisfying L/C ≥ κ for some constant κ > 0 independent
of M and n, the transmitted bits could be recovered by an arbitrarily small
probability of error from the observations gathered by the destination nodes
at the end of Phase 3. The lemma is proven in Appendix 4.A.

Lemma 4.4.4. The mutual information achieved by the M ×M MIMO trans-
mission between any two clusters is larger than K3M for a constant K3 > 0
and independent of M .

The following lemma states that there is actually a way to encode the
observations using fixed number of bits per observation and at the same time,
not to degrade the performance of the overall channel significantly, that is, to
still get a linear capacity growth for the resulting quantized MIMO channel.
The proof of the lemma is given in Appendix 4.B.

Lemma 4.4.5. There exists a strategy to encode the observations at a fixed rate
Q bits per observation and get a linear growth κM of the mutual information
for the resultant M × M quantized MIMO channel, for a constant κ > 0
independent of M and n.

Putting it together, we have seen that the three phases described effectively
realize virtual MIMO channels achieving spatial multiplexing gain M between
the source and destination nodes in the network. Using these virtual MIMO
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channels, each source is able to transmit ML bits in

ttotal = tphase-1 + tphase-2 + tphase-3

=
18L

K1

M2−b + 2Cn +
18CQ

K1

M2−b

total channel uses where L/C ≥ κ for some κ > 0 independent of M (or n).
This gives an aggregate throughput of

T =
nML

(18L/K1)M2−b + 2Cn + (18CQ/K1)M2−b

≥ nM

(18/K1)M2−b + (2/κ)n + (18Q/K1κ)M2−b

≥ K2n
1

2−b (4.9)

for some K2 > 0 independent of n, by choosing M = n
1

2−b with 0 ≤ b < 1,
which is the optimal choice for the cluster size as a function of b. A failure arises
if there are not order M nodes in each cluster or the scheme used in Phases
1 and 3 fails to achieve the promised throughput. Combining the result of
Lemma 2.3.1-(e) with the computed failure probabilities for Phases 1 and 3
yields

Pf ≤ 4ne−Mc1 +
n

M
e−Λ(δ)M ≤ e−nc2

for some c2 > 0.
In order to conclude the proof of Lemma 4.4.1, we should note that the new

scheme achieves the same aggregate throughput scaling when the network ex-
periences interference from the exterior. In phases 1 and 3, this external inter-
ference with INRex ≤ KISNRl will simply add to the inter-cluster interference
experienced by the nodes. Recall that the inter-cluster interference to noise
power ratio is bounded by INRic ≤ KI1SNR(Ac) and since SNR(Ac) > SNRl,
the external interference is weaker than the inter-cluster interference. For the
MIMO phase, the external interference will lead to uncorrelated background-
noise-plus-interference at the receiving nodes which is not necessarily Gaus-
sian. In Appendices 4.A and 4.B we prove the results stated in Lemma 4.4.4
and Lemma 4.4.5 for this more general case. This concludes the proof of
Lemma 4.4.1. �

Proof of Lemma 4.4.2: The scheme that proves Lemma 4.4.2 is completely
similar to the one described above. Lemma 4.4.3 states that when α = 2,
the inter-cluster interference to noise power ratio experienced during Phases 1
and 3 is upperbounded by KI2SNR(Ac) log n ≤ K ′

I2
SNR(Ac) log M . From the

assumptions in the lemma, there is furthermore the external interference with
INR bounded by KISNRl log n which is adding to the inter-cluster interference.
Under these conditions, the scheme in the hypothesis of Lemma 4.4.2 achieves
an aggregate rate K1

Mb1

(log M)b2
when used to handle the traffic in these phases.
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For the second phase, we have the following lemma which provides a lower
bound on the spatial multiplexing gain of the quantized MIMO channel under
the external interference experienced. The proof is relegated to the end of
Appendix 4.B.

Lemma 4.4.6. Let the MIMO signal received by the nodes in the destina-
tion cluster be corrupted by an external interference of INR ≤ KISNRl log M ,
uncorrelated over different nodes and independent of the transmitted signals.
There exists a strategy to encode these corrupted observations at a fixed rate
Q bits per observation and get a κ′M/ log M growth of the mutual information
for the resulting M × M quantized MIMO channel.

A capacity of κ′M/ log M for the resulting MIMO channel implies that
there exists a code C that encodes L bits-long sub-blocks into C log M sym-
bols, where L/C ≥ κ′ for a constant κ′ > 0, so that the transmitted bits can
be decoded at the destination nodes with arbitrarily small probability of er-
ror, for L and C sufficiently large. Hence, starting again with a block of LM
bits in each source node, the LM2 bits in the first phase can be distributed
in (L/K1)M

2−b1 (log M)b2 channel uses. In the second phase, the L bits-long
sub-blocks now need to be encoded into C log M symbols, hence the transmis-
sion for each source-destination pair takes C log M channel uses. The whole
phase takes Cn log M channel uses. In the third phase, there are now a total
of CM2 log M MIMO observations encoded into CQM2 log M bits, that need
to be exchanged between the nodes in the cluster. With the scheme of ag-
gregate rate K1

Mb1

(log M)b2
, we need (CQ/K1)M

2−b1(log M)b2+1 channel uses to

complete the phase. Choosing M = n
1

2−b1 gives an aggregate throughput of

K2n
1

2−b1 /(log n)b2+1 for the new scheme for a constant K2 > 0 and independent
of n. This concludes the proof of Lemma 4.4.2. �

We continue with the proof of the Lemma 4.4.3. Lemmas 4.4.4, 4.4.5 and
4.4.6 are proven in Appendices 4.A and 4.B.

Proof of Lemma 4.4.3: Consider a node v in cluster V operating under the
9-TDMA scheme in Figure 4.7. The interfering signal received by this node
from the simultaneously operating clusters UV is given by

Iv =
∑

U∈UV

∑

k∈U

Hvk Xk

where Hvk are the channel coefficients given by (2.1) and Xk is the signal
transmitted by node k which is located in a simultaneously operating cluster
U . First note that the signals Iv and Iv′ received by two different nodes v
and v′ in V are uncorrelated since the channel coefficients Hvk and Hv′k are
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independent for all k. The power of the interfering signal Iv is given by

PI =
∑

U∈UV

∑

k∈U

GPk

(rvk)α

where we used the fact that channel coefficients corresponding to different
nodes k are independent. As illustrated by Figure 5, the interfering clusters
UV can be grouped based on their distance to V such that each group UV (i)
contains 8i clusters or less. All the clusters in group UV (i) are separated by
a distance larger than (3i − 1)

√
Ac from V for i = 1, 2, . . . . Recall that Ac is

the cluster area. The number of such groups can be simply bounded by the
number of clusters n/M in the network. Thus,

PI <

n/M
∑

i=1

∑

U∈UV (i)

∑

k∈U

GPk

((3i − 1)
√

Ac)α

≤ M
GP

(
√

Ac)α

n/M
∑

i=1

8i
1

(3i − 1)α
(4.10)

where we have used the fact that the powers of the signals are bounded by the
average power constraint P . The sum in (4.10) is convergent for α > 2. This
leads to

INRic =
PI

N0W
≤ KI1 M

GP

N0W (
√

Ac)α
= KI1SNR(Ac).

For α = 2, the sum can be bounded by KI2 log n SNR(Ac) where KI2 is a
constant independent of n. �

4.5 Power-Limited Hierarchical Cooperation

In the previous section, we have seen that when SNRl ≥ 1, i.e., when the long-
distance SNR in the network does not decrease to zero with increasing number
of users in the network, distributed MIMO communication with hierarchical
cooperation can achieve linear throughput scaling. In this section, we would
like to evaluate the performance of the scheme in a power-limited setting when
the long-distance SNR in the network vanishes with increasing n. If the scheme
described in the previous section is used without modification in such power-
limited networks, it leads to very poor performance. Observe from (4.23) in
Appendix 4.A that the capacity of the long-range MIMO transmissions in the
scheme scale like M SNRl when SNRl < 0 dB. In other words, the per-node
or per-stream MIMO capacity decreases like Θ(SNRl) with increasing system
size n. Therefore the bits in each stream have to be encoded into longer and
longer sequences of channel symbols. This is similarly the case for point-to-
point MIMO communication in the power-limited regime. However, here the
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V

2r

5r

16 interfering squares

8 interfering squares

Figure 4.7: Grouping of interfering clusters in the 9-TDMA Scheme.

distributed nature of the receive cluster further degrades performance. The
power-limited MIMO transmissions lead to the accumulation of many MIMO
observations in the third phase, each one of these observations containing
mostly noise with a signal component of very low power. These large number
of observations have to be quantized and delivered to their destinations. As
opposed to the SNRl ≥ 1 case, the total traffic generated in the third phase
becomes much larger than the traffic in the first phase. The performance of
the overall scheme is limited by the burden of transporting a large number of
observations that contain mostly noise in the third phase of the distributed
MIMO scheme.

In this section, we propose two simple modifications of the hierarchical
cooperation scheme for power-limited networks. Both of these modifications
achieve a total throughput scaling of n1−ǫSNRl for any ǫ > 0, when SNRl < 0
dB. Alternatively, the aggregate throughput can be expressed in terms of the
nearest neighbor SNR in the network, SNRs = nβ, recalling the relation

SNRl = n1−α/2SNRs,

given earlier in (2.7). The aggregate throughput achieved by the modified
hierarchical cooperation schemes in this section is lowerbounded by

Kǫ n2−α/2+β−ǫ, if β < α/2 − 1

for a constant Kǫ > 0 independent of n. The key to both modifications is
to ensure that the MIMO observations in the third phase contain a constant
amount of signal power that does not decrease to zero with increasing system
size. Therefore, the burden of transporting a large number of excessively noisy
observations in the third phase is removed.
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The first modification we propose is to run the hierarchical cooperation
scheme described in Section 4.4 as it is, a fraction SNRl of the time with
power P/SNRl per node and remain silent for the rest of the time. (Recall
that SNRl < 1.) This meets the given average power constraint P per node
and achieves an aggregate throughput of

T ≥ SNRl × Kǫ n1−ǫ,

since during operation the effective long-distance SNR in the network is larger
than 0 dB. Therefore, the conditions of Theorem 4.2.1 are satisfied and aggre-
gate throughput of Kǫ n1−ǫ is achieved.

This transmission strategy creates a “bursty” hierarchical cooperation scheme
with a high peak-to-average power ratio. (The idea of using burstiness in im-
proving the low-SNR performance of relay networks was introduced in [23]
in the context of single-relay networks.) However, although we talk in terms
of time in the above discussion, such burstiness can just as well be imple-
mented over frequency with only a fraction of the total bandwidth W used.
For example, this can be implemented in an OFDM system, using a subset
of the sub-carriers at any one time, but putting more energy in the active
sub-carriers. This way, the peak power remains constant over time.

