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Abstract

We present an operational framework for the calibration of demand
models for dynamic traffic simulations. Our focus is on disaggregate
simulators that represent every traveler individually. We calibrate,
at a likewise individual level, arbitrary choice dimensions within a
Bayesian framework, where the analyst’s prior knowledge is repre-
sented by the dynamic traffic simulator itself and the measurements
are comprised of sensor data such as traffic counts.

The approach is equally applicable to an equilibrium-based plan-
ning model and to a telematics model of spontaneous and imperfectly
informed drivers. It is based on consistent mathematical arguments,
yet applicable in a purely simulation-based environment, and, as our
experimental results show, capable of estimating practically relevant
scenarios in real-time.

1 Introduction

There is a broad consensus about the adequacy of microsimulators to the
modeling of urban transportation systems, and a wide scope of suchlike sim-
ulation systems has been put forward, e.g., (Ben-Akiva et al., 2001; Mah-
massani, 2001; Raney and Nagel, 2006; Waddell et al., 2007). The arguably
most prominent advantage of microsimulators is their superior expressive-
ness because of their in principle arbitrarily fine-grained model structure.
However, increasing the fidelity of a model also increases its degrees of
freedom, which calls for more interactions to be modeled and more param-
eters to be identified. That is, the potentially greater expressiveness of a
microsimulator is faced with a likewise increased need for modeling and
calibration. Typically, the calibration of a (nontrivial) model is cast in a
statistical framework and is carried out by some numerical procedure. The
mathematical convenience of the model under consideration, e.g., in terms
of continuity, differentiability, normality or ergodicity, defines the compu-
tational feasibility of this approach. A microsimulator easily reaches a level
of detail at which most of these features are lost.

In this article, we present a mathematically consistent and computation-
ally efficient framework for the calibration of microsimulation-based travel
demand models in the context of dynamic traffic assignment (DTA). Specif-
ically, we show how to calibrate a microscopic motorist demand simulator
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from aggregate measurements of traffic flows (and, with some additional
modeling effort, also of densities or velocities) that are obtained at a lim-
ited set of network locations. The problem is solved in a Bayesian setting,
where the a priori assumption about every individual’s choice distribution
is combined with the available measurements’ likelihood into an estimated
posterior choice distribution. The method is entirely simulation-based in
that it only requires a simulation system to represent the behavioral prior
distribution and only generates realizations from the behavioral posterior
distribution. Further demand parameters can be derived from these real-
izations. The approach is applicable both in stochastic equilibrium condi-
tions and in non-equilibrium conditions. We present experimental results
that demonstrate the method’s applicability to systems with thousands of
network links and hundreds of thousands of travelers.

The calibration of both DTA simulators and disaggregate demand models
has received much attention in the literature. However, we are not aware
of any work that estimates individual-level travel behavior within a DTA
simulation system from aggregate sensor data on a practically relevant scale.
All of the subsequently reviewed approaches consider either simplified or
partial versions of this problem.

The most frequently adopted method for demand calibration from traffic
counts is origin-destination (OD) matrix estimation. An OD matrix mod-
els the demand of a given time interval in terms of flows from every origin
to every destination of a traffic system. The originally static problem was
to estimate such a matrix from traffic counts, given a linear assignment
mapping of demand on link flows. Various methods such as entropy maxi-
mization and information minimization (van Zuylen and Willumsen, 1980),
Bayesian estimation (Maher, 1983), generalized least squares (Bell, 1991;
Bierlaire and Toint, 1995; Cascetta, 1984), and maximum likelihood esti-
mation (Spiess, 1987) were proposed to solve this task. Nonlinear assign-
ment mappings were incorporated by a bilevel-approach that iterates be-
tween the nonlinear assignment and a linearized estimation problem (Maher
et al., 2001; Yang, 1995; Yang et al., 1992) until a fixed point of this mu-
tual mapping is reached (Bierlaire and Crittin, 2006; Cascetta and Pos-
terino, 2001). The combined estimation of OD matrices in subsequent
time slices was demonstrated in (Cascetta et al., 1993), and many origi-
nally static methods were applied to dynamical problems in this vein, e.g.,
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(Ashok, 1996; Bierlaire, 2002; Sherali and Park, 2001; Zhou, 2004).

Since a time-dependent OD matrix maps (origin, destination, departure
time) tuples on demand levels, it represents destination and departure
time choice on an aggregate level. Route choice, however, constitutes no
additional degree of freedom but is a function of demand that is defined
through the DTA system’s modeling assumptions. Path flow estimators
(PFEs) overcome this confinement.

The seminal PFE is a macroscopic one-step network observer that estimates
static path flows from link volume measurements based on a stochastic
user equilibrium (SUE) modeling assumption in a congested network (Bell,
1995; Bell et al., 1997). The estimation problem is transformed into one of
smooth optimization, which is iteratively solved. The model was enhanced
by multiple user classes and a simple analytical queuing model to represent
traffic flow dynamics (Bell et al., 1996) and was successfully implemented
in various research and development projects (Bell and Grosso, 1999). The
PFE’s non-stochastic user equilibrium counterpart had been proposed in
(Sherali et al., 1994; Sherali et al., 2003) and was further advanced in (Nie
and Lee, 2002; Nie et al., 2005). PFEs also serve as OD matrix estimators
since an OD flow is the sum of the path flows between its OD pair.

All PFEs and OD matrix estimators are confined to their underlying mod-
eling assumptions. PFEs only consider static demand per time slice. Time-
dependent OD matrix estimators represent demand correlations across sub-
sequent time slices in a simplified and aggregate way, e.g., by autoregres-
sive processes or polynomial trends (Ashok, 1996; Zhou, 2004). These ap-
proaches disregard many aspects of real travel behavior, which results from
highly individualized activity patterns and likewise complex constraints
(Bowman and Ben-Akiva, 1998; Kitamura, 1988; Kitamura, 1996; Vovsha
et al., 2004). That is, even if a PFE or an OD matrix estimator is applied
to a fully microscopic DTA simulator, the aggregate estimator is unable to
account for those facets that amount to the microscopic modeling approach.

Random utility models (RUMs) capture travel behavior at the individual
level, and sophisticated calibration procedures for this class of models are
available (Ben-Akiva and Lerman, 1985; Bierlaire, 2003; Train, 2003). How-
ever, in order to maintain tractability, their calibration procedures require
a mathematically well-behaved link between observations and model pa-
rameters. Here, this link is given through a DTA microsimulator. We are
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not aware of any work that calibrates a RUM in suchlike conditions.

A calibration of the UrbanSim microsimulator in a Bayesian setting was
recently reported (Sevcikova et al., 2007), where a sampling importance
resampling (SIR) type algorithm is applied to the estimation of almost 300
model parameters. However, concerns regarding the computation times for
larger problems are mentioned.

The remainder of this article is organized as follows. Section 2 introduces
the terminology of our calibration framework and specifies the requirements
for its application. Section 3 derives the Bayesian estimator at a concep-
tual level, and Section 4 describes its operationalization. Three exemplary
advancements towards more specific applications are given in Section 5.
Case studies of practically relevant size are presented in Section 6. Finally,
Section 7 concludes the article.

