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Abstract

This article presents a computationally efficient technique for the
macroscopic (equation—based) network loading of microscopic (simulation—
based) travel demand. It combines the expressive power of microsim-
ulations as sampling tools for highly heterogeneous demand segments
with mathematically well-understood macroscopic network loading
procedures. The presented experimental results demonstrate the ef-
ficiency and precision of the approach even for large and complex
scenarios. This work is intended to contribute to the understand-
ing and application of microsimulation techniques in the context of
mathematically motivated dynamic traffic assignment procedures.

Keywords: dynamic traffic assignment, demand microsimulation,
network loading, traffic low modeling



1 Introduction

Informally, the dynamic traffic assignment (DTA) problem is to attain con-
sistency between a dynamic model of travel demand and a dynamic model
of network supply. The feasibility of this problem, e.g., in terms of solution
existence and uniqueness, depends on the mathematical properties of the
involved model components. However, there also are computational issues,
e.g., speed of convergence and required computer resources, that are just
as relevant from an application point of view. Overall, the DTA problem
requires computationally strong solution procedures for realistic models of
convenient mathematical structure. This article investigates one aspect of
this problem in that it proposes a simulation technique that efficiently links
the subsequently described classes of demand and supply models.

Regarding the demand model, it is a well-recognized fact that the negli-
gence of heterogeneity in the population by an overly aggregated model
can cause severe biases (Ben-Akiva & Lerman, 1985). This observation
led to the development of increasingly disaggregate demand models, the
most extreme case of which are approaches where every traveler is mod-
eled individually (Raney & Nagel, 2006). Because of their mathematical
complexity, such models are typically evaluated through (micro)simulation
(Train, 2003; Vovsha et al., 2004). This article assumes a microsimulation-
based demand representation.

On the supply side, there exists a broad range of modeling approaches.
Microscopic models describe the progression of individual vehicles through
the network, whereas macroscopic models capture traffic flows at an aggre-
gate level and describe the movement of continuous traffic streams through
the system (Hoogendoorn & Bovy, 2001). While the former certainly bear
the potential for arbitrarily detailed modeling, the latter have the impor-
tant advantage of possessing well-understood mathematical features that
strongly support the design of algorithms not only for the equilibration of
demand and supply but also for, e.g., calibration and optimization. This
article assumes a macroscopic supply model.

DTA requires to somehow feed the disaggregate demand into the aggre-



gate supply model. Traditionally, heterogeneous demand segments are cap-
tured by splitting traffic volumes into partial flows (commodities) (Hilliges
& Weidlich, 1995; Kotsialos et al., 2002; Lebacque, 1996). For example,
destination-bound commodities would exhibit different turning behavior
at intersections in order to reach their destinations. However, the ap-
plicability of this approach to systems of realistic network size and de-
mand heterogeneity is limited by the computational cost of tracking par-
tial flows for every commodity on basically every link in the network. In
microsimulation-based DTA, this difficulty is circumvented by loading in-
dividual trip-makers, which are sampled from the underlying commodity
distribution, on the network (Ben-Akiva et al., 1998; Cetin et al., 2003; De
Palma & Marchal, 2002; Mahmassani, 2001; Nokel & Schmidt, 2002). Two
problems arise in this approach. First, the results are inherently stochas-
tic. Second, the network loading procedure is of a simulation-based nature
with only few guarantees regarding its mathematical properties (Peeta &
Mahmassani, 1995).

This work combines the computational efficiency and expressive power of
demand microsimulations with the mathematical convenience of equation-
based supply models. The commodities are represented by massless parti-
cles (commodity samples) that are dispersed in the macroscopic flow. They
drift along with the flow according to its spatiotemporal velocity field, and
they guide the flow towards consistency with their individual-level driv-
ing choices. Commodity information for any spatiotemporal segment of
the network can be recovered by counting the according particles within
that segment. Despite of the microscopic demand representation, tractable
equations are available for the evolution of the macroscopic network condi-
tions. The particle discretization noise can be efficiently suppressed. The
method is easy to implement in conjunction with broad classes of demand
and supply models.