The alternative to bursty communication is repetition coding. However,
this second strategy can only be applied if the coherence time of the channel
fading process is long enough. Consider the channel model given in Section 2,
where the signal received by node i at time m is given by

Yi[m] =
∑

k 6=i

Hik[m]Xk[m] + Zi[m] (4.11)

where Zi is white Gaussian noise. Let us assume the channel coefficients Hik[m]
remain constant for a duration of N = 1/SNRl channel uses, i.e,

Hik[m] = Hik, form = 1, . . . , N.

Let each transmission in the network be exactly repeated over these N =
1/SNRl channel uses. Each receiving node i can combine the signals it observes
during these N channel uses and obtain the signal

Ỹi[1] =
1

N

N
∑

l=1

∑

k 6=i

HikXk[l] +
1

N

N
∑

l=1

Zi[l]

=
∑

k 6=i

HikXk[1] +
1

N

N
∑

l=1

Zi[l]. (4.12)

Since the noise is white, the power of the noise in Ỹi is reduced by a factor
of 1/N as compared to Yi in (4.11). Equivalently, the SNR is increased by a
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factor of N . For the network described by the channel model in (4.12), the long
distance SNR is given by N × SNRl = 1, therefore Theorem 4.2.1 applies and
an aggregate throughput of Kǫ n1−ǫ is achieved. Because of the repetitions,
this yields an aggregate throughput

1

N
× Kǫn

1−ǫ = Kǫn
1−ǫSNRl

for the original network. Note that the quantity nSNRl can be interpreted
as the total power transferred between a size n transmit cluster and a size
n receive cluster separated by a distance of the order of the diameter of the
network. This power transfer is taking place at the top level of the hierarchy
(see Figure 1.1). The fact that the achievable rate is proportional to the power
transfer further emphasizes that the scheme is power-limited when SNRl < 0
dB as opposed to degrees-of-freedom limited in the previous case of SNRl > 0
dB.

4.6 The MIMO-Multihopping Scheme

In this section, we combine the hierarchical cooperation scheme presented in
Section 4.4 with the multi-hopping scheme in Section 4.3. We divide the
network into square cells of area Ac and relay the packets between the source-
destination pairs by hopping from one cell to the next, while each hop is
performed by distributed MIMO communication and hierarchical cooperation.
Let M = Acn/A be the average number of nodes contained in each cell. Later
we will argue more precisely that for our particular choice of Ac, Lemma 2.3.1-
(e) ensures that there are Θ(M) nodes in all cells w.h.p. As in the case of
pure multi-hopping, we follow a simplistic route between the source-destination
pairs by first relaying the packets horizontally and then vertically as shown in
Figure 4.8. Hence, the relaying burden imposed on a given cell is due to the
source nodes that lie in its horizontal slab and destination nodes that lie in
its vertical slab. The number of nodes contained in a slab of area

√
Ac A is

Θ(
√

Mn). Hence, there can be at most O(2
√

Mn) source-destination routes
that pass from a given cell. Let us randomly associate each of the source-
destination pairs whose routes pass through a given cell with one of the M
nodes in this cell so that each node is associated with at most O(2

√

n/M)
source-destination pairs. The only rule that we need to respect while doing
this association is that if a source-destination route starts or ends in a certain
cell, then the node associated to this source-destination pair should naturally
be its respective source or destination node. The nodes associated to a source-
destination pair are those that will decode, temporarily store and forward the
packets of this source-destination pair during the multi-hop operation. The
following lemma states a key result regarding the rate of transmission between
neighboring cells.
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D

S

Figure 4.8: The figure illustrates the optimal scheme in Regime IV which is
based on cooperating locally and multi-hopping globally. Note that packets are
transmitted by multi-hopping on the network level and each hop is realized with
distributed MIMO transmissions combined with hierarchical cooperation.

Lemma 4.6.1. If SNR(Ac) ≥ 1, there exists a strategy (based on distributed
MIMO communication with hierarchical cooperation) that allows each node in
the network to relay its packets to their respective destination nodes in the
adjacent cells at a rate

Rrelay ≥ Kǫ M−ǫ

for any ǫ > 0 and a constant Kǫ > 0 independent of M .

In steady-state operation, the outbound rate of a relay node given in the
lemma should be shared between the O(2

√

n/M) source-destination pairs that
the relay is responsible for. Hence, the rate per source-destination pair in the
network is lowerbounded by

R ≥ Kǫ

2

M1/2−ǫ

√
n

(4.13)

or equivalently, the aggregate rate achieved by the scheme is

Tmultihopping+HC ≥ Kǫ

2

√
n M1/2−ǫ.

Note that combining multi-hopping with hierarchical cooperation provides a-√
M -fold-gain in the aggregate throughput as compared to pure multi-hopping,

which indeed corresponds to M = 1 in the above discussion. Choosing larger
M yields a larger aggregate throughput since it reduces the relaying burden.
Indeed if we could choose M = n, we could get linear scaling in which case
the scheme would reduce to pure hierarchical cooperation. However since
SNRl < 1, the condition SNR(Ac) ≥ 1 is not satisfied for Ac = A, so M
can not be as large as n. The largest cluster area that satisfies the condition
SNR(Ac) ≥ 1 is,

Ac =
A

n
SNR1/(α/2−1)

s . (4.14)
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Note that this choice for Ac coincides with the intuition suggested by the upper
bound derivation, discussed in Section 3.4. For SNRs > 1 and SNRl < 1, the
choice for Ac yields A/n < Ac < A as expected. If we assume SNRs = nβ

with 0 < β < α/2−1, each cell contains Θ(M) = Θ(SNR1/(α/2−1)
s ) nodes w.h.p.

by Lemma 2.3.1-(e). (When SNRs is a constant larger than 1, or SNRs = log n,
part(e) of Lemma 2.3.1 does not ensure that the number of nodes in each cell
concentrate around their mean value for large n. This technical difficulty can
be overcome by allowing a cluster area Acn

ǫ1 for arbitrarily small ǫ1 > 0. This
choice for the cluster area will ensure that there are Θ(M) nodes in all cells
and will degrade the aggregate throughput scaling of the scheme only by n−ǫ1 .
Thus the following result can indeed be established for any SNRs > 1 and
SNRl < 1.)

With the choice (4.14) for Ac, we have

Tmultihop+HC ≥ Kǫ′
√

n SNR
1

α−2
−ǫ′

s if SNRs > 1 and SNRl < 1 (4.15)

for any ǫ′ > 0. In terms of scaling exponents, we have

emultihop+HC(α, β) = 1/2 + β/(α − 2) if 0 < β < α/2 − 1

which matches the upper bound (3.16) in the third regime.

Proof of Lemma 4.6.1: Let us concentrate only on two neighboring cells
in the network. (Consider for example the two cells highlighted in Fig. 4.8):
The two neighboring cells together form a network of 2M nodes randomly and
uniformly distributed on a rectangular area 2

√
Ac ×

√
Ac. Let the M nodes in

one of the cells be sources and the M nodes in the other cell be destinations
and let these source and destination nodes be paired up arbitrarily to form
M S-D pairs. (This traffic will later be used to model the hop between two
adjacent cells.) If SNR(Ac) > 1, Theorem 4.2.1 ensures that with hierarchical
cooperation an aggregate rate

M Rrelay ≥ Kǫ M1−ǫ (4.16)

is achievable for these M source destination pairs. Note that by Remark 4.4.1,
this rate is also achievable under external interference which is zero mean and
uncorrelated across nodes and with INRex ≤ KISNR(Ac) for a constant KI .

Now, let us turn back to our original problem concerning the steady-state
operation of the multi-hop scheme. At each hop, each of the M nodes in a cell
need to relay its packets to one of the four (left, right, up and down) adjacent
cells. Since the source-destination routes are randomly assigned to the nodes
in the cell, there are M/4 nodes on the average that want to transmit in each
direction. These transmissions can be realized successively using hierarchical
cooperation and the relaying rate in (4.16) can be achieved in each transmis-
sion. On the other hand, the TDMA between the four transmissions will reduce
the overall relaying rate by a factor of 4. Moreover, one should also consider a
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TDMA scheme between the cells allowing only those cells that are sufficiently
separated in space to operate simultaneously so that the inter-cell-interference
in the network does not degrade the quality of the transmissions significantly.
Employing a 9-TDMA scheme as we did in the case of multi-hopping, the
inter-cell interference can be shown to satisfy INRic < KI1SNR(Ac) by a sim-
ple modification of Lemma 4.4.3. The 9-TDMA scheme will further reduce the
rate by a factor of 9 in (4.16) however will not affect the scaling law in (4.15).
�

4.A Linear Scaling Law for the MIMO Channel

The discrete-time baseband equivalent M × M MIMO channel between two
clusters S and D is given by

Y = HX + I + Z, (4.17)

where Y is an M ×1 random vector representing the signals received by nodes
D, X is the M × 1 vector of transmitted signals from S and the entries Hik

of the M × M channel matrix H are given in (2.1). Recall that Z represents
the additive white Gaussian noise of variance N0 and I is M × 1 vector with
uncorrelated entries of variance PI/W , representing the external interference
signals experienced by nodes in D and satisfying

INRex =
PI

N0W
≤ KI SNRl (4.18)

Assume that the transmitted signals Xi are independent random variables with
distribution ∼ NC(0, σ2) of variance

σ2 =
nP

MW
.

Recall our discussion in Section 4.4.1 that the nodes in S are transmitting
with power nP/M during the MIMO transmissions. It is well known that
the achievable mutual information is lower bounded by assuming that the
interference-plus-noise I + Z vector is independent across nodes in D and
complex circularly-symmetric Gaussian distributed. (See for example Theorem
5 of [15] for a precise statement and proof of this in the MIMO case.)

Let the distance between the midpoints of the two clusters S and D be rSD.
With our transmission strategy in the MIMO phase, there exists b > a > 0
with a and b independent of n, such that r

−α/2
ik = r

−α/2
SD ρik, where all ρik lie in

the interval [a, b]. This is true both in the cases when S and D are neighboring
clusters and when they are not. In the case when S and D are not neighboring
clusters, observe that for any i ∈ D, k ∈ S

rSD −
√

2Ac ≤ rik ≤ rSD +
√

2Ac,
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while rSD ≥ 2
√

Ac. These two relations yield

( √
2√

2 + 1

)α/2

≤
(

rSD

rik

)α/2

≤
( √

2√
2 − 1

)α/2

. (4.19)

When S and D are neighboring clusters, rSD ≤ rik ≤ rSD +
√

2Ac and rSD ≥√
Ac which leads to

( √
1√

2 + 1

)α/2

≤
(

rSD

rik

)α/2

≤ 1.