2 Framework requirements

This section is organized in two parts. First, the considered type of DTA
simulator is described. Second, the additional requirements for an applica-
tion of our calibration methodology are specified.

Throughout this article, we denote probability density functions by a lower-
case p and probability mass functions by an uppercase P. Instead of noting
the probability that random variable X takes value x by some expression
of the form Pr(X = x), we briefly write Pr(x) and avoid ambiguities by
self-explanatory variables.

2.1 Considered DTA simulator

Agents and plans

We assume a microsimulation-based approach where every traveler is
modeled as an individual agent n = 1 . . .N. At every point in sim-
ulated time, every agent n disposes of a plan Un that describes the
intended travel behavior of that agent. A typical plan comprises a
sequence of trips that connect intermediate stops during which activ-
ities are conducted, including all associated timing information. We
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subsequently write {U } as a shortcut for the whole population’s plan
set {U1, . . . ,UN}.

Supply simulator

The supply simulator executes the plans of all agents simultaneously
on the network. It models the physical interactions of the agents, in-
cluding congestion. The result of such a network loading are the
network conditions X , which comprise all time-dependent, aggre-
gate network characteristics (such as flows, densities, velocities) that
are relevant to the decision making of the agents.

Formally, the supply simulator draws from a distribution p(X |{U })

of the network conditions given a particular plan set {U } in the pop-
ulation. In its most widespread form, this distribution is implicitly
defined through a stochastic supply microsimulator. However, a de-
terministic, macroscopic supply simulator where p(X |{U }) collapses
into a singleton is just as feasible.

Demand simulator

The demand simulator models the decision making of travelers. It
maps, for every agent n = 1 . . .N individually, the prevailing network
conditions X on a plan Un the agent chooses in these conditions. We
denote by Pn(Un|X ) the probability that plan Un is chosen by agent
n in network conditions X , and we denote by Cn agent n’s choice

set of available plan alternatives.

It is assumed that the agents’ plan choice distributions are indepen-
dent once the network conditions are given. That is,

P({U }|X ) =

N∏

n=1

Pn(Un|X ), (1)

which implies that the agents do not interact directly but only through
the aggregate network conditions. This is a reasonable assumption for
large-scale and/or time-critical simulations where traffic flow dynam-
ics are typically represented by aggregate laws of motion (“mesoscopic
simulators”) instead of vehicle-by-vehicle interactions (“car-following
models”) (Astarita et al., 2001; Ben-Akiva et al., 2001; De Palma and
Marchal, 2002; Mahmassani, 2001; Nökel and Schmidt, 2002).
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Figure 1: Interactions between demand and supply

The choice distributions Pn(Un|X ) and the choice sets Cn are arbitrary
and entirely transparent to the proposed calibration approach. The
demand simulator is only required to generate realizations of these
distributions.

Iterative simulation logic

So far, the DTA simulator is defined in terms of a supply simulator
and a demand simulator. The supply simulator specifies the condi-
tional probability p(X |{U }) of the network conditions given a set of
plans, and the demand simulator specifies the conditional probability
P({U }|X ) of the population’s plan choice given the network conditions.

A solution to the DTA problem can be expressed in terms of a joint
distribution p({U },X ) that describes a situation in which demand
and supply are consistent with each other, cf. Figure 1. It typically
is impossible to draw directly from this distribution, but it is possible
to alternately draw from the two conditionals p(X |{U }) and P({U }|X ).
After a burn-in period, these draws can be tested for convergence
towards a stationary distribution, and their continuation in stationary
conditions allows to extract the relevant characteristics of p({U },X )

(Cascetta, 1989; Nagel et al., 1998; Ross, 2006; Watling and Hazelton,
2003). This simulation logic is drafted in Algorithm 1 where the
iteration cycle counter is denoted by c.1

Speaking in terms of plans, Algorithm 1 constitutes a Markov Chain
Monte Carlo procedure that utilizes a transition distribution

P({U }(c)|{U }(c−1)) =

∫

P({U }(c)|X )p(X |{U }(c−1))dX (2)

1This logic clearly resembles Gibbs sampling. We proceed pragmatically at this point
in that we assume a converging simulation system of the above type to be available, but
we do not make further assumptions about its technicalities.
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Algorithm 1 Iterative dynamic traffic assignment

1. Initialize cycle counter c = 0.

2. Choose initial network conditions X (0) (e.g., free-flow conditions).

3. Repeat for as many iterations as necessary to extract relevant charac-
teristics in stationary conditions:

(a) Increase c by one.

(b) Replanning. For n = 1 . . .N, draw U
(c)
n from Pn(U

(c)
n |X (c−1)).

(c) Network loading. Draw X (c) from p(X (c)|{U }(c)).

to eventually draw from a stationary distribution of plan occurrences
that satisfies

P({U }) =
∑

{V}

P({U }|{V})P({V}) (3)

where
∑

{V} sums over all possible plan sets {V}.

This logic is equally applicable to simulate a SUE-based planning
model and a telematics model where drivers are spontaneous and
imperfectly informed. From a simulation point of view, the only
difference between these two models is that a SUE demand simula-
tor typically utilizes all information from the most recent network
loading, whereas a telematics demand simulator generates every ele-
mentary decision of a plan only based on such information that could
have actually been gathered up to the according point in simulated
time (Bottom, 2000).

2.2 Additional calibration requirements

Likelihood function

Denote by Y the sensor data that is available for the duration of the
considered simulation/estimation period. It comprises trajectories of
traffic flows, densities or velocities that are obtained at a limited set
of network locations. Since these are aggregate traffic characteris-
tics, they are assumed to follow a distribution p(Y |X ) that is only
dependent on the aggregate network conditions X , which in turn re-
sult from the population’s plan choice {U }. The resulting distribution
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of the sensor data Y given the plans {U } constitutes the likelihood
function

p(Y |{U }) =

∫

p(Y |X )p(X |{U })dX . (4)

This is a complicated function, which comprises the distribution p(X |{U })

that is only implicitly defined through the supply simulator. For a
stochastic supply simulator, it also requires to solve a high-dimensional
integral.

In order to deal with these difficulties, we rely on an efficiently evalu-
able approximation

p(Y |{U }) ≈ const ·
N∏

n=1

p(Y |Un). (5)

For now, we constrain ourselves to the observation that this approx-
imation can likewise be written as

ln p(Y |{U }) ≈ const +

N∑

n=1

ln p(Y |Un). (6)

That is, we require the log-likelihood to be approximated by a lin-
ear superposition of individual log-likelihoods for all agents, which
will turn out to be a manageable problem under moderate assump-
tions. This approximation will be utilized to decompose the calibra-
tion problem in a computationally tractable way.

Interface with simulation software

So far, the presentation has been at the conceptual level. Now, we
account for the fact that the calibration logic needs to be inserted into
a concrete simulation system. This can be realized in the following
way.

