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Abstract

We introduce a fast approach to classification and clustering applicable

to high-dimensional continuous data, based on Bayesian mixture models for

which explicit computations are available. This permits us to treat clas-

sification and clustering in a single framework, and allows calculation of

unobserved class probability. The new classifier is robust to adding noise

variables as a drawback of the built-in spike-and-slab structure of the pro-

posed Bayesian model. The usefulness of classification using our method is

shown on metabololomic example, and on the Iris data with and without

noise variables.

Agglomerative hierarchical clustering is used to construct a dendrogram

based on the posterior probabilities of particular partitions, to provide a

dendrogram with a probabilistic interpretation. An extension to variable

selection is proposed which summarises the importance of variables for clas-

sification or clustering and has probabilistic interpretation. Having a simple

model provides estimation of the model parameters using maximum likeli-

hood and therefore yields a fully automatic algorithm. The new clustering

method is applied to metabolomic, microarray, and image data and is studied

using simulated data motivated by real datasets. The computational difficul-

ties of the new approach are discussed, solutions for algorithm acceleration

are proposed, and the written computer code is briefly analysed.

Simulations shows that the quality of the estimated model parameters

depends on the parametric distribution assumed for effects, but after fixing

the model parameters to reasonable values, the distribution of the effects

influences clustering very little. Simulations confirms that the clustering

algorithm and the proposed variable selection method is reliable when the

model assumptions are wrong.

The new approach is compared with the popular Bayesian clustering alter-

native, MCLUST, fitted on the principal components using two loss functions

in which our proposed approach is found to be more efficient in almost every

situation.

Keywords: Classification; Clustering; Discrimination; Empirical Bayes;

Hierarchical partitioning; Laplace distribution; MCLUST; Mixture model;

Spike-and-slab model.
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Résume
Nous proposons une approche performante pour la classification et le partitionnement

pour des données hautement dimensionnelles continues, en se basant sur une mixture
de modèles Bayésiens pour lesquels les formes analytiques sont accessibles. Ceci nous
autorise alors de traiter le problème de la classification et du partitionnement simul-
tanément ainsi que le calcul de probabilités pour des classes jusqu’alors non observées.
La méthodologie développée a l’avantage d’être robuste à l’ajout de variables bruitées
comme une conséquence de la structure “spike-and-slab” inhérente au modèle Bayésien
proposé. L’utilité de notre modèle pour le problème de la classification est établie sur un
exemple métabolomique ainsi que l’exemple classique des données “Iris”, le cas de variables
bruitées étant considérées ou non.

Le partitionnement hiérarchique ascendant est utilisé afin de construire un dendo-
gramme à l’aide des probabilités a posteriori d’une partition donnée; ceci afin de produire
un dendogramme ayant une interprétation probabiliste. Une généralisation au problème
de sélection de variables est également proposée résumant l’importance des variables ex-
plicatives pour la classification et le partitionnement, tout en conservant son sens proba-
biliste. L’utilisation de modèles simples permet l’utilisation de l’estimateur du maximum
de vraisemblance et mène ainsi à un algorithme entièrement automatique. La nouvelle
approche de partitionnement est appliquée aux données métabolomique, “micro-array” et
d’images ainsi que sur des données simulées motivées par des applications réelles. La com-
plexité algorithmique de notre approche est discutée, des solutions afin d’en augmenter sa
performance son alors proposées et le code développé est analysé.

Nos simulations montrent que la qualité d’estimation des paramètres du modèle dépend
essentiellement sur l’hypothèse faite sur les distributions paramétriques affiliées aux effets.
Cependant, après avoir raisonnablement fixé les paramètres du modèle, le choix de la distri-
bution des effets joue alors un rôle nettement moins influent. Nos simulations confirment
également que l’algorithme de partitionnement et la méthode de sélection de variables
proposés sont pertinents lorsque les hypothèses faites sur le modèle sont fausses.

Notre approche est enfin comparée aux approches de partitionnement faisant référence,
i.e. MCLUST, ajusté sur les composantes principales à l’aide de deux fonctions pertes.
Ceci nous a permis de montrer que notre méthodologie était plus efficace dans la grande
majorité des cas.

Mots-clés: Classification; Partitionnement; Discrimination; Bayes empirique; Partition-
nement hiérarchique; Distribution de Laplace; MCLUST; Modèle de mixture; Modèle
“Spike-and-slab”.
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Chapter 1

Preliminaries

1.1 Introduction

In the Oxford dictionary a cluster is defined as “a group of similar things

positioned or occurring closely together”. In physics a cluster is a small

group of atoms and molecules, in computing a group of coupled computers

that works together, and in system file management a group of disk sectors

used in the file allocation system.

The composition of cluster with other words makes the range of its mean-

ings even wider, especially in technical language. For instance, a cluster-

headache is a neurological disease in medicine, a cancer-cluster, in biomedicine,

is a greater-than-expected number of cancer cases, and cluster sampling is a

random sampling method in survey sampling.

Cluster analysis or clustering refers to methods of grouping similar sub-

jects. It is one of the most fundamental and correspondingly the most useful

learning techniques. Cluster analysis facilitates the study of complex sys-

tems by putting similar items in a group, because it is usually easier to find

governing rules by looking at similar objects.

Before the modern era the world was studied mostly qualitatively, and

qualitative clustering was used to extract knowledge from the universe. For

example, Aristotle divided living organisms into two groups, plants and an-

imals, and divided animals into three groups according to how they moved:

walking, flying, or swimming. Avicenna used observational characteristics of

11
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patients to try to describe responses to drugs by classifying them into four

groups. Galileo used the similarity of movement of groups of stars and dis-

covered that they are positioned in the same galaxy, which today is called

the Milky Way. Mendeleev discovered the periodic table by grouping ele-

ments having similar chemical characteristics. Darwin studied the evolution

of species by clustering biological bodies.

The development of measurement systems led to the possibility of quanti-

tative clustering. The wide application of clustering in different domains has

made its literature large and diverse, with many synonyms in various fields:

cluster analysis in statistics, numerical taxonomy in biology, pattern recog-

nition in engineering, unsupervised learning in machine learning, clumping

in linguistics, regionalisation in geography, and partitioning in graph theory

(Anderberg, 1973). Immediately after the fundamental development of clus-

tering ideas, textbooks were authored and published, which also shows their

importance from the early stages of their appearance; classic texts include

Tryon (1939) and Sokal and Sneath (1963). After the introduction of com-

puters, books were reauthored and modified (Tryon and Bailey, 1970) and

rapid advances in computational power demanded continuous update (Kauf-

man and Rousseeuw, 1990; Gordon, 1999; Everitt et al., 2001; Abonyi and

Feil, 2007).

As described earlier, clustering divides the observations into homogeneous

groups. Once this has been done a new observation may arrive. Assignment

of the new object to one of the already observed groups is usually called

classification, discrimination, supervised pattern recognition, or supervised

learning. Classification in statistics is a method of finding the missing label

of a new observation based on a training set of labelled data. Hence there

is a close relationship between classification and clustering: when there is no

label observed, and estimation of labels of the whole data is of interest, it is

called clustering, but when labels are already observed and estimation of the

label of a new observation is required, it is called classification.
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1.2 Biological Background

1.2.1 Generalities

Many technologies today provide signals and data with experimental and

measurement errors. In almost all subdomains of biology, such data are used

to confirm or deny scientific assertions based on a statistical model. The

common difficulty of analysing biological data is to provide a valid statis-

tical model for low-sample-size-high-dimensional situations. Due to recent

technological advances, the precision of measuring the chemical composi-

tion of biological bodies has increased, so the number of variables recorded

has augmented to give high-dimensional data; on the other hand, due to

time and budget constraints, the number of tissues or patients under study

is limited, which yields low sample sizes. Such data are statistically trou-

blesome, because in classical statistics, properties of methods are studied

asymptotically—that is, when the sample size tends to infinity—which ap-

parently is not practical for modern data settings.

1.2.2 Metabolomics

Biologists continuously discover the ability of biological systems to isolate

harmful processes and improve their behaviour. Recent advances have guided

scientists to focus on studying the genetic make-up of organisms, but this

gives only part of the information required to observe its response to stimuli.

For a more comprehensive view, it is also required to investigate the dynam-

ical change of biomarkers, the real-time signals which reflect the integrated

functionality of the organism.

Metabolites are intermediate or end products of metabolism, and the

term metabolom commonly refers to the set of metabolites found in a cell.

Metabolomics is defined as the quantitative measurement of metabolic re-

sponse of living systems to physiological or genetic modifications, measured

by means of analytical chemistry tools. It is a challenging domain which

is used to make deductions about the functionality of metabolites and their

usefulness in fingerprinting biological tissues. There is a close relationship

between metabolomics, systems biology, proteomics and genomics, which all
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Figure 1.1: The Gas-Chromatography-Mass-Spectrometry instrument drawn

based on the Gas-Chromatography-Mass-Spectrometry Wikipedia article

(http://wikipedia.org).

try to give a complete picture of living organisms.

One of the most-used technologies in metabolomics is Gas-Chromatography-

Mass-Spectrometry (GC-MS), which helps to quantify metabolites of tissues.

The GC-MS separation method has had great technological and industrial

success since its introduction about fifty years ago (Gohlke, 1959) and cur-

rently is applied in a wide range of fields, including chemistry, biotechnology,

medicine and food industry. The GC-MS instrument consist of integrated

subsystems performing four steps (Gohlke and McLafferty, 1993): vaporisa-

tion and chromatic separation; ionisation of the sample vapour; mass sepa-

ration of the ions; and amplification and recording of the detected signals.

Because of the vaporisation step, the reference compounds and the unknown

compounds should be thermally stable. First, the reference solution is in-

jected into the GC inlet, where it is vapourised and passed to the separation

column by the carrier gas. Then, the separated compounds pass through a

heat transfer line and are ionised. Finally, the mass-to-charge ratio is mea-

sured by a detector and recorded in a computer, see Figure 1.1.
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1.2.3 Microarrays

Genetic science has revolutionised our daily life. Biologists have discovered

the role of many genes in the biological process and altered them toward our

needs. For example genetics is used to produce certain substances, many of

them expensive to obtain by artificial manufacturing methods. Scientists can

alter bacteria so that they produce specific proteins, like the insulin needed

for patients with diabetes. The genetic configuration of cows is altered to

produce more milk and force them to grow faster. In medicine, genetic

information may be used to choose the best therapy for a patient.

Every cell of the body contains a full set of chromosomes and identical

genes, but only a fraction of these genes are turned on (expressed). It is the

expressed subset which reflects the unique properties of each cell type. The

genetic information of a cell is coded in chromosomes which are located in the

nucleus of cell and consists of deoxyribonucleic acid (DNA) sequences. The

messenger ribonucleic acid (mRNA) is transcripted from a DNA template

and carries the encoded genetic information.

Extraction of genetic information from body cells is complex. The tech-

nology typically used is an mRNA microarray, which consists of series of

micro spots arranged on a microscope slide, each one containing a different

mRNA sequence. A fluorescent RNA sample is hybridised to the slide and

then the intensity of the fluorescent in each spot is measured and analysed.

It is common to hybridise two samples at the same time, a test sample la-

belled with red fluorescent Cy3, and a control sample labelled with green

fluorescent Cy5. Then, the ratio of the intensity of Cy3 to Cy5 is measured

by a sensor and stored for future analysis.

1.3 Data Examples

1.3.1 Metabolite Data

The metabolite data consist of 14 genetically modified samples of the plant

Arabidopsis thaliana grown in three batches. Values of 43 metabolites are

measured for each sample which are supposed to monitor their genetic changes.

The data involve two mutants defective in starch biosynthesis, pgm and isa2 ;
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Figure 1.2: The Gas Chromatography/Mass Spectrometry spectra of a repli-

cate of ColWT (top spectrum) and a replicate of mex1 (bottom spectrum),

from Messerli (2007). The horizontal axis shows the time (minutes) at which

the peaks are observed.

four defective in starch degradation sex1, sex4, mex1, and dpe2 ; a mutant for

comparison that accumulates starch as a pleitropic effect, tpt ; four uncharac-

terised mutants, deg172, deg263, ke103, and sex3 ; and three wild type plants,

WsWT, RLDWT, and ColWT. There are four replicates of all samples except

the last for which there are three (Messerli et al., 2007).

GC-MS technology is used to measure the metabolites providing a cheap

and fast method to extract a large number of relatively low molecular-weight

metabolites. The sample GC-MS spectra of replicates of ColWT and mex1

are shown in Figure 1.2.

The mutants are grown in three batches, the amount of the metabolites’

content measured by the GC-MS technology and, finally the data are nor-

malised with respect to a control mutant included in each batch to help

eliminate the batch effect. The purpose of the study was to identify the un-

characterised mutants and describe biologically the metabolic similarity of

different classes.

The log-transformed data are shown in Figure 1.3. Each line corresponds

to a replicate of a mutant represented across metabolites. The metabolites

are ordered with respect to their variance across samples. The variance of
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each metabolite is calculated and then the first metabolite is the metabolite

having the maximum variance, the second metabolite is the metabolite hav-

ing the second biggest variance and so on. The variance of a metabolite is

somehow a measure of its importance, because variables which take constant

or nearly-constant values cannot characterise samples and hence are useless

for classification or clustering. The profile plot in Figure 1.3 shows that two

mutants mex1 and dpe2 behave differently on variable maltose.MX. The wild

types ColWT, RLDWT, WsWT all have a nearly flat profile and the pattern

of the other mutants is not very clear.

1.3.2 Microarray Data

The microarray data consist of gene transcripts of patients with brain cancer.

The data are available through the GEO website, which is built to make gene

expression data available online and free of charge. The website includes a

rich gene-expression data repository accompanied with basic statistical anal-

ysis tools; see http://www.ncbi.nlm.nih.gov/geo/. The dataset GDS1975

involves 74 brain tumours measured on 22, 000 genes to study wheather the

gene expression of the brain tumour is predictive of survival of the patients

having brain cancer. Freije et al. (2004) select a subset of 595 genes in their

analysis, but even after correspondence with the authors, we were able to

match only 396 of 595 genes they used. The data are normalised in two

steps, first by taking the natural logarithm, and second by subtracting the

median of each gene. An image plot of the data is shown in Figure 1.4.

1.4 Data Exploration

1.4.1 Basics

Understanding basic properties of data, or data exploration, plays an impor-

tant role in building a successful statistical model. It helps toward having a

general idea for formulating the parameters of interest, and also may assist

when choosing an appropriate family of distributions.

Visualising high-dimensional data is burdensome, because of the restric-
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Figure 1.4: An image plot of the microarray data, white is used when the

gene in that sample is not expressed, green if intensity of the test sample

is less than control, and blue otherwise. The survival time of patients is

categorised into two groups. Survival group 1 is represented in white (29

patients), and survival group 2 is shown in black (45 patients) (Freije et al.,

2004). See also Figure 1.7.

tion of the visual imagination to three dimensions. In such cases projection

on subdimensions is usually used or important dimensions are selected to

visualise the data on.

Principal component analysis is one of the most-used projection tech-

niques for high-dimensional data. The idea is to find a set of linear and

perpendicular transformations with largest variance (Johnson and Wich-

ern, 2007). The coefficients of the linear transformation are called loadings

and the projected data are called scores. The estimation of the variance-

covariance matrix of the data plays the key role in calculation of the princi-

pal axes. However, it becomes non-singular when the number of dimensions

exceeds the sample size. Hence, pre-selection of variables is required for

implementation of principal component analysis on high-dimensional data.

A dimension that does not vary across samples cannot characterise them

and hence is useless for grouping. On the other hand, such variables take

small loadings in principal components analysis. Hence, loadings may give
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Figure 1.5: The sample means and variances of four replicates of each mutant

for each variable. For example, two mutants with R replicates measured each

on ten variables produce 20 points. The left panel is for the original data

and the right panel is the right panel is for the log data.

restricted information about the importance of variables for classification or

clustering.

The principal component analysis is implemented on n variables having

largest variance across n samples.

1.4.2 Metabolite Data

The Gaussian distribution is widely used to model continuous data. In the

Gaussian class, the sample mean is independent of the sample variance, which

apparently is not true in our data, see the left panel of Figure 1.5. Hence, we

may apply the Box–Cox transformation (Box and Cox, 1964), in our case the

log transformation, to make the relationship between the mean and variance

disappear.

Principal component analysis is implemented twice, once on the mean of

the replicates of each plant (Figure 1.6, top panel) and once on the whole

sample (Figure 1.6, bottom panel). Comparing the result of this analysis with

the plant profiles (Figure 1.3) confirms that variables with large variance, in
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general, have large principal component loadings; for example compare the

metabolites maltose.MX, L.ascorbic, glumatic.3, raffinose2 in Figures 1.3

and 1.6.

After projection of the mean of the replicates onto the two principal

component axes, three groups are visible: a group with nearly flat profiles,

that is all wild types, ke103, sex3, and tpt ; another group comprising the

two mutants that behave differently for variable maltose.MX : the mutants

dpe2 and mex1 ; the last group involving the remaining plants isa2, sex4,

d172, d263, pgm, and sex1. Looking at the whole samples projected on the

two principal component axes, only two groups become visible: the group

of samples of mex1 and dpe2, and another group including the remaining

samples. Apparently, disregarding information related to replication may

change the grouping, and so lead to a different classification or clustering.

1.4.3 Microarray Data

In analysis of microarray data, principal component analysis is frequently

used as a dimension reduction method for visualisation and preprocessing

(Alter et al., 2000; Li and Li, 2004). Like the metabolite data we apply

principal components; and because the number of variables are more than

the sample size we select the variables with greatest variance to implement

the method. The number of variables for the analysis is chosen to be 74 out

of 396, to ensure non-singular estimation of the variance-covariance matrix.

The data projected onto the two principal axes are shown in Figure 1.7, which

indicates no clear grouping. Also, it appears that survival groups are barely

separable, especially for points projected close to the origin. This confirms

that correct classification of such points is troublesome.

1.5 Purpose of Thesis

The metabolite data has motivated the work of this thesis, whose the main

objective is to answer the following questions

• The metabolite behaviour of the unknown types d172, d263, sex3, and

ke103 is closest to which of the known types?
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• How similar are these unknown plants to the known types?

• Is it possible that mutants come from a category that is not in the

known types provided in the training set?

• Which metabolites characterise the known and unknown types?

• Which known and unknown mutants follow similar metabolite pat-

terns?

We answer the first four questions in Chapter 2 and the last question in

Chapter 3.

The microarray data are used to test the clustering method of Chapter 3

on a higher-dimensional dataset.

This research presents Bayesian parametric models for classification and

clustering of high-dimensional data which to our knowledge has not been

considered before. The proposed models have closed-form joint densities

which are used to establish a fast classification and clustering algorithm, and

to provide estimation of model parameters using maximum likelihood.

In high-dimensional data, usually, a small subset of variables is infor-

mative and considering unnecessary dimensions yields poor results due to

overfitting. In order to make the result less affected by noise variables, we

propose a built-in spike-and-slab structure, which helps to quantify the im-

portance of variables.

Our proposed approach solves classification and clustering in a single

framework. Agglomerative clustering is implemented to provide a visual

grouping of subjects by a dendrogram, and the log-posterior is proposed

as a natural distance imposed by the model to construct the tree. The

posterior-based dendrograms have a probability interpretation, helping to

suggest which grouping is more likely under the model. The optimal grouping

is found by cutting the dendrogram using the maximum-a-posteriori princi-

ple, yielding a fully-automatic and fast clustering method. Our simulation

studies confirm the good performance of our proposed procedures compared

with MCLUST, a popular automatic Bayesian clustering algorithm.
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Figure 1.6: The mutants mean profile (top figures) and all samples (bottom

figures) of the metabolite data projected on two principal components. The

overlaid plot of scores and loadings is represented in the left side, with visual

grouping of scores highlighted by dashed ellipses in the right side, respecting

the colour scheme of Figure 1.3.
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The samples with group 1 are represented by white circles and observations
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Chapter 2

Classification

2.1 Introduction

2.1.1 General

Classification and discrimination are multivariate techniques concerned with

separating sets of objects and allocating new observations to previously de-

fined groups. They are implemented to achieve two main goals. The first

is to describe classifying features of objects using collections of features hid-

den in measured variables. The second is to derive a rule that can be used

to optimally assign new observations to previously defined classes, see Fig-

ure 2.1. The word discrimination was used by R. A. Fisher (Fisher, 1936) to

express the first goal and classification or allocation often refers to the second

goal. Classification methods can be grouped into two categories: parametric

(model-based), and nonparametric (model-free). In a parametric method a

probability model is assumed for the classes and the new object is classified

to the class having the largest density at the observed point. A nonparamet-

ric method attempts to estimate the classification borders using a flexible

smooth function and the new observation is attributed according to the esti-

mated border, but sometimes a distance is defined, and the new individual is

assigned to the closest class using the defined distance; we call this a distance-

based method. However, it is hard to clearly distinguish nonparametric from

parametric techniques. For instance a distance may be defined in a way that

25
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corresponds to a density (or log density) at the observed point, and hence

coincides with a parametric approach. The difference between model-based

or model-free methods is the direct assumption of a data distribution, but

they may yield the same classification rule.

Fisher’s linear discriminant axes, for groups with the same covariance ma-

trix, seek uncorrelated linear combinations of variables that separate the data

as much as possible. Separability is defined using the ratio of between-class

to within-class variance. Fisher’s discriminant axes are useful in interpreting

features of the data and visualising them. Each axis gives a classification

rule and often the first axis is used to classify a new subject.

A discriminant is a multivariate function of the measured variables and

hence may geometrically be regarded as a hyperplane. If observations are sep-

arable by a linear hyperplane, the separating hyperplane may not be Fisher’s

linear discriminant. In machine learning, separating data by a hyperplane

is studied to create the classification rule and often is called a perceptron

(Rosenblatt, 1958). This later became a basis for the neural network classifier

(Hastie et al., 1995). If the data are separable by a linear hyperplane, then its

existence ensures an infinity of such hyperplanes. Vapnik (1996) maximised

the distance between the plane and the nearest points, called margins, and

made the solution unique because just one of the infinite linear hyperplanes

has the maximum margin from its nearest data points. Vapnik’s idea was

later developed to generalise the technique for cases where data are not sep-

arable, yielding support vector machines (Hastie et al., 2001, Chapter 12).

Nonlinear classification rules can be handled similarly by replacing the linear

hyperplane with a flexible kernel. Empirical evidence suggests that support

vector machines perform well in learning problems. However, simplicity, hav-

ing a closed form solution, and being computationally efficient make Fisher’s

linear discriminant a widely used classification method. Mathematical ar-

guments support the linear discriminant as an optimal method according

to zero-one loss under some specific choices of distribution. The zero-one

loss equals zero if the new observation is correctly classified and equals one

otherwise. The optimal method according to the zero-one loss, is the linear

discriminant for multivariate Gaussian data with common covariance matrix

(Johnson and Wichern, 2007, pp. 579–584).
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In high-dimensional situations it is hard to propose a practically useful

multivariate distribution because distributions in high dimensional situation

involves often a lot of parameters, which can be hard to estimate reliably

using the available data. Often multivariate models with a small number of

parameters work well in classification (Hand and Yu, 2001). However, ap-

plying distance-based methods is more common in high dimensions, nearest

neighbour methods may be regarded as generalised versions of distance-based

techniques; for a review see Hastie et al. (2001, Chapter 13). The advantage

of distance-based methods is in providing a simple and understandable dis-

criminant function. However, it is hard to prove their optimality as simply

as for the model-based techniques. Intuitive distances such as Euclidian dis-

tance are inappropriate for classification; for discussion see Chan and Hall

(2009).

Regression classifiers also fall in the model-based classification category.

In regression classification, the response variable is the class indicator, a dis-

crete random variable, and the other measured variables are explanatory.