We can rewrite the relation (4.17) as

Y = (
√

G r
−α/2
SD ) FX + I + Z, (4.20)

where Fik = ρik exp(j θik). The capacity of this MIMO channel is lower
bounded by the capacity of the channel

Y ′ =
√

G (
√

A)−α/2 FX + I + Z, (4.21)

since the separation between any two clusters is upper bounded by the diameter
of the network, rSD ≤

√
A. By assuming perfect channel state information

at the receiver side, the mutual information of the above MIMO channel is
bounded from below by

I(X; Y ′, H) ≥ E

(

log det

(

I + G(
√

A)−α nP/M

N0W + PI

FF ∗
))

= E

(

log det

(

I +
SNRl

1 + INRex

1

M
FF ∗

))

since the separation between the two clusters is upper bounded by the diameter
of the network, rSD ≤

√
A. We furthermore obtain

I(X; Y ′, H) ≥ E

(

log det

(

I +
SNRl

1 + KISNRl

1

M
FF ∗

))

, (4.22)

using the upperbound (4.18).
Let λ be chosen uniformly among the M eigenvalues of 1

M
FF ∗. The above

lowerbound on the mutual information can be written as

I(X; Y ′, H) ≥ M E

(

log

(

1 +
SNRl

1 + KISNRl

λ

))

≥ M log

(

1 +
SNRl

1 + KISNRl

t

)

P(λ > t)

for any t ≥ 0. By the Paley-Zygmund inequality, if 0 ≤ t < E(λ), we have

P(λ > t) ≥ (E(λ) − t)2

E(λ2)
.
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We therefore need to compute both E(λ) and E(λ2). We have,

E(λ) =
1

M
E

(

Tr

(

1

M
FF ∗

))

=
1

M2

M
∑

i,k=1

E(|Fik|2)

=
1

M2

M
∑

i,k=1

ρ2
ik ≥ a2

and

E(λ2) =
1

M
E

(

Tr

(

1

M2
FF ∗FF ∗

))

=
1

M3

M
∑

iklm=1

E(FikFlkFlmFim)

≤ 2

M3

M
∑

ikm=1

E(|Fik|2) E(|Fim|2)

=
2

M3

M
∑

ikm=1

ρ2
ik ρ2

im ≤ 2b4

so E(λ) ≥ a2 and E(λ2) ≤ 2b4. This leads us to the conclusion that for any
t < a, we have

I(X; Y ′, H) ≥ M log

(

1 +
SNRl

1 + KISNRl

t

)

(a2 − t)2

2b4
, (4.23)

Choosing e.g. t = a/2 and recalling that by Lemma 4.4.1 we have SNRl ≥ KS,
shows that I(X; Y,H) grows at least linearly with M . �

Lemma 4.A.1. (Paley-Zygmund Inequality) Let X be a non-negative random
variable such that E(X2) < ∞. Then for any t ≥ 0 such that t < E(X), we
have

P(X > t) ≥ (E(X) − t)2

E(X2)

Proof: By the Cauchy-Schwarz inequality, we have for any t ≥ 0:

E(X 1X>t) ≤
√

E(X2) P(X > t)

and also, if t < E(X),

E(X 1X>t) = E(X) − E(X 1X≤t) ≥ E(X) − t > 0
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Therefore,

P(X > t) ≥ (E(X) − t)2

E(X2)
.

�

Note that the achievability results in this paper can be extended to the
slow fading case, provided that Lemma 4.4.4 can be proved in the slow fading
setting. In that case, one would need to show that the expression inside the
expectation in (4.22) concentrates around its mean exponentially fast in M .
However, another difficulty might arise from the lack of averaging of the phases
in the interference term, which leads to a non-spatially decorrelated noise term
Z. Although proving the result might require some technical effort, we believe
it holds true, due to the self-averaging effect of a large number of independent
random variables.

4.B Achievable Rates on Quantized Channels

In order to conclude the discussion on the throughput achieved by our scheme,
we need to show that the quantized MIMO channel achieves the same spatial
multiplexing gain as the MIMO channel. In Theorem 4.B.1 below, we give
a simple achievability region for general quantized channels. (Note that a
stronger result is established in [31, Theorem 3] that implies Theorem 4.B.1 as
a special case.) The required result for the quantized MIMO channel is then
found as an easy application of Theorem 4.B.1. We start by formally defining
the general quantized channel problem in a form that is of interest to us and
proceed with several definitions that will be needed in the sequel.

Let us consider a discrete-time memoryless channel with single input of al-
phabet X and M outputs of respective alphabets Y1, . . . ,YM . The channel is
statistically described by a conditional probability distribution p(y1, . . . , yM |x)
for each y1 ∈ Y1, . . . , yM ∈ YM and x ∈ X . The outputs of the chan-
nel are to be followed by quantizers which independently map the output
alphabets Y1, . . . ,YM to the respective reproduction alphabets Ŷ1, . . . , ŶM .
The aim is to recover the transmitted information through the channel by
observing the outputs of the quantizers. Communication over the channel
takes place in the following manner: a message W , drawn from the index
set {1, 2, . . . , L} is encoded into a codeword Xm(W ) ∈ Xm, which is received
as M random sequences (Y m

1 , . . . , Y m
M ) ∼ p(ym

1 , . . . , ym
M |xm) at the outputs

of the channel. The quantizers themselves consist of encoders and decoders,
where the i’th encoder describes its corresponding received sequence Y m

i by
an index Ui(Y

m
i ) ∈ {1, 2, . . . , Li}, and decoder i represents Y m

i by an esti-
mate Ŷ m

i (Ui) ∈ Ŷm
i . The channel decoder then observes the reconstructed

sequences Ŷ m
1 , . . . , Ŷ m

M and guesses the index W by an appropriate decod-
ing rule Ŵ = g(Ŷ m

1 , . . . , Ŷ m
M ). An error occurs if Ŵ is not the same as the

index W that was transmitted. The complete model under investigation is
shown in Fig. 8. An (L; L1, . . . , LM ; m) code for this channel is a joint (L,m)
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Figure 4.9: The Quantized Channel Problem.

channel code and M quantization codes (L1,m), . . . , (LM ,m); more specifi-
cally, it is two sets of encoding and decoding functions, the first set being the
channel encoding function Xm : {1, 2, . . . , L} → Xm and the channel decod-
ing function g : Ŷm

1 × · · · × Ŷm
M → {1, 2, . . . , L}, and the second set consists

of the encoding functions Ui : Ym
i → {1, 2, . . . , Li} and decoding functions

Ŷ m
i : {1, 2, . . . , Li} → Ŷm

i for i = 1, . . . ,M used for the quantizations. We
define the (average) probability of error for the (L; L1, . . . , LM ; m) code by

Pm
e =

1

L

L
∑

w=1

P(Ŵ 6= w | W = w).

A set of rates (R; R1, . . . , RM) is said to be achievable if there exists a sequence
of
(2mR; 2mR1 , . . . , 2mRM ; m) codes with Pm

e → 0 as m → ∞. Note that deter-
mining achievable rates (R; R1, . . . , RM) is not a trivial problem, since there is
trade-off between maximizing R and minimizing R1, . . . , RM .

Theorem 4.B.1. (Achievability for the Quantized Channel Problem) Given a
probability distribution q(x) on X and M conditional probability distributions
qj(ŷj|yj) where yj ∈ Yj, ŷj ∈ Ŷj and j = 1, . . . ,M , all rates (R; R1, . . . , RM)

such that R < I(X; Ŷ1, . . . , ŶM) and Rj > I(Yj; Ŷj) are achievable. Specifically,

given any δ > 0, q(x) and qj(ŷj|yj), together with rates R < I(X; Ŷ1, . . . , ŶM)

and Rj > I(Yj; Ŷj) for j = 1, . . . ,M ; there exists a (2mR; 2mR1 , . . . , 2mRM ; m)
code such that Pm

e < δ.

Proof: The proof of the theorem for discrete finite-size alphabets relies on a
random coding argument based on the idea of joint (strong) typicality. For the
idea of strong typicality and properties of typical sequences, see [12, Ch. 13.6].
The proof can be outlined as follows. Given q(x) generate a random channel
codebook Cc with 2mR codewords, each of length m, independently from the
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distribution

q(xm) =
m
∏

k=1

q(xm(k)).

and call them Xm(1), Xm(2), . . . , Xm(2mR). Also generate M quantization
codebooks Ci, i = 1, . . . ,M , each codebook Ci consisting of 2mRi codewords
drawn independently from

pi(ŷ
m
i ) =

m
∏

k=1

∑

x∈X
y1∈Y1,...,yM∈YM

q(x)p(y1, . . . , yM |x)qi(ŷ
m
i (k)|yi).

and index them as Ŷ m
i (1), Ŷ m

i (2), . . . Ŷ m
i (2mRi). Given the message w, send

the codeword Xm(w) through the channel. The channel will yield Y m
1 , . . . , Y m

M .
Given the channel output Y m

i at the i’th quantizer, choose ji such that (Y m
i , Ŷ m

i (ji))
are jointly typical. If there exists no such ji, declare an error. If the num-
ber of codewords in the quantization codebook 2mRi is greater than 2mI(Yi;Ŷi),
the probability of finding no such ji decreases to zero exponentially as m in-
creases. The probability of failing to find such an index in at least one of
the M quantizers is bounded above by the union bound with the sum of M
exponentially decreasing probabilities in m. Given Ŷ m

1 (j1), . . . , Ŷ
m
M (jM) at the

channel decoder, choose the unique ŵ such that (Xm(ŵ), Ŷ m
1 (j1), . . . , Ŷ

m
M (jM))

are jointly typical. The fact that (Xm(w), Ŷ m
1 (j1), . . . , Ŷ

m
M (jM)) will be jointly

typical with high probability can be established by identifying the Markov
chains in the problem and applying Markov Lemma [12, Lemma 14.8.1] re-
peatedly. Observing that (Y m

1 , . . . , Y m
M , Ŷ m

1 , . . . , Ŷ m
i ) − Y m

i+1 − Ŷ m
i+1 forms a

Markov chain and recursively applying Markov Lemma, we conclude that
(Y m

1 , . . . , Y m
M , Ŷ m

1 (j1), . . . , Ŷ
m
M (jM)) are jointly typical with probability approach-

ing 1 as m increases. Observing that Xm−(Y m
1 , . . . , Y m

M )−(Ŷ m
1 , . . . , Ŷ m

M ) forms
another Markov chain, we have (Xm(w), Ŷ m

1 (j1), . . . , Ŷ
m
M (jM)) jointly typical

with high probability again by Markov Lemma. If there are more than one
codewords Xm that are jointly typical with (Ŷ m

1 (j1), . . . , Ŷ
m
M (jM)), we declare

an error. The probability of having more than one such sequence will decrease
exponentially to zero as m increases, if the number of channel codewords 2mR

is less than 2mI(X;Ŷ1,...,ŶM ). Hence if R < I(X; Ŷ1, . . . , ŶM) and Ri > I(Yi; Ŷi),
the probability of error averaged over all codes decreases to zero as m → ∞.
This shows the existence of a code that achieves rates (R; R1, . . . , RM) with
arbitrarily small probability of error. The result can be readily extended to
memoryless channels with discrete-time and continuous alphabets by standard
arguments (see [20, Ch.7]). �

Proof of Lemma 4.4.5: Now we turn to our original problem. We need
to show that it is possible to encode the observations at the outputs of the
MIMO channel at a fixed rate, while preserving the spatial multiplexing gain
of the MIMO channel. This fact follows easily from Theorem 4.B.1: From
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(4.20), the received signal at node i ∈ D is given by

Yi = (
√

G r
−α/2
SD )

∑

i∈S

FikXk + Ii + Zi.

