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Abstract

The aim of information-theoretic secrecy is to ensure that an eavesdropper
who listens to the wireless transmission of a message can only collect an ar-
bitrarily small number of information bits about this message. In contrast to
cryptography, there are no assumptions on the computational power of the
eavesdropper.

Information-theoretically secret communication has been studied for many
particular wireless network topologies. In the main part of this thesis, we
consider such communication for arbitrary acyclic wireless network topologies.
We provide lower and upper bounds on the strong perfect secrecy capacity for
the case when the channels of the network are either Gaussian or deterministic.
These results are based on the recent understanding of the capacity of wireless
networks (without secrecy constraints) by Avestimehr, Diggavi and Tse.

As a side result, we give inner and outer bounds on the capacity region
for the multisource problem in arbitrary wireless networks with Gaussian or
deterministic signal interaction. For linear deterministic signal interaction, we
find the exact capacity region. For Gaussian signal interaction, we are able
to bound the gap between the two bounds on the capacity region. This gap
depends only on the network topology, but not on the signal-to-noise ratio
(SNR), which leads to an approximation of the capacity region for the high
SNR regime.

We further consider a particular network topology, called the fan-network,
in which we assume that an eavesdropper has physical access to every node in a
subset of the relay nodes. We give a general upper bound on the perfect secrecy
capacity, and we characterize the perfect secrecy capacity for two special cases.

In the second part of the thesis, we consider interactive secrecy, i.e., se-
crecy in the presence of a public feedback link from the destination to the
source. We focus on the problem of secret key generation rather than secret
communication. The benefit of public discussion for secret key generation in
a broadcast channel was first shown by Maurer. We extend his ideas to a re-
lay network called the line network, leading to a lower bound on the strongly
secret key capacity for this network topology.

Finally, we introduce a new channel coding setup called the interference-
multiple access (IMA) channel. This channel is a variant of the interference



channel where one of the receivers is required to decode the messages from
both transmitters. We derive an inner bound on the capacity region of the
IMA channel, as well as an outer bound for the so-called structured IMA
channel. In a semi-deterministic version of the structured IMA channel, the
bounds match, providing a characterization of the capacity region. In the
Gaussian case, we obtain a 1 bit-approximation of the capacity region. We
also show an inner bound on the equivocation-capacity region for the IMA
channel, where we require that part of the private message for one receiver is
kept information-theoretically secret from the other receiver.

Keywords: information-theoretic secrecy, unconditional secrecy, wireless
relay networks, arbitrary topologies, deterministic model, Gaussian model,
multisource problem, public feedback, public discussion, secret key generation,
interference channel, interference-multiple access channel



Zusammenfassung

Der Zweck informationstheoretischer Geheimhaltung ist, sicherzustellen, dass
withrend einer drahtlose Nachrichten-Ubertragung ein Lauscher nicht mehr als
eine beliebig kleine Anzahl von Informations-Bits iiber die Nachricht sammeln
kann. Im Gegensatz zur Kryptographie machen wir hierbei keine Annahmen
iiber die Rechenleistung des Lauschers.

Dateniibertragung mit informationstheoretischer Geheimhaltung wurde in
den letzten Jahren fiir viele Netzwerk-Konfigurationen untersucht. Im Haupt-
teil dieser Dissertation behandeln wir solch geheime Dateniibertragung fiir
beliebige azyklische drahtlose Netzwerk-Konfigurationen. Wir bestimmen un-
tere und obere Schranken der streng definierten Geheimhaltungs-Kapazitat
unter der Annahme, dass die Kanale im Netzwerk entweder deterministisch
sind oder durch Gauss’sches Rauschen gestort werden. Dieser Teil der Disser-
tation baut auf den jiingsten Verdffentlichungen von Avestimehr, Diggavi und
Tse auf, in welchen die Kapazitit von beliebigen drahtlosen Netzwerken (ohne
Geheimhaltungs-Bedarf) untersucht wurde.

Als Nebenergebnis beschreiben wir innere und &dussere Schranken des Ka-
pazitats-Gebiets flir das “Mehrfachquellen”-Problem. Hier enthalt ein be-
liebiges drahtloses Netzwerk (mit Gauss’schen oder deterministischen Kanélen)
mehrere Datenquellen, welche ihre Nachrichten alle an denselben Empfanger
tibermitteln (ohne Geheimhaltung). Wenn die Kanéle deterministisch und li-
near sind, erhalten wir eine genaue Beschreibung des Kapazitats-Gebiets. Fiir
Gauss’sche Kanale konnen wir den Abstand zwischen der inneren und der
ausseren Schranke begrenzen. Dieser Abstand héngt von der Netzwerk-Konfi-
guration ab, aber nicht von der Signalstarke der Ubertragung, was bei hohen
Signalstarken zu einer Annédherung des Kapazitéats-Gebiets fiihrt.

Als néchstes betrachten wir eine bestimmte Netzwerk-Konfiguration, die
wir “Facher-Netzwerk” nennen. Hier nehmen wir an, dass ein Lauscher zu
einer gewissen Anzahl der Knoten des Netzwerks physischen Zugang hat, und
dass er deshalb die Signale, die von diesen Knoten empfangen werden, direkt
beobachten kann. Wir berechnen eine obere Schranke der streng definierten
Geheimhaltungs-Kapazitat fiir den allgemeinen Fall. Fir zwei Spezialfalle
konnen wir diese Geheimhaltungs-Kapazitat genau herleiten.

Im zweiten Teil der Dissertation betrachten wir interaktive Geheimhaltungs-

il



Methoden. Wir nehmen an, dass ein ungesicherter Riickmeldungs-Kanal vom
Empfinger zum Sender zur Verfiigung steht. Anstelle von geheimer Kom-
munikation interessiert uns hier eine etwas andere Fragestellung, namlich das
Erstellen einer geheimen Zufalls-Sequenz. Diese Sequenz, “Schliissel” genannt,
soll dem Sender und dem Empfanger bekannt sein, jedoch nicht dem Lauscher.
Maurer hat als Erster erkannt, dass ungesicherter, bilateraler Datenaustausch
beim Erstellen eines geheimen Schliissels mit Hilfe eines Rundfunk-Kanals von
Vorteil sein kann. Wir wenden diese Ideen auf ein kleines Netzwerk mit einem
weiterleitenden Knoten an. Fiir dieses sogenannte Linien-Netzwerk finden wir
eine untere Schranke der Schliissel-Geheimhaltungs-Kapazitat.

Letztendlich fithren wir ein neuartiges Kanal-Kodierungs-Problem ein, ge-
nannt “Interferenz- und Mehrfachzugriffs-Kanal” (IMZ-Kanal). Dieser Kanal
ist eine Variante des Interferenz-Kanals mit dem Unterschied, dass einer der
Empfanger die Nachrichten von beiden Sendern wiedergeben soll. Wir ermit-
teln eine innere Schranke des Kapazitats-Gebiets fiir den allgemeinen IMZ-
Kanal sowie eine dussere Schranke fiir den sogenannten strukturierten IMZ-
Kanal. Es stellt sich heraus, dass sich diese Schranken fiir eine halbdeter-
ministische Version des strukturierten IMZ-Kanals treffen, und wir erhalten
somit eine genaue Beschreibung des Kapazitats-Gebiets flir diesen Spezialfall.
Fiir den Gauss’schen IMZ-Kanal finden wir eine Annéherung des Kapazitats-
Gebiets auf ein Bit genau. Ferner beschreiben wir eine innere Schranke des
Geheimhaltungs-Kapazitats-Gebiets fiir den IMZ-Kanal unter der Bedingung,
dass ein Teil von der Nachricht, welche nur fiir einen Empféanger bestimmt ist,
vor dem anderen Empfanger geheim gehalten wird.

Stichworte: informationstheoretische Geheimhaltung, bedingungslose Ge-
heimhaltung, drahtlose Netzwerke mit weiterleitenden Knoten, beliebige Kon-
figurationen, deterministisches Modell, Gauss’sches Modell, Mehrfachquellen-
Problem, ungesicherte Riickmeldung, ungesicherter Datenaustausch, Erstellen
eines geheimen Schliissels, Interferenz-Kanal, Interferenz- und Mehrfachzugriffs-
Kanal
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Introduction

During the last two decades, a revolution has taken place in personal and cor-
porate communication. Many devices like telephones, computers, keyboards
or headphones, traditionally connected via cables, are now connected in a wire-
less manner. In many architectures, wireless technology is combined with a
wired backbone. However, especially in military applications, wireless relay
networks (e.g. sensor networks) that rely exclusively on the wireless medium
are already being implemented. In such networks, some of the nodes play the
role of relays, forwarding information from a predecessor to a successor in a
flow of information through the network.

Secrecy or privacy is an important requirement of many communication
applications. In some examples, communication without secrecy is literally
useless, for instance when exchanging a password. A fundamental aspect of
wireless communication is its broadcast nature, i.e., transmission from a node
can be overheard (albeit through different channels) at several locations. This
property makes wireless communication inherently vulnerable to eavesdrop-
ping by an adversary. In this thesis we restrict ourselves to the passive eaves-
dropper model, motivated by secure authentication protocols [47] which could
potentially discover an active eavesdropper.

Our work aims at finding theoretical lower and upper bounds on the secret
communication rate for point-to-point communication in wireless networks.
To ask this question we first need to specify the secrecy notion that we seek.
In 1949, Shannon introduced the notion of information theoretic secrecy [39],
when he studied whether communication from a source to a destination can be
kept secret from an eavesdropper who has complete access to the transmission.
Shannon did not make any assumptions on computational capabilities of the
eavesdropper. As one would expect, such a question resulted in the pessimistic
answer that unless the source and destination had somehow a large amount
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of common randomness (key) kept secret from the eavesdropper, the task was
impossible. In fact, the common randomness needed was of the same rate as
the source message itself, making the resulting communication schemes (e.g.
one-time pad) rather impractical.

This observation led to the computational approach pioneered by Diffie and
Hellman [12], where instead of having such a long shared secret key, a shorter
key is exploded into a larger one. The goal of the design is to guarantee that
there is no efficient algorithm for the eavesdropper to discover the informa-
tion transmitted. For example, the security of the well-known RSA public-key
cryptosystem [38] is based on the difficulty of factoring large integers, and
other cryptographic protocols are based on the difficulty of computing dis-
crete logarithms over groups (e.g. [12]). Both these protocols are based on
the (as of yet) unproven computational intractability hypothesis for these al-
gorithmic problems. Another potential problem with this approach might be
that theoretically, quantum computers could make difficult algorithmic prob-
lems tractable [41]. Clearly the secrecy of any communication system could
be enhanced if one could communicate even a small number of bits in an
information-theoretically secret way between a source and a destination. In
particular, one of our motivations is that we can potentially generate such a
secret message using physical wireless channel properties. Such a functional-
ity can be incrementally deployed in networks by passing this secret key to
the higher layers in the network protocol stack where it could then be used
to enhance the secrecy of cryptographic protocols. In this respect, the two
approaches to secrecy can be complementary, with the information-theoretic
secrecy used to provide further secrecy opportunities.

In wireless communication, even though the signal from the source is broad-
cast, it is received at the destination and the potential eavesdropper through
different channels. It is this distinction that is exploited in information-
theoretic secrecy for broadcast channels in the seminal work of wiretap chan-
nels by Wyner as well as Csiszar and Korner [48, 10]. However, not much is
known about the cooperative secrecy setup, where there are relay nodes facili-
tating secure communication between a source and a destination. In this case,
interference between signals from different relay nodes can be used to confuse
an eavesdropper. Relay nodes can even generate random signals in order to
“jam” the channel to the eavesdropper (this idea was introduced by Tekin and
Yener in [43]). However, there is a trade-off, because every jamming signal can
potentially hurt the legitimate decoder as well. Particular networks like the
relay channel or the multiple-access channel have been studied in [21, 43].

In the main part of this thesis, we examine this problem for an arbitrary
acyclic wireless network and provide provable secrecy guarantees. The same
question in the context of wired networks, where the nodes are connected
by independent point-to-point channels, was studied by Cai and Yeung [6].
The main difficulties in dealing with wireless relay networks are the broad-
cast nature of wireless communications as well as the fact that signals from
simultaneously transmitting nodes interfere with one another at other nodes.
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This gives rise to complex signal interactions making the understanding of
wireless networks difficult (even without secrecy requirements). Though there
has been some recent understanding in terms of scaling laws for asymptoti-
cally large wireless networks without secrecy, pioneered by Gupta and Kumar
[15, 49, 36], there has not been a complete understanding of communication
for the non-asymptotic regime. Our work develops on the recent study of
wireless network information flow by Avestimehr, Diggavi and Tse [3, 4, 5],
which approximately characterized the unicast (or multicast) capacity without
secrecy constraints. Our formulation asks a natural question of additionally
keeping such a cooperative communication secure against a class of potential
eavesdroppers.

Although information-theoretic secrecy is sometimes called “unconditional”
secrecy, the results that use this notion rely on an important assumption: the
channel to the eavesdropper is assumed to be known. In practice, this would
imply that the location occupied and the hardware used by the eavesdropper
is approximately known, which is not very realistic. One possible workaround
is to consider a class of eavesdroppers, each modeling one possible channel to
the unknown eavesdropper. This was for instance done in recent work on com-
pound wiretap channels [22] and we also adopt this strategy. If a continuous
range of eavesdropper channels is possible, then the class of eavesdroppers can
be thought of as being a “discretization” of this range.

The limits of information-theoretic secrecy can be described as follows. If
for the optimal transmission and relaying strategy, the signal at the eaves-
dropper is still stronger than the signal at the destination, then the secrecy
capacity is zero. This limit occurs in all known information-theoretic secrecy
setups. However, Maurer and later Ahlswede and Csiszar [28, 1] showed that
in such situations, a feedback link from the destination to the source can en-
able secret communication. The existence of feedback from the destination to
the source is a reasonable assumption for wireless relay networks, since wireless
channels are generally bi-directional, and hence, a backward transmission from
the destination is easy to implement. This fact, together with the encouraging
results by Maurer and others, motivates the study of secrecy protocols with
feedback for wireless networks. Towards this aim, we simplify the problem by
assuming that the backward transmission is over a perfectly reliable, authen-
ticated public channel, as in [28, 1]. One would expect that feedback which is
not public, 7.e., which yields different received signals at the source and at the
eavesdroppers, can only improve the situation compared to public feedback.
On the other hand, the assumption that the public feedback channel is of ar-
bitrarily large capacity is quite strong, and needs to be refined in future work.
The assumption that communication over the public channel is authenticated
can be motivated through the existence of secure authentication protocols.
Extensions to non-authenticated public channels might be possible, similarly
to [30, 31, 32]. However, we believe that assuming a public, infinite-capacity
feedback channel is an interesting first step.

The thesis is organized as follows.
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In Chapter 2, we give a table of notations and several important definitions,
as well as a description of the previous work of [5].

In Chapter 3, we provide lower bounds on the perfect secrecy capacity
for arbitrary acyclic network topologies with an arbitrary finite class of eaves-
droppers and an arbitrary finite number of noise-inserting relays. The (strong)
perfect secrecy capacity is the largest rate at which a source node can reliably
communicate to a destination node in the network such that only an arbitrar-
ily small number of information bits is leaked to any of the eavesdroppers. In
this achievability result, we use two different models for the interaction be-
tween different nodes of the network: a widely accepted Gaussian broadcast
and interference model as well as a deterministic interaction model introduced
in [2]. This deterministic model does not take receiver noise into account, and
hence provides good intuitions on the effect of interference. In particular, a
linear deterministic version of this model allows us to find coding schemes for
example networks in a straight-forward way. The intuitions gained through
these examples can be valuable in the design of communication protocols. In
addition, the lower bound for deterministic interaction is valid even for cyclic
networks. We also provide a simple upper bound on the perfect secrecy ca-
pacity for arbitrary wireless relay networks. As an auxiliary result, we present
inner and outer bounds on the capacity region of a multisource problem in
wireless networks (without secrecy). For linear deterministic signal interac-
tion, these bounds match and for Gaussian signal interaction, we show that
the gap is constant with respect to the signal-to-noise ratio. We presented
these results in our publications 3. and 5. (see CV at the end of this thesis).

In Chapter 4, we focus on a particular topology called the “fan network”,
where the source node is connected to all the relay nodes through one broad-
cast channel. The destination node collects data from all the relays through
one multiple-access channel. The situation here is that we assume that each
possible eavesdropper can capture a given subset of the relay nodes and ob-
serve the received signals of those nodes, without however being able to alter
their operations (passive eavesdropper). By defining this particular setup, we
sidestep several difficulties that can be present in a general network. For in-
stance, interference occurs only at the destination, and hence, the cooperation
between relays can not be used to confuse any eavesdroppers. We provide a
general upper bound on the perfect secrecy capacity for the fan network. In
two special cases, this bound is shown to be tight, hence yielding a character-
ization of the perfect secrecy capacity.

In Chapter 5, we consider secret communication in a wireless network with
feedback. The feedback link is modeled as a public link from the destination
to the source and the eavesdropper. In this chapter, the aim is to establish a
secret key shared by the source and the destination, rather than secret com-
munication of a message from the source to the destination. Performance is
measured through the rate of this key. We restrict our attention to the simplest
relay network, which is the line network with one relay and one eavesdropper.
We find that in contrast to the broadcast channel, the common randomness
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established between the source and the destination after the forward transmis-
sion of an i.i.d. sequence over the network does not resemble the output of
a discrete memoryless source. Hence, to be able to use a structured binning
strategy during the public backward transmission, we first need to compute
the sizes of the lists of possible received sequences at the destination from the
point of view of the source and the eavesdropper. These results could be of
independent interest. Using these results, we provide a lower bound on the
secret key capacity for the line-network with feedback. This work was first
presented in 6. (see CV at the end of the thesis).

In Chapter 6, we present a particular small network (or channel) called
the interference-multiple access (IMA) channel, which is a modification of the
interference channel. It is defined by two transmitters and two receivers. As
in the interference channel, each transmitter sends an independent message.
However, we assume that one receiver is required to decode the message from
one of the transmitters, while the other receiver is required to decode both
messages. This setup is new and is not a special case of the interference
channel. We provide an inner bound on the capacity region (without secrecy
constraints) for the general IMA channel, an outer bound for a certain class
of so-called structured IMA channels, as well as an expression for the gap
between the inner and outer bound for structured IMA channels. We show
that for a semi-deterministic channel, the bounds match, yielding a complete
characterization. We also show that for the Gaussian IMA channel, the gap is
at most 1 bit. These approximation results are inspired by recent results on
the interference channel [44, 13]. Finally, we ask whether the private message
(decoded only by one of the receivers) can be kept information-theoretically
secret from the other receiver. We provide an inner bound on the equivocation-
capacity region for general IMA channels, and we also show a special case
where a code that was not designed for secrecy still provides a certain amount
of “unintentional” secrecy. The results on the IMA channel appeared in 2.
(see CV at the end of the thesis).






Definitions and
Preliminaries

2.1 Notation

»

QOO0 ®™ =R x

)
x>

o9

definition

relative equality, defined as f(n) = g(n) < % —lasn— o0

0-exponential equality, defined in Definition 5.13

approximate equality, used to state that the equality can be made
arbitrarily precise by appropriately choosing some parameter

set of all relay nodes of a network

”constant” that depends on the number of nodes in the network, O (|V|)
”constant” that depends on the number of nodes in the network
and on the maximum out-degree, O (d|V|?)

set of all noise-inserting relay nodes of a network

a junk (or noise) rate

capacity of a wireless network (without secrecy)

cut-set upper bound on the capacity of wireless networks

weak perfect secrecy capacity of a wireless network

(weak) p-almost perfect secrecy capacity of a wireless network
strong perfect secrecy capacity of a wireless network

strong secret key capacity for the line network

”constant” that depends on the number of nodes in the network
and on the maximum out-degree, O (d|V|)

maximum out-degree of any node in a network

set of all destination nodes in a network

a particular destination node
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set of all eavesdroppers

a particular eavesdropper

block encoding function at node ¢

decoding function for Receiver ¢ in the IMA channel
auxiliary quantity used in the main results of Chapter 3,
where 1 = D, FE

auxiliary set used in the Gaussian diamond example of
Chapter 3

channel function at node j for deterministic wireless networks
wireless relay network, G = (V, L)

channel transform matrix in linear deterministic signal
interaction

entropy in bits

differential entropy in bits

mutual information in bits

all “predecessors” of node 7 in a network

junk message

number of stages in an unfolded network

constant used in some capacity theorems

annotated channels of a network

number of layers in a layered network

set of all Z-j-cuts, see Definition 2.19

factor used in Gaussian signal interaction, see Definition 2.21
base-2 logarithm

used in two different contexts, once denoting a special
message, and once denoting a large integer

large integer used in the relation 7, = (N + L)T

a subset of V denoting a cut (£2,Q°)

Gaussian product distribution, see Definition 2.21
time-sharing random variable

number of bits of one symbol in a binary expansion

an information rate

a (weak) equivocation rate

a (strong) secrecy rate

information-theoretic min-cut between Z and j

for discrete signal interaction (see Definition 2.20)
information-theoretic min-cut between Z and j

for Gaussian signal interaction (see Definition 2.21)
the capacity region of the IMA channel

constant used in the definition of p-almost perfect secrecy
set of all source nodes in a network

a particular source node in a network

standard deviation of X
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T block length of a block code

T, the communication length of a code
(for a block code run N times, T, = (N + L)T)

75(X) set of all robustly o-typical sequences with respect to X
(see Appendix F)

Ts short form for 75(X), where it should be clear from the

context which random variable we refer to

set of all nodes of a network

information message for a block code

information message for an arbitrary code

(for a block code run N times, W = (WM . . WM))

a random variable

alphabet of the random variable X

tuple of random variables (X;), i € V

a deterministic value

a random sequence of length T'

a random sequence of length T,

a deterministic sequence of length T

the t™* component of x

a random variable, independent of everything else

set of all plausible transmit sequences at node i

under message w
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set of all plausible quantized sequences at node i
under message w
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2.2 General Definitions

2.2.1 Wireless Networks and Reliable Communication

This thesis treats the problem of secret communication over wireless relay
networks. A wireless relay network is given by a certain number of nodes,
connected via memoryless channels.

Definition 2.1 A discrete memoryless channel is defined by a finite
transmit alphabet X, a finite receive alphabet Y, as well as a conditional prob-
ability mass function pyx(y|lr) for v € X and y € Y. For a continuous
memoryless channel, the receive alphabet is continuous, the transmit al-
phabet is either discrete or continuous, and the statistics of the channel are
given by a conditional probability measure p(-|z) on Y for every x € X. The
channel has no memory, meaning that at each use, the channel acts indepen-
dently of other channel uses.

The channel defined here is not necessarily a point-to-point channel, because
the alphabets X and ) can well be the Cartesian products of the alphabets
of a number of users (or nodes). Note that in this thesis, the only continuous
memoryless channel we consider is the Gaussian channel, where A and ) are
powers of C.

Definition 2.2 A wireless relay network is defined using a pair G = (V, L),
where V is the set of vertices representing the communication nodes in the relay
network and L is the set of annotated channels between the nodes, which de-
scribe the signal interactions. We consider a special node S € V as the source
of the message which wants to communicate to another special node D € 'V
(the destination) with the help of a set of (authenticated) relay nodes A C'V in
the network. The relay nodes that are allowed to generate randomness (inde-
pendently of the other nodes) are called noise inserting nodes and denoted
by the subset B C A. For any node i € V, we define In(i) to be the set of
predecessors of i, i.e., all the nodes j € V such that (j,1) € L.

Note that the channels £ are not point-to-point links, rather, they model how
the transmitted signals are superimposed and received at the receiving nodes
(i.e., there is broadcast and interference). In some of our results and proofs,
we make the distinction between layered and non-layered networks.

Definition 2.3 A wireless relay network is layered if for every (i,j) such
thati € {SYUB and j € V, all the paths from i to j have the same length (the
same number of hops in L). A mon-layered network is a network in which
at least one node pair (i,j) does not have this property.

Most Gaussian results in this thesis are only valid for acyclic networks.
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Definition 2.4 A wireless relay network is acyclic if there is no node i € V
such that there is a path from i to itself, where a path is defined by a sequence
of hops in L.

To communicate a message from S to D, the channels of the network can be
used several times in a row. We assume that all the nodes in V are synchronized
and that time is divided into time slots, which are the time instances at which
the channels can be used (simultaneously by all the nodes). Note that relay
nodes in the network may forward information received at one time slot only
during the next time slot (at the earliest), hence introducing a delay in the
information flow through the network.

Definition 2.5 Let W € W be the message at the source node S, and assume
that W is uniformly distributed in the discrete, finite message alphabet VV.
Assume that time is divided into time slots, and that the transmission of a
message starts at time 1. A (T, €)-code is a set of possibly random functions,
each assigned to a certain node i € V and a certain time t. At time t, the
source node uses a function that maps from W to Xg[t]. For node i € V,
its function at time t maps from (Y;[1],..., Y[t — 1]) to X;[t]. The variable
Yi[t] denotes the symbol received by node i at time t, and X;[t] denotes the
symbol transmitted by node 1 at time t. The communication length T, is
defined as the fized time slot at which the destination decodes. To decode, the
destination node D applies a function to (Yp[l],...,Yp[T]) in order to obtain
an estimate W of the message. We assume that after time slot T, all the nodes
stop processing the current message, and a new run of the code can start. We
require the code to be e-reliable in the usual sense that P(W # Q) <e.

Note that in this definition, we assumed that the source node S does not
receive any information from other nodes. This assumption does not reduce
the generality of our results, because a source node which receives a signal
can always be modeled as two nodes, one of which observes the source and is
connected via a high quality link to the other node, which processes all the
wireless signals.

In all of our achievability proofs, we relate a given network to a layered net-
work through time-expansion (or unfolding, see Appendix A.12). For layered
networks, we use the notion of a block code as defined next.

Definition 2.6 Consider a layered network. Let a block length T be given,
and assume that we divide time into blocks of T time slots. Let W™ € W be
the message transmitted by the source node S during the n™ block, and assume
that W™ s uniformly distributed in the discrete, finite message alphabet W
for alln > 1. A (T,e)-block code is a set of possibly random functions f;,
each assigned to a certain node © € V. Before transmitting the first block, the
function fs at the source node maps from WO to Xg(WW)), which is a se-
quence of length T. Then S uses the first T time slots to transmit Xg(W®).
Each relay node i in the first layer of the network waits until the end of the
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first block of T time slots. Then, its function f; maps from the length-T se-
quence Y;(WW)) to X;(WW). During the second block of T time-slots, node i
transmits X;(WW). Hence, if the destination D is in layer L of the network,
then D receives a sequence Y p(WW)) that contains information about W1
during block L. The destination then immediately declares W(l), which 1s a
function of Yp(WW), only. We require the code to be e-reliable in the usual
sense that P(W™ % W) < ¢ for alln = 1,.... It is plain to see that the
source S can start transmitting Xs(W®)) right after Xg(W M), i.e., sequences
that carry information about subsequent messages follow each other back to
back through the network. Since the network is layered, the information about
different messages never gets mized.

Assume that we run a block code for N consecutive messages. If we define
W& (WM W) then we realize that a (T, ¢)-block code is a (T, Ne)-
code, where T, = (N + L)T because D declares the last message estimate
W) after N + L blocks. If N grows large, the error probability P(WW #
E) is unbounded, but by information reconciliation techniques like the ones
discussed in Appendix E, this problem can be overcome.

The communication throughput is measured in bits per uses of the network
channels, or equivalently in bits per time slot.

Definition 2.7 The communication rate of a given (1., €)-code is defined
as

SH(I) = 7 log W)

JR— = — 10
T, T
where the identity is true because we assume that W is uniformly distributed
i W. Here and throughout the thesis, logarithms are base 2.

We also refer to the communication rate as simply the “rate”. Note that for a
(T, €)-block code run over N + L blocks (for N messages), the rate is

1 1
— 1 = — 1 N
N 1
= —1
N7 e

1
- T lOg ‘W‘a

as N grows large. Hence, we can use the following asymptotically equivalent
definition for a block code.

Definition 2.8 For a (T ¢)-block code, we define the communication rate
as

1
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2.2.2 Secrecy

We assume that eavesdroppers might be present in the network.

Definition 2.9 An eavesdropped node FE is a reqular node, whose encoding
functions are under our control. However, an eavesdropper has access to all the
symbols received by this particular node. We denote the set of all eavesdropped
nodes by &.

We also refer to an eavesdropped node E as an “eavesdropper”.

The aim is to keep all or part of the message W unconditionally secret
from the eavesdropper. The notion of unconditional or information-theoretic
secrecy is defined as follows.

Definition 2.10 Given a (T, €)-code, the equivocation rate is defined as

L nin HOV[Y ),

T, Beg

where Y , = (Yg[l],...,Yg[T.]) is the sequence of all received symbols at E.

In this thesis, we also refer to the equivocation rate as simply the “equivoca-
tion”. Again, for block codes, we can redefine the equivocation as
1 minpee H(W|Yg), where W stands for any message W™ and Yp is the
received sequence Y (W ™).

Now, we are ready to define the notion of achievability.

Definition 2.11 A pair (R, R.) is called weakly achievable if R > R, and
for any € > 0, there exists a communication length T, and a (T, ¢€)-code (or a
block length T and a (T, €)-block code) of rate at least R — € and equivocation
rate at least R, — €.

This notion is called “weak” achievability for reasons that will soon become
clear.

By “perfect secrecy”, we mean a situation where a rate-equivocation pair
(R, R.) such that R = R, is achievable. In most parts of this thesis, we
restrict our attention to such cases. For Gaussian signal interaction and weak
achievability, we use the even weaker notion of “almost perfect secrecy”, where
the equivocation R, is not more than a constant p away from R.

Definition 2.12 The (weak) p-almost perfect secrecy capacity C? of a
network is defined as

CP 2 max{R: (R, R — p) is weakly achicvable}.
The weak perfect secrecy capacity C is defined as

C, = C°.
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The weakness of this definition is the following. Assume that C; > R for some
R > 0. Then, from Definition 2.12, we know that there exists a (7, €)-code
that is such that T%H (W) > R — € and for every eavesdropper E € &,

1 1
iH(E|XE) > iH(E) — €

It follows that H(W|Y ) > H(W) — T, €, i.e., as the communication length
T, grows, the number of bits that we leak to an eavesdropper is not bounded.
The following definitions avoid this problem.

Definition 2.13 A secrecy rate R, is called strongly achievable if for any
€ > 0, there exists a communication length T, and a (T, €)-code (or a block
length T and a (T, €)-block code) of rate at least Ry — € and equivocation rate
at least T%(H(ﬂ) —¢€) (or £(H(W) —€) for a block code).

Note that in Definition 2.13, we require that for any eavesdropper FE, H(W|Y )
H(W) — e. Hence, the number of bits leaked to any eavesdropper is bounded
by €, no matter how large 7. gets.

Definition 2.14 The strong perfect secrecy capacity C, of a network is
defined as

C, £ max{R, : Ry is strongly achicvable}.

Several of our results are lower bounds on C, for different networks. If for
some R,, we can show that Cy > R, , then this means the following. We
can guarantee that there exists a code that reliably communicates a message
whose rate can be made arbitrarily close to R4 by choosing T, large enough. In
addition, by choosing T, large enough, H(W|Y ) can be made arbitrarily close
to H(W) for all eavesdroppers E € &, hence making sure that an arbitrarily
small number of bits is leaked to each of the eavesdroppers. This is in contrast
to weak secrecy, where an arbitrarily small number of bits per channel use is
leaked.

If we want to extend the notion of strong secrecy to the case where only
part of the message is kept secret, we need to explicitly consider two messages,
one that is kept secret and one that is given away.

Definition 2.15 A pair (R, Rs) is called strongly achievable if R > R;
and for any € > 0, there exists a block length T, and a (T, €)-code for two
messages (W, W) such that

1
—HW,W,) > R—e,

1
TH<ES) Z Rs — €

and for any E € &,
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2.2.3 Signal Interaction Models

In some of our results, we restrict our attention to one of the following two
signal interaction models (channel models).

In the well-accepted Gaussian interaction model [45], transmitted signals
get attenuated by (complex) gains to which independent (Gaussian) receiver
noise is added. More formally, we have the following definition:

Definition 2.16 In Gaussian signal interaction, the received signal Y;
at node j € V at time t is given by,

Yl = Y hiXilt] + Z[t), (2.1)

i€In(j)

where h;; is the complex channel gain between node i and j, X;[t] is the signal
transmitted by node i at time t, and In(j) is the set of nodes that have non-zero
channel gains to j. We assume that the average transmit power constraints for
all nodes is 1 and the additive receiver Gaussian noise Z;[t] is of zero mean
and unit variance and independent over j and t.

Note that X;[t] is a random variable because the encoder at node i is a possibly
random mapping from random information to X;[t].
In [3], the following deterministic model for wireless interaction was intro-

duced.

Definition 2.17 In deterministic signal interaction, the received signal
Y;[t] at node j € V at time t is given by

Yilt] = g9;({Xiltl e i), (2.2)

where In(j) is the set of input neighbours of the node j, and g; is a deterministic
function.

In [2], a simpler deterministic model which captures the essence of wireless
interaction was developed, called linear deterministic signal interaction. The
advantage of this model is its simplicity, which gives insight to strategies for the
noisy wireless network model in Definition 2.16. The linear deterministic model
simplifies the Gaussian interaction model in (2.1) by eliminating the noise and
modeling the symbols and channel gains by a binary vector of dimension ¢
which somewhat resembles a binary expansion over ¢ bits of real numbers.
More precisely, the received signal Y;[¢] is modeled as follows.

Definition 2.18 In linear deterministic signal interaction, the received
signal Y;[t] at node j € V at time t is given by

Vil = ) GiXi[t), (2.3)
ieIn(j)

where X;[t] and Yj[t] are binary vectors of dimension q and G;; is a q X q
binary matriz representing the (discretized) channel transformation between
nodes i and j. All operations in (2.83) are done over the binary field.
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Note that this model is not equivalent to a discretization of the Gaussian signal
interaction model, because the “carry-over” bits are ignored when computing
additions.

An illustration of this deterministic model is given in Figure 2.1 for the
broadcast and multiple access networks. The left illustration in Figure 2.1
shows a deterministic model of the broadcast channel, where the channel from
the transmitter to Receiver 1 is stronger than that to Receiver 2. This is
represented by the linear deterministic model with the 5 most significant bits
(MSB) of the transmitted signal captured by Rx 1 and only the 2 MSB of
the transmitted signal captured by Rx 2. The deterministic model of the
multiple access channel shown on the right hand side of Figure 2.1 adds one
more ingredient, which is how the bits from two transmitting nodes interact
at a receiver. The channel from Tx 1 to Rx is stronger than that of Tx
2. Therefore, the interaction is between the 2 MSB of Tx 2 with the lower
significant bits of Tx 1, and the interaction is modeled with an addition over
the binary field (i.e., xor). This interaction captures the dynamic range of
the signal interactions. It was shown in [2], that this model approzimately*
captures the Gaussian interaction model of Definition 2.16 for the broadcast
and multiple access channels. For general networks the linear deterministic
model yields insights which, when translated to the noisy wireless network,
lead one to develop cooperative communication strategies (without secrecy
constraints) for the model in Definition 2.16, which are approximately optimal
[4].

Figure 2.1: The linear deterministic model for a Gaussian broadcast channel (BC)
is shown on the left and for a Gaussian multiple access channel (MAC) is shown
on the right.

IThe approximation is in the sense that the capacity region of the linear deterministic
model is within 1 bit of the capacity region of the Gaussian counterparts.
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2.2.4 Information-Theoretic Min-Cut

Several results of this thesis are expressed in terms of information-theoretic
min-cuts.

Definition 2.19 ForZ CV and j € V, define A(Z; j) to be the set of all cuts
(Q,Q°) that separate T from j. More precisely, N(Z;j) is the set of all Q C'V
such that Z C Q) and j € Q°.

Definition 2.20 Consider a wireless relay network with discrete signal alpha-
bets. For a given transmit distribution p({x;}icy), for givenT CV and j € V,
we define the information-theoretic min-cut between I and j as

Rz.:(p) £ min [(Xq:Yqe
7.(D) ol (Xq; Yo

Xae), (2.4)

where Xy, is governed by p and Yy s the tuple corresponding to the channel
outputs.