The explanatory variables sometimes are called classification variables too.

The response variable is connected to the classification variables by a model,

often a log-linear one. A regression classifier requires no assumption about

the distribution of the explanatory (classification) variables, since the model

is built using the conditional distribution of the response given the classifi-

cation variables.

Sometimes different classification rules are proposed which are all indi-

vidually weak. Improving the accuracy of weak classifiers using a specific

procedure, called an ensemble method, has become a hot topic in recent

decades. Ensemble methods in classification refer to weighting or to aggre-

gating individually weak classifiers in order to build a powerful classification

rule. Applying this by re-sampling is referred to as bagging (Breiman, 1996),

and applying it by over-weighting misclassified observations is called boosting

(Freund, 1995). Friedman et al. (2000) reformulated bagging and boosting in

terms of additive logistic regression and showed that improvement in classifi-

cation by ensemble methods is tightly connected to the maximum likelihood

principle.

Sometimes the uncertainty of classification is of interest. In the model-
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based classification uncertainty of classification can be obtained using Bayes’

theorem. A prior probability for classification of the observation to each

group is assumed, such as a uniform discrete distribution, and the posterior

probabilities are calculated. The higher the posterior classification probabil-

ity, the more certain the classification is.

2.1.2 High-Dimensional Classification

The main difficulty in high-dimensional data analysis is the curse of dimen-

sionality, which may be regarded as stating that adding dimension without

adding observations yields exponential increase of empty hypercubes (Bell-

man, 1961). In order to see the problem, assume a step function approximat-

ing an unknown function from which we have two observations. The unknown

function can be regarded as the classification rule and the observations as

the training data. Adding extra variables without adding observations yields

two regions with no observation. In three dimensions, six regions with no

observation exist, see Figure 2.2. Hence, the estimation of a specific func-

tion using the same number of observations becomes more difficult in higher

dimensions.

In order to avoid the curse of dimensionality, dimension reduction or vari-

able selection is required. A good reduced space for classification is given by

the linear discriminant axes, since by definition these seek the linear projec-

tion in which the data are as separable as possible. The linear discriminant

axes are optimal linear transformations if classes have a common covari-

ance matrix, but this is hard to check in high-dimensional situations. Even

if it is true, we may not have enough samples to estimate the mean vec-

tors and the common covariance matrix reliably. For example, assuming a

classification problem with C classes and multivariate Gaussian model with

common covariance matrix for the data, full-rank estimation of the covari-

ance matrix requires at least V (V + 1)/2 + V C observations, where V is

the number of classification variables. Assuming unequal covariance matri-

ces, at least V (V + 1)/2 + V observations are required for each class, giving

C(V 2 + 3V/2) observations in all. If the sample size is not moderately large,

shrinkage toward a common covariance matrix has been proposed (Friedman,
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Figure 2.2: The curse of dimensionality: empty hypercubes increase expo-

nentially with variables. Dimensions are denoted by x and the training data

comprising two observations are denoted by y1 and y2 and shown using blobs.

1989). However, there are situations where even assuming a common covari-

ance matrix still overfits the data. In order to avoid over-fitting, a structural

version of the covariance matrix, with less parameters, may be useful too.

In regression classification, it is often assumed that the regression co-

efficients are sparse, and sparse estimates are obtained by penalising the

likelihood with the L1 norm (Park and Hastie, 2007). The availability of fast

algorithms to compute the model parameters and select variables jointly has

popularised the use of penalised likelihood methods.

Bayesian approaches to high-dimensional classification have been less con-

sidered, maybe because of the complexity of the resulting posterior and a

lack of fast and reliable sampling tools. Bayesian variable selection typically

requires trans-dimensional Markov chains, such as the reversible jump al-

gorithm of Green (1995), to sample from the posterior distribution. Such

Markov chains often have slow rates of convergence. Other methods require

ordinary Markov chain Monte Carlo (George and McCulloch, 1997).

A variable selection has 2V states, exponential in the number of variables.

Thus in the Bayesian approach, if one likes to give the possibility of one visit
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for each state, the chain should be run for at least 2V iterations, which is

large for high-dimensional cases. For instance for data with V = 50, 100,

and 1000, the number of states is about 1015, 1030, and 10300, respectively.

In contrast, penalised regression alternatives like the lasso give sparse

estimates and select variables by running a quadratic optimisation (Tibshi-

rani, 1996). A faster algorithm for the lasso was proposed by Efron et al.

(2004). Recently, the Dantzig selector was proposed, which requires only a

linear optimisation (Candes and Tao, 2007), and its computationally efficient

optimisation has been explained in James et al. (2009).

Spike-and-slab models are general methods for implementing variable se-

lection in a Bayesian context (Mitchell and Beauchamp, 1988; Brown et al.,

1998), by assuming a mixture prior for effects, one component concentrated

about zero and another with spread tails. In this thesis we present a Bayesian

approach to classification using a spike-and-slab hierarchical model. In or-

der to achieve a computationally fast method we propose models with ana-

lytically closed-form posteriors. As a consequence, we assume independent

classification variables, which appears to be restrictive, but works well for

small-sample-size-high-dimensional cases (Hand and Yu, 2001; Hand, 2006).

This chapter is organised as follows. Gaussian and asymmetric Laplace

hierarchical models are introduced in Section 2.2 and classification using

them is discussed. Extensions to classification of a new observation, which

also allows calculation of the probability of being in a previously unobserved

class is given in Section 2.3, and then a generalisation of the hierarchical

models which allows variable selection is introduced. The novel methods

are compared with the linear discriminant and naive Bayes approaches on

the metabolite data and the famous iris data in Section 2.4. The details of

calculations for the spike-and-slab models are given in Section 2.5.

2.2 Hierarchical Bayesian Classification

2.2.1 General

In this section we introduce a novel approach to high-dimensional classifica-

tion by considering a Bayesian linear model with a spike-and-slab structure.



32 CHAPTER 2. CLASSIFICATION

It is known that the classification probabilities in high dimensions degenerate

and hence cannot be used as an uncertainly measure for allocation (Hand and

Yu, 2001). Our models guide the classification function to allocate new obser-

vations according to important similarities and gives posterior classification

probabilities which rarely degenerate. Hence using our suggested approach,

the posterior probabilities can be interpreted as a measure of similarity of

the new object to one of the classes. The proposed models have analytically

tractable marginal posteriors, and hence the classification probabilities are

rapidly calculated. In addition, the model parameters can be estimated using

maximum likelihood.

The measured quantities to be used for classification are modelled as

follows. Assume that the univariate random variable yvctr is the rth (r =

1, . . . , Rct) replicate of type t (t = 1, . . . , Tc) from class c (c = 1, . . . , C)

measured on variable v (v = 1, . . . , V ). Thus V continuous variables are

measured on C classes, each class consisting of Tc types of individual with Rct

replicates of the tth type. Hence the total number of types is T =
∑C

c=1 Tc

and the total number of observations for each variable is
∑C

c=1

∑Tc

t=1 Rct.

In some cases the measurements are unreplicated, and then Rct = 1 for

t = 1, . . . , Tc and c = 1, . . . , C. The result of the measurement is a scalar

yvctr, which we assume may be expressed as

yvctr = μ + γvcθvc + ηvct + εvctr, (2.1)

where θvc, ηvct and εvctr are independent continuous random variables, and

γvc is a binary random variable with success probability p. In equation (2.1),

μ represents an overall value for all the variables and types. Without loss

of generality, our model presupposes that the data have been modified so

that the variable-wise averages equal zero, but that the variances have been

left unaltered. If γvc = 1, then this variable-class combination is active, and

then the profile in an ideal setting would be μ + θvc. If γvc = 0, then the

combination is inactive and the profile in an ideal setting would be μ. No

realisable setting is ideal, however, and additional variation between types—

for example, due to varying experimental conditions—is represented by the

variables ηvct. Finally the lowest level of variability between replicates is due

to measurement error, εvctr.
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Figure 2.3: Graphical form of model (2.1), showing the true effects (solid

black line), and two observed profiles (blue and red dashed lines) of a class

each with four replicates (solid blobs).

Figure 2.3 shows the model in graphical form. If the variables measured

from a single type are visualised as a profile, then the sharp solid ideal profile

μ + γvcθvc corresponding to class c is blurred to the dashed lines of the

realised profile for the tth type by the addition of ηvct. We refer to μ +

γvcθvc+ηvct as the observed profile. This is obscured by additive measurement

error εvctr, which differs for each replicate. The profiles are drawn as lines

merely for clarity, because any permutation of variables would leave inference

unchanged. One might question the utility of the hidden layer ηvct, but our

experience is that it is essential for success in applications.

In (2.1) the random variables ηvct and εvctr are experimental and mea-

surement errors, supposed to be independently sampled from Gaussian dis-

tributions with zero mean, and variances σ2
η ≥ 0 and σ2 > 0, respectively.

For convenience, we consider the Gaussian distribution with variance zero to

be a degenerate distribution at its mean. The random variable θvc does not

appear when γvc = 0 and appears when γvc = 1. We suppose that the γvc

follow independent Bernoulli distributions with success probability p.

Examples of spike-and-slab distributions of the observed profiles obtained

by different distributional assumptions for the true effects are shown in Fig-

ure 2.4.
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It is natural to assume Gaussian distributions for ηvct and εvctr, because

they are errors, but we suggest a choice of distributions for the true effects,

θvc. In order to implement a fast classification method we consider models

with an analytically closed form joint density for the data yvctr and hence in

(2.1) we restrict ourselves to Gaussian and asymmetric Laplace distributions

for the true effects.

More details about the estimation of model parameters and applying

classification using model (2.1) are presented in Sections 2.2.2 and 2.2.3.

Apart from yvctr, which is supposed to be univariate, the letter y with

fewer indices refers to an appropriate vector of data; for example yv denotes

the data of variable v, yvc is the vector of data in class c measured on variable

v, and so on. The vector yc in classical discriminant analysis is supposed to

follow a multivariate Gaussian distribution, and vectors yct are independent

realisations of the model assumed for class c.

2.2.2 Gaussian Effects Model

A common model for additive effects is the Gaussian model, so we assume a

Gaussian distribution with mean zero and variance σ2
θ > 0 for the true effects

θvc, in (2.1).

In order to facilitate the calculation of the joint density, we may write

model (2.1) in hierarchical form as

yvctr | η′
vct

iid∼ N(η′
vct, σ

2),

η′
vct | θ′vc

iid∼ N(θ′vc, σ
2
η),

θ′vc | γ′
vc

iid∼ N(μ, γ′
vcσ

2
θ),

γ′
vc

iid∼ B(p), (2.2)

σ2, σ2
θ > 0, σ2

η ≥ 0, 0 < p < 1, μ ∈ R,

v = 1, . . . , V, c = 1, . . . , C, t = 1, . . . , Tc, r = 1, . . . , Rct,

where N(μ, σ2) represents the univariate Gaussian distribution with mean μ

and variance σ2, and B(p) denotes the Bernoulli distribution with success

probability p.
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In order to estimate the model parameters ϕ = (σ2, σ2
η, σ

2
θ , μ, p) using

maximum likelihood, we must calculate the joint density of the data. We do

this under a fully marginal model, which provides a universal and automatic

set of parameter estimates. If information was available about the indicator

variables, better estimates could be obtained.

In many cases each class consists of a single type, and we may drop the

index t and write the joint density as

f(y; ϕ) =

V∏
v=1

C∏
c=1

f(yvc; ϕ), (2.3)

where yvc is the data vector of class c measured on variable v,

f(yvc; ϕ) = pf1(yvc; ϕ) + (1 − p)f0(yvc; ϕ), (2.4)

f0(yvc; ϕ) = (2π)−Rc/2σ1−Rc(Rcσ
2
η + σ2)−1/2

× exp

[
− 1

2σ2

{
Rc∑
r=1

y2
vcr − Rcy

2
vc

}
− (yvc − μ)2

2(σ2
η + σ2/Rc)

]
, (2.5)

f1(yvc; ϕ) = (2π)−Rc/2σ1−Rc{Rc(σ
2
η + σ2

θ) + σ2}−1/2

× exp

[
− 1

2σ2

{
Rc∑
r=1

y2
vcr − Rcy

2
vc

}
− (yvc − μ)2

2(σ2
θ + σ2

η + σ2/Rc)

]
,

(2.6)

in which yvc = R−1
c

∑Rc

r=1 yvcr. For details of the calculation, see Section 2.5.6.

Given the training data, (2.3) can be maximised to estimate ϕ.

In order to maximise the log-marginal likelihood using unconstrained op-

timisation procedures, we implemented a reparametrisation. The log trans-

formation is used for the variance hyper-parameters σ2, σ2
η, σ

2
θ , the identity

for μ, and the logit for p. Asymptotic standard errors for the estimated

transformed hyper-parameters maybe computed using the Hessian matrix,

given by the optimisation routine, and can be transformed to the original

scale using the delta method (Davison, 2003, pp. 33–34). For more precise

asymptotic confidence intervals the profile likelihood method can be applied.

Our proposed model (2.2) is unidentifiable in unreplicated situations, that

is when Rc = 1 for all c = 1, . . . , C. However, σ2 + σ2
η is estimable. Setting

σ2
η = 0, that is ignoring the experimental error layer ηvct, we may estimate

the remaining parameters.
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After fixing the model parameters, calculation of the posterior classifica-

tion probabilities is straightforward using Bayes’ theorem. In order to write

the classification posterior formally, we define a discrete random variable

u = 1, . . . , C, an auxiliary variable to classify the new observation y∗ to one

of the already observed classes. Denoting the training set by y, the data in

class c by yc, the data in class c measured on variable v by yvc, and the prior

classification probabilities by Pr(u = c), we can write

Pr(u = c | y, y∗) = k−1 Pr(u = c)f(y, y∗ | u = c)

= k−1 Pr(u = c)f(yc, y
∗)
∏
c′ �=c

f(yc′)

= k−1 Pr(u = c)
V∏

v=1

[
f(yvc, y

∗
v)
∏
c′ �=c

f(yvc′)

]
, (2.7)

where the last equality holds because the model imposes independent vari-

ables, and

k =

C∑
c=1

Pr(u = c)

V∏
v=1

{
f(yvc, y

∗
v)
∏
c′ �=c

f(yvc′)

}
> 0. (2.8)

In (2.7) the density f(yvc) is the same as in (2.4), and f(yvc, y
∗
v) is the

joint distribution of the training data in class c measured on variable v with

the new data and can be written as

f(yvc, y
∗
v) = pf1(yvc, y

∗
v) + (1 − p)f0(yvc)f0(y

∗
v). (2.9)

In (2.9), f1(yvc, y
∗
v) is the joint density when the variable-class combination is

active, that is both yvc and y∗
v share the same true effect θvc but may arise with

different experimental errors ηvct (t = 1, 2). Supposing 1 denotes a unit vector

having length R∗+Rc, then analytical calculations in Section 2.5.4 show that

f1(yvc, y
∗
v) corresponds to a multivariate Gaussian density with mean vector

μ1 and (R∗ + Rc) × (R∗ + Rc) covariance matrix with diagonal elements

σ2 + σ2
η + σ2

θ and off-diagonal elements σ2
η + σ2

θ or σ2
θ . If two observations

belong to the same type the off-diagonal element of the covariance matrix

equals σ2
η + σ2

θ , and it equals σ2
θ otherwise.
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2.2.3 Asymmetric Laplace Effects Model

In this section we assume a heavy-tailed and asymmetric distribution for the

true effects motivated by the metabolite data. For example in Figure 2.9 we

observe extreme peaks in metabolite maltose.MX1 for mex1 and dpe2, and

both peaks are positive. This suggests using a heavy-tailed and asymmetric

distribution for the true effects.

The Laplace effects model is similar to the Gaussian effects model, but

the asymmetric Laplace distribution allows a more flexible model. An asym-

metric Laplace variable can be constructed by flipping a fair coin, if the result

is a head we take −XL and if the result is a tail we take XR, where XL and

XR are independent exponentially distributed random variables, with rates

σ−1
θL

, σ−1
θR

> 0 both shifted to μ ∈ R. This resulting random variable will

have a heavy-tailed distribution with median μ and variance σ2
θ = σ2

θL
+ σ2

θR
;

log(σ2
θR

/σ2
θL

) measures the asymmetry. The symmetric Laplace (double ex-

ponential) distribution emerges when σ2
θR

= σ2
θL

, and the distribution is right-

skewed when σ2
θR

> σ2
θL

, see Figure 2.5.

Denoting the asymmetric Laplace distribution having median μ, the left

tail variance σ2
θL

and the right tail variance σ2
θR

by L(μ, σ2
θL

, σ2
θR

), we may

write the asymmetric Laplace model in hierarchical form similar to (2.2)

except that the distribution of θ′vc given γ′
vc is replaced by

θ′vc | γ′
vc

iid∼ L(μ, γ′
vcσ

2
θL

, γ′
vcσ

2
θR

), σ2
θL

, σ2
θR

> 0, μ ∈ R,

and for convenience we consider L(μ, 0, 0) to be a distribution degenerate at

μ.

The model parameters can be obtained by maximising the likelihood func-
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tion (2.3), but in (2.4) f1(yvc) is replaced by

f1(yvc) = 2−1(2πσ2)−(Rc−1)/2Rc
−1/2

× exp

(
− 1

2σ2

Rc∑
r=1

y2
vcr

)
(IL + IR), (2.10)

IL = σ−1
θL

exp

{
Rc

2σ2

(
yvc +

σ2

RcσθL

)2

+
σ2

η

2σ2
θL

− μ

σθL

}

×Φ

⎛
⎝μ − yvc − σ2/(RcσθL

) − σ2
η/σθL√

σ2
η + σ2/Rc

⎞
⎠ ,

IR = σ−1
θR

exp

{
Rc

2σ2

(
yvc −

σ2

RcσθR

)2

+
σ2

η

2σ2
θR

+
μ

σθR

}

×Φ

⎛
⎝yvc − μ − σ2/(RcσθR

) − σ2
η/σθR√

σ2
η + σ2/Rc

⎞
⎠ ,

where Φ denotes the standard Gaussian cumulative distribution function; for

details see Section 2.5.6.

The posterior classification probabilities for the asymmetric Laplace model

can be obtained using Bayes’ theorem and are similar to (2.7) and (2.9) but

with

f1(yvc, y
∗
v) = k0(kLIL + kRIR), (2.11)

k0 = (2π)−(Rc+R∗)/2σ−1
η π1/2 exp

{
− 1

2σ2

(
Rc∑
r=1

y2
vcr +

R∗∑
r=1

y∗
vr

2

)}
|A|−1/2,

kL = (2σθL
)−1 exp

{
σ2

η/(4σ2
θL

) − μ/σθL

}
,

IL = exp

(
1

2
bT

LA−1bL

)
Φ

(
cL + dT

LA−1bL√
1 + dLA−1dL

)
,

kR = (2σθR
)−1 exp

{
σ2

η/(4σ2
θR

) − μ/σθR

}
,

IR = exp

(
1

2
bT

RA−1bR

)
Φ

(
cR + dT

RA−1bR√
1 + dRA−1dR

)
,
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where A is a 2 × 2 symmetric positive-definite matrix,

A =

[
Rc/σ

2 + 1/(2σ2
η) −1/(2σ2

η)

−1/(2σ2
η) R∗/σ2 + 1/(2σ2

η)

]
,

|A| is the determinant of A, bL,bR,dL,dR are 2× 1 vectors, and cL and cR

are constants. Denoting the number of replicates of the new observed data

with R∗ and y∗
v = R∗−1∑R∗

r=1 y∗
vr, we may write

bL = [Rcyvc/σ
2 + 1/(2σθL

) , R∗y∗
v/σ

2 + 1/(2σθL
)]T,

bR = [Rcyvc/σ
2 − 1/(2σθR

) , R∗y∗
v/σ

2 − 1/(2σθR
)]T,

cL =
μ − σ2

η/(2σθL
)√

σ2
η/2

, cR = −μ + σ2
η/(2σθR

)√
σ2

η/2
,

dL =
[
−1/
√

2σ2
η , − 1/

√
2σ2

η

]T
, dR =

[
1/
√

2σ2
η , 1/

√
2σ2

η

]T
.

For calculation details for f1(yvc, y
∗
v), see Section 2.5.4.

2.3 Extensions

2.3.1 Unobserved Class Probability

In classification it is often assumed that the new observation belongs to

one of the classes already observed. However in many applications it is

meaningful to allow the new subject to belong to a new group; in machine

learning such statistical procedures are called semi-supervised learning. In

the Bayesian paradigm calculation of the posterior probability that the new

observation make a new group is straightforward using Bayes’ theorem and

can be implemented easily for any model-based classifier. We may allow the

discrete random variable u in (2.7) to take value C + 1 also, thus denoting

that the new observation belongs to a new group. Therefore we just need

to consider Pr(u = C + 1 | y, y∗) in (2.7) and recalculate the normalising
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constant k in (2.8):

Pr(u = C + 1 | y, y∗) = k−1 Pr(u = C + 1)f(y, y∗ | u = C + 1)

= k−1 Pr(u = C + 1)f(y∗)
C∏

c=1

f(yc)

= k−1 Pr(u = C + 1)
V∏

v=1

[
f(y∗

v)
C∏

c=1

f(yvc)

]
,

in which f(yvc) is the joint distribution of the data in class c and variable v

calculated in (2.4). The density f(y∗
v) can be calculated in the same way, by

replacing
∑Rc

r=1 y2
vcr with

∑R∗
r=1 y∗

v
2 and yvc with R∗−1∑R∗

r=1 y∗
v. It is required

to assume a prior classification probability for y∗ being a new class, Pr(u =

C + 1). The normalising constant that makes the posterior classification

probabilities sum to one now also includes the probability for a new type.

Setting f(yC+1, y
∗) = f(yC+1)f(y∗) and f(yvC+1, y

∗
v) = f(y∗

v)f(yvC+1) we

may write

Pr(u = c | y, y∗) =
Pr(u = c)

[
f(yc, y

∗)
∏

c′ �=c f(yc′)
]

∑C+1
i=1 Pr(u = i)

[
f(yi, y∗)

∏
c′ �=i f(yc′)

] (2.12)

=
Pr(u = c)

∏V
v=1

[
f(yvc, y

∗
v)
∏

c′ �=c f(yvc′)
]

∑C+1
i=1 Pr(u = i)

∏V
v=1

[
f(yvi, y∗

v)
∏

c′ �=i f(yvc′)
] .
(2.13)

2.3.2 Built-in Variable Selection

Spike-and-slab models are considered as a general tool for Bayesian vari-

able selection in regression, by considering a mixture of a point mass at

zero (the spike) and a continuous distribution with tails away from zero (the

slab) for regression parameters. The problem of Bayesian variable selec-

tion is mainly computational, because it requires implementation of trans-

dimensional Markov chain Monte Carlo methods, which is computationally

challenging and slow. The Bayesian variable selection procedure developed

by George and McCulloch (1997) assumes a mixture of two Gaussian dis-

tributions, giving a mixture of distributions having the same support, and
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so allowing a simple Gibbs sampler to sample from the posterior distribu-

tion. In the Bayesian variable selection of George and McCulloch (1997), the

mixture prior (the Gaussian spike-and-slab model) may be constructed by

convolution of a mass point with Gaussian noise (the spike distribution) and

convolution of another distribution (the effects distribution) with Gaussian

noise (the slab distribution). This insight generalises the classical Bayesian

variable selection of George and McCulloch (1997) that uses a Gaussian dis-

tribution for both spike and slab distributions. Our approach gives always a

Gaussian spike prior but produces a variety of slab distributions depending

on the distribution assumed for effects. If both noise and effect distributions

are Gaussian the mixture prior is that of George and McCulloch (1997), see

Figures 2.4 and 2.5.