Let us first scale the received signal to obtain

Ỹi =

(√
A

rSD

)−α/2

Yi

=
√

G (
√

A)−α/2
∑

k∈S

FikXk +

(√
A

rSD

)−α/2

Ii +

(√
A

rSD

)−α/2

Zi

=
√

G (
√

A)−α/2
∑

k∈S

FikXk + Ĩi + Z̃i.

Next, we define the conditional probability densities

qi(ŷi|ỹi) = NC(ŷi, ∆
2) (4.24)

for the quantization process. From Theorem 4.B.1 we know that for any dis-
tribution p(x) on the input space, all rate pairs (R; R1, . . . , RM) are simulta-
neously achievable if

Ri > I(Ỹi; Ŷi), i = 1, . . . ,M and R < I(X; Ŷ1, . . . , ŶM)

where now Ri is the encoding rate of the i’th stream and R is the total trans-
mission rate over the MIMO channel. With the distribution in (4.24), we
have

I(Ỹi; Ŷi) ≤ log

(

1 +
E(|Ỹi|2)

∆2

)

(4.25)

for any probability distribution p(x) on the input space, where E(|Ỹi|2) is the
variance of the rescaled observation Ỹi. Note that if this variance is increasing
with n, we should allow the variance of the quantization error, ∆2, to also
increase with n, in order to be able to keep the quantization rate Ri constant.
The variance of Ỹi is given by

E

(

|Ỹi|2
)

= G(
√

A)−α
∑

k∈S

ρ2
ik

nP

MW
+

(√
A

rSD

)−α/2
PI

W
+

(√
A

rSD

)−α/2

N0.

Using the upper bound in (4.19) for ρik and noting that
( √

A
rSD

)−α/2

≤ 1 yields,

E

(

|Ỹi|2
)

N0

≤ SNRl

( √
2√

2 − 1

)α

+ INRex + 1

≤ SNRl

( √
2√

2 − 1

)α

+ KISNRl + 1. (4.26)
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Thus, choosing
∆2

N0

≤ KQSNRl (4.27)

for a constant KQ > 0 independent of M and n yields a constant upper bound
on (4.25),

I(Ỹi; Ŷi) ≤ log



1 +

( √
2√

2−1

)α

+ KI + 1
KS

KQ



 := RQ

where we also make use of the fact that SNRl ≥ KS. So if we choose

Ri = RQ + ε ∀i = 1, . . . ,M

for some ε > 0, all rates

R ≤ I(X; Ŷ1, . . . , ŶM)

are achievable on the quantized MIMO channel for any input distribution p(x).
Note that now the channel from X to Ŷ1, . . . , ŶM is given by

Ŷ =
√

G (
√

A)−α/2 F X + Ĩ + Z̃ + D

where D ∼ NC(0, ∆2I) with ∆2 specified in (4.27) is the quantization noise
which is independent of all the other variables. This channel is equivalent to
the MIMO channel in (4.21) and linear scaling of the capacity is established
in Section 4.A. �

Proof of Lemma 4.4.6: Consider the case where the MIMO signals are
corrupted by external interference with INRex ≤ KISNRl log M . We would
like to show that it is possible to quantize the observations at a fixed rate
independent of M , or n and get M/ log M capacity scaling for the resultant
quantized MIMO channel. The proof follows by a small modification of the
proof of Lemma 4.4.5. Following the same approach till (4.26), yields

E

(

|Ỹi|2
)

N0

≤ SNRl

( √
2√

2 − 1

)α

+ KISNRl log M + 1.

To be able to encode the observations at constant rates Ri, we need to choose

∆2

N0

≤ KQSNRl log M. (4.28)

The channel from X to Ŷ1, . . . , ŶM is then given by

Ŷ =
√

G (
√

A)−α/2 F X + Ĩ + Z̃ + D

where both Ĩ and D have larger power to noise ratios KISNRl log M and
KQSNRl log M respectively, instead of KISNRl and KQSNRl. This yields an
extra log M factor in the denominator of (4.22) which in turn yields M/ log M
capacity scaling for the quantized MIMO channel. �



Throughput-Delay

Trade-off for Hierarchical

Cooperation 5
In the previous two chapters, we have seen how scaling law results can be
used to identify operating regimes of large wireless networks and to devise
scaling optimal communication schemes for each regime. In this chapter, we
use a scaling law formulation to highlight the qualitative properties of spe-
cific designs. More precisely, we derive a throughput-delay trade-off for the
hierarchical cooperation scheme presented in Section 4.4.

The analysis of the delay performance of the hierarchical cooperation scheme
reveals a key drawback of the architecture in Section 4.4 from the bulk-size
point of view. The bulk-size of a scheme is defined as the minimum number of
bits that should be communicated between each source-destination pair under
this scheme. A modification to the architecture is devised in this chapter to
overcome this major drawback. The key ingredient is a more careful study of
the cooperation problem.

5.1 Introduction and Literature Overview

In the previous chapters, we have extensively discussed the results of the sem-
inal work [27] of Gupta and Kumar in 2000, that has initiated the scaling law
approach to wireless networks. We have seen that one of the main results of [27]
is to establish the aggregate throughput scaling of the multi-hopping scheme
as Θ(

√
n). This has been interpreted as a rather negative result since it implies

that the rate per source destination pair should decrease to 0 as 1/
√

n when n
is large. However, the same result can also be interpreted as good news when
compared to the performance of simple TDMA. If nodes cooperate and relay
packets by multi-hopping from one node to the next, an aggregate throughput
scaling of Θ(

√
n) is achieved, when the simple scheme of time-sharing between

direct transmissions from source nodes to destinations achieves only an aggre-

93
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gate throughput Θ(1). The price to pay, however, is in terms of delay. In
the multi-hopping scheme, the packets need to be retransmitted many times
before they reach their actual destinations, which results in larger end-to-end
delay. More precisely, as shown later in [21, 22], in a multi-hop scheme, bits
are delivered to their destinations in Θ(

√
n) time-slots on average after they

leave their source nodes, while the average delay for the simple TDMA scheme
remains only Θ(1). Note that this accounts only for on-the-flight delay; the
queuing delay at the source node is not considered.

In the previous chapter, we have introduced a hierarchical cooperation
architecture for distributed MIMO communication that achieves an aggregate

throughput scaling arbitrarily close to linear, i.e. Th(n) = Θ(n
h

h+1 ) for any
integer h > 0. Recall that h corresponds to the number of hierarchical levels
used in the scheme and that by increasing h, we get arbitrarily close to linear
scaling. A natural question is whether there is a price to pay for this superior
scaling of the throughput. In particular, what is the throughput-delay trade-off
for hierarchical cooperation? In this chapter, we analyze the delay performance
of the hierarchical cooperation scheme and show that the structure suggested
in Section 4.4 is suboptimal from delay point of view. We devise a modification
of the scheme in this chapter that achieves much better delay performance for
the same throughput. More precisely, we show that one important drawback of
the architecture in Section 4.4 is that it uses an extremely large bulk-size, where
the bulk-size of a scheme refers to the minimum number of bits that should be
communicated between each source-destination pair under this scheme. We
show in Section 5.3.2 that the bulk-size used by the architecture in Section 4.4
scales like Bh(n) = Θ(n

h
2 ); in other words, it grows arbitrarily fast as the

throughput approaches linear scaling. Note that the bulk-size immediately
imposes a lower bound on the end-to-end delay of each communication; even
if there is no transmission delay from the source node to the destination node,
receiving a bulk of B(n) bits will take at least Θ(B(n)/ log n) channel uses
for a destination node, since a simple application of the cut-set bound upper
bounds the rate of reception by (or transmission from) a node with log n bits
per channel use.

The basic idea behind the scheme in Section 4.4 is to first distribute the
bits of a source node to its neighboring nodes, so that these bits can then be
simultaneously transmitted to a group of nodes in the vicinity of the destina-
tion node. By collecting the observations of the receiving nodes to the actual
destination node, the destination node is able to recover the bits intended for
itself. The efficiency of these distributed MIMO transmissions increases with
the size of (number of nodes contained in) the transmit and receive clusters,
formed around the source node and the destination node respectively. How-
ever, when the size of the transmit cluster is large, the bulk of data that is
communicated from each source node to its destination node has to be large as
well. This bulk of data is to be chopped off and distributed among the many
nodes in the transmit cluster. Hence, the size of the transmit cluster imposes
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a lower bound on the bulk size that needs to be communicated between each
source-destination pair. Moreover, in the hierarchical cooperation scheme, the
cooperation traffic of distributing the information bits of the source node and
collecting the MIMO observations to the destination node, is further handled
by distributed MIMO communication. This resulting hierarchical architecture
was shown to be efficient from throughput point of view. However, since dis-
tributed MIMO based communication imposes a lower bound on the bulk-size,
repeating the idea recursively yields a scheme with even larger bulk-size. This
is the reason why the bulk size of the hierarchical cooperation scheme increases
as Θ(n

h
2 ) with h hierarchical levels.

In this chapter, we suggest a modification of the hierarchical cooperation
scheme that handles the problem of cooperation more efficiently. In order to
do this, we study the problem of cooperation more carefully by posing it as
a uniform traffic problem, instead of separating it into multiple permutation
traffic problems, as was done in Section 4.4. In the uniform traffic problem,
each of the n nodes in the network is interested in conveying independent
information, say fixed L bits, to each of the other nodes in the network. In
Section 5.3.2, we propose a two-phase hierarchical scheme that solves this
uniform traffic problem in Θ(n

h+1
h ) time-slots, for any h > 0. Using this scheme

for cooperation, the modified hierarchical cooperation scheme achieves the

same aggregate throughput Th(n) = Θ(n
h

h+1 ) by using a much smaller bulk-size
Bh(n) = Th(n). We show that reduced bulk size consequently reduces the delay
and that the modified hierarchical cooperation scheme achieves Dh(n) = Θ(n).