Whenever the simulation sequence controller, i.e., the software that is
responsible for calling the sub-models of the simulator in a meaningful
order, requires that an agent selects a plan, it executes the demand
simulator for that agent. This function call needs to be diverted to
the calibration logic, which in turn calls the demand simulator one or
more times and returns the result of exactly one of these calls. Basi-
cally, this allows the estimator to evaluate a whole set of behavioral
alternatives in consideration of the measurements before selecting the
most realistic one for actual execution in the simulation system.
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3 Bayesian calibration

Aggregate measurements alone are insufficient to calibrate the plan choice
distributions of all agents because usually there are many plan combinations
that generate the same observations. Here, this problem is resolved by the
incorporation of additional behavioral information in a Bayesian setting.

3.1 General approach

Assume that an iterative DTA simulator as specified in Section 2 is avail-
able and that this simulator repeatedly draws from the prior transition

distribution P({U }(c)|{U }(c−1)) defined in (2) in order to ultimately draw
from the stationary prior distribution P({U }) defined in (3).

The according stationary posterior distribution P({U }|Y) of the plan
choice given the measurements Y is, according to Bayes’ law,

P({U }|Y) =
p(Y |{U })

p(Y)
P({U }). (7)

Substituting (3) in this expression yields, after some manipulations,

P({U }|Y) =
∑

{V}

P({U }|{V},Y)P({V}|Y) (8)

where

P({U }|{V},Y) =
p(Y |{U })P({U }|{V})

∑
{W} p(Y |{W})P({W}|{V})

. (9)

{W} is yet another plan set variable. A derivation of this result can be
found in Appendix A.

The calibration objective is to draw from the posterior (8) instead of the
prior (3). The structural coincidence of both equations indicates that, just
as a DTA simulator generates a sequence of draws from the prior transition
distribution P({U }(c)|{U }(c−1)) in order to eventually represent the station-
ary prior distribution, a sequence of draws from the posterior transition

distribution P({U }(c)|{U }(c−1),Y) eventually represents the stationary pos-
terior distribution. Relying on this assumption, we need to generate draws
from the posterior transition distribution (9) in order to solve the calibra-
tion problem.
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The DTA simulator draws from the prior transition distribution defined in
(2) by the following two steps:

1. Draw X (c−1) from p(X (c−1)|{U }(c−1)) by a run of the supply simulator.

2. Draw {U }(c) from the prior choice distribution P({U }(c)|X (c−1)), cf.
(1), by running the demand simulator for all agents.

We would like to maintain this logic in the calibration. Since we are only
interested in a calibration of the behavioral model, we assume the sup-
ply simulator to be correctly modeled. Then, drawing from the posterior
transition distribution requires the following two steps:

1. Draw X (c−1) from p(X (c−1)|{U }(c−1)). There is no need to account for
the measurements here because the supply simulator is accurately
modeled.

2. Draw {U }(c) from the posterior choice distribution

P({U }(c)|X (c−1),Y) =
p(Y |{U }(c))P({U }(c)|X (c−1))

∑
{W} p(Y |{W})P({W}|X (c−1))

. (10)

in consideration of the measurements. That is, incorporate the sensor
data into the demand simulation.

The ambition to sample from distribution (10) is faced with two major
challenges:� The likelihood p(Y |{U }(c)) is a complicated function. According to

(4), it comprises the network loading, and, therefore, it is expensive
to evaluate and not available in closed form.� The prior choice distribution P({U }(c)|X (c−1)) is specified in a like-
wise simulation-based manner. Only draws from this distribution are
available through the demand simulator.

We proceed by presenting a tractable approach to these problems, where we
assume that a factorized likelihood (5) is available. Hereafter, we describe
how this factorization is obtained.
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3.2 Individual-level approach

We begin by expanding the denominator of the posterior choice distribution
(10):

P({U }(c)|X (c−1),Y) =
p(Y |{U }(c))P({U }(c)|X (c−1))

∑
W1∈C1

. . .
∑

WN∈CN
p(Y |{W})P({W}|X (c−1))

. (11)

A substitution of the prior choice distribution (1) and the factorized like-
lihood (5) yields, by an application of the distributive law,

P({U }(c)|X (c−1),Y) ≈

N∏

n=1

Pn(U (c)
n |X (c−1),Y) (12)

where we define the individual-level posterior choice distribution

Pn(U (c)
n |X (c−1),Y) =

p(Y |U
(c)
n )Pn(U

(c)
n |X (c−1))

∑
Wn∈Cn

p(Y |Wn)Pn(Wn|X (c−1))
. (13)

The pivotal feature of this approximation is that the population’s joint pos-
terior choice distribution (10) is decomposed into a product of individual-
level posterior choice distributions (13) that can be evaluated agent by
agent. Operationally, this is convenient since it allows to maintain the de-
mand simulator’s individual-level choice logic during the calibration. Log-
ically, we have decomposed the joint calibration problem for N agents into
N much smaller problems.

Given that the individual-level likelihood p(Y |Un) is available, a universally
applicable method to draw from the individual-level posterior (13) can be
given. Denote by Paccept,n(Un|Y) the acceptance probability for plan Un

from agent n’s choice set Cn. It is defined by

Paccept,n(Un|Y) = p(Y |Un)/Dn (14)

where Dn must be such that

Dn ≥ max
Wn∈Cn

p(Y |Wn) (15)

for (14) to be a proper probability. If repeated draws taken from the
individual-level prior Pn(Un|X (c−1)) are accepted with probability Paccept,n(Un|Y)

and are rejected otherwise, then the first accepted draw constitutes a draw
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Algorithm 2 Generic accept/reject estimator

1. Initialize cycle counter c = 0.

2. Choose initial network conditions X (0) (e.g., free-flow conditions).

3. Repeat for as many iterations as necessary to extract relevant char-
acteristics in stationary conditions:

(a) Increase c by one.

(b) Replanning. For n = 1 . . .N, do:

i. Draw U
(c)
n from Pn(U

(c)
n |X (c−1)).

ii. With probability 1 − Paccept,n(U
(c)
n |Y), goto step 3(b)i.

iii. Retain the first accepted draw U
(c)
n .

(c) Network loading. Draw X (c) from p(X (c)|{U }(c)).

from the individual-level posterior Pn(Un|X (c−1),Y). Algorithm 2 outlines
this procedure. Its correctness is verified in Appendix B.

The technical requirements for an application of this method coincide with
the specification given in Section 2.2: The simulation sequence controller
eventually asks every agent for its selected plan, which, by definition, is a
draw from that agent’s prior choice distribution. If this call is redirected to
an implementation of the above procedure, the suchlike generated plan is
a sample from the agent’s posterior choice distribution. That is, only step
3b of Algorithm 1 needs to be modified.