Definition 2.21 Consider a wireless relay network with complex signal al-
phabets and Gaussian signal interaction as defined in Definition 2.16. Let the
transmit distribution [],., p(x;) be the i.i.d. Gaussian distribution on cV
such that X; ~ CN(0,1). For givenZ CV and j € V, we define

RS 2 min I(Xq; Yo
7o = iy (e o

Xae), (2.5)

where for every i € V, we define

and the constant \; and the random variable & are defined as follows. Define

02 -1 . . . .
AN = ?T, where 032/1_ 1S the variance of the Gaussian random variable Y;.
Y

Note thag 032/1_ > 1 because Y; is defined as Z; plus other independent random
variables and Z; has unit variance. Define & ~ CN (0, O'é), independent of all
other quantities, with of, = (1 — A7)0y, — 1.

2.3 Preliminaries

In this section, we state several preliminary results on the unicast capacity of
wireless relay networks. Secrecy is no concern in these results.

Definition 2.22 Let a wireless relay network as defined in Definition 2.2 be
giwen. The capacity C' of the network is the largest number R such that for
any € > 0, there exists a (1., €)-code of rate at least R — e.

In [9], Cover and Thomas describe a well known upper bound on the capac-
ity in arbitrary wireless relay networks, called the cut-set bound. We repeat
the result here.
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Theorem 2.1 For an arbitrary wireless relay network as defined in Definition
2.2 the capacity is upper bounded as

C<C#% max Rg. ,
o, Bsin(p)

where Rg.p(p) is defined in Definition 2.20.

When the signal alphabets are real, the theorem still holds, with p denoting a
probability density function.

In their recent work, Avestimehr, Diggavi and Tse took a new approach to
the study of the capacity of wireless networks. First, they used deterministic
signal interaction (Definition 2.17) to model broadcast and interference in wire-
less networks, without being concerned about noise. They found the following
lower bound on the capacity for arbitrary deterministic network topologies [3].

Theorem 2.2 For an arbitrary wireless relay network with deterministic sig-
nal interaction (Definition 2.17), the capacity is lower bounded as

C' > max Rgs.p(p),

HiEV p(xl)
where Rg.p(p) is defined in Definition 2.20.

Note that this bound is in general different from the cut-set upper bound,
because the maximization is only over product distributions on the trans-
mit alphabets. When the signal interaction is linear deterministic (Definition
2.18), this lower bound matches the cut-set upper bound, providing the exact
capacity.

Theorem 2.3 For an arbitrary wireless relay network with linear determinis-
tic signal interaction (Definition 2.18), the capacity is given by

C:RS§D<]§)7
= min rank (Gggqe),
QeEA(S;D)

where p is the i.i.d. uniform distribution on Xy .

The matrix Ggoe is a block matrix consisting of [Q2¢] x || blocks, each of
dimension g x ¢. Block (7,7) of this block matrix is equal to the channel
transfer matrix G;;, where j € © and 7 € Q°. Theorems 2.2 and 2.3 can be
found in [3] and [5].

The intuitions gained from the deterministic models were then applied to
Gaussian signal interaction, leading to the following result.

Proposition 2.1 For an acyclic wireless relay network with Gaussian signal
interaction (Definition 2.16), the capacity is lower bounded as
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where RgD is defined in Definition 2.21, and 3 = O (d|V|?) depends only on
the number of nodes and on the mazimum out-degree d of the nodes in the
network.

This result was shown in [4] and [5], together with the following theorem,
that provides an approximate characterization of the capacity for Gaussian
relay networks.

Theorem 2.4 For an acyclic wireless relay network with Gaussian signal in-
teraction (Definition 2.16), we have

C—-rk<C<C,

where C' = MAax[],_ p(x:;) Rs;p(p) is the cut-set upper bound, and k = o + 3,
with o = O (|V|) and 8 = O (d|V]?).

The power of this approximate description is that the gap k between upper and
lower bound does not depend on the signal-to-noise ratio (SNR). The cut-set
bound C' grows logarithmically with the SNR, and hence, the importance of
the gap decreases in the high SNR regime. Note that the gap characterization
could be further sharpened. This yields a universal approximation which is
valid for arbitrary wireless networks.

Several of our results rely on the techniques introduced by Avestimehr,
Diggavi and Tse. In particular, we use some of the techniques from [5] to
prove multisource results given in Chapter 3.






Secrecy for Arbitrary
Wireless Networks

3.1 Introduction

In this chapter, we consider information-theoretically secret communication for
arbitrary wireless relay networks. We assume that eavesdroppers are passive
and that all the relays are authenticated.

Information-theoretic secrecy for wireless networks has been introduced by
Wyner in his work on the wiretap channel [48], which is essentially a discrete
memoryless point-to-point channel with one eavesdropper. Wyner found the
(weak) perfect secrecy capacity for this setup under the assumption that the
eavesdropper’s observation is a noisy version of the signal observed at the
destination. Csiszar and Korner generalized this to the case where the signals
at the eavesdropper and the destination are obtained from the transmitted
signal through an arbitrary broadcast channel [10].

There are three main issues that limit the practical use of the wiretap
channel results: First, the assumption that the channel to the eavesdropper
is known is not realistic, because it would imply knowing the approximate
location and hardware of the eavesdropper. Second, even if we assume that
the physical (wireless) channel to the eavesdropper is known, it is unrealistic
to assume that she would base her estimate of the message on a discretized
and memoryless version of the channel output. Third, the secrecy guaranteed
by [48, 10] is weak in the sense that the number of information bits leaked to
the eavesdropper might grow with the block length T' (see Section 2.2 for a
precise definition). The wiretap channel results have been strengthened in the
above three respects by several different contributions.

One possible improvement regarding the first issue (eavesdropper channel
uncertainty) is to consider a class of possible eavesdropper channels. If the
class, albeit finite, is sufficiently large, it can provide a reasonable approxima-

21
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tion for a continuous range of the true eavesdropper channel. The compound
wiretap channel studied by Liang, Kramer, Poor and Shamai in [22] shows that
the perfect secrecy capacity can be lower bounded for the wiretap channel with
a class of eavesdroppers. For degraded compound wiretap channels, the lower
bound given in [22] is tight. This work was extended by Liu, Prabhakaran
and Vishwanath in [26], where the secrecy capacity was found for a class of
non-degraded parallel Gaussian compound channels.

Let us explain the second issue in more detail. In wireless communica-
tion, an electromagnetic waveform is produced by a transmit antenna and
captured by a receive antenna elsewhere. A discrete memoryless channel like
the binary symmetric channel models the transition from a sequence of trans-
mit bits to a sequence of received bits, hiding all the intermediate phases of
encoding into constellation points, modulating to a waveform, transmission,
signal attenuation, noisy reception, and finally demodulation and decoding.
While such a discrete channel might be a good model for the received sym-
bols at the destination, there is no reason to assume that the eavesdropper
follows the same demodulation and decoding steps. However, one can show
that for common modulation schemes (e.g. pulse-amplitude modulation on
shift-orthogonal waveforms) a projection of the received waveform using a
matched filter yields a sufficient statistics. Hence, it is reasonable to assume
that the eavesdropper will perform such a matched filter operation to trans-
form the continuous-time waveform into a discrete-time sequence of real or
complex numbers. It follows that the Gaussian signal interaction model (see
Definition 2.16) is actually a reasonable model when dealing with an eaves-
dropper in wireless communication. The assumption that the channel to the
eavesdropper is memoryless is a standard assumption in all previous work on
information-theoretic secrecy, and we use it for the sake of tractability. Sev-
eral Gaussian (multi-antenna) versions of the wiretap channel problem have
recently been solved by Khisti, Wornell, Wiesel and Eldar [19, 18, 17], by
Oggier and Hassibi [33] and by Liu and Shamai [27], respectively.

The third issue (weak secrecy) has been resolved by the work of Maurer
and Wolf [29] for the case when the source and the destination wish to generate
a secret key. Indeed, by using extractors, it is possible to transform a weak
secret key into a strong secret one without sacrificing any rate. In Appendix
E of this thesis, we make the additional observation that if the extractor is
invertible, then the same technique provides strongly secret communication.
(The same idea is also used by Cheraghchi, Didier and Shokrollahi in [7] to
provide strong secrecy in linear wiretap systems.)

Recently, a considerable effort has been made to find upper and lower
bounds on the perfect secrecy capacity for wireless networks with more complex
topologies than the wiretap channel [21, 43, 23, 25, 34]. The results suggest
that obtaining a characterization of the perfect secrecy capacity for the case
when relays are present in the network is a difficult task.

In this chapter, we consider secret communication over arbitrary wireless
networks. We address all three issues that we explained above. More precisely,
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we find bounds on the weak and strong perfect secrecy capacity when a class
of eavesdroppers is present and signal interaction is Gaussian (but memory-
less). Our results build upon the recent work by Avestimehr, Diggavi and
Tse that we summarized in Section 2.3. We first provide a lower bound on
the perfect secrecy capacity for arbitrary networks with deterministic signal
interaction, and a similar bound for arbitrary acyclic networks with Gaussian
signal interaction. As explained above, the deterministic interaction model is
not directly applicable in practice. However, we show through examples that
our deterministic result, especially when the signal interaction is linear, can
provide valuable insights for the design of codes in general. We also provide
an upper bound on the perfect secrecy capacity that is valid for both types of
signal interaction.

A second contribution of this chapter is a study of the so-called multi-
source problem in wireless relay networks, where several source nodes observe
independent data sources and wish to communicate them reliably to the same
destination without secrecy requirements. We first derive a cut-set type outer
bound on the multisource capacity region for arbitrary networks and any type
of signal interaction. For deterministic signal interaction, we find an inner
bound on the capacity region for arbitrary networks, and we show that it
matches the outer bound for linear deterministic signal interaction. In the
Gaussian case, we find an inner bound on the capacity region for acyclic net-
works, which yields an approximation of the true capacity region in the sense
that the gap between inner and outer bound is bounded by a constant num-
ber of bits. Like in the results by Avestimehr, Diggavi and Tse (Section 2.3),
the constant depends on the number of nodes in the network, but not on the
signal-to-noise ratio. The achievability parts of these multisource results play
an important role in the proof of the lower bounds on the perfect secrecy
capacity.

The chapter is organized as follows. Since most of the definitions have
already been presented in the previous chapter, the problem statement in Sec-
tion 3.2 is short. We present the lower and upper bounds on the perfect secrecy
capacity in Section 3.3. Section 3.4 presents several linear deterministic exam-
ple networks, as well as a small Gaussian network called the diamond network.
These examples illustrate different secret communication schemes. Section 3.5
contains our results for the multisource problem. The corresponding proofs
are given in Appendix A. In Section 3.6, we give proof outlines of the main
secrecy results, which rely on the multisource achievability.

3.2 Problem Statement

We consider transmission over a wireless relay network G = (V, £) as described
in Definition 2.2. We do not impose any constraints on the topology of the
network.

Let B C A be the set of all noise-inserting nodes, i.e., the relay nodes
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that are allowed to insert noise into their transmission by using a random
encoding function. All the relay nodes in A\ B are required to use deterministic
encoding functions. Without loss of generality we assume that this is done by
generating a random message of arbitrary rate that is used, together with the
past received symbols, as an input of a deterministic encoding function. These
noise messages need not be decoded by the destination D.

The secrecy is with respect to a set of possible passive eavesdropper nodes
E C V where £ is disjoint from {S, D}. We want to keep all or part of the
message secret if any one of the possible eavesdropper nodes E € £ listens
to the wireless transmissions in the relay network!. Note that the class of
eavesdroppers that we define is finite, i.e., we assume that all possible eaves-
droppers and their channels can be enumerated. If there is a continuum of
possible eavesdropper channels, our model can approximate this via “quanti-
zation” of this continuum. Furthermore, it might be possible to replace our
proof technique by the “enhancement” of the weaker eavesdroppers, as it was
for instance done in [22]. Using this technique, one would be able to show the
same result for an uncountable class of eavesdroppers.

We focus on a wireless relay network with the deterministic and Gaussian
signal interaction models given in Definitions 2.16 and 2.17. We want to en-
sure that we can communicate reliably and secretly between S and D. These
notions have been defined in Chapter 2. The quantity of interest is the strong
perfect secrecy capacity as defined in Definition 2.14.

Definition 3.1 Throughout this chapter, we use the “constants” o, 3 and
v that depend only on the network topology, but not on the signal to noise
ration (SNR) or the channel gains. More precisely, we have o = O (|V|),
B = O(dV]*) and v = O (d|V|), where d is the mazimum out-degree of the

nodes in G.

3.3 Main Results

In this section, we present the main results of this chapter. The proofs are
given in Section 3.6.

3.3.1 Achievable Secrecy Rates for Deterministic Networks
We start with several definitions.
Definition 3.2 For a given transmit distribution p({x;}icy), a subset ) C 'V,

a node j € £EU{D}, define Ry.j(p) to be the set of all tuples By = (B;)icy
such that the components of the tuple are non-negative and such that for any

LOur results apply also when all eavesdroppers in £ are present, but cannot collude.
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subset Z C 1),

Z Bz S RI;j(p)'

1€

The quantity Rz ;(p) is the information-theoretic min-cut defined in Definition
2.20.

Definition 3.3 For a given input distribution p({x;}icy), a subset » C V'\
(S}, and a node j € £ U{D}, define Ry.;(p) to be the set of all tuples
(B', By) = (B, (Bi)icy) such that the components of the tuple are non-negative
and such that for any subset T C 1),

B'+ ) Bi < Rrugsy(p)-

i1€T

Note that for a given ¢ C V\ {S}, Ry.;(p) differs from Ryy(sy.;(p) in the
fact that Ryugsy;;(p) imposes constraints for subsets Z that do not contain S.
In Definition 3.3, all the constraints involve S. Recall that B is the set of all
noise-inserting relays. We find that the nodes in B should be careful when
inserting noise. In particular, we ensure that all noise messages are decoded
by the eavesdroppers, but not necessarily by D. This is the reason for the use
of the two regions Ryys).;(p) and Ry.;(p).

Definition 3.4 For an input distribution p({x;}icy), we define the following
function:

F(p) = max
<p) Bg€NpeeRp;e(p)

mgx{x : (z,Bg) € 7€B;D(JU)}

—max{z : (z, Bg) € Upce Rpuisye(P)}|-

T

Theorem 3.1 The strong perfect secrecy capacity for any wireless network
with deterministic signal interaction (Definition 2.17) is lower bounded as

C,> max F(p).

Hiev p(x;)

The proof is provided in Section 3.6. This theorem guarantees a certain strong
perfect secrecy rate for arbitrary networks, expressed as a maximization prob-
lem over a finite-dimensional solution space.

We illustrate the expressions of Theorem 3.1 using an example. Assume
that there is only one noise-inserting node and one eavesdropper and denote
them by B = {A} and € = {E'}. The tuple Bp in Theorem 3.1 corresponds to
the rates of the noise-messages inserted by the nodes in B. In this example,
there is only one such rate B4. For a given noise rate By, define

dp £ mjx{x : (I, BB) S 72B;D(p)}
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and
op = m:?x{x . (v, Bp) € UpeeRpuisye(p)}-

Note that ¢p and ¢ are functions of Bg = B4. In this example, the regions
ﬁB;D(p) and Rpugsy;e(p) are of dimension 2. They are both depicted in Figure
3.1. The noise rate B, can take values in Rp.g(p), which is equal to the interval
[0, Ra.p(p)] on the A-axis. For any fixed By, the strong perfect secrecy rate
¢p—o¢g is achievable, where ¢p and ¢ are shown in Figure 3.2. Intuitively, the
proof goes as follows. The source node S observes the information message
W of rate roughly equal to ¢p — ¢p. In addition, it generates a random
uniform junk message J of rate roughly equal to ¢. The noise inserting node
A generates a random uniform noise message J4 of rate B4. Via a random
code construction for this set of messages, we can show that there exists a code
which has the following property: if a genie made the information message W
available to the eavesdropper F, it would be able to find the correct junk (noise)
messages (J, J4) with high probability. Intuitively, this implies that before
being able to decode W, the eavesdropper must decode (.J, J4). However, the
pair of junk rates (¢g, Ba) lies on the boundary of Rpysy;p(p). We prove a
“local” converse that states that for a fixed transmit distribution p and the
randomly generated code, the total information transfer from S to E cannot
exceed ¢p. It follows that the only information that £ can gather is (J, J4),
and hence, W remains secret. Finally, we maximize the quantity ¢p — ¢ over
all possible values of B4 to find the optimal amount of noise that A should
insert into the network. The secrecy that we show in this manner is weak. We
then use the techniques introduced by Maurer and Wolf in [29] to show the
existence of strong perfect secrecy codes with the same rate. A formal proof
for several noise-inserting nodes and two eavesdroppers is given in Section 3.6.
Note that for the wiretap channel (a network without relays), the use of a junk
message at the source node is equivalent to the binning strategy proposed by
Wyner in [48]. However, it is unlikely that a binning strategy can be used to
prove Theorem 3.1.

As one can see in Figure 3.1, Rpu(sy;e(p) has a similar shape as the capacity
region of a multiple access channel (MAC). The multiple access region is a poly-
matroid (see e.g. [46]), which means that it is defined by constraints that in-
volve a so-called rank function. The following lemma implies that Rpusy;z(p)
is a polymatroid for any number of noise inserters.

Lemma 3.1 For a network with deterministic signal interaction and for a
fized product distribution [, p(z;), the function Rz ;(p) is a rank function
with respect to its first index. This means that for any j € € U{D}, we have
the following properties:

monotonicity: for any two subsets A and B of V such that A C B,

Ra;(p) < Rp;(p)
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Rsa;p(p)

Rsae(p) N
Rs;p(p) 1

Rs;e(p) 1

N
N

> A

RA;‘E(p)

Figure 3.1: Regions for the example with one noise-inserter and one eavesdropper.
The larger quadrilateral region is Rp.p(p), while the smaller pentagonal region is
Rpuisy;e(p). The region Rp.p(p) is the line interval [0, Ro;p(p)] on the A-axis.
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Figure 3.2: The quantities ¢p and ¢ for a particular noise rate By.

submodularity: for any two subsets A and B of V,
Rausj(p) + Ransj(p) < Raj(p) + Re;(p)-

For networks with random signal interaction, the lemma is only true for sets of
cardinality at most 2. As a side-remark, we state the following lemma, which
implies that Rpugsy;e(p) is a so-called weak polymatroid for random signal
interaction and for any number of noise inserters, meaning that it is defined
by weak rank functions as stated in the lemma.

Lemma 3.2 For a fived product distribution [],.,, p(z;), the function Rz ;(p)
is a weak rank function with respect to its first index. This means that for any
j € EU{D}, we have the following properties:

monotonicity: for any two subsets A and B of V such that A C B,

Ru;;(p) < Ri;(p)
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weak submodularity: for any two disjoint subsets A and B of V,

Rausi(p) < Raj(p) + Ri;(p)-

The notion of a weak rank function defined in this lemma differs from the usual
(stronger) definition in that the submodularity is only required for disjoint
sets. The proof of Lemmas 3.1 and 3.2 can be found in Appendix A. A set of
tuples that is defined by rank function constraints on all sums of components
is called a polymatroid. This is the case for Rpu(sy:e(p). The set R0 (D)
is a polymatroid where the constraints on Bg have been dropped. Knowing
this, we can inspect all possible ways the regions Rpysy,z(p) and 7@3; p(p) can
intersect in our two-dimensional example. By doing so, we realize that the
maximum of ¢p — ¢g over By occurs either at By = 0 or at By = Ra.g(p).
Hence, we obtain the following corollary of Theorem 3.1 for our example.

Corollary 3.1 When B = {A} and & = {E}, we have the following lower
bound on the strong perfect secrecy capacity for deterministic signal interaction.

Cs > max max {RS;D(p) — Rs;p(p),
[Liey p(z:)

min{Rga,p(p) — Ra;e(p), Rs.p(p)}
— (Rsae(p) — RA;E(p))}'

Using the polymatroidal structure of Rpuqsy;e(p) and ﬁB;D(p), a similar sim-
plification can be found for any size of B, provided that there is only one
eavesdropper.

Note that the expressions in Theorem 3.1 are in terms of the transmit
variables Xy themselves (see Definition 2.20). It would be desireable to use a
set of auxiliary random variables instead, as it was done in [10] and in most of
the related work. For the wiretap channel, it turns out that the use of auxiliary
random variables strictly increases the achievable secrecy rate. In our relay
network case, the use of such auxiliary random variables would unfortunately
make our analysis impossible to carry out, since it relies on the conditional
independence of the channels in the network.

3.3.2 Achievable Secrecy Rates for Gaussian Networks
We start with similar definitions as in the deterministic case.
Definition 3.5 For a given subset v C V, a node j € €U {D}, and any

A >0, define RG;(A) to be the set of all tuples By = (B;)iey such that the
components of the tuple are non-negative and such that for any subset T C 1),

> B <R, - A

1€l
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The quantity R% ; is the information-theoretic min-cut defined in Definition
2.21.

Definition 3.6 For a given subset » C V\{S}, a node j € EU{D}, and any
A >0, define RS (A) to be the set of all tuples (B', By) = (B', (Bi)icy) such
that the components of the tuple are non-negative and such that for any subset
1,

B'+ ) Bi < Rf gy, — A

1€

As in the deterministic case, 7%5; ;(A) differs from R, (s3;(A) in the fact that

R¢u (sy;(A) as given in Definition 3.5 imposes constraints for subsets Z that
do not contain S, whereas Definition 3.6 only uses constraints that involve S.

Definition 3.7 For any A > 0, we define the following function:

FOA) = max [
Bp€NpeeREG. p(A)

mjx{x : (x,Bp) € ﬁgD(A)}

- mgx{a: : (z, Bg) € UEegRgU{S};E(A)} :

Theorem 3.2 The strong perfect secrecy capacity for acyclic wireless networks
with Gaussian signal interaction (Definition 2.16) is lower bounded as

C’SZFG<6)_Q_6_77

where a, B and v are constants that depend on the network topology, but not
on the signal-to-noise ratio (SNR) of the channels (see Definition 3.1).

The proof is provided in Section 3.6.

It can be shown that the Gaussian min-cuts RI in Definition 2.21 scale
logarithmically with the signal-to-noise ratio (SNR) It follows that in many
cases, ['“(3) also shows logarithmic growth in the SNR. In such cases, because
of the subtractive constants «, # and ~, Theorem 3.2 provides its most useful
secrecy rate guarantee for the high SNR regime. The theorem should be viewed
as a “proof of concept”, demonstrating that it is indeed possible to lower bound
the perfect secrecy rate by a computable expression that applies to any network
topology. We conjecture that the presence of non-zero «, (3, v is not due to the
nature of the wireless network, but only to requirements of our analysis. It
may be possible to reduce these constants with a more refined analysis.
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3.3.3 Upper Bound on the Perfect Secrecy Capacity

Our third result is a simple upper bound on the perfect secrecy capacity for a
wireless relay network with arbitrary memoryless signal interaction channels.

Theorem 3.3

C, < max min min I(Xq; Yoe|YE, Xqc), (3.1)

p({zi}icy) EEE QeA(BU{S};D)

where the maximization is not only over product distributions but over all pos-

sible p({x;}iey)-

Note that although we state Theorem 3.3 for the weak secrecy capacity, the
same expression is also an upper bound on the strong secrecy capacity, because
C, < Cy in any case. We must also note that the upper bound provided in
Theorem 3.3 can be quite loose. In particular, if all the relay nodes are allowed
to insert noise (B = A), the minimization set A(BU{S}; D) is of size one, and
it is likely that in this case, the gap to our lower bounds is rather large.
Before presenting the proof of Theorems 3.1, 3.2 and 3.3, we discuss several
examples in Section 3.4 and present some auxiliary results in Section 3.5.

3.4 Examples

In this section, we provide several examples to illustrate possible coding strate-
gies for wireless networks.

3.4.1 Deterministic Examples

Through the examples in this section we seek to convince the reader that
although the linear deterministic model for signal interaction of Definition
2.18 is not too realistic, it can be very useful. For a given network with
linear deterministic signal interaction, it is often easy to come up with an
explicit coding scheme that achieves a certain perfect secrecy rate. Insights
gained from these coding schemes can be valuable when designing codes for the
same network with Gaussian signal interaction. We now provide 4 examples
for linear deterministic signal interaction to illustrate the following ideas: The
operation of the relays to set up cooperation in a (i) non-layered and (ii) layered
network; (iii) Destructive interference and handling of a class of potential
eavesdroppers; (iv) A noise insertion/jamming scheme by relays to help secrecy.
In the first three examples, we exclude noise insertion by the relays although
it would improve the rate-equivocation trade-off. The positive effect of noise
insertion is shown in the last example. All four examples are based on the
linear deterministic wireless network model of Definition 2.18.
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Figure 3.3: Example 1: The relay network with a single helper node providing
secrecy against a single eavesdropper.

Example 1 Consider the deterministic wireless network in Figure 3.3 with a
source S, a relay R and destination D which wants secrecy from an eaves-
dropper E. Note that this network is not layered (Definition 2.3). This
means that the information is received by D and E over multiple times, like
in inter-symbol interference. It is clear that the maximum communication
rate (with no concern for secrecy) between the source and the destination is
3 bits. As the channel from the source to the eavesdropper E is as strong
as that to the destination, we cannot ensure any secrecy in the absence of
a relay [10]. Therefore, the cooperation of the relay is crucial to ensure se-
crecy. Assume, however, that the relay is not allowed to insert noise. In this
case, Theorem 3.1 guarantees that strong perfect secrecy is possible at a rate
Ry = max,uo)par) (Rs;p(p) — Rs;e(p)) = 3 —2 = 1 bit. This is achieved by
choosing p(zg) and p(xg) to be uniform distributions over the three transmit
bits. Now, we show an explicit code that achieves 1 bit of perfect secrecy.
Suppose the source transmits bits (W, [t], W,[t], W,[t]) at time ¢. Let the re-
lay transmit bits (W[t — 1], W[t — 1], W[t — 1]) via its outputs, where the
symbols are delayed because the relay needs to first hear the incoming signal
before transmitting. This is a consequence of the non-layered structure of the
network. The mixing at the destination (and at the eavesdropper) is therefore
of bits transmitted at different times by the source. This is the reason for the
time index notion in this example. Assume that the transmission takes place
over T, + 1 time-slots, but .S only transmits during the first 7, time-slots and
therefore sends 37, bits over T, + 1 time-slots, resulting in a rate of 75)’7;1
bits per time-slot. R transmits information during time-slots 2 through 7.+ 1.
At the end of time-slot ¢, we have the received signals

— 3

Wolt 1]
Yplt] = | W[t = 1] & W,[1]
Wt — 1] © W,[t]
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and

0
Yplt] = | Wolt —1] & W, [{]
W[t = 1] & W]

At time 1, R does not transmit anything yet, and the destination receives
(0, W, [1], W,[1]). At time 2, D receives (W, [1], W, [1]@ W [2], W[1]®W,[2]).
At time 3, D receives (W,[2], W, [2] @ W,[3], W[2] ® W,[3]), and it has now
enough linearly independent equations to decode W, [1], W ,[2], W,[3], W,[1],
W,[2] and W,[1]. In general, at time-slot t € {3,...,7.}, D can decode
(WL L], 4 t]), W50, ... W[t —1]) and (W4[1], ..., W4[t—2]). At time-
slot T,.+1, the source S remains silent. Hence, D receives (W, [Te], W, [T.], W [T¢]).
It can use W,[T.] to decode W4[T, — 1] which was still unknown, yielding full
knowledge of all transmitted bits. E receives (0,1,[1],W,[t]) during time-
slot 1, and (0, W,[1] & W, [2], W,[1] & W,[2]) during time-slot 2, which allows
E to decode W, [1], W, [2], W,[1], W,[2] at the end of time-slot 2. This ar-

gument also holds for all time-slots t = 3,...,T., and thus, F can decode
(W, ],...,4[T.]) and (W,[t], ..., W,[T.]). However, it is impossible for E
to decode any of the W[t], t = 1,...,T., because it never receives any in-

formation related to these bits. Thus, the scheme described here achieves
(R,Rs) = (3,1) in the sense of Definition 2.15 and hence ensures 1 bit of
strong perfect secrecy. If we are not interested in sending any non-secret in-
formation, we can use a much simpler code where S and R simply route one
bit of information over the “path” in the network that is invisible to £ (third
transmit bit at both S and R). |

Q
m

; L]
8\0

Figure 3.4: Example 2: Two-layer network with single eavesdropper, with a
map-forward relaying strategy.

Example 2 We now study a larger deterministic wireless network with
A = {Ay, Ag, By, Bo}. The network is shown in Figure 3.4. Note that this
network is layered, and so are all the subsequent examples. Hence, the codes
provided for them are block codes as defined in Definition 2.6. If we forbid
noise insertion at the relay nodes of this example network, then the perfect
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secrecy rate guaranteed by Theorem 3.1 is 2 — 1 = 1 bit, again achieved by
uniform transmit distributions. The following scheme illustrates that the re-
lays do not have to decode the source message to ensure secure and reliable
communication. The randomly generated code used in the proof of Theorem
3.1 also has this property. The source S sends (W7, Ws). Each relay operates
by taking a linear combination of its received signal and transmitting it. One
possible operation is when A; sends (0-W;) & (1-Wy) = W, and B; forwards
its received signal W;. Therefore Ay receives (Ws) and Bs receives the linear
combination (W; @ Ws). Both A; and B, simply forward what they receive
via all of their outputs. As a result, D receives (Wy, Wy @& Wy & W), and it
can solve this equation system to obtain both information bits. FE receives
only (W; & W), which reveals one bit of information. This can be shown by
computing the equivocation H (Wi, Wy|W; @ Wy) = 1. Alternatively, we can
see that only one bit is revealed by preparing the source bits (W5, W3) such
that W1 = Uy, Wy = U; @ U, and therefore since E receives W7 @ Wy = Us,
it has no knowledge of U; which is secret. Hence, R, = 1 is achieved by this
scheme. |

Figure 3.5: Example 3, showing the conflict created by multiple potential eaves-
droppers.

Example 3 In Figure 3.5, we illustrate the conflicting needs for secrecy
against a class of eavesdroppers, by having & = {Fj, E;}. In addition, this
example demonstrates that there are explicit schemes for the linear interac-
tion model that seem to achieve a perfect secrecy rate higher than the one
guaranteed by Theorem 3.1. Assume for instance that only eavesdropper E}
is present. Then, Theorem 3.1 cannot guarantee a positive perfect secrecy
rate (at least if no noise-insertion is allowed). Indeed, no matter what dis-
tribution [[,c(g 4 5y P(%:) we pick, the information-theoretic min-cuts Rs;p(p)
and Rg.p, (p) are equal. Consider now the following explicit scheme under the
assumption that only Fj is present: S sends (Wi, W, W3), A and B both send
(W1, Wy, W3,0). In this case, D receives (Wi, Wy, W3 & Wi, Ws), while E) re-
ceives (0,0,0,0). Hence, if only E; is present, we can have a perfect secrecy
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situation that achieves (R, Rs) = (3,3). This is a scheme that uses determin-
istic encoders at A and B, i.e., no noise is inserted. The particularity of this
scheme is that both A and B decode all the transmitted messages. Thanks to
this, they can align their transmission in order to create destructive interfer-
ence at F;. With a randomly generated code as used in the proof of Theorem
3.1, alignment of relay signals is not possible, and such a strategy can not be
taken into account.

If there was only Es, we could have a different scheme: S sends (W7, Wy, W3),
A sends (0, Wy, Wy, W3), while B sends (W73,0,0,0). In this case, D receives
(0, Wh, Wy @ Wy, W3), while Ey receives (0,0,0,W; @ Wi) = (0,0,0,0), again
leading to (R, Rs) = (3,3). Again, this strategy uses collaboration at the relays
to create destructive interference at Es.

Finally, we consider the case when & = {E}, E»}, i.e., either eavesdropper
(or both eavesdroppers) could be present. In this case, we need to ensure
secrecy against the set £. A possible strategy is: S sends (W5, Wa, W3), A
sends (0, Wy, Wy, W3), and B sends (0, Wy, Wy, W3) or (W4, Wy, Wy, W3). In
this case, D receives (0, Wy, Wy, W3 @ W1) or (0, Wy, Wy & Wiy, W5 @ W), Ey
receives (0,0,0,0) or (W7,0,0,0), and E, receives (0,0,0, W;) or (0,0,0,0). In
either case, we only achieve (R, R;) = (3,2) bits. Some additional thought
also reveals that it is not possible to make R, larger than 2 when F; and FEs
can both be present (provided that the relay nodes are not allowed to use noise
insertion, i.e., their encoding functions must be deterministic). We thus see
the tension created by the uncertainty about the eavesdropper. ]

Figure 3.6: Example 4: Example showing how noise insertion at a relay can
improve secrecy.

Example 4 For the network given in Figure 3.6, we allow some of the authen-
ticated relay nodes to actively help secrecy by inserting random bits into the
communication. In a sense these relays are “jamming” the eavesdropper and
helping secure communication. Let the source send (Wp, Ws) at its outgoing
nodes. One strategy is that A sends (0, W7, 0), and B sends (Ws). In this case,
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D receives (0, Wy, W3), while E receives (0,0, Ws), yielding (R, Rs) = (2,1).
Any strategy where the relays do not insert randomness cannot ensure more
than 1 bit of secrecy. Now we allow A to generate a random bit b before
every transmission. Then, it transmits (b, W7,0). The transmitter at B re-
mains unchanged. Now, D receives (b, Wy, W3). The eavesdropper E receives
(0,0, W5 @ b), and therefore we obtain perfect secrecy of 2 bits. This example
confirms that active noise insertion by the relays can enhance secrecy. |

3.4.2 The Gaussian Diamond Network

In this section, we focus on a particular Gaussian network with two relay nodes
called the diamond network. As noted earlier, the lower bound on the perfect
secrecy capacity given in Theorem 3.2 may grow logarithmically with the SNR,
but this growth is “delayed” by the subtractive constants «, 3,~. For cases
where the lower bound does not grow with the SNR, the presence of «, 3 and
v is particularly unpleasant.

In this section, we prove the existence of schemes that achieve perfect
secrecy in the Gaussian diamond network even for small values of the SNR.
This supports our conjecture that the constants «, 3,y are not of fundamental
nature, but simply a technical artifact in our proof, needed to show the results
for arbitrary networks.

Consider the diamond network shown in Figure 3.7, which is defined as
follows.

Definition 3.8 The Gausstan diamond network is a network with two
relays A and B and one eavesdropper E, whose channels are given by the
equations:

Yalt] = hsaXs[t] + Zalt] (3.2)
Yplt] = hspXs(t] + ZB[t] (3.3)
Yplt] = hapXalt] + hspXslt] + Zol] (3.4)
Y[t = hapXalt] + heeXB[t] + ZEt], (3.5)

where Zi[t] ~ N(0,1), and the Z[t| are independent of the X;[t] and of each
other.

For simplicity assume that all channel gains are real, and that |hga| >
|hsp|. Also, we assume that the power constraint is 1 at every transmitting
node. Equations (3.2) and (3.3) together describe a stochastically degraded
Gaussian broadcast channel, while equations (3.4) and (3.5) each describe a
Gaussian multiple-access channel (MAC).
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Figure 3.7: Gaussian diamond wireless network.

No Noise Insertion at the Relays

Here, we do not allow the relay nodes to insert noise. For an arbitrary 6 € [0, 1],
define the following two functions:

REC (9) & 11og 14 O (3.6)
m5 2 1+ (1—0)h%, '
1
REC(0) £ 5 log (14 (1—0)h,) . (3.7)

It is well known [9] that for any 6 € [0, 1], one can reliably transmit a message
mp of rate R?n(; to B and simultaneously transmit (ma,mpg) to A, where my4
is of rate RE&. We also define the following region of rates:

Definition 3.9 For k € {D, E}, we define RMAC as the region of all pairs
(Ra, Rp) satisfying

1

Ri < 3 log(1 + h%,)
1

Rp < 3 log(1 + h%y)

1
Ra+ Rp < 5 log(1 + R + hp)-

Note that RMAC is the achievable rate-region of the multiple-access channel
from A and B to k, for k € {D, E}.

Now, we describe an achievable perfect secrecy rate for the Gaussian dia-
mond network.

Theorem 3.4 In the Gaussian diamond network,
_ 1
Cs > max |RE(0) + REC(0) - 5 log(1+ Pip +hie)|, (3.8)

where the maximization is over all 6 € [0, 1] for which

(Rs(0), Ry (0)) € R
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and for which the set

1
{(Rjs, Rjp) € REAC: Ry, + Ry, = Slog(1+ Mg + hip) }
N ([0, RS (0)] < [0, RS (9)])
18 non-empty.

The proof of Theorem 3.4 is given in Appendix A.