We proceed by optimizing scheduling in this scheme to further reduce the
end-to-end delay. To do this, we need to consider a generalized version of the
uniform traffic problem where each node in the network is interested in con-
veying independent information to each of the nodes in a subset of A(n) nodes,
where the A(n) < n nodes are chosen uniformly at random among the n nodes
in the network. In Section 5.3.2, we show that this task can be accomplished

in Θ(A(n)
n

n
h

h+1 log n) channel uses for any h > 0, if A(n) ≥ n
h

h+1 . This allows us
to achieve a throughput delay trade-off of (T (n), D(n)) = (nb/ log n, nb log n)
for any 0 ≤ b < 1. This new result is depicted in Figure 5.1, together with pre-
vious results from the literature. In particular, the throughput-delay trade-off
for the multi-hopping scheme has been established in [21, 22] as D(n) = T (n)
where T (n) lies between Θ(1) and Θ(

√
n). As shown in the figure, hierarchical

cooperation complements this trade-off for T (n) between Θ(
√

n) and Θ(n).
A related line of research (see e.g. [21, 26, 39, 47]) is the characterization

of the throughput-delay trade-off for mobile networks, where nodes move over
the duration of communication according to a certain mobility pattern. In
general, mobility schemes achieve an aggregate throughput scaling compara-
ble to that of hierarchical cooperation (i.e. up to linear in n), but the delay
scaling performance of such schemes may vary significantly, depending on the
chosen mobility model. For instance, under the classical random walk mobil-
ity model considered in [21], the performance is quite poor, as illustrated in
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Figure 5.1: Throughput-delay performance achieved by hierarchical cooperation
together with known results from the literature.

Figure 5.1. But from the delay point of view, a more prominent disadvan-
tage which is common to all mobility models and which does not appear on
the graph in Figure 5.1, is the constant that precedes the delay scaling law.
Roughly speaking, this pre-constant relates to the speed of nodes in the case
of mobility schemes, whereas it relates to the speed of light in the case of
hierarchical cooperation or multi-hopping.

5.2 Setting and Main Results

The network and traffic model considered in this chapter is the one introduced
in Section 2. Recall that the source and the destination nodes are paired up
one-to-one and each source has the same traffic rate to send to its destination
node. In this chapter, we will refer to this traffic pattern as permutation
traffic in order to distinguish it from the uniform traffic problems that will
be discussed in Sections 5.4 and 5.5.2. The aim of this chapter is to study
the properties of the hierarchical cooperation scheme, so we assume the long-
distance SNR in the network is large, SNRl ≫ 0 dB, i.e the network operates
in the degrees of freedom limited regime, Regime-I in (4.2).

Definition 5.2.1 (Delay of a Scheme). A scheme Πn is said to achieve a delay
D if all source destination pairs can communicate a message of L > 1 bits,
in D time-slots under this scheme with probability limn→∞ PΠn = 1 over the
random realizations of the network.

Note that so defined, the delay of a scheme quantifies the minimal time
spent by the bits traveling inside the network while operated under this scheme.
This definition of delay is consistent with [21, 22] and therefore, the compari-
son in Figure 5.1 of the multi-hop scheme and hierarchical cooperation is fair.
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However, note that this definition does not include the queuing delay at the
source node, as the clock starts when a packet leaves its source node. The delay
at the source node can be accounted for by assuming a particular packet arrival
process and studying the overall delay of a packet from its arrival at the source
queue to the decoding at the destination node. The transmission delays given
in Figure 5.1 can be regarded as lower bounds to this overall delay. Consider
for example the simple TDMA scheme, one at a time transmission between
the source-destination pairs, that corresponds to the origin in Figure 5.1. As-
sume independent Poisson packet arrival at each source node of appropriate
rate. If we assume round-robin fashion, backlog unaware scheduling between
the transmissions, the overall delay of the TDMA scheme will be Θ(n) much
larger than the Θ(1) delay predicted by Figure 5.1. However, it is known that
this delay can be reduced to O(log n) with backlog aware scheduling [38]. In
general, how larger is the overall delay from the transmission delay given in
Figure 5.1 depends on how well one can match the packet arrival process with
backlog aware scheduling schemes. In this paper, our aim is to quantify the
transmission delay of the discussed schemes; the second question regarding the
queuing delay at the source is left open.

The following theorem is the main result of this chapter.

Theorem 5.2.1. For 0 ≤ b < 1, the throughput-delay scaling

(T (n), D(n)) = Θ
(

nb/ log n, nb log n
)

is achievable using hierarchical cooperation. (See Figure 5.1.)

5.3 Delay of the Distributed MIMO Scheme

with Hierarchical Cooperation

In this section, we establish the throughput-delay trade-off for the hierarchical
cooperation scheme presented in Section 4.4. This requires a re-discussion of
the scheme, but now with an emphasis on its delay performance. Below, we
briefly summarize the main properties of the scheme when necessary, but the
technical details earlier proven in Section 4.4.1 are mostly omitted.

Recall that the hierarchical cooperation scheme is based on clustering the
nodes in the network and performing long-range MIMO transmissions between
the clusters. The long-range MIMO transmissions should be preceded and fol-
lowed by cooperation phases establishing transmit and receive cooperation
respectively, which yields three successive phases in the operation of the net-
work. If simple TDMA is used for establishing cooperation in phase 1 and
3, the overall scheme achieves a Θ(

√
n)-scaling of the aggregate throughput.

This is the three phase scheme discussed in Section 5.3.1. Higher throughputs
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can be achieved by setting the cooperation problem as multiple communica-
tion problems and using the three phase scheme as a solution to each of those
communication problems. This yields the idea of recursion and results in a
hierarchical architecture, where increasing the number of levels in the hier-
archy yields an aggregate throughput scaling arbitrarily close to linear. The
hierarchical cooperation scheme is discussed in detail in Section 5.3.2.

5.3.1 The Delay Scaling of the Three Phase Scheme

The network is divided into clusters of M1 nodes and the scheme operates in
three successive phases:

Phase 1: Setting Up Transmit Cooperation Clusters work in parallel.
Within a cluster, each source node distributes LM1 bits to the other nodes, L
bits for each node where L is an arbitrarily large constant independent of M1

and n, such that at the end of the phase, each node has L bits from each of the
source nodes in its cluster. Since there can be at most M1 source nodes in each
cluster, this gives a traffic demand of exchanging at most LM1(M1−1) < LM2

1

bits. Using TDMA, one-at-a-time transmission between pairs of nodes that has
been shown in (4.8) to achieve a constant rate in each transmission, the L bits
between each pair can be communicated in L/K1 time-slots where K1 > 0 is a
constant independent of M1 and n. Therefore, the LM2

1 bits can be exchanged
in a total of at most (L/K1)M

2
1 time slots.

Phase 2: MIMO Transmissions Successive long-distance MIMO trans-
missions are performed between source-destination pairs, one at a time. In
each one of the MIMO transmissions, say the one between s and d, the LM1

bits of s are simultaneously transmitted by the M1 nodes in its cluster to
the M1 nodes in the cluster of d. Each of the long-distance MIMO transmis-
sions are repeated for each source-destination pair in the network, hence if the
MIMO transmissions achieve a rate K2M1 for a constant K2 > 0 independent
of M1, the phase can be completed in a total of (L/K2)n time-slots.

Phase 3: Cooperate to Decode Clusters work in parallel. Since there
are at most M1 destination nodes inside the clusters, each cluster received at
most M1 MIMO transmissions, each of length L/K2 time-slots in phase 2. Each
MIMO transmission is intended for a different destination node in the cluster.
Thus, each node in the cluster has at most (L/K2)M1 received observations
and each block of L/K2 observations is to be conveyed to a different node in
its cluster. Nodes quantize each observation into fixed Q bits, so there are a
total of at most (LQ/K2)M

2
1 bits to be exchanged inside each cluster. Using

TDMA as in Phase 1, the phase can be completed in (LQ/K1K2)M
2
1 time

slots.
In Section 4.4.1, it has been shown that each destination node is able to

decode the transmitted bits from its source node from the quantized signals it
gathers by the end of Phase 3. The throughput achieved by the scheme can
be calculated as follows: each source node is able to transmit LM1 bits to its
destination node, hence LnM1 bits in total are delivered to their destinations
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in (L/K1)M
2
1 + (L/K2)n + (LQ/K1K2)M

2
1 time slots, yielding an aggregate

throughput of

LnM1

(L/K1)M2
1 + (L/K2)n + (LQ/K1K2)M2

1

bits per time-slot. Choosing M1 =
√

n to maximize this expression yields an
aggregate throughput T (n) = K1K2

K1+K2+Q

√
n.

Note that as opposed to multi-hop, this three phase scheme allows only
bulk transmission between any source-destination pair in the network; i.e. one
can not arbitrarily communicate one bit (or L bits with L constant) using the
three-phase scheme, but a minimum of LM1 = L

√
n bits should be transferred

between every source-destination pair.
The end-to-end delay of this scheme is simply the total time for the three

phases, since the bits are leaving their source nodes at the beginning of the
first phase and are only decoded by their respective destination nodes at the
end of the third phase. With the choice M1 =

√
n, we see that the delay of

the three phase scheme is D(n) = ((L/K1) + (L/K2) + (LQ/K1K2))n. Note
that this delay scaling is much worse than the delay of the multi-hop scheme
achieving same aggregate throughput.

5.3.2 The Hierarchical Cooperation Scheme

Higher aggregate throughput scaling can be achieved by using better network
communication schemes than TDMA to establish the transmit and receive co-
operations in the first and the third phases of the three phase scheme described
in the previous section. Recall that there are LM2

1 and (LQ/K2)M
2
1 bits to be

exchanged inside each cluster in phases 1 and 3, respectively. This traffic de-
mand of exchanging LM2

1 bits (or (LQ/K2)M
2
1 bits) can be handled by setting

up M1 sub-phases, and assigning M1 pairs in each sub-phase to communicate
their L bits (or LQ/K2 bits). The traffic to be handled at each sub-phase now
looks similar to the original network communication problem (the permuta-
tion traffic defined in Section 5.2), with M1 users instead of n. Any scheme
suggesting a good solution for the original problem can now be used inside
the sub-phases as an alternative to TDMA; for example, the multi-hop scheme
and the three-phase scheme itself would be two alternatives both achieving an
aggregate throughput scaling Θ(

√
M1) (in a network of size M1) as opposed

to the Θ(1) scaling achieved by TDMA.
Consider using the three phase scheme for cooperation as suggested in

Section 4.4. More precisely, we want to handle the traffic of communicating
L bit (or LQ/K2 bits) between the M1 pairs assigned in each sub-phase of
phase 1 (or phase 3), by further dividing the clusters into smaller clusters of
size M2 and reusing the three phase scheme (TDMA-MIMO-TDMA). Note
that this will create a hierarchical structure with two levels. See Figure 4.5.
Note however that the three phase scheme in Section 5.3.1 allows only bulk
transmissions between source-destination pairs. In this particular case, one will
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have to communicate LM2 bits between the source-destination pairs assigned
at each sub-phase, as opposed to the original requirement of communicating
only L bits (or LQ/K2 bits). For the overall scheme, this in turn increases
the bulk size to be communicated between every source-destination pair in the
network from LM1 bits to LM1M2 bits. So for the 2-level hierarchical scheme,
we have to start by assuming that each source node in the network has LM1M2

bits to communicate to its destination node. It can be seen that these LM1M2

bits per source destination pair, or a total n × LM1M2 bits in the network,
can be communicated in

ttotal = M1

(

L

K1

M2
2 +

L

K2

M1 +
LQ

K1K2

M2
2

)

+
L

K2

M2n

+ M1
Q

K2

(

L

K1

M2
2 +

L

K2

M1 +
LQ

K1K2

M2
2

)

(5.1)

time slots using the 2-level hierarchical scheme. The first term M1(L/K1)M
2
2 +

(L/K2)M1 + (LQ/K1K2)M
2
2 ) is the completion time of phase-1 of the three

phase scheme. It is divided into M1 sessions; in each session, M1 source-
destination pairs are assigned to communicate their LM2 bits using a three
phase scheme of TDMA-MIMO-TDMA. Recall from the computations of the
three phase scheme in Section 5.2 that this takes (L/K1)M

2
2 + (L/K2)M1 +

(LQ/K1K2)M
2
2 time slots (M1 and M2 here correspond to the n and M1,

respectively, of the previous section). A similar argument holds for the third
term M1(Q/K2)((L/K1)M

2
2 + (L/K2)M1 + (LQ/K1K2)M

2
2 ) in (5.1) which is

the completion time for phase-3 with the extra Q/K2 factor. Note that at
the end of the first phase, each source node has distributed its LM1M2 bits
among the M1 nodes in its cluster, hence LM2 bits for each node. These
bits can be relayed to the destination cluster in (L/K2)M2 successive MIMO
transmissions. Since the MIMO transmissions have to be repeated for each
of the n source-destination pairs in the network, the completion time of the
second phase is (L/K2)M2n in (5.1).