The only assumption made here is that the likelihood can be factorized
with sufficient precision and in a computationally efficient way. The type
of behavior to be estimated and the prior choice distribution implemented
by the demand simulator are arbitrary. If a choice set enumeration is
possible, the acceptance probabilities’ denominator should be chosen such
that strict equality holds in (15) in order to minimize the number of rejected
draws. If a choice set enumeration is infeasible, e.g., because the choice set
is implicitly specified through a constructive behavioral algorithm, this
denominator can be treated as a tuning parameter: Choosing a large value
is likely to comply with the (unknown) lower bound but also to result
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in low acceptance probabilities and increased computational cost. Vice
versa, a smaller denominator yields faster but also increasingly imprecise
estimates that are based on acceptance “probabilities” greater than one.
The frequency at which such values occur allows to appraise the resulting
loss in estimation precision. This provides a practically attractive balancing
mechanism between estimation precision and computational efficiency, and
it goes without a choice set enumeration.

In principle, the accept/reject procedure could also be deployed to draw
from the exact posterior choice distribution (10) by generating joint pro-
posal draws {U } for the whole population and using an acceptance prob-
ability that is proportional to the full likelihood p(Y |{U }). However, this
approach is computationally infeasible in all but trivial cases since each
evaluation of the suchlike re-defined acceptance probability requires an
evaluation of the exact likelihood, including a network loading, while the
number of draws that is needed until a single accept occurs may become
very large.

4 Making the framework operational

The previous section relies on the availability of a factorized likelihood (5).
In this section, we describe how this factorization can be obtained, given an
arbitrary supply simulator. Instead of factorizing the likelihood directly,
we equivalently linearize the log-likelihood.

4.1 Preparatory modeling assumptions

Let a plan Un be formally specified as a large vector of indicator variables
which only take values of zero or one. Every such plan element indicates if
the considered agent n desires to execute a particular elementary action.
There are three types of elementary actions: network entries, network exits,
and turning moves within the network. Every elementary action comes with
an associated time stamp. Examples are “enter the network on link 3043
at 7:30”, “turn from link 3043 to link 9425 at 7:34”, and “leave the network
on link 9425 at 7:39”.
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We introduce a fictitious “null” link that represents any location outside of
the road network. It allows for a unified representation of all elementary
actions as (from-link, to-link, time step) triples where a network entry is
identified by a null from-link and a network exit is identified by a null to-
link. The aforementioned indicator variables that comprise plan Un of agent
n are subsequently denoted by uij,n(k) ∈ {0, 1} where i is the from-link, j is
the to-link, and k is the time step. The corresponding demand turning

flow dij(k) reflects the desired turning flow in the entire population. It is
specified by

dij(k) =
1

T

N∑

n=1

uij,n(k) (16)

where T is the simulation time step duration. For mathematical conve-
nience, we subsequently treat this flow as a real-valued quantity although
it is clear that a finite agent population can only generate discrete flow
levels.

Being unable to predict the exact travel times in the network, an agent is
likely to observe an inconsistency between the intended timing of its ele-
mentary actions and what it experiences in the supply simulator. In an
equilibrium-based planning simulation, this conflict is iteratively resolved
until the observations of all agents become consistent with their expecta-
tions. In an iterated telematics simulation, however, the agents’ predictive
abilities are constrained by the very telematics modeling assumption such
that this type of consistency cannot be expected, cf. the last paragraph of
Section 2.1.

Our subsequent discussion builds on the availability of plan sets {U } that
are unbiased with respect to the resulting network conditions X in that
the timings of their elementary actions have been adjusted during or af-
ter the network loading such that the plans do not systematically deviate
from what the agents have actually experienced during the last iteration.
This (technically straightforward) procedure is necessary to evaluate the
physical implications of the population’s choices without being misled by
the simulated lack of information in telematics conditions. Note that this
post-processing can be conducted outside of the simulation loop and thus
takes no effect on the model specification. In particular, it implies that (16)
exhibits no systematic bias in comparison to the simulated network flows.
However, this does not eliminate the random inconsistencies between plans
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and network conditions that result from the continuous variability of the
travel times even in stationary conditions.

4.2 Linear network loading

A linear network loading describes a situation in which the time-dependent
travel times on all links in the network are known and fixed. This implies
that there are no interactions between the flows, which move through an
exogenously specified network environment. The resulting flow on any link
becomes a linear superposition of all path flows across that link. For a mi-
crosimulator, this implies that the agents linearly superpose on each link.
In order to obtain a mathematically tractable relation between demand and
resulting network conditions, we formally approximate the true dynamics
of the supply simulator by a linear network loading based on the most
recent iteration’s travel times.

These assumptions imply that the demand flows dij(k) are not only unbi-
ased but even perfect predictors of the physically occurring network flows,
i.e,

qj(k) =
∑

i

dij(k) (17)

where qj(k) denotes the simulated entry flow of link j in time step k. This
goes beyond the previously assumed ex-post consistency of demand and
resulting travel times because here it is assumed that travel times do not
change with demand levels at all. Possible imprecisions in this approxi-
mation result from two causes. First, there is the continuous variability of
the real travel times even in stationary conditions. Second, the assump-
tion of constant travel times implies that the inflow of links at the capacity
limit increases beyond this limit if the demand continues to grow. That is,
(17) becomes an increasingly imprecise representation of the supply simu-
lator as congestion increases.2 An alternative approximation that properly
captures congestion is discussed in Section 5.1.

Denote the measured counterpart of qj(k) by yj(k) and maintain the symbol
Y for the set of all available measurements. For simplicity and without loss

2Note that a “proportional assignment”, which is widely and successfully assumed in the
field of time-dependent OD matrix estimation, implies the same assumption of constant
travel times. That is, although (17) is consistent only in uncongested conditions, the state
of practice suggests its applicability even in the case of congestion.
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of generality, we only consider univariate normal measurement distributions
of link entry flows3 such that the log-likelihood takes the form

ln p(Y |{U }) = const −
∑

j

∑

k

(qj(k) − yj(k))2

2σ2
j

(18)

where σ2
j is the variance of the sensor data on link j. Linearizing this

function with respect to the (presumably real-valued) flows yields

ln p(Y |{U }) ≈ const +
∑

j

∑

k

yj(k) − q0
j (k)

σ2
j

qj(k) (19)

where q0
j(k) are the flows around which the linearization takes place and

the constant addend comprises all terms independent of the flows qj(k). A
substitution of (17) and (16) in this equation results in

lnp(Y |{U }) ≈ const +

N∑

n=1

∑

ijk

λij(k)uij,n(k) (20)

where

λij(k) =
yj(k) − q0

j (k)

Tσ2
j

. (21)

Through this, the log-likelihood is approximated by a linear superposition
of agent-specific terms. Every (real-valued) λij(k) coefficient represents the
effect of a single elementary action on the log-likelihood. Apart from the
measurements and their characteristics, only the simulated flows q0

j(k) on
all sensor-equipped links j need to be known.