Integrating over the spike and slab prior in our proposed models solves

the curse of dimensionality in classification, because negligible effects are

likely to come from the spike prior which does not affect the classification,

while large effects are more likely to be generated from the slab prior, which

guides the classification. This produces classification procedures which are

less sensitive to uninformative variables, because when a variable is useless,

f1(yvc, y
∗
v), for all c = 1, . . . , C, is much smaller than f0(yvc)f0(y

∗
v), hence

f(yvc, y
∗
v) in (2.9) is close to f0(yvc)f0(y

∗
v), and consequently the posterior

classification probabilities in (2.7) shrink toward the prior.

Our proposed spike-and-slab models in Sections 2.2.2 and 2.2.3 select

variable-class combinations instead of variables. We may implement vari-

able selection in addition to variable-class selection by introducing another

Bernoulli variable δv to control appearance of the variable-class effect,

yvctr = μ + ηvct + δvγvcθvc + εvctr. (2.14)

The hierarchical version of (2.14) for the Gaussian effects model may be
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written as

yvctr | η′
vct

iid∼ N(η′
vct, σ

2),

η′
vct | θ′vc

iid∼ N(θ′vc, σ
2
η),

θ′vc | γ′
vc

iid∼ N(μ, γ′
vcσ

2
θ),

γ′
vc | δ′v

iid∼ B(δ′vp),

δ′v
iid∼ B(q), (2.15)

σ2, σ2
θ > 0 σ2

η ≥ 0, 0 < p < 1, 0 < q ≤ 1, μ ∈ R,

v = 1, . . . , V, c = 1, . . . , C, t = 1, . . . , Tc, r = 1, . . . , Rct,

Model (2.14) is a generalisation of (2.2); they are identical if δv = 1 with

probability 1 for all v = 1, . . . , V, or equivalently if q = 1. If variable v is

active (δv = 1) variable-class selection is allowed, and if variable v is inactive

(δv = 0) the model imposes a degenerate distribution for the true effects θvc

for all c = 1, . . . , C. Hence, q is the proportion of active variables, and p

is the proportion of active variable-class combinations for active variables.

This gives pq active variable-class combinations in total. For a graphical

representation of the variable selection model, see Figure 2.6.

The hierarchical representation of model (2.14) for the asymmetric Laplace

model is straightforward, because the only difference between the Gaussian

model and the asymmetric Laplace model is the effect distribution. Hence,

in order to obtain the asymmetric Laplace model with variable selection, in

(2.15), we replace N(μ, γ′
vcσ

2
θ) with L(μ, γ′

vcσ
2
θL

, γ′
vcσ

2
θR

), σ2
θR

, σ2
θL

> 0.

The variable selection generalisation of the Gaussian and the asymmetric

Laplace models still have analytically closed form marginal posteriors, of

form

f(y; ϕ) =
V∏

v=1

{
q

[
C∏

c=1

pf1(yvc) + (1 − p)f0(yvc)

]
+ (1 − q)

C∏
c=1

f0(yvc)

}
,

(2.16)

where ϕ = (σ2, σ2
η, σ

2
θ , μ, p, q) for the Gaussian model and ϕ = (σ2, σ2

η, σ
2
θL

, σ2
θR

, μ, p, q)

for the asymmetric Laplace model. The densities f0(yvc) and f1(yvc) are de-

fined in (2.6) for the Gaussian and in (2.10) for the asymmetric Laplace

model.
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Figure 2.6: The variable selection model (2.14) represented on 15 variables

with true profile (solid black), observed profile (dashed), and four replications

for each variable-class combination (solid blobs). For the active variables, a

red square is plotted.

The posterior classification probability can be calculated from (2.13) by

replacing f(yvc, y
∗
v) with

f(yvc, y
∗
v) = q [pf1(yvc, y

∗
v) + (1 − p)f0(yvc)f0(y

∗
v)] + (1 − q)f0(yvc)f0(y

∗
v),

(2.17)

in which the density f1(yvc, y
∗
v), is defined in (2.9) for the Gaussian and in

(2.11) for the asymmetric Laplace model. The posterior classification prob-

ability (2.17) is a convex combination of two densities: a density that guides

the classification, f1, and another that is a random classifier, f0. The convex

combination appears in two levels: in the variable level, controlled by q, and

in the variable-class level, controlled by p. As an immediate consequence,

when p equals zero, that is, all variable-class combination are inactive, the

posterior classification probabilities equal those for the prior. For q = 1 the

variable selection model reduces to the Gaussian and the asymmetric Laplace

model explained in Sections 2.2.2 and 2.2.3. Setting q = 0 allows no active

variable-class combinations for any variable, so the posterior classification

probabilities equal those for the prior. According to our experience, greater

values of p and q often yield more certain posterior classification probabili-

ties. However, when σ2
θ or σ2

θL
+σ2

θR
is chosen or estimated to be considerably

smaller than σ2
η , the posterior probabilities shrink toward the prior.
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In Bayesian hypothesis testing, the posterior odds for alternative hypoth-

esis relative to null hypothesis depends on data only through the Bayes factor,

say B10. Assuming a prior probability 1/2 that the alternative hypothe-

sis is true, the posterior probability that the alternative hypothesis is true

will be B10/(1 + B10). Kass and Raftery (1995) propose the following scale

for the Bayes factor B10 as an evidence against the null hypothesis: nega-

tive if log B10 ≤ 0, hardly worth a mention if 0 < log B10 ≤ 1, positive if

1 < log B10 ≤ 3, strong if 3 < log B10 ≤ 5, and very strong if log B10 > 5.

Hence, the main advantage of the variable selection model is giving an impor-

tance measure for variables, B10
v , and for variable-class combinations, B10

vc ,

log B10
v = log f(yv | δv = 1) − log f(yv | δv = 0),

log B10
vc = log f(yvc | δv = 1, γvc = 1) − log f(yvc | δv = 1, γvc = 0).

(2.18)

The Bayes factor can be regarded as a weight that sorts variables and variable-

class combinations, showing which ones guide the classification more than

others. Though the scale proposed by Kass and Raftery (1995) is arbitrary,

but is broadly accepted and often used in applications.

The quality of estimation of ϕ depends on the data structure. Often

when σ2
θ/σ

2
η is small, it is hard to estimate p and q precisely. A small number

of variables V also yields estimates of q with large uncertainty. A small

number of variable-class combinations V C affects efficiency of estimation of

the hyper-parameter p. When the training data are unreplicated, that is

Rc = 1 for c = 1 . . . C, both Gaussian and asymmetric Laplace models are

unidentifiable, but σ2 + σ2
η is identifiable. For more details see Section 4.4.

2.4 Examples

2.4.1 Metabolite Data

First we implement our proposed classification methods on the metabolite

data of Section 1.3.1 to answer questions such as
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• The metabolite behaviour of the unknown types d172, d263, sex3, and

ke103 is closest to which of the known types?

• How similar are these unknown plants to the known types?

• Is it possible that mutants come from a category that is not in the

known types provided in the training set?

• Which metabolites can characterise known and unknown types?

• Which known and unknown mutants follow similar metabolite pat-

terns?

We answer the questions using the methodology provided in this chapter,

except for the last question which requires clustering and will be discussed

in Chapter 3. We use the Bayes factor B10
v to assess which metabolites

are useful for classification. Metabolites that characterise mutants must be

informative for classification, so metabolites that are useless for classification

do not characterise the types.

Before applying classification procedures, the vector ϕ must be estimated.

First, we consider taking q = 1, as described in Sections 2.2.2 and 2.2.3. The

model parameters are estimated by maximising the likelihood (2.3). The neg-

ative profile likelihoods, which are useful to obtain confidence intervals for

the estimated parameters, are reported in Figure 2.7. The estimated param-

eters with their standard errors in parentheses, derived by the delta method,

are shown in Table 2.1 for the Gaussian and the asymmetric Laplace models.

Table 2.1 shows that the general mean estimate μ̂ is about the same using

the Gaussian and the asymmetric Laplace models. The experimental error

layer must be included because zero does not lie in the 95% confidence inter-

val for σ̂2
η . The estimated measurement error variances are the same using

the Gaussian and the asymmetric Laplace models. The estimated proportion

of active variable-class combinations for the asymmetric Laplace model p is

larger than for the Gaussian model, but the two 95% confidence intervals

overlap. The 95% confidence intervals for the hyper-parameter p using the

profile likelihoods are (0.015, 0.064) and (0.038, 0.134) for the Gaussian and

the asymmetric Laplace models, respectively. The profile likelihood confi-

dence interval for p is wider for the asymmetric Laplace model, suggesting
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σ̂2 σ̂2
η σ̂2

θ μ̂ p̂

σ̂2
θL

σ̂2
θR

Gaussian
(0.005)

0.159
(0.033)

0.373
(2.773)

5.155
(0.028)

0.083
(0.019)

0.034

Laplace
(0.005)

0.159
(0.043)

0.35
(0.778)

0.983
(2.361)

1.547
(0.028)

0.085
(0.071)

0.078

Table 2.1: Estimated parameters and their respective standard errors, de-

rived by the delta method (above each estimate), for the Gaussian and the

asymmetric Laplace models.

that estimation of p using the asymmetric Laplace model is more difficult; a

similar pattern is observed in our simulation study reported in Section 4.4.

Profile likelihood confidence intervals for other parameters can be obtained

by cutting the profile likelihood curves of Figure 2.7 with the reference hor-

izontal lines derived from the chi-square distribution, but they are not very

different from confidence intervals obtained using the delta method. In all

profile likelihood plots the minimised value of the negative log likelihood for

the asymmetric Laplace model is smaller than for the Gaussian model, sug-

gesting that the asymmetric Laplace model fits better. However, the asym-

metric Laplace model contains 6 parameters but the Gaussian model involves

5, and a reasonable comparison criterion, should consider the model dimen-

sion too. We use the BIC of Schwarz (1978). The BIC for the asymmetric

Laplace model equals 3892.06 and for the Gaussian model equals 3891.15,

suggesting that the Gaussian model is better.

The posterior classification probabilities are calculated using (2.13) and

are reported for the Gaussian model and the asymmetric Laplace model in

Table 2.2.

The classification results using the Gaussian and the asymmetric Laplace

model are similar. The maxima of the a posteriori classification probabilities

appear at the same place. The classification probabilities for the mutant

ColWT are spread out between the wild types WsWT, RLDWT and tpt, with

a tiny probability of it being a new type. Having almost equal probabilities

for ColWT to be assigned to the wild types is expected, because ColWT

belongs to the wild types. Mutant sex3 almost equally likely to be attributed

to the wild types and to tpt. The mutants isa2, sex3 and ColWT may perhaps
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Gaussian Model
WsWT RLDWT tpt pgm sex4 mex1 dpe2 New

Known ColWT 26.48 24.85 23.19 0.59 13.62 0 0 11.27
isa2 0.03 0.03 0.02 0.64 82.06 0 0 17.23
sex1 0.32 0.13 0.73 98.33 0.33 0 0 0.15

Unknown d172 0.4 0.76 0.32 0.58 97.71 0 0 0.23
d263 4.8 9.2 3.91 7.13 72.62 0 0 2.34
ke103 6.25 8.21 17.07 56.96 2.05 0 0 9.47
sex3 24.34 23.19 23.79 0.33 12.95 0 0 15.42

Asymmetric Laplace Model
WsWT RLDWT tpt pgm sex4 mex1 dpe2 New

Known ColWT 30.61 26.65 23.12 0.56 9.67 0 0 9.39
isa2 0.01 0.01 0 1.36 92.37 0 0 6.25
sex1 0.14 0.03 0.24 99.39 0.16 0 0 0.03

Unknown d172 0.03 0.07 0.02 0.1 99.77 0 0 0.01
d263 1.25 3.08 0.79 4.35 90.11 0 0 0.43
ke103 8.12 8.47 34.56 41.24 0.91 0 0 6.71
sex3 27.25 23.84 24.8 0.23 6.95 0 0 16.93

Table 2.2: Posterior classification percentages assuming a uniform prior for

the Gaussian model and the asymmetric Laplace model when q = 1. The

model parameters are estimated from the data, and the maximum a posteriori

percentages are shown in red.

be a new unobserved types; isa2 is relatively certain to be sex4 ; sex1, d172

and d263 are allocated quite strictly; and ke103 is identified to be pgm, but

is also close to tpt.

Looking at the metabolite data in Figure 2.9 confirms the classification

results of Table 2.2. The wild types, tpt, ke103, and sex3 have almost flat

profiles. Mutant d172 has a profile similar to sex4. Unknown type sex1 is

similar to known type pgm. Known types dpe2 and mex1, have a distinguish-

able profile on maltose.MX1, so it is not surprising to see that all types have

very small probabilities to be assigned to dpe2 and mex1.

Classification using the variable selection approach introduced in Sec-

tion 2.3.2 needs estimation or tuning of the parameter q as well. The es-

timation of all model parameters together for the variable selection models
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Gaussian Variable Selection Model

WsWT RLDWT tpt pgm sex4 mex1 dpe2 New

Known ColWT 30.78 27.84 20.65 0.34 11.17 0 0 9.21
isa2 0.08 0.08 0.03 1.33 77.76 0 0 20.72
sex1 2.49 0.44 3.7 90.09 2.85 0 0 0.43

Unknown d172 1.37 3.39 0.88 1.76 92.27 0 0 0.33
d263 3.01 7.72 1.98 4.44 81.92 0 0 0.92
ke103 18.59 4.2 41.49 27.31 3.88 0 0 4.52
sex3 19.59 40.4 13.23 0.06 11.81 0 0 14.92

Asymmetric Laplace Variable Selection Model

WsWT RLDWT tpt pgm sex4 mex1 dpe2 New

Known ColWT 34.04 29.35 20.69 0.44 6.57 0 0 8.92
isa2 0.28 0.14 0.02 5.36 63.72 0 0 30.48
sex1 2.53 0.53 1.97 93.04 1.72 0 0 0.21

Unknown d172 0.44 1.06 0.17 0.88 97.33 0 0 0.13
d263 1.56 3.88 0.73 5.12 87.88 0 0 0.83
ke103 25.41 6 44.86 20.31 1.57 0 0 1.84
sex3 16.24 64.7 7.96 0.02 2.08 0 0 9

Table 2.3: Posterior classification percentages for the Gaussian and the asym-

metric Laplace variable selection models, assuming a uniform prior. The

maximum a posteriori percentages are in red.

is difficult and yields estimates with large uncertainties. We fix parameters

σ2, σ2
η , σ

2
θ , μ to the values already estimated by setting q = 1, and then esti-

mate p and q. This gives p̂ = 0.458 and q̂ = 0.156 for the Gaussian model and

p̂ = 0.83 and q̂ = 0.183 for the asymmetric Laplace model. Classifications

using the variable selection models are reported in Table 2.3. The allocation

using the variable selection models agrees with that of Table 2.2, except that

the mutant sex3 in the variable selection models is attributed to RLDWT,

but in Table 2.2 is identified to be the wild type WsWT. Also the mutant

ke103 in Table 2.2 is allocated to pgm but in Table 2.3 is classified to tpt.

This is not surprising because looking at the data in Figure 2.9 we see that

the wild types and tpt have similar profiles.
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WsWT RLDWT tpt pgm sex4 mex1 dpe2

Naive Bayes ColWT 1 100 0 0 0 0 0 0
ColWT 2 0 100 0 0 0 0 0
ColWT 3 0 100 0 0 0 0 0

Linear ColWT 1 95.6 4.4 0 0 0 0 0
discriminant ColWT 2 0 100 0 0 0 0 0

ColWT 3 0 100 0 0 0 0 0
Gaussian ColWT 1 16.2 16.2 15.8 12.6 14.2 12.5 12.5

ColWT 2 16.0 15.8 15.5 12.6 15.1 12.5 12.5
ColWT 3 16.2 16.3 15.8 12.6 14.2 12.5 12.5

Gaussian ColWT 1 16.8 16.4 15.3 12.5 14.0 12.4 12.4
variable ColWT 2 16.6 16.5 14.9 12.5 14.6 12.5 12.5
selection ColWT 3 16.7 16.7 15.1 12.5 14.1 12.4 12.4

Table 2.4: Classification percentages using the naive Bayes, the linear dis-

criminant, the Gaussian and the Gaussian variable selection procedures as-

suming a uniform prior for observations of ColWT .

According to the Gaussian variable selection model, the metabolites Mal-

tose.MX1, raffinose2, X18, L.ascorbic, and glumatic.3, have large Bayes fac-

tors B10
v , X16 is relatively important, serine.3 and saccharic have negligible

Bayes factors, the rest have negative Bayes factors and hence are unimpor-

tant, see Figure 2.8. The Bayes factors B10
v are coded using a heat bar and

B10
vc are coded by heat blobs in Figure 2.9, confirming that highly important

variable-class combinations (red blobs), appear for highly important vari-

ables (red bar). The estimated value of q, q̂ = 0.156, states that about 16%

of variables are active, that is about 6 variables out of 43. This agrees with

the heat bar: 6 variables have Bayes factors that are red or orange.

Procedures like the linear discriminant or naive Bayes do not usually allow

for the possibility of replicated data. This could be dealt with by some form

of averaging at the risk of a loss of information. Thus it is not straightforward

to get posterior probabilities like Table 2.2 and 2.3. The naive Bayes and the

linear discriminant posterior classification probabilities for observations of the

mutant ColWT are given in Table 2.4. Even the naive Bayes method gives



2.4. EXAMPLES 53

over-confident classification probabilities for observations of the wild type

ColWT, but our approach gives more widely spread probabilities, especially

across the other wild types, namely WsWT and RLDWT.

The common classifiers are inefficient in high dimensions because of over-

fitting (Hand, 2006). The naive Bayes classifier, which is the quadratic dis-

criminant assuming independent variables, often performs better, see Bickel

and Levina (2004) for theoretical discussion.
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Figure 2.9: Profile plots for the metabolite data represented with variable and

variable-class importance obtained using Bayes factors, B10, for the Gaussian

effects model. Very important corresponds to red (log B10 > 5), important

to dark orange (3 < log B10 ≤ 5), positive to light orange (1 < log B10 ≤ 3),

and negligible to yellow (0 < log B10 ≤ 1), coded according to Kass and

Raftery (1995). Blobs correspond to B10
vc and the heat bar to B10

v defined in

(2.18).
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2.4.2 Iris Data

In order to compare the Fisher linear discriminant and the naive Bayes clas-

sifiers with our proposed approach, we use the well-known iris data (Fisher,

1936). The data consist of 50 samples from three iris flower species: setosa,

versicolor, and virginica. Four variables are measured for each sample, the

length and width of the sepal and petal. Using the four variables we aim to

assign a new observed flower to one of the categories. We use the first 40

observations of each category as training data to derive the classification rule

and the remaining 10 samples are used to test the rule. This gives a total of

120 training observations and 30 test observations. The data are shown using

variables in Figure 2.10 and using linear discriminant axes in Figure 2.11. As

the figures show, the training and the test data are reasonably separated on

measured variables and on the two linear discriminant axes.

In order to implement the Gaussian effects model with q = 1, the me-

dian of each variable of the iris data is subtracted before fitting. However,

because the data produce only 12 variable-class combinations, the model pa-

rameters are difficult to estimate. Hence we fix p = 1, that is, believing

all variable-class combinations are useful, and σ2
η = 0, meaning there is no

experimental error layer. The other parameters are estimated by maximis-

ing the likelihood (2.3), giving σ̂2 = 0.161 (0.011), σ̂2
θ = 1.072 (0.439), and

μ̂ = −0.127 (0.299). Classification with our approach yields misclassification

of one of the test observations, but the naive Bayes and the linear discrimi-

nant classify all 30 test observations correctly, see Figure 2.11 (right panel).

The posterior classification probabilities for the misclassified observation, as-

suming uniform discrete prior, are reported in Table 2.5. The observation

is classified wrongly using our proposed approach, but is also close to the

correct class. The other methods classify the observation correctly with a

large probability. Methods that tend to classify with certainty often easily

misclassify other new observations with certainty too. In other words having

very certain classification probabilities might be a consequence of overfitting.

We see this effect after adding noise variables to the data as follows.

In order to compare the linear discriminant, the naive Bayes, and our pro-

posed approach on the iris data in a low-sample-size-high-dimension setting,



2.4. EXAMPLES 57

s

s

s
s

s

s

s
s

s

s

s

s s
s

s

s

s

s

s
s

s

s
s

s
s

ss
s s

s
s

s

s
s

s
s

s
s

s

s
s

s

s

s

s

s

s

s

s

s
c

c
c

c

c
c

c

c

c

c

c

c

c

c
c

c
c

c

c

c

c

c

c

c
c

c

c

c
c

c

cc

c
c

c

c

c

c

c

cc

c

c

c

c

c c
c

c

c

v

v

v
v

v
v

v

v

v

v

v

v

v

v

v

v

v

v v

v

v

v
v

v

v
v

v

v

v

v

v

v

v
v

v

v

v

v
v

v
v

v

v

v
v v

v

v

v

v

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

2.02.53.03.54.0

S
ep

al
 le

ng
th

Sepal width

s
s

s
s

s
s

s
s

s
s

s
s s

s
s

s
s

s
s

s
s

s

s

s
s

ss
s s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s

c
c

c

c

c
c

c

c

c

c

c

c
c

c

c

c
c

c

c

c

c

c

c
c

c
c

c
c

c

c
c c

c

c

c
c

c
c

c
cc

c

c

c

c
cc

c

c

c

v

v

v
v

v

v

v

v

v
v

v
v

v

v
v

v
v

vv

v

v

v

v

v

v
v

v
v

v
v

v
v

v

v

v

v

v
v

v

v
v

v
v

v
v v

v
v

v
v

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

1234567

S
ep

al
 le

ng
th

Petal length

s
s

s
s

s

s
s

s
s

s
s

s s
s

s

s
s

s
s

s
s

s

s

s

s
ss

ss
s

s

s

s
s

s
s

s
s

s
s

s
s

s

s

s
s

s
s

s
s

c
c

c

c

c

c

c

c

c
c

c

c

c

c
c

c
c

c

c

c

c

c

c

c
c

c
c

c

c

c
c c

c

c
c

c
c

c
c

c c

c

c

c

c
cc

c

c

c

v

v

v

v

v
v

v
v

v

v

v
v

v
v

v
v

v

vv

v

v

v
v

v

v

v
v

v

v

v

v
v

v

v
v

v
v

v
v

v

v
v

v

v

v v

v
v

v

v

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

0.51.01.52.02.5

S
ep

al
 le

ng
th

Petal width

s
s

s
s

s
s

ss
s

s
s

s
s s

s
s

s
s

s s
s

s

s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s

c c

c

c

c c
c

c

c

c

c

c
c

c c

c
c

c

c

c

c

c

c
c

c
c

c
c

c

c
c c

cc

c
c

c
c

c
c

c
c

c

c

c
c

cc

c

c

v

v

v
v

vv

v

v

v
v

v
v

v

v
v

v
v

v
v

v

v

vv

v

v
v

v
v

v
v

v
v

v v

v

v

v
v

v

vv v
v

v
v

v
v

v
v

v

2.
0

2.
5

3.
0

3.
5

4.
0

1234567

S
ep

al
 w

id
th

Petal length

s
s

s
s

s

s
s s

s
s

s
s

ss
s

s
s

s
ss

s

s

s

s

s
s

s

s
s

s
s

s

s
s

s
s

s
s

s
s

s
s

s

s

s
s

s
s

s
s

cc
c

c

c c

c

c

c
c

c

c

c

c c
c

c

c

c

c

c

c

c

c
c

c
c

c

c

c
c c

cc
c

c
c

c
c

c
c

c

c

c

c
c

cc

c

c

v

v

v

v

v v

v
v

v

v

v
v

v
v

v
v

v

v
v

v

v

vv

v

v

v
v

v

v

v

v
v

v v
v

v
v

v
v

vv v

v

v

v

v

v
v

v

v

2.
0

2.
5

3.
0

3.
5

4.
0

0.51.01.52.02.5

S
ep

al
 w

id
th

Petal width

sss
ss

s
s ss sss s

ss

s
s s

s
s

s

s

s

s

s
ss ss
sss sss

ss
ss
s

ss s

s

s
s

s
sss

c
c

c

c

c c

c

c

c
c

c

c

c

c
c

cc

c

c

c

c

c

c

c
cc

c

c

c

c
c c

c

c
cc

c

c
cc

c

c

c

c

c ccc

c

c

v

v

v

v

v
v

v
v

v

v

v
v

v
vv

v

v

v
v

v

v

v
v

v

v

v
vv

v

v

v
v

v

v
v

v
v v

v

v

v
v v

v

v

v

v
v

v

v

1
2

3
4

5
6

7

0.51.01.52.02.5

P
et

al
 le

ng
th

Petal width

F
ig

u
re

2.
10

:
B

iv
ar

ia
te

p
lo

ts
of

th
e

ir
is

d
at

a.
B

lu
e,

re
d

an
d

gr
ee

n
ar

e
u
se

d
to

sh
ow

th
e

tr
ai

n
in

g
sa

m
p
le

s
an

d
b
la

ck
to

sh
ow

th
e

te
st

d
at

a.
S
y
m

b
ol

s
“s

”,
“c

”,
an

d
“v

”
re

p
re

se
n
t

se
to

sa
,
ve

rs
ic

ol
or

,
an

d
v
ir
gi

n
ic

a,
re

sp
ec

ti
ve

ly
.