Therefore, the aggregate throughput of the 2-level scheme is given by the
expression

LM2 M1 n

L
K2

M2n + M1

(

1 + Q
K2

)(

L
K1

M2
2 + L

K2
M1 + LQ

K1K2
M2

2

) (5.2)

and the optimal choices of M1 = n2/3 and M2 = n1/3 maximize the aggregate
throughput scaling to

T2(n) = Θ(M1) = Θ
(

n2/3
)

,

while the denominator dictating the delay of the scheme is of order

D2(n) = Θ(M2 × n) = Θ
(

n4/3
)

.
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Note that with the 2-level hierarchical scheme, we improve the aggregate
throughput scaling from Θ(

√
n) for the three-phase scheme in the previous

section to Θ
(

n2/3
)

, at the cost of increasing the bulk-size from Θ (
√

n) to

Θ(n), which, in turn, increases the delay from Θ(n) to Θ
(

n4/3
)

.
The argument can be applied recursively to build an h-level hierarchical

scheme. The optimal cluster size at the k’th level of an h-level hierarchical

scheme can be computed as Mk = Θ
(

n
h+1−k

h+1

)

. The aggregate throughput

achieved by an h-level hierarchical cooperation scheme is given by

Th(n) = Θ(M1) = Θ
(

n
h

h+1

)

.

The bulk-size is

Bh(n) = Θ(Mh × . . . × M1) = Θ
(

n
h
2

)

and the end-to-end delay is

Dh(n) = Θ(Mh × Mh−1 × · · · × M2 × n) = Θ

(

n
h2+h+2
2(h+1)

)

where we observe that for large h, the delay exponent is linear in h.

The results obtained in this section establish the poor delay performance of
hierarchical cooperation. Note that the delay is mostly due to the large bulk-
size used by the scheme. This is different from multi-hop schemes, since their
bulk-size is constant (Θ(1)) independent of the throughput achieved. The delay
in multi-hop is rather due to the time spent in relaying the messages inside
the network. In the next section, we suggest a modification of the scheme, so
that it achieves the same throughput using much smaller bulk-size.

5.4 Hierarchical Cooperation with Smaller

Bulk-Size

In this section, we treat the problem of cooperation in the three phase scheme
with more care. We start by defining the uniform traffic problem to be the
following.

Definition 5.4.1 (The Uniform Traffic Problem). Consider the assumptions
on the network and channel model given in Section 5.2. Let each node in the
network be interested in communicating independent information to each of the
other nodes in the network. In particular, let us assume that each node has an
independent L bits message to send to each of the other nodes in the network
and the quantity of interest is the smallest time F (n) required to accomplish
this task. This problem we refer to as the uniform traffic problem.
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Note that as opposed the permutation traffic problem defined in Section 2,
the problem is described in terms of the number of bits to be communicated
between each source-destination pair and not the rate of communication. The
following theorem provides an achievable solution to this problem.

Theorem 5.4.1. For any integer h > 0, the uniform traffic problem can be
solved in

F (n) ≤ K3 n
h+1

h

time-slots w.h.p., for some constant K3 > 0 independent of n.

Proof of Theorem 5.4.1: Let us start by assuming that there exists a scheme
that solves the uniform traffic problem in F (n) = LK4n

b time-slots with b > 1
and K4 > 0 a constant independent of n. Note that one such scheme is simple
TDMA that yields b = 2. Using this existing scheme, we will construct a new
scheme that yields smaller F (n).

As before, let us start by dividing the network into clusters of M nodes.
Let us first focus on one specific cluster S and one node d located outside of
this cluster. In particular, all nodes in S have L bits to send to d. These bits
can be communicated to d in two steps:

(1) The nodes in S simultaneously transmit their L bit messages destined to
d forming a distributed transmit antenna array for MIMO transmission.
The nodes in the destination cluster where d lies, form a distributed
receive antenna array for this MIMO transmission.

(2) Each node in the destination cluster obtains one observation from the
MIMO transmission in the previous phase; it quantizes and ships this
observation to d, which can do joint MIMO processing of all the obser-
vations and decode the LM transmitted bits from the nodes in S.

As a first step towards handling the whole network problem, note that
these two steps should be accomplished between S and all other nodes in the
network. This can again be done in two steps:

Phase 1: MIMO transmissions We perform successive long-distance
MIMO transmissions between S and all other nodes in the network. In each
of the MIMO transmissions, say between S and d, the M nodes in S are si-
multaneously transmitting the L bit messages they would like to communicate
to d and the M nodes in the cluster where d lies are observing the MIMO
transmission. The MIMO transmissions should be repeated for each node in
the network, if an aggregate rate of K2M is achieved in each transmission for
a constant K2 > 0 and independent of M , we need (L/K2)n time-slots to
complete the phase.

Phase 2: Cooperate to decode Clusters work in parallel. Since there are
M nodes inside each cluster, each cluster received M MIMO transmissions from
S of length L/K2 time-slots in the previous phase. Each MIMO transmission
is intended for different node in the cluster. Thus, each node in the cluster
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PHASE 1 PHASE 2

PHASE 1 PHASE 2

Figure 5.2: The figure illustrates the time-division in the hierarchical scheme that
solves the uniform traffic problem.

has (L/K2)M observations, each block of L/K2 observations is intended for
a different node in the cluster. Each of these observations can be quantized
into Q bits, with a fixed Q, which yields exactly the original uniform traffic
problem, with M nodes instead of n and LQ/K2 bits to be communicated
between every pair of nodes. Using the scheme we assumed to exist in the
beginning of the proof, this task can be completed in (LQK4/K2)M

b time
slots.

The total time we have spent during the two phases for handling the traffic
originated from cluster S is given by L

K2
n + LQK1

K4
M b. From the network point

of view, the above two steps should be completed for all n/M clusters in the

network. Thus, the whole task can be completed in n
M

(

L
K2

n + LQK4

K2
M b
)

time

slots in total. Choosing M = n
1
b in order to minimize this quantity yields

F (n) = L
(1 + QK4)

K2

n2− 1
b .

Note that 2 − 1
b

< b for b > 1. In other words, we have established a
solution for the uniform traffic problem that is better than the one we started
with. Indeed, the two phase scheme described above can be used recursively
yielding a better scheme at each step of the recursion. In particular, starting
with TDMA achieving b = 2 and applying the idea recursively h times, one
gets a scheme that solves the uniform traffic problem in Θ(n

h+1
h ) time slots.

The operation of this scheme is illustrated in Figure 5.2. �

The interest in the uniform traffic problem arises from the fact that it ex-
actly models the required traffic for cooperation in the three phase scheme.
Recall the communication requirement inside the clusters in Phase 1 and 3
described in Section 5.3.1. This communication requirement, equivalent to a
uniform traffic problem, is handled using TDMA in the three phase scheme
which has been seen to be suboptimal from throughput point of view in Sec-
tion 5.3.1. In the hierarchical cooperation scheme described in Section 5.3.2,
this uniform traffic problem is handled by decomposing it into a number of
permutation traffic problems. The resultant scheme is optimal in terms of
throughput, but not very satisfying in terms of bulk-size. By using the solu-
tion to the uniform traffic problem suggested in this section, one can modify
the hierarchical cooperation scheme, so as to achieve the same throughput
with smaller bulk-size and consequently smaller delay. The resultant modified
hierarchical scheme is illustrated in Figure 5.3. Note that the gain is coming
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PHASE 2PHASE 1 PHASE 3

PHASE 2

PHASE 2

PHASE 2

PHASE 2

PHASE 3PHASE 3

PHASE 3 PHASE 3

Figure 5.3: The figure illustrates the time-division in the modified hierarchical
scheme that uses the scheme in Figure 5.2 for cooperation. Note the difference
in operation of the phases between the modified hierarchical cooperation scheme
and the original hierarchical cooperation scheme in Figure 4.5.

from treating the cooperation problem as it is and not necessarily as multiple
permutation traffic problems as was previously done in Section 5.3.2.

Corollary 5.4.1. A modified hierarchical cooperation scheme can achieve an

aggregate throughput Th(n) ≥ K5n
h

h+1 with bulk-size Bh(n) = K6n
h

h+1 and
delay Dh(n) ≤ K7n w.h.p., for any integer h ≥ 0 and some positive constants
K5, K6, K7 independent of n.

Proof of Corollary 5.4.1: Consider the three phase hierarchical scheme de-
scribed in Section 5.3.1. By Theorem 5.4.1, the required traffic for transmit
and receive cooperation in phase 1 and phase 3 can be handled in LK3M

h+1
h

and (LQ/K2)K3M
h+1

h time slots respectively. The expression for the aggregate
throughput then becomes

LMn

LK3M
h+1

h + (L/K2)n + (LQ/K2)K3M
h+1

h

which is maximized by the choice M = n
h

h+1 , yielding aggregate throughput

Th(n) = K2

K2K3+1+K3Q
n

h
h+1 , bulk-size Bh(n) = LM = Ln

h
h+1 and delay Dh(n) =

L(K3 + 1/K2 + K3Q/K2)n. �

5.5 Hierarchical Cooperation with Better

Scheduling

In the previous section, we presented a modified hierarchical scheme that

achieves throughput Th(n) = Θ(n
h

h+1 ) using bulk-size Bh(n) = Θ(n
h

h+1 ). How-
ever, the delay of this scheme is still Dh(n) = Θ(n). In this section, we opti-
mize the scheduling in the scheme to further improve the delay performance

to Dh(n) = Θ(n
h

h+1 log n). We first start by improving the scheduling in the
three phase scheme with h = 1 discussed in Section 5.3.1. We then consider
the modified hierarchical scheme with h ≥ 2 discussed in Section 5.4 .
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d22d

d1 d1

Figure 5.4: The three phase scheme with better scheduling. The figure illustrates
the operation in one session.