Collecting all λij(k) elements in a single vector Λ = (λij(k))ijk, we utilize
the inner product

〈Λ,Un〉 =
∑

ijk

λij(k)uij,n(k) (22)

to write

ln p(Y |{U }) ≈ const +

N∑

n=1

〈Λ,Un〉. (23)

3The incorporation of flow sensors that are not located at the immediate upstream end
of a link only requires to account for the (constant) lag until entering vehicles reach the
sensor. Since the density on a link results from an integration of its in- and outflow, and
since the velocity on a link can be related to its flow and density, measurements of these
quantities can also be accounted for with some additional modeling effort.
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The desired likelihood factorization is now obtained by applying the expo-
nential function to both sides of (23). This results in

p(Y |{U }) ≈ const ·
N∏

n=1

exp〈Λ,Un〉, (24)

which implies a definition

p(Y |Un) = exp〈Λ,Un〉 (25)

of the individual-level likelihood used in (5) to approximate the full likeli-
hood. p(Y |Un) itself is not a proper probability density function because it
does not integrate up to one over all Y values, which, however, is irrelevant
for the purposes of the approximation.

4.3 Algorithm

The previous section decomposes the full likelihood p(Y |{U }) into the fac-
tors (25). This approximation relies on a reasonably precise linearization of
the log-likelihood. However, given the plan set of a particular DTA itera-
tion, a local linearization of the log-likelihood around the resulting network
conditions under the assumption of constant travel times may not be an ap-
propriate model of the log-likelihood given a different plan set and different
network conditions. We therefore propose to identify the expected values of
the Λ coefficients. More specifically, we are interested in the expectations
in posterior conditions since these conditions prevail upon convergence of
the calibration, where we want the likelihood factorization to hold with
greatest precision.

When identifying the expectations of Λ, the difference between prior and
posterior network conditions needs to be accounted for. We propose a
fixed-point approach for this purpose: Starting from the behavioral prior,
successively improved linearizations are generated from iteration to iter-
ation until a stable state is reached where the estimator draws from the
behavioral posterior based on stable Λ̄ coefficients that in turn are most
appropriate given this very posterior. For illustrative purposes, the method
of successive averages (MSA) is applied to this problem in Algorithm 3.
Note that the acceptance probabilities Paccept,n(Un|Y) ∝ p(Y |Un), cf. (14),
are now replaced by Paccept,n(Un|Λ̄) ∝ exp〈Λ̄,Un〉 according to (25).
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Algorithm 3 Linearization-based accept/reject estimator

1. Initialize cycle counter c = 0.

2. Choose initial network conditions X (0) (e.g., free-flow conditions).

3. Repeat for as many iterations as necessary to extract relevant char-
acteristics in stationary conditions:

(a) Increase c by one.

(b) Linearization. Λ(c) =

(

yj(k) − q
(c)

j (k)

Tσ2
j

)

ijk

.

(c) MSA Update. Λ̄(c) =
c − 1

c
Λ̄(c) +

1

c
Λ(c).

(d) Replanning. For n = 1 . . .N, do:

i. Draw U
(c)
n from Pn(U

(c)
n |X (c−1)).

ii. With probability 1 − Paccept,n(U
(c)
n |Λ̄(c)), goto step 3(d)i.

iii. Retain the first accepted draw U
(c)
n .

(e) Network loading. Draw X (c) from p(X (c)|{U }(c)).

Intuitively, this algorithm works like a controller that steers the agents
towards a reasonable fulfillment of the measurements: The Λ coefficients
calculated in step 3b are positive if the measured flow on a particular link
is higher than the simulated flow such that the resulting acceptance prob-
abilities prefer plans that cross this link. Vice versa, if the measured flow
is lower than the simulated flow, the according Λ coefficients are negative
and plans that cross this link are penalized.

This procedure calibrates whatever choice dimensions are represented by
the demand simulator, is compatible with an arbitrary supply simulator,
and is fully consistent with the execution logic of a typical DTA microsimu-
lator. While the power of this approach certainly depends on the feasibility
of a linear log-likelihood approximation, the utilization of expected Λ co-
efficients makes it robust even in nonlinear conditions.
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5 Advancements

This section presents three independent enhancements of the hitherto de-
scribed calibration methodology, the first two of which are also deployed in
the subsequent case studies: an improved linearization of the log-likelihood
that properly accounts for congestion effects but requires a determinis-
tic supply simulator, a computationally efficient alternative to the ac-
cept/reject procedure that relies on a utility-driven demand simulator, and
a straightforward extension of the methodology to the calibration of struc-
tural model parameters.

5.1 Deterministic supply simulator

An analytical linearization of the log-likelihood function is possible if a
deterministic and macroscopic supply simulator is available. Without loss
of generality, we assume this simulator to be represented by a state space
model

x(0) = x0 (26)

x(k + 1) = f [x(k), β(k), k] (27)

where vector x(k) denotes the model’s state in time step k and single-
commodity flow splits β(k) = (βij(k)) from every upstream link i to every
downstream link j at every intersection are exogenously provided. To start
with, we postpone the explicit formalization of entry and exit flows in this
model. The vector-valued transition function f defines the dynamics of
the supply simulator. We assume that the Jacobians ∂f [. . .]/∂x(k) and
∂f [. . .]/∂β(k) are available. Operational implementations of this model
class are described, e.g., in (Flötteröd, 2008) for inner-urban traffic and
(Kotsialos et al., 2002) for freeways.

In order to execute a microscopic plan set {U } in the macroscopic model,
the demand turning flows (16) are normalized into flow splits according to

βij(k) =
dij(k)

∑
j′ dij′(k)

(28)

such that the network flows are split at intersections consistently with the
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frequency of turning move occurrences in the plans.4 This specification
requires the same consistency between desired travel times in the plans
and those observed in the supply simulator as discussed in Section 4.1.
Operational implementations of this requirement are described, e.g., in
(Chabini, 2001; Flötteröd, 2008).

A linearization of (28) with respect to the (presumably real-valued) demand
turning flows yields

βij(k) ≈
∑

l

1(j = l) − β0
ij(k)

∑
j′ d

0
ij′(k)

dil(k) + const (29)

where d0
ij′(k) are the demand flows around which the linearization takes

place, β0
ij(k) are the according flow splits, 1(·) is the indicator function,

and the constant addend comprises all terms that are independent of the
demand flows dil(k). Substituting (16) in this equation results in

βij(k) ≈

N∑

n=1

∑

l

1(j = l) − β0
ij(k)

T
∑

j′ d
0
ij′(k)

uil,n(k) + const. (30)

This approximates every flow split as a sum of agent-specific terms. We now
exploit the differentiability of the supply simulator’s dynamics: Appendix
C shows how the log-likelihood ln p(Y |{U }) is differentiated with respect to
the flow splits such that a linear approximation

ln p(Y |{U }) ≈
∑

ijk

d ln p(Y |{U })

dβij(k)
βij(k) + const (31)

can be obtained. A substitution of (30) in this equation yields

ln p(Y |{U }) ≈

N∑

n=1

∑

ilk

λil(k)uil,n(k) + const (32)

where

λil(k) =
∑

j

d lnp(Y |{U })

dβij(k)
·
1(j = l) − β0

ij(k)

T
∑

j′ d
0
ij′(k)

. (33)

In order to extend this result to the previously disregarded network entry
and exit flows, it is sufficient to incorporate these flows in the lineariza-
tion (31) before the substitution of (30). This Λ specification requires a

4To avoid divisions by zero, all demand turning flows should be temporally smoothed
before (28) is evaluated.
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modification of step 3b in Algorithm 3 but otherwise leaves the calibration
procedure unchanged.