58 CHAPTER 2. CLASSIFICATION

−
5

0
5

−5 0 5

LD
1

LD2

s

s s
s

s s

ss
s

s

s
ss s

s

s

s

s s s

s s
s

ss

s s
ss

ss
s

s s

s
s

s s

s
s

c c
cc c c c

c
c c

c

c

c

c
c

c
c

c
c

c

c

c
c

c
c c

c

c
c

c
c

c c
c

c
ccc

c

c

v

v
v

v
v

v
v

vv

v

v

v vv

v
v

v

v

v

v

v
v

v
v

vv
v v

v
v

v

v

v

v
v

v v

v
v

v
s

s

s

s

ss

s

s

s

s

c c

c

c

c

c
cc

c

c

v
v

v

v v

v

v v

v

v

−
5

0
5

−2 −1 0 1 2

LD
1

LD2

F
igu

re
2.11:

T
h
e

iris
d
ata

rep
resen

ted
on

th
e

lin
ear

d
iscrim

in
an

t
ax

es,
th

e
train

in
g

d
ata

(left
p
an

el)
an

d
th

e
test

d
ata

(righ
t

p
an

el).
In

th
e

righ
t

p
an

el,
a

sq
u
are

sh
ow

s
m

isclassifi
cation

w
ith

resp
ect

to
th

e
G

au
ssian

eff
ects

m
o
d
el;

see
th

e
cap

tion
to

F
igu

re
2.10.



2.4. EXAMPLES 59

setosa versicolor virginica

Naive Bayes 0 10.9 89.1

Linear Discriminant 0 2.3 97.7

Gaussian Effects Model 0 50.4 49.6

Table 2.5: Posterior classification percentages assuming a uniform prior for

the misclassified virginica subject of the iris data in the right panel of Fig-

ure 2.11.

setosa versicolor virginica

Naive Bayes 0 2.3 97.7

Linear Discriminant 0 100 0

Gaussian Effects Model 0 48.3 51.6

Table 2.6: Posterior classification percentages assuming a uniform prior for

the misclassified virginica subject of the Gaussian effects model after adding

196 standard Gaussian noise variables, compare wih Table 2.5.

we add 196 independent standard Gaussian noise variables, yielding a dataset

with 200 variables and 150 observations. The Gaussian method is applied

after fixing q = 1 and estimating the other parameters using maximum like-

lihood, giving σ̂2 = 0.986 (0.009), σ̂2
η = 0.001 (0.001), σ̂2

θ = 1.324 (0.682), μ̂ =

0.007 (0.007), and p̂ = 0.015 (0.006). The posterior classification probabili-

ties are reported in Table 2.5, confirming that the naive Bayes and the linear

discriminant are over-confident, while our approach gives a more stable re-

sult. In Table 2.6 we expect probabilities similar to Table 2.6, because in

196 variables the iris samples follow similar patterns, namely standard Gaus-

sian noise. The Gaussian effects model yields one misclassified observation

for the test data, which is not the same observation as in the right panel of

Figure 2.11, the naive Bayes misclassifies two, and the linear discriminant

mistakenly classifies four subjects; see Figure 2.12.
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Figure 2.12: The iris data represented on the linear discriminant axes after

adding 196 standard Gaussian noise variables. The misclassified observa-

tions are shown using a square for the Gaussian effects model, a triangle

for the linear discriminant, and a circle for naive Bayes; see the caption to

Figure 2.10.
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2.5 Analytical Calculations

2.5.1 Introduction

In order to implement classification and clustering the models introduced

in this chapter, the calculation of the joint density of the data is required.

The joint density, f(y), is calculated in Section 2.5.2 and consists of two

parts: the joint density of data in variable v when the variable is inactive,

f(yv | δv = 0), which is evaluated in Section 2.5.3, and when the variable is

active, f(yv | δv = 1), which is obtained in Section 2.5.4. However, calcula-

tion of the joint density for the asymmetric Laplace model requires evaluation

of a multivariate integral with integrable function a product of a multivariate

Gaussian density and a univariate Gaussian cumulative distribution. This is

calculated in Section 2.5.5. For estimation of the model parameters evalua-

tion of the likelihood is also required, calculated in Section 2.5.6. It is easier

to do the calculations using the hierarchical model (2.2). For simplicity we

denote η′
vct by ηvct, and θ′vc by θvc.

2.5.2 Joint Density

The joint density of data plays a key role in model-based classification, be-

cause the joint density can be regarded as a distance used to classify a new

observation. The new observation is classified to the class having the largest

joint density.

Assume that the data have C classes, each consisting of Tc types, and

that each type has Rct replicates measured on V variables. Since the models

impose independent variables, we can write the overall density density for

the data in terms of the densities for observations on the variables, yv, as

f(y) =
V∏

v=1

f(yv),

and by conditioning on the Bernoulli variable δv we can write

f(y) =

V∏
v=1

{qf(yv | δv = 1) + (1 − q)f(yv | δv = 0)} , (2.19)
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but when δv = 0 no variable-class combination is active, yielding

f(yv | δv = 0) =
C∏

c=1

Tc∏
t=1

f0(yvct),

where f0(yvct) = f(yvct | δv = 1, γvc = 0); for details see Section 2.5.3.

However, for active variables, data in different classes only are independent,

that is

f(yv | δv = 1) =
C∏

c=1

f(yvc | δv = 1). (2.20)

By summing over values of the Bernoulli variable γvc we may write

f(yvc | δv = 1) = pf(yvc | δv = 1, γvc = 1) + (1 − p)f(yvc | δv = 1, γvc = 0).

When γvc = 0, that is variable-class combination for variable v and class

c is inactive, the types inside the class become independent, and hence

f(yvc | δv = 1) = pf1(yvc) + (1 − p)

Tc∏
t=1

f0(yvct), (2.21)

where, f1(yvc) = f(yvc | δv = 1, γvc = 1) is the density of data of variable

v and class c, sharing the same θvc, but involving types with different val-

ues of ηvct, t = 1, . . . , Tc. The density f1(yvc) is different for Gaussian and

asymmetric Laplace models, and is calculated in Section 2.5.4. The full joint

density is obtained by inserting these expressions into (2.19).

2.5.3 Density for Inactive Variables

Calculation of the density for inactive variables is easy because when the

variable is inactive, all variable-class combinations for that variable are also

inactive. Hence, the Gaussian and the asymmetric Laplace models for the

inactive variable v reduce to the same model in which θvc disappears for all

c = 1, . . . , C, and

yvctr | ηvct
iid∼ N(ηvct, σ

2), ηvct
iid∼ N(μ, σ2

η). (2.22)

According to the reduced model (2.22), we can write

f(yv | δv = 0) =

C∏
c=1

Tc∏
t=1

f0(yvct), (2.23)



2.5. ANALYTICAL CALCULATIONS 63

where f0(yvct) = f(yvct | δv = 1, γvc = 0) is the joint density of replica-

tions when the variable-class combination is inactive; for the notation see

page 2.2.1. One may evaluate f0 as

f0(yvct) =

∫ ∞

−∞

Rct∏
r=1

f(yvctr | ηvct)f(ηvct)dηvct

= (2πσ2)−Rct/2(2πσ2
η)

−1/2

×
∫ ∞

−∞
exp

[
− 1

2σ2

{
Rct∑
r=1

(yvctr − ηvct)
2

}
− 1

2σ2
η

(ηvct − μ)2

]
dηvct.

After completing the square of ηvct inside the exponent function, we have a

univariate Gaussian integral. Algebraic simplification yields

f0(yvct) = (2π)−Rct/2σ1−Rct(Rctσ
2
η + σ2)−1/2

× exp

{
− 1

2σ2

(
Rct∑
r=1

y2
vctr − Rcty

2
vct

)
− (yvct − μ)2

2(σ2
η + σ2/Rct)

}
,

(2.24)

where yvct = R−1
ct

∑Rct

r=1 yvctr. Replacing (2.24) in (2.23) gives the joint density

for the inactive variable v.

2.5.4 Density for Active Variables

Gaussian Model

In order to evaluate the joint density for active variable v, f(yv | δv = 1),

according to (2.20) and (2.21) it is required only to evaluate the joint density

of data in variable v and class c when the variable and the variable-class

combination is active, that is f1(yvc) = f(yvc | δv = 1, γvc = 1). When the

variable v and variable-class combination in class c are active, the Gaussian

effects model reduces to

yvctr | ηvct
iid∼ N(ηvct, σ

2),

ηvct | θvc
iid∼ N(θvc, σ

2
η),

θvc
iid∼ N(μ, σ2

θ). (2.25)
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Assuming ηvc is a vector of length Tc with elements ηvct and Z is a convenient

design matrix having
∑Tc

t=1 Rct rows and Tc columns, we may re-express the

reduced model (2.25) as

yvc | ηvc ∼ NPTc
t=1 Rct

(
μ + Zηvc, σ

2I
)
, ηvc ∼ NTc(0,Ω),

where, Np represents a p-variate Gaussian distribution. The covariance ma-

trix ΩTc×Tc is a uniform covariance matrix having main diagonals σ2
η + σ2

θ

and off-diagonals σ2
θ obtained after integration over a univariate θvc. Hence,

using standard mixed effects calculations (McCulloch and Searle, 2001, p.

159) we have

yvc ∼ NPTc
t=1 Rct

(μ1,Σ = σ2I + ZΩZT).

The covariance matrix Σ corresponds to a
∑Tc

t=1 Rct ×
∑Tc

t=1 Rct matrix, with

σ2 + σ2
η + σ2

θ on the main diagonals, off-diagonals equal to σ2
η + σ2

θ for repli-

cations of the same type, and to σ2
θ for observations emerging from different

types. For example assume vector yvc consisting of univariate yvctr, includes

two types; one with two replications and another with three replications.

Hence

yvc =

⎛
⎜⎜⎜⎜⎜⎜⎝

yvc11

yvc12

yvc21

yvc22

yvc23

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Σ =

⎛
⎜⎜⎜⎜⎝

σ2 + σ2
η + σ2

θ σ2
η + σ2

θ σ2
θ σ2

θ σ2
θ

σ2
η + σ2

θ σ2 + σ2
η + σ2

θ σ2
θ σ2

θ σ2
θ

σ2
θ σ2

θ σ2 + σ2
η + σ2

θ σ2
η + σ2

θ σ2
η + σ2

θ

σ2
θ σ2

θ σ2
η + σ2

θ σ2 + σ2
η + σ2

θ σ2
η + σ2

θ

σ2
θ σ2

θ σ2
η + σ2

θ σ2
η + σ2

θ σ2 + σ2
η + σ2

θ

⎞
⎟⎟⎟⎟⎠ .

Asymmetric Laplace Model

Calculation of the joint density of the asymmetric Laplace model when vari-

able v is active is similar to the Gaussian case. First we calculate the multi-

variate density for vector ηvc comprising of elements ηvct. When the variable
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and the variable-class combination are active, the density f(ηvc | δv = 1, γvc =

1) equals∫ ∞

−∞
f(ηvc | θvc, δv = 1, γvc = 1)f(θvc | δv = 1, γvc = 1)dθvc

and this equals

∫ μ

−∞
(2σθL

)−1(2πσ2
η)

−Tc/2 exp

{
− 1

2σ2
η

Tc∑
t=1

(ηvct − θvc)
2 +

θvc − μ

σθL

}
dθvc

+

∫ +∞

μ

(2σθR
)−1(2πσ2

η)
−Tc/2 exp

{
− 1

2σ2
η

Tc∑
t=1

(ηvct − θvc)
2 +

μ − θvc

σθR

}
dθvc

or

(2πσ2
η)

−Tc/2
{
(2σθL

)−1I1L + (2σθR
)−1I1R

}
, (2.26)

where

I1L = exp

{
−

Tc∑
t=1

η2
vct −

μ

σθL

+
Tc

2σ2
η

(
ηvc +

σ2
η

TcσθL

)2
}

×
∫ μ

−∞
exp

[
− Tc

2σ2
η

{
θvc −

(
ηvc +

σ2
η

TcσθL

)}2
]

dθvc,

in which ηvc = T−1
c

∑Tc

t=1 ηvct. Letting Φ denote the standard Gaussian cu-

mulative distribution function, the last integral equals

(2πσ2
η/Tc)

1/2Φ

⎧⎨
⎩μ − ηvc − σ2

η/(TcσθL
)√

σ2
η/Tc

⎫⎬
⎭ .

Similarly,

I1R = exp

{
−

Tc∑
t=1

η2
vct +

μ

σθR

+
Tc

2σ2
η

(
ηvc −

σ2
η

TcσθR

)2
}

×(2πσ2
η/Tc)

1/2Φ

⎧⎨
⎩ηvc − μ − σ2

η/(TcσθR
)√

σ2
η/Tc

⎫⎬
⎭ .
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Hence, f1(yvc) = f(ηvc | δv = 1, γvc = 1) can be obtained numerically by

replacing I1L and I1R in (2.26).

The joint density f(yvc | δv = 1, γvc = 1), in which yvc is vector of length∑Tc

t=1 Rct, is obtained by marginalizing over f(ηvc | δv = 1, γvc = 1). Hence

the density f(yvc | δv = 1, γvc = 1) equals∫ ∞

−∞
· · ·
∫ ∞

−∞
f(yvc | ηvc, δv = 1, γvc = 1)f(ηvc | δv = 1, γvc = 1)dηvc

or

(2πσ2)−
PTc

t=1 Rct/2

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{
− 1

2σ2

Tc∑
t=1

Rct∑
r=1

(yvctr − ηvct)
2

}

×f(ηvc | δv = 1, γvc = 1)dηvc,

and this equals

(2πσ2)−
PTc

t=1 Rct/2 exp

(
− 1

2σ2

Tc∑
t=1

Rct∑
r=1

y2
vctr

)
(kLI2L + kRI2R),

in which

kL = (2σθL
)−1 exp

(
σ2

η

2Tcσ
2
θL

− μ

σθL

)
,

kR = (2σθR
)−1 exp

(
σ2

η

2Tcσ
2
θR

+
μ

σθR

)
,

and

I2L =

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{
− 1

2σ2

(
Tc∑
t=1

Rctη
2
vct − 2

Tc∑
t=1

Rctyvctηvct

)}

× exp

(∑Tc

t=1 η2
vct

2σ2
η

+
Tcη

2
vc

2σ2
η

+
ηvc

σθL

)

×Φ

⎧⎨
⎩μ − ηvc − σ2

η/(TcσθL
)√

σ2
η/Tc

⎫⎬
⎭ dηvc.
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The terms inside the exponent functions can be re-arranged as

exp

{
−1

2

Tc∑
t=1

(
Rct

σ2
+

1

σ2
η

− 1

Tcσ2
η

)
η2

vct +
∑
t�=t′

− 1

Tcσ2
η

ηvctηvct′

}
×

exp

{
−2

Tc∑
t=1

(
Rctyvct

σ2
+

1

TcσθL

)
ηvct

}
,

which can be written in a quadratic form using matrix notation as follows.

Suppose the vector bL of length Tc is composed of elements

Rctyvct

σ2
+

1

TcσθL

,

and consider a square matrix A with diagonals

Rct

σ2
+

1

σ2
η

− 1

Tcσ2
η

,

and equal off-diagonals −1/Tcσ
2
η. Since we have

ηT
vcAηvc − 2bT

Lηvc = (ηvc −A−1bL)TA(ηvc − A−1bL) − bT
LA−1bL,

we can write I2L in a quadratic form as

I2L = exp

(
1

2
bT

LA−1bL

)∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{
−1

2
(ηvc −A−1bL)TA(ηvc − A−1bL)

}
×Φ
(
cL + dT

Lηvc

)
dηvc,

(2.27)

where dL is a vector of length Tc with equal elements −1/
√

Tcσ2
η and cL

is a constant being {μ − σ2
η/(TcσθL

)}/
√

σ2
η/Tc. It is easy to verify that the

matrix ATc×Tc is positive definite (Rencher, 1998, p. 413). Using the result

of Section 2.5.5 we can analytically evaluate the last integral and write

I2L = exp

(
1

2
bT

LA−1bL

)
(2π)Tc/2|A|−1/2Φ

(
cL + dT

LA−1bL√
1 + dT

LA−1dL

)
,

in which |A| denotes the determinant of matrix A.

Similarly we can evaluate

I2R = exp

(
1

2
bT

RA−1bR

)
(2π)Tc/2|A|−1/2Φ

(
cR + dT

RA−1bR√
1 + dT

RA−1dR

)
,
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where bR is a vector of length Tc made of elements Rctyvct/σ
2 − 1/(TcσθR

),

dR having the same length as bR, with equal elements 1/
√

Tcσ2
η and cR is a

constant being {−μ−σ2
η/(TcσθL

)}/
√

σ2
η/Tc. After putting the pieces together

and re-arrangement we get

f(yvc | δv = 1, γvc = 1) = k0(kLIk + kRIR), (2.28)

where

k0 = (2πσ2)−
PTc

t=1 Rct/2(2πσ2
η)

−Tc/2(2πσ2
η/Tc)

1/2 ×

(2π)Tc/2|A|−1/2 exp

{
− 1

2σ2

Rct∑
r=1

Tc∑
t=1

y2
vctr

}
,

kL = (2σθL
)−1 exp

(
σ2

η

2Tcσ2
θL

− μ

σθL

)
,

IL = exp

(
1

2
bT

LA−1bL

)
Φ

(
cL + dT

LA−1bL√
1 + dT

LA−1dL

)
,

kR = (2σθR
)−1 exp

(
σ2

η

2Tcσ2
θR

+
μ

σθR

)
,

IR = exp

(
1

2
bT

RA−1bR

)
Φ

(
cR + dT

RA−1bR√
1 + dT

RA−1dR

)
.

2.5.5 Multivariate Gaussian Density-Distribution In-

tegral

In the analytical calculation of the joint density for the asymmetric Laplace

model in (2.27) we encounter an integral having the form∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{
−1

2
(η − A−1b)TA(η − A−1b)

}
Φ(c + dTη)dη,

in which η, b and d are vectors of length p, A is a p × p positive definite

matrix, and c is a constant. We may rewrite the integral above in terms of

Gaussian density-distribution as follows

(2π)p/2|A|−1/2

∫ ∞

−∞
· · ·
∫ ∞

−∞
φ∗(η)Φ(c + dTη)dη,
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where φ∗ denotes the multivariate Gaussian density with mean A−1b and

covariance matrix A−1. We may re-express the last multivariate integral in

terms of a univariate Gaussian random variable Z as Pr(Z −dTη < c). Now

we define η∗ = (Z, η)T, d∗ = (1,−dT)T and a univariate Gaussian random

variable Z∗ = d∗Tη∗. Re-expressing the integral using Z∗ which has mean

−dTA−1b, and variance 1 + dTA−1d gives the analytic solution as

(2π)p/2|A|−1/2 Pr

(
Z∗ + dTA−1b√

1 + dTA−1d
<

c + dTA−1b√
1 + dTA−1d

)
,

or

(2π)p/2|A|−1/2Φ

(
c + dTA−1b√
1 + dTA−1d

)
. (2.29)

2.5.6 Likelihood

Gaussian Model

The likelihood of data used to estimate the model parameters is the joint

density under the assumption that each class consists of a single type, that is

Tc = 1 for all c = 1, . . . , C; hence we drop the index t. The likelihood can be

calculated in the same way as the joint density, except that ηvc is univariate.

We marginalize first on δv, and then on γvc, yielding

f(y) =
V∏

v=1

f(yv) =
V∏

v=1

{qf(yv | δv = 1) + (1 − q)f(yv | δv = 0)} ,

in which f(yvc | δv = 0) allows no variable-class combination to be active,

and simplifies to

f(yvc | δv = 0) =

C∏
c=1

f0(yvc).

However, when the variable is active, the appearance of the true effect de-

pends on γvc, yielding

f(yv | δv = 1) = pf(yvc | δv = 1, γvc = 1) + (1 − p)f(yvc | δv = 1, γvc = 0),

where f(yvc | δv = 1, γvc = 0) = f0(yvc) is obtained by integration over a

univariate ηvc and is already calculated in (2.24). The density f(yvc | δv =
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1, γvc = 1) = f1(yvc) can be calculated similarly by first integrating ηvc over a

univariate θvc and then integrating yvc over the marginalized univariate ηvc.

This gives a density having a similar form as f0(yvc) but with σ2
η replaced

with σ2
η + σ2

θ .

Asymmetric Laplace Model

Derivation of the likelihood is similar to the Gaussian model, but f1(yvc) =

f(yvc | δv = 1, γvc = 1) which is calculated (2.28), must be obtained by

integrating over a univariate ηvc with Tc = 1 (c = 1, . . . , C). This means

bL,dL,bR,dR are vectors of length one and matrix A is a 1 × 1 matrix in

(2.28). Hence, inverse of A is inverse of its single element and |A| equals its

single element. Re-arrangement and simplifying the result yields (2.10).



Chapter 3

Clustering

3.1 Introduction

3.1.1 General

The goal of cluster analysis is to partition observations into groups such that

the observations belonging to the same group are more similar than obser-

vations belonging to different groups. There are various ways of attributing

observations to different clusters but one may classify clustering methods into

two categories, distance-based and model-based techniques. Our approach,

as described below, is in-between, because we use a model to define a dis-

tance and we implement agglomerative clustering as used in distance-based

methods.

Some preliminaries are given in this section. In Section 3.2 agglomera-

tive clustering is presented using the Gaussian and the asymmetric Laplace

variable selection models. Computational issues related to our proposed clus-

tering method are discussed in Section 3.3 and our computer code is briefly

analysed. Section 3.4 shows the application of our technique for analysis of

the metabolite, microarray, and the image data. The advantages and some

disadvantages of our approach are briefly presented in Section 3.5.

In distance-based methods a distance or dissimilarity measure between

groups of observations is often defined and a reasonable objective function is

optimised to obtain a grouping. A very common algorithm is the k-means

71
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approach which we briefly describe below.

Suppose yvt denotes observation t (t = 1, . . . , T ) measured on variable v

(v = 1, . . . , V ). For convenience assume that yvt involves a single observation.