Noise Insertion at the Relays

In this subsection, we show that the secrecy rate can be improved when noise
insertion is allowed at the relay nodes. In particular, we guarantee a certain
secrecy rate in the Gaussian diamond network (Definition 3.8) when the relay
nodes A and B are allowed to insert noise. Both relay nodes are permitted
to select a junk message of arbitrary rate uniformly at random before each
transmission of a block and to use this junk message during the encoding.
The following theorem states an achievable secrecy rate under this additional
assumption.

Theorem 3.5 In the Gaussian diamond network with noise insertion,

1
Cs >max | Ry, + Ry — 3 log(1+ h4g +hep) |, (3.9)

where the indicated maximization is over all (0, Ry, ,, Ry, ) for which
(Rinas Bny) € RpAC
and 3(R;,, Rj,) € g such that

JA»

(RmAa Rms) S [ij RjA + Rﬁiw)] X [R’

1B

RjB + Rfmi (9)}7
where @ is defined as
bp = {<RJA= RjB) S R?E/MC :
1
R, + R, = 3 log(1 + k% + hQBE)}.

The proof of Theorem 3.5 is very similar to that of Theorem 3.4. The perfect
secrecy rate is achievable by the same code construction, with the difference
that the junk messages J4 and Jgp are generated at A and B, respectively.
Thanks to this, the broadcast channel between S and (A, B) can be fully used
to send the information messages W4 and Wg. The secrecy rate is then limited
by the capacity of this broadcast channel, as well as by the amount of secrecy
the two multiple access channels (from (A, B) to D and to E) can provide.
Note that this result resembles the “noise forwarding” strategy for the relay
network in [20]. To illustrate the achievable perfect secrecy rates without and
with noise insertion, we now provide a numerical example.
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A Numerical Example

In this section, we provide a numerical example for the achievable perfect
secrecy rates in Theorems 3.4 and 3.5.

Let hsa = hap = 2 be the stronger channel gains. All other channel gains
are hsp = hpp = hagp = hpg = 1. The multiple access channel (MAC)
capacity regions are then given by

RPAC = {(Ra, Rp) :
1
Ry < 510g5 = 1.16 bits,

1
Rp < 3 log 2 = 0.5 bits,
1
Ris+ Rp < 5 log 6 = 1.29 bits}

and
Ry ={(Ra, Rp) :
1
R4 < 3 log 2 = 0.5 bits,

1
Rp < 3 log 2 = 0.5 bits,
1
Ra+ Rp < 5 log 3 = 0.79 bits}

These two capacity regions are shown in Figure 3.8.

R
B R2
Ry
0.291 ©)
I T T I
0.5 0.62 1 116 Ry

Figure 3.8: The MAC capacity regions RMAC (small pentagon) and RYAC (large
pentagon). The overall rate pair (R,,,, Ry ) is marked by a cross and a circle for
the strategies with and without noise insertion, respectively. The achievable secrecy
rates without noise insertion (R;) and with noise insertion (R2) are indicated.

Case without Noise Insertion: If the relay nodes do not insert noise, we
compute the perfect secrecy rate given by Theorem 3.4, i.e., we maximize

Ry (0) + Ry (6) =

%1og(1+4(1—9>)+%10g(1+ﬁ>
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under the conditions that (REC (6), REC (0)) € RYAC and that ®5N([0, RES ()] x
[0, REC (6)]) should be non-empty. We find that the optimal value of 6 is
6°Pt = (.66, and

R, = R}S(6°P") = 0.62 bits,
Ry, = R)S(6°°) = 0.29 bits.

This point is marked with a circle in Figure 3.8. The achievable perfect secrecy
rate is

1
Ry = Ry, + Ry, — 5 log(1+ Wap + hbp)
=0.62+0.29 —0.79 = 0.12 bits. (3.10)

Case with Noise Insertion: For the case when noise insertion at the relay
nodes is permitted, we compute the perfect secrecy rate given by Theorem 3.5.
It is easy to see that by choosing for instance R;, = 0.5 and R;, = 0.29, we
can achieve an overall rate of

Ry, = 0.29 bits
1
Ry, = 5 log(1+ h%p + h%p) — Ry
=1.29—0.29 = 1 bit.

This point is marked with a cross in Figure 3.8. In this case, the achievable
perfect secrecy rate is

1
Ry =Ry, + Ry — B log(1+ A4 + M)

=1+0.29 - 0.79 = 0.5 bits.

This secrecy rate is considerably larger than (3.10). The two achievable secrecy
rates Ry and R, are also shown in Figure 3.8. All the rates are measured in
bits and hence all logarithms are base 2.

Note that the rates provided in these numerical examples are only lower
bounds on the perfect secrecy capacity Cs. To prove that noise insertion gives
a fundamental improvement of the perfect secrecy rate, we would need an
upper bound on the perfect secrecy rate without noise insertion.

Upper Bound: We can, however, derive the following general upper bound
on Cy. If we allow A and B to collaborate with S, then we obtain a special
case of the so-called multiple input antennas, single output antenna, multi-
ple eavesdropper antennas (MISOME) wiretap channel, which was studied by
Khisti and Wornell in [18]. In our case, the eavesdropper has only one antenna.
The (weak) secrecy capacity of this multi-antenna wiretap channel was found
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in [178] and it is clearly an upper bound on C§, which is in turn an upper bound
on C:

1
C, < 3 10g Amax (I + Phgh), I+ Ph.h?),

where hy = (2,1)7 and h, = (1,1)%, P = 2 is the sum power constraint, and
Amax(+, ) denotes the largest generalized eigenvalue of the argument pair. In
our numerical example, the upper bound yields

C, < 0.87028 bits.

Comparing this to our best lower bound of 0.5 bits, we see that the two bounds
provide a reasonable approximation of C.

3.5 Results for the Multisource Problem

3.5.1 Setup and Outer Bound

Here, we consider a network without eavesdropper, but with several source
nodes. Let a relay network be given as defined in Section 3.2, and let the
signal interaction be deterministic or Gaussian as defined in Definitions 2.17
and 2.16, respectively. However, instead of having just one source node S,
assume that each node 7 in a subset S C V observes an independent source W,
of rate R;. The aim is that the destination node D can reliably reconstruct all
the sources {W,}ies. All the encoders are supposed to be deterministic. We
call this the multisource problem.

In the next two subsections, we provide achievability results (Theorems 3.7
and 3.9) that are used to prove the secrecy guarantees given in Section 3.3.
Since the results presented in this section may be of independent interest, we
give a few additional results on the multisource problem, starting with the
following infeasibility result, which is valid for all types of memoryless signal
interaction.

If Z C S is a subset of the source nodes, then Rz denotes a tuple of rates
(one rate for each i € 7).

Definition 3.10 A rate tuple Rs is called achievable if for any e > 0, there
exists a communication length T, and a (T, €)-code (for multiple sources) for
which the rate of message W, is at least R; — € for all i € S. In this context,
a (T., €)-code is required to have P(W, # W,) < € for alli € S.

Theorem 3.6 In the multisource problem with arbitrary signal interaction, if
a rate tuple Rs is achievable then it is contained in

Router = Up({xi},iGV)RS;DQ?)?
where Rs.p(p) is defined in Definition 3.2.
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Theorem 3.6 is basically the cut-set bound on communication in arbitrary
networks. This theorem as well as the remaining results on the multisource
problem are proved in Appendix A.

3.5.2 Deterministic Signal Interaction

We now give an inner bound on the set of all achievable rate tuples for deter-
ministic signal interaction.

Theorem 3.7 In the multisource problem with deterministic signal interac-
tion, any rate tuple Rs in

Rinner = UHievp(xi)RS;DQ?)
1 achievable.

The set Rs.p(p) is defined in Definition 3.2.

In particular, for the case of two source nodes S; and S5 that wish to trans-
mit messages Wi and Wy, respectively, to D, communication rates (R, Rs)
satisfying

Ry < Rs,.p(p)
Ry < R5'2§D<p)
Ry + Ry < Rg,5,.0(p)

are achievable, where the distribution on the transmit alphabets can be any
product distribution [, p(z;).

For deterministic signal interaction, the only difference between inner and
outer bound is that in the outer bound of Theorem 3.6, the union is over all
possible distributions p({z;},7 € V), whereas in the inner bound, the union
is only taken over product distributions. For linear deterministic signal inter-
action as defined in Definition 2.18, it turns out that the two bounds match.
More precisely, we have

Theorem 3.8 For an arbitrary wireless relay network with linear determin-
istic signal interaction as defined in Definition 2.18, the multisource capacity
region is equal to

7zinner - 7zouter - {RS VI g 87

ZRiS min rank(GQ)Qc)}.
p QeA(Z;D)

The capacity region is defined as the region of all achievable tuples Rs. The
proofs of Theorems 3.7 and 3.8 are given in Appendices A.5 and A.6.
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3.56.3 Gaussian Signal Interaction
Theorem 3.9 In the multisource problem for an acyclic network with Gaus-
sian signal interaction, any rate tuple Rs in

Riner = RE.p(6)

mner

is achievable, where (3 is a constant as defined in Definition 3.1.

The set RE.p(A) is defined in Definition 3.5.

For the Gaussian multisource problem, we provide an approximate char-
acterization of the capacity region, i.e., we state a bound on the gap between
Router and Ri(fmer. This gap is constant in the sense that it does not depend on
the channel parameters (signal-to-noise ratio) but only on the number of nodes
in the network and the maximum out-degree. This phenomenon is similar to

the gap in Theorem 2.4.

Theorem 3.10 For an acyclic network with Gaussian signal interaction, for

a gien rate-tuple Rs € Royier, we have that
RS - (a +ﬁ)1 € RiGnnerv

where 1 denotes the all-one vector of length |S|, and o and 3 are defined in

Definition 3.1.

In words, this theorem states that the boundary of RS

a—+ 3 away from the outer bound in every dimension. The proofs of Theorems
3.9 and 3.10 are given in Appendices A.7 and A.8.

is not more than

3.6 Proof of the Main Results

We are now ready to prove the three main results of Section 3.3.

3.6.1 Proof of Theorems 3.1 and 3.2

The main parts of the proofs are the following two propositions, which give
weak secrecy guarantees.

Proposition 3.1 For an arbitrary wireless network with deterministic signal
interaction, the weak perfect secrecy capacity is lower bounded as

Cy> max F(p). 3.11
e (p) (3.11)

Proposition 3.1 is proved in the next two subsections for layered and non-
layered networks, respectively.
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Proposition 3.2 Let p = o+ 3 + . For an acyclic wireless network with
Gaussian signal interaction, the (weak) p-almost perfect secrecy rate is lower
bounded as

C? > FC(p). (3.12)

The proof of Proposition 3.2 is very similar to the proof of Proposition 3.1. A
discussion of the differences is given in Sections 3.6.4 and 3.6.5 for layered and
non-layered networks, respectively.
To strengthen these weak secrecy guarantees, we use Lemma E.5 given in
Appendix E, which is a slight adaption of the results by Maurer and Wolf [29].
Define

R, 2 max F P).
Hievp(ﬂﬁi) ( )

For deterministic signal interaction, Proposition 3.1 tells us that (R, R;) is
weakly achievable. Hence, by Lemma E.5, R, is strongly achievable. This
proves Theorem 3.1.

For acyclic networks with Gaussian signal interaction, Proposition 3.2 tells
us that (FG(ﬁ),FG(ﬁ) — p) is weakly achievable. Hence, by Lemma E.5,
FS(B) — p is strongly achievable, where p = o + 3 + 7. This proves Theorem
3.2.

3.6.2 Proof of Proposition 3.1 for Layered Networks

In this section, we prove Proposition 3.1 for the case where there are two eaves-
droppers € = {E, E2}. The proof for an arbitrary number of eavesdroppers is
analogous. Assume that the network is layered (equal-path) as defined in Def-
inition 2.3. Fix a product distribution [[,.,, p(x;). Let a tuple of non-negative
numbers Bg = {B;};cs be given such that

Bp € NpeeR,e(p), (3.13)

i.e., the tuple Bpg lies inside the |B|-dimensional multisource achievable region
for each of the two eavesdroppers (see Section 3.5). Let

bp = mjx{x : (x,Bg) € ﬁB;D(p)} (3.14)
and
op = mgx{ﬂf : (x, Bg) € Rpugsy:e(p)} (3.15)

for £ € £. The quantity ¢ is the largest value that B’ can take such that the
tuple (B’, Bg) lies in the (|B] + 1)-dimensional multisource achievable region
for eavesdropper F, where E € {E;, Ey}. Without loss of generality, assume

that ¢, > ¢p,.
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Define the following rates:

R 2 ¢p — ¢p,, (3.16)

Bi £ ¢p, — dp,, (3.17)
and

_82 é ¢E2 — 61, (318)

where €; is an arbitrary constant. This choice of rates is represented pictorially
in Figure 3.9. Let W be the message (to be kept secret) that S wishes to

PE;"€1

(=]

I N

Pp~€s

Figure 3.9: lllustration of the rate allocation in (3.16), (3.17) and (3.18).

transmit, and let it be of rate R. More precisely, W is uniformly distributed in
{1,...,2lTR]} Here, T is the block length, i.e., all sequences are of length 7.
In addition to W, S generates two independent, random junk messages J; and
Jo uniformly from {1,...,27BU} and {1,...,2l7B2]}  Likewise, each noise-
inserter @ € B generates an independent, random junk message .J; uniformly
from {1,...,27B1}. We generate a random block code (Definition 2.6) in the
following way. For the source node S, each (w, j1, j2) is mapped to a sequence
Xg, drawn uniformly at random from the set of all d-typical sequences with
respect to the distribution p(xg) (see Appendix F). Every transmit sequence
X can lead to only one received sequence y; for each relay node i in the first
layer of the network. Hence, node i can directly re-encode this sequence (and
a possibly present noise message j;) into a transmit sequence x;. Since this
is true for the nodes in all layers, we can construct the encoding functions
at the relay nodes as follows. For each relay node i € A\ B, each possible
received sequence y; is mapped to a transmit sequence x;, drawn uniformly at
random from 75(X;), where 7 is the set of robustly typical sequences defined in
Appendix F. For each noise-inserting node i € 3, each possible pair (y;, j;) is
mapped to a sequence x;, drawn uniformly at random from 75(X;). Once this
random code generation process is finished, the mappings are deterministic and
fixed for all time. In this proof, (Xy,Yy) denotes the transmit and received
sequences that depend on the same realization of the message W. Since the
network is layered, none of these sequences depends on more than one message
realization W. This implies that for 4, j € V, the t™ component of X; and the
™ component of X; do not occur at the same point in time unless 7 and j lie in
the same layer (at the same distance from S) in the network. The randomness
of the sequences (Xy,Yy) comes from the randomness of (W, Jy, Ja, Jg).
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Note that by the definition of R, By and Bs, we have

<R+Bl +BQ7BB) < ﬁg;p(p). (319)

The region Rp.p(p) is obtained from Rpugsy.p(p) by relaxing all constraints
which do not involve B’ & R + By + B,. We examine the proof of Theorem
3.7, with the first message being (W, J;, J2) and the subsequent messages being
{W;}ies. By doing so, we notice that when (3.19) holds, then the above code
construction guarantees that for 7" large enough,

E [P(decoding (W, Jy, Jo) wrongly at D)] < %0, (3.20)

where the expectation is taken over the (randomly generated) code, and ¢ is
an arbitrary constant. Note that nothing is known about the decodability of
the relay noise messages Jg at D. At the same time, we obtain from (3.17)
and (3.18) that

(B1+ B2, Bg) € Rpu(sye (p) (3.21)

and

(B2, Bg) € Ruuisy;e (p)- (3.22)

For a fixed W = w, the codewords generated at S and at the nodes in B
have the same distribution as a randomly generated multisource code of rates
(B1 + B2, Bg). Thus, from (3.21) and from Theorem 3.7 it follows that for T
large enough,

E[P(AD)] < 7. (3.23)

where A is the event that FE4 makes a decoding error when trying to decode
((J1, J2), Jg), assuming that W = w and assuming that W is already available
at F,. Again, the expectation is taken over the randomly generated code.
Since this is true for all w € {1,...,2T%} it follows that for 7" large enough,

2lTR]

1 €
E | 5 Y PAY)| < go (3.24)
w=1

We apply the same argument once more for E,, using (3.22) and keeping
(W, J1) = (w, 71) fixed. It follows that

olTR] 9|TBq]
€0

1 (2)
B smrmmer 2o 2 PAG)| <5 (3.25)

w=1 ji=1
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where A ., is the event that Fy makes a decoding error when trying to decode
(Jo, Jp), assummg that (W, J;) = (w, 71) and that (W, J;) is already available
at Fs.

Recall that we chose By and B, such that By + By = ¢p, — €. Let 7y C B
be such that when computing ¢g,, defined in (3.15), the constraint

T+ Z B; < Rz,u¢8):6, (D)
i€y

is dominant. Similarly, recall that we chose By such that By = ¢p, — €;. Let
Z, C B be the subset whose corresponding constraint in ¢g, is dominant. We
know from Lemma A.5 that if T" is chosen large enough,

€0

E [1{I(Xs,le;YE1\Jg\zl)>TRzlu{S};E1(p)}] < 5 (3.26)
where the expectation is over all codes. Similarly, for 7" large enough,
E [1{I(Xs X107 Y 5y \2)> TRy (5 (p)}] =3 (3.27)
X1, Y By | T\ 1, LULS): By 5
Combining (3.20), (3.24), (3.25), (3.26) and (3.27), we obtain
E [P(decoding (W, Jq, Jo) wrongly at D)+
9TR]
g 3 PAD)]+
9 TR QLTBlJ
TRJ+LT31J Z Z
w=1 ji=1
L 1(X s X, Yy vy > TR sy )} T
Lirxs %, ;YE2|JB\12)>TR12u{S};E2(p)}] < €o-
We conclude that for at least one code,
P(decoding (W, Jy, Jo) wrongly at D) < e, (3.28)
olTR]
i 3 P <o 20

olTR] 9|TBq]

TRJ+LTB1J Z Z ) < €0, (3.30)

w=1 j1=1

(3.31)

1 <
{I(XS,XZ1 Y |Js\1,)>T Rz 0(s};E, (P)} =€



3.6. Proof of the Main Results 47

and

1{1(Xs,Xz2 Y 1, [J\2,)>T Rz, 0 (5358, (P) } < €& (3.32)

at the same time. From (3.28), we see that this particular code is reliable.
In addition, (3.29) and (3.30) together with Lemma A.4 imply that for this
particular code,

H(Xg, Xp|W,Yp,) <1+ T(Bi+ By + Y Bi)eg (3.33)
i€eB
and
H(Xs, Xp|W, J1,Yg,) <1+ T(By+ > _ By)e. (3.34)
i€B

The statements (3.31) and (3.32) are used later in the proof.
It remains to analyze the equivocations at F; and Ej for the given code.
Let Z; C B be as defined above. This definition implies that

Bl + Bg + Z BZ' = RIlLJ{S};El (p) — €1. (335)

i€l
We can write

HWI|Yg,)>HW|Yg, Jaz,)
> I(W; X5, X1,|YE,, Ja\1,)
= [(XS; X1 VV,YEIUB\II)
—I(Xs,X7,;Yg,|Ja1,)
= H(Xs, Xz, |Jp\1,)
— H(Xs, X7, W, YE,, Ja\z,)
— I(Xs, X7, Y, [ J\1)- (3.36)
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We bound the three terms above separately:
H(Xg, Xz, |Jp\1,) = I(Xs,Xz; W, Jy1, Ja, Iz, | IB\1,)
= H(M/v Jl) J27 Jl—1|‘]8\1-1)
- H(M/v Jl) J27 J11|JB\1—17 XS) XIl)

Y HW, 0y, o, Jr,)
- H(W|J3\I1v X5'7XI1)
- H(J17 J27 JII‘W7 JB\I17X57XI1)

© HW, 1, Jo, J)

— HW\|Jp\1,,Xs,Xz,, YD)

— H(Jy, Ja, J7,|W, Ip\zs Xs, X1, Yg,)
> H(W, i, J2, Jz,)

— HWI[YDp)

— H(J1, Jo. T3 W, Tz, Y i,)

SH(Jl 7‘]27‘]11 7']6\11 |W>YE1)

(o)
Z H(W Jla J27 le)

—1- TREO
—1- T(Bl + BQ -+ ZB")GO
i€B
= (TR + |TB\) +|TBo| + ) |TBi))
1€
—2—-T(R+ B, + By +ZBz‘)€07
ieB
@T<R+BI+B2+ZBZ —62)
€11
—2-T(R+ B+ By + Y _ By, (3.37)
ieB

where (a) is true because of the independence of all messages, (b) follows
from the Markov chains W - Xg < (Jp\z,, Xz, Yp) and (Ji, Jo, J7,) =
(W, Xs, Jp\z,, X17,) = Yg,. In (¢), we have used Fano’s inequality, together
with (3.28), as well as Lemma A.4, together with (3.29). Finally, the small
constant €5 in (d) is introduced because we drop the rounding. As T grows
large, €5 goes to zero.

The second term in (3.36) can be upper bounded as follows:

H(Xs, X7, W, Y, Jaz,) < H(Xg, Xp|W, Y5, Ja,)
< H(Xg,Xp|W,Yg,)

< T(% +(Bi+ Ba+ Y Bi)ey), (3.38)
1€B
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where we used (3.33) in the last inequality. The third term in (3.36) is bounded
because for ¢y < 1, (3.31) implies that

[(XS> XI1 ; YEI | JB\Il) < TRIlU{S};El (p) (339)

Plugging (3.37), (3.38) and (3.39) into (3.36), we obtain

1
TH(W’YEl) 2 R+Bl+BQ+ZBi_€2

i€

2
—T—(R+BI+B2+ZBZ»)60
ieB

1

— T — (Bl—FBQ—FZBi)EO
ieB

- RIlu{S};El (p)

3
:R_€1_62_T

—(R+2(Bi+ B+ ) _ By))eo, (3.40)
i€B

where we have used (3.35) in the last step. Now, we analyze the equivocation
for eavesdropper E,. Let Zy C B be the subset whose corresponding constraint
in ¢p, is dominant, as defined earlier. This implies that

By+ ) Bi = Rrusym(p) — a1 (3.41)

i€Zo
We can write

HWI|Yg,) > HW|Yg,, Ja\s,, 1)
> H(Xg, Xz,|J8\15, J1)
— H(Xs, X1, |W, Yg,, Ja\z,, J1)
— I(XS,XIQ;YEQUB\IQ>J1), (3.42)

where we used the same chain of inequalities as in (3.36), but conditioned on
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Ji1. We bound the three terms above similarly as in (3.36):
H<XS7 XIQ|JB\IQ7 Jl) Z H<W7 J27 JIQ)
— H(W[Yp)
- H(J27 JBH/I/a leYEg)
>T(R+By+ Y Bi—es)

i€Zo
—1- TREO
-1 T(BQ + ZBZ')GO
i€EB
=T(R+ B2+ Y _ Bi—es)
1€7Lo
—2-T(R+By+ Y _B))e, (3.43)

ieB

where €3 goes to zero with increasing 7T,

H(X5'7 XIQ|W YE27 ‘]B\Igy Jl) S H(X5'7 XBH/I/? YE27 Jl)

1
<T(m+ (B2 + Z Bi)eo), (3.44)
ieB

where we used (3.34) in the last inequality, and finally,

[(XSa XIQ; YE2|J3\127 Jl) < H<YE2|J3\IQ>

- H(YE2|JB\127 Jl) XSa X‘IQ)

@ H(YEQ ‘ JB\IQ)

— H(YE2|J3\12, Xs, XI2)
= I(Xs,Xz,; Y5,|J5\2,)
< TRIQU{S};EQ <p> (345)

from (3.32). In (a), we used the Markov chain J; o Xg o (Yg,, Xz,, Ja\z,)-
Plugging (3.43), (3.44) and (3.45) into (3.42), we obtain

1
FH(W[YE,) > R+ By + > Bi—e
1€1o
2
i€B
1
— 7= (B2t ZBZ-)EO
i€B
- RIQU{S};EQ (p)
=R- €1 — €3
3
— = (R+2(B2+ > B))eo, (3.46)

i€eB
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where we have used (3.41) in the last step. From (3.40) and (3.46), we see
that by choosing ¢, and €; small enough and 7' large enough, we can make
€ and €3 as small as we like, and hence ensure that both equivocations are
arbitrarily close to R. This concludes the proof for layered networks. The
proof for non-layered networks is given in the next section.

3.6.3 Proof of Proposition 3.1 for Non-Layered Networks

When the network is not layered, we use the time-expansion technique pre-
sented in Appendix A.12, which closely follows [3, 5]. Consider a non-layered
network G = (V, £) with a set of noise-inserting nodes B and a set of eaves-
droppers £. We define an unfolded network gflfff) as described in Appendix
A12 with S = BU{S} and D = EU{D}. Let R be any transmission rate
that satisfies

R < max F(p),
"~ ILievp(z:) (p)

Let p be a product distribution such that R < F(p) for that particular p. From
Lemma A.7, we know that for any F € &,

KRpusye(P) ~ Rits).e(p),

where ~ means approximate equality for large unfolding length K. Define
RiE5(p) to be the set of all tuples (B’ it Bty such that for any subset Z C B,

unf unf : .
By B < o min o I(Xo, Yo,

€Aunt(ZU{S},D) Xog,)-
ieT unf unf )

In other words, 7@};‘;}, (p) is the unfolded equivalent of Rp.p(p) defined in Defi-

nition 3.3. It is straightforward to apply the proof of Lemma A.7 to R, yielding
the result that

KRp.n(p) ~ REL(D).
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It follows that
F(p) = max [

BseNpesRe;E(P)

m:?x{x : (z, Bp) € Re.p(p)}

—max{z: (z,Bg) € UEeSRBU{S};E(p)}}

T

~ max |:
KBpeNpesREE (p)

max{z : (Kz, KBg) € Ry (p)}

—max{z: (Kx, KBg) € UEegn%Iﬁf{s};E(P)}]

xT

1 [
= — max
K BgrtenpesRES (p)

mfx{x s (z, BE™) € ﬁ%nz)(p)}

— max{x : (z, Bg“f) € UEengS{S};E(p)}]

T

A 1 f
=2 Fun
e (p),

where the last step serves as a definition of F'(p). Thus, KR < KF(p) ~
F'(p). Since the unfolded network Ql(lff) is layered, the proof for layered net-
works lets us conclude that for deterministic signal interaction, the perfect
secrecy capacity Cj is lower bounded by F'™(p). Hence, as K grows large,
there is a block coding strategy that achieves rate K R with perfect secrecy in
Ql(lff). Since the implementation of such a coding strategy on the original net-

work G takes K times as many transmissions, we see that rate R is achievable
with perfect secrecy on G. This concludes the proof.

3.6.4 Proof of Proposition 3.2 for Layered Networks

In this section, we prove Proposition 3.2 for layered networks. Most parts of the
proof are identical to the proof of Proposition 3.1 in Section 3.6.2. Therefore,
we only give an outline of the proof for Gaussian signal interaction and point
out the differences. Let a tuple of noise rates Bz be given such that

Bg € mEGERg;E(ﬁ)a (3.47)

i.e., the tuple Bg lies inside the |B|-dimensional multisource achievable region
for each of the two eavesdroppers (see Section 3.5). Let

bp = mfx{x : (x,Bp) € ﬁg;D(ﬁ)} (3.48)
and

¢r = max{z : (v, Bs) € R s,6(8)}, (3.49)
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for E € €. Define the rates R, By and B, used at the source S as in (3.16)
through (3.18).

In addition to the encoding functions, each node ¢ € A uses a Gaussian
vector quantizer to map its received sequence Y; to a representation sequence
Y.. The vector quantizer is constructed by picking 9T (I(Yis¥i)+9) sequences
uniformly at random from 7;(Y;), where Y; = o;Y; +£; as defined in Definition
2.21 and € > 0 can be choosen arbitrarily small. The encoding functions are
constructed randomly in the same way as in Section 3.6.2, except that they
act on y; instead of y; directly. Then, by Theorem 3.9, all the error analysis
steps of Section 3.6.2 can be done in an analogous way here, and we conclude
that there exists a code and a set of quantizers for which (3.28) through (3.30)
hold. Using Lemma A.4 in Appendix A.11, this implies that for this particular
code,

H(Xs,Xs|W,Yp,) <1+ T(Bi+By+ Y _ Bi)eg+ T (3.50)

icB
and

H(Xs,Xp|W, J1,Yp,) <1+ T(B2+ > Bi)eg
i€B
+ 1. (3.51)

We analyze the equivocation at FE; for the given code. Recall that we
chose By and By such that By + By = ¢, —€1. Let Z; C B be such that when
computing ¢g,, defined in (3.49), the constraint

T+ Z B; < R§1U{S}§E1 - 6

i€

is dominant. This implies that

Bi+By+ Y B =R gym — B—e (3.52)

1€Z1

The bounds (3.36) and (3.37) hold without modification. Instead of (3.38),
we use (3.50) to obtain

1
H(X5,X5,|W, Y5, Joz,) < T(T +(Bi+ B2+ Y Bi)eo) +T7.  (3.53)
ieB

Also, instead of (3.39), we use
I(X5,X7,; Y | Jag,) < T(RE sym, + @) (3.54)

from Lemma A.6 in Appendix A.11.
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Plugging (3.37), (3.53) and (3.54) into (3.36) yields

1
=H(W|Y5,) > R+ DB+ B, + > Bi—e

€11
2
_T—(R—I—Bl—I—BQ—f-ZBz)EO
i€B
1
—T—<Bl+BQ+ZBz)€O—’}/

ieB

G
- RIlu{S};El -«

3
=R-a-f-y-a-ae-g
— (R+2(Bi+ Ba+ ) By))e, (3.55)

i€B
where we have used (3.52) in the last step. The equivocation analysis for
E5 is done analogously. We conclude that the given code is reliable and the
equivocation at either of the eavesdroppers can be made arbitrarily close to
R — a— (3 — . This concludes the proof of the proposition.

3.6.5 Proof of Proposition 3.2 for Non-Layered Networks

When the network is not layered, we use the time-expansion technique pre-
sented in Appendix A.12. Consider a non-layered acyclic network G = (V, L)
with a set of noise-inserting nodes B and a set of eavesdroppers £. We define
an unfolded network Qflfl(f) as described in Appendix A.12, with S = BU {S}

and D = £ U {D}. The number of nodes in Ql(lff) is asymptotically upper
bounded by 2K|V|. The factor 2 comes into the picture because in the worst
case, every node has a virtual node added to it in the unfolded graph (see
Appendix A.12). Let R be any transmission rate that satisfies

R < FO(B),
Lemma A.7 and the proof of Section 3.6.3 can be adapted to show that

A
FuiGA) & max
B“"fEr‘lEeg'Runf G(A)

max{z : (, B") € Rip (A)}

— m:?x{x - (z, BE) € UEeé'R;IS{(S}'} p(A)}

and KF%(%A) are asymptotically equal with growing K. The sets R;H;G(A)
and RunfG(A) above are the Gaussian equivalents of R (p) and 7@5“; (p) used
in Sectlon 3.6.3. It follows that

KR < KF¢(3)
~ F"C(K ).
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The proof for layered networks lets us conclude that for Gaussian signal inter-
action, the p"-almost perfect secrecy capacity Og‘“‘f for the unfolded network
is lower bounded by F'"S(K3). Here, we define p"™ = K (a + (3 + ), where
the terms Ko and K come from the fact that the number of nodes in gﬁfff) is
(asymptotically) at most 2K|V|, while the term K follows by using Lemma
A.3 instead of Lemma A.2 in the proof of Theorem 3.9. Hence, as K grows
large, there is a block coding strategy that achieves the rate-equivocation pair
(KR, KR—p™). If the coding scheme on Q]Eff) is over one block of 7" transmis-
sions, then we can transform it into a coding scheme on the original network
G that uses T'K transmissions. The actual transmission rate is therefore R,
and the equivocation is +(K R — p™) = R — p/, where o/ = a+ 8 +~. Hence,
this scheme achieves p’-almost perfect secrecy on the original graph at rate R.
This concludes the proof.

3.6.6 Proof of Theorem 3.3

Let a network with an arbitrary number of noise-inserters be given. Consider
a rate R < O, i.e., such that (R, R) is weakly achievable. Fix an arbitrarily
small ¢; > 0. Hence, there exists a communication length T, and a (T, €; )-code
of rate at least R —¢; and equivocation at least R —¢;. Let X, and Y, be the
transmit and receive sequences of that particular code. In this proof, sequences
(denoted by X,, and Y ) are indexed by the same time-slots 1,...,T.. This
is in contrast to the achievability proof in Sections 3.6.2 and 3.6.4, where the
sequences X; and X, can occur during different communication blocks for
nodes 7,5 € V. Let W be the random variable that denotes the message.
Consider one particular eavesdropper E € £. Since the code is €;-reliable and
e1-perfectly secret, Fano’s inequality states that for some es,

HWI|Yp, Yp) < HWI|Y)) < Tee, (3.56)
while
HW[Yy) > HW) - Tee, (3.57)

where €5 goes to zero as €; decreases. Using (3.56), (3.57), and the rate con-
straint H(W) > T.(R — €;), we obtain

TR —2¢; —€) < HW) — Teey — Teeg
< H(E|XE) —Tee
<SHW|Yp)-HW|Y,, Yg)
=I(W;Yp|Yg)
<IW,Xs;Yp|Yp)
=I(Xs; Yp|Yp) + IW; XY p|Y 5, Xg),

J/

~~
=0
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where the indicated term is zero because W o Xg o (Y, Y ) is a Markov
chain. The remainder of the proof is very similar to the proof of Theorem
14.10.1 in [9]. Consider an arbitrary cut Q € A(S,B;D), i.e., a cut that
separates {S} U B from D. For any such cut, we obtain

I(Xg; XY pl|Yp) < I(Xo; Yoo |Y)

- i[<XQ§XQC[t”XQC[1]7 Yot —11,Yg)

_Z YQC |YQC[ ] -7XQc[t_1]7XE)
- H@m[ ¥ qell],- - Yoelt = 1], Y 5, Xo)]
DS HY Y el - Yoelt — 1, Y, X [1])

- H<YQC[ ”Yﬂc[l]v ce 7XQC[t - 1]7XE7X§27XQCM>}

<Z (Yo 1Y 11, Xoel1)

- H(Ym[ 1Y glt], Xolt], Xoo[t])]

— Z[ (X[t Yo Y 5t], Xoet])

T Z[XQ Yoo QY Q], X0 [Q], Q = t)

—TI(XQ[QLYQC[QHY [Q], X [Q], Q)
= T.[H(Y . [Q]Y 5[Q], X00.[Q], Q)

— H(Y 0. [Q]|X[Q], Y £[Q], X [Q], Q)]
< T [H(Y o [QlY 5[Q], X [Q))
— H(Y - [QlI X [Q, Y 5[Q, X0 [Q, Q)]
T.[H(Y . [QlY 5[Q], X [Q))
— H(Y . [Q]|X[Q), Y 5[Q], X0 [Q)])]
= TCI(XQ [Q] ) XQC [Q] |XE[Q] ) XQC [Q])>

where in (a), both terms remain the same, because all relay nodes in £2¢ use de-

@

terministic encoding functions, and hence, X .[t] is a function of (Y. [1], ..., Y qc[t—

1]). In (b), the second term remains the same, because Y .[t] depends only on
(Xglt], Xge[t]). In (c), we define @ to be a time-sharing variable, uniformly
distributed in {1,...,7.}. In (d), we use the fact that when @ is given, Y .[Q]
depends only on X [Q]

Now, define Xy 2 X,,[Q] and Y3, = Y,[Q]. Note that the distribution
of Yy, is the distribution of the received symbols of the network when Xy is
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transmitted. From the above derivation, we have

R < I(Xg; Yoo | Y, Xae ) + 26, + €. (3.58)

We repeat the same argument for every choice of €2 and for every E € £.
The distribution of Xy, that we find in the upper bound is the same for every
choice of €2 and E. Since this bound holds for every R < Cy and €, €5 can be
chosen arbitrarily small, the claim of the theorem follows.






Secrecy for the Fan
Network

4.1 Introduction

In this section, we study a particular wireless relay network called the fan
network. In such a network, the signal sent by a source node can be heard
by all relay nodes (through different outputs of a broadcast channel). All the
relay nodes are then connected to the destination via the so-called “destination
channel”. This second transmission can only be heard by the destination,
i.e., the relays do not create interference at other relays. This situation is
illustrated in Figure 4.1. We assume that every eavesdropper can physically
access a certain subset of the relay nodes and observe the signals received by
these compromised nodes.