The remainder of this article is organized as follows. Section [2] specifies the
proposed simulation approach. Section[3investigates some of its theoretical
properties, and Section [4 demonstrates its precision and computational
feasibility for a large-scale application. Finally, the article is summarized
in Section [B, and several applications of the method are indicated.
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2 Specification

The proposed simulation technique can be applied to a variety of demand
and supply models. Here, a general description is given that adopts specific
modeling assumptions only where greater generality would introduce an
unjustified notational overhead.

2.1 Microscopic demand model

For the sake generality, only the most disaggregate demand representation
where every traveler is modeled as an individual entity is considered. The
activity and traveling intentions of a simulated traveler are denoted as its
plan. Physically, a plan describes a round trip through the transportation
network, which comprises a sequence of trips that connect intermediate
stops during which activities are conducted, including all associated timing
information. The first and last activity of a plan typically take place at the
traveler’s home location.

Dynamic origin/destination (OD) matrices result naturally as aggregations
of a traveler population’s plan set. Vice versa, a given OD matrix can be
represented in disaggregate terms if every trip contained in the OD matrix
is associated with a single synthetic traveler the plan of which consists of
that trip only. Beyond these transformations from and to OD matrices,
the potential to account for more complex demand patterns renders the
plan—based, individual-level demand representation applicable to all kinds
of activity-based travel demand models (Bowman & Ben-Akiva, 1998).

2.2 Macroscopic supply model

The macroscopic traffic flow model representing the network supply is re-
quired little more than to specify a spatiotemporal velocity field on all links
in the network. A discrete version of this model is assumed here because of
its arguably greatest operational relevance; the subsequent developments



can be applied symmetrically in continuous conditions. The supply model
is formalized in terms of a state space representation

x*(0) = xj

: _ psys (1)
x*(k+1) = £x(k),B(k), K

where the vector x*(k) denotes the supply model’s state at discrete sim-
ulation time step k. For a spatially discretized 1st order model (such as
the cell-transmission model (Daganzo, 1994; Daganzo, 1995)), this vector
contains one element for every cell (homogeneous link segment) in the net-
work. The single-commodity flow splits B(k) = (PBy(k)) from every up-
stream cell 1 to every downstream cell j at all intersections are exogenously
specified. This notation comprises demand entries and exits if additional
turning moves into the network and out of the network are allowed for. The
vector-valued transition function f* defines the system’s evolution through
time. It fully encapsulates the specifically chosen traffic flow model.

2.3 Particle movement

Consider a set of particles n = 1...N that are floating through the net-
work. Particles have no “mass” insofar as they do not contribute to the
macroscopic occupancy in a cell. At the time of a particle’s entrance into
the network, an appropriate amount of macroscopic flow is also dismissed
into the system, resulting in a mass balance between particles and total
macroscopic occupancy.

The macroscopic traffic flow model specifies a local velocity v;(k) for all cells
iin all time steps k. In every time step of duration T, each particle advances
according to the local velocity in its current cell. Particle locations within a
cell are continuous quantities, and their movement is regarded as continuous
in time as well: When a particle crosses a cell boundary during a single move
of duration T, it can freely choose its next cell according to its internal plan
(if there is more than one downstream cell) and continue with the velocity
encountered there until its available move time ends. This procedure is
illustrated in Figure[Il The particle evaluates all traversed cells’ velocities
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Figure 1: Particle movement across cell boundaries
A particle approaches the upstream end of a congested road segment. The time
step duration is T = 8s. The particle needs 5s to reach the end of cell i at
vi = 40 km/h. During the remaining 3s, it advances another 16.5m in cell j at
vj = 20km/h.

at the start time of its move. In consequence, this simulation scheme is
imprecise in the order of a time step length, just as the macroscopic traffic
flow model itself.

When a particle reaches its destination, it is removed from the system and
an appropriate amount of macroscopic flow is also filtered out of the traffic
stream passing the exit location.

2.4 Particle route choice

Having stated the influence of macroscopic dynamics on individual parti-
cles, the converse problem of synchronizing macroscopic flows with indi-
vidual particle behavior is considered next.