One way of defining a dissimilarity measure between a pair of observations

yt and yt′ (t �= t′) is by taking

S(yt, yt′) =

V∑
v=1

wvs(yvt, yvt′),

wv ≥ 0,
V∑

v=1

wv = 1, (3.1)

a convex combination of s, the distance between pairs of observations for

each variable. The weights wv are subjective and chosen for each variable v.

A common choice is a constant wv = 1/V , but assigning equal weights does

not mean that variables have equal influence. The influence of vth variable

depends upon its relative contribution over all pairs of observation. The

choice of distance between observations is also optional, but often squared

difference is chosen

s(yvt, yvt′) = (yvt − yvt′)
2. (3.2)

Each observation is assigned to a cluster using an integer label. We denote

a vector of length T of such labels by d, consisting of positive integer elements

dt (t = 1, . . . , T ). Individuals in the same group take the same value in d. For

example consider five observations with d = (1, 1, 2, 1, 1). This denotes data

forming two clusters, in which the third individual makes his own cluster and

the others are in the same group. However, d = (2, 2, 1, 2, 2) refers also to

the same grouping. In order to make the labelling unique, we consider that

the first individual always takes integer 1, the second individual takes label

1 if it is in the same cluster as the first individual and takes 2 otherwise, and

so forth. Hence the labelling vector d = (2, 2, 1, 2, 2) never appears. The tth

observation belongs to the class c if the tth element of d equals c i.e. dt = c,

(c = 1, . . . , C). The maximum number of non-empty clusters C is T and the

minimum number is 1, so C ∈ {1, . . . , T}.
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In order to cluster data an objective function is also required. This may

be defined following the analysis of variance idea for the squared difference

distance, that is for t �= t′,

ST = SW + SB, (3.3)

in which

SW =

C∑
c=1

∑
{t|dt=c}

∑
{t′|dt′=c}

S(yt, yt′),

SB =
C∑

c=1

∑
{t|dt=c}

∑
{t′|dt′ �=c}

S(yt, yt′)

ST =
∑
t�=t′

S(yt, yt′).

The total dissimilarity ST does not depend on data grouping, but the

within-cluster dissimilarity SW and the between-cluster dissimilarity SB,

both depend on data allocation. Hence according to (3.3) maximising SB

is equivalent to minimising SW . However, direct optimisation of SB or SW

is not easy and often iterative algorithms are used.

The number of groupings of T observations into C clusters is the Stirling

number of the second kind (Jain and Dubes, 1988),

B(T, C) =
1

C!

C∑
c=1

(−1)C−c

(
C

c

)
cT ,

which equals 34105 for C = 4 and T = 10, and about 1010 for C = 4 and

T = 19. Hence, the number of partitions of a set, which is known to be the

Bell number, equals

B(T ) =

T∑
C=1

B(T, C).

Clustering is a difficult problem, since B(T, C) is a large number, and

the problem becomes even more complicated when the number clusters C is

also unknown, because the search space B(T ) grows extremely rapidly with

increasing T . For instance B(40) = 1.6 × 1035 and B(100) = 4.8 × 10115.



74 CHAPTER 3. CLUSTERING

Hence, with a moderate sample size, no optimisation routine can visit more

than a tiny fraction of all possible allocations.

One of the most common optimisation algorithms for clustering using

the dissimilarity defined in (3.2) is the k-means algorithm. This uses a fixed

number of clusters C and minimises SW . One may write

SW =
C∑

c=1

Tc

∑
{t|dt=c}

V∑
v=1

(yvct − yvc)
2,

where Tc denotes the number of observations in cluster c, and yvc is the

mean of cluster c for variable v. The optimisation works as follows. First,

for a given labelling d, a centre for cluster c is chosen such that the within-

cluster variance is minimised for each variable, that is minimising SW (v, c) =∑
{t|dt=c}

∑V
v=1(yvct − mvc)

2, thus yielding mvc = yvc. Second, the closest

points are attributed to each cluster according to SW . These two steps are

iterated until convergence of the objective function.

The k-means algorithm has some disadvantages, for example it may give

different answers according to the starting values. In addition, the number

of clusters of data, C, is often unknown and it is not very clear how one can

choose the best candidate from different candidates C ∈ {1, . . . , T}. One way

of choosing C is a visual approach, that is to create a visual guide of different

partitioning for different choices of the number of clusters, e.g. creating a

dendrogram by taking a special path over various choices of d.

An interesting path is one which gives an ordered set of labels, that is in

which a grouping with C clusters is a refinement of a grouping with C − 1

clusters. The ordered paths of four observations are shown in Figure 3.1.

Clustering methods that take the ordered paths are called hierarchical clus-

tering and the trees made by such methods are named dendrogram.

Hierarchical clustering has two variants, agglomerative and divisive. Ag-

glomerative clustering starts initially with each observation as a separate

cluster, successively adds the closest cluster using a dissimilarity measure,

and continues merging clusters until all observations are in one cluster. In

contrast, divisive clustering starts with all observations in one cluster and

divides clusters until finishing with each observation as a single cluster. An

example of a dendrogram created by agglomerative clustering is shown in
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Figure 3.1: All possible partitionings of four observations {a, b, c, d}. The

solid lines represent the partial ordering. Two partitions are ordered if there

is a path connecting the two partitions, that is, one partition is a refinement

of another.

Figure 3.2.

The choice of dissimilarity measure in hierarchical clustering is arbitrary,

like the k-means (3.2). If the dissimilarity is based on the most distant points

of the two clusters, the method is called complete linkage, if based on the

closest points or the nearest neighbours, it is called single linkage, and if

based on the average distances, it is called average linkage.

Complete linkage is more popular because it gives nice bifurcating den-

drograms, but the asymptotic behaviour of the complete linkage method

depends on the regions that the observations belong to and not on the prob-

ability distribution of the data. This happens because after some clustering

steps the complete linkage dissimilarity becomes independent of the number

of observations in the groups. This is a considerable disadvantage, because

from a model-based point of view data in the same cluster share the same

probability distribution, which complete linkage appears to discard. For more

discussion see Hartigan (1985).

3.1.2 Model-Based Clustering

In model-based clustering a family of statistical models is considered for data,

and clustering is implemented by fitting a mixture model. Assume that data

in cluster c follow the parametric model f(yc | θc). Then the overall distri-

bution is
∑C

c=1 pcf(yc | θc), a mixture model in which pc is the proportion
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a b
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d

e

1

2

3

c a b d e

Figure 3.2: Example of five bivariate observations (left panel) with their

dendrogram made by an agglomerative method (right panel). The grouping

at each clustering step can be obtained by cutting the dendrogram.

of data belonging to cluster c. Often fitting mixtures is implemented using

the EM algorithm of Dempster et al. (1977), found to be a generalisation of

the k-means algorithm (Hastie et al., 2001, p. 505). The parametric fam-

ily f(yc | θc) is often chosen to be the Gaussian family. However, like the

k-means algorithm, applying the EM algorithm is feasible only when the

number of clusters is specified, but unlike the k-means algorithm, the model

provides a criterion for choosing the number of clusters, like the AIC (Akaike,

1973) or the BIC (Schwarz, 1978).

If Tc observations are in cluster c, then the data distribution is the same

if the observations in cluster c are arbitrarily reordered. This means that

f(y1c . . . yTcc) is an exchangeable distribution and by the general representa-

tion theorem (Bernardo and Smith, 1994, Chapter 4), there is a conditional

density f(yc | θc) and a prior density f(θc) such that

f(y1c, . . . , yTcc) =

∫ Tc∏
t=1

f(ytc | θc)f(θc)dθc.

The general representation theorem clearly suggests use of a Bayesian model

for clustering problem.

The posterior distribution in Bayesian clustering is complicated and can-
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not be easily summarised and maximised. Ordinary Markov chain Monte

Carlo samplers are known to be computationally inefficient. Alternative sam-

plers have been proposed in the literature (Jain and Neal, 2004; Dahl, 2003;

Jain and Neal, 2007) which all try to explore the search space more effectively

by adding clever split-merge moves.

We propose to take the agglomerative clustering path using the marginal

posterior density value as the similarity measure (Heller and Ghahramani,

2005) thereby gaining a dendrogram representation. The marginal posterior

provides a measure of the plausibility of a merge which is supported by the

model if the posterior increases for that merge. This provides a guide to

where to cut the resulting dendrogram.

3.1.3 High-Dimensional Clustering

It is well-known in statistical modelling that statistical analyses become diffi-

cult in high dimensions. Classification may be regarded as a simplified version

of clustering in which the label of only one observation is unknown. Hence, it

is not surprising that we encounter overfitting problem in model-based clus-

tering as well. Overfitting appears because of the lack of a valid statistical

model when the number of observations is small but the number of variables

is large. The problem was discussed for classification in Section 2.1.2.

In order to solve the overfitting problem, data are often projected to a

smaller dimension or variables relevant to the analysis are chosen. However,

it is hard to define a valid criterion for optimally projecting data without

loss of clustering information. Classical projection methods like principal

components are not necessarily relevant. Chang (1983) argues that clustering

projections may appear in the last principal components, which are often

ignored.

Projection pursuit (Friedman and Tukey, 1974) is a more convenient

method to capture nonlinear patterns in data and can be regarded as a gener-

alisation of the principal components method (Friedman, 1987). Projection

pursuit often optimises a criterion that reflects multi-modality and hence give

projections relevant to clustering. Diaconis and Friedman (1984) show that

for most high-dimensional data, most low dimensional projections are ap-
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Figure 3.3: Examples where dimension reduction using principal components

(dots) yields loss of clustering information. An appropriate lower dimensional

projection (solid) is nonlinear in the left panel and is linear in the right panel.

proximately Gaussian, hence one may argue that interesting projections are

the ones that are non-Gaussian. Being far from Gaussian cannot however be

uniquely defined, Huber (1985) gave a list of reasonable criteria. There are

limitations in the use of projection, because highly nonlinear effects cannot

be captured with projection pursuit (Jones and Sibson, 1987). Figure 3.3

shows interesting and uninteresting projections of a two-dimensional data

cloud, in which dimension reduction with principal components yields loss

of the clustering information. Even if a good projection method is available,

that is, data points are clustered reasonably well in the projected lower di-

mensional space, inference about important clustering variables as demanded

in many applications, is troublesome.

Another approach to solving the curse of high-dimensionality is variable

selection. Selecting variables becomes difficult in clustering because there is

no clear response variable to guide the search. A variable is important if it

helps to define a mixture, and is unimportant otherwise. Fitting mixtures

is hard even with a fixed number of variables and incorporating variable

selection based on a vague criterion complicates the matter further.

Researchers have dealt with the curse of dimensionality in clustering in

various ways. McLachlan et al. (2002) in a microarray data analysis use
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forward selection of variables by applying a univariate test of a single com-

ponent versus a mixture of two components, but this method selects a lot of

variables. Wang and Zhu (2008) and Bondell and Reich (2008) implement

variable selection using penalised likelihood, but choice of the penalising con-

stant is nontrivial and arbitrary. Friedman and Meulman (2004) assign dif-

ferent weights to groups of variables but the weights can be estimated only

for a fixed subset of clustering subjects. Liu et al. (2003) select principal

components using Gibbs sampler, however it is known from Chang (1983)

that principal components may give irrelevant projections. Bensmail et al.

(2005) denoise data using the Fourier transform and fit Gaussian mixtures

on the denoised data, but the choice of denoising threshold is subjective.

Raftery and Dean (2006) applied variable selection using an approximate

Bayes factor, but their approach is not appropriate when the number of vari-

ables exceeds the sample size. The Bayesian framework enables the fitting of

mixtures with unknown numbers of components and variable selection jointly

through the reversible jump algorithm of Green (1995). Tadesse et al. (2005)

have applied variable selection in Bayesian model-based clustering using fi-

nite Gaussian mixtures, and Kim et al. (2006) have implemented the vari-

able selection for Dirichlet mixture models, both using a trans-dimensional

Markov chain Monte Carlo method which is computationally challenging and

slow. However, considering T observations and V number of variables, the

Markov chain required for such analyses have 2V B(T ) states if we allow vari-

able selection jointly with grouping, where B(T ) is the Bell number. This is

huge for high-dimensional problems with moderate sample size. Hence, even

with current computational power a Markov chain cannot visit more than a

fraction of the possible states.

3.1.4 Clustering Prior

When a statistical model is assumed, a natural metric is imposed, the joint

density of the data, and this criterion can be used to judge about merging

or splitting clusters.

In the Bayesian paradigm the posterior increases up to a point as clusters

are joined and then decreases, and hence can be used to choose the best
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C = 3 C = 2 C = 1

T1 T2 T3 f(d) T1 T2 f(d) T1 f(d)

0 0 3 4.58 0 3 11.45 3 45.80

1 0 2 1.53 1 2 3.82

2 0 1 1.53 2 1 3.82

3 0 0 4.58 3 0 11.45

0 1 2 1.53

1 1 1 0.76

2 1 0 1.53

0 2 1 1.53

1 2 0 1.53

0 3 0 4.58

Table 3.1: Prior clustering probabilities (×100) for T = 3 based on (3.6).

grouping. In order to implement Bayesian clustering, a prior is required for

data grouping represented by the vector d.

We assume an exchangeable prior, so it is enough to assume a prior for

Tc, the number of observations in cluster c (c = 1 . . . , C), and the total

number of clusters C, in which
∑C

t=1 Tc = T is the total number of types to

be clustered:

f(d) = Pr(T1, . . . , Tc | C) Pr(C). (3.4)

We assume a uniform discrete prior for the total number of clusters,

Pr(C = c) = 1/T, c = 1, . . . , T, (3.5)

and the uniform multinomial-Dirichlet distribution of Heard et al. (2006) for

the total number of observations given the number of clusters, yielding

f(d) = Pr(T1 . . . , Tc, C) ∝ (C − 1)!T1! . . . TC !

(T + C − 1)!
. (3.6)

This prior favours small numbers of clusters and can be easily evaluated. The

prior probabilities for T = 3 are computed in Table 3.1.
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The prior (3.6) allows empty clusters, which is not an issue in hierarchical

clustering, because dropping an empty cluster always makes the partition

more probable. Another nice property of the assumed prior is that having

all data in one cluster has the largest probability. This is useful when the

joint density is almost equal for different partitions, because the prior forces

the posterior to have a small number of clusters. In other words a mixture

with more components is chosen only when it is really necessary.

The assumed prior can be perturbed in many ways, by assigning a non-

uniform prior for the number of clusters (3.5), or by putting another distri-

bution for the number of observations in the clusters, (3.6).

Different priors have been proposed in the literature. For example Tadesse

et al. (2005) propose a truncated Poisson distribution for the number of

clusters. Crowley (1995) and McCullagh and Yang (2006) propose another

prior for the number of observations in clusters, and Booth et al. (2008) argue

that this prior has the desirable property of being consistent, in the sense

that groupings have the correct marginalization properties. One may simply

assume a uniform prior for all partitions, that is considering any partitioning

equally likely. This is not so appropriate, because when C = 1 there is just

one way of constructing a nonempty partition, but when C = 2 there are

2T −1 ways. Therefore, the posterior under this prior often yields a grouping

with a lot of clusters.

3.2 Hierarchical Bayesian Clustering

Suppose yvctr is the rth replicate of type t in cluster c measured on variable

v, and y with fewer indices refers to an appropriate vector of data. This is

the same notation as in Chapter 2 except c that there represented the class,

here refers to the cluster. Assume that grouping is shown by a label vector d,

uniquely labelled as described in Section 3.1.1. In order to implement hierar-

chical clustering with the Bayesian models proposed in Chapter 2, evaluation

of the marginal posterior for any data configuration represented by vector d

is required.
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The marginal posterior of the clustering may be written as

f(d | y) = k−1f(y | d)f(d). (3.7)

We may ignore k > 0 in calculations because for a fixed number of types

T, k is a constant and hence plays no role in inference and analysis. Hence,

according to (3.7) for evaluation of the marginal posterior, it is only required

to evaluate the prior and the marginal density. The prior f(d) is defined in

(3.4) and we assume it to be product of a uniform discrete distribution with

a uniform multinomial-Dirichlet distribution. The joint density for data with

C = max(d) clusters can be evaluated as

f(y | d) =

C∏
c=1

f(yc) =

V∏
v=1

C∏
c=1

f(yvc). (3.8)

We just consider our proposed variable selection models, since models with-

out variable selection can be obtained by setting the hyper-parameter q = 1.

For the variable selection models, f(yvc) as calculated in Section 2.5 takes

the form

f(yvc) = q

{
pf1(yvc) + (1 − p)

Tc∏
t=1

f0(yvct)

}
+ (1 − q)

Tc∏
t=1

f0(yvct), (3.9)

where f1 differs for the Gaussian and the asymmetric Laplace models, but

f0 is the same for both models. The density f(yvc) has desirable properties

as follows. For q = 0 or p = 0 the data density becomes

f(y | d) =

V∏
v=1

C∏
c=1

Tc∏
t=1

f0(yvct) (3.10)

which is product of the density f0 of all types and hence is independent of

the data configuration d. Thus when p = 0 or q = 0, the joint densities of

different configurations are identical and consequently the posterior of any

configuration reduces to the prior. The posterior differs from the prior when

p > 0 and q > 0. Therefore, p or q may be regarded as tuning parameters,

used to flatten the posterior and jump from local modes when a stochastic

search algorithm is implemented to sample from the posterior distribution.
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The ordinary Gibbs sampler is known to be inefficient when searching

over the space of partitions because it can get trapped in local modes, and

split-merge algorithms have been proposed instead (Jain and Neal, 2004).

The ordinary Gibbs sampler works as follows. An element of d is chosen

at random, say dt. Suppose in the current iteration the number of clusters

is C and the sampled individual belongs to cluster c (dt = c). In order

to go to the next Gibbs sampling iteration all possible moves are proposed

for that element, dt = {1, . . . , Ct}, in which Ct equals the current number

of clusters C if cluster c is a singleton, and equals C + 1 otherwise (Chen

et al., 2006). The split-merge algorithms are similar unless additional moves

are considered, like choosing two clusters at random and merging them, or

choosing a cluster at random and randomly splitting it into two (Booth

et al., 2008). The additional moves are necessary to jump from the local

modes because they provide access to partitions which are likely to have large

posterior probabilities but are unlikely to be proposed by Gibbs sampling. An

alternative to the split-merge approach is to flatten the posterior distribution

that is letting the Gibbs sampler move more freely and gradually tempering

the sampler as the Markov chain moves. This is called reverse annealing

(Medvedovic, 2000; Medvedovic et al., 2004) and can be easily implemented

in our proposed models by fixing q and treating p as the annealing parameter.

We demonstrate the usefulness of this technique using a toy example.

We construct toy data as follows. Consider bivariate data with twenty

observations, and all data points sampled from univariate standard Gaussian

distribution. This creates a dataset from one cluster. In order to see the

effect of the reverse annealing, assume a uniform discrete distribution as the

clustering prior, f(d). At each Gibbs sampler step there are C or C+1 moves

with a probability associated to each. There is a move with a high transition

probability if the range (max−min) of the log posterior probabilities is large.

If this range is zero all moves are equally likely. Figure 3.4 shows the range

of the log probabilities for Gibbs sampler of the toy data for the Gaussian

variable selection model with σ2 = 1, σ2
η = 0, σ2

θ = 1, μ = 0, q = 1 and

different values of p, confirming that the range approaches zero, that is the

chain tends to propose equally likely moves, when p is decreased.

Closed form marginal posteriors allow fast calculation of the probability
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Figure 3.4: Log marginal posterior range of ordinary Gibbs sampler with 1000

iterations for the Gaussian model, model parameters are chosen as σ2 = 1,

σ2
η = 0, σ2

θ = 1, μ = 0, q = 1, and p = 0.95 (red), p = 0.5 (orange) and

p = 0.05 (blue).

of any data configuration. This is very useful to construct a dendrogram,

which is not easily feasible with other models. Practitioners like to see den-

drograms because they give visual guides of how groupings may change if one

chooses different numbers of clusters. Distance-based dendrograms give no

guide of where to cut the tree, but using a model-based dendrogram allows

us to provide a criterion: we cut the tree where the marginal posterior is

maximised.

The dendrogram using the log posterior as the similarity measure provides

a probabilistic interpretation of the tree.

In the following we describe how agglomerative clustering can be imple-

mented using our suggested models.

We start with each observation as a single cluster, that is the uniquely

labelled vector d, is an increasing integer vector with elements all different,

starting from 1 and ending with T. Hence the number of clusters is C = T
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and the number of types in cluster c is Tc = 1, for all c = 1, . . . , C. In the first

step, all pairwise merges are considered and d is updated accordingly. For

each pairwise merge, the marginal posterior (3.7) is calculated, the merge

that maximises (3.7) is applied, and d is updated for the new grouping. We

keep gc = log f(d | y), the log marginal posterior for the best merge having

c clusters to use as the dendrogram height. Assume that the best merge

according to (3.7) proposes to join cluster c1 and cluster c2. Thus, for the

types that are joined, d get the same integer labels and for the new merged

cluster c, Tc = Tc1 + Tc2. The algorithm then considers all pairwise merges,

and continues until all clusters are merged and all types are in one cluster.

The best grouping found using the posterior as the objective function

on the ordered path found by the agglomerative method is the one that

maximises gc across c = 1, . . . , T . It is clear from the agglomerative clustering

procedure that the groupings associated to gc are sorted in agglomerative

order with increasing c, so a dendrogram representation is possible. In order

to draw a dendrogram a monotone height is required, but gc is not necessarily

monotone and we use the following transformation. Suppose gmax = max(gc),

and cmax = argmax(gc) is the number of clusters that maximises gc. For

c < cmax we define the height of the dendrogram hc = gc − gmax, which is

negative, and for c > cmax, hc = gmax − gc, which is positive. By definition,

hc is monotone if gc is unimodal, which is usually the case, and cutting the

dendrogram at zero height gives the grouping that maximises gc. If gc is not

unimodal the height is not monotone.

The Bayesian agglomerative clustering needs the evaluation of the marginal

posterior and this is only possible after fixing the model parameters. Proper

estimation of the parameters requires the true data grouping which is un-

known, so we propose to estimate the model parameters at the first stage,

that is considering every type as a single cluster and keep them fixed during

agglomerative clustering.
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Our experience is that the early stages of agglomerative clustering are

important and parameter values play a crucial role. After joining some obser-

vations in a cluster, the parameters become less important and the marginal

posterior is guided more by the grouped observations. One may re-estimate

parameters after getting a reasonable grouping. However, when observations

are merged to form a cluster, a smaller number of variable-cluster combina-

tions is available compared with the first stage of clustering, and consequently

estimation becomes much more difficult. Another approach is to assign a

prior distribution to the model parameters, but this may disturb analytical

tractability of the resulting marginal posterior and slows fitting the model.