The mathematical approximation of the supply simulator that underlies
this development is superior to a linear assignment, which does not account
for the backward effects of congested road segments: If the demand changes
such that the desired inflow into a link at the capacity limit increases, the
model given here accounts for the fact that the supply simulator only in-
creases the flow split towards this link, not the inflow itself. If the supply
simulator captures spillback, the consequence of a suchlike increased de-
mand is not an unrealistically increased downstream flow but a physically
correct upstream propagation of the congestion, which is properly reflected
in the linearization (31) from which (33) is obtained.

5.2 Utility-driven demand simulator

While the accept/reject estimator of Section 3.2 is arguably the most gen-
eral technique to influence agent behavior, it is by no means the only one.
This section describes an alternative method that is tailored towards utility-
driven demand simulators.

The individual-level posterior choice distribution (13) constitutes the start-
ing point of this development. It is restated here for ease of reference:

Pn(U (c)
n |X (c−1),Y) =

p(Y |U
(c)
n )Pn(U

(c)
n |X (c−1))

∑
Wn∈Cn

p(Y |Wn)Pn(Wn|X (c−1))
. (34)

We assume that the demand simulator implements a model of the following
structure:

Pn(U (c)
n |X (c−1)) =

PSn(U
(c)
n |X (c−1)) exp[Vn(U

(c)
n |X (c−1))]

∑
Wn∈Cn

PSn(Wn|X (c−1)) exp[Vn(Wn|X (c−1))]
(35)

where Vn(U
(c)
n |X (c−1)) denotes the systematic utility of plan U

(c)
n as per-

ceived by individual n given the network conditions X (c−1). In a route
choice context, the real-valued PS coefficients are denoted as “path sizes”
that account for route overlap (Ben-Akiva and Bierlaire, 1999). However,
their specification is arbitrary in the present context, and (35) basically con-
stitutes a plain multinomial logit model the choice probabilities of which
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are scaled by the PS coefficients. A substitution of (35) in (34) yields

Pn(U (c)
n |X (c−1),Y) =

PSn(U
(c)
n |X (c−1)) exp[Vn(U

(c)
n |X (c−1)) + ln p(Y |U

(c)
n )]

∑
Wn∈Cn

PSn(Wn|X (c−1)) exp[Vn(Wn|X (c−1)) + ln p(Y |Wn)]
.

(36)
This posterior is structurally identical to its prior. The only difference is
that ln p(Y |U

(c)
n ) is added to the systematic utility of every considered plan

U
(c)
n . This utility modification allows to force a demand simulator that

implements the prior (35) to immediately draw from the posterior (36),
and it avoids the computational overhead of a possibly large number of
rejections in the accept/reject procedure.

In order to apply the utility-driven estimator, only step 3d in Algorithm 3
needs to be adjusted. It is noteworthy that a heuristic application of this
technique is possible even if the demand simulator does not implement the
prior (35). Such an approach is based on a weaker theoretical foundation,
but it may still produce practically useful results. The case studies of
Section 6 take this line.

5.3 Identification of structural model parameters

Let the demand simulator be parameterized with an individual-level pa-
rameter vector θn for every agent n = 1 . . .N, denote the individually
parameterized prior plan choice distributions by Pn(Un|X , θn), and assume
that a prior parameter distribution p(θn) is available. In complete analogy
to the derivation given in Section 3.2, an individual-level posterior

pn(Un, θn|X ,Y) =
p(Y |Un)Pn(Un|X , θn)p(θn)

∑
Wn∈Cn

p(Y |Wn)
∫

Pn(Wn|X , θ ′)p(θ ′)dθ ′
(37)

of agent n’s joint choice and parameter distribution given the measurements
can be formulated. (Note that the assumption of real-valued parameters is
made only for notational convenience. This result hold equally for discrete-
valued and even non-ordinal parameters.)

The following version of the accept/reject estimator draws from this pos-
terior:

1. Draw θn from p(θn).
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2. Draw Un from Pn(Un|X , θn).

3. Accept (θn,Un) with the acceptance probability Paccept,n(Un) defined
in (14) and approximated in (25). Otherwise, goto 1.

If this logic is embedded within the estimator, characteristics of the poste-
rior parameter distribution can be extracted from the accepted parameters
in posterior conditions. That is, our methodology is, without conceptual
modifications, applicable to the calibration of the demand simulator’s pa-
rameters – the arguably most apparent example of which are the coefficients
of a random utility model.

6 Case studies

The capabilities of our calibration framework are demonstrated by a set of
selected experimental results. More results, including a more comprehen-
sive description of the experimental setting, can be found in (Flötteröd,
2008). Some deviations from that reference are due to a slightly more
realistic experimental setting considered here.

6.1 Setup

The test case comprises the metropolitan region of Greater Berlin, including
a network of 2459 links and 1083 nodes. A synthetic population of 206 353
travelers with complete activity plans is available for this scenario (Rieser
et al., 2007). All experiments are constrained to the time span from 6 to
9 am, which exhibits the most variable traffic conditions because of the
morning rush hour.

In order to generate systematically different scenarios, we assume that a
time-independent toll of 0.24 EUR/km is charged on all link in the city
center shown in Figure 2 and that no toll is charged outside of this area.
The unitless utility V(U) of a route U is specified as

V(U) = (−tt(U) − toll(U)/VOT)/1s (38)
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Figure 2: Berlin network
A time-independent toll of 0.24 EUR/km is charged in the highlighted area. One

flow sensor is located in the center of each shaded link.

where tt(U) is the travel time on route U , toll(U) is the toll accumulated
along route U , and VOT is a monetary value of time that is determinant
for a particular scenario.

We deploy a simple DTA simulator where route choice is the only behav-
ioral degree of freedom. In every iteration, the demand simulator recalcu-
lates the routes for 10% of all agents in the following way: A “proposed
route” is generated by calculating a time-dependent best path based on a
randomly chosen VOT and the preceding iteration’s network conditions.
The proposed route is adopted by the considered agent if it has a higher
utility than the hitherto applied route given the actual VOT of the simu-
lated scenario and the preceding iteration’s network conditions. Otherwise,
the agent maintains its previous route. The deterministic and macroscopic
supply simulator complies with the specification of Section 5.1.

The utility-driven estimator of Section 5.2 is adopted. It does not interfere
with the generation of a proposed route but only affects the subsequent
choice between the proposed route and the hitherto applied route. As
explained before, this constitutes a heuristic application of this estimator
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because the demand simulator does not implement (35). Consequently, it
also puts the estimator’s robustness in suchlike conditions to test.

6.2 Equilibrium conditions

This section investigates the estimator’s ability to calibrate an equilibrium-
based planning model.

We generate, by simulation, a synthetic reality where the toll has no per-
ceptible effect on the drivers, and we collect time dependent flows at 50
widespread sensor locations; see Figure 2 for an example. Synthetic mea-
surement data is generated by averaging these (still time-dependent) flows
over many iterations of the DTA simulator in stationary conditions. For
simplicity, the measurements are assumed to follow independent and iden-
tical normal distributions, which yields a log-likelihood of the form (18).