One possible scenario in which such a setup would occur is the following.
We wish to receive data from a far away source (for instance a satellite), using
a device that we plan to leave unattended and hence, the device can poten-
tially be captured by an attacker. To solve this problem, we decide to deploy
a number of independent, autonomous devices (the relays) in a certain area.
There are two reasons for doing so. First, having several antennas (one per
device) spread out over a large area provides a higher capacity from the source
to the set of devices than if there was only one antenna. Second, collecting
the received data at several independent locations provides protection against
attackers that capture devices. To collect the data from all the devices, we
either assume the existence of a communication channel (multiple access chan-
nel) from all the relays to the destination, or we assume that the legitimate
user periodically visits all devices to physically collect the received data.

A more precise problem statement is given in Section 4.2. In Section 4.3,
we state our main results, which are the following: an upper bound on the
perfect secrecy capacity that is valid for a memoryless broadcast channel from

29
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the source and an arbitrary destination channel; a characterization of the
perfect secrecy capacity for the case of a perfect destination channel, where the
destination has access to the received signals of all the relays; a characterization
of the perfect secrecy capacity for a fan network with linear deterministic signal
interaction for the special case when the broadcast channel is the bottleneck of
the source-destination information flow. The proofs of all the results are given
in Section 4.4. For Theorem 4.2, we only give a short outline of the proof,
whose details can be found in Appendix B.

4.2 Problem Statement

Consider the network shown in Figure 4.1. A source node S is connected to M
relay nodes { A1, ..., Ay} through an arbitrary memoryless broadcast channel,
i.e., a channel as defined in Definition 2.1, with X = Xgand Y = ()1, ..., Yu)-
In general, this channel can be noisy or deterministic, discrete or continuous.
Let A = {Ay,..., Ay} be the set of relay nodes. The relay nodes operate
independently of each other based on their respective received symbols Yj[t],
A € A, and forward some information to the destination D via a channel of
some sort. We consider two types of such destination channels. The first is
the perfect channel, which allows D to directly observe the observations Yj[t],
A € A. The other is a multiple-access channel (MAC). If the destination
channel is a MAC, then the fan network is a wireless relay network as defined
in Definition 2.2.

We assume that a class of eavesdroppers £ is present in this network. Each
eavesdropper E € & has direct access to the received symbols Yy [t] for all relay
nodes A in a certain subset Ap C A.

A formal definition follows.

Definition 4.1 A fan network is defined by a set A = {Ay,..., Ay} of
relay nodes, a memoryless broadcast channel, given by alphabets Xg and Y4
and a probability mass function py,xg (or a probability measure pu(-|rs)), as
well as a destination channel that is either a set of parallel channels of ar-
bitrarily large rates (perfect destination channel) or a multiple access channel.
Finally, the definition of a fan network includes a set € of eavesdroppers with
a corresponding collection Ag¢ of subsets of A.

Since the fan network is layered (see Definition 2.3), we restrict our atten-
tion to block codes, defined as follows.

Definition 4.2 Let W € W be a uniformly distributed message observed by
S. A (T,e)-block code is defined as follows. When the destination channel
is a MAC, we use Definition 2.6. If the destination channel is perfect, then
a (T, €)-block code is simply given by an encoding function fs : W — X&, as
well as a decoding function fp : YMT — W that creates an estimate W of W
based on {(Yalll,...,Ya[T])}aca. We require the code to be e-reliable in the
usual sense that P(W # W) < e.
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channel ——e D

Figure 4.1: A fan network with M relay nodes.

The notions of rate, equivocation, achievability and perfect secrecy capacity
are as given in Section 2.2, except that Y is replaced by Y 4, and we only
consider block codes.

4.3 Main Results

4.3.1 Upper Bound on (|

In this section, we present an upper bound on the weak perfect secrecy capacity
of a fan network. This bound is valid for any destination channel.

Theorem 4.1 For a fan network with an arbitrary memoryless broadcast chan-
nel and an arbitrary destination channel, we have

< Ya) — ; :
Cs ~ maX[[(Xs,YA) %S?I(XS’YAE)]

PXxg

This theorem is proved in Section 4.4. Note that since Cy < C, for any
network, Theorem 4.1 provides an upper bound on the strong perfect secrecy
capacity as well. The bound given in the theorem does not depend on the
nature of the destination channel. This is due to the fact that if we replace
a given destination channel by the perfect destination channel for any given
fan network, we help the destination without helping the eavesdroppers, and
hence we increase the secrecy capacity of the network. For a network with a
perfect destination channel, the bound in Theorem 4.1 is actually tight.
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4.3.2 Perfect Destination Channel

Assume now that the destination channel is perfect, i.e., that D can directly
observe (Ya[l],...,Y4[T]) for every A € A. As mentioned before, the upper
bound in Theorem 4.1 is tight in this case. This fact is formally stated in the
following theorem.

Theorem 4.2 For a fan network with an arbitrary discrete memoryless broad-
cast channel and a perfect destination channel,
Cy = Cy = max [I(Xg; Ya) — max I(Xs; Ya,)].
Pxg Eec€

This result can be proved thanks to the absence of interference in this setup,
avoiding the question of how relays should cooperate. Furthermore, there
is only one transmit distribution px, to choose, avoiding any requirements of
independence among transmit distributions for different nodes. Note that since
the observation of every eavesdropper is a degraded version of the observation
at D, this setup is actually a degreded compound wiretap channel, and hence,
Theorem 4.2 is a special case of the characterization in [22]. Nevertheless, we
still give a detailed proof in Section 4.4.

4.3.3 Deterministic Signal Interaction

Consider a fan network with a deterministic broadcast channel and assume
that the destination channel is a deterministic MAC. We have the following
lower bound on the strong perfect secrecy rate for this network. We state it
as a corollary to Theorem 3.1.

Corollary 4.1 For a fan network with a deterministic broadcast channel and
a deterministic MAC to the destination, we have

C, > max min [ (Xgq; Yoe| Xqc)
pxgTacaprx, QEA(S;D)

— max [(Xg; Va,)]
To prove Corollary 4.1, we only need to show that a deterministic fan network
can be viewed as a wireless relay network as defined in Definition 2.2 (without
noise-inserting relays). Then, the result of the theorem follows from Theorem
3.1 in Chapter 3. The proof details can be found in Section 4.4.

Note that for deterministic signal interaction, we have I(Xgq; Yo
H(Yae|Xqe), because Yo is a function of (Xq, Xqc) = Xy.

Assume now that signal interaction is linear deterministic as defined in
Definition 2.18. In this case, Xs = X4 = {0,1}7 for all A € A. Let us pick
Pxs [ [acaPx, to be uniform over all the input alphabets. One can show that
for this particular distribution p,

XQC) —

H(YQC

Xqe) = rank (Ggqe),
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where Gg e is a binary matrix of dimensions |2°|g x |Q2|g. More precisely,
Gq.qc is a block matrix consisting of |Q2¢] - |©2| blocks, each of dimension ¢ X g.
Block (i, 7) of this block matrix is equal to the channel transfer matrix G,
where j € Q and i € Q° (see Definition 2.18).

Using this fact, we can show the following result.

Theorem 4.3 Consider a fan network with a MAC destination channel and
linear signal interaction. If arg mingea(s,py rank (Gogoe) = {S}, then

Cs = Cs =rank (Gg4) — rgagcrank (Gs.ap)-
S

The feasibility proof of Theorem 4.3 follows by plugging a uniform transmit
distribution into the lower bound of Corollary 4.1. To show the infeasibility,
we evaluate Theorem 4.1 for linear signal interaction. The details are provided
in Section 4.4.

The result of Theorem 4.3 is quite intuitive in the following sense. The
condition arg mingea(s;pyrank (Gogoe) = {S} states that the bottleneck for
the communication between S and D is the broadcast channel from S to A.
This means that the MAC destination channel is in some sense “stronger”
than the broadcast channel. The theorem tells us that if this is the case, then
the MAC is actually as strong as a perfect destination channel.

4.4 Proofs of the Main Results

4.4.1 Proof of Theorem 4.1

Consider a rate R < Cs, i.e., such that (R, R) is weakly achievable. Fix an
arbitrarily small €; > 0. It follows that there exists a communication length
T and a (T, €)-block code of rate at least R — €; and equivocation at least
R —€;. Let W be the message transmitted by the code. It follows that for
every E € &,

H(W[Y 4,) > H(W) — Tey. (4.1)

Let Ip be the information available at D at the end of the communication
length T'. From the reliability of the code and Fano’s inequality, we have that

H(W|Ip) < Te,,

where €5 can be made arbitrarily small by adjusting €¢; accordingly. But W -e-
Y 4 o Ip forms a Markov chain, and hence,

H(WIY ) < H(W|Ip) < Tes. (4.2)
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Fix a certain eavesdropper E € &£. Starting from H (W) > T(R — ¢;) and
inequalities (4.1) and (4.2), we obtain the following chain of inequalities:

TR—T2¢; —Tey < HW) —Te — Teg
S HWI[Ya,) —HW[Y)
=I(W;Y aupYap)
<IW, Xs; Y aa,|Yay)

(a
= I(Xs; Y i, Ya,)

=
—

[M] =

I(Xs; Yaap[tllYaus 1], Yaugt — 1], Ya,)

o~
Il

1

[M] =

Va0V aag [ Yaaglt = 1, Y ,)

t

- H(YA\AE [t] |YA\AE [1]7 BRI YA\AE [t - 1]7 YAEa XS)

1

—~
=
=

IIM%

H (Yo Y, 1)

t

— H(Ya s [1Yas 18, Xs11)|

1

DTS HXS[QL Vi ap [V, (@@ = 1)

= T](Xs[Q], YA\AE [Q] |YAE [Q]v Q)

< T H (Y [Q)Yap [QD) = H (Y s [ Q1Yo [Q): X500, Q)]
T H (Vs [QUYA[Q)) = H(Vaap [ QY [Q), Xs[Q))

= T[(Xs[Q], YA\AE [Q] |Y-AE [Q])a
where

(a) follows from the Markov chain W e Xg o Y 4,

(b) holds because since the broadcast channel is memoryless, Y.\ 4, [t] depends
on nothing else once (Xglt], Y, [t]) is known,

(¢) uses the time-sharing variable ), that we define to be uniformly dis-
tributed in {1,..., 7T},

(d) is again true because the channel is memoryless and thus, Y 4,[Q] <

(Y4,1Q], Xs]Q]) = @ is a Markov chain.

Hence, we have shown that R is upper bounded as

R S [(Xév7 YVZ\\AE|Y¢:1E> + 261 + €9
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where we have chosen the distribution px, to be such that Xg ~ Xg[@] and
Y is distributed as the output of the broadcast channel if Xg is the input.
We can repeat this argument for every E € £, and the random variable X§ in
the upper bound has the same distribution for all E. Hence,

R < rélei?I(Xg; YiaglYa,) + 26 + e
=I(XgY,) — rggg](Xg; Y),) +2€e + e

< maX[I(XS; Y4) — mggg](Xs; YAE)} + 2€1 + €,

Pxg E

where €; and €; can be chosen arbitrarily small. This completes the proof.

4.4.2 Proof Outline for Theorem 4.2

The proof of Theorem 4.2 follows the same lines as the proof of Theorem
3.1 in Chapter 3. For a fixed distribution px,, we sort the eavesdroppers by
decreasing I(Xs; Ya,), i-e., [(Xs;Ya, ) > 1(Xs;Ya,, ) > . ... Define the rates

R=1(Xs;Ya) — 1(Xs; Yag,)
By = I(Xs; Ya,, ) — 1(Xs; Yay,)
By = I(Xs; Yap,) — 1(Xs; Yag,)

BK = ](XS;YAEK) — €1.

We generate a random encoding function for S using a message W of rate R
and K junk messages J; of respective rates B;, i = 1, ..., K. There are no noise
inserting nodes in this network, and no further encoding functions. We can
show that there exists at least one code (out of all the randomly generated ones)
such that D decodes (W, Jy,..., k) reliably, and each eavesdropper could
decode some subset of the junk messages if it was given W and the remaining
junk messages. All of these decoders are joint typicality decoders. We then
use Fano’s inequality and a local cut-set bound (simpler than the one used in
Section 3.6) to lower bound the equivocation at each of the eavesdroppers. For
the reader particularly interested in this chapter, we provide a detailed proof
of Theorem 4.2 in Appendix B.

4.4.3 Proof of Corollary 4.1

The topology of the fan network with a MAC destination-channel is shown
in Figure 4.2. The signal interaction is deterministic as defined in Definition
2.17.

The fact that eavesdropper F € £ can observe all the received symbols at
every node A € Ar can be modeled as follows. We create a node in the fan
network for each eavesdropper E € £, and we include these new nodes in the
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Figure 4.2: The deterministic fan network with a MAC destination-channel, where
we assume that £ = {E), ..., Ex} is the set of eavesdroppers.

broadcast channel used by the source node S (see Figure 4.2). The broadcast
channel from S to (A, &) is modeled such that Y, is obtained from Xg by
the given deterministic broadcast channel for this network. For eavesdropper
E € &, we define the alphabet Vg £ HAeAE Y4, t.e., Vg is the Cartesian
product of the alphabets {Va}aca,. The channel output at F is then defined
to be equal to Y4, i.e., at every time slot, eavesdropper £ observes the same
symbols as the nodes in Ag. It is then clear that the network shown in
Figure 4.2 is an equivalent representation of the deterministic fan network. In
addition, the network of Figure 4.2 is a layered wireless relay network as defined
in Definitions 2.2 and 2.3 and also contains eavesdropped nodes as defined in
Definition 2.9. Hence, Theorem 3.1 from Chapter 3 applies to this network. Let
the set of noise-inserters B be empty. Then, for a given product distribution
Pxs | [aea Px 4, the function F(p) defined in Definition 3.4 simplifies to

F(p) = mgx{x >0:2 < Rsp(p)}

_ >0 < .
max{z > 0:z < max Re.p(p)}

xT

= Rs.p(p) — max Rs.p(p)

Plugging in the definition of Rg,;(p), Theorem 3.1 says that

C, > max [ min 1 (Xgq; Yoe| Xqc)

pxg [lacapx, QEA(S;D)

—max min _I(Xg; Yoe|Xq)].
E€E QeA(S;E)
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To complete the proof, it remains to note that for every £ € £, S and E are
directly connected through the broadcast channel, and hence we have

min [(XQ, YQc XQC) = I(Xs; YE)
QeA(S;E)

=1(Xs;Ya,).

4.4.4 Proof of Theorem 4.3

We first show that Cy > rank (Gg ) — rank (G4, ). From Corollary 4.1, we
know that for any distribution pxg [T4c4 Px4>

o > 1 (& c - .
O 2 o diig) 0o Xor) =g H V), 4

where we used the fact that the channels are deterministic to replace mutual
informations by entropies. Choose p to be the uniform distribution on all
alphabets Xy and X4, A € A. Then,

H(YQC XQC) - H(GV’QCXV’XQC)
= H(Gq0-Xo + Gae ge Xoe
= H(GQQCXQ’XQC)
Y H(Goa-Xq)
= rank (Ggqac), (4.4)

XQC)

where (a) is true because of the independence of X; and X; for i # j and
the last step follows because the entropy of a set of linear combinations of
uniform bits is equal to the number of linearly independent such combinations
in the set, which is equal to the rank of the system of equations. Plugging the
uniform p into (4.3) and combining it with (4.4) yields

Cy,> mi k (Gage) — k(G

=rank (Gg4) — max rank (Gg a,)- (4.5)

In the last step, we have used the assumption that minges(s;py rank (Gaqe) is
optimized by Q = {S}.

Now, we show that for linear signal interaction, the upper bound of Theo-
rem 4.1 is equal to (4.5). For any distribution px,, we have

[(Xs; Ya) — max 1(X; Yap) = min I (Xs; Vi ap|Ya). (4.6)
Further, for any £ € £, we can write
I(Xs;Yaap|Yag) = H(Y 045 |Ya5)
= H(Ya|Ya,)

= H(Gs,4Xs|Gs,.45Xs)
<rank (Gg.4) — rank (Gs ), (4.7)
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where the last step is true for the following reason. The matrix Gg 4 is of
dimension |A|g x ¢ and multiplies a binary random vector Xg of length g.
Hence, V £ Gs.4Xs is a binary vector of length |Alg that contains at most
q bits of information. If the information content of V' is less than ¢ bits, this
means that Gg_4 projects Xg onto a space of dimension rank (Gg 4) < g. The
quantity that we are interested in is H(V|Gg.a,Xs), where Agr C A. Thus,
the conditioning fixes the values of |Ag|g bits in V', hence leaving us with
rank (Gg 4) — rank (Gg 4,) degrees of freedom. This proves the inequality in
(4.7). The inequality is an equality if Xg is uniformly distributed in {0, 1}7.
Combining (4.7), (4.6) and Theorem 4.1, we have

Cs < max min H(Gs4X5|Gs4,Xs)
< IEHEH‘El [rank (Gs,4) — rank (Gs .a,)]
=rank (Gg4) — rggg;rank (Gsap)-
Hence, since strong secrecy implies weak secrecy, we have
rank (Ggs 4) — rgggrank (Gs.a,) <Cy < O
<

rank (Gg 1) — I]{Jlg? rank (Gs.4,),

which concludes the proof of the theorem.



Interactive Secrecy for
the Line Network

5.1 Introduction

In this chapter, we assume that the destination can provide feedback to the
source over a backward channel. This assumption is motivated by the fact
that in most wireless networks, communication is indeed bidirectional. For
simplicity, we assume that the backward link is perfectly reliable (a “bit-pipe”),
of unlimited rate and that it is public. In other words, the messages sent over
this channel are observed directly by the source and the eavesdropper. We
assume that this public channel can only be used in the backward direction,
i.e., to send messages from the destination to the source. This model differs
from the more general public discussion model used in previous literature.

In this chapter, we consider the problem of secret key agreement rather
than secret communication. In secret key agreement, two parties (the source
and the destination) wish to agree, with high probability, on a sequence of
bits (the “key”) which is kept secret from the eavesdropper. The key rate is
the entropy in bits of the key, divided by the number of channel uses that are
necessary to establish the key. This notion is weaker than the notion of secret
communication introduced in Section 2.2, because of the following. Every
secret communication protocol of secrecy rate Ry provides a shared “key” (the
message) of key rate R. In contrary, if we have a secret key agreement protocol
that provides a key of rate Ry, we cannot necessarily communicate a secret
message of the same rate from the source to the destination. Of course, if a
channel of non-zero rate from the source to the destination exists (for instance
a wireless relay network), then we can achieve secret communication by one-
time padding the key with the message and sending the resulting cypher-text
reliably over the channel. However, this implies further uses of the channel (or
the network), hence lowering the overall rate of the secret message.

69
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In [28], Maurer demonstrated the use of public feedback for secret key
agreement over the wiretap channel. He showed that if two users Alice and
Bob, and an eavesdropper Eve each observe one component of a discrete mem-
oryless multisource, then a public discussion channel can be used to establish
a secret key shared by the source and the destination. Further, he observed
that such a situation can be created in the wiretap channel setup [48] as fol-
lows. The source generates a random i.i.d. sequence X from some distribution
px and transmits it over the wiretap channel pyzx. Let (Y,Z) be the re-
ceived sequences at the destination and the eavesdropper, respectively. The
sequence triple (X, Y, Z) has the same distribution as a sample sequence from
the memoryless multisource governed by pxyz. A key generation protocol can
now be applied to this situation, with the source in the role of Alice and the
destination in the role of Bob. A generalization of this work was provided by
Ahlswede and Csiszar in [1].

The main new difficulty in proving the existence of feedback-utilizing proto-
cols for wireless networks stems from communication via relays. In the attempt
to create correlated sequences at all three ends of the setup, the source can
transmit an i.i.d. sequence of symbols over the network, as it was done in the
protocols of [28] and [1]. However, since the transmission happens over a relay
network, the relays need to map from their received signals to their transmit
signals. We analyze a decode-and-forward strategy for the relays. Depending
on the signal rate, the whole typical transmit set may not be used by the for-
warding relays. This leads to a thinning of the transmit signal spaces at the
relays. As a consequence, after a forward transmission over the network, the
information available at the source, the destination and the eavesdropper does
not have the statistics of a memoryless multisource. Therefore the techniques
introduced in [28, 1] are not directly applicable. This difficulty is not related
to the interference of received signals, but stems only from the thinning at the
relays.

For this reason, we restrict our attention to a simple one-relay network
with feedback without any phenomena of signal interference. We show the
existence of protocols that use the public backward channel to achieve a certain
secret key rate for this network. Interaction between the nodes is over general
discrete memoryless channels. The backward transmission uses a structured
binning scheme similar to the techniques proposed in [28, 1]. To be able to
apply this scheme, we first compute the size of the list of all potential received
sequences at the destination from the point of view of the eavesdropper. This
computation is a result that might be of a more general use. For comparison,
we derive the secret key capacity for the case when no backward channel is
available.

A more detailed problem statement is given in Section 5.2. The main results
are stated in Section 5.3 and proved in Section 5.4. Section 5.5 contains the
list size result.
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5.2 Problem Statement

In this chapter, we focus on the line network, which is essentially a concate-
nation of a point-to-point channel and a wiretap channel (see Figure 5.1).

Definition 5.1 The line network consists of a source S, a destination D,
only one relay A and only one eavesdropping node E. The network is defined
by alphabets Xs, Y4, Xa, Vp and Vg, and two discrete memoryless channels
DPyalXs: PYpys|xa- Lhe relay node A plays the role of connecting the channel
Pyalxs to the channel py, v, x, by mapping from its recewe alphabet to its
transmit alphabet. This mapping can be done block-wise and the mapping can
also be random i.e., A is a noise-inserting relay.

S A
E

Figure 5.1: The line network.

Definition 5.2 The line network with feedback is a line network, aug-
mented with a public feedback channel over which D can transmit messages of
arbitrarily large rate to S. These messages are received reliably at S and at F,
i.e., the feedback channel is public.

As explained in the introduction of this chapter, we focus on secret key
agreement rather than secret communication. In secret key agreement, we
want to ensure that S and D agree with high probability on the same key K,
while keeping K secret from the eavesdroppers. For a protocol that achieves
this, the rate of the key K is called the secret key rate and denoted by Rj.
This can be formalized as follows.

Definition 5.3 For a wireless relay network without feedback, we say that
a secret key rate R; is weakly achievable if the rate-equivocation pair
(Ry, Ry) is weakly achievable for secret communication. Weak achievability
for secret communication has been defined in Definition 2.11. For a wireless
relay network without feedback, we say that a secret key rate Ry is strongly
achievable if the secrecy rate Ry is strongly achievable for secret commu-
nication. Strong achievability for secret communication has been defined in
Definition 2.13.

In other words, for a wireless relay network without feedback, the notions of
secret communication rate and secret key rate are equivalent. Note that since
the line network is layered (Definition 2.3), we only consider block codes.

In the presence of a public feedback channel, we use a different definition:
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Definition 5.4 A (T, ¢)-protocol for key generation over a layered wire-
less network with feedback is given by a distribution px for the transmitted se-
quence Xg of length T', a set of (possibly) probabilistic relay encoding functions
fi, mapping Y; to X; at each relay i € A, a (possibly) probabilistic feedback
function fp, mapping Yp to a public message I, and two (possibly) proba-
bilistic key generation functions gs (mapping (Xg,I) to K) and gp (mapping
(Yp,I) to K). The key K should be uniformly distributed in {1, ..., 277}
where Ry, is the key rate. The probability of disagreement of a (T, €)-protocol
is required to be bounded by e: P(K # K) < e.

Definition 5.5 Given a (T, €)-protocol for key generation, we say that the
protocol provides weakly secret key generation if

H(K|Yp,I) > H(K) — Tk,

where K is the key, Y g is the sequence of observations at eavesdropper E, and
I is the public feedback. We say that the protocol provides strongly secret
key generation if

H(K|[Yp, 1) > H(K) -«

Definition 5.6 For a network with feedback, we say that a secret key rate Ry,
is weakly/strongly achievable if for any e > 0, there exists an integer T
and a weakly/strongly secret key generation (T, €)-protocol that has key rate
Ry.

Definition 5.7 The strong secret key capacity Ci of a wireless network
with or without feedback is defined as

Cr = max{Ry : Ry is a strongly achievable secret key rate}.

5.3 Main Results

First, we consider the line network without feedback.

Definition 5.8 Let V4 be the alphabet of an auziliary random vam’ableVVA, and
let a distribution pxg v, x, over Xs X Va X X be given. We define R(Va,p)
to be the set of all pairs (R, R.) satisfying

R <min{l(Xg;Ya),I(Va;Yp)},
R, < [[(VA; YD) — [(VA; YE)]+,
R. <R.

Theorem 5.1 In the line network without feedback, a rate-equivocation
pair (R, R.) is weakly achievable if and only if it lies in the region

Y %

R = UVAvaSPVAPXA|VAR(VA7p)7 (5.1)
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where the union is over all choices of the alphabet V4 and over distributions
on Xg x Vs x Xy such that Xg and (Va, X4) are independent and V4 o X4 <
(Yp, Yg) forms a Markov chain.

Using Caratheodory’s theorem [11], one can show that it is sufficient to consider
alphabets V4 no larger than |Yp| + |Vg| + 1 in the optimization (5.1). The
proof of Theorem 5.1 can be found in Section 5.4.

The following corollary follows from Theorem 5.1:

Corollary 5.1 The strongly secret key capacity of the line network without
feedback is

Cy = max min{/(Xg; Ya),
VADPXGPVAPX 4|V 4
[I(Va; YD) — I(Va; YE)| T (5.2)
Proof: = Theorem 5.1 tells us that every rate-equivocation pair (R, R.) in

R is weakly achievable. Hence, it follows from Lemma E.5 that Ry = R, is
strongly achievable over the network. Since a secretly communicated message
is a secret key, C}, is lower bounded by the expression given in the corollary.
To show that that expression is also an upper bound on Cj, we note that for
a network without feedback, Cy = C,, which is upper bounded by the weak
secrecy capacity C;. The upper bound on Cy follows from Theorem 5.1. O

Note that Theorem 5.1 and Corollary 5.1 give necessary and sufficient con-
ditions for secret communication and secret key agreement over the line net-
work without feedback. The following theorem gives sufficient conditions for
secret key agreement over the line network with feedback.

Definition 5.9 For a given distribution px, and a number u, let the function

F(u,px,) be defined as

} 0 ifu<I(Xa;YE)
F(u,px,) =13 (u—1(Xa,Yp;Yp))* if I(Xa;Ye) <u<I1(Xa;YD,YE)
(I(Yp; Xa) —I(Yp;YR))"  ifI(Xa;YD,YR) < u.

It can be readily checked that for any fixed px,, F(u,px,) is a continuous
function of w.

Theorem 5.2 In the line network with feedback, a secret key rate Ry is
strongly achievable if it satisfies

Rp < max F(I(Xs;Ya),px,). (5.3)

PXgPX 4

The proof of Theorem 5.2 can be found in Section 5.4. We immediately obtain
the following corollary:
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Corollary 5.2 Let
Csa = max I(Xs; Ya)

Pxg
be the point-to-point capacity of the channel from S to A. A secret key rate
Ry, is strongly achievable if it satisfies
Ry < max F(Cga, px,,)-
PX 4

Proof:  Consider the optimization problem (5.3). Note that the distribution
pxg influences F'(I(Xs;Ya),px,) only through its first argument. Moreover,
F(u,px,) is non-decreasing in u for any choice of px,. It follows that to
maximize F'(I(Xs;Ya),px,) over a range of distributions px,px,, we can first
maximize [(Xg;Y4) over all possible px,, and then maximize F(Csa,px,)

over all px,. Hence, the two expressions max,, py F(I(Xs:Ya),px,) and

maxy,, F (Csa,px,) are actually equal, which proves the corollary. O

Assume that the channel from X4 to (Yp, Yg) is such that Yp = X4 = Yg
is a Markov chain. Consider a modified setup for which S = A. This is the
setup studied in [1] and it was shown there and in [29] that the strongly secret
key capacity of this channel is

Cp = I;laX[I(XA; Yp) — I(Yp; YE)]. (5.4)
XA

Let C, be the secret key capacity of the line network with feedback. It is
clear that Cj, is an upper bound on Cj, and that C}, is achievable in the line
network with feedback if C'gy4 is infinite. Let Xy be a random variable whose
distribution maximizes (5.4) and let Y}, and Y}, be the corresponding outputs
of the channel py, y,x,. In the scheme described in [1], the source node (S
or A in our notation) generates an i.i.d. sequence X, from the distribution
of Xy and sends it over the channel. As a result, A, D and E have access to
correlated memoryless sequences X4, Yp and Yg, respectively. The public
message over the feedback link is then used to establish a shared secret key
between A and D based on these correlated sequences. Instead of generating
X4 in an i.i.d. manner, we can also select X 4 uniformly at random from the
set of typical sequences Z5(X')) (see Appendix F). If we do this, the statistics
of the resulting (X4, Yp, Yg) are with high probability the same as before. In
the line network, we can select such a typical sequence X 4 at S and describe it
losslessly to A if Cs4 > H(X)), hence achieving C}. Surprisingly, Corollary 5.2
states that whenever Cga > I(X/;Yp,Yr), we can achieve a secret key rate
of I(X';;Y})) — I(Y}; Ys), which is the secret key capacity Cj, given in (5.4).
Hence, Cj, is achievable in the line network even if Css < H(X/), which is
unexpected. The scheme that is used to achieve this secret key rate is described
in detail in Section 5.4.

The following proposition compares the achievable secret key rate with
feedback given in (5.3) and the secret key capacity without feedback given in
(5.2).
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Proposition 5.1 Consider a line network with a conditionally independent
broadcast channel, i.e., such that py, v, x, = Pyp|xa Pys|xa- Let X3 and X7
be such that px:px+ mazimizes (5.3), let Y, Y}, and Yy be the corresponding
channel outputs, and let

Ry, = F(I(X§YA) pxy)
be the largest secret key rate guaranteed by (5.3). Then, the secret key rate
R 2 min{I(X5 Y3), [(X35:Yp) — [(X3 Y]} (5.5)

s achievable without the use of the public feedback channel. In addition, if
I(X5Y3) < I(X3; Yp), then

R> R:. (5.6)

Proof:  First, note that (Xg, Vi, Xa) = (X, X}, X7) is a valid member of
the maximization set in (5.2). Hence, when ignoring the feedback channel,

R =min{I(X%Y3), [[(X3:Yn) — (X3 Y™

is achievable, because it is smaller than the secret key capacity given in (5.2).
Assume that I(X§; Y ) < I(X%;Y)). Then, it follows from (5.3) that

Ry, = max{0,I(XgYy) — I(X4;Yz)}

Since I(X%;Y5) < I(X4;Y3), we have R > I(X%5;Y:) — I(X%;YE). From
the non-negativity of the mutual information, we also have R > 0. Hence,
R> R:. O
The example in Figure 5.2 shows that the inequality in (5.6) can be strict,
implying that the achievable secret key rate given in (5.3) is not optimal. The
example also shows how the two schemes can be combined via time-sharing to
obtain a secret key rate that is higher than either of the individual rates.

I(XA;Yp|YE)

I(X3:Y))
—I(X35Yg)

I(X%;YE) I(X4;YD,YE)

Figure 5.2: lllustration of Proposition 5.1. R (solid line) and R (dashed line)
are plotted as functions of the mutual information between S and A. The dotted
line shows the convex envelope of the two functions, which is achievable via time-
sharing between the two schemes.
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5.4 Proof Outlines

5.4.1 Proof of Theorem 5.1

Achievability Assume that (R, R.) € R. Tt follows that for a certain V4
and a distribution px py,px,|v,, we have

R < I(Xs;Ya), (5.7)
R < I(Vy:Yp), (5.8)
R. <R, (5.9)
R. < [I(Va;Yp) — I(Va; Yir)]*. (5.10)

From the usual channel coding theorem [11], we know that if (5.7) is true,
then there exists a reliable code of rate R for the channel py,|x . Since R, <
R, and since F does not receive any information about this transmission,
the equivocation rate at E about this message is at least R.. Now, assume
that A knows the transmitted message. From the achievability in [10], we
know that as long as (5.8) and (5.10) are true, there exists a code that allows
reliable transmission of a message of rate R from A to D while achieving an
equivocation rate arbitrarily close to R..

Converse Assume that (R, R.) are achievable. Then, from the channel cod-
ing theorem [11], we know that R < max;,, I(Xs;Ya). Moreover, since the
equivocation at F cannot be more than the number of messages, R. < R.
Hence,

(R, Re) € UPXSA(st)7 (5'11)

where A(px,) = {(R,R.) : R < I(Xs;Ya), Re < R}. From the converse proof
in [10], we know that

(R, Re) € UVA,pVAPXAWAB(VAvpVApXAWA)v (5.12)

where B(VA,vapXA‘VA) = {(R,Re) R < ](VA;YD),Re < [I(VA,YD) —
I(Va;Yg)]T}. From (5.11) and (5.12), it follows that

(R.Re) € (Upy, Alpxs))
N <UVA,,,VA,,XA,VA B(Va, vaprWA))
= Upxy Wapv,x v, <A<pxs)
N B(VA,]?VAPXA\VA)>

1%

= UVAvPXSPVApXA|VA R(Va,p)
=R.
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5.4.2 Proof of Theorem 5.2

Let px px, be fixed. Consider the following protocol: S generates a random
message of rate

R=min{I(Xg;Ya) — e, HX4)(1 - 8)}

and sends it over the channel py, x4 using a good channel code. The constants
€1,0 > 0 can be chosen arbitrarily. Then, it follows from the channel coding
theorem [9] that A can decode that message with small error probability. Be-
fore the next transmission block, A re-encodes the message into a transmit
sequence x4 using a codebook C C 75(X4) of rate R, where T5(X4) denotes
the set of all (robustly) typical sequences x4 (see Appendix F). The codebook
C is generated by picking sequences from 75(X 4) uniformly at random. Once
generated, C is fixed for all time.

Definition 5.10 Define L5(Y;), j € {D, E} as the list of all sequencesy; such
that there is at least one codeword x4 € C for which (xa,y;) € T5(Xa4,Y;).
Similarly, define Ls(Yplyr) as the list of all sequences yp such that there is
at least one x4 € C for which (xa4,¥p,YE) € 75(Xa, YD, YE).

This definition is equivalent to Definition 5.12 in the next section of this chap-
ter.

D and FE receive sequences Y p and Y g, respectively, that are the outputs
of the broadcast channel py,, y,|x, when X, is the input.

For the backward transmission, we are facing a source coding problem
similar to the one in [28] and [1]. The destination D wants to describe Yp
to S, while keeping part of it secret from E. S and E observe the sequences
X and Y g respectively, which serve as side-information in the source coding
problem.

Definition 5.11 Define ag and ag to be non-negative real numbers such that:
If Xg is known, then with high probability, Yp is one of 279 possible se-
quences. If Y is known, then with high probability, Y p is one of 27%F possible
sequences.

The exponents ag and ag play an important role in deriving and analyzing a
source code for the backward transmission. In [28] and [1], the computation of
these exponents is straightforward, because the receive sequence at D and the
two side-information sequences at S and at E together have the same statistics
as the output of a discrete memoryless multisource. For the line network, the
derivation of g and ag is more involved.

The decoder at A has a small error probability. Hence, with high probabil-
ity, S knows which message was decoded and re-encoded at A. Consequently,
assuming X 4 = X4, we obtain

oTas — | T5(Yp|x4)| o~ 2THEDIXA) (5.13)
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which is the same for all x4. The approximate equality can be made arbitrarily
precise by choosing ¢ small enough (see Lemma F.2). Note that the sequences
X4, Yp and Yg are highly likely to be jointly d-typical and thus, with high
probability, Y lies in £5(Yg) and

2"r = |L5(Yplye)|-
Using Lemma 5.3 and identity (5.19) in the next section, we obtain

H(Yp|X4,Yg) if0<R<I(Xa;YE)

ap ~ j;&](jf;f;;)} if I(Xa;YE) < R< 1(X4; YD, Yp) (5.14)
H(Yp|YE) if I(X4;Yp,YE) < R< H(X,),

where the approximate equality can be made arbitrarily precise by choosing
0 sufficiently small.
We conclude the proof of the theorem from the following lemma.

Lemma 5.1 Through public transmission by D, any secret key rate Ry that
satisfies

R, < ag — ag (515)
1s weakly achievable between D and S, when E is the eavesdropper.

Evaluating ap — ag for ag and ag as given by (5.13) and (5.14) and not-
ing that Ry should be non-negative implies that the rate range stated in the
theorem is weakly achievable. It is easy to see that Lemma E.5 in Appendix
E can also be applied to the problem of secret key agreement, which lets us
conclude the strong achievability of that rate range.