Our hierarchical clustering method differs from previous researches in this

field in various ways. It is different from Friedman and Meulman (2004) be-

cause we adopted a model and they define a distance. It is different from Hoff

(2006), Heller and Ghahramani (2005) and Kim et al. (2006) who use Dirich-

let process models. Our method is more similar to Tadesse et al. (2005) who

propose finite Gaussian mixtures. Their variable selection needed reversible

jump Markov chain Monte Carlo, but here we apply variable selection with

closed form marginals, and hence trans-dimensional Markov chain Monte

Carlo is unnecessary. Our algorithm is also close to Raftery and Dean (2006);

we use the exact Bayes factor but they propose using an approximate Bayes

factor with no dendrogram representation. Having an analytically tractable

form marginal posteriors helps to give a fast clustering algorithm, and one can

construct dendrogram trees with a probabilistic interpretation as in Heard

et al. (2006). However, in order to get a closed form marginal posterior we

must assume a model that imposes independent a posteriori variables. This

seems restrictive, but the independence assumption for variables consider-

ably facilitates fitting and does not affect the clustering performance a lot

for high-dimensional data, as confirmed in the simulations of Chapter 4. Our

approach is different from Heard et al. (2006) in two ways. First, we did not

consider a prior for σ2. Second, our model provides the possibility of se-

lecting variable-cluster combinations through the Bernoulli variable γvc and

selecting variables through δv. If δv = γvc = 1, for c = 1, . . . , C, v = 1, . . . , V ,

and supposing σ2
η = 0, then our model reduces to that of Heard et al. (2006)

with a degenerate prior for σ2.
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3.3 Computational Issues

3.3.1 General

The main difficulty of agglomerative clustering is fast evaluation of the data

joint density f(y | d). When the number of clusters is C, C(C −1)/2 merges

are considered and because C varies from 1 to T , the total number of eval-

uations is
∑T

C=1 C(C − 1)/2 which is of order O(T 3). However, because our

models impose independent variables, f(y | d) reduces to
∏V

v=1

∏C
c=1 f(yvc)

and agglomerative clustering is of order O(V T 3), linear in terms of the num-

ber of variables V . This is encouraging because we assume a data structure

such that T is small but V is large, and hence the algorithm is fast in this sit-

uation. However, evaluation of f(y | d) may be time-consuming for large V

or T and computational acceleration is required. In the following we describe

several tricks to compute f(y | d) reliably and to accelerate the agglomerative

clustering algorithm.

3.3.2 Joint Density Acceleration

In order to decide which cluster must be merged, we need to evaluate a den-

sity of the form f(y | d) =
∏C

c=1 f(yc), and this is computationally expensive

if C is large, in the early stages of agglomerative clustering. A simple trick to

rapidly evaluate f(y | d), is to benefit from a property of the agglomerative

clustering. In agglomerative method only two clusters will be joined and

hence the evaluation of the density of two clusters with the past values of

f(yc) suffices for evaluation of f(y | d). Every time that we evaluate f(y | d),

only the joint density of the merging clusters is calculated and f(y | d) is

reconstructed by multiplying the lacking components.

3.3.3 Individual Density Computation

For a given configuration d, the individual density f(yc) for the Gaussian

and the asymmetric Laplace model is f(yc) =
∏V

v=1 f(yvc), where

f(yvc) = q

{
pf1(yvc) + (1 − p)

Tc∏
t=1

f0(yvct)

}
+ (1 − q)

Tc∏
t=1

f0(yvct). (3.11)
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The density is composed of products and therefore it is easier to be com-

puted on the log scale. Suppose we denote

lq1 = log

{
pf1(yvc) + (1 − p)

Tc∏
t=1

f0(yvct)

}
,

lq0 = lp0 =

Tc∑
t=1

log f0(yvct), (3.12)

lp1 = log f1(yvc),

then

l = log f(yc) = log{q exp(lq1) + (1 − q) exp(lq0)}. (3.13)

When lq0 and lq1 are both very small or very large, computation of l is

troublesome, and computer memory may overflow or l may be evaluated as

zero. In order to avoid this problem we evaluate l in (3.13) after factorising

exp(lq1) as

l = lq1 + log {q + (1 − q) exp(lq0 − lq1)} . (3.14)

This is appropriate when lq1 > lq0, because the exponent function in (3.14)

doesn’t explode. For lq0 ≥ lq1 it is more appropriate to evaluate an analogous

expression, i.e. factorising exp(lq0) in (3.13),

l = lq0 + log {1 − q + q exp(lq1 − lq0)} . (3.15)

The log density lq0 is straightforward to calculate from (2.24), but lq1 takes

a similar form as in (3.13), i.e.,

lq1 = log {p exp(lp1) + (1 − p) exp(lp0)} , (3.16)

and the same problem is encountered, so a similar trick is applied.

3.3.4 Density of the Gaussian Model

As described in Section 3.3.3, evaluation of individual densities requires eval-

uation of lp1 for each variable and according to computations of Section 2.5.4,

lp1 = log f1(yvc) corresponds to logarithm of a multivariate Gaussian density
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with mean μ1 and covariance matrix Σ, in which 1 is a vector of ones of

length p =
∑Tc

t=1 Rct and Σ is a p × p positive definite matrix. The diagonal

elements of the covariance matrix Σ equal σ2 + σ2
η + σ2

θ and the off-diagonal

elements equal σ2
η + σ2

θ if the observations are replications of the same type,

and equal σ2
θ otherwise.

A p-variate Gaussian density φ has the form

log φ(yvc) = −p

2
log 2π − 1

2
log |Σ| − 1

2
(yvc − μ1)TΣ−1(yvc − μ1). (3.17)

Hence, evaluation of the density requires computation of the Mahalanobis

distance (yvc −μ1)TΣ−1(yvc −μ1) and the log determinant of Σ. In order to

efficiently compute these two, assume Bp×p, an upper-triangular matrix, is

the Cholesky decomposition of Σ, that is BTB = Σ. The Cholesky decom-

position of a positive definite matrix is efficiently implemented in Fortran

and the code is available from the Fortran-NAG library. Because B is upper-

triangular, a solution to the system of linear equations

Bx = (yvc − μ1) (3.18)

can be easily obtained by back-solving. Hence, x = Σ− 1
2 (yvc − μ1) might be

used to evaluate the Mahalanobis distance as

xTx =

p∑
i=1

x2
i = (yvc − μ1)TΣ−1(yvc − μ1), (3.19)

in which xi represents the ith element of the vector x.

Once the Cholesky decomposition of Σ is computed, the eigenvalues λi

are also available. Denoting the diagonal elements of B, by bii, we have

bii = λ
1
2
i , and hence

log |Σ| =

p∑
i=1

log λi = 2

p∑
i=1

log bii. (3.20)

The log density can be obtained by replacing the Mahalanobis distance (3.19)

and the log determinant (3.20) in (3.17), yielding

log φ(yvc) = −p

2
log 2π −

p∑
i=1

log bii − 1

2

p∑
i=1

x2
i .



90 CHAPTER 3. CLUSTERING

The required log density l can be obtained by putting pieces together

and replacing them in (3.16), and then in (3.13). We need to apply this

procedure for all vectors of data yvc, (v = 1, . . . , V, c = 1, . . . , C). We can

save computational time for data in the same cluster but another variable,

say yv′c(v
′ �= v), because for yv′c, the covariance matrix Σ and hence B is

unchanged. Therefore, we do not need to re-calculate the Cholesky decompo-

sition of Σ. However, the back-solving must be updated according to the new

data in Bx = yv′c − μ1, and the Mahalanobis distance must be recomputed

using the new x.

3.3.5 Density of the Asymmetric Laplace Model

The density lp1 = log f1(yvc) takes a complicated form as shown in (2.28).

However, the computational difficulty arises only in calculation of

|A|, bT
LA−1bL, bT

RA−1bR, dT
LA−1bL, dT

RA−1bR, dT
LA−1dL, dT

RA−1dR,

(3.21)

and Φ, the standard Gaussian cumulative distribution function. The cumula-

tive Gaussian distribution function is already available in the Rmath-C library

and evaluation of the quantities in (3.21) is similar to the Gaussian case ex-

plained in Section 3.3.4. First we calculate the upper-triangular Cholesky

decomposition of Ap×p, say Bp×p, in which p = Tc. Hence

log |A| = 2

p∑
i=1

log bii,

and then by back-solving the following systems of linear equations we find

vectors xbL
,xbR

,xdL
,xdR

,

BxbL
= bL, BxdL

= dL, BxbR
= bR, BxdR

= dR.

Therefore, the required quantities are

bT
LA−1bL = xT

bL
xbL

, bT
RA−1bR = xT

bR
xbR

, dT
LA−1bL = xT

dL
xbL

,

dT
RA−1bR = xT

dR
xbR

, dT
LA−1dL = xT

dL
xdL

, dT
RA−1dR = xT

dR
xdR

.

(3.22)
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β̂0 β̂1 β̂2

Gaussian
(0.020)

−6.622
(0.006)

0.977
(0.008)

3.187

Asymmetric Laplace
(0.008)

−6.227
(0.003)

0.976
(0.003)

2.96

Table 3.2: Least squares estimate of log10 time = β0 + β1 log10 V + β2 log10 T

and their standard errors, for the Gaussian and the asymmetric Laplace

variable selection models.

The density f1(yvc) is obtained by putting the pieces together and replacing

them in (2.28). For data in the same cluster but another variable, say yv′c, the

quantities A,dL, and dR are unchanged. Hence, we just need to update xbL

and xbR
, replace them in (3.22) and evaluate f1(yv′c) with less computational

effort.

3.3.6 Code Analysis

As we described in Section 3.3.1, apart from the optimisation required for pa-

rameter estimation, our clustering algorithm is of complexity order O(V T 3).

In this section we analyse our code, implemented in C with the help of the

Fortran-NAG and Rmath-C libraries, and run from R (Chaudhary, 2007).

In order to analyse our computer code, a simple factorial experiment was

performed with the number of variables V = 50, 100, 200, 300, 500, 1000 and

the number of individuals T = 10, 20, 30, 40, 50, 100, 200, 300.The experiment

is run on a desktop PC with Intel Core Duo processor 1.8 MHz, 1 GB RAM

and Linux UBUNTU operating system. Each design is fitted 5 times using

the Gaussian and the asymmetric Laplace models with variable selection and

the time required for agglomerative clustering is saved in seconds.

The contour plots of log10 time required for clustering, using the Gaussian

model and the asymmetric Laplace models are shown in Figure 3.5. The

contour plots suggest a linear regression of log10 time on log10 V and log10 T .

Therefore, the regression model log10 time = β0 + β1 log10 V + β2 log10 T is

fitted and coefficients (β0, β1, β2) are estimated using least squares. The

estimated coefficients and their standard errors are shown in Table 3.2.
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Figure 3.5: Contour plot of log10 V versus log10 T evaluated on log10 of time

required for clustering in seconds with T individuals and V variables using the

Gaussian variable selection model (left panel), and the asymmetric Laplace

variable selection model (right panel). Colour is used for better visualisation.

According to Table 3.2 the regression parameter β1 is estimated close to 1

and β2 close 3 for the Gaussian and the asymmetric Laplace models. This is

what we expected, because our agglomerative clustering is of order O(V T 3)

and hence log10 time regressed on log10 V should give a coefficient close to one

and regressed on log10 T close to three. However, agglomerative clustering for

the asymmetric Laplace model is implemented more efficiently than for the

Gaussian model for large T , because β2 for the asymmetric Laplace model is

significantly smaller than β2 for the Gaussian model at 95% level.

The fitted linear model in Table 3.2 can be used to predict the time

required for agglomerative clustering for large T or V . However, we note that

β0 is often computer-dependent, and may change when the same algorithm

is applied on another machine. The time needed for clustering T = 100 types

measured on V = 5000 variables is about 39 minutes for the Gaussian model

and 33 minutes for the asymmetric Laplace model.
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Figure 3.6: Clustering of the metabolite data using the Gaussian model (left

panel) and the asymmetric Laplace model (right panel). The dendrogram is

shown at the left of the profile plots, and the optimal clustering is shown by

the vertical line cutting the dendrogram. The optimal grouping is represented

at the right of profiles.

3.4 Examples

3.4.1 Metabolite Data

In the metabolite data of Section 1.3.1 the genetic background for some of

the mutants is known and for some of them it is unknown. Biologists are

interested to know which one of the known and unknown mutants, with

probably different genetic backgrounds, show similar metabolite patterns.

Answering this question led us to provide a clustering procedure equivalent

to the classification described in Chapter 2.

The first step of clustering with the proposed models is estimation of the

model parameters. Considering each type as a separate cluster, the likeli-

hood (2.3) is maximised. This yields the estimates reported in Table 2.1, on

page 49. Then agglomerative clustering using the Gaussian and the asym-

metric Laplace models is implemented and the model parameters are kept

fixed during construction of the tree. The resulting dendrograms are shown

in Figure 3.6.
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The dendrogram built using the Gaussian model and using the asymmet-

ric Laplace model are not identical, but they are very similar. Both methods

propose five groups. Mutants mex1 and dpe2 merge together and clearly are

distinguished as a separate cluster, because their cluster is the last group to

join the other types. This is coherent with their metabolite profile in Fig-

ure 1.2, because mex1 and dpe2 are mutants having an extreme jump on

metabolite maltose.MX1 and clearly distinguishable from the other plants.

Another cluster consists of isa2, d263, sex4 and d172, being the closest group

to sex1 and pgm which merge their own cluster. The wild types RLDWT

and WsWT merge together with ke103, sex3, and tpt ; these are types with

flat profiles. However, ColWT, another wild type having a flat profile, is

detected to be a single cluster, but close to the other wild types.

The clustering of the Gaussian and the asymmetric Laplace models agrees

broadly with the classification reported in Table 2.2. For example probabili-

ties for the wild types RLDWT and WsWT were spread out, meaning these

mutants are close to each other, and clustering proposes these types to be in

the same cluster. Mutant sex1 has a high probability to be pgm and they

fall into the same cluster. The wild type ColWT has a non-zero probability

to be a new type and agglomerative clustering declares ColWT to be a single

cluster. The unknown types d263 and d172 are classified to sex4 and form

a cluster with it. All classified types have zero probability to be dpe2 and

mex1 ; these two plants are joined and clearly declared to be different from

the other mutants.

In Figure 3.7 (left panel) the marginal posterior is plotted across the

number of clusters proposed by the agglomerative method for the Gaussian

and the asymmetric Laplace models. Both curves are maximised at C = 5.

The marginal posterior for the Gaussian model with C = 4 is almost the

same; the difference is 0.18 on the log scale, so the posterior probability of

merging ColWT with the other wild types is about 0.45. For the asymmetric

Laplace model maximisation at C = 5 is clear. The asymmetric Laplace

posterior is always greater than the Gaussian posterior from the beginning

of the clustering procedure, that is C = 13, so the asymmetric Laplace model

fits better. This is not surprising because the asymmetric Laplace model is

more flexible than the Gaussian model; it has six parameters where as the
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Figure 3.7: Log marginal posterior for the metabolite data as a function of

the number of clusters proposed by the agglomerative method, for the Gaus-

sian (circles) and the asymmetric Laplace (crosses) model. The left panel

corresponds to the models without variable selection (q = 1) and the right

panel corresponds to the variable selection models. The optimal numbers of

clusters are shown by the vertical lines, and the values of the log marginal

posterior at the optimum by the horizontal lines.

Gaussian model has five parameters.

The metabolite example has replicated measurements. In order to in-

spect the effect of replication we refit the agglomerative clustering using the

Gaussian model, but considering each replicate as a single type. The model

parameters are fixed the same as in the replicated case, and the resulting

dendrogram is shown in Figure 3.8. This yields a dendrogram in which repli-

cates of the same type are often located close to each other. The optimal

grouping is not the same as the replicated case in Figure 3.6 (left panel), but

is comparable. In the unreplicated clustering, replicates of pgm, sex1, sex3,

ke103, tpt, WsWT, RLDWT, and ColWT are in one cluster, but in the repli-

cated clustering they are grouped into three different clusters. Replications

of dpe2 are clustered in a separate group as well as mex1, but these two types

are merged together in the replicated clustering.

In order to find out which metabolites are important, the variable selec-

tion extension of the Gaussian and the asymmetric Laplace models are fitted
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and their dendrograms are represented in Figure 3.9. Like Section 2.4.1 in

the parameter estimation step, just p and q are estimated and the other pa-

rameter values are fixed to the values already estimated from the Gaussian

and asymmetric Laplace models with q = 1, giving p̂ = 0.458 and q̂ = 0.156

for the Gaussian and p̂ = 0.83 and q̂ = 0.183 for the asymmetric Laplace

model. The Gaussian variable selection model proposes C = 5 clusters, the

same as in Figure 3.6, but the asymmetric Laplace variable selection model

clearly suggests C = 4, merging ColWT with the other wild types. The mul-

tidimensional scaling of the negative log marginal posterior as a distance for

the first step of the agglomerative clustering is plotted for the Gaussian and

the asymmetric Laplace variable selection in Figure 3.10, confirming that the

distance based on the asymmetric Laplace variable selection model finds the

wild type ColWT to be closer to the other flat profiles compared with the

distance created by the Gaussian model. Hence it is not surprising to see

that the optimal grouping with the Laplace model merges ColWT with the

other wild types.

As explained in Section 2.3.2, the Bayes factor B10
v can be regarded as a

measure of importance of the variables that separate the data according to a

given grouping. Hence, we compute the Bayes factor for the optimal group-

ing found by our agglomerative method and sort metabolites with respect to

B10
v . The sorted metabolites and the log Bayes factor values are shown in

Figure 3.11. The six most important metabolites have the same ordering us-

ing the Gaussian and the asymmetric Laplace models. They are maltose.MX,

X18, raffinose2, X16, glumatic.3, and mannitol ; these have log B10
v > 3. The

metabolites having positive log Bayes factors using the Gaussian model are

also found to have positive log Bayes factor using the asymmetric Laplace

model. However, there are metabolites with negligible positive log Bayes

factors using the asymmetric Laplace model but having a negative log Bayes

factor using the Gaussian model. According to both models, 11 metabolites

have positive log Bayes factors.

In order to compare our results with an existing clustering algorithm

that both clusters data and computes variable importance, we applied the

COSA clustering approach of Friedman and Meulman (2004). This method

does not allow repeated measurements. We ran the COSA twice, first on



3.4. EXAMPLES 97

the mean of the profiles to somehow incorporate the replication information,

but this gave zero importance for all metabolites, for a subset consisting of

mutants mex1 and dpe2 that we were interested in. In the second run we

considered the data to be unreplicated. The COSA algorithm is a distance-

based method that uses the weighted distance defined in (3.1) and updates

the weights according to the contribution of each subset to the clustering.

Thus the importance, the weight, can be computed only for a specified group

of data.

The COSA dendrogram using the average linkage method is shown in

Figure 3.12. Cutting the dendrogram at height 0.62 gives five groups. The

first group (from left to right) involves the unknown mutants d172, d263,

isa2, and sex4 ; the second involves the wild type WsWT and the mutants

having flat profiles ke103, tpt, sex4, and sex3 ; the third consists of a replicate

of WsWT mistakenly grouped with dp2 and mex1 ; the fourth consists of pgm

and sex1 ; and the fifth group is the remaining types including a replicate of

dpe2 which is mistakenly grouped with the wild types ColWT, RLDWT, sex4

and sex3. The clustering result is somehow in agreement with our results,

except for a replicate of dpe2 which is clearly distinguished on metabolite

maltose.MX1 is wrongly grouped with the wild types having flat profiles. A

replicate of the wild type WsWT is also wrongly grouped with replicates of

dpe2 and mex1.

The importance of variables using the COSA algorithm is defined differ-

ently from that of ours and can be calculated only for one group (Friedman

and Meulman, 2004). Importance plots corresponding to the five groups ob-

tained by cutting the dendrogram of Figure 3.12 at height 0.62 are given in

Figure 3.13. We just show the 12 most important metabolites.

The second cluster from left to right, obtained by cutting the tree of

Figure 3.12, corresponds to the mutants having flat profiles, so all variables

must have about the same importance values. This is confirmed in the im-

portance plot of Figure 3.13, the top middle panel. The same holds for the

fifth cluster which consists of mutants with flat profiles and the wild types,

see the bottom middle panel of Figure 3.13. However, the fourth group con-

sists of replicates of pgm and sex1 which are different from the other types

on metabolites X18, X16, and raffinose2, see Figure 2.8, and none of them
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are recognised to be important by the COSA algorithm, see the bottom left

panel of Figure 3.13. The third cluster which is shown by a rectangle in

Figure 3.12 consists of replicates of mex1 and dpe2 that are clearly distin-

guished from the other mutants on maltose.MX1, which is not in the list of

important clustering metabolites using COSA either, see the top right panel

of Figure 3.13. The most important metabolite for this group is ribose.MX

which is inconsistent with our analysis because it has a negative Bayes factor

using both Gaussian variable selection model and asymmetric Laplace vari-

able selection model, see Figure 3.11 and image plots of Figure 3.9. This has

led us to investigate the COSA algorithm further on the metabolite example.

We deleted the replicate of the wild type WsWT.4 from the subset repre-

sented by rectangle in Figure 3.12, and recalculated the importances using

the COSA method. Then, maltose.MX1 appeared as the second important

metabolite, but still ribose.MX is found to be the most important metabolite

which seems unrealistic because the metabolite ribose.MX is flat across all

types, see profile plots of Figure 2.8. Therefore, we conclude that the impor-

tance calculated using the COSA is sensitive to each member of the group

and may give results inconsistent with ours.

All clustering results discussed in this section are somehow in agree-

ment with the exploratory analysis presented in Section 1.4.2. Our pro-

posed approach can be regarded as a method that coherently quantifies the

exploratory plots of Figure 1.6 using a hierarchical Bayesian model.

Apart from parameter estimation, which took less than half a second,

the time needed for agglomerative clustering took about a fifth of a second

for all models on a common desktop computer, except the unreplicated fit

which took 2.5 seconds. Applying the COSA algorithm on the unreplicated

metabolite data took about a tenth of a second.
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Figure 3.8: Dendrogram and optimal grouping found by the Gaussian model

for the metabolite data, ignoring the replication information. The model

parameters are the same as the replicated case. The vertical colour bar on

the right refers to the optimal grouping found by the Gaussian model using

the replication information. See also the left panel of Figure 3.6.
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Figure 3.9: Clustering of the metabolite data using the Gaussian variable

selection model (top panel) and the asymmetric Laplace variable selection

model (bottom panel). The dendrogram obtained by the agglomerative

method is shown at the left side of the image plot of log B10
vc , computed

for the optimal grouping. Metabolites are sorted according to the Bayes fac-

tor B10
v . The heat colours corresponds to the scale proposed by Kass and

Raftery (1995), for more details see the caption to Figure 2.9. Bar plots of

log B10
v are shown in Figure 3.11.
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Figure 3.11: Log Bayes factor of variables, log B10
v , for the Gaussian (top

panel) and the asymmetric Laplace (bottom panel) variable selection mod-

els. The Bayes factors are computed for the optimal grouping found by

agglomerative clustering using the Gaussian model for the top panel and the

asymmetric Laplace model for the bottom panel. The horizontal dotted lines

represent the values used to categorise and colour the log Bayes factors. See

also the caption to Figure 2.9. Image plots of log B10
vc are shown in Figure 3.9.
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3.4.2 Microarray Data

In this section we apply our clustering procedure to the microarray data of

Section 1.3.2, which is an unreplicated dataset with a larger number of indi-

viduals (74 observations) and a higher number of dimensions (396 variables).

We show the result of the Gaussian variable selection model, but fitting other

models gives similar results. The model parameters are estimated treating

every observation as a separate cluster. Since the data are unreplicated, the

model is identifiable only with respect to σ2 +σ2
η . Therefore we estimate the

parameters after fixing σ2
η = 0. The estimated parameters and their stan-

dard errors are σ2 = 0.547 (0.007), σ2
θ = 1.486 (0.052), μ = 0.013 (0.005),

p = 0.716 (0.021), q = 0.393 (0.026). The 95% confidence interval using

profile likelihood for p is (0.67, 0.76) and for q is (0.34, 0.44). The profile like-

lihood confidence intervals for the other parameters are very close to the ones

obtained using the standard errors reported above.

The data are divided into two groups using survival information of the

patients. If gene pattern affects survival, clustering patients using their gene

information must reflect the survival grouping. The data have been already

analysed by Freije et al. (2004) and four groups were proposed in which 13

patients were misclassified. The agglomerative clustering dendrogram using

the Gaussian variable selection model is shown in Figure 3.14, proposing

C = 10 groups with 9 subjects misclassified. The number of genes having

positive log B10
v is 156 out of 396. This agrees with the estimated q ≈ 0.4.