5.5.1 Better Scheduling for the Three Phase Scheme

Recall the operation of the three phase scheme from the point of view of a single
source-destination pair s-d as described in Section 5.3.1: a step (1) where s
distributes its LM bits among the M nodes in its cluster, followed by a step
(2) where these LM bits are simultaneously transmitted to the destination
cluster via MIMO transmission, and a step (3) where the quantized MIMO
observations are collected at the destination node d. These three steps need to
be eventually accomplished for each source-destination pair in the network. In
this section, we improve the scheduling in accomplishing this task: we organize
M successive sessions and allow only n/M source-destination pairs to complete
the three steps in each session.

In the beginning of each session we randomly choose one source node from
each cluster, thus n/M source nodes in total. In general, the n/M desti-
nation nodes corresponding to these randomly chosen source nodes can be
located anywhere. However, from Lemma 2.3.1-(c), we know that no more
than log n of these destination nodes are located in the same cluster with high
probability. We proceed by accomplishing the three steps for these chosen
source-destination pairs:

Phase 1: Setting Up Transmit Cooperation Clusters work in par-
allel. The chosen source node in each cluster distributes its LM bits to the
other nodes by using TDMA, which takes LM/K1 time-slots in total if TDMA
transmissions achieve a constant rate K1 > 0. Note that as opposed to the
scheme described in Section 5.3.1, there is only one source node operating in
each cluster.

Phase 2: MIMO Transmissions Successive MIMO transmissions orig-
inated from each cluster are performed, transmitting the bits of the active
source node in each cluster to its respective destination cluster. Note that in
the current case, there is only one MIMO transmission originated from each
cluster, so there are only n/M MIMO transmissions that need to be performed
in total, each of length L/K2 time slots if the MIMO transmissions achieve
an aggregate rate K2M for a constant K2 > 0. This will require total time
(L/K2)n/M .

Phase 3: Cooperate to Decode Clusters work in parallel. Each cluster
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received at most log n MIMO transmissions in phase 2 by Lemma 2.3.1-(c)
and each MIMO transmission intended for a different destination node in the
cluster. The received observations at each node are quantized into Q bits and
are to be conveyed to the actual destination nodes. The traffic inside each
cluster is at most of exchanging (LQ/K2)M log n bits and can be completed
using TDMA in at most (LQ/K1K2)M log n time slots. (See Figure 5.4.)

The operation continues with the next session by choosing a new set of
n/M source nodes randomly among the nodes that have not yet accomplished
the above steps. Note that all source-destination pairs will accomplish the
three steps in a total of M sessions.

With this rather smoother operation on the network level, we accomplish
to serve n/M source-destination pairs in each session, that is transfer LM × n

M

bits in total to their destinations in (L/K1)M+(L/K2)
n
M

+(LQ/K1K2)M log n
time slots yielding aggregate throughput

LM × n
M

(L/K1)M + (L/K2)
n
M

+ (LQ/K1K2)M log n
(5.3)

which is maximized by the choice M =
√

n yielding aggregate throughput

T (n) = K1K2

K2+K1+Q

√
n

log n
. The delay experienced by each bit is now much less

compared to the three phase scheme in Section 5.3.1, since it is again dictated
by the total time spent in the three phases (denominator of (5.3)), which is
now less than D(n) = L( 1

K1
+ 1

K2
+ 1

K1K2
)
√

n log n.

Note that instead of choosing M =
√

n, which is the optimal choice to
maximize the throughput achieved by the scheme, one can choose M = nb with
0 ≤ b ≤ 1/2. In this case, we also restrict the number of source-destination
pairs to be served in each session to M , which can be less than the total number
of clusters n/M . Indeed, we operate one source node in each of the M(≤ n/M)
clusters and simply keep the remaining clusters inactive. The expression for
the aggregate throughput becomes

LM × M

(L/K1)M + (L/K2)M + (LQ/K1K2)M log n

which implies that the scheme achieves aggregate throughput T (n) = Θ(nb/ log n)
and delay D(n) = Θ(nb log n) for any 0 ≤ b ≤ 1/2. Note that this throughput-
delay trade-off differs only by log n from the trade-off achieved by multi-hop
schemes.

5.5.2 Better Scheduling for the Hierarchical Cooperation

Scheme

In this section, we adopt the scheduling idea of Section 5.5.1 to the modified
hierarchical scheme presented in Section 5.4. However, this modification is not
trivial and requires us to consider a generalized version of the uniform traffic
problem.
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Definition 5.5.1 (The Generalized Uniform Traffic Problem). Consider the
assumptions on the network and channel model given in Section 5.2. Let each
of the n nodes in the network be interested in conveying independent infor-
mation to a subset A(n) of the nodes (A(n) ≤ n), where the A(n) nodes are
chosen randomly among the n nodes in the network. In particular, let us as-
sume that each node in the network has an independent L bits message to send
to each of these A(n) nodes and the quantity of interest is the minimal time
G(n) required to accomplish this task. We define this to be the generalized
uniform traffic problem.

The following theorem provides an achievable solution to this problem.
We skip the proof of the theorem since it is similar in spirit to the proof of
Theorem 5.4.1.

Theorem 5.5.1. For any integer h > 0, if A(n) ≥ n
h

h+1 , then the generalized
uniform traffic problem can be solved in

G(n) ≤ LK8
A(n)

n
n

h+1
h log(n)

time-slots w.h.p., for some constant K8 > 0 independent of n.

Note that the generalized uniform traffic problem contains the uniform
traffic problem discussed earlier as a special case with A(n) = n. Plugging
A(n) = n in Theorem 5.5.1, we recover the result of Theorem 5.4.1 with an

extra log n factor. Indeed, when the condition A(n) ≥ n
h

h+1 is satisfied with
strict inequality in order, the extra log n factor in Theorem 5.5.1 is not needed.

However, it is needed to account for the case A(n) = n
h

h+1 , in which case it
arises due to part-b of Lemma 2.3.1-(c).

We are now ready to apply the scheduling idea in Section 5.5.1 to the
hierarchical cooperation scheme. Consider dividing the network into clusters
of M1 nodes and then further divide these clusters into smaller clusters of size
M2. Following the scheduling idea in Section 5.5.1, let us organize M1/M2

sessions and for each session randomly choose one small cluster inside every
large cluster. Only the source nodes located in the chosen small clusters and
their corresponding destination nodes will be served at each session. As usual,
we are operating in three successive phases in each session:

Phase 1: Setting Up Transmit Cooperation The active small clusters
operate in parallel. Note that there is a single active cluster of size M2 inside
every large cluster of size M1. Let S2 be the chosen small cluster inside the
larger cluster S1 that will operate in the current session. In this phase, each
of the M2 source nodes in S2 need to distribute their LM1 bits among the M1

nodes in the larger cluster S1, each block of L bits goes to a different node.
This can be accomplished in two sub-phases:

• Sub-Phase 1: MIMO transmissions Successive MIMO transmissions
are performed between nodes in S2 and each node in S1. In each of these
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Figure 5.5: The figure illustrates sub-phase 1 of phase 1 of the modified hier-
archical scheme with better scheduling. Note that there is only one small cluster
distributing bits inside every large cluster.

MIMO transmissions, say the one between S2 and a node d in S1 (located
outside of S2), the M2 nodes in S2 are simultaneously transmitting the
L-bits messages they would like to communicate to d. The M2 nodes lo-
cated in the same small cluster with d are acting as a distributed receive
antenna array for this MIMO transmission. Since these MIMO trans-
missions should be repeated for every node in S1, this sub-phase takes
a total of (L/K2)M1 time-slots, if the MIMO transmissions achieve an
aggregate rate K2M for a constant K2 > 0. See Figure 5.5.

• Sub-Phase 2: Cooperate to Decode All small clusters in the network
work in parallel. In particular, each small cluster in S1 has received M2

MIMO transmissions from S in the previous phase, one MIMO trans-
mission for each node in this small cluster. Thus, each node in the small
cluster has (L/K2)M2 observations, one from each of the MIMO trans-
missions and each observation is to be conveyed to a different node in
the cluster. Quantizing each observation into Q bits, we get the uniform
traffic problem defined in Section 5.4 in a network of size M2, and by

Theorem 5.4.1 this problem can be handled in (LQ/K2)K3M
h1+1

h1
2 time-

slots for any integer h1 > 0.

Phase 2: MIMO Transmissions At the end of the first phase, all source
nodes in the active small clusters have distributed their LM1 bits among the
nodes in the larger cluster. Now, successive long-distance M1 × M1 MIMO
transmissions between large clusters are performed. During each MIMO trans-
mission, the LM1 bits of a particular source node in the active small cluster
are transferred to the destination cluster where its destination node is located.
The number of MIMO transmissions to be performed in this phase is equal to
the total number of source nodes active in this session. Hence the total phase
can be completed in (L/K2)

n
M1

× M2 time-slots.
Phase 3: Cooperate to Decode By part-a of Lemma 2.3.1-(e), there

are order M2 destination nodes located in each of the large clusters. Thus,
each large cluster has received M2 MIMO transmissions in the previous phase,
and the quantized MIMO observations spread over the M1 nodes of the large
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cluster should be collected at the corresponding M2 destination nodes. This
is the generalized uniform traffic problem of size M1 with A(M1) = M2. By

Theorem 5.5.1, it can be solved in (LQ/K2)K8
M2

M1
× M

h2+1
h2

1 log M1 time-slots

for any integer h2 > 0 provided that A(M1) ≥ M
h2

h2+1

1 .
Gathering everything together, at every session of this modified hierarchical

cooperation scheme, we deliver LM1 ×M2 × n
M1

bits to their destinations in a
total of
(

L

K2

M1 +
LQK3

K2

M
h1+1

h1
2

)

+
L

K2

n

M1

× M2 +
LQK8

K2

M2

M1

× M
h2+1

h2
1 log M1

time-slots. The aggregate throughput is given by

n
M1

× M2 × M1

L
K2

M1 + LQK3

K2
M

h1+1
h1

2 + L
K2

n
M1

× M2 + LQK8

K2

M2

M1
× M

h2+1
h2

1 log M1

which is maximized by the choice h = h2 = h1 + 1, M1 = n
h

h+1 and M2 =

M
h−1

h
1 , yielding aggregate throughput T (n) = Θ

(

n
h

h+1

log n

)

and delay D(n) =

Θ
(

n
h

h+1 log n
)

. Note that these choices for M1 and M2 satisfy the constraint

A(M1) = M2 ≥ M
h2

h2+1

1 .