During estimation, the prior assumption is that drivers react according to
a 12 EUR/h VOT to the toll. The question thus becomes in how far the
estimator, given only a limited number of measurements, can pull the sys-
tem away from the “wrong” VOT of the prior scenario towards the “correct”
VOT of the synthetic reality. It is emphasized that the estimator is not
aware of the VOT parameter but adjusts the simulated driver behavior
only based on the synthetic sensor data.

The estimator’s ability to reproduce the flow measurements is evaluated by
the root mean square error

RMSq =

√

1

K|A ′|

∑

k

∑

a∈A′

(qreal
a (k) − qestim

a (k))2 (39)

where K is the number of considered time steps, A ′ is the set of 50 sensor-
equipped links, qreal

a (k) is the measured flow on link a in time step k, and
qestim

a (k) is its estimated counterpart. The estimator’s ability to extrapolate
the measurements on the entire network is evaluated by

RMSx =

√

1

K|A|

∑

k

∑

a∈A

(xreal
a (k) − xestim

a (k))2 (40)

where A is the set of all links in the network, xreal
a (k) is the real occupancy

(in vehicles) on link a in time step k, and xestim
a (k) is its estimated counter-
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Figure 3: Result overview for planning experiments

part. The subsequently described experiments evaluate RMSq and RMSx
in slightly different ways:� The experiments in equilibrium conditions, i.e., those described in the

remainder of this very section, evaluate (39) and (40) based on “real”
and “estimated” values that are averaged over many iterations of their
respective simulation/estimation run. This reduces the stochasticity
in the evaluation to a minimum and resembles a planning setting in
which the measurements are averaged over many days. These results
are taken from (Flötteröd, 2008) without modification.� Section 6.3’s telematics results in offline conditions are still based
on averaged “estimated” values, but utilize “real” data that is truly
sampled from a single iteration of the simulation that generates the
synthetic reality. This accounts for the fact that in a telematics ap-
plication the estimator reconstructs the traffic state of a single day
only. Finally, Section 6.4’s telematics experiments in online condi-
tions utilize the same sampled “real” data as in offline conditions but
also sample the “estimated” values for computational reasons. These
results go beyond what is described in (Flötteröd, 2008).

Figure 3 shows RMSq and RMSx values that result from different assump-
tions about the standard deviation σ of the sensor data’s normal distribu-
tions. The light triangles over each σ value represent three independent
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estimation results. The dark squares result from four plain simulations of
the prior scenario, which is equivalent to running the estimator without
sensor input. All results are quite stable in that there is limited variability
among repeated runs such that, often enough, the dots lie on top of each
other and cannot be distinguished.

RMSq increases monotonously with σ. This is plausible: the less certain the
measurements the less weight is put on their reproduction. The greatest
estimation improvement over a plain simulation of the prior scenario is
86%.

A non-monotonous relation between σ and RMSx can be observed. As
σ grows, the measurement influence vanishes and the estimation quality
gracefully deteriorates towards that of plain simulation. However, as σ de-
creases, a minimum value of RMSx is encountered after which a further
decrease of σ results in an increased validation error. The most likely ex-
planation of this effect is overfitting. The greatest RMSx reduction of 48%
reflects the estimator’s ability to spatiotemporally extrapolate the sensor
data.

The quality of these results needs to be emphasized in light of the difficulty
of the considered problem. The estimator adjusts a purely simulation-
based route choice model at the individual level to measurements that are
obtained at only 50 sensor locations out of 2459 links. The link between the
observations and the calibrated model is given through a fully dynamical,
highly nonlinear traffic flow model. Furthermore, the estimation problem is
solved subject to likewise dynamical SUE constraints, which are implicitly
represented through the iterative logic of the DTA simulator.

6.3 Non-equilibrium conditions, offline

For the experiments in non-equilibrium conditions, only the first day after
the implementation of the toll is considered. That is, the drivers are aware
of typical travel times without the toll and of the toll itself. However,
they have not yet learned the altered traffic conditions that result from
other travelers’ changed behavior in response to the toll. In order to apply
the estimator in these conditions, it is necessary to run iterations while
the drivers remain on their initial level of knowledge. This knowledge is
generated beforehand by running many iterations of a planning simulation
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Figure 4: Result overview for offline telematics experiments

without toll and saving the travel times of every iteration. These travel
times are then used by replanning travelers in the iterated estimation.

We investigate to what degree the estimator can push a prior SUE sce-
nario towards a distinct out-of-equilibrium situation. For this purpose, we
assume a prior equilibrium scenario without toll, and we generate the mea-
surements from a synthetic reality where the drivers react to the toll with
a 12 EUR/h VOT. All data that is extracted from the synthetical reality
is now truly sampled. That is, the averaging over many iterations (days)
assumed in the planning experiments is now omitted, and the flow and oc-
cupancy data representing the synthetic reality is generated from a single
iteration of the according simulation run. However, the estimated flows
and occupancies that enter RMSq and RMSx through (39) and (40) are
still averaged over many iterations of their respective estimation run.

Figure 4 shows the resulting error measures over different σ values. Again,
the light triangles represent estimation results and the dark squares repre-
sent plain simulations of the prior scenario. Distinct and stable improve-
ments are generated. At σ = 2.88, the estimator reduces RMSq by 81% and
achieves a maximum RMSx reduction of 68% when compared to a plain
simulation of the prior scenario.

The non-equilibrium assumption in the synthetic reality implies that at the
first day of the toll’s installation the presumably most advantageous route
choice for most drivers who so far have traversed the toll zone is now to

29



avoid this area but to bypass it as sharply as possible in order to minimize
the increase in travel time. This causes a strong, unforeseen congestion on
the roads that immediately encircle the toll zone. This congestion, which
is not at all captured in the prior scenario that represents an equilibrium
situation without toll, is successfully enforced by the estimator.

6.4 Non-equilibrium conditions, online

A rolling horizon logic is deployed that runs the estimator in simulated
online conditions. The online estimation starts at 6:30 simulated real time.
Only measurements until this moment are available. The estimator itera-
tively adjusts the simulated driver behavior to these measurements accord-
ing to an identical logic as in offline conditions. During this first estima-

tion period, only a simulation from 6:00 to 6:30 is iteratively adjusted.
After a prespecified number of iterations, the simulated real time is ad-
vanced to 6:35, measurements from 6:30 to 6:35 become available, and the
next estimation period from 6:05 to 6:35 begins. All driver behavior until
6:05 is now fixed according to the most recent iteration of the previous
estimation period. This logic is continued until 9:00.

A measurement standard deviation of σ = 2.88 is maintained in all runs
because it achieved the best results in the previous offline experiments.
Figure 5 provides separate results for every 30-minute estimation period
ending at 7 through 9 am. The light bars in the front represent (from left
to right) RMSx values obtained at the end of 5, 10, 20, 30, 40, and 50
iterations per estimation period. They are drawn on top of dark error bars
that result from plain rolling horizon simulations of the prior scenario with
respective iteration numbers. These simulations follows an identical logic
as the estimator, only that the measurements are not accounted for.