The data are shown on the variables having positive log Bayes factors and

on the misclassified individuals in Figure 3.15.
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3.4.3 Image Data

In this section we present clustering with the Gaussian variable selection

model on image data. Here our model assumptions are violated and the

data are extremely high-dimensional. We took three grayscale portraits of

R. A. Fisher, all of size 75 × 95 pixels, photos A, B, and C. Each pixel of a

grayscale photo takes a value in the interval [0, 1]; zero if the pixel is pure

black, one if is pure white and a value between zero and one otherwise. Each

pixel is coded as a byte (eight bits), hence 256 gray levels are considered.

We may rearrange the pixels of a portrait in a vector of dimension 7125,

and consider each photo is a true profile with 7125 dimensions. Since true

profile values are between zero and one, the Gaussian assumption for the

true profiles is clearly wrong and since an image has an spatial pattern the

independence assumption does not hold either. In order to violate the model

assumptions further we create noisy profiles by adding to each pixel noise

taken from continuous uniform distribution defined on interval [0, 1]. We

make five observations of image A, ten of image B, and twenty of image C.

Hence, these artificial data contain three unbalanced clusters. The portraits

and a sample noisy observation of each image are shown in Figure 3.16.

In order to use our clustering method, first the median of each variable

is subtracted and then our Gaussian variable selection model is fitted. The

model parameters are estimated considering the observations to be unrepli-

cated, so parameter estimation requires fixing σ2
η = 0. In optimisation of

the likelihood function we encountered divergence of the optimisation rou-

tine, which is not surprising because the model distribution assumptions are

badly wrong. In order to help the optimisation procedure, we set μ = 0,

a reasonable adjustment because after subtracting the median of each vari-

able from the observations, μ approaches zero. The estimated parameters

are σ̂2 = 0.13, σ̂2
θ = 0.03, p̂ = 0.04 and q̂ = 0.54. An agglomerative clus-

tering dendrogram using the Gaussian variable selection model is shown in

Figure 3.17, giving three groups in which all the noisy images are correctly

grouped. Figure 3.18 shows log B10
v referring to informative clustering pixels,

and confirms that most of the pixels located around the face are useless. This

is expected because photos are different mostly in the background of photos
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which often have positive log Bayes factors.

The appropriateness of our clustering method as a device for image pro-

cessing might be questioned in many ways. Our models give similar results

for any rearrangement of the pixels, but photos and images have a strong

spatial pattern which our models ignore. For applying our clustering method

images should have the same size and this considerably restricts the applica-

tion of our technique as an image processing tool. Above all, our clustering

method is sensitive to translation, scaling and rotation of images which are

minimal properties of a good image clustering procedure.

3.5 Discussion

This chapter demonstrated how a clustering method can be developed using

a Bayesian hierarchical model. We used agglomerative clustering because the

visual representation of grouping is possible when the marginal posterior is

analytically tractable. This gives a dendrogram with a probabilistic inter-

pretation. The method is automatic and can be run on both replicated and

unreplicated data.

Computational issues related to such clustering methods were discussed

and a computationally efficient technique for our proposed models was pre-

sented. Our codes are imported into R to benefit from its graphical facilities,

but the code is written in C to gain computational speed. It will be released

as an R package in the near future.

We showed the application of the method to metabolomic data, a mi-

croarray and an image example. Our clustering method works properly on

various examples and is fast, especially for high-dimensional-low-sample-size

situations.

We have assumed two different mixing distributions, a heavy tail and

asymmetric distribution, and a Gaussian distribution. Apparently after

proper estimation of the model parameters, the mixing distribution is not

important in classification and clustering. This is confirmed in our examples

and in our simulations. However, estimation of the model parameters may

be difficult for some choices of the mixing distribution.

The main advantage of our clustering technique is to give variables an
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importance measure that can be rapidly calculated and has a probabilistic

interpretation. This is not easy to obtain using the existing clustering meth-

ods, as far as we know. An alternative is COSA (Friedman and Meulman,

2004), which is a distance-based method with no probabilistic interpretation.

A similar approach can be used to create a model-based clustering method

analogue to a classification technique, for any Bayesian hierarchical model

having closed form marginal posteriors.
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Figure 3.18: Image plot of the log B10
v using the Gaussian variable selection

model. For more details on the heat bar colours, see the caption to Figure 3.9.
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Chapter 4

Simulation Results

4.1 Introduction

In this chapter we compare our procedures with another popular clustering

procedure, MCLUST. MCLUST is chosen because it is the only clustering

method that is automatic, fast and already implemented and documented in

R. We perform a Monte Carlo simulation study and compare the procedures

using loss functions. Rand (1971) and Binder (1978, 1981) discussed differ-

ent loss functions appropriate for clustering and Meila (2005) characterises

them using mathematical axioms. We use two loss functions, one is a trivial

loss (Binder, 1981), which is zero if the estimated clustering equals the true

clustering, and one otherwise. The trivial loss function counts how often a

clustering method gives wrong partitions, but does not show how bad the

wrong partitions are, so we also use another function, proposed by Rand

(1971) and Lau and Green (2007), called the misclassification loss.

If the estimated vector of labels, d̂, of length T is composed of elements

d̂t, and the vector of true labels d is composed of elements dt, this is the same

notation as in Section 3.1.1, then the misclassification loss is defined as

L(d, d̂) =

T∑
t=2

∑
t′<t

I(dt = dt′ , d̂t �= d̂t′) + I(d̂t = d̂t′ , dt �= dt′),

taking values between zero and T (T − 1)/2. The misclassification loss is zero

if the grouping imposed by vector label d̂ is the same as d and takes the

115
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maximum value T (T − 1)/2 if the worst mistake happens: the true labels

are all the same but mistakenly estimated all different, or vice versa. The

trivial loss may be derived from the misclassification loss by composition

of the sign function with the misclassification loss, that is, if L(d, d̂) is the

misclassification loss, the trivial loss is sign{L(d, d̂)}.
The effectiveness of clustering methods is studied under different settings

motivated by our metabolite example of Section 1.3.1, based on 1000 Monte

Carlo replications. The simulated number of non-empty clusters is uniformly

distributed between 2 and 10. We excluded the case that all data lie in a

single cluster, because it is uninteresting in practice.

This chapter is organised as follows. In Section 4.2 we discuss the sim-

ulation results from the Gaussian effects data. Section 4.3 describes the

performance of clustering procedures with asymmetric Laplace data, simu-

lated as in the Gaussian effects case, but with the true effects θvc following

an asymmetric Laplace distribution with left-tail variance σ2
θL

and right-

tail variance σ2
θR

, yielding an asymmetric Laplace distribution with variance

σ2
θ = σ2

θL
+ σ2

θR
. In Section 4.4 the quality of parameter estimation is studied

for Gaussian and asymmetric Laplace effects data.

It is important to investigate the robustness of our clustering procedures

when the assumed model is wrong. Hence, in Section 4.5, the distribution

of experimental errors ηvct and measurement error εvctr is chosen to be Stu-

dent’s t with 5 degrees of freedom and scaled to have variances σ2
η and σ2,

respectively.

Section 4.6 studies the performance of clustering procedures when fun-

damental assumptions, like independence of variables, existence of experi-

mental error layer ηvct, and having replicated observations, are violated. We

also briefly discuss the effectiveness of log B10
v as a measure of importance of

variables.

Finally, Section 4.7 summarises important results.

We produce various versions of our proposed clustering procedures by

taking different strategies in the parameter estimation step; see Table 4.1 for

details.

As competitor for our approaches, we choose the MCLUST procedure of

Fraley and Raftery (2002). This is one of the most widely-used Bayesian
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Ordinary Procedures

Fixed Parameters Gaussian Laplace

None Gvs Lvs

q = 1 G L

q = 1, p = 0.01 G0.01
p L0.01

p

q = 1, p = 0.05 G0.05
p L0.05

p

q = 1, p = 0.10 G0.10
p L0.10

p

Oracle Procedures

Description Gaussian Laplace

All parameters fixed to the true values. G∗
vs L∗

vs

Parameter q = 1, and p is tuned to the sim-

ulated value of pq, other parameters are fixed

to the true values.

G∗ L∗

Table 4.1: Fitting procedure notation.

clustering procedures, which is also fully automatic and is used for analysis

of similar data (Yeung et al., 2001; Dasgupta and Raftery, 1998; Sand and

Moore, 2001). MCLUST fails when p > n. Hence, as its authors proposed

in the software manual, we apply the method to the data projected using

principal components, and we denote this in the tables by M . We choose

two principal components, but conclusions for another number of principal

components are not very different.

Loss values in our simulations are compared pairwise for each simulated

setting using non-parametric procedures. Since all the methods are applied

on a single dataset in each Monte Carlo replication, a paired test is required

for a valid analysis. We propose McNemar’s test, a paired test for binary

data, for comparison of clustering procedures using the trivial loss, and the

Wilcoxon signed-rank test for comparisons using the misclassification loss.

The results of the significance tests are coded in a square matrix with

clustering procedures in rows and columns; see Figure 4.2 for an example.

Colours are utilised to code pairwise significances, and symbols are ap-

plied to represent the preference respect to the trivial loss; see Tables 4.2

and 4.3 for details. According to the symbols defined in Table 4.3, the best
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Description Colour

McNemar’s and the Wilcoxon signed-rank

tests are significant at 0.05 level

Orange

McNemar’s or the Wilcoxon signed-rank test

is significant at 0.05 level

Yellow

McNemar’s and the Wilcoxon signed-rank

tests are insignificant at 0.05 level

White

McNemar’s or the Wilcoxon signed-rank test

statistic cannot be calculated

Gray

No comparison is made Black

Table 4.2: Colours applied for coding pairwise tests, see Figure 4.2.

Description Sign

The estimated loss is smaller +

The estimated loss is bigger −
The estimated loss is equal .

Table 4.3: Symbols representing preference of the procedures according to

the trivial loss, compared with the procedure on the main diagonal, see Fig-

ure 4.2.

method, in terms of the trivial loss, is the method on the main diagonal

with minus signs on its right side of the same row, and plus signs above

it in the same column. The worst clustering procedure is the method with

plus signs on its right side and minuses above. The lower triangular part of

the matrix is filled with p-values for the Wilcoxon signed-rank test, if they

exceed 0.01. The Wilcoxon signed-rank test, unlike McNemar’s test, can al-

most always be calculated. Having p-values in the lower-triangular matrix

shows the significance of two methods according to the misclassification loss,

especially when McNemar’s test statistic cannot be calculated, that is, when

the corresponding box is gray.
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4.2 Gaussian Effects Model

In this section we study the effectiveness of different procedures applied to

data simulated from the Gaussian effects model. The model parameters,

μ = 0 and σ2 = 1, are relatively easy to estimate. Hence, clustering methods

are compared for different values of σ2
θ , σ2

η , p, and q. An increase in σ2
θ/σ

2
η and

in pq gives more clustering information. The hyper-parameter q is the pro-

portion of active variables, and p is the proportion of active variable-cluster

combinations for active variables, which gives an expected total of pq active

variable-cluster combinations. Datasets are simulated when lots of variables,

q = 0.9, and small number of variable-cluster combinations for active vari-

ables, p = 0.1, are activated, giving an expected 9% active variable-clusters.

A small proportion of active variables, q = 0.1, but large active variable-

cluster combinations for active variables, p = 0.9 also is considered. In

another setting, we fix p = q = 0.5, giving 25% variable-cluster combinations

active.

In order to compare methods, values for the other hyper-parameters are

chosen as follows. The true effect variance, σ2
θ , is set to 1 or 10, and the

experimental error variance, σ2
η , to 0.5 or 2, yielding signal-to-noise ratio

σ2
θ/σ

2
η ranging from 0.5 to 40. The trivial and the misclassification losses

are represented in Table 4.4. Because we have a total of 40 observations

to each cluster, 10 types each with 4 replicates, the maximum value for

misclassification loss is 40× 39/2 = 780, whereas for the trivial loss this is 1.

According to Table 4.4, when σ2
θ/σ

2
η is small, all methods are almost

equally efficient. As the signal to noise ratio σ2
θ/σ

2
η increases, both losses

decrease, often for all clustering procedures. For instance, compare σ2
θ =

1, σ2
η = 0.5 with σ2

θ = 20, σ2
η = 0.5. This is reasonable because an increase

to σ2
θ/σ

2
η gives more clustering information. For large signal-to-noise ratios,

like σ2
θ = 20, σ2

η = 0.5, the difference between our proposed procedures and

MCLUST becomes clearer, in terms of both loss functions and in favour

of our methods. This suggests that MCLUST applied on principal compo-

nents is not a good clustering strategy in our settings. Fitting asymmetric

Laplace methods (L, L∗, Lvs, and L∗
vs) is not very different from Gaussian

fits (G, G∗, Gvs, and G∗
vs). The oracle procedures (G∗, G∗

vs, L
∗, and L∗

vs) with
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their parameters fixed to the true values are generally better than the corre-

sponding versions with parameters estimated (G, Gvs, L, and Lvs). For high

signal-to-noise ratios like σ2
θ = 20 and σ2

η = 0.5 with parameters estimated

more efficiently, the performance of oracle procedures is close to procedures

that estimate the parameters. In Table 4.4, for a few cases fitting the asym-

metric Laplace model is better than a Gaussian fit even on Gaussian data.

For instance, consider σ2
η = 0.5, σ2

θ = 20, for which L∗ is the best method

with respect to both losses. Often, fixing hyper-parameter q = 1 and p to a

value gives a less efficient method, in terms of both losses for Gaussian and

asymmetric Laplace fits, compare G0.01
p , G0.05

p , G0.10
p , L0.01

p , L0.05
p , L0.10

p with the

other procedures. This suggests that tuning p when q = 1 is crucial.

In Table 4.4, standard errors for the misclassification loss are larger than

for the trivial loss. The reason for having tiny standard errors for the trivial

loss is that this is a Bernoulli variable, giving standard errors proportional to
√

π(1− π), where 0 < π < 1 is the probability of finding the true clustering.

Figure 4.2 shows significance tests related to Table 4.4, where p = 0.1 and

q = 0.9. The top three panels correspond to significance tests of σ2
η = 0.5,

and the bottom panels to significance tests of σ2
η = 2. The three vertical

panels refer to σ2
θ = 1, σ2

θ = 10, and σ2
θ = 20 from left to right, respectively.

Hence, for example, tests corresponding to σ2
η = 0.5 and σ2

θ = 1 are found

in the top left panel, σ2
η = 0.5 and σ2

θ = 10 in the top middle and top right

panel and so forth.

For small signal-to-noise ratio, for example σ2
η = 2 and σ2

θ = 1, the bottom

left panel of Figure 4.2, contains gray boxes, since McNemar’s test statistic

cannot be calculated. When there is restricted clustering information, all

clustering methods fail to detect the true labelling and yield two-by-two

crosstabs with off-diagonal elements containing low frequencies, where the

distribution of McNemar’s test statistic cannot be found. An increase of the

signal-to-noise ratio σ2
θ/σ

2
η leads to significant pairwise comparisons according

to the McNemar and Wilcoxon tests and gives yellow and orange yellow

boxes. See for example the bottom right, top middle, and the top right

panels.

The asymmetric Laplace methods are sometimes better than Gaussian fits

but are not significantly preferable to all Gaussian procedures. For example
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see σ2
η = 2, σ2

θ = 20 in Figure 4.2, the top right panel, where L∗ is the best

method and insignificantly different from G∗ in terms of misclassification loss.

Above we discussed situations with a large expected proportion of active

variables, q = 0.9, and a small expected proportion of active variable-cluster

combinations, p = 0.1. It is possible to have the same amount of active

variable-cluster combinations for data but with a small proportion of active

variables, for example by taking q = 0.1 and p = 0.9; hence, Tables 4.4

and 4.5 are comparable, because they have equal amounts of clustering in-

formation on average. The loss values for q = 0.1 and p = 0.9, especially

for extremely large signal-to-noise ratio (σ2
η = 0.5 and σ2

θ = 20), are larger

than when q = 0.9 and p = 0.1, confirming the effectiveness of our method

when a lot of variables but few variable-cluster combinations are active. Fit-

ting procedures that mistakenly assume q = 1, (G, G∗, L, and L∗), give loss

values close to when q is estimated from data (Gvs and Lvs). This happens

because fixing q helps better estimation of the other model parameters and

consequently gives better clustering overall. Fixing q = 1 may be help to-

ward a better clustering but when 0 < q < 1 the model measures variable

importance, which is demanded in some applications, through B10
v .

Augmenting the amount of clustering information, that is increasing pq

from 0.09 to 0.25 (p = q = 0.5), gives smaller losses in Table 4.6 than with

Tables 4.4 and 4.5 for all cases when pq = 0.09. In Table 4.6, we observe

that Lvs is often less efficient than the corresponding Gaussian procedure,

Gvs, which shows the impact of low-quality estimation of parameters for

the asymmetric Laplace method. Comparing L∗
vs with G∗

vs, so that the pa-

rameter estimation step is removed, both methods perform similarly. The

procedures with fixed q and p are often less efficient than methods that esti-

mate p; compare G0.01
p , G0.05

p , and G0.10
p with G and Gvs for Gaussian models,

or L0.01
p , L0.05

p , and L0.10
p with L and Lvs for the asymmetric Laplace model.

Finally, we note that all of our proposed approaches beat MCLUST im-

plemented on principal components, in terms of both loss functions, for data

generated according to the Gaussian effects model. This is not surprising,

because Chang (1983) showed that principal components of data are not

necessarily informative for clustering. The asymmetric Laplace fits are often

as efficient as the Gaussian fits, especially when model parameters are set
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to their simulated values (oracle procedures). This suggests, after fixing the

parameters to reasonable values, the distribution assumed for the true effects

is not so important. The difference between the performance of clustering

methods, is caused by the quality of parameter estimation using different dis-

tributional assumptions, which we will discuss briefly in Section 4.4. Fixing

q = 1 and regarding p as a tuning parameter is a good strategy when pq is

close to the true value, otherwise it yields a less efficient clustering procedure.



4.2. GAUSSIAN EFFECTS MODEL 123

Figure 4.1: Profile plot of simulated Gaussian data with σ2
η = 0.5 and σ2

θ = 10. The
hyper-parameters are p = 0.1, q = 0.9 for the top panel, p = 0.9, q = 0.1, for the middle
panel, and p = q = 0.5 for the bottom panel. Active variables are represented by a hori-
zontal heat bar at the bottom of each profile plot, red if the variable is active. The active
variable-cluster combinations are shown by red solid blobs with probability of appearance
equal to p for activated variables. At the right side of each profile plot the simulated
grouping is represented.
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4.3 Asymmetric Laplace Effects Model

The asymmetric Laplace data are generated like the Gaussian data described

in Section 4.1, except that the true effects θvc are generated from asymmetric

Laplace distribution with variance σ2
θ = σ2

θL
+ σ2

θR
, where σ−1

θL
is the left-tail

rate and σ−1
θR

is the right-tail rate of the exponential distributions compris-

ing the Laplace law. The ratio σ2
θR

/σ2
θL

measures the skewness. When the

ratio equals one it yields the symmetric Laplace (the double exponential)

distribution and when σ2
θR

/σ2
θL

= 10 it leads to a right-skewed distribution,

see Figure 2.5. Profile plots of data simulated from the asymmetric Laplace

model with σ2
θR

/σ2
θL

= 10, σ2
θ = 10, σ2

η = 0.5 are given in Figure 4.5. Most

peaks in the profile plots are positive, because the effects are simulated from

a skewed distribution (σ2
θR

/σ2
θL

= 10) with a higher probability of having

positive effects.

Table 4.7 is comparable with Table 4.4, Table 4.8 with Table 4.4, and

Table 4.9 with Table 4.6. Comparing the mentioned tables we observe that

it is harder to find the true clustering when effects are distributed according to

a symmetric Laplace distribution (σ2
θR

/σ2
θL

= 1) with the same variance. It is

even more difficult when the effects are asymmetric (σ2
θR

/σ2
θL

= 10), because

the true effects are more concentrated about zero. However, asymmetric

Laplace fits are similar to Gaussian fits on asymmetric Laplace data, even

if effects are highly asymmetric (σ2
θR

/σ2
θL

= 10). The asymmetric Laplace

fit Lvs suffers from poor parameter estimation, yielding greater loss values

than its corresponding Gaussian fit Gvs. In such cases, knowing the true

parameters gives better performance; compare L∗ with L and L∗
vs with Lvs

in Table 4.7. In Figures 4.6 and 4.7, similar regions are yellow, orange and

white, confirming that asymmetric effects do not change the behaviour of

our clustering procedures. In Table 4.9 we see that the estimated losses

decrease for pq = 0.25 compared with cases that have fewer active variable-

cluster combinations (Tables 4.7 and 4.8 having pq = 0.09). Asymmetric

effects have little effect on clustering performance, especially when there is

moderately strong clustering information, for example in Table 4.9 compare

σ2
θR

/σ2
θL

= 1 with σ2
θR

/σ2
θL

= 10 when σ2
θ = 20.

We conclude that data generated with the asymmetric Laplace effects
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model mostly follow a similar pattern as for the Gaussian effects models

discussed in Section 4.2. This confirms that a wrong assumption about the

mixing distribution does not change the result of clustering. In another

words, having a mixture model is more important than the exact distribution

of the effects, confirming the results of Bhowmick et al. (2006).
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Figure 4.5: Profile plot of data generated from the asymmetric Laplace effects

model with σ2
η = 0.5, σ2

θ = σ2
θR

+ σ2
θL

= 10 and σ2
θR

/σ2
θL

= 10. The hyper-

parameters are p = 0.1 and q = 0.9 (the top panel) p = 0.9 and q = 0.1

(the middle panel) and p = q = 0.5 (bottom panel). For more details see

Figure 4.1.
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4.4 Parameter Estimation

The simulation studies of Sections 4.2 and 4.3 show that the efficiency of our

proposed approach depends on the model parameters. This section studies

the quality of estimation of the parameters using maximum likelihood. We

considered our proposed procedures with model parameters fixed to the true

values and called them oracle methods, G∗
vs, L

∗
vs, G

∗, and L∗. However, in

practice the parameters must be estimated from data. Poor estimation of

them often yields poor classification and clustering. In this section we discuss

the quality of estimation of parameters using maximum likelihood assuming,

initially, that each type is a separate cluster. We considered the Gaussian

fit when all parameters are estimated, denoted by Gvs; the parameter q is

fixed to one and all other parameters are estimated, represented by G; fixing

q to one and p to 0.01, 0.05, and 0.1 are denoted by G0.01
p , G0.05

p , and G0.10
p ,

respectively. For the asymmetric Laplace fits, similar versions are consid-

ered, denoted by Lvs, L, L0.01
p , L0.05

p , and L0.10
p . In all figures, the true values

of parameters are shown by a horizontal line and boxplots are used to rep-

resent the distribution of the estimated hyper-parameters. White boxplots

correspond to data simulated from the Gaussian effects model, yellow and

green refer to data generated from symmetric (σ2
θR

/σ2
θL

= 1) and asymmetric

Laplace models (σ2
θR

/σ2
θL

= 10), respectively.

This section is organised as follows. First, the estimation of parameters

μ and σ2 is discussed. Then, the quality of estimation of parameter related

to proportion of active variables, q, and active variable-cluster combinations

for active variables, p, is discussed. The variance for experimental error σ2
η is

studied afterwards. Finally, we study estimation performance for the effects

variance, σ2
θ . For data generated from the asymmetric Laplace model there

are two variance parameters, one corresponding to the left tail, σ2
θL

, and

another to the right tail, σ2
θR

, of the asymmetric Laplace distribution. We

discuss the case μ = 0, σ2 = 1 and σ2
η = 0.5 with other hyper-parameters

varied as in Sections 4.2 and 4.3.