It remains to prove Lemma 5.1:

Proof: We show the existence of a source code that achieves Ry as given in
the lemma.

Code construction: We construct a random binning scheme to be used at
D in the following way:

e Every sequence yp € Ls(Yp) is thrown into a randomly (uniformly)
chosen bin, indexed by i € {1,...,2T(@sFe)]

e Then, for every bin 7, every sequence yp in it is thrown into a randomly
(uniformly) chosen sub-bin indexed by k € {1,...,27(@s=as)},

Let Yp be the received sequence from the forward transmission over the net-
work. The sequence Yp lies in L5(Yp) with high probability. The bin index
I = i(Yp) will be communicated over the public channel, while the sub-bin
index K = k(Y p) is the secret message.

Encoding: D sends I over the public channel.

Decoding: S identifies a unique sequence Y in bin I such that Yp €
Ls(Yp|xs). The dominant error event is that Y is not unique in bin I.
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Virtual Decoding at the Favesdropper: If a genie made K available at F,
then £ would know (I, K). It could then try to identify a unique sequence

Y in sub-bin K of bin I such that Y, € L5(Yp|yg). The dominant failure

event is that Yp is not unique in sub-bin K of bin I.

Expected Error Probability: Through analysis of the expected error prob-
ability, one can conclude that since the number of bins and the number of
sub-bins are chosen large enough, there exists a binning scheme for which

P(error at S) < €

and

QT(aEfaS)

L P(A) < 6, (5.16)

2T (ap—as)
k=1

where Ay is the error event of the virtual (genie-aided) decoder at the eaves-
dropper for a given K = k. Note that the left hand side of (5.16) is the error
probability when estimating Y p from the observable (K, I,Yg). Thus, from
Fano’s inequality [9], we have

H(Yp|K,I,Yg) < Tes, (5.17)

where €3 can be made arbitrarily small by choosing ¢, small enough.
Equivocation Analysis: We have
=I1(Yp; K, I|Yp) — I(Yp; I|YE)
=H(Yp|Yp) - H(Yp|K,I,YE)
—H(I|Yg)+H(I|Yp, YE)
—_——— —/ —
<H(I) >0
> H(Yp|Yp)—H(I) - H(Yp|K,I,Yg) (5.18)
> T(ap — (as + €) — ),
where we have used (5.17) to bound the last term. For the second term, we

used the fact that [ € {1,...,27(@s*2)} and hence H(I) < T(ag + €5). For
the first term in (5.18) we have used

H(Yp|Yg) = Z P(Yp=ye)H(Yp|YE =yE)

ye€Ls(YE)
(a)
2 S P(Ye = ye)loglLa(Volys)
yE€Ls(YE)
=Tag- Z P(Yp=yg)
yE€Ls(YE)

7

'

~1
~ Tag,
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where ~ denotes approximate equality for large 7. This approximation of
H(Yp|Yr = yg) in (a) follows from the uniformity stated in Lemma 5.4.
Thus, the equivocation can be made arbitrarily close to ag — asg.
Rate Analysis: The rate of the sub-bin index K is equal to ap — ag.
Hence, our scheme achieves weak secrecy of the key K, at a rate Ry as
stated in the Lemma. O

5.5 List Size Lemmas

In this section, we present several lemmas that are used in Section 5.4. The
proofs of all these lemmas can be found in Appendix C.

Consider discrete alphabets X, ), Z and a joint distribution pxyz(x,y, 2)
on X x Y x Z. Let C be a randomly generated X-codebook of size 27%, where
each codeword has length 7" and was picked uniformly at random from 75(X).

Definition 5.12 We define the following sets, or “lists”:

o L5(Y) is the list of all sequences'y such that there is at least one x € C
for which (x,y) € Ts.

o Ls5(Z) is the list of all sequences z such that there is at least one x € C
for which (x,2z) € T5.

o For a given z € Ls(Z), we define Ls(X|z) as the list of all codewords
x € C such that (x,z) € Ts.

o For a given z € Ls(Z), we define Ls(Y|z) as the list of all sequences
y € 75(Y|z) such that there exists at least one codeword x € C for which
(x,y,2) € Ts.

The size of a list Ls(+) is denoted as Ls(-) = |Ls(+)].

Intuitively, the meaning of these lists is the following. If the codebook C is used
for transmission over the channel pyzx(y, z|7), then we know from Lemma
F.2 that the received sequences y and z are, with high probability, such that
(x,y,2z) € Ty for some ¢ > 4. It follows that in this setup, Ly (Y') and Ls(Z)
are the lists of possible received sequences at Y and Z, respectively, given
that we do not know which codeword was transmitted. For a given received
sequence z, Ly (X|z) is the list of all codewords that seem plausible from the
point of view of Z. Likewise, Ly (Y|z) is the list of all sequences y that are
likely to be received at Y from the point of view of Z.

Before stating the first lemma, we define the notion of exponential equality.

Definition 5.13 We say that two expressions A and B that depend on the

variable T are d-exponentially equal, denoted by A 2B if asymptotically
with large T', we have

B27T < A < BT,
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Note that d-exponential equality is reciprocal, i.e., if A 2 B, then B 2 A

For example, Lemma F.1 states that |Z;(X)| £ 27H()_ where § = §H(X).
Instead of “d-exponentially equal”, we also use the shorter term “d-equal”.

Lemma 5.2 For any § > 0, we have with high probability (over the random
codebook C) and for almost every z € L5(Z) that the size of Ls(X|z) is

Ls(X|2) =1 if R<I1(X;Z) -6
Z ~ ~
’ B oT(R-1X32)  if [(X; Z) + 6, < R < H(X) — 6,

where §; = 62H (X).

b

By “almost every z € L5(Z)” we mean a subset of L5(Z) whose size is e-
exponentially equal to Ls(Z), where € can be arbitrarily small.

The second lemma provides arbitrarily tight bounds on the size of the list
,C(; (Y’Z):

Lemma 5.3 For any d > 0 such that § < %, the following is true.

For large T, with high probability over the random codebook C, and for almost
allz € L5(7Z), the list L5(Y|z) is of size

&2 oTH(Y|X.Z) ifR<1(X;2) -6

04 oT|R—-I(X;Y,Z)+H(Y|Z) if 1(X;2)+261+82+405<
L‘S(Y’Z) =2 ( ) R<I(X;Y,1Z)—251 ’

% 9TH(Y|2) ifI(X;Y,Z)+6 < R< H(X) =6,

where we define 6 £ 62H(X), 6 = 6H(Y|X,Z), 63 = 6H(Y|Z), and 64 =
01 + 0.

In Lemma 5.3, the exponent for the second regime can be written as
R—I(X;Y,Z)+HY|Z)=R-I1(X;2)+ H(Y|X, Z). (5.19)

To find the list L5(Y|z), we can imagine that we first find all the x € L5(X|z).
Then, the list L5(Y|z) is the union over all such x of the “fans” 75(Y|x, z).
We observe the following rather surprising fact:

o If R < I(X;Z) — 6y, then L5(X|z) is of size 1 (Lemma 5.2), and hence,
L5(Y|z) is simply the fan 75(Y'|x,z) for the unique x € L5(X|z). The
size of this fan is exponentially equal to 277V 1%2) a5 indicated in Lemma
5.3.

o If I(X; Z)+26,+0,4+405 < R < I(X;Y, Z)—6,, then the size of Ls(X |z)
is exponentially equal to 277~1(X:2) (see Lemma 5.2). Hence, Lemma
5.3, together with (5.19), tells us that L£s(Y|z) is the union of 27 R-1(X:2))
disjoint fans, each of size (exponentially equal to) 27#1%2) " In other
words, the fans 75(Y'|x, z) are disjoint for different x € L5(X|z).
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o If I(X;Y,Z) +6, < R < H(X) — 0, the size of L5(X|z) is still ex-
ponentially equal to 270 =1(Xi2) = However, the fans 75(Y|x,z) are no
longer disjoint for different x € L£5(X|z). From Lemma 5.3, we see that
|L5(Y|z)| is exponentially equal to |75(Y|z)|. This implies that not only

are the fans 75(Y'|x, z) not disjoint, but they cover almost all of 75(Y|z).

This observation suggests that a sharp transition happens when R is close
to I(X;Y, Z), in the sense that L£5(Y|z) transits from being a disjoint union
of exponentially many sets to being a covering of 75(Y'|z). This situation is
illustrated in Figure 5.3.

Ts(Y)
T5(Y|z)

Figure 5.3: lllustration of the list L(Y'[z) for two cases: when I(X;Y, Z)+6; < R
(on the left) and when R < I(X;Y, Z) — 6, (on the right).

In the absence of Z, the same phenomenon happens. In this case, one can
show that the size of L5(Y) is

(V) B oT(R+H(YIX)  §f 0 < R < I(X;Y) — 6,
’ B oTH(Y) i T(X;Y) 40, < R< H(X) — 6,

This means that the fans going from codewords in C to 7Z5(Y") are disjoint for
R < I(X;Y)—d;. When R > I(X;Y)+6;, not only the fans are not disjoint,
but they cover all of Z5(Y) without leaving any gaps. Hence, we again have a
sharp transition when R is close to I(X;Y).

Another interesting observation is the following. For I(X;Y) +d; < R <
I(X;Y,Z) — 61, every y € T5(Y) is covered by a fan from some codeword
x € C, but for a fixed z, not everyy € 75(Y|z) is covered by a fan coming
from a codeword x € L5(X|z).

The following lemma deals with a random experiment where the (uniformly
generated) codebook C is fixed, and we randomly pick a sequence x from the

given C.

Lemma 5.4 Let C be a fixed code as defined in the beginning of this section.
Consider the random experiment of picking a codeword X uniformly at random
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from C and transmitting it over the channel pyz x. The received sequences Y
and Z are then random variables. Fix a sequence z € Ls(Z). Then, for almost
every possible code C,

§ 1
P(Y=y|Z=1z)=
ify € Ls(Y|z) and
P(Y=y|Z=2z)=0

otherwise, where 8 is a scaled version of 6, and = denotes relative equality as
defined in Section 2.1.

This lemma states that by choosing ¢ sufficiently small, we can make the
distribution of Y given Z = z arbitrarily “close” to the uniform distribution
on Ls(Y|z).






The Interference-Multiple
Access Channel

6.1 Introduction

The general two transmitter - two receiver channel, shown in Figure 6.1 is
a channel connecting two transmitters to two receivers. We call this small
network a “channel” because none of the nodes plays the role of a relay. As-
sume that Transmitter 1 encodes a message W, and Transmitter 2 a message
Ws5. When Receiver 1 is only required to decode W and Receiver 2 only W,
then the communication problem is called the interference channel, because
the signal sent by Transmitter 1 interferes with the communication between
Transmitter 2 and Receiver 2 and vice versa. This problem was introduced in
[40], and as of yet, the general capacity region for this channel is unknown.
The best known inner bound was provided by Han and Kobayashi in [16]. See
[8] for a survey of solved special cases. In particular, the results in [14] and [13]
are related to our work. In [14], the capacity region of a class of deterministic
interference channels is given, and [13] provides a 1 bit-approximation of the
capacity region for the Gaussian interference channel. More recently, Telatar
and Tse [44] generalized the results of [14] and [13].

A different problem arises when the receivers are required to decode both
messages W; and Ws. In this case, for fixed product input distributions, we can
achieve the intersection of the achievable multiple-access regions for Receiver
1 and Receiver 2. The capacity region for the channel is the union over all
product input distributions of these intersections.

In this chapter, we introduce a new problem, where we require Receiver
1 to decode both W; and W5, but Receiver 2 is only required to decode the
message Wy encoded by Transmitter 2. We call this problem formulation the
interference-multiple-access (IMA) channel. The IMA channel is related to
the cognitive interference channel studied by Liang and others in [24]. The

85
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difference is that in the cognitive interference channel, one of the transmitters
observes the message that the other transmitter encodes. The authors of
[24] find the exact capacity region with and without secrecy of the cognitive
interference channel.

We first focus on the capacity region for the IMA channel if there is no
secrecy requirement. Our main results are an achievable rate region for the
general IMA channel, an outer bound for a certain class of so-called structured
IMA channels, as well as an expression for the gap between the inner and outer
bound for structured IMA channels. This class of structured channels is the
IMA analog of the class of interference channels considered in [14] and [44].
It turns out that the inner and outer bounds match for a semi-deterministic
channel, providing a complete characterization of the capacity region. For the
Gaussian case, we show that the gap is at most 1 bit, yielding an approximate
characterization. In the last section of this chapter, we consider the additional
constraint that part of W; should be kept secret from Receiver 2. This re-
quirement creates a tension for Transmitter 1, because its effort to facilitate
the decoding of W5 at Receiver 2 might harm the secrecy of its own message.
Surprisingly, we can show that in a very special case, a scheme derived with-
out concern for secrecy actually provides “unintentional” secrecy for the IMA
channel. We then provide an inner bound on the equivocation-capacity region
(the region of all achievable rate-equivocation triples) of the IMA channel.

In Section 6.2, we define the general and structured IMA channels in detail.
Section 6.3 states the main results and Section 6.4 contains the corresponding
proofs. The secrecy results are stated in Section 6.5 and proved in Appendix

D.

6.2 Problem Statement

6.2.1 The General Interference-Multiple-Access Channel

Consider the discrete memoryless channel shown in Figure 6.1, connecting
two transmitters to two receivers. The input and output alphabets are dis-
crete sets Xj, Xo, Vi and ). If input symbols (x1,x9) are transmitted,
the outputs (Y7, Y5) are governed by the conditional probability distribution
Pyi,ve| X1, X2 (|71, T2). Messages Wi and W, are encoded at Transmitter 1 and
2, respectively, and we require Receiver 1 to produce estimates of (W7, Ws),
while Receiver 2 is only required to estimate W5. We refer to this problem as
the general interference-multiple-access (IMA) channel.

We assume that Transmitter 1 and Transmitter 2 are operating in a syn-
chronized way, meaning that both transmitters start transmitting a given mes-
sage realization at the same time slot. This means that even if one transmitter
uses less time-slots to transmit its message, it will wait with transmitting a
new message realization until the other transmitter also does so. Based on this
assumption, we can restrict ourselves to block codes.
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Wy Xy

— }/1 (Wh WQ)

Pyi,v2|X1,X2

WQ XQ *>}/2 WQ

Figure 6.1: The general interference-multiple-access (IMA) channel.

Definition 6.1 Let W; € W; be the message observed by Transmitter i, © =
1,2, and assume that W; is uniformly distributed in the finite message alphabet
W;. Assume that time is divided into time slots, and that the transmission
of a set of messages starts at time 1. A (T,¢)-block code is given by two
possibly random encoding functions f; - Wy — X, i = 1,2 and two decoding
functions fl : le — W) X Wy and fg : y2T — Ws. The block length T
is defined as the number of time slots that go by until the transmitters start
transmitting a new realization of their messages. Let (Wl,VVQ) = fl()/l) be
the estimate of (W1, Ws) at Receiver 1, and let W, = fZ(yQ) be the estimate of
Wy at Receiver 2. We require the code to be e-reliable in the usual sense that

P((Wy, W3) # (Wl, W2)) < e and P(Wy # Ws) < e.
The capacity region is defined in the usual way as follows.

Definition 6.2 The capacity region R of a given IMA channel is the set
of all rate pairs (Ry, R2) such that for any € > 0 there exists a block length T
and a (T, €)-block code for which we have zH(W;) > R; — €, i =1,2.

Our first result, outlined in Section 6.3.1, is the description of an inner bound
on R, i.e., a region of pairs (R, Rs) that are guaranteed to be achievable.

6.2.2 The Structured Interference-Multiple-Access
Channel

In Section 6.3.2, we consider a specific class of two-user channels, depicted in
Figure 6.2, and described in the following definition.

Definition 6.3 A two-user channel is structured if the outputs Y7 and Y,
are determined from the input symbols (x1,22) € Xy X Xy in the following
way. First, x; is fed through a discrete memoryless channel with transition
probability py, x, to obtain a random variable V;, taking values in the discrete
alphabet V;, for i = 1,2. Then, Y1 and Y, are computed as the outputs of the
functions g1(x1, V) and go(xe, V1), respectively. We assume that the functions
gi, t = 1,2, have the property that for any fized x1, the map

91<I17 ) Vo — M, Vo V)

is invertible, and similarly for go. The channel is fully specified by X;, Vi, Vi,
bv;|X; and Gi, fOT'Z' = 17 2.
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Y) (Wh WQ)

Yy W

Wy Xy

Figure 6.2: The structured IMA channel.

The structured two-user channel was introduced in this general form by
Telatar and Tse in [44], and its deterministic version was earlier studied by El
Gamal and Costa [14]. Both [44] and [14] considered the interference version of
this channel. Telatar and Tse provided a new outer bound on the rate-region
of the structured interference channel, and quantified the gap between this
outer bound and the Han-Kobayashi inner bound in [16].

In Section 6.3.2, we provide an outer bound on the capacity region R for
the structured IMA channel. We quantify the gap between inner and outer
bounds on the capacity region, using the techniques introduced in [44].

6.3 Main Results

6.3.1 Inner Bound

Definition 6.4 For a given distribution pg x, x,,u, = PQ PX1|Q PX2|Q PU1|X1,Q;
define R;(Q, X1, Xo,Uy) as the set of all pairs (Ry, Rs) of non-negative real
numbers satisfying the 6 constraints

Ry < I(X1;Y1|Xs,Q), (6.1)
Ry < I(Xy; V1| X1, Q), (6.2)
Ry + Ry < I(X1, Xo; 11|Q), (6.3)
Ry < I(Xy; Yo|UL, Q), (6.4)
Ry + Ry < I(U, X2; Y2|Q) + 1(X1; Y1|Ur, X, Q), (6.5)
Ry + 2Ry < I(Uy, Xo; Y2|Q) + I( X1, Xo; Y1|U1, Q) (6.6)

In addition, define
Ri £ Ug,x1 %00 Ri(Q, X1, X2, Un),
where the union is over all distributions of the form pg px, 10 Px.lQ Puix.,Q-

To simplify the presentation, we use the random variables to denote their dis-
tribution, which is an abuse of notation.
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Remark: Using Caratheodory’s theorem (see e.g. Lemma 3.4 in [11]), one
can show that to find R;, one can restrict ones attention to auxiliary random
variables (@, U;) that take values in discrete alphabets of sizes |Q] < 7 and
Uy | < Q] - | x| + 3.

Theorem 6.1 For any IMA channel given by a set of alphabets and a distri-
bution py, yv,x,,x,, we have

R; CR.

To prove Theorem 6.1, we show the existence of a code that uses superposition
at Transmitter 1. The auxiliary random variable U;, which can be referred to
as the cloud center, facilitates the decoding at Receiver 2. The proof details
are given in Section 6.4.1. Note that for structured IMA channels, using the
properties of the functions g; and the fact that V; depends only on X, for
1 = 1,2, the inequalities of Definition 6.4 become

R1 <H(Y1|X2,Q) — H(V2| X3, Q), (6.7)
<H(V|Q) — H(V2| X3, Q), (6.8)
Ry + Rz <HW[Q) — H(V2| X2, Q), (6.9)
<H(Y>|U:,Q) — H(VA|U1, Q), (6.10)

R1+R2 <H(Y2|Q) — H(VA|U1, Q)
+ HW1|U1, Xo, Q) — H(Va| X2, Q), (6.11)

Ry + 2R, <H(Y2|Q) — H(V1|Uy, Q)
+ H(Y1|Uy, Q) — H(Va| X2, Q). (6.12)

The random variable ) models the fact that the users can agree on a
time-sharing strategy.

6.3.2 Outer Bound for Structured IMA Channels

Definition 6.5 For a given distribution pg px,|0 Px.0. define Ro(Q, X1, X2)
as the set of all pairs (Ry, Rs) of non-negative real numbers satisfying the 6
constraints

Ry <HW[X3, Q) — H(V2] X5, Q),

Ry <H(V2|Q) — H (V2| X3, Q),
Ry + Ry <H(Y3|Q) — H(V2| X2, Q),

Ry <H(Y2| Xy, Q) — H(V1] X1, Q), (6.13)
Ry + Ry <H(Y2|Q) — H(V1| X1, Q)

+H(}/1IU1’X2aQ) _H(‘/Q|X2>Q)7
Ry + 2R, <H(Y,|Q) — H(V1| X3, Q)
+H<Y1’U{,Q) _H<‘/2|X27Q)7
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where the auxiliary random variable Uy takes values in Vi and follows the
distribution

PUIIQ, X1, X2,Y1,Y2 (U] Q5 T1, T, Y1, Y2) = Puypx, (wa] 1),
i.e., U] is a conditionally independent copy of Vi. In addition, define
Ro £ Ug.x1,x:Ro(Q, X1, X5),
where the union is over all distributions of the form pg px,10 Px.|0-

Theorem 6.2 For any structured IMA channel given by a set of alphabets,
distributions py,|x,, Pvy|x,, and functions g1, g2, we have

R CR,.
The proof of Theorem 6.2 can be found in Section 6.4.2.
Theorem 6.3 If (R, Ry) € R,(Q, X1, X2), then
(R1, By = I(X; W1|U7, Q) € Ri(Q, X1, Xo,U) € Ry,
where U] is defined as in Definition 6.5.

Proof: Let (Ry, R2) € R,(Q, X1, X2). Let the region ﬁO(Q,Xl,XQ) be the
slight modification of R,(Q, X1, X2) where we replace the term H (Y2 X1, Q)
in (6.13) by H(Y>|Uj, Q). Since by doing so we relax that bound, (Ry, Ry) is
also in Ro(Q, X1, X3). After noticing that I(Xy; Vi|U!, Q) = HWA|UL, Q) —
H(V1] X1, @), one can then verify that the pair (Ry, Ry — I(Xy; V1|U7, Q)) sat-
isfies all the inequalities (6.7) through (6.12) for U; = Uj. O

Corollary 6.1 If the channel py,|x, is deterministic, then R; = R, = R.

Proof: If py,|x, is deterministic, then U] = Vi, and the gap I(Xy; V1|U7, Q)
is zero. Thus, we obtain an exact characterization of the capacity region for
the structured IMA channel with a deterministic X;-V; channel. O

Consider a Gaussian IMA channel, where all the alphabets are the complex
plane and V; = b; X; + Z; for i = 1,2, where b; is a complex constant and Z;
is complex, circularly symmetric Gaussian noise independent of (X;, Q). Let
91(X1,Va) = a1 X7 + V4, and analogously for go( X2, V}). The resulting channel
can be summarized by the equations

Yl = G1X1 -+ b2X2 —+ Z2
Y2 = lel + GQXQ -+ Zl-

This is equivalent to the Gaussian signal interaction model defined in Definition
2.16. The following is a second corollary to Theorem 6.3.
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Corollary 6.2 For the Gaussian IMA channel, R; gives a 1-bit approximation
of the capacity region.

Proof: Theorems 6.1 and 6.2 can be extended to channels with continuous
alphabets. In this case U] = 0, X + Z], where Z] ~ Z; and Z| L (X1, 23, Q).
Denoting by h(-) the differential entropy, we have

]<X1;V1|U{a ) h(V1|U1, ) h<V1|U{7X17Q)
= h(Vi|U1, Q) — h(Z1|Q)

< h(Vi = U1|Q) — h(Z1|Q)

= h(Z1 = Z1|Q) — h(Z:11Q)
WZy — Z1) — h(Z)

log(2) =1 bit.

This concludes the proof of the corollary. O
The approximation given in Corollary 6.2 can be very useful in the high
SNR regime.

6.4 Proof QOutlines

6.4.1 Proof of Theorem 6.1

Assume that (R, Rs) € Ri(Q, X1, X,, Uy) for a given joint distribution pg px,|o
Px2Q Puy|x;,0- The random variable () is a time-sharing variable and is as-
sumed to be available at both transmitters and both receivers, modeling a
shared pseudo-random number generator.

Through a random coding argument, we show the existence of a code that
achieves rates (R, Ry). First, generate a sequence q from pg(-)7. Choose
some auxiliary rate B € [0, R;]. Randomly generate a code in the following
way. Generate 277 sequences (i) from [],_, pu,o(-l¢[t]), and index them
by i € {1,...,2TB}. For each i, generate 27(f1=5) sequences X1<i j) from
[T, pxajono(luslt](4), qlt]), and index them by j € {1,...,2T(R=B)} Finally,
generate 2772 sequences x,(k) from [, px,j0(-lqlt]), and index them by k €
{1,... 2T},

Once this code is generated, it is fixed for all time and used to encode a
message pair (Wi, Ws) = ((i,7), k) into transmit vectors x; (7, j) and x(k).
Receiver 1 declares its estimate (W7, W) to be the unique triple ((i,7), k) for
which (xl(@',j),ul(i),xz(k),yl,q) € 75(X1,Uy, X5, Y1, Q), where 75 is the set
of all jointly typical sequences as defined Appendix F. If such a unique triple
cannot be found, Receiver 1 declares an error. Receiver 2 declares its estimate
W, to be the unique index k for which there exists at least one index 4 such
that (u1 (1), x2(k), y2, q) € T5(Uy, X, Ys, Q). If such a unique index cannot be
found, Receiver 2 declares an error. An error occurs when a receiver declares

an error, or when (Wl, VVQ) # (W1, W) or Wa # W.
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Without loss of generality, assume that (W, Wy) = ((1, 1), 1).
As (xl(l, 1),u1(1),x2(1),y1,y2,q) € T5(X1, Uy, Xo, Y1, Yo, Q) with high prob-
ability, to upper bound the probability of error it is sufficient to consider the
events where typicality holds for an index triple (7, j, k) # (1,1,1). The error
events at Receiver 1 are that (Xl(i,j), w (1), x2(k), y1, q) € T5(X1,Up, X2, Y1,Q)
for

e i # 1, j arbitrary and k = 1,
ei=1j#1and k=1,
e ;=1 j=1and k #1,
e i # 1, j arbitrary and k # 1,
e i=1j#1and k # 1.

The error events at Receiver 2 are that (u;(i),x2(k),y2,q) € Z5(U1, X2, Y2, Q)
for

e i #1landk #1,
e i=1and k # 1.

From standard arguments [11] it follows that the expected probability of all
these events (where the expectation is over all random codes and over all
messages (W3, Ws)) can be made arbitrarily small if

B+ (R — B) = Ry < I(X1;Y1|X3,Q), (6.14)

Ry — B < I(X1;11|Uy, X, Q), (6.15)

Ry < I(Xy; 111X, Q), (6.16)

B+ (Ry — B) + Ry = Ry + Ry < (X1, Xo; Y1|Q), (6.17)
( (6.18)

(Ri — B) + Ry < [(Xy, Xo; YA|U, Q), 6.18
and
Ry < I(Xy;Yo|Uy, Q). (6.20)

In (6.14), (6.16) and (6.17), we used the Markov chain U; - X; o (X5, Y7, Y5)
(conditioned on @) to drop U from the right hand side. The constraint B €
[0, R;] can be written as

B—R, <0, (6.21)
~B<0. (6.22)

Out of the constraints (6.14) through (6.22), three are lower bounds on B
(namely (6.15), (6.18) and (6.22)), whereas two are upper bounds on B ((6.19)
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and (6.21)). It is clear that an auxiliary rate B that satisfies these 5 bounds
exists if and only if every upper bound on B is larger than (or equal to) every
lower bound on B. For instance, to be able to find a B that satisfies (6.15)
and (6.19), we require

Ry + Ry < I(X1;Y1|Uy, Xo, Q) + 1(Uy, Xo; Y2 |Q), (6.23)

and, on the other hand, if such a B exists, than (6.23) is true. Note that (6.23)
is the same condition as (6.5) in the claim of the theorem. Analogously, by
combining (6.18) with (6.19), we obtain (6.6). All the other combinations of
lower and upper bounds on B yield inequalities that are already implied by
(6.14), (6.16), (6.17), (6.20), by the non-negativity of the rate R; or by the
non-negativity of the mutual information. Hence, inequalities (6.14) through
(6.22) are true for some B if and only if (6.1) through (6.6) are true (together
with Ry, Re > 0). But these 6 inequalities hold since we assume that (R;, R) €
Ri(Q, X1, X2, Uy). Thus, the expected probability of all error events can be
made arbitrarily small by choosing 7" large enough. It follows that there exists
at least one code for which all decoding error probabilities are arbitrarily small.

6.4.2 Proof of Theorem 6.2

The proof follows the same lines as the proof of Theorem 1 in [44]. Let a
structured IMA channel be given by py;x, and g; for i = 1,2. Assume that
(R1,R2) € R and fix an arbitrary € > 0. From the definition of R, there
exists a block length 7" and a (7', €)-code with rates at least R; — e and Ry — e,
respectively. Let Wi and W5 be independent messages and let X, X5, Vi, Vo,
Y, Ys be the random T'-sequences induced by them, the code and the channel.
Generate a sequence U] by passing X through an auxiliary channel described
by pvix,. Note that, by construction, U} = X; = (X5, V1, V3, Y, Y))
forms a Markov chain, and (Uy, X;) has the same distribution as (V,X;). In
particular, H(Ul) = H(Vl) and H<U1’X1) = H(V1’X1)
By Fano’s inequality we have

TR; < I(X;Y;)+ Té,
fori=1,2,

TRy < I(X5; Y1) +T¢€,
and

T(Ry+ Ry) < I(Xy, Xy Yy) +T€,
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where € can be made arbitrarily small by choosing e sufficiently small. We

can then write

T(Ry — 6/)

< I(Xy;Y)
< I(X4;Yq,Xo)
=1(Xy;Y1]Xy)

= H(Y:|X2) — H(Y|X1, X5)
= H(Y1[Xs) — H(V2|Xy)

< Z 1| Xa[t]) — H(Va[t]| Xa[t])],

(6.24)

where the last inequality holds because H(Y;|Xz) is upper bounded by its
single-letter form, and H(V2|Xy) is equal to its single-letter form, because Vs
is the output of a memoryless channel whose input is X,. Following the same

initial steps, we obtain

T(Ry —¢€)
< I(Xy;Y))
< H(Y1|X1) — H(Y | X1, Xs)
= H(V32) — H(V2|X>)

<> [HWValt]) — H(Va[t]| Xa[t])].

In a similar manner, we have

T(Rl + R2 - 6/)
< I(X1,X2: Y1)
= H(Y1) — H(V2|Xy)

and

H(Y2|X1) H(V4[Xy)

<> [HWIX[) - HVAHX )]

t=1

(6.25)

(6.26)

(6.27)
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We further obtain
T(Ry + Ry — 2€)
< I(X1;Y1, UL Xs) + 1(Xs; Yo)
= I(Xy; U}) + I(Xy; Xo|UY)
=0

+I(X1; Y1 |UY, Xo) + 1(X; Y2)

= H(U}) — H(UXy) +H(Y1|U}, Xy)
=H(V1)  =H(V1|Xy)
— H(Vy|Xy) + H(Ys) — H(V,)

< ST [HY,[1) — HVA[1)|X:[1])

+ H(Y1[t]|U1[t], Xa[t]) — H(VQ[tHXQ[tm, (6.28)
where the indicated term is zero because W and W, are independent. Finally,
T(Ry + 2Ry — 3¢)
<I(Xy;Y,U) + I(Xg;Ys)
+ 1(X2; Y1, Vy)
= I(Xy; U)) + I(Xy; Y1 |U)) + 1(X2; Y2)
+ I(X9; Vi) + I(X5; Y| Vy)
=0
= H(U}) —H(Uj[X,) + H(Y:|U}) — H(Vy)
=H(V1)
+ H(Ys) — H(Vy)+ H(Vy) — H(V3|Xs)
= H(Y,) — H(U X)) + H(Y:1|U}) — H(V2|Xs)

<> [H(Yalt]) — H(VA[H|X1[])

+ HW1[]|Uf[t]) — H(Va[t]| X2[t])] (6.29)

Setting (@, X1, X3) to be random variables with @ uniformly distributed in
{1,...,T} and px,g(xi|t) = P(Xi[t] = ), for ¢ = 1,2, we see that the
inequalities (6.24) through (6.29) can be rewritten as (R; — ¢, Ry — €') €
Ro(Q, X1, X2) € R,, where € can be made arbitrarily small. As R, is closed,
we see that any achievable rate pair is in R,.

6.5 Secrecy in the Interference-Multiple Access
Channel

In the IMA channel, no eavesdroppers are present. However, one can imagine
that certain applications require part of the message Wy, which is only intended
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for Receiver 1, to be kept secret from Receiver 2. In this section, we are
concerned with this type of secrecy.

6.5.1 Unintentional Secrecy

In the achievability proof of Section 6.4.1, we show the existence of a superpo-
sition code. When using this code, Transmitter 1 combines a “cloud index”
of rate B with a “cloud member index” j of rate R; — B to identify a codeword
x; for transmission. The role of the cloud index i is to help Receiver 2 in the
reception of W5. The proposition given below says that if the auxiliary rate B
satisfies certain conditions, then this code, which was chosen without secrecy
constraints in mind, guarantees (weak) secrecy for j against Receiver 2. This
is why we call this notion “unintentional secrecy”.

Proposition 6.1 Fix a distribution pg px,|Q Px.Q Puix,,Q- Assume that the
auxiliary rate B satisfies the following two conditions:

B < I(U1:YalX5, Q) and (6.30)
B = mll’l{[(Xl, )/'Q‘XQ, Q), [<X17 X27 Y2‘Q) - RQ} — €1 (631)

for some €; > 0. Consider the code whose existence we have shown in Section
6.4.1 and let J be the part of the message Wy that indicates the cloud member.
Let Yo be the received sequence at Recewer 2. Then, we have that over the
probability space of the code,

H(J|[Y2) >T (R, — B —¢ —€)

with high probability, where € can be made arbitrarily small by increasing the
reliability of the code.

Intuitively, this proposition holds because of the following. Condition (6.30)
implies that Receiver 2 can, with high probability, decode the index I correctly,
where I denotes the cloud index. The second condition (6.31) is such that the
rate of I occupies almost all the mutual information available for transmission
between Transmitter 1 and Receiver 2. Given these two facts, it seems natural
that Receiver 2 can only obtain very limited information about the second
index J. A formal proof is given in Appendix D.

Note that if € is chosen very small, then (6.30) and (6.31) can imply that
I(X1; Y| X2, Q) and 1(Uy; Ys| Xo, Q) are almost equal. One might ask whether
this causes U; to be essentially equal to X7, which would imply that the secrecy
rate Ry — B is very small. However, one can show that there exist random
variables Uy, X1, Y7, Ys for which U; o X; o (Y7,Y3) forms a Markov chain
and for which I(Uy;Y2) = I(Xy;Ys) but I(Uy; Yy) < I(Xy; V7).

Note however that the conditions (6.30) and (6.31) are somewhat artificial
and unlikely to be satisfied “unintentionally”. One can also construct IMA
codes with secrecy on purpose. This is the subject of the following sub-section.
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6.5.2 Intentional Secrecy

Here, we state a result that guarantees that part of Wj remains (weakly) secret
from Receiver 2. We first define a new version of the capacity region R that
takes secrecy into account.

Definition 6.6 The equivocation-capacity region R. of a given IMA chan-
nel is the set of all triples (Ry, Ry, Re) such that for any € > 0, there exists a
block length T and a (T, €)-code for which we have +H(W;) > R; —¢€, i = 1,2
and %H(WllYg) > R. — €, where Yo is the received sequence at Receiver 2.

Definition 6.7 For a given distribution pg px,|q Px»|Q Puyx,,Q. define
Rei(Q, X1, Xo,Uy) to be the set of all triples (Ry, Ra, R.) of non-negative real
numbers satisfying the 6 constraints of Definition 6.4 and the additional con-
straint

R. <min{ Ry, I(X1;Y1|U1, Xo, Q), I(X1, Xo; Y1|U1, Q) — Ry}
—min{I(Xy; Y2|U1, X5, Q), [(X1, Xo; Ya|U1, Q) — Ry} (6.32)

In addition, define
Rei £ Ug x1, X000 Rei(Q, X1, X2, Uh),

Theorem 6.4 For any IMA channel given by a set of alphabets and a distri-
bution py, v, x,,x,, we have

Re,i g Re-

To prove this theorem, we show the existence of a scheme that has the
following characteristics. Transmitter 1 uses the same structured code as in
the proof of Theorem 6.1, but the private index j is split into two sub-indices
Jjn and js. We are able to show that there exists a code for which j, is not
necessarily secret, but j, is kept secret from Receiver 2. The bound on the
equivocation is derived in a similar way as in Proposition 6.1. A detailed proof
is given in Appendix D.