Since the online context considered here does not allow for an averaging of
estimation results over many iterations, the RMSx value of each estimation
period is calculated from the occupancies of the last iteration of that esti-
mation period only. That is, both the true and estimated occupancies that
enter RMSx in (40) are now truly sampled. All RMSx values are averaged
over three independent experiments.

The estimation and simulation errors rise over time as the traffic volumes
increase in the morning rush hour. Estimation reduces RMSx on average by
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Figure 5: RMSx for rolling horizon estimation
The light bars in front represent (from left to right per time label) validation errors RMSx obtained after 5, 10, 20, 30, 40, and

50 iterations per estimation period. They are drawn on top of dark RMSx error bars that result from plain rolling horizon

simulations of the prior scenario with respective iteration numbers. All RMSx values are averaged over three independent

experiments.
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half when compared to plain simulation. Conducting only 5 iterations per
estimation period results in slightly lower improvements when compared
to 10 iterations and more. Running beyond 10 iterations yields no further
improvements.

An evaluation of the average prediction errors over a 0 to 30 minute time
interval (omitted due to space restrictions; see (Flötteröd, 2008) for sim-
ilar results) affirms these observations: The estimator reduces the RMSx
prediction error by approximately 40% in the later time periods, and the
computational effort of executing more than 10 iterations per estimation
period does not further improve the predictions. The current implemen-
tation of the estimator accomplishes 6 iterations per 5-minute interval on
a 3.2 GHz Pentium 4 machine with 2 GB RAM such that optimal results
require a speedup of less than 2.

In summary, these case studies show that the estimator� is compatible with a fully dynamical DTA simulator in both equilib-
rium and non-equilibrium conditions;� reproduces the sensor data well and significantly improves the cor-
rectness of the global traffic situation;� allows for the real-time calibration of practically relevant scenarios
with standard computer equipment.

7 Summary

We have presented a new calibration framework that overcomes many of
the simplifying modeling assumptions typically adopted in the calibration
of dynamic traffic simulators. Our approach allows for the estimation of
arbitrary behavioral patterns at the individual level in a Bayesian setting
where aggregate measurements such as traffic counts are combined with
a simulation-based representation of the analyst’s prior knowledge. The
approach is compatible with both an equilibrium-based modeling assump-
tion and a telematics model where drivers are spontaneous and imperfectly
informed. The experimental results show that the method generates signif-
icant model improvements and that it is capable of estimating practically
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relevant scenarios in real-time. We also present various methodological
advancements within the scope of our framework, which accentuates its
structural adequacy to the problem under consideration.
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A Derivation of stationary posterior distribu-

tion

This appendix derives (8). First, (3) is substituted in (7) and the result is
rearranged:

P({U }|Y) =
p(Y |{U })

p(Y)
P({U })

=
p(Y |{U })

p(Y)

∑

{V}

P({U }|{V})P({V})

=
p(Y |{U })

p(Y)

∑

{V}

P({U }|{V})P({V})

P({V}|Y)
P({V}|Y)

=
p(Y |{U })

p(Y)

∑

{V}

P({U }|{V})P({V})

p(Y |{V})P({V})/p(Y)
P({V}|Y)

=
∑

{V}

(

p(Y |{U })P({U }|{V})

p(Y |{V})

)

P({V}|Y).

(41)

This defines the stationary posterior distribution P({U }|Y) with the poste-
rior transition distribution

P({U }|{V},Y) =
p(Y |{U })P({U }|{V})

p(Y |{V})
. (42)
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Since ∑

{U}

P({U }|{V},Y) = 1 (43)

must hold for the latter, it can equivalently be written as

P({U }|{V},Y) =
p(Y |{U })P({U }|{V})

∑
{W} p(Y |{W})P({W}|{V})

. (44)

B Derivation of accept/reject estimator

Given the acceptance probabilities Paccept,n(Un|Y) defined in (14), the over-
all probability of a rejection for agent n is

Preject,n(X ,Y) = 1 −
∑

Vn∈Cn

Paccept,n(Vn|Y)Pn(Vn|X ). (45)

Consequently, the probability that Un is the first accepted draw can be
expressed as

∞∑

d=0

Pd
reject,n(X ,Y)Paccept,n(Un|Y)Pn(Un|X )

=
Paccept,n(Un|Y)Pn(Un|X )

1 − Preject,n(X ,Y)

=
Paccept,n(Un|Y)Pn(Un|X )

∑
Vn∈Cn

Paccept,n(Vn|Y)Pn(Vn|X )
,

(46)

which coincides with the definition of Pn(Un|X ,Y) in (13).

C Linearization of log-likelihood function

The dynamics of the deterministic supply simulator are represented by

x(k + 1) = f [x(k), β(k), k], (47)

cf. (27). For the sake of generality, a functional

Φ(X ) =

K∑

k=1

ϕ[x(k), k] (48)
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of the macroscopic system states X = {x(k)}k is linearized with respect
the turning fractions β(k) = (βij(k)). (Specifically, one would choose
Φ(X ) = ln p(Y |{U }) and observe that X = X ({U }) holds for a deterministic
supply simulator.) A self-contained exposition of a well-known procedure
for linearizing Φ with respect to the β(k) is given in the following (Kotsialos
et al., 2002; Pearson and Sridhar, 1966).

Denote

Φ(k) =

K∑

κ=k

ϕ[x(κ), κ] (49)

for k = 1 . . .K. This is the remaining contribution to Φ(X ) from time step
k on. It can be recursively written as

Φ(k) =

{
ϕ[x(k), k] + Φ(k + 1) k = 1 . . .K − 1

ϕ[x(K), K] k = K.
(50)

As a first step, sensitivities with respect to states are computed by

dΦ(k)

dx(k)
=






∂ϕ[x(k), k]

∂x(k)
+

dΦ(k + 1)

dx(k)
k = 1 . . .K − 1

∂ϕ[x(K), K]

∂x(K)
k = K.

(51)

Since the interplay between variables at different time steps is fully defined
by state equation (47),

dΦ(k + 1)

dx(k)
=

(

∂f [x(k), β(k), k]

∂x(k)

)T
dΦ(k + 1)

dx(k + 1)
(52)

holds for k < K, where x(k + 1) = f [. . .] is used and superscript T denotes
the transpose.

Now, sensitivities with respect to β(k) result from

dΦ(X )

dβ(k)
=

(

∂f [x(k), β(k), k]

∂β(k)

)T
dΦ(k + 1)

dx(k + 1)
, (53)

where ∂ϕ[x(k), k]/∂β(k) disappears since β(k) influences no state earlier
than x(k + 1). In summary, dΦ(X )/dβ(k) is obtained in a two-pass-
procedure.
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1. Using (52), solve (51) recursively for k = K . . . 1. Moving backwards
through time introduces a “far sightedness” into the calculation that
is necessary to predict the influence of present state variations on
future system states.

2. Determine the influence of the flow splits by (53) for k = 0 . . .K − 1.
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