Note that at this point, we have proven that all points on the throughput-

delay scaling curve (T (n), D(n)) =
(

Θ
(

n
h

h+1 / log n
)

, Θ
(

n
h

h+1 log n
))

with h

being a positive integer are achievable. In order to show that all points on the
line (T (n), D(n)) = (Θ(nb/ log n), Θ(nb log n)) with 0 ≤ b < 1 are achievable,
we can choose M1 = nb with 0 ≤ b ≤ h

h+1
in the above discussion, while

maintaining the relationships M2 = M
h−1

h
1 and h = h2 = h1 + 1. Extending

the argument at the end of Section 5.5.1, we also restrict the number of small
clusters to be served in each session to M

1/h
1 which can now be less than the

total number of large clusters n/M1 (≥ M
1/h
1 ). Indeed, we operate one small

cluster in each of the M
1/h
1 large clusters and simply keep the remaining large

clusters inactive. The expression for the aggregate throughput becomes

LM
1
h
1 × M2 × M1

L
K2

M1 + LQK3

K2
M

h1+1
h1

2 + L
K2

M
1
h
1 × M2 + LQK8

K2

M2

M1
× M

h2+1
h2

1 log M1

which shows that we can achieve aggregate throughput T (n) = Θ(M1/ log M1)
and delay D(n) = Θ(M1 log M1). Recalling that M1 = nb, we get the points
on the throughput-delay scaling curve (T (n), D(n)) = (nb/ log n, nb log n) for
any 0 ≤ b ≤ h

h+1
and h > 0. This concludes the proof of the main result of

this chapter. �





Outlook 6
The results and the conclusions of the thesis have already been summarized in
the introduction. In this chapter, we want to discuss how the results connect
with and compare to some of the concurrent literature. We also review follow-
up works that extend some of the ideas in this dissertation. The discussion
points toward some new research directions and open problems.

6.1 Other Operating Regimes of Wireless

Networks

Are there any other operating regimes in large wireless networks than those
discussed here? A complete answer to this question is out of the scope of
the current dissertation. However, the scaling law formulation developed in
this thesis for identifying the operating regimes of wireless networks is general,
and can be extended to study such problems. New operating regimes can be
discovered by diversifying the assumptions that have led to the four operating
regimes in this thesis. The current section explores two such assumptions.
The discussion suggests two new operating regimes for wireless networks and
demonstrates how some recent works in the literature fit in the framework
suggested here.

The first assumption that we discuss is the power law coupling between the
system resources that has been assumed in Section 1.2 and later in Chapter 2
when formulating the scaling law problem. Recall that the scaling exponent
of the spectral efficiency has been characterized when SNRs = nβ for some
real and finite β, when a priori, there are other ways to couple SNRs and n.
The power law relation is the one that is naturally suggested by the inherent
spatial structure of the problem and the power decay law with distance. As
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SNRl and SNRs have a ratio of n1−α/2, this kind of scaling appears to lead to
the richest possible classification. This is also evidenced by the discovery of
four qualitatively different operating regimes. This is analogously the case for
the AWGN channel. The power law coupling SNR = mγ for any real γ leads
to the discovery of the two operating regimes of the AWGN channel. (See
Section 1.2.) However, note also the limitations of this formulation. In the
first regime when SNR ≫ 0 dB, the dependence of the AWGN capacity on
its two resources is approximated as C(W,Pr/N0) ∝ W , when actually there
is also the logarithmic dependence on Pr/N0W . The scaling law formulation
with power law coupling SNR = mγ misses out the logarithmic dependence
on SNR. The resultant approximation is reasonable in the sense that the lin-
ear dependence on W is more important than the logarithmic dependence on
Pr/N0W . However, when Pr/N0W is extremely large, the capacity is better
approximated by C(W,Pr/N0) ∝ W log(Pr/N0W ). This approximation cap-
tures the fact that the capacity grows to infinity with increasing SNR. This
regime can be discovered by studying the scaling law problem for SNR = emγ

,
for any γ > 0. The exponential coupling emphasizes the logarithmic term.

What happens in the case of wireless networks when SNRs and n are cou-
pled as SNRs = enβ

for β > 0? In this case, the spatial differentiation between
nodes is lost. The connections between nodes are so strong that effectively, all
the links in the network are of identical strength. Since spatial reuse is based
on the fact that connections between far away nodes are so weak that the inter-
ference from such nodes will be close to the noise level, it can be expected that
any scheme that is based on spatial reuse will not be efficient in this regime.
Indeed, it is easy to observe that in this regime, even the scaling performance
of simple TDMA between source-destination pairs can outperform the spatial
reuse based schemes discussed in this thesis, such as hierarchical coopera-
tion and multi-hopping. Optimal operation can be achieved by schemes that
achieve linear scaling without making use of spatial reuse. The interference
alignment scheme suggested recently in [9] can be investigated for optimality
in this regime. We present a first attempt in this direction in [43]. See also
[37].

A second assumption that can be questioned is the independence assump-
tion of the phases in the channel model. Recall that the channel introduces
a path loss attenuation to the transmitted signals and a random rotation in
their phase. The phase rotations are assumed to be independent and iden-
tically distributed across pairs of nodes in the network. The motivation in
studying this channel model is two-fold: first of all, this is a well-established
model, used in almost all works in wireless communication and all the earlier
works on scaling laws. Second, we anticipate it to be the relevant model for
most wireless network applications in practice. However, when the nodes are
packed together in a small area, the phases between different pairs of nodes
become correlated and the independence assumption breaks down. This phe-
nomenon has been recently studied in [19]. The work [19] shows that the
number of spatial degrees of freedom in the network are upper bounded by
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√
A/λc, where λc is the carrier wavelength of the signals. Equivalently, the

total number of degrees of freedom per Hz in the network is upper bounded by
the minimum of the number of users n and

√
A/λc. This roughly implies that

the conclusions based on the i.i.d. random phase model hold only if A ≥ λcn
2

. Note that this condition could be imposed on the scaling law formulation in
Section 1.2 and would lead to the same four operating regimes, but with the
extra condition that A ≥ λcn

2. In that case, we would study the interplay
between A = nβ1 , P = nβ2 and W = nβ3 for any real β2, β3 but β1 ≥ 2. Note
that this again leads to SNRs = nβ for any real β. (It can be readily verified
from the definition of SNRs in (1.3) that β = β2 − β3 + α(1 − β1)/2.)

From a practical point of view, the result of [19] implies that for networks
with

√
A/λc ≥ n, the random phase model holds and thus, such networks are

characterized by one of the four operating regimes identified in this disser-
tation. For an area of 1km2 and a carrier frequency of 3 GHz, this roughly
implies that up to 10000 users can be accommodated in the network without
experiencing any spatial degrees of freedom limitation. When

√
A/λc < n,

the spatial degrees of freedom limitation comes into play. It can be expected
that such networks still benefit from distributed MIMO communication when√

n <
√

A/λc < n. For the numerical example above, this corresponds to up
to 100 000 000 users in an area of 1km2. When

√
A/λc ≤ √

n, it is expected
that there is no need to go beyond multi-hopping as distributed MIMO com-
munication can not provide any further benefit. The formulation proposed in
this thesis can be extended to explore this spatial degrees of freedom limited
regime.

6.2 Improving the Performance of the New

Schemes

The new schemes presented in this dissertation are only investigated from a
throughput scaling point of view, with the aim to demonstrate their poten-
tials in large wireless networks. The only exception is Chapter 5, where the
hierarchical cooperation scheme has been analyzed from a joint throughput-
delay point of view. As demonstrated in that chapter, although the schemes
presented in this dissertation achieve optimal throughput scaling, they can be
improved in many other aspects.

One interesting research direction is to estimate the constants preceding the
scaling laws. The work [24] presents a first step in this direction by providing
a closer look to the pre-constant of the hierarchical cooperation scheme in
Section 4.4. Note that in Theorem 4.2.1, both the pre-constant and the scaling
exponent depend on ǫ. This dependence comes from the fact that both the
scaling exponent and the pre-constant depend on the number of hierarchical
levels in the scheme. This dependence is analyzed in [24] and it is shown
that there is no benefit in increasing the number of hierarchical levels beyond



114 Outlook

√
log n in a network with a finite number of users n.
When it comes to the design and performance analysis of the schemes

for a network with a given number of users, there are many optimization
possibilities. The scaling law results in this thesis provide some architectural
guidelines on how to design schemes that scale well. However, a detailed
design and performance analysis would involve the tuning of many parameters
and improvements of the schemes in order to optimize the pre-constant in the
system throughput. For example, the schemes considered in this dissertation,
both hierarchical cooperation and multi-hopping, make use of spatial reuse.
Many local clusters operate simultaneously inside the network and a guard
zone is imposed around each active cluster to control inter-cluster interference.
The size of the guard zone is a design parameter to be optimized. Choosing a
large guard zone decreases the resultant inter-cluster interference power, but
leads to a larger overhead due to TDMA between neighboring clusters. This
trade-off dictates the pre-constant of the throughput, but does not change
the scaling law. Another example is the quantization of the received analog
signals in the third phase of the hierarchical cooperation scheme. Each node
in the received cluster quantizes the signal it observes and forwards the bits to
the final destination. However, the quantized signals are correlated across the
receive nodes. Hence, a reduction in the overhead can be achieved by doing
some Wyner–Ziv coding (see [31], [44]).

Another research direction is to extend the results and ideas in this thesis
to other settings with different traffic patterns and network models. The uni-
form traffic problem and the generalized uniform traffic problem considered in
Chapter 5, are two such examples. In this line, the work [41] considers a more
general setup by allowing the traffic demand between the nodes in the network
to be arbitrary. In [40], the authors extend the results in this thesis to the
case where the users are placed arbitrarily in the network area. Recall that in
this thesis, we consider random placement of nodes which yields highly regular
configurations (see Lemma 2.3.1). The extension to the arbitrary case requires
an interesting modification of the hierarchical cooperation scheme. The dis-
tributed MIMO transmissions are replaced by distributed MIMO-MAC trans-
missions followed by distributed MIMO-BC transmissions. The cooperation
required between the MAC and BC transmissions is achieved in a hierarchical
fashion. The authors also show that the arbitrary placement of nodes may
require to use a combination of hierarchical cooperation and multi-hopping in
the fourth regime in (4.2). Recall that in the case of random networks, pure
multi-hopping is sufficient to achieve optimal capacity scaling in this regime.

A number of open problems remain beyond the scope of the current the-
sis. One interesting problem is how to acquire the necessary channel state
information for the new schemes in this thesis and to estimate the associated
overhead. Recall that we have assumed full channel state information at all
the nodes in the network. In fact, our schemes require a slightly less optimistic
assumption. The channel state information is needed only at the receiver side.
Nevertheless, in order for the destination nodes to be able to decode their
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messages, they need to know the associated MIMO matrix together with the
quantized MIMO observations of their cluster. In other words, nodes need to
know not only the states of the channels to themselves but the channel states
to a group of nodes around them. This may introduce significant overhead to
communication when the channels are changing rapidly. Similar open prob-
lems are the estimation of the overhead required for cluster formation and the
coordination of the network in a decentralized fashion.
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• A. Özgür, O. Lévêque, Throughput-Delay Tradeoff for Hierarchical Coop-
eration in Ad Hoc Wireless Networks, Proc. Int. Conference on Telecom-
munications, St Petersburg, June 2008.
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