Note that Theorem 6.4 provides weak secrecy from Receiver 2. If a certain
(R1, Ro, R.) lies in R., then the results of Maurer and Wolf, explained in
Appendix E, can be used to show that we can achieve strong secrecy at a rate
arbitrarily close to R..






Discussion and Future
Work

In this thesis, we show that it is possible to guarantee a computable lower
bound on the strong perfect secrecy capacity for wireless relay networks with
an arbitrary acyclic topology. Our results are for the well-motivated model of
Gaussian signal interaction, as well as for the simpler deterministic interaction
model. We also provide an upper bound on the perfect secrecy capacity for
arbitrary wireless networks. Unfortunately, it seems difficult to characterize
the gap between the upper and lower bounds.

The Gaussian result should be viewed as a first step towards an approx-
imate characterization of the perfect secrecy capacity of arbitrary networks.
Future efforts should go into finding an upper bound that can be related to
the lower bound expression, as well as decreasing the subtractive constants a,
f and v in Theorem 3.2.

The result for deterministic signal interaction can provide valuable insights
into possible coding schemes. In addition, it proves to be more easy to handle.
Therefore, we believe that it is important to pursue the problem under this
model as well. The main aim would again be to find an upper bound on the
secrecy capacity that can be related to the lower bound. Towards this aim,
one can also try to improve the lower bound by considering additional coding
techniques like decode-and-forward and destructive interference. Our results
for the fan network show that for special network topologies with discrete
memoryless channels, one can obtain characterizations of the perfect secrecy
capacity. To find these characterizations, we used intuitions and techniques
from our results for general networks.

Feedback from the destination to the source is a promising feature, but
studying it for arbitrary wireless networks seems very challenging. Our results
for the line network are an encouraging first step. A valuable extension would
be a non-trivial upper bound on the secret key capacity for this small network.
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100 Discussion and Future Work

During my doctoral studies, I have worked on several other problems that
are not contained in this thesis. The most important results are the following:

We considered the problem of lossy compression of a Gaussian source that is
to be reproduced by two independent decoders, each having access to a different
Gaussian side-information source that is correlated with the data source. We
found the rate-distortion region for the case when the side-information sources
are physically degraded. In more recent work, we studied lossy compression
of a discrete source with erased side-information. We found that this type of
setup shares many properties with the Gaussian case, and all our Gaussian
results were repeated for this setup. These results can be found in 7. and §.
(in the CV at the end of the thesis).

In joint work with Vasudevan (7. in the CV), we considered a source coding
situation where two encoders, observing correlated sources, can collaborate by
means of a rate-limited link from one to the other. The aim is to jointly
describe the sources to a decoder. We provided an inner bound on the rate-
distortion region and showed tightness for two special cases.

Recently, we presented a result obtained in collaboration with Vasudevan
and Vojnovié¢ (see 4. in the CV at the of this thesis). In this contribution, we
studied the algorithmic problem of distributed binary consensus in a complete
graph. We showed that when each node can use 3 states for memory and
signaling, the reliability of the best consensus algorithm improves dramatically
as compared to the case when the nodes have binary memory and binary
messages. We also showed that the convergence is as fast as for the case
without limits on the state.

Together with Rethnakaran Pulikkoonattu, we developed a software called
Xitip, which is a C-version of the “Information-Theoretic Inequality Prover”
(ITIP) by Yeung and Yan [50]. Our version of this software is faster, more
easily portable, and it includes a graphical user interface. Further references
about this work are given in the CV at the end of the thesis.



Appendix for Chapter 3

A.1 Proof of Lemma 3.1

We have
Ra(p) = in H (Yoo Xor)
RB;J‘ (p) = Qe%\l%[rs’l]) H(YQC XQc)

Let A and B be subsets of V such that A C B. Then, the monotonicity follows
from the fact that A(B,j) C A(A,j). We now show the submodularity. Let
A and B be two subsets of V. Let € and Qy be the optimizers of (A.1) and

(A.2), respectively. Define the sets

\PIZQI\QQ
\IIQZQQ\Ql
\IllnglﬂQg

\I/() = (Ql U Qg)c.

Note that the four sets defined above form a partition of V. It follows that

Ql = \111 U \1112
Qy = Wy U Wy,
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where both unions are of disjoint sets. It is easy to verify that ; U )y €
A(AUB,j) and Q1 N Qs € A(AN B, j). Hence,
Raus;j(p) + Rans;(p)
< H(Y(u0:)e [ X (@un2)e) + H(Yi@ina:): [ X @ins)e)
= H(Yy,| Xv,) + H Yw,, Yu,, Yo,| Xv,, Xv,, Xv,)
= H(Yy, | Xv,) + HYy,, Yo, | Xv,, Xv,, Xu,)
+ H(Yy,|Yy,, Yo, Xo,, Xy, Xog)
= H(Yy,| Xv,) + H Yy, Yo, | Xv,, Xu,)
— I(Xy,; Yu,, Yo, | Xv,, Xu,)
+ H(Yy,|Yy,, Yo, Xo,, Xy, Xo,)
< H(Yy,|Xv,, Xv,) + I (Xu,; Yo,| Xw,)

+ H(Yy,, Yo, | Xy, Xu,)

— I(Xyy; Yo, Yo, | Xu,, X)) + H Yy, |Ye,, Xo,, Xo,)

= HYy,, Yo, | Xv,, Xv,) + H Yy, Yo,| Xv,, Xo,)

+ I(Xu,; Yoo | Xwy) — I (Xu,; Yo, Yo, | Xu,, X, ), (A.5)
where the first inequality follows from the definition of R..;(p) and the second
inequality follows from dropping part of the conditioning in the last conditional
entropy term. We further have

I(Xyy; Yo, | Xu,) = H(Xw,| Xe,) — H( X, | Y., Xu,)
< H( Xy, | Xyy, Xu,) — H(X v, | Yo, Xvg, Xu,)
= 1(Xu,; Yoo | Xwy, Xv,)
< I(Xyy; Yo, Yo | Xug, X, ), (A.6)
where the first inequality is true because the first term remains unchanged by
the independence of the tuple Xy, while the second term decreases in absolut
value by adding variables in the conditioning. Substituting (A.6) in (A.5),
together with (A.3) and (A.4), we find that
Rausj(p) + Ransj(p) < H(Yy,, Yoo| Xv,, Xu,) + H (Y, Yo | Xu,, Xu,)
= H(Yoe| Xae) + H(Yas| Xag)
= Ra;j(p) + Rpy;(p)-

This concludes the proof of the lemma.

A.2 Proof of Lemma 3.2

We have
Rai(p) = min I(Xo; Yae|Xqr AT
A:(P) Qeff\l(lij) (Xa; Yoe| Xae) (A.7)
Rpj(p) = min I(Xq;Yoe|Xqe). (A.8)

QEA(BJ)
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Figure A.1: lllustration of the sets used in the proof of Lemma 3.1.

Let A and B be subsets of V such that A C B. Then, the monotonicity follows
from the fact that A(B,j) C A(A,j). We now show the weak submodularity.
Let A and B be disjoint subsets of V. Let ; and 25 be the optimizers of
(A.7) and (A.8), respectively. Since Q; € A(A,j) and Qy € A(B, j), we have
ACQ, BCQandjecQnNQs Hence, Q2 QUQ, € A(AUB,j). Note
that Q¢ = Qf N Qf and define

T 206\ Q°
Ty 205\ Q°
d L (U, UT,UQo)".

Observe (see Figure A.1) that ¥y, Uy, Q° and ® are disjoint sets and such that
Q2§ is partitioned by Wy and ¢, while {2 is partitioned by W5 and €2°. Finally,
V is partitioned by Wy, Uy, Q¢ and &. We have

Raus.j(p) < I(Xa; Yae| Xae)
— ](X(IDJ X\I’17 X‘I’Q) YQC

XQC)

(a)
é [(X(p, Xq;z, YQc X\pl y XQc)

+ (X, Xu,; Yoo | Xu,, Xac)
< I(Xo, Xuy; Yae, Yo, | Xy, Xao)
+ (X, Xu,; Yo, Yo, | Xu,, Xac)
= I(Xqy; Yor | Xor)
+ 1(Xo,; Yog| Xag)
= Ra;(p) + Rp;(p),

where (a) is true because for independent random variables A, B, C, D and any
random variable Y, we have (see e.g. [46]) I(A, B,C;Y|D) < I(A, B;Y|C, D)+
I(A,C,Y|B, D).
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A.3 Proof of Theorem 3.4

The claim of the theorem is that communication at a rate arbitrarily close
to the one given in the optimization (3.8) is possible with perfect secrecy. It
suffices to show the existence of a block code that achieves this.

Let 6 be such that

(RRC(0), RPC (0)) € RHAC (A.9)
and such that
@0 ([0, RS (0)] % [0, Ry (6))) (A.10)

is non-empty, where

q)E = {(RjAv RjB) € R%AC :
1
Rj, + Rj, = 5log(l+h§UE+hQBE)}. (A.11)

Then, define Rp = RBS (0) + REC (0) and Rg = §log(1 + h%p + h}p), and let
R = Rp — Rg — €. Let W be the information message, uniformly distributed
in {1,...,2T%} We split W into two parts, W4 and Wjg, of rate R,, and
Ry, respectively, such that Wj, is uniformly distributed in {1,..., 27w}
for & € {A,B}. Before each transmission block, the source S generates
two junk messages J4 and Jp, uniformly distributed in {1,...,27%4} and
{1,...,2"%is} respectively. Define My = (Wy, J4) and Mp = (Wpg, Jg). The
junk rates R;, and R;, are picked arbitrarily such that

(Ryu Byy) € @01 ([0, REC(9)] [0, RS (6)).
The information rates are chosen as
Ry, = RS(6) = Ry, = 5.
for k € {A, B}. Note that this choice ensures
Ry, = Ry, + Rj, < R)C(0), (A.12)

and hence, by the Gaussian broadcast channel achievability result [9], there
exists a broadcast code from S to A and B such that A can decode (My, Mp)
and B can decode Mp, with arbitrarily small error probability.

The relays operate as follows: A discards message Mp and encodes M4
only, while B encodes Mp. The encoding function used at k is a randomly
generated mapping from {1,...,27%m} to the set of Xj-typical sequences of
length T, for kK = A, B. This code is generated once at random, and is fixed
and deterministic thereafter. From the MAC achievability [9], it follows that
the two properties

(Rinas Bn) € RHAC
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and
(RjA’ RjB) € tRl\E/IAC
imply that

E|P(wrong decoding of (M4, Mp) at D)+

TRw, oTRwp

2
1 -
9T (Rup +Rup) Z Z P(AwA,wB)] < €o,

wa=1 wp=1

where A, L wp 18 the event that E wrongly decodes (J4, Jp) given that (W4, Wg) =
(wa,wp) is available at E. From this, using an adaption of Fano’s inequality
similar to Lemma A.4, it follows that there exists a code for which the error
probability at D can be made small, and for which

H(JA, JB|WA, WB,YE) S T62.
Now, we are ready to bound the equivocation at E. We have
HW|Yg)=H(Wa,Wg|YEg)
2 ](WA7 WB7 XA7 XB|YE)
= H (X4, X5|YE) — H(X4, Xp|Yr, Wa, Wg)

(a)
Z H(XAa XB|YE) - H(MA7 MB|YE> WAa WB)
- H(XA7X-B) — I<X-A7XB7YE) - H(JA7 JB|YE7 WA7 WB)

(b)
Z H(MA7 MB) - T63 - I(XAa XB7 YE) - H(JAa JB|YE> WA> WB)
BC BC
> T(RmA(Q) + RmB(Q))
—I(X4, Xp;Yg) —Tey — Teg — Teg
(c)
BC BC
> T(RmA(Q) + RmB(é’))
1
- T§ log(1 + h4p + hay) — Tep — Tey — Tes,

where (a) is true because (M, Mp) = (Wa, Wg, Ja, Jg) o (X4,Xp) o Yg
forms a Markov chain, (b) follows from Fano’s inequality, and in (¢) we upper
bound I(X 4, Xp; Yg) by the sum-rate capacity of the multiple access channel
from (A, B) to E. Therefore, by choosing €, €; and €3 small enough, the
equivocation +H(W|Yg) can be made arbitrarily close to Rp — Rg. Hence we
weakly achieve (Rp — Rg, Rp — Rg). Finally, we use Lemma E.5 to conclude
that Ry, = Rp — Rg is strongly achievable.

A.4 Proof of Theorem 3.6

Consider an achievable rate tuple Rs. Fix an arbitrarily small € > 0. From
Theorem 14.10.1 in [9], we know that there exists a distribution p({z;}icy)
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with the following property. For any cut €2 such that D € ¢ we have

> Ry — ¢ < I(Xo; Yoo | Xoo), (A.13)

1€EQNS

where ¢ > 0 can be made arbitrarily small by choosing € small. We can write
(A.13) in a slightly different form: For any subset Z of the sources S, and for
any cut Q € A(Z; D), we have

D R — ¢ < I(Xo; Yoo Xao).

1€l
This implies that for any subset Z C S, we have

Y Ri—e< min I(Xg;Yoe|Xqe).

" QeAZ;D
i€l &)

Therefore, Rs € Rs,p(p) for the given distribution p. Since such a distribution
can be found for any achievable Rg, the claim of the theorem follows.

A.5 Proof of Theorem 3.7

A.5.1 Code Construction for Layered Networks

First, assume that the network is layered in the sense that for each source
node ¢ € § and each node j € V, all the paths from i to j have the same
length. Fix any product transmit distribution [[,.,, p(x;). Let Rs € Rs;p(p)
be given. Fix a block length 7. We construct a random block code in the
following way. The encoding function f; at node ¢« € ¥V maps each possible
sequence y; and each possible source symbol w; € {1,..., 2T} (if i € S) to
a transmit sequence x; that is chosen uniformly at random from the set Z5(X;)
of all robustly X;-typical sequences of length T (see Appendix F). Hence, for
every node ¢ € V, we know that its predecessors can only transmit robustly
typical sequences, and therefore, we know that Y,; € 75(Y;), where Z5(Y;) is
defined by the channel function g;(-) and the typical sets of all the predecessors
of i, i.e.,

T5(Y:) = 9i(15(Xm@y))-

The constant ¢ can be chosen arbitrarily in the interval (0,1). Once the en-
coding functions f, are constructed in this random way, they are deterministic
and fixed for all time.

In this section, (Xy,Yy) denote sequences that depend on the same real-
ization of the source messages Ws. By wg, we denote a particular realization
of the source messages. We illustrate this using the example network in Figure
A.2. The message tuple is the pair Ws = (Wg,, Ws,), and the network has
three layers of nodes: (Ss, A), (B1, By), and D. The node S; encodes Wy, into
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Figure A.2: An example of a network with two source nodes S; and S,.

a sequence Xg, which it transmits during the first block of 7" time-slots. Dur-
ing the second block of T" time-slots, node Sy transmits a sequence Xg, which
is a function of (Ws,, Ys,), where Yg, was received during the first block. Sim-
ilarly, A transmits X4 = fa4(Y 1) during the second block. Of course, during
this second block, S; can already transmit a new message. Communication
from B; and B, to D happens during the third block.

The destination D produces a tuple of messages ws that is jointly typical
with the received sequence Yp. Note that for a fixed code, the received se-
quences are functions of the message tuple Ws. Hence, joint typicality of ws
and yp simply means that yp is the output at D produced by transmitting
wg. If this ws is not unique, we declare an error.

A.5.2 Definitions

Definition A.1 ForZ C S, we denote by N'(I) the subset of nodes in'V that
are not in the flow of Z. More precisely, N'(I) is the set of nodes j € V such
that there is no path from any of the nodes in L to j, i.e., N'(Z) = NiezN ({i}).

For instance, in the example of Figure A.2, N'({S1}) = N ({51, Sa}) = ¢ while
N({S2}) = {51, A}.

Definition A.2 Assume that node i receives y; if ws was sent andy; if w
was sent. Then, for the given code, we say that node i can distinguish
between ws and ws if y; # y. and that node i cannot distinguish between
ws and wy if y; =y..

A.5.3 Error Analysis

The execution of the code defined above is governed by two sources of ran-
domness: one is the random construction of the code, the other is the random
choice of the message tuple Ws. Assume now that a certain message tuple wg
was sent. This eliminates one source of randomness. Hence, the probabilities
in this section are over the random choice of the code. We can write the error
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probability at D as

D cannot distinguish
P(err) < E P( ws and wl )
wsFws
o z : z : D cannot distinguish
- P( ws and w ) (A14)
ICS8 wigw,FwVieL
wre=wre

We now focus on upper bounding each term in the above sum. Fix a subset
7 C S, and fix a ws # ws such that w] # w; for all i € 7 and w/. = wze. We
have

P(D cannot distinguish ws and w')
— E P (Q can distinguish ws and wfs)

but ¢ cannot

Q:ICO
Dee
(@) Q can distinguish d w’,
S guish ws and w
Z P( but 2¢ cannot ) (A15)
0:ICO
N(@T)u{D}cCne

where (a) holds because the terms for which N'(Z) € Q¢ are zero. The reason
for this is the following. Since the nodes in AV(Z) are not in the flow of Z, and
since wze = w’., they receive and send the same sequences under wg and ws.
Hence, they cannot distinguish between wg and w.
One can show that each term in (A.15) is upper bounded as

P (% con d];i;;nglcllzznqﬁitand us) < 2 TI(Xo3Yace|Xae) 9T|V]e (A.16)
for an arbitrary € > 0. The proof of this bound can be found in [5]. Here, we
illustrate the proof steps using the example network in Figure A.2. Assume
that ws and wj are such that wg, = wy but wg, # wy,, i.e., T = {S:}.
Consider the cut Q@ = {S;, B;}. In Figure A.2, the separation between €
and ¢ is indicated by a curve. Let & denote the event that node ¢ cannot
distinguish ws and ws. We have

P (Q can distinguish ws and wfs)
but Q¢ cannot

= P(€S17 5A75§275327 Elng)
= P(&s,) P(Ea|Es,) P(EG,[Es,, Ea)
vV

N 7\ )

<1 ;’1 <1
P(SBQ ‘8517 8147 5§2> ?( %1 |5517€A7 gg’gv SBQ)J

<1
P(EplEs,,Ea,E5,,EB,: ER,)
< P(€Es,, €4, E5,)
P(Ep|€s,,€a,E5,. €y, €R,)
P(Ep,|E4,E5,)P(ED|EB,. Ex,), (A.17)
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where the last equality holds because of the causality across the network lay-
ers. The four probabilities that we upper bounded by 1 are indeed close to 1,
because for nodes S; and A that are in A(Z), the probability of not distin-
guishing ws and wf is 1, while for any node that is not in A/ (Z), the probability
of distinguishing is close to 1. In general, we use this argument to eliminate
all the probabilities for nodes in Q UN(Z). Given that 4 is true, we know
that A sends the same sequence x4 = x/, under ws and under ws. Hence,
P(Ep,|E4,ES,) is the probability that two independently chosen sequences Xg,
and x4, lead to the equality y’5, = yg,, or gg,(Xs,,Xa) = gB,(X},,%x4). Hence,
we have

P(‘(:Bz’gA? gg‘z) = P<yB’2 = 9B, (Xg’ga XA))
= P((X§27XA7YB2) €75 | (xa,¥B,) € 757XEQ 1 (XA7YB2)>
) T (XX A Yiny)~20H (X4 Y,))

_ 2—TI(X52;XA,YBQ) 2T2§H(XA,Y32)
S 2—TI(X52;XA,YB2) 2T6’ (A18)

for an arbitrary e > 0 if we choose ¢ small enough. In (a), we have used Lemma
F.4. Similarly,

P(Ep|€p,, Ep,) < 9—TI(Xp,;Xp,,Yp) 9Te

if 0 is chosen small enough. Plugging this back into (A.17), we obtain,
Q can distinguish wg and w’,
P( but S%C cannit S)
< 2—T([(X52;XA,YBQ)+I(X31;XB2,YD)) 2T2€
< 9= T(I(Xs5:Xa,YBy)+(XB13Xy,YD)) 9T [Vle (A.19)

Note that for the given cut, the Markov structure of the layered network tells
us that

XQC) - ](X5'27 XBl;YA7 YBQ7 YD|XS17 XA7 XBQ)
= I(X527XB1;YA’XSI7XA7XB2)
+ ](X527 Xy YB2’X517 Xa, Xp,, YA)
+ ](XS*27XBl;YD’X517XA7X327YA7YB2)
@
+ ](X52;Y32|XA)
+ I(XpB,; Yp|X5,)

b
Y (X Vi, Xa) — I(Xs,; Xa)
——

=0
+ I(XBI;YD7XBQ) - [(XB1;XBz)a
— —

=0
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where (a) follows from the Markov structure of the network layers, and in (b),
the indicated terms are zero because of the independence of the p(z;). Hence,
(A.19) is equivalent to (A.16) for this particular cut in our example network.
The same type of proof works for any cut and for general networks.

We finally plug (A.16) back into (A.15) and (A.14) and obtain that

P(err) < Z Z 9—TI(Xa;Yac|Xae) 9T |Vle

ICS we: QICO

w;;éwf\%z‘ez N(T)u{D}cQ°
w/Ic:ch
< Z <H2TR1> Z 27TI(XQ;YQC|XQC) 2T|V|6
ICS  i€T QICO

N(@)u{D}CQe

(%) Z (HQTRi) ¢ 9-Tming I(XoiYace|Xac) oT[V]e

ICS €T
= c E 2TZiEIRi2_TminQ I(XQ;YQC‘XQC) QT‘V‘E’

ICS

where in (a), ¢ is an upper bound on the total number of cuts possible in a
network. The constant ¢ is chosen such that it depends only on the number of
nodes |V|. Hence, we see that if the rates are such that

> R < min - [(Xo; Yor| Xao) — €|V (A.20)
i€Z {DIUN(T)Co

for all Z C &, then the error probability goes to zero exponentially fast with
T, where the probability was taken over all randomly generated codes and for
a fixed transmit message ws. In this case, the expected error probability over
all messages also goes to zero (indeed, exponentially fast). From this, we can
conclude that there exists at least one code for which the error probability can
be made arbitrarily small by choosing a sufficiently large T'. As long as

Z R; < min ](XQ, Yae
QICQ
€T {D}UN(T)CQe

XQC)’

we can always find an e > 0 for which (A.20) is satisfied. Since Rs € Rs.p(p),
we know that for all Z C S,

> R < Join T(Xo; Yor| Xor).
1€l DeNe

It remains to show that for any distribution p({z;}cy),

{D}UN(T)CQ° DeQe©
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It is clear that the left hand side in (A.21) is larger than the right hand side.
Assume now, that the optimizer in the right hand side of (A.21) is a certain
cut Q0* such that

O NN(T) # ¢.
Define ' = Q* \ N(Z), and note that Q' is a member of the minimization
domain in the left hand side of (A.21). Note also that Q¢ = Q* U N (Z).
Thus,

I (XQ/ ) YQ/C

XQ/c) = [(XQ/, YQ*C XQ/C)
+ [(XQ/, YN(I)\Q*C
@ [(XQ/, YQ*C XQ/C)

b
(:) I(XQ/, YQ*C XQ*C, XQ*\Q/)

= I(Xqr, Xguar; Yore| Xowe)
— I(Xa; Yo Xoue)

< I(Xg-; Yore| Xow)

= min [(Xq; Yoc|Xqe),

QICO
DeqQe

YQ*C 5 XQ/C)

where (a) is true because of the following. €' contains N(Z) while ' is disjoint
from N(Z). Since N(Z) is exclusively in the flow of itself and the random
variables X;, i € V are independent, we have the Markov chain Yy z) -
Xy o Xo. The identity (b) is true because Q' C Q* implies ¢ is the
disjoint union of Q*¢ and Q* \ . It follows that the left hand side of (A.21)
is smaller than the right hand side. Hence the equality.

Thus, the set of rates Rg is achievable if it is in Rs.p(p).

A.5.4 Non-Layered Networks

For non-layered networks, we use the time-expansion technique described in
Appendix A.12. The set § defined in Appendix A.12 is the set of all source
nodes, also denoted by S in this section. The set D is of size one and equal to
{D}. Given a non-layered graph G, we construct an unfolded graph Ql(lff) that
is layered. Let Rs € Rinner be given. Let ] ., p(x;) be a product distribution
such that Rs € Rs.p(p). From Lemma A.7, we know that asymptotically
with large K, the rate-tuple K Rg is in RE',(p), where RE',(p) is defined in
Definition A.4. We can apply the above proof to find that K Rs is achievable
in gflfff). Hence, we know that there exists a coding scheme for Ql(lff) that
achieves rates K Rs. We can implement such a scheme on the original network
by operating the scheme during K stages. By doing so, we obtain transmission
rates K times smaller than in the virtual network Q]Eff). It follows that Rg is
achievable in G.
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A.6 Proof of Theorem 3.8

It is clear that Rimner € Router- In this proof, we show that the opposite inclu-
sion is also true. Let a tuple Rs € Router be given. Let p* be the distribution
on Xy such that Rs € Rs.p(p*), let X3, be the corresponding random vari-
ables and let Y5 be the received random variables when X3; is at the input of
the channels of the network. Fix any subset Z C S. From the definition of
Rs.p(p*), we have that

R; < I(X5; Yo
Jmin, TG

Xoe)
i€l
= H(Y5e| X e
Qefj{l(l%lD) (Yae| Xoe),

where we used the fact that the channels are deterministic, and hence H (Y| X5) =
0. For any fixed €2, we have, due to the linear interaction model,

H (Y| Xbe) = H(Gy e X5 X e )
(Goa.ae X5 + Gae.ge X

(Gaa- X0l Xge)

(GanXg)

rank (Gg,oc)

= H(Yoe|Xqe),

I
AsEESTES

Xge)

IAINA

where (XV, f/v) are the random variables that correspond to the i.i.d. uniform
distribution on &),, denoted by p. Define

Q' 2arg min  H (Yo Xoe).
QEA(T;D)

Combining all of the above, we obtain that for the fixed subset Z,

ZRZ— min  H (Y| X5e)

QeA(Z;D)
< H(Yie | Xie)
< H(Yore|Xore)

= min H(Yg|Xqe).
QeA(Z;D)

Since this is true for any subset Z C S, we find that Rs € Rs.p(D) € Rinner-
This concludes the proof.

A.7 Proof of Theorem 3.9

For Gaussian signal interaction, we proceed in a similar way as for determin-
istic signal interaction in Section A.5. However, there are several differences.
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First of all, we use the i.i.d. normal distribution [T, ., p%(x;) for the transmit
symbols. Assume that the network is layered and let communication be over
blocks of length 7T". Since the channel adds noise to the transmitted symbols,
the received sequence Y; is no longer a function of Xy, ;), but Y; can take val-
ues in a continuum of different received sequences. We assume now that each
node 7 quantizes the received sequence Y; using a Gaussian vector quantizer
of distortion 1, producing a representation sequence Y, that takes values in a
finite set. The encoding functions fy are then constructed in the same way as
in Section A.5, with the difference that the function f; takes Y, as its input.

The quantizers used in this achievability are constructed as follows. For
node i, we pick 27U YD)+ gequences uniformly at random from ’]:;(Yi), where
Y, = «Y; + & is as defined in Definition 2.21 and ¢ > 0 can be chosen
arbitrarily small. Every sequence y; is then mapped to a sequence y; such that
(v, ¥:) € Ts. From rate-distortion theory, it is known that such a mapping is
a good Gaussian vector quantizer of distortion 1.

The error analysis up to (A.17) is the same as in Section A.5. Then, to
compute for instance the probability P(£p|Ep,,£5,), we note that there are
now exponentially many sequences Xz that are plausible under the message
tuple ws where “plausible” is defined in Definition A.10. Hence, D cannot
distinguish ws and wj if there exists at least one sequence xj; such that
(X5,,XB,,¥p) € T5. Let X;(ws) be the set of all sequences x; that are plausible

under wg. Similarly, let ii(ws) be the set of quantized sequences at node i
that are plausible under ws. We get

P(Epl€p,,Ep,) = P<Ux'BlezBl(wg){(X§917XBQ7$’D) € T}

(XBzayD) € 7:57XBQ € &BQ(wS),S’D € 2D(w$)>

2 Z 2—T(I (XB, ;XBQ,Y/D)—G)

x}31 EiBl (wf)

—~

=X, (W) ’2—T(I(X31 Xp, ¥p)—c)

© g1y (10Xn, Xy Vo)) (A.22)

Y

where (a) is derived as in (A.18) and (b) follows from Lemma A.2 in Section
A.10. Since there are at most |V| terms in (A.17), we get a factor of at most
(2™) VI < 978 in front the probability of a given cut 2. More precisely, (A.16)
should be replaced by

P (Q can désingteliilalnzgitand ws) S 2Tﬁ 2—TI(XQ;Yszc\stc) 2T|V|e. (A23)

The remaining steps of the error probability analysis are again as in Section
A.5, and we find that the expected error probability goes to zero as long as
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forall Z C S,

> R < min I(Xo; Yae| Xo:) — 5,

€T DeQe

which is true for any Rs in R§ ,(8). This concludes the proof for layered
networks.

For non-layered networks, we use the time-unfolding technique of Section
A.12 in a very similar way as we did in the end of Section A.5. The set S defined
in Section A.12 is the set of all source nodes, also denoted by & in this section.
The set D is of size one and equal to {D}. Given a non-layered graph G, we
construct an unfolded graph Q ) that is layered. Let Rg € Riwer = RS.p(0)
be given. This implies that for every ITCS,

R; < min [(XQ7YQC|XQC> — ﬁ
: QeA(Z;D)

1€
Lemma A.7 can be adapted to this case to show that this implies that asymp-
totically with large K, the rate-tuple K Rs is in Rg?gG, where RunfG is defined

as all rate-tuples R% such that for every Z C S,

STRM < wminI(Xa, Vg, [Xog,) - K6

icT unfeAunf(I§D)

We can apply the above proof to find that K Rgs is achievable in Qunf When
doing so, we use Lemma A.3 instead of Lemma A.2 to conclude that (A.22)
still holds (with the same order of - as before). Since the number of nodes in

Ql(lff) is at most 2K|V|, we need to modify (A.23) to

P(Q can distinguish ws and ws) < 2TKﬂ 2—TI(XQ Yac|Xqe) 2T\V\e (A 24)
but Q¢ cannot ’

Hence, we can conclude that K Rs is indeed achievable in Q Thus, we

unf
know that there exists a coding scheme for gunf that achieves rates K Rs. We
can implement such a scheme on the original network by operating the scheme
during K stages. By doing so We obtain transmission rates K times smaller
than in the virtual network g It follows that Rs is achievable in G.

unf

A.8 Proof of Theorem 3.10

Let a multisource network with Gaussian signal interaction be given, and let
Rs be any rate-tuple in Rgouter- From the definition of Rouer, it follows that
there exists a distribution p*({x;}icy) such that Rs € Rs.p(p*). Fix any
Z C S. From Lemma A.1 in Section A.9, we know that

Rz.p(p*) — a < RE . (A.25)
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Now consider the shifted tuple Rs — (o + ()1 and sum the components of this
tuple that are indicated by the set Z:

> (Ri—a=B)<> Ri—a-p

i€l €L
< Rzp(p') —a—p
(a)
< R%D - ﬁa

where (a) holds because of (A.25). We repeat this argument for every possible
Z C S and we conclude that

Rs — (a+ 3)1 € RE.5(B) = Rinner.

This proves the claim of the theorem.

A.9 Relating Definitions 2.20 and 2.21

Lemma A.1 Let a Gaussian relay network G be given, and consider a subset
T CV and a single node j € V. Then, for any distribution p({x;}icy) on the
transmit alphabets, we have

Rz.(p) < RIGU- + a.

Proof:  Let (X,Y) be the random variables that correspond to the fixed
distribution p({z;}:cy) and the corresponding received symbols. We have

Rz(p) =  amin 1 (Xq; Yo | Xar)
(a) ~ - N
< ](XQ’§ Yore XQ/c)
é max I(XQ/; YQ/c XQ/C)
p({zi}iev)
N C’Q,7

where Cg is the capacity of the MIMO channel that the cut €’ creates. In
(a), we define €’ to be the minimizer of mingea(z,py I(X4; Y| X§e ), where the
distribution of X7, is the i.i.d. complex normal distribution [],.,, p®(z;). From
Lemma 6.6 in [5] we have that

C’Q’ S ](XS/)“ Yé/c

Xiye) + a. (A.26)

This concludes the proof. O
Note that the effect of v is comparable to the beamforming gain in a multi-
antenna point-to-point channel.
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A.10 Plausible Sequences in Wireless Networks

Definition A.3 Consider a layered Gaussian multisource network and let ws
be a given realization of the message tuple Ws. We define a plausible trans-
mit or quantized sequence under ws as follows.

e For a source node i € S with no predecessors, i.e., such that In(i) = ¢,
we say that a transmit sequence x; is plausible with ws if x; = fi(w;).

e For any node i € V, we say that a quantized sequence y; is plausible with
ws if there is at least one tuple of sequences X,y (transmit sequences at
predecessors of i) that is plausible and such that (Xma),¥:) € Ts.

e For any node i € S with predecessors, we say that a transmit sequence
X; s plausible with ws if there is at least one quantized sequence y; that
is plausible and for which x; = f;(y;, w;).

e For any node i € V\' S, we say that a transmit sequence x; is plausible

with ws if there is at least one quantized sequence y; that is plausible and
for which x; = f;(¥:).

These four definitions can be applied recursively to find all plausible sequences
at a giwen node i. The sets of all plausible transmit and quantized sequences
under ws at node i are denoted by X;(ws) and Y, (ws), respectively.

The following lemma is taken from [4] (Lemma 3.4 in that publication).
Its proof can be found there.

Lemma A.2 Consider a layered multisource Gaussian relay network G. The
number of sequences Xy that are plausible under a given message realization
wg 18 upper bounded as

[y (ws)] < 2" < 27,
where 7y is defined in Definition 3.1.

Lemma A.3 Let an acyclic, non-layered multisource Gaussian relay network
G be given and consider its unfolded version Qiﬁff) over K stages as given in

Section A.12. Then, the number of sequences xy that are plausible in Qiff)
under a giwen message realization ws is upper bounded as

| Xy (ws)| < 27KV < 9TEY, (A.27)
where 7y is defined in Definition 3.1. However, for any node i € Vyyy,

|, (ws)| < 27V < 277, (A.28)
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Note that the second bound in Lemma A.3 does not depend on K.
Proof: The first bound (A.27) is nothing but Lemma A.2 applied to an
unfolded network (which is layered by definition), because the unfolded net-
work has roughly K'|V| nodes. We outline the proof of (A.28) for the example
network in Figures A.3 and A.4. Note that the nodes T1[k], S1[k], k =1,..., K
in Ql(lff) are all connected to S7 through infinite-capacity links. Hence, we can
assume that they all know the message transmitted by S; and hence, there
is only one plausible transmit sequence for these nodes. The same holds for
Tolk], So[k], k =1,..., K and Sy. Consider now a given node i in Vy,¢. The
number of plausible transmit sequences for this node can be determined by
analyzing all the paths going from this node backwards until reaching the set
{S1[k], S2[k|}k=1,.. k. When G is acyclic, then there are at most d|V| nodes in
this collection of paths. We then apply the proof idea of Lemma A.2 (Lemma
3.4 in [4]) to this “tree” to conclude the proof. O
Note that if G contained a cycle, then the collection of paths would contain
a number of nodes that grows with K, which would be problematic in the
proof of Theorem 3.9 for non-layered networks.

A.11 Bounds used in the Equivocation Analysis

A.11.1 Three Lemmas
The following lemmas are used in the proofs of Propositions 3.1 and 3.2.

Lemma A.4 Consider a block code for a layered network as defined in Def-
initions 2.2 and 2.3 that has the following properties. A node S encodes a
pair of messages (Wi, Ws), that are uniformly distributed in {1, ... 271} x
{1,..., 271} into a transmit sequence Xg. A subset B of the relay nodes
encodes respective messages Wy of respective rates Rg into respective transmit
sequences Xg. Let T be the block size of the code, and assume that

9lTRy |

1
9T R > PlAuw) < e, (4.29)

wi=1

where Ay, is the event that a certain node E makes an error when decoding
(Wo, Wg) given that Wi = wy and assuming that Wy is available at E. Then,
the following inequality holds for both deterministic and Gaussian signal inter-
action:

H(W2, Ws|W1, Yg) < 1L+ T(Ra+ Y Ri)eo. (A.30)
i€B

In addition, if the signal interaction is deterministic, we have

H(Xs,Xp|W1,Yp) <1+ T(Ra+ Y Ri)eo, (A.31)

i€eB
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and if the signal interaction is Gaussian, we have

H(Xg, Xp[W1, Yi) <14+ T(Ry + > Ri)eo + T. (A.32)
ieB

Lemma A.5 Consider a layered network as defined in Definition 2.2, with
finite transmit alphabets. Signal interaction can be deterministic or stochastic
(discrete). Let T C B be a subset of the noise-inserting nodes and let E € V
be any node. Let [[,c,, p(z;) be given and let (Xy,Yy) be the corresponding
random transmit and received sequences. The randomness of these sequences
comes from the randomness of the code, as well as from the random messages
and the channel noise. We assume that the code is a block code of typical
sequences (with respect to p) as it was used in Section 3.6.2 for deterministic
interaction. We have that for any € > 0, there is a large enough value of T
such that

P([(XS, X7:Yg|Jaz) > TRIU{S};E<p>) < €.
Here, the probability is over all randomly generated codes.