In all the simulations mentioned in Section 4.2 and 4.3, the parameter μ is

set to zero. The parameter μ is the location parameter of the data when the

true effects, θvc, are removed. It may be simply estimated by taking the mean
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or median of data. Hence, for negligible effects, like small values of σ2
θ , or pq,

estimation of μ is easy. Otherwise, the quality of its estimation depends on

other estimated parameters, as confirmed in Figure 4.9. For data generated

from the Gaussian effects model, when σ2
θ and pq are small, estimation of

μ is more precise; in Figure 4.9 compare the top left with the top right

panel. Generating effects from the asymmetric Laplace distribution does not

change the precision of estimation; compare the top panels of Figure 4.9 with

its bottom panels. Clearly estimation of μ using the asymmetric Laplace fit

is more difficult than with the Gaussian fit; compare the boxplots of Gvs

with Lvs, G with L, G0.01
p with L0.01

p , G0.05
p with L0.05

p , and G0.10
p with L0.10

p .

However, the difference between methods L, L0.01
p , L0.05

p and L0.10
p and their

corresponding Gaussian procedures is negligible.

Estimation of σ2 should be easier than that of μ, since it is simply a

between-replicates variance that does not depend on other parameters. How-

ever, σ2 is hard to estimate using the asymmetric Laplace method, see Figure

4.10. All methods estimate σ2 equally well, no matter which model generates

the data. Comparing the top left and the top right panels of Figure 4.10, we

conclude that estimation of σ2 does not depend on the other parameters.

The parameter q is hard to estimate in all models. In order to get a

better estimate of q, the total number of variables V , which in our case is

50, and the number of types T , which is 10, should be large. The quality

of estimation depends also on the signal-to-noise ratio σ2
θ/σ

2
η for a fixed σ2.

The smaller the signal-to-noise ratio, the more difficult to estimate is q.

According to our simulation results, using 10 types and 50 variables may

not give precise estimates of q, even when the signal-to-noise ratio is high,

see Figure 4.11. For small σ2
θ/σ

2
η , the hyper-parameter q is computationally

unidentifiable. So, we just consider the largest possible signal-to-noise ratio

in our simulations, namely σ2
η = 0.5 and σ2

θ = 20 inspired by the metabolite

data.

In Figure 4.11, we just consider procedures Gvs and Lvs because they are

the only methods that estimate q. For p = 0.9 and q = 0.1, the Gaussian

procedure, Gvs, can estimate q well in all models; see the right panel of

Figure 4.11. However, estimating q using the Gaussian fit is biased for data

generated from the asymmetric Laplace model; see the green boxplots. It
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appears that the Gaussian fits are not reliable for p = 0.1 and q = 0.9 and

considerably under-estimate q; see the left panel of Figure 4.11. However,

there is a probability (1−p)C that an activated variable has no active variable-

cluster combination and becomes essentially inactive. This is considerable

when p or C is small; see for example the top panels of Figures 4.1 and 4.5,

where a lot of variables are activated, but they receive no red blobs in the

simulated profiles, meaning no true effects appear for that variable. The

probability that a potentially active variable becomes practically active is

1 − (1 − p)C ; assuming on average that we have 6 clusters and p = 0.1, this

probability of active variables is 0.42, which agrees with Figure 4.11.

Estimation of the proportion of active variable-cluster combinations for

active variables, p, is also difficult. So, we study the effectiveness of estima-

tion when it is easier to estimate p, namely when σ2
η = 0.5 and σ2

θ = 20.

The hyper-parameters p and q are inter-related, as having p = 0 means q

cannot be estimated and vice versa. Like q, estimation of p is biased even for

a Gaussian model fitted on Gaussian data, see the white boxplots in the top

right panel of Figure 4.12. This is the effect of biased estimation of q which

affects p too. Under-estimation of q leads to over-estimation of p, such that

pq remains close to the simulated value. This is visible in the bottom panels

of Figure 4.12.

Estimation of the experimental error variance σ2
η is not very difficult,

because there are a lot of inactive variable-cluster combinations. We gain

information for estimation of σ2
η, σ

2, and μ for inactive variable-clusters, and

for σ2
η + σ2

θ , σ2, and μ for active combinations. Hence, we gather direct in-

formation for estimation of σ2
η for inactive variable-clusters which are many,

and indirect information for active ones, which are few. Relatively precise

estimation of σ2
η is confirmed in Figure 4.13. Comparing the two, we con-

clude that estimation of σ2
η is not sensitive to changes in the other parame-

ters. However, tuning both p and q, introduces estimation bias, see methods

G0.01
p , G0.05

p , G0.10
p , L0.01

p , L0.05
p , and L0.10

p . A method that estimates p and q

poorly, like Gvs, and procedures that estimate p accurately, like G, are simi-

lar in estimation of σ2
η. Generating data from the asymmetric Laplace model

(bottom panels), does not change the scenario.

Estimation of the variance of the true effects σ2
θ is rather difficult, since in-
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formation about this parameter is available only when active variable-cluster

combinations appear, which are rare. It is even more difficult to estimate

the left and right tails, because the Laplace model performs inefficiently in

estimation of other parameters, like p and q, that are closely related to σ2
θ .

According to Figure 4.14 the Gaussian methods Gvs and G estimate σ2
θ more

efficiently than their corresponding Laplace procedures Lvs and L. However,

asymmetric Laplace estimates using data generated from the Gaussian ef-

fects model have a downward bias, because large true effects, in absolute

value, are accounted to come from a heavier tail distribution (Laplace) with

smaller variance. The Gaussian fits G and Gvs have better performance in

the top right panel compared with the top left panel, because pq = 0.25 in

the top right panel but pq = 0.09 in the top left panel, the first gives more

information for estimation about hyper-parameter σ2
θ .

Generally, one could say fixing q = 1 does not disturb the estimation

(compare G with Gvs, and L with Lvs), and may help toward more efficient

estimation of p and σ2
θ . On the contrary, fixing p and q together may intro-

duce bias; compare for example methods G0.01
p , G0.05

p , G0.10
p , L0.01

p , L0.05
p , and

L0.10
p with G and L. For data generated from the asymmetric Laplace model

(bottom panels of Figure 4.14) with σ2
θR

/σ2
θL

= 10, asymmetric effects are

recognised but estimated with a large uncertainty.
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Figure 4.9: Boxplots of μ̂ for data generated with μ = 0, σ2 = 1 and σ2
η =

0.5. Top panels with white boxplots correspond to data generated from

the Gaussian effects model with σ2
θ = 1, p = 0.1, q = 0.9 (top left), and

σ2
θ = 10, p = q = 0.5 (top right) panel. Yellow and green boxplots correspond

to data generated from the symmetric and the asymmetric Laplace model,

respectively. The parameter μ is estimated using the asymmetric Laplace

model when data are generated with σ2
θ = 1, σ2

θR
/σ2

θL
= 1 (bottom left) and

σ2
θ = 1, σ2

θR
/σ2

θL
= 10 (bottom right), both with p = 0.1 and q = 0.9. The

true value of μ is zero, represented by the horizontal solid line.
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Figure 4.10: Boxplots of σ̂2 for data with μ = 0, σ2 = 1 and σ2
η = 0.5. White

boxplots refer to methods implemented on data sampled from the Gaussian

effects model with σ2
θ = 1, p = 0.1, q = 0.9 (top left), and σ2

θ = 20, p =

q = 0.5, (top right). Yellow boxplots correspond to procedures applied on

asymmetric Laplace data with σ2
θR

/σ2
θL

= 1 (bottom left), and green ones

refer to σ2
θR

/σ2
θL

= 10 (bottom right), both with p = 0.1, q = 0.9 and σ2
θ = 1.
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Figure 4.11: Boxplots of of q̂ for data generated with μ = 0, σ2 = 1, σ2
η =

0.5, σ2
θ = 20. The procedures implemented on Gaussian effects data are

shown using white boxplots, the methods applied to asymmetric Laplace

data with σ2
θR

/σ2
θL

= 1 are in yellow, and to asymmetric Laplace data with

σ2
θR

/σ2
θL

= 10 are in green. The left panel refers to data with p = 0.1, q = 0.9,

and the right panel to p = 0.9, q = 0.1.
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Figure 4.12: Boxplots of p̂ for data generated with μ = 0, σ2 = 1, σ2
η =

0.5, σ2
θ = 20. In the left panels, p and q are set to 0.9 and 0.1, and in the right

panels to 0.1 and 0.9, respectively. The horizontal lines in the top panels are

the simulated values of p and in the bottom panels are the simulated values

of pq. The white boxplots refer to methods implemented on data generated

from the Gaussian effects model, yellow to the symmetric Laplace, and green

to the asymmetric Laplace with σ2
θR

/σ2
θL

= 10.
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Figure 4.13: Boxplots of σ̂2
η for data with μ = 0, σ2 = 1, σ2

η = 0.5, p = 0.1, and

q = 0.9. The top panels are methods applied to Gaussian data with σ2
θ = 1

(top left) and σ2
θ = 10, (top right). The same procedures are implemented

on asymmetric Laplace data with σ2
θ = 1, σ2

θR
/σ2

θL
= 1 (bottom left) and

σ2
θR

/σ2
θL

= 10, (bottom right).
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Figure 4.14: Boxplots of σ̂2
θ for simulated data with μ = 0, σ2 = 1, σ2

η = 0.5,

and σ2
θ = 20. The top left panel refers to Gaussian data with p = 0.1, q = 0.9,

the top right with p = q = 0.5. The bottom panels are the asymmetric

Laplace fits on data generated from the asymmetric Laplace model with

σ2
θR

/σ2
θL

= 10. The bottom left panel corresponds to the estimated values of

σ2
θL

and the bottom right panel to σ2
θR

. The true values are represented by

solid horizontal lines.
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Figure 4.15: Profile plot of simulated data with parameters μ = 0, σ2 =

1, σ2
η = 0.5 σ2

θ = 10. Experimental error, ηvct, and measurement error, εvctr,

are sampled from Student’s t distribution with 5 degrees of freedom.

4.5 Heavy-tailed errors

In order to study the efficiency of the clustering procedures in the presence of

outliers we apply our clustering methods on data having Gaussian effects but

with experimental errors, ηvct, and measurement errors, εvctr, coming from a

Student’s t distribution with 5 degrees of freedom, t5. The t5 distribution is

scaled to have variance σ2
η for the experimental error layer, and σ2 = 1 for

measurement error. We consider only p = q = 0.5. Hence, the simulation

results in Table 4.10 and Figure 4.16 are comparable with these in Table 4.6

and Figure 4.4. The profile plot of data with errors generated from Student’s

t5 distribution is given in Figure 4.15.

The effectiveness of clustering procedures for t5 data, shown in Table 4.10,

follows similar pattern as for the Gaussian case in Table 4.6. However, clus-

tering procedures with high signal-to-noise ratios σ2
θ/σ

2
η implemented on the

heavy-tailed data yields greater losses in terms of both misclassification and

trivial losses comparing with the data generated from the Gaussian model.

This is due to outliers; however, the losses are not very different. We con-

clude that our clustering procedures are not very sensitive to heavy-tailed

errors. From Figure 4.16, we deduce that our proposed methods are still
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significantly preferable to MCLUST applied on principal components.
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4.6 Correlated Observations

In Sections 4.2, 4.3 and 4.5 we studied the performance of clustering pro-

cedures for data generated from the Gaussian effects model, asymmetric

Laplace effects model and also when errors are generated from Student’s

t distribution. In the previous studies we considered independent variables,

replicated observations, and the existence of an experimental error hierarchy.

In this section we break all these assumptions and sample data from a model

that MCLUST is designed to handle. We activate two variables and apply

MCLUST twice, once on bivariate data, M∗, and once on data projected

using principal components after adding noise variables, M . Projecting data

loses clustering information (Chang, 1983), so the amount of information

lost by projection can be seen by comparing M with M∗. All of our proposed

approaches are applied on noisy data and unreplicated observations, that is

Rct = 1. Data are generated as follows. Unlike previous sections that ran-

domly sampled the number of clusters, here the number of clusters is fixed

to 3, generated on two variables. The first cluster is centred at Δ× (−1,−1),

the second at (0, 0), and the third at Δ × (1, 1). The scalar parameter Δ

is a measure of difficulty of clustering, chosen to be 3 or 6 for moderately

or completely separable clusters. The observations inside clusters are gen-

erated independently with the above mentioned means, unit variance, and

correlations equal (0, 0, 0), (−0.9, 0, 0.9), and (−0.9,−0.9,−0.9). Digits inside

parenthesis refer to correlation of the first, the second, and the third clus-

ter respectively, see Figure 4.17. Overall 40 observations are generated and

distributed in three non-empty clusters according to a uniform multinomial-

Dirichlet law. This produces the data to which the MCLUST method is

applied, denoted by M∗. Then 48 variables are sampled independently from

a standard Gaussian distribution, yielding noisy datasets that other proce-

dures are applied to. In order to see the effect of adding noise variables, an

independent simulation is implemented with 98 noise variables.

According to Table 4.11, the MCLUST method implemented on projected

data is the worst strategy in all cases using both loss functions except when

Δ = 3 and ρ = (−0.9,−0.9,−0.9) when method L is the worst technique,

caused by inefficient estimation of parameters. When all correlations equal
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zero, the performance of our proposed methods is very close to M∗ and

sometimes better. The loss values are smaller when the three clusters are

generated with equal and strongly negative correlation (−0.9,−0.9,−0.9).

The reason is that when all correlations are strongly negative, the clusters

are more separated, that is, if one calculates the average Mahalanobis dis-

tance between centre of clusters, it is highest when the correlations are all

equal −0.9. When data are completely separable, Δ = 6, often our proposed

methods are preferable to M and M∗. However, comparing our approaches

with M∗ is unfair because M∗ uses the true active variables which in practice

are unknown.

Figure 4.18 shows bar charts for different values of ρ and Δ. The active

variables are chosen to be the ones having positive log B10
v of the Gaussian

variable selection model (Gvs). Figure 4.18 proposes that the distribution of

the estimated number of active variables is right-skewed having a mode equal

2. When Δ = 3, then in about 70% of cases the right number of variables,

2, is reported and changing the correlation structure does not affect the

result much. When Δ = 6 in about 90% of cases two clustering variables

are reported. Therefore we conclude B10
v is a measure for finding important

clustering variables, but tends to over-estimate the number of active variables

too.

The simulation results of this section show that our clustering procedures

are as efficient as MCLUST, even after adding a lot of noise variables, con-

firming that our approaches are able to extract useful clustering information

which is dense in few variables. We conclude that without knowing the ac-

tive variables they perform almost as well as MCLUST applied to the true

useful variables. Furthermore adding 98 noise variables instead of 48 gives

a similar performance; compare Tables 4.11 with 4.12. In addition in both

tables, methods G0.01
p , G0.05

p , L0.01
p , and L0.05

p perform relatively well, because

the tuned value of p is close to the true value. It is hard to estimate the

model parameters, especially p, which plays a crucial role in clustering, when

a very large number of noise variables are added, so our approach may give

poor results in such situations. Therefore fixing q = 1 and tuning p may be

effective.
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4.7 Summary

From the simulations discussed in this chapter, we conclude that

• Our Gaussian and asymmetric Laplace procedures are more efficient

than MCLUST applied on two principal components.

• They are similar to MCLUST implemented on the true active variables

and sometimes better, even after adding a lot of noise.

• The proposed methods are relatively robust to outliers (Table 4.10) and

the assumption of independence of variables (Tables 4.11 and 4.12).

However, their performance is affected by poor parameter estimation,

as often happens for the asymmetric Laplace effects model.

• For fixed model parameters, the Gaussian and asymmetric Laplace clus-

tering are similar, confirming that the mixing distribution is not very

important.

• Estimating the proportion of active variables, q, is hard (Figure 4.11),

but it does not affect the clustering performance, because fixing q helps

a more precise estimation of the remaining parameters. One may fix

q = 1, then estimate or tune p to a reasonable value and get convincing

results. However, the resulting clustering is sensitive to a wrong choice

of p (Tables 4.6 and 4.9).

• Situations with the number of noise variables more than 100 are not

considered in simulations because it is hard to estimate the model pa-

rameters; we do not propose our clustering methods in such cases,

unless crucial parameters, such as p, are appropriately tuned.

• Finding important clustering variables using the Bayes factor B10
v is

an effective method and is robust with respect to the independence

assumption of variables, but may over estimate the number of active

variables.
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Chapter 5

Conclusion and Discussion

This research shows usefulness of a random effects parametric linear model

for clustering high-dimensional observations using a Bayesian approach. The

contribution of this work to clustering is the proposed model. However, the

linear models especially the fixed effects models are old and well-studied mod-

els (Rao, 2001; Graybill, 1976), reabsorbed attention in the recent decades

and found to be useful in analysing high-dimensional data (Efron et al., 2004).

Our proposed model can be generalised in various ways, but this may

disturb the analytical tractability of the marginal posterior and consequently

the implementation of a fast clustering approach may not be easily feasible.

Statistical inference using random effects models (Searle et al., 1992) and

mixed effects models (McCulloch and Searle, 2001) also is well-developed,

widely discussed and their theory is well-established. It is known that the

maximum likelihood estimators, especially the variance components, are sen-

sitive to the assumed mixing distribution (Heckman and Singer, 1984), so

Laird (1978) proposed parameter estimation using nonparametric maximum

likelihood. In our simulations we found that even if a right distribution is

assumed for the mixing components, it is sometimes difficult to get the max-

imum likelihood estimates for certain mixing distributions. Therefore one

direction of continuing this research could be the estimation of the param-

eters using nonparametric maximum likelihood. However, if the parameters

are estimated in a distribution-free manner it is not straightforward to es-

tablish a fast clustering method that incorporates variable selection with no
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assumption on the distribution of mixing components. This may be regarded

as another direction for future developments.

The parameters of our suggested models are estimated using maximum

likelihood. However, the estimation may become difficult when a few clus-

tering variables exists in data or distributional assumptions are wrong. In

order to help the optimisation routine, one may tune a few of the parameters

and estimate the others. Our experience with different datasets shows once

reasonable parameters are chosen, the clustering result is convincing.

One way of generalising the variable selection model (2.14) is selecting

a group of variables by including another Bernoulli variable. However, we

believe it will be more difficult to estimate the model parameters for such

models.

Another way of generalising model (2.14) is by selecting variables using

the cluster variance as well as the cluster mean, that is assuming a mixture

distribution for the measurement error variance or the experimental error

variance. In high dimensions often a small subset of variables are useful for

clustering and variables that are useless according to the first moment (mean)

are rarely useful according the second moment (variance). Furthermore, low

sample sizes often do not allow a reliable estimation of covariance matrix even

for the effective variables. We believe for high-dimensional data incorporating

variance complicates the model and slows down the clustering procedure, but

does not improve the clustering result considerably.

The proposed linear model is useful for clustering continuous data and

can be generalised for clustering categorised data through the generalised

linear models. However, it is not trivial to obtain closed form joint poste-

rior densities for generalised linear models. Therefore, fast clustering is not

straightforward and needs more research.

Sometimes genes are transcribed or metabolites are analysed during a spe-

cific period, hence time-dependent and high-dimensional data are produced.

It would be interesting to investigate if a similar approach can be applied to

cluster time series data and choose relevant variables simultaneously.

Stochastic optimisation methods such as Markov chain Monte Carlo are

not discussed in this thesis because according to our experience for low sample

sizes, dendrograms provide a good approximation to the posterior mode, but
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creating an efficient Markov chain to explore the space effectively is not

easy. Even if so, stochastic search provides no visual guide to other possible

groupings.

Simulations shows that if model parameters are reliably estimated, the

parametric distribution of the mixing components has a little effect on clus-

tering result but there is no theoretical argument explaining why this hap-

pens. Similar results is reported in Bhowmick et al. (2006) in classification.

Therefore research on robust model parameters estimation in clustering is de-

manded. More theoretical studies are also required about sensitivity of the

clustering result to a different parametric choice of the mixing distribution.

Clustering is an old data analysis technique but there are few theoretical

discussions on it (Hartigan, 1985), maybe because it is hard to study the

data grouping as a mathematical object. Model-based clustering by mix-

ture modelling was started few decades ago (McLachlan and Basford, 1988),

but statisticians have recently regarded the data grouping as a statistical

parameter to be estimated.

We do not have a well-established asymptotic theory for a clustering

method. Even if we have such a theory for a particular clustering procedure,

often such a theory is useless for high-dimensional-low-sample-size situations

due to overfitting; an example is the study of Bickel and Levina (2004) in

classification. The asymptotic result must be adjusted for the cases that

dimension increases with sample size and this might be regarded as another

direction of the future theoretical research in model-based clustering.

Penalisation using the L1 norm, the lasso of Tibshirani (1996), is found to

be useful for high-dimensional regression and classification (Park and Hastie,

2007). High-dimensional clustering using the L1 penalisation is proposed

by Wang and Zhu (2008), but they loose the tree representation of cluster-

ing. Their method is not automatic and appropriate choice of the penalising

constant is troublesome.

The clustering algorithm provided by this thesis is slow if the number

of clustering subjects exceeds 500 subjects, which is rare in metabolomic

and gene studies. The algorithm becomes slow when the number of sub-

jects increases because the dissimilarity measure, the marginal posterior, is

calculated using the original data. In order to provide a computationally
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efficient method one should apply a Lance-Williams type formula (Maechler

et al., 2005) for a model-based dissimilarity measure. That is evaluating the

dissimilarity measure for the next step of hierarchical clustering using the

previous dissimilarity values, preferably a linear combination of the previous

values with fixed coefficients. Bayesian models that provide such efficient

clustering algorithms have not been discussed.

Ensemble methods such as boosting and bagging have been proposed to

aggregate individually weak classifiers in order to obtain a more precise clas-

sifier. However, it is not clear how one can implement ensemble methods

in clustering because usually there is no information available about mis-

classified observations after grouping. Research on application of ensemble

methods in clustering has been recently started (Domeniconi and Al-Razgan,

2009).

The clustering algorithm proposed in this thesis uses a linear model with

disappearing random effect components. Linear random effect models have

already been suggested for Bayesian clustering (Heard et al., 2006). How-

ever appearance of the random effects in our model is controlled by Bernoulli

variables at two levels, the variable-cluster level, and the variable level. The

Bernoulli variables can be used to quantify the importance of the variable-

cluster and variables after fitting the model. As a consequence of our pro-

posed models, the marginal posterior density is analytically tractable and is

a convex combination of two densities, a density that guides the clustering

and another which down-weights the effect of useless variables. This is why

our clustering method is resistant to noise.

We are not the first to propose introducing Bernoulli variables to imple-

ment Bayesian variable selection in clustering. Kim et al. (2006) and Tadesse

et al. (2005) also suggested this method, but the marginal posterior of their

models is intractable. Consequently their model parameters cannot be es-

timated using data. Furthermore, their approach requires reversible jump

Markov chain Monte Carlo and hence is slow to fit. The dendrogram repre-

sentation, which usually practitioners are interested in, is not straightforward

either.

The provided methodology in this thesis is automatic, simple, fast, and

can sort variables according to their contribution in forming clusters. Our



167

clustering algorithm has two main advantages. The first is giving an impor-

tance measure for variables which can be re-expressed in probability terms.

The second is producing dendrograms with probabilistic interpretation. The

only competitive clustering method that is fast and gives the variable impor-

tances, is the COSA of Friedman and Meulman (2004). However the COSA

is not automatic and lacks a probabilistic interpretation for its dendrogram

and its variable importances.

The clustering prior used in this thesis prefers small number of clusters

and is exchangeable. Booth et al. (2008) argue that the prior proposed

in McCullagh and Yang (2006) enjoys a sort of consistency in addition to

exchangeability and it is feasible to tune a parameter of their prior such that

a small number of clusters is preferred a priori. It would be interesting to

study which prior works better in practice.
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