If we compare this lemma with Theorem 2.1, we note that Lemma A.5 pro-
vides a “local” cut-set bound on the mutual information between transmitted
and received sequences. The bound is local in the sense that the bounding
expression T Rzysy,;(p) is computed for the same product distribution p as
the one that was used in the code construction procedure. Such local bounds
are for instance also used in [48] and [10].

Lemma A.6 Consider a layered network as defined in Definitions 2.2 and 2.3
with Gaussian signal interaction. Let T C B be a subset of the noise-inserting
nodes and let E € V be any node. Let (Xy,Yy) be the random transmit and
received sequences produced by the block code chosen in Section 3.6.4. We have

I(Xs,X71; Yg|Jaz) < T(RIGU{S};E +a).

Note that Lemma A.6 is not a local bound, because the upper bound given is
not a function of the distribution that was used in the code construction pro-
cedure. For this reason, the statement of the lemma is not a high probability
statement as in Lemma A.5, but it holds for all codes and every run of a code.

A.11.2 Proof of Lemma A.4

Suppose the assumptions of Lemma A.4 are true.

The upper bound on H(Ws, Ws|Wi,Yg) in (A.30) follows directly from
Fano’s inequality. To see this, let (W5, Wg) be a random variable X to be
estimated, and let (W7, Yg) be the observable Y. Then, (A.29) simply states
that P(X # X) < €, where X is the estimate of X from Y. Therefore, Fano’s
Lemma [9] tells us that H(X|Y) <1+ ¢ log(]X| — 1), which yields (A.30).
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For completeness, we provide a proof which is the adaption of the Fano
inequality proof to this special case. First, define the binary random variable

€él{AW1}>

where A, is as defined in Lemma A.4. In words, £ indicates whether (W5, Wg)
was wrongly decoded at E, given that W is available at £/. We expand the
following joint entropy in two different ways:

H<§7W2JWB|W17YE)
= H(Wz’ WB’WLYE) + H(&’Wla W27 WB>YE)
= H(5|W17YE) + H(W% WB|W1a gaYE) (A33)

Knowing Yz and W7, we know the decision (Wl, WB) = funct(Y g, W) made
by E, and hence

H(g’WIJ W27 WB7YE) - H<§|Wl7 W27 WB; W27 WB7YE)
=0.

Also

where hy(+) is the entropy function of a binary random variable. Using this,
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(A.33) implies

H(W27WB|W17YE) S 1 + H(W27 WB‘&,YE, Wl)

=1+ Z P(Wi = wi)H(W2, Wsl§, Y, Wi = w1)
1
=1+ Z 9|TR1] H(W27WB|£7YE7W1 = w1)

- HWo, Wi|§=0,Yg, Wi =w)

N J
'
=0

+P(E= 1) = wy)
HWo, Wele = 1.Y5, Wi =w1) ]

<log(2(LTR2)+ RieB L TRiD 1)< (TR |45, | TR, )

2LTR1J

<1+ (TR + YT R gy O PE=1T) = w)

- QT;:llJ
= L+ (TR + S ITR gy S PlAw)

i€B w=1
14 (TR + Y ITR e

i€EB
<14+T(Ry+ Y Rieo,

i€B

where (a) is true because of (A.29).
To show (A.31) and (A.32), we start with the following inequality:

H(Xs,Xp|W1,Yg) < H(Xg, X, W, Wa|Wi,Yg)
= H(W27WB‘W17YE'>
+H(X57XB|W17W27W87YE)-

For deterministic signal interaction, the second term above is zero because the
transmit sequences (Xg, Xp) are a function of (Wi, Wa, Wg). Combining this
with (A.30) yields (A.31). For Gaussian signal interaction, we have

H(Xs, XB|W1,W27 WB7 YE)
— {{(XS’|W17 WQ, WB, YE)J

=0

+ H(XB|X57 W17 WZa WBaYE)v
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where the indicated term is zero because X is a function of (Wi, Ws). Since
for any 7 € B, X is a deterministic function of Y; and W;, the data processing
inequality tells us that

H(XB’XS7 W17 W27 WB7 YE)
S H(YB’XS7 W17 W27 WB7YE)
< H(Y5|W1, W, Wg)

(a) N
< log(|Ys(W1, Wy, Wp)|)

< log(|Yp(Wy, Wa, Wg)|)
< log(

LY
&(Wh W27 WB)D

©

< log(2"7)

=T,

where the set YVs(Wy, Wy, Wi) used in (a) is the set of all plausible sequences
under (W, Wy, Wg) as defined in Definition A.3 (Section A.10). The bound
(b) can be found in Lemma A.2 of Section A.10. Combining all of the above,
we obtain

H(Xs,XB’WhYE) S H(WQ,WB|W1,YE) +T’)/ (A34)

Combining (A.34) with (A.30) yields (A.32), which concludes the proof of the

lemma.

A.11.3 Proof of Lemma A.5

Assume that the network is layered. Note that in the achievability proof of Sec-
tion 3.6, whenever we write (X, Yy,), what we mean is (Xy,(MM), Yy, (MM)),
where MM = (WM, Jl(l), JQ(U, Jt(gl)) is the set of messages transmitted during
block 1 (information and junk messages combined). If £ cannot directly re-
ceive the signal transmitted by S, then Xg(M®) and Y z(M™) are sequences
that occur during different time blocks. If, for instance, there is one layer of
relays between S and E, then a relay node A would receive Y 4(M 1)) during
the first time block, when S transmits Xg(MW). However, A would trans-
mit X (M (1)) during the second block of length 7', while already receiving
Y 4(M®). E would therefore start receiving the block Yz(M®) at the be-
ginning of the second time block, after S has finished transmitting Xg(M ™).
Let N be a large positive integer. We assume that transmission takes place
over many time blocks, but we restrict our attention to a window of N time
blocks, each of length 7. We define a new set of vectors (X,,,Y,) of length
(N + L)T, where L is the number of layers of relay-nodes that connect S to
E in the network. Recall that V is the set of all nodes in the network, and A
is the set of relay nodes. Let A; C A be the set of relay nodes that lie in layer
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[. For I =0,...,L, define

X, (M) =

and

where we set Ay = {S} and Ay, £ {E}, and M = {MU-D)_ MW+
is the set of all messages involved during N + 2L blocks. Assume that trans-
mission of the first message M) starts at ¢ = 1. We then have that the ¢
component of each super-block X, or Y, 7 € V is actually received or trans-
mitted at time t. Fix any Q € A(ZU {S}; E). We have the following chain of
inequalities, which closely follows the proof of Theorem 14.10.1 in [9]. Most of
the steps in this chain of inequalities are true for every realization of the code
and for every run of that code realization. However, the last convergence step
happens only with high probability over the codes. (Note that since the code is
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randomly chosen, the mutual information terms below are random variables.)

(a)
I(XS>XI;XE|JB\I) < I(Xq; Yoo izs\z)
(N+L)T
= Z I(XQ7ZQC[t”ZQC[1]’ te 7XQC[t o 1]aiB\I)
t=1
(N+L)T
= > [H@ Yol Yorlt = 1], i)
t=1
~ HY e 1Y el1], - Yolt = 1], X, S )|
o (N+L)T
2N [HO Yol Yoolt = 1), Xoe [t i)
t=1
— HY g [l el1], - Yoelt = 1], Xo, Xoo 1) I
(o) NHLIT
< Y [HOlXel)
t=1

= I(Xolt]; Yo [t] Xo-[t]) (A.35)

—

(N + I)T 1(Xa: Yor

Xoe), (A.36)
as T and N grow large. The steps are justified below:

(a) The mutual information is made larger by adding more super-blocks on
each side.

(b) Xqe[t] is what is transmitted by all nodes in Q¢ at time ¢ and thus is a
function of Jgnae = Jp\z and of everything that was received by all nodes
in Q¢ up to time ¢t — 1. Hence, we have equality in both terms.

(¢) The first term is increased by dropping a part of the conditioning. For
the second term, we use the fact that Y .[t] depends only on the current
transmit values Xq,[t], Xqe[t]-

(d) Assume thatt € {(n—1)T+1,...,nT} for somen € {1,...,N+ L}, i.e.,
assume that ¢ lies in the n-th block of the super-block. Consider the first
layer: (Xg[t],Y 4, [t]) is a fixed component of (Xg(M™),Y 4 (M™)),
which is, with high probability, a set of jointly typical sequences with
respect to pxgpy, |xs, where Xg was picked uniformly at random from
a codebook of size 2T(F+B1+852) - Hence, as T grows large, the joint dis-
tribution of (Xg[t],Y 4,[t]) converges to pxspy,, |xs- This convergence
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happens with high probability over all codes. We advance one layer in
the network: The tuple (X 4 [t], Y 4, [t]) is a fixed component of the tuple
of sequences (X 4,(M®™Y), Y 4,(M™ 1)), which is w.h.p. a member of
a collection of jointly typical sequences with respect to px, Py, |x,, - In
addition, the tuple of sequences is independent of the tuple in the first
layer, because the message M"Y is independent of M. Nevertheless,
it follows that the distribution of (X 4 [t],Y 4,[t]) converges w.h.p. to
PX 4, PYay X4, - We do so for each layer, and we find that the distribution
of (X[t],Y[t]) converges to

L+1

HpXAl—leAl‘X-AL_1 (A?)?)

=1

with high probability. The product comes from the fact that all involved
messages M through M) are independent. But because P{X:}iey
was chosen to be a product distribution, (A.37) is nothing but px,py,|x,,-
Then, because the mutual information is a continuous function of the un-
derlying distribution, it holds that I(Xq[t]; Y oc[t]| X qe[t]) — 1(Xq; Yae| Xae)
for all ¢t with high probability.

Finally, we can write

(@)
IXs XY plJpg) > IXspurMD), . Xgpor (M)

Yu(MW),. Y g (MM Jg)

N
O S 1(Xs (M), X (M), Y (M) TG
=1

— NI(Xg(MW), Xz (MD); Y p(MD)[15)

), (A.38)

where we obtain (a) by dropping all terms in Xg and Y ; that depend on
messages different from MM ... M®) and (b) is true by the independence
of the M(™. Combining (A.38) with (A.36), we obtain

[(Xs(MD) Xz(M®D); Y p(MD)]J4))
< N+ L

T[(XQ, YQC‘XQC)

w.h.p. as N grows large.
Since (A.39) is true for any Q € A(Z U {S}; E), we have that w.h.p.,

(1) . (1) < 1 N c c
](Xs(M ),YE(M )) ~ TQGA(IIHL}?S},E)I(XQ,YQ |XQ ),

which proves the claim of the lemma.
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A.11.4 Proof of Lemma A.6

For Gaussian signal interaction, we follow exactly the proof of Lemma A.5
given in the previous section, until the expression A.35, which lets us conclude
that

(N+L)T
](X&XI;XEMB\I)S Z I( X[t Yo [t]| X e [t])

(N + LTIX Q)Y e [Q)| X [Q, Q)

< (N + L)T(H (Y [Q)1 X [Q])
— H(Y - [Q)IX,[Q), Q)
Yo

2 (N + LTIXo[Q): Y .[Q) X [Q)),

where in (a), we have introduced a time sharing random variable @), uniformly
distributed in {1,..., (N + L)T'}, and (b) holds because from the memoryless
nature of the channels, ) can be dropped from the conditioning of the second
entropy. Using the same steps as in (A.38) and (A.39), we conclude that as N
grows large, we have

I(Xg(MW), X (MM); Y p(MD))] B\I)
< TIHX[Q); Yo [Q]| X e [Q))- (A.40)

This is true for every cut Q € A(ZU{S}; E). Hence, we have

I(Xs(MD) Xg(MW); Y g(MD)]JG))
< TRyu(sy;6(D),

where p is the distribution of X,[@]. From Lemma A.1 in Section A.9, we
know that

Rrusye(p) < REsym +

and hence, the claim of the lemma follows.

A.12 From Layered to Non-Layered Networks

In this section, we provide a lemma that plays a central role in the general-
ization of our results from layered to general networks. The technique used
for such generalizations was introduced in [3, 4]. Let G = (V, L) be a general
wireless network with deterministic or Gaussian signal interaction. Let S and
D be two disjoint subsets of V. In our applications, S is a set of nodes that
generate or observe random sources, while D denotes all the destination nodes
and eavesdroppers in the network. Any such network can be unfolded over
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Sa

D

A

Figure A.3: An example of a non-layered network with S = {5, 52} and D =
{Dy, Dy}

time to create a layered network. The idea is to unfold the network to K
stages such that the k" stage represents what happens in the original network
during time slots (k—1)T+1 to kT, i.e., during the k"™ of K blocks. We denote
the unfolded network by gfjff). Figure A.3 shows a non-layered network. Here
S = {51,595} and D = {D;, Dy} are both of size two. There is also a relay
node A with no special role. The network is clearly not layered, because there
are for instance different paths from Sy to Ds of lengths 2, 3 and 4. The corre-
sponding unfolded network is shown in Figure A.4. Each node i € V appears
at stage 1 < k < K as i[k]. Note that the square bracket notation is used
here to denote the stages of the unfolding, whereas in the rest of the thesis,
a square bracket denotes the time slot. There are additional nodes in Figure
A.4: The source node S; and its unfolded representatives S;[1], ..., S1[K] have
been augmented by virtual transmitters Ti[1],...,T}[K] that model the fact
that S; has access to its source message during all K stages. Such a set of
transmitters is added for each node in §. Further, the destination node (or
eavesdropper) D; and its representatives have been augmented by receivers
Ry[1], ..., R [K] that model the fact that D; has access to the information
received during all K stages. Again, this is done for every node in D. The
communication links connecting to and from the virtual transmitters and re-
ceivers are modeled as channels of arbitrarily large throughput. In addition,
none of these links (labeled with oo in Figure A.4) interferes with a regular
received signal and hence, these links impose no constraint on the network.
The relay node A is not augmented by virtual nodes, modeling the fact that
we force A to limit its memory to T received symbols.

For the remainder of this section, we assume that the signal interaction is
deterministic. Similar results hold for Gaussian signal interaction.

Definition A.4 For a given product distribution [],., p(x;), a given subset
v C S and j € D, we define RZ"{(p) to be the set of all tuples By such that
for any subset T C 1), we have

g B; < min I(Xq :Yoe | Xqe
eT e QunfEAunf(I;j) ( Qunf’ Qunf| Qunf)7
K

where Nyoy(Z;7) is defined as in Definition 2.19 but for the unfolded net-
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S1 ~ T1[1] - T1(2] o T1[3(]>o Th[K —1] TW[K]

X.e—= .o
fé[K* 1 gl[K]
N

Figure A.4: The unfolded network that corresponds to the example in Fig. A.3.

work. To compute the mutual information, we use the product distribution

,,,,

We are now ready to state the unfolding lemma:

Lemma A.7 For given [[,c,, p(z;), ¥ €S and j € D, the sets %Rffjf(p) and
Ry.i(p) are approzimately equal for large K. More formally, if a tuple By, is
in Rfﬁ»r(p), then =By is in Ry,;(p). On the other hand, if =By is in Ry;(p),
and an arbitrarily small € > 0 is given, then there exists an unfolding length
K such that

By —e€l € RZZ"Jf(p)

Proof:  Let [],.y, p(x:), ¢ and j be fixed. Assume that B, € Ry (p). It
follows that for every Z C 1,

Y Bi<  min_ I(Xq,;Ya

. )
QunfeAunf(IU) o

Xﬂﬁnf) '

Let ' be the optimizer of mingea(z,j) I(Xq; Yae|Xqe) in the original graph

G. There is a corresponding cut € . in Ql(lff) such that if a node i € 0,
then i[k] € Q) ; for all k = 1,..., K. In addition, the value of the mutual

unf
information for the cut €  in gﬁf;) is K times the value of the cut ' in G.
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Hence,
i [X 'Yc XC <[X/Y/CX/C
Qunferg\liilf(z§j) ( Zunt) Qunf‘ Qunf) - ( Qine? * Line Q f)
= KI(XQ/ YQ/c XQ/c)
=K min [(Xq;Yoe|Xqe).
QEA(Z;5)
It follows that
_ZBZ < min I(Xg; Yoe|Xqe).

QeA(Z;5)

Since this is true for all subsets Z C 1), it follows that %Bw is in Ry.;(p).
Now, assume that %Bw is in Ry.;(p). It follows that for every Z C o,

— ZBZ < min [(Xg; Yoe
QeA(Z;5)

Xoo). (A1)

Lemma 4.2 in [4] applies to this unfolded network, with the slight modification
that now there are more than two nodes that have been augmented by virtual
receivers or transmitters. That lemma states that

min I(Xq; Yoc|Xqe)
QeN(Z;j)

1
min /(X

< — Yo | Xaqe
o K —C —I— 1 QunfeAunf(Iﬁj) Qunf| Qunf)’

unf’

where ¢ £ 2/Y1=2 does not depend on K. Combining this with (A.41), we
obtain

> Bi—|Tle < K min [(Xg;Yoe|Xoe) — [Ze
, QeA(Z;H)
€L
K
- i I(X Yae X c
- K —C —I— 1 Qunferf\llllilf(l-a]) ( Qunf’ Q Qunf)
— |Z]e
S min I(XQunf7YQC |XQ )
QunfeAunf(ILj)

if K is chosen sufficiently large. Since this is true for any Z C ¢, it follows
that for a large enough K, By — €l is in R&njf(p) This concludes the proof.
O
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B.1 Detailed Proof of Theorem 4.2

We have already given a proof outline for this theorem in Section 4.4.2. For
the interested reader, we give a full proof in this appendix. Fix a distribution
DPx. We wish to show that perfectly secret communication at a rate arbitrarily
close to I(Xg; Ya)—maxpges [(Xg; Ya, ) is possible. We first prove weak perfect
secrecy. The extension to strong secrecy is done in the end of this section.

For notational simplicity, we only prove the result for € = {E, E»}, i.e., we
assume that there are only two eavesdroppers. Assume that the eavesdroppers
are labeled such that I(Xs; Y4, ) > I(Xs;Ya,, ). Define an information rate
and two junk rates as follows:

R = [(Xs; YA) - [(Xs; YAEl) (Bl)
By = I(Xs; Ya,, ) — 1(Xs; Ya,,)
B2 = I<XS;YAE2) — €71.

As a result, we have

R+ B+ By =1(Xg;Y4) — 1 (B.2)
Bl =+ Bg = I(Xs, YAEI) — €1 <B3)
By = I(Xs;Ya,,) — €. (B.4)

Let W be the information message, uniformly distributed in {1,...,27%]}
and let J; be the i junk message, uniformly distributed in {1, ..., 27} for
i = 1,2. Generate a random block code (of block length T") for the broad-
cast channel in the following way. For every triple (w, 1, J2), pick a codeword
xgs(w, j1, J2) uniformly at random from 75(Xg). Once this random code con-
struction process is finished, we fix the code for all times. The decoder at D

129
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uses a typical set decoder [9]. It is well known (see e.g. the proof of Theorem
8.7.1 in [9]) that as long as (B.2) holds, we can achieve

E [P(decoding (W, J;, Jo) wrongly at D)] < (B.5)

<&
3’

by choosing T large enough. The above expectation is taken over the (ran-
domly generated) code, and € is an arbitrary constant.

For a fixed W = w, the codewords generated at S have the same distribu-
tion as a randomly generated code of rate (B; + By). Thus, from (B.3) and
from Theorem 8.7.1 in [9] it follows that for T" large enough,

E[PAY)] < (B.6)

<%
3’

where A{ is the event that FE; makes a decoding error when trying to decode
(J1, J2), assuming that W = w and assuming that W is already available at
E. Again, the expectation is taken over the randomly generated code. Since
this is true for all w € {1,...,2"%} it follows that for T large enough,

9lTR]

1) €o
TRJZ P(AY)| <3 (B.7)

We apply the same argument once more for E,, using (B.4) and keeping
(W, J1) = (w, 71) fixed. It follows that

9lTR] 9|TB1]

€0
E TRJ+LTB1J Z Z wJ1 § (B.8)

w=1 j1=1

where A , is the event that E5 makes a decoding error when trying to decode
Ja, assumlng that (W, J;) = (w, j1) and that (W, J;) is already available at Es.
Combining (B.5), (B.7) and (B.8), we obtain

E [P(decoding (W, Jq, Jo) wrongly at D)+
9olTR]
(1)
QLTRJ Z A ]

QLTRJ QLTB1J

LTRJ+ [TB1]) Z Z ] < €o-

w=1 j1=1

We conclude that for at least one code,

P(decoding (W, Jy, Jo) wrongly at D) < e, (B.9)
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1 2lTR]
9|TR] Z P(A})) < e (B.10)
w=1
and
1 9lTR| 9lTB ]|
(2)
STEEEy O 2. PAL) Se (B.11)

w=1 j1=1

at the same time. From (B.9), we see that this particular code is reliable.
Further, (B.10) is nothing but the error probability when estimating (.J;, J5)
from the observable (W,Y 4, ) for this particular code. The probability is
taken over (W, Jy, Jo) and the channel realization. Hence, by Fano’s Lemma
[9], it follows that

H(Jl,(]g’VV,YAEl) S 1+T(Bl+B2)€0. (B12)
Similarly, (B.11) implies that
H(Jg’VV, JlaY.AEQ) S 1+TB2€0. (B13)

Note that the rate R of this code, given in (B.1), is as claimed by the
theorem. It remains to analyze the equivocations at F, and E,. We can write

HWI[Y az,) 2 I(W; Xs|Y 4p,)
=I(Xs; W, Y a,)
— I(Xs; Yy, )
= H(Xs) — H(Xs|W, Y 45,)
— ](XS;YAEI). (B.14)

We bound the three terms above separately:
H(Xs) = I(Xs; W, 1, J)

= H(W, J1,J2) — HW, J1, J2|Xs)
W HW, J1, Jo) — HW, Jy, 1| Xs, Y )
> H(W, Ji, Jo) — HW, J1, Jo|Y 4)
®)
2 H(VV, Jl,Jg) —1 —T(R+ B1 +BQ)€0
O TR+ B+ By — ) — 1~ T(R+ By + Bs)eo, (B.15)

where (a) is true because of the Markov chain (W, Jy, J3) o Xg = Y 4, while
(b) follows from Fano’s inequality, together with (B.9). Finally, the small
constant € in (c¢) is introduced because we drop the rounding in |[TR| +
|TB:1] + |TBs]. As T grows large, € goes to zero.
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The second term in (B.14) can be upper bounded as follows:
H(X5'7 |M/7Y.AE1) S H(X5'7 Jl) J2|WY.AE1)
- H<Jl7 J2‘W7 Y.AE1> + H<XS|VI/7 J17 J27 Y.AE1>

-0
< 14 T(By + Ba)eo, (B.16)

where we used (B.12) in the last inequality and the indicated term is zero
because the encoder at S is a deterministic function.
The third term in (B.14) can be bounded as follows:

[<XS7Y-AE SZ Y-AE [”YAE [ ] '7Y-AE1[t_1])
(YAEl[ ”YAEl[ ] : 7Y.AE1 [t - 1]7XS)}
%) S (H(Vap, 1) — H(Vay, 1K)

o~
Il

1

E

I(Xs[t]; Yag, [1])

o~
Il

1

%
~

(X3 Yap, ) (B.17)

as T grows, because Xg is selected randomly among roughly 27(F+B1+52) ge.

quences that lie all in 75(Xg). Therefore, as T' grows large, any component

Xslt] of X5 has, with high probability, the same distribution as the underlying

random variable Xg. The convergence in (B.17) follows from the fact that the

mutual information is a continuous function of the underlying distributions.

The inequality in (a) follows from the memoryless nature of the channel.
Plugging (B.15), (B.16) and (B.17) into (B.14), we obtain

1 1
TH<W‘Y‘AE1) 2 R—'—Bl —|—BQ — €9 — ? — (R—l-Bl +Bz)€0
1
— ? — (Bl —+ 32)60
— 1( X5 Yag,)

a 1
(:)R+](XS;YAE1)—€1—62—?—(R+Bl+32)60

1
— ? — (Bl + B2)€O

- [<XS;Y-AE1)
2
:R—Gl — €9 — T — (R+231—|—282)60, (Blg)

where the equality (a) follows from (B.3). Hence, by choosing T" large enough
and €, €1 sufficiently small, the equivocation at eavesdropper F; can be made
arbitrarily close to R.
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For eavesdropper E5 we proceed in a similar manner. We bound the equiv-
ocation as

HWI|Y.a,,) > HWI[Y 4y, J1)
> H(X3|J1) - H(XS|VV;YAE2> Jl)
— I(Xs;YAE2’J1). (Blg)

We bound the three terms above separately:

H(Xg|J1) > I(Xg; W, Jo|J1)
= H(W, | 1) — H(W, Jr|Xg, J1)

D H(W, Jy) — H(W, Jo|Xs, J)
= T(R + B2 - 63) —1- T(R + Bl + BQ)E(), (BQO)

where (a) is true because (W, Jy, Jo) are independent, and the remaining steps
are analogous to the steps used in (B.15). As T grows large, €3 goes to zero.
The second term in (B.19) can be upper bounded as follows:

H(Xs, W, Y 4p,, 1) < H(Xs, Jo|W, Y A, J1)
= H(JIW,Y ap,, J1) + H(Xs|W, J1, Jo, Y 4p,)

~

=0

< 14 T Byeo, (B.21)

where we used (B.13) in the last inequality and the indicated term is zero
because the encoder at S is a deterministic function.
The third term in (B.19) can be bounded as follows:

I(Xs; Yag,| 1) = HY ap,| 1) = H(Y 4, [Xs, J1)

@
< H(Yap,) = H(Y 45,1Xs)

= ](XS; YAEQ)
< T](XS;YAEQ)a (B22)

where the last inequality holds asymptotically with large 7. In (a), we have
used the Markov chain J; o Xg e Y 4, , and all other steps are analogous
to the steps in (B.17).
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Plugging (B.20), (B.21) and (B.22) into (B.19), we obtain

1 1
?H<W‘Y_AE2) 2 R—l—BQ — €3 — ? - (R—l-Bl +Bz)€0
1
- T - B2€O
— (X Ya,)

a 1
(:)R"f_](XS;Y.AEQ)_61_63_T_(R+BI+B2)60

1
— ? — B2€O
-1 (XS ) Y-AE2>
2
=R-— €1 — €3 — T - (R + Bl + 282)60, (BQS)
where (a) follows from (B.4). Hence, by choosing T large enough and e,
€, sufficiently small, the equivocation at eavesdropper F, can also be made
arbitrarily close to R.
This proves that the rate-equivocation pair (R, R) is weakly achievable,
where

R=1(Xg;Yy) — IB??I](XS; Ya,)-

Thus, it follows from Lemma E.5 that the secrecy rate R is strongly achievable
over this fan network. Hence, Cs > R. Since this is true for any transmit
distribution px,, the claim of the theorem follows.
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C.1 Proofs of the List Size Lemmas

C.1.1 Proof of Lemma 5.2

First, assume that R > I(X; Z) +0,. Fix any z € T5_.(Z), where € > 0 can be
chosen arbitrarily small. For a given code C, the set Ls5(X|z) is deterministic.
However, since the code C is constructed by picking sequences randomly from
75(X), we can consider Ls(X|z) to be a random set, and Ls(X|z) a random
variable. Define Z 2 {1,...,27%} and let X (i) be the i" sequence in C, where
1 € Z. We have

9TR
E[Lé X| ZH{ z)eT (X,Z)}
2TR
—ZP z) € T;(X,2)) (C.1)

9 2TR2—T[(X,Z)’

where the last step is true from Lemma F.4.
To prove the lemma, we need to show that Ls(X|z) concentrates around its
mean as T gets large. We start by computing the second moment of Ls(X|z),

135
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where the expectation is again over all random codes.

-2TR 2TR

E[Ls(X12)°] =B | > D Ik er(x.2)(X() 2t (x.2)
=1 j5=1

[oTR

=E | Lxpaenx.y

i=1

2TR QTR

E DY) Lk menx,2) &0 e x.2)}

=1 j=1
J#i
9TR
- ZP ) € T5(X, Z))

2TR 2TR

+ 3N P((X(0),2) € T(X, 2), (X(j),2) € T5(X, Z))
=1 ]J;’;

<> P((X(i),2) € (X, 2))

i=1
2

+ | Y_oP((X(i),2) € T5(X, 2))
i=1
= E[Ls(X|2)] + E [Ls(X]2)]", (C.3)
where the last inequality is true because X (i) and X(j) are independent for
i # 7. Thus, from (C.1) and (C.3), the variance of the list size is bounded as

Var (Ls(X|z)) = E [Ls(X|2)*] — E[Ls(X|2)]?
< E[Ls(X|z)].

From Chebyshev’s inequality, we obtain

P(|Ls(X|2) — E[Ls(X|2)]| > B [Ls(X|2)))
< Var (Ls(X|z))
~ E@E[Ls(X|z))
1
= PR [L,(X[2)]
1
622T(R—I(X;Z)—61)

— 0,

INE
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as T — 00, because when R > I(X; Z) + 6y, then the denominator in (a) has a
positive exponent and hence grows exponentially with 7. The inequality (a) is
true from the &;-exponential equality in (C.2). Hence, when R > I(X; Z)+ 6y,
the random variable Ls(X|z) hardens to its expectation, which is §;-equal to
9T (R—1(X:2)) for any 7 € T;_ (Z). Since the set T5_(Z) is e-equal to 75(Z) and
Ls(Z) C T3(Z), this proves the lemma for the upper regime of R, for almost
every z € L5(Z).

Assume now that R < I(X;Z) — 6,. For a fixed z € T;_(Z), (C.2) still
holds, and the expected list size is bounded as

E[Ls(X|z)] < 2T IXGD+0) <

Hence, the sets L5(X|z) cannot be of the same size for all z € 75_.(Z), because
a list is of integer size. We can prove that in this case, Ls(X|z) = 1 if z €
Ls(Z)NTs5_(Z). If, however, z ¢ L5(Z), then Ls(X|z) is zero. This second
claim follows directly from the fact that by definition, if z ¢ Ls5(Z), then there
is no x € C for which (x,z) € 75(X, Z). It remains to prove the first part
of the claim, namely that Ls(X|z) = 1 if z € L5(Z2) N T5-(Z). To see this,
recall that L£s5(Z) is the set of sequences z that are jointly typical with at least
one codeword x € C, and hence, Ls(X|z) > 1 for z € L5(Z). For a fixed
z € Ls(Z)NT5_(Z), we assume without loss of generality that X(1) is the
codeword that is the witness of the fact that z € L£5(Z). Then,
QTR

E[Ls(X|z)|z € Ls(Z)] = 1+ZP z) € T;(X,2))

<1+ ZP((X(@‘), z) € T;(X, 2))

=1+ E[L;(X|z)]
<1+ 2T(R—I(X;Z)+61)

The last inequality follows from (C.2), which is still true. By Markov’s in-
equality, we have that for any ¢’ > 0,

E [|Ls(X|2) — 1]|z € L5(Z)]
1/2

E[Ls(X|z)|z € £5(2)] — 1
1/2

< 9 9T(R-I(X;Z)+61)

P<|L5(X|z) —1>1/2z € 55(2)) <

Since we assumed that R < I(X;Z) — &y, the right hand side of the above
inequality goes to zero exponentially fast. Hence, with high probability, the
list size Ls(X|z) lies in the interval [1, 1.5]. But since the list size is integer, it
follows that with high probability (over the random codebook C), Ls(X|z) = 1.
This concludes the proof of the list size.
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C.1.2 Proof of Lemma 5.3

When R < I(X;Z) — &, then it follows from Lemma 5.2 that for almost all
z € L5(Z), Ls(X|z) = 1. Hence, there is only one x" € C that is jointly typical
with z. Hence, the list £5(Y|z) is equal to Z5(Y|x/,z) for the x’ and z in
question. By Lemma F.2, the size of this set is do-equal to 2TV 1X2)  where
5y = SH(Y|X, Z).

Now, assume that R > I(X; Z)+268,40,+40s, and fix a sequence z € T5(Z).
We have

Ls(Y|z) = Z Ly, X et (xly .2 ) (C.4)

y€7Zs(Ylz)

Z ZH{X(i)e%(my,z)}a (C.5)

yeT(Y|z) i€

where X (i) is defined to be the i* codeword in C. Taking the expectation over
the random codebook, we get

E[L;(Y]z)] = Y P J{X() € T(X]y 2)})

YET;(Y]z)  i€T

< > ) P(X(i) € Ti(Xly, 2))

v€eTs(Y|z) i€T

veTZs(Yz) i€

where we used the definition p;(y) £ P(X(l) € 75(X|y,z)). By Lemma F 4,
8L o TI(X:
Bily) 2 27 T2 (C.7)

for almost all y € 75(Y'|z).
If R< I(X;Y,Z)— 61, then we have from (C.7) that

sz (R-1(x; YZ)+51)7

i€l

which goes to zero exponentially with 7" because the exponent of the right hand
side is negative. Furthermore, the events {X(i) € 75(X |y, z)} are independent
for different ¢ € Z. It follows that the union bound used in (C.6) is tight (see
Appendix C.2), and thus,

E[Ls(Y2)] = > D ply) (©8)
y€Ts(Y]z) €1
81 2T(H(Y|Z)+R—I(X§Y7Z))7 (C.9)

where §, = 01 + 3. Note that relative equality (as defined in Section 2.1) is

stronger than exponential equality. Hence, we can consider that E [Ls(Y'|z)] = &

oT r(HY|2)+R-1(x; YZ))'
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On the other hand, if R > I(X;Y, Z) + 6y, then (C.7) implies that

Zﬁz’(y‘) > 2T(R—I(X;Y,Z)—61)

1€

grows exponentially with T', because the exponent of the right hand side is
positive. Hence, it follows again from Appendix C.2 that the union bound is
tight, and that P(U;er{X(i) € T5(X|y,z)) = 1. Hence,

E[Ls(Y|2)] = |7:(Y|2)| (C.10)
& oTH(Y|Z), (C.11)

Thus, the expected list size satisfies the exponential equalities stated in
the lemma. The rest of the proof is to show that for R > I(X;Z) + 01,
Ls(Y'|z) concentrates around its mean E [Ls(Y|z)] given in (C.9) and (C.11)
for large T'. Similarly to the proof of Lemma 5.2, this is done by first finding
a bound on Var (Ls(Y'|z)) and then using Chebyshev’s inequality to show that
the probability that Ls(Y'|z) deviates considerably from E [Ls(Y'|z)] is small.

First, assume that R < I(X;Y, Z) — 6;. From (C.5),

2
Li(Y|z < ) D D0 Likeen (Xiys niRa)eTs (Xlyam )

v1€75(Yz) y2€T5(Y|z) i1€L i2€T

= > > Uxpenxiyan

y€T;(Y|z) i€

+ Z ZZ]I{{X(il)E??s(X\y,Z)}ﬂ{X(iQ)GZs(X\y,Z)}}

v€Ts(Y|z) 1€ 'iz GZ
io#£11

oy Y D L Raen (X OeT (Xly2 2}

y1€75(Y|z) y2€75(Y|z) i€1
Y2#Y1

Y D DD Lxeen iy ann(X (e (Xlyea)}-

y1€75(Y|2) y2€75(Y|z) i11€Z ?QEZ
y2#£Y1 27
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Now we take the expectation of Ls(Y|z)? over the random codebooks:

E[L;(Y|2)’] < ) > P(X(i) € T5(X|y,2)) (C.12)

yETa(Y\ ) 1€1

+ > Y Y P({X(ih) € T(X|y,z)}

y€T5(Y|z) i1€T i2€l
12711

N{X(i) € T(X|y,2)}) (C.13)

Bl Y Y Y hmucnumomEocnayeon]  (C14)

y1€75(Y|2) y2€75(Yz) €L
Y2#Y1

- S YN P({X(i) € Ti(X |y, 2)}

v1€75(Y|2z) y2€75(Y|z) i1€Z i2€T
y2#y1 2701

N {X(iz) € T5(X|y22)}). (C.15)

We treat each of the terms (C.12) to (C.15) separately. First, consider (C.12):

Z ZP i) € T5(X|y,2z)) = Z Zﬁi(}’)

yeT;(Ylz) i€T yeT5(Ylz) i€T

= E[L;(Y]z)],

where the relative equality was given in (C.8). Consider now the term (C.13).
Keeping in mind that different codewords X(7;) and X(i5) are picked indepen-
dently from 75(X ), we obtain

Yo Y3 P({X(i),y) € T(Xly, 2)}

y€Ts(Y|z) i1€L i2€1
12711

ﬁ{fi(iz) y) € T5(X|y,z)})

= 2 2 ) Wby

y€Ts(Y|z) i1€L i2€T
127101

< a2"%p(b — 1) (c27)?
< ab2c22T(251+53)

where

[I>

oTH(Y|Z)

h 2 oTh

L& o-TI(X;Y,Z)
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Let us now consider (C.15):

S Y Y Y P(X(h) € T(Xy1.2)}

y1€7Z5(Y|2) y2€T5(Y|2) i1€T i2€L
Y2#Y1 G270

N {X(iz) € T5(X[y2,2)})

- Z Z ZZ%(%)@Q(W)

y1€75(Y|2) y2€75(Y|z) i1€Z i2€Z

Y2#Y1 G271
= D 2 mn) D Y huln)
y1€75(Y|z) i€l v2€75(Y|z) i2€7

y2 #yl 1271

< E[Ls(Y2)]".

The computation of (C.14) is more involved. We can write

1
1T,(Yz) — 1 2 2 2 lReenin apn(X 0T (Xlys))
y1€75(Y|z) ygET;;é(Y\ z) €T
Y27Y1

1
- Z Z Z ’%(Y’Z)’ _ 1H{{X(i)eﬁs(X|y1,z)}ﬂ{X(i)G%(X\yz,z)}}
V1€T3(Yz) i€T y2eT5(Y]z)
e 2)’2;’53’1

@
= ). D Ev [H{{X(ne%<X\y1,z>}m{>"<<i>e7:s<X|Y2,z>}}}
v1€75(Y|z) i€

> ZPY2<{X(Z')e?:;(X|y1,z)}ﬂ{X(i)G%(X|Y27Z)}>

y1€75(Y|z) €T

= Y D Pyv,(X(i) € T(X|y1,2))

v1€75(Ylz) i€T

PY2<X<Z) S %(X’Y% )| ( )
X (i) € %(lehZ))

= > D TixpenxiymPra(Ya € T(Y[X(i), 2)

v1€75(Y|z) i€T

_ I | Z5(Y]X(i), )| — 1
- Z Z {X(1)€Ts(X|y1,2)} 175(Y]z)| — 1

v1€75(Y|z) i€T

b | T(Y|X(3),2)|
< Z ZH{X@)GT&(XWZ)}(16/2)|73(Y]z)]

y1€75(Y|2) i€l

—~
=

oTH(Y|X,Z)

Z Z]I 9 T(62+493)
{(X()eTs5(X|y1.2)} 9TH(Y|Z)
y1€75(Y|z) i€Z

_ ] CTI(XY|2) 0T (52485)
=2 ) D Lxpenixiyin? 20T,
v1€75(Y]z) €1

where in (a), we have defined the random variable Y5 to be a sequence cho-
sen uniformly from 75(Y'|z) \ {y:} (and independent of everything else). In



142 Appendix for Chapter 5

(b) we assumed that |Z5(Y|z)| > 2 and hence, |Z5(Y|z)| — 1 is larger than
(1/2)|75(Y|z)|. Taking the expectation over all random codebooks yields:

YD DD DT e

v1€75(Y|z) y2€75(Y|z) €1
Y2#y1

20/T(Y]2) —1) Y. Y P(X(i) € T(X|y,z))2 X127 (02r0)
v1€7Z5(Y|z) i€
< 2(a2T% — 1)a2T9p2T01 9~ TIXYZ) 9T (02405)

< 2a2b627TI(X;Y|Z)2T(51+52+353) )

Combining the four terms (C.12) to (C.15), we obtain

E [Ls(Y|z)®] < E[Ls(Y|z)] + ab®c?2T+%)
+E [L(;(Y|z)]2 + 202be2 " TIXY1Z) QT (51+924353)

Therefore, the variance of the list size can be bounded as

Var (Ls(Y|2)) = E [Ls (Y [2)?] — E [Ls(Y|2)]?
<E [L(;(Y‘Z)] + ab2c22T(2§1+53) + 2a2b627TI(X;Y|Z)2T(§1+52+3§3).

From Chebyshev’s inequality, we obtain

P(|Ls(Y|z) — E[Ls(Y2)]| > €E[Ls(Y|2)] )
< Yar(Ls(Y]z))
~ EE[Ls(Y(2)]’
- 1 N ab2c22T(251+63) N 2a2b02—TI(X;Y|Z)2T(61+52+353)
~ E€E[L;(Y|z)]  eE[Ls(Y]2)]? e2E [Ls(Y2)]?
) 1 1 2
2abc2—T(61463) + 22T (361+203) + 2bc2T1(X;Y | Z)9—T (261462+453)
1 1
29T (R—1(X;Y,Z)+H(Y|Z)—051—03) T 29T (H(Y|Z)—361—253)
2
29T (R—I(X;Y,Z)+1(X;Y|Z)—261—62—453)
1 1
29T(R—I(X;2)+H(Y|X,Z)—61—63) + €29T(H(Y|Z)—361—203)
2
29T (R—1(X;2)—261—052—453)

—~
S

IN

+

.

where (a) is true because from (C.9), E [Ls(Y]z)] > abc2™"** and 6, = 61 + d3.
The convergence in (b) happens as T" — oo, because when R > I(X; Z)+ 26, +
09 4 403, the first and third denominator above grow exponentially with 7'. In

addition, when ¢ satisfies the assumption ¢ < %, the exponent of
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the second denominator is also positive. Hence, all three terms go to zero
exponentially fast with 7". This proves the hardening of the list size for R <
(XY, Z) = 4.

Assume now that R > I(X;Y, Z) + 6,. From (C.10), we get

E[Ls(Y]z)] = |[75(Y |2)],
which means, by the definition of relative equality, that

E[L;(Y]|z)]
|75(Y[2)]

as T grows large. On the other hand, from (C.4),
Ls(Yl|z) < |75(Y|z)],
implying that

E [Ls(Y|2)?] < E[|T:(Y]2)?]
= |T;(Y|z))?,

because the expectation is over all codebooks. Hence, the variance of the list
size goes to zero with T

Var (Ls(Y|2))  E[L;(Y|2)?] — E[L;(Y|2)]

T (V)
T(Y]2)? — B [Ls(Y]2)?
: TV
(B
- ( (Y]] )
—1—-1=0.

This concludes the proof of the size of L5(Y|z).

C.1.3 Proof of Lemma 5.4

We consider the following random experiment: C is fixed, and a uniformly
chosen codeword from C is transmitted over the channel. Let X be that random
codeword. From Lemma F.2, it follows that the received sequences (Y, Z) are
highly likely to be jointly typical with X, and therefore, Y € Ls(Y) and
Z € L5(Z) w.h.p.. Let z be a particular sequence in L5(Z). Given that Z = z,
we also have that Y € L5(Y|z) w.h.p.. We are looking for the probability
P(Y = y|Z = z), for any given y € Ls(Y|z).
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We start by computing P(Z = z) for a fixed z € L5(Z).

P(Z=1z)=) PX=x)P(Z=2X=x)

xeC
5 N~ g [ 27Nz € Ti(Z]x)
- Z 2 { 0 otherwise
xeC
_ Z 2—TR2—TH(Z\X)
x€CN75(X|z)
= Ls(X|z)2 TFHHEIX)
-1 if R<I(X;Z)— 5~1 o—T(R+H(2|X))
A 9T(R-I(X;2))  if I(X;Z2)+ 0, < R< H(X)
[ 2 T@RHHZIX) if R < [(X;Z) — 6
9-TH(Z) if I(X;72)+01 < R< H(X)

for almost every possible code C, where we defined d5 = §H (Z|X).
Using this, we compute P(X = x|Z = z) for given x € C and z € L5(Z).
When (x,z) are not jointly typical, then this probability is 0. Otherwise,

P(X=x) P(Z=2z|X=x)

PX =x|Z=12)= P(Z = z)
5_5 2—TR 2_TH(Z‘X)
 P(Z=2
5 1 if R < 1(X;2) -6,
21 ~ 1 (C.16)
1205 9-T(R-1X:2))  §f [(X;Z) + 6 < R,

The above derivations show that the distribution of Z in L£5(Z), and the
conditional distribution of X in L£5(X|z) given Z = z can be made arbitrarily
close to uniform by choosing a small .

Assume that R < I(X;Y,Z)—6;. Then, by Lemma 5.3, £s(Y|z) is d4-close
to the disjoint union

UXE[:(S(X‘Z)’]S(Y|X7 Z)'

One can show that for a given (x,z), the distribution of Y can be made
arbitrarily close to uniform on 75(Y|x,z). From the above derivation, it also
follows that given Z = z, X can be made close to uniformly distributed in
L5(X|z). Hence, Y can be made close to uniformly distributed in L£s5(Y|z).
Now, assume that R > I(X;Y,Z) + 6. For a fixed jointly typical (x,y,z),
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we compute

P(Y =y,Z=1zX=x)
P(Z =z|X =x)
o—TH(Y,Z|X)

PY=yX=x,Z=1z2)=

65i66
 9-TH(Z|X)
— 9T (=H(Z|X)=H(Y|X,2)+H(Z|X))

= 2 THIXZ) (C.17)
where d0g = 0H (Y, Z|X). Then, for jointly typical (y,z), we can compute

P(Y=y|Z=2)=) PX=x|Z=2)P(Y=y[X=xZ=2)

xeC

61—2255 Z 2—T(R—I(X;Z)) P(Y _ y’X = x, 7 — Z)
x€Ls5(X|2z)

65106 3 o-T(R-1(x:2)) | 0 if y ¢ 75(Y|x)

2—TH(Y|X,Z) if y € %(Y’X)

x€Ls5(X|2)

_ Z 2—T(R—1(X;Z)) o-TH(Y|X,Z)

x€Ls(X|y,z)

= [Ls(X]y, z)‘Q—T(R—I(X;Z)) o—TH(Y|X,Z)
% 9T(R-1(X;Y,2)) o-T(R-1(X;Z)+H(Y|X,Z))
— 9T (-I(X;Y|2)—H(Y|X,Z))

=277, (C.18)

where in the (0; + 205)-equality we have used (C.16) and the fact that R >
I(X;Y,Z)+ 6, > I(X; Z) + 01, in the (05 + 06)-equality, we used (C.17), and
in the 0;-equality, we have used Lemma 5.2 with (Y, Z) playing the role of Z.
From (C.18), it follows that P(Y = y|Z = z) is d-close to 2-7H#12) where
5= 201 + 305 + dg is a scaled version of §. This concludes the proof.

C.2 Tightness of the Union Bound for
Independent Events

Let {gi}izl
that

» be a collection of events. The well-known union bound states

.....
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When the events {&;},—1. ., are independent, then we can also derive the
following lower bound on the probability of the union:

P( U, gi) —1- P( e, 5;)

=1- H(l - P(&))

>1-[[exp (- P(&))

=1

—1—exp ( - zn:P(si)). (C.19)

As Y7 P(&) grows large, (C.19) goes to 1, and hence the fraction of the two
bounds goes to 1. This implies that

P( U, &) =

where “=" denotes relative equality.
As x goes to 0, the slope of 1 — exp(—x) goes to 1, and hence, by the rule
of Bernoulli-De ’'Hopital, P%M — 1, which implies that

P( ur, 51-) = i P(E)

as > . P(&) goes to 0.



Appendix for Chapter 6

D.1 Proof of Proposition 6.1

Let po pxi|o PxslQ Puijx,,@ be given, and consider the random code con-
struction outlined in Section 6.4.1. The additional constraint (6.30) makes
sure that in addition to the error events listed in Section 6.4.1, the expected
probability of the following event goes to zero with T (u(i),x2(k),y2,q) €
T5(Ur, X5, Ys, Q) for

e i #1land k=1,

where we assumed that (i, 7, k) = (1,1, 1) was transmitted. Hence, if we define
pe = P(i decoded wrongly at Receiver 2), we get

E [pe] < €0,

where €y > 0 can be chosen arbitrarily small. Recall that the expectation is
over the random choice of the codebooks. From Markov’s inequality, we get

Hence, by choosing ¢, arbitrarily small, the randomly chosen code has, with ar-
bitrarily high probability, an arbitrarily small probability of decoding ¢ wrongly
at Receiver 2. Thus, with high probability, the particular code whose existence
was shown in Section 6.4.1 also has this property. Let Wy = (1, J) be the mes-
sage that is transmitted by Transmitter 1. Since X, is a function of (/,.J),
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X, is a function of K, and since Receiver 2 can with high probability decode
(I, K) correctly, Fano’s inequality implies that

H(X4]|J,Y2,X5,Q) < Ty (D.1)
and
H(X1,Xo[J, Y5, Q) < Tes, (D.2)

where €; and €3 go to zero as €y goes to zero and T grows. We analyze the
equivocation at Receiver 2 about the message J:

H<J|Y27 Q) Z H<J|Y27 X27 Q)
> I(J;X1|Y2,X5,Q)
= H<X1‘Y27X27 Q) - H<X1|J7 Yo, Xy, Q)

(a)
2 H(Xl‘Y27 X27 Q) - T62
= H(X1\X27 Q) - [<X1;Y2‘X27 Q) —Te

(b)
> TRy —Tey — 1(X1;Y2|X5,Q) — Tey

©
Z T(Rl — [(Xl;YQ‘XQ, Q) — €9 — 64). (D3)

In the above derivation, we used (D.1) in (a), and we obtained (b) because
H(X1|X2,Q) = H(X4|Q) > H(X4|Y1,Q) > H(W) — ¢4 for some arbitrarily
small ¢4, where the last step follows from Fano’s inequality. Finally, (c) is
obtained from a local upper bound much like the one used in equation (B.17)
of Appendix B.

We derive a second bound on the equivocation:

H(JY2,Q) > I(J; Xy, X5|Y2,Q)
= H(X1,X2|Y2, Q) — H(Xy, X2|J, Y2, Q)
> H(X,X5|Q) — I(X1,X2; Y2 |Q) — Tes
>T(Ry+ Ry — (X1, Xo; Y32|Q) — €3 — €5), (D.4)

where all the steps are analogous to (D.3) and €5 is an arbitrarily small con-
stant. Combining (D.3) and (D.4), we obtain

1 .

TH(J|Y27 Q) > Ry — min{/(X1; Ys| Xy, Q), [(X1, Xa; Y2|Q) — Ra}

— max{ey + €4, €3 + €5}
= Ry — B —¢; —max{es + €4, €3 + €5},

where we used (6.30) in the last step. This proves the claim of Proposition
6.1.
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D.2 Proof of Theorem 6.4

Assume that (R, Ry, R.) € R.i(Q, X1, X, Uy) for a given joint distribution p.
First, we choose an auxiliary rate B such that the inequalities (6.14) through
(6.22) given in the proof of Theorem 6.1 are all satisfied. It follows that the
expected probability of all the error events described in that proof can be
made arbitrarily small. This remains true even if we split the index j into a
non-secret part j, of rate A and a secret part j, of rate Ry — B — A. The code
construction is the same as before, with j = (js, j,). We fix the rate of the
non-secret message j, to be

A= min{I(Xl;}/Q’UbXQ; Q)7 [(X17X2;}6|U17 Q) - R?} — €1,

where €; > 0 can be chosen arbitrarily small. Let J = (J, J,), I and K be
the uniformly distributed random messages. The rates of the indices J,, and
K satisfy

A < ](X17Y2’X27U17Q)
Ry < I(XQ,YV2’U17Q)
A+ Ry < I(X1, Xo; Y5|UL, Q).

It follows from standard arguments that if we assume that a genie makes
the secret message Jy and the sequence U; available to Receiver 2, then the
expected probability (over all randomly generated codes) of wrongly decoding
(Jn, K) at the genie-aided Receiver 2 can be made arbitrarily small. Hence,
there exists a code for which all the error events listed in the proof of Theorem
6.1 have small probability, and in addition, from Fano’s inequality,

H(X1|J5,U1,Y2,X2,Q) < T62
and
H(X17X2’J87U17Y27Q) é T€37

where €, and €3 go to zero as €; decreases and T' increases. Using these two
inequalities, we obtain bounds on the equivocation of the code:

H(Js[Y2,Q) > H(Js|U1, Y, X5, Q)

> I(Js; X4|Uy, Yo, X5, Q)

= H<X1’U17Y27X27 Q) - H<X1|JS7U17Y27X27 Q)
(X1’U1>Y2,X2,Q) —Tey
(

H X4 ’U17X27Q) - ](X15Y2|U17X2,Q) —Te

T(Ry — B) —Tey — 1(X1;Y2|Up, X5,Q) — T'ey
T(Ry — B—I(X1;Y3|U1, X5, Q) — €2 — €4),

(A\VARAY,
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and

H(J,|Y2,Q) > H(J;|U1, Y5, Q)
> I1(Js; X1, X5|U1, Y2, Q)
= H(X1,X5|U1,Y2,Q) — H(Xy,X|J;, Uy, Y2, Q)
> H(X,X5|U, Q) — I(Xy, X5; Y2|Up, Q) — Tes
> T(Ry — B+ Ry — I(X1, Xp; Y5|Uyp, Q) — €3 — €5),

where all the steps are justified analogously to (D.3) and (D.4) in the previous
section of this appendix. It follows that for the given code,

1
fH(Js|Y27Q> > Rl - B

- min{](Xl;YﬂUhXQ,Q)a I(X1, X2; Y5|U, Q) — R2} — €6,

where €5 = max{es + €4, €3 + €5} can be made arbitrarily small by choosing ¢;
small and 7" large. Therefore, as long as

R.< Ry —B-— min{I(Xl;Y2|U1,X2,Q),](Xl,XQ;Y2|U1,Q) - R2}7 (D.5)

the equivocation of this code is at least R, — 5. Hence, (R, R, R.) € R, if
they satisfy (6.14) through (6.22) and (D.5) for some auxiliary rate B. Note
that (D.5) is an upper bound on B. Now, we combine each lower bound on B
with each upper bound on B exactly as it was done in Section 6.4.1. We find
that an auxiliary rate B that satisfies (6.14) through (6.22) and (D.5) exists
if and only if (R, Rs, R.) satisfy the seven conditions given in Definition 6.7.
This concludes the proof.



From Weak to Strong
Secrecy

In this section, we outline how a code that provides weak secrecy at rate R
can be turned into a code that provides strong secrecy at the same rate R
using extractors. This technique was introduced by Maurer and Wolf in [29]
and the contents of this appendix are basically a repetition of Section 3.3 in
that publication. There is a small difference, however. In [29], the authors
showed the existence of a new code that uses the given (weak) code several
times to produce a strongly secret key that is shared between S and D. In
our setup, the shared secret between S and D should not be created by the
code, but it should be equal to some message W which is observed by .S before
applying the code. To overcome this problem, we use linear extractors that
are in some sense invertible. Thanks to this, the strongly secret message can
be taken to be the output of a source, the inverse of an extractor is applied to
it, and then the procedure described in [29] is used to establish a reliable and
strongly secret estimate of the message at the destination.

E.1 Auxiliary Lemmas

We start by defining what extractors are and stating a theorem that guarantees
their existence. We start by two auxiliary definitions.

Definition E.1 Let X be a discrete random variable, taking values in an al-
phabet X. The min-entropy of X is defined as

A_

Hoo(X) = —log maxpx (z).

Definition E.2 Let X and Y be discrete random variables, taking values in
the same alphabet X. The variational distance (or statistical distance)
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between X and Y is defined as

AXY) 2 2 Ipx(e) — py (o))

zekX

Definition E.3 A function e : {0,1}" x {0,1}* — {0,1}" is called a seeded
(K, €')-extractor if for any random variable X with range X C {0,1}" and
min-entropy Heoo(X) > k', the variational distance d([V,e(X,V)],Uqsr) is at
most € when V is independent of X and uniformly distributed in {0,1}. Here,
U, denotes a random variable uniformly distributed on {0,1}".

An important property is that extractors can be applied to a random object X
without knowing its distribution. The only knowledge that is required about
X is a lower bound on its min-entropy.

The following lemma is a special case of Theorem 1 in [37] which guarantees
the existence of linear extractors with parameters chosen in the same way as
in Lemma 8 of [29] in order to suit the strong secrecy proof.

Lemma E.1 For every choice of the parameters N, 0 < k' < N, ¢ > 0 and
€ > 0, there are explicit linear (K, €')-extractors e : {0, 1} x {0,1}¢ — {0,1}",
where d = O ((log §)?) and r =k — €.

Proof: The statement of the lemma follows from Theorem 1 in [37] by setting
k = k" and m = k — €, which yields the desired value of r. To determine the
order of d, we compute the auxiliary parameter v to be v = 2,5:;:11. Hence, as
N grows large, v converges to 2. It follows that d = O ((log g)z) The linearity
of the extractors can be shown by inspecting the explicit construction provided
in the proof of Theorem 1 in [37]. This observation was also made in [7]. O
The following lemma is equivalent to Lemma 9 in [29] and follows from

Lemma E.1.

Lemma E.2 Let k',61,0o > 0 be constants. Then there exists, for a suf-
ficiently large N, a linear extractor e : {0,1}¥ x {0,1}? — {0,1}", where
d < 6N and r > K — 63N, such that for all random wvariables X with
X CH{0,1}N and Hyo(X) > k', we have

H(e(X,V)|V) >r -2~V

The essential point of Lemma E.2 is that the function e does not depend on
the distribution of X, and the output of e is essentially independent of the
seed V' and uniformly distributed in {0, 1}".

Proof: The statement of the lemma follows from Lemma E.1 by set-
ting €(N) £ 2-VN/leN  Thig yields that for a large enough N, there ex-
ists a (K, ¢€)-extractor e, mapping {0,1}" x {0,1}¢ to {0,1}". Note that
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d = O ((log %)?), where

VN v
log N

(log )2 = (log N +

¢(N)

N
2
= (log N)* +2V'N + log V)2

Hence, for large enough NV, % can be made arbitrarily small, and d < §; N is
satisfied. It is further clear that r > k' — € > k' — 63V for large enough N.
The rest of the proof is the same as for Lemma 9 in [29]. O

The following lemma relates the conditional min-entropy of a sequence of
i.i.d. random variables to the conditional Shannon entropy of one component
of the sequence. The lemma can be found in [29] (Lemma 6).

Lemma E.3 Let uxz be the joint probability measure of two random variables
X and Z, where X is discrete and Z is discrete or Gaussian. Let 0 < 6 < %
be fized and let N be an integer. Let X and Z be sequences of length N, with
distribution p¥ y(-). Let F(5) be the event that (X,Z) € As(X,Z), where
As(X, Z) is the set of all weakly typical sequences (see e.g. [9]). Then, we
have

P(F(5)) — 0
as N — oo, and
Ho(X|Z=2z,F()) > N(1—-06)H(X|Z).

The statement of the lemma provided here differs slightly from Lemma 6 in
[29] because the min-entropy is easier to deal with than the Rényi-entropy.
In addition, this version of the lemma is also valid when Z is Gaussian (as
opposed to discrete).

Proof: The fact that (X, Z) are weakly jointly typical with high probability
follows from Theorem 9.2.2 in [9]. The lower bound on the min-entropy is
obtained as follows. The definition of weak typicality implies that for all
x € XN z € ZN such that (x,z) are jointly typical, we have

px|z(x|z) < 27 NU-OHEXIZ),
Hence, we obtain

Hoo(X|Z = 2,7 (5)) = —log  max pxz(x|z)
xeAM (X |z)

> _log 2~ NU-DH(X|2)
= N(1 - 0)H(X|2).
O

We state one last auxiliary lemma before stating and proving the main
lemma of this appendix.
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Lemma E.4 Let X and () be discrete random variables, and let s > 0. Then
the set of values ¢ € Q for which Hy(X) — Hoo(X|Q = q) < log|Q| + s has
probability at least 1 — 27°.

Proof: We start with the following inequality:

Eo [Q—Hoo(X\Q:Q)] — ZPQ(Q)Q_Hm(XlQZQ)
qeQ

=Y _ra(@) maxpxjo(zlq)
qeQ

= maxpxq(,q)
TEX N\ !

9€Q <px(x)

< |Qfmax px(z)

= Q|2 H=X), (E.1)
Then, using Markov’s inequality, we obtain

Po(—Ho(X[|Q = Q) 2 log|Q| + s — Hoo(X))
_ PQ(Q—HOO(XIQ:Q) > 25|Q|2_H00(X))
E, [2-H=(XI0=0)]
—Hoo(X)
_ lop
= 2_57

where we used (E.1) in the last inequality. This concludes the proof. O

E.2 Main Lemma

Lemma E.5 Let a memoryless wireless network or channel be given, and as-
sume that a rate-equivocation pair (R, R — p) is weakly achievable over this
network, where p > 0 is an arbitrary constant. Then, the secrecy rate R — p is
strongly achievable over this network.

Proof:  To show that R — p is strongly achievable, we proceed as follows.
Let an arbitrary € > 0 be given. We will show that there exists a block
length T and a (T, €)-code of rate at least R — p — € and equivocation at least
L(H(W) —¢€), where W is the secret message.

Since (R, R — p) is weakly achievable, we know that for every € > 0 there
exists, for a large enough block length T, a (T, ¢€)-code that achieves rate at
least R — € and equivocation at least R — p — €. We run this code M times
over M subsequent blocks of T time-slots. This takes a total of T'M uses
of the network channels. Let W™, W(m), Yg”) and Y](Em) be, respectively,
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the message, the message estimate at D, the sequence of length T received at
D and at E during block m, for m € {1,...,M}. Note that E can be any
eavesdropper in £. We define

to be the tuples that regroup the quantities of all M blocks. Since we use the
same (T, €)-code for each block, we have that for all m € {1,..., M},

HW™) > T(R - ¢)
and
HW ™Yy > T(R—p—e)

for all £ € £.

Information reconciliation: Note that the error probability of each block
m satisfies P(W (™) £ W(m)) < e. It follows that

PW =W)>(1-e"

— 0

with increasing M. Hence, we have no guarantee that W equals W with high
probability. The first phase of the protocol proposed in [29], called “informa-
tion reconciliation”, establishes a new estimate W at the destination D such
that P(E # W) < €1, where € can be made arbitrarily small by choosing
M large enough. This is done by using a Slepian-Wolf lossless compression
scheme [42] on the iid. sequence (W W)  From Fano’s inequality,
H(Wm|[Wm) < ¢(RT — €) + 1. We know from [42] that it is sufficient to
transmit (14 e) MH(WO|IWMY) < (1 + €)M (e(RT — €) + 1) additional bits
from S to D in order to produce such a new estimate E, where €5 can be made
arbitrarily small by choosing M large enough. Let fsw (W) be this sequence
of additional bits. We transmit few () over the network using a reliable
source-destination code. Such a code exists for all networks considered in this
thesis.

Privacy Amplification: We now describe the second phase of the procedure
introduced in [29]. Assume that for all m € {1,..., M}, W is uniformly
distributed in {0, 1}7#=9) then it follows that W is uniformly distributed in
{0, 1}MT(E=9)  We would like to show that there exists an extractor which
acts on the random object W and a random seed V' and produces a random
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variable W that is uniformly distributed in {0,1}", where r can be made
arbitrarily close to MT (R — p). Moreover, the conditional entropy of W given
the information at any eavesdropper should be arbitrarily close to H (W), hence
making W strongly secret. We provide the details hereafter.

Fix any eavesdropper £ € £. We apply Lemma E.3 to the sequence of

random variables (W (™), an))me{l 77777 My and obtain that
Ho(W|Y g = yp, F(0)) = M(HWOYR) - &)
>MT(R—p—e¢)— M,

where ¢ = 0H (W(1)|Yg)) can be made arbitrarily small by choosing ¢ arbi-
trarily. Furthermore, F () happens with high probability as M grows large.

Fix an arbitrary constant s > 0. By Lemma E.4, we have with probability
1 —27% that

Heo (WY = yp, F(6). fsw(W) = )
> Ho(W|Yg = yg, F(6)) — log(# possible SW-messages) — s
>MT(R—p—€)—Md —(1+e)(e(RT—¢e)+1)—s
o R € 1 s

T(R—p—e—?—(l—l—@)(e(ﬂ—MT)+MT)—MT)

T(R—p—e3), (E2)

where €3 can be made arbitrarily small by choosing M and T sufficiently large.
This holds for any eavesdropper E € £ and any realization of the received
sequence Y g of that eavesdropper.

It follows by Lemma E.2 that there is an explicit linear extractor e :
{0,1}Y x {0,1}¢ — {0,1}" with N = MT(R — ¢), where d < §; MT(R — ¢)
and r > k', where k' = MT(R — p — €3) as given in (E.2). Let us apply the
extractor e to W and to an independent uniform seed V and let W = e(W, V).
From (E.2) and Lemma E.2, we obtain that

HWI|Yg =yp, F(0), fsw(W) =4, V)

2 r_ 27]\/'1/270(1) (ES)

for all £ € &£ and all yg. We send the seed V reliably over the network
together with fsw (V). To describe V, we need to transmit at most 6, MT(R—
€) additional bits. Let V be the estimate of V produced at the destination
D. Then D can apply the same extractor e to (W, V), which is equal to
(W, V) with high probability. Hence, D can correctly reproduce W with high
probability. Since we do not worry about secrecy during the transmission of
the seed V', we must assume that all the eavesdroppers have knowledge of V.
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However, using (E.3), we find that for every E € &,

H<W’ﬁa fsw(WW), V)
2 P(.F((S)) r — 2—M1/2—o(1)) . P(m)o
= (1 - EESM))(T — 2—]\/[1/2—0(1))

ZT_€57

where e((;M) is as defined in Lemma F.1 in Appendix F, but for the random

variables (W(l),Yg)). Since egM) goes to zero with M, the constant €5 can be
made arbitrarily small by the choice of M. In addition,

HW)>r— =M1/ > r — €,

where €5 can also be made arbitrarily small. This means that W is almost
uniformly distributed in {0,1}" and H(W|Yg, fsw(WW), V) can be made arbi-

trarily close to H(W).

Analysis of the number of network uses: We analyze the total number
times the above procedure uses the network. The M repetitions of the (T, ¢)-
code require M'T' network uses. For any network that we consider in this thesis,
a certain reliable communication rate between S and D can be guaranteed.
This rate Rgp is measured in bits per uses of the network. Hence, to transmit
(fsw(W), V) reliably from S to D, we require at most

(1+ e2)M(e(RT — €) + 1) + 5, MT(R — ¢)
Rsp
1+ e)eR  (1+e)(1—¢) 6(R—e)
RSD * TRSD * RSD )

:MT(
S MT€7

network uses. By choosing M and T sufficiently large, ¢; can be made arbi-
trarily small. Hence, the total number of network uses of the scheme is upper
bounded by (1 + ¢;) MT and can be made arbitrarily close to MT.

Inverting the extractor at S: In [29] it is shown how the procedure de-
scribed above, consisting of information reconciliation followed by privacy am-
plification, can be used to establish a shared, strongly secret key between S
and D. To do so, one selects W uniformly at random from {0, 1}M7(=¢) and
applies the above procedure. The result is a key W that is shared between S
and D and strongly secret with high probability.

For secret communication of a message coming from a given data source,
we slightly modify the procedure. Note that the extractor e whose existence is
given by Lemma E.2 is linear. It follows that for a fixed seed V' = v, the pre-
image of w = e(-,v) is of the same size for each possible output w € {0,1}".
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Hence, we can “invert” the extractor in the following sense. Let W be the
binary representation of a source message of length r. The source node S
generates a random uniform seed V in {0,1}¢ and then selects a sequence W
uniformly at random from the pre-image of e(-, V) for the output W. Note
that since all possible pre-images of e(-, V') have the same size, W is uniformly
distributed in {0,1}". We then apply the procedure described above to the
sequence W. As a result, the message W is reliably transmitted to D. This
procedure uses the network 7' 2 MT(1 + €;) times, where ¢; can be made
arbitrarily small. The probability of wrongly reproducing W at D can also be
made arbitrarily small. The communication rate of the procedure is

1 - r

—HW)= ——

T (W) MT(1 4+ e;)
>R—p—€3
- 1+€7
> R—p—es,

where eg can be made arbitrarily small. For every eavesdropper, the equivo-
cation rate is

%H(VWE, fsw(W), V)
1
> ?(fr — €5)
— %(H(W) —€5),

where €5 can be made arbitrarily small. Hence, the procedure described in this
proof is a (7', €)-code that strongly achieves secrecy rate R — p. a



Robust Typicality

In this thesis, we use a variant of strong typicality that was introduced by
Orlitsky and Roche in [35].

Definition F.1 Let x = (z[1],...,z[T]) be a sequence taking values in X7,
where X is a finite alphabet. The empirical frequency of x € X in X is
defined as

A

() & 2l - 2l = 2}

Definition F.2 Let X be a random variable taking values in a discrete set
X. Let px(-) be the probability mass function of X. A sequence x € X7 is
robustly 6-typical for 0 <0 <1 if for all x € X,

vk () — px(7)] < dpx (7).

The set of all 0-typical sequences is denoted by Ts(X). When is clear from the
context which random variable we refer to, we use the short form Ty.

In this thesis, we often refer to robust J-typicality simply by “typicality”.
The main advantages of robust typicality compared to strong typicality (see
[11]) are the following. In strong typicality, one needs to state that zero-
probability symbols should not appear in a typical sequence. The notion of
robust typicality already makes sure that this is the case. An even more useful
property of robust typicality is that (x,y) € 7Z5(X,Y) implies x € T5(X),
where both typical sets are defined for the same §. This is not the case for
strong typicality.

Definition F.3 When X is a tuple of random variables, Definition F.2 is still
valid. If two sequences x andy satisfy (x,y) € 75, we say that x and y are
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gointly typical. The set of all sequences x that are jointly typical with a fized
sequence 'y is denoted by T5(X|y).

Note that if (X,Y) are such that Y = ¢(X), where g(-) is a deterministic
function, then two sequences (x,y) € 7Z5(X,Y) if and only if x € 75(X) and
v = ()., y(T)) = (9(a[1]), .. g([T)).

We state a few lemmas that were proved in [35] and that are used in this
thesis.

Lemma F.1 For any given 0 < 6 < 1, and a given random variable X, we
have

(1 . EgT))QT(l_(S)H(X) < |7:5(X)| < 2T(1+6)H(X)

I

with i) 2 2|Sx|e"T%mx/3  where we define Sx £ {x € X : px(x) > 0} to be
the support of X and px = minges, px(v) to be the smallest non-zero value
of px(x). Furthermore, if X is a random sequence of length T generated in an
i.i.d. manner from px(z), then

P(X € T5(X)) > 1 — €.

These facts are given in Lemma 19 and Corollary 2 in [35] and their proofs
can be found there.

Lemma F.2 Let random variables (X,Y') be given. For any 0 < §; < 09 < 1
and for a fized x € T5,(X), we have

(1= ey, )2 DHORO < T, (v )| < 2 OO0,

T (55-8)?
where eng,)& =2|Sxyle 3 %o XY Here, Sxyy is the support of (X,Y) and
pxy is the smallest non-zero value of pxy(x,y). Furthermore, if Y is a ran-
dom sequence of length T generated from Hthlpy‘X(~|:c[t]), then

P(Y € T;,(Y]x) > 1 — il ).
These facts are stated and proved in Lemmas 22 and 24 in [35].

Lemma F.3 For all (x,y) € T5(X,Y),

o—T(1+6)H(Y|X) TO-8)H(Y|X)

< pyix(yfx) <27 :
This fact is stated and proved in Lemma 20 in [35].

Lemma F.4 Let random variables (X,Y) be given. For any 0 < §; < 09 < 1
and for a fired x € T5, (X)), we have the following. If Y' is a random sequence
of length T generated from py(-)T independently of the value of x, then

(1— eng’)(SQ)Q—T(I(X;Y)+252H(Y)) <P(Y € T;,(Y|x)) < Q—T(I(X;Y)—262H(Y))’

where eg)(b 1s defined in Lemma F.2.

This fact and its proof can be found as Lemma 25 in [35].
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