The route choice of particle n is expressed by a vector u, (k) = (wijn(k))
of turning move indicators

(2)

i (k) = 1 if n proceeds from cell i to j at time step k
U] 0 otherwise.

This representation can account for network entries and exits through addi-
tional entry and exit cells that are located outside of the network (Cayford
et al., 1997).



A demand state vector x4(k) = (xy;(k)) is introduced. As a preliminary
definition, let each element x;;(k) represent the average number of particles
having turned from cell i into cell j until time step k:

k N
KW=y 23wk ()
Equivalently,
d k d 1 -
x(k):k+1x(k—1)—|—m;un(k) (4)

fork =0,1,...withx%(—1) = 0. The macroscopic turning fractions (k) =
(Bi;(k)) used in ([Il) are now specified as functions B(x%(k)) = (B (x%(k)))
of the turning counters where

. Xij(k)
B leu(k)'

This is a maximum likelihood estimator of the microscopic turning proba-
bilities if the particle turning moves follows a stationary multinomial dis-
tribution (Jones & Vines, 1998). The resulting estimates can be directly
fed into the macroscopic traffic flow model by a substitution of $ in (). In
order to avoid undefined 0/0 divisions at the beginning of a simulation, the
turning counters should be initialized with small positive values instead of
all zeros.

Bi(x(k)) (5)

Specification (4]) works well only for stationary turning probabilities. In
the following, two possibilities to account for time-dependency in these
probabilities are discussed. To begin with, consider the naive approach

x4(k) =) un(k). (6)

It does not exhibit the infinite memory of (), thus it immediately tracks
all demand dynamics, but it fails for low flow rates and short time step
lengths because of the frequent occurrence of 0/0 divisions in ([&).



To milden this problem, a rectangular probability distribution of the loca-
tion of a vehicle may be assumed. This can be realized by assigning one
particle to the front of this distribution and a second particle to its end,
with the corresponding macroscopic flow being dismissed into the network
such that it is located between the particles. Denoting the turning move
indicator of vehicle n’s second particle by v,(k), one obtains

7N

Xd(k) = E Z(un(k) —vn(k)) (7)

n=1

where K is the average number of time steps a vehicle distribution needs
to cross an intersection.

A computationally more efficient approach that disposes of the second par-
ticle is to assume that the time step of a vehicle’s arrival at an intersection
is geometrically distributed and that the actual particle identifies the first
possible time of arrival. This results in the turning counter update equation

N
x4(k) =wx (k=1 + (T=w) ) un(k) (8)
n=1

where w € (0, 1) specifies the width of the arrival distribution. A conve-
nient property of this filter is its infinite memory: Even if no particles reach
an intersection for a while, the turning counters remain strictly positive and
thus ensure well-defined flow splits in ().

A unified state space representation of this system can be given. Let
x*(k)
k) = 9
X( ) [Xd(k) ] ( )
and

fo[x°(k), B(x%(k)), k]

f[X(k), u (k) .- -uN(k)yk] = [ fd[Xd(k), u; (k) B .U.N(k),k] ] (10)

where 9 is, e.g, (7)) or (B). This results in

x(k 4+ 1) = f[x(k), s (k) . .. un(k), K. (11)
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According to the notational conventions of control theory, the turning move
indicators u, act as control variables in this model, and, in fact, the in-
dividual particle behavior steers the macroscopic traffic flow. Note that x
does not account for the microscopic states of individual particles, which
could, however, be formalized along these lines, if needed. (For example,
the rectangular vehicle distribution assumed in ([7]) requires that the second
particle memorizes and imitates the turning moves of the leading one.)

The purpose of ([I1]) is to demonstrate that the macroscopic network loading
of a microscopic demand results in a mathematically tractable representa-
tion of the macroscopic network conditions. For example, if the traffic flow
model is differentiable with respect to the turning fractions, (Il allows to
linearly predict the effect of individual-level behavior on the global network
conditions. Section[Blindicates some applications that exploit this property.

3 Theoretical investigation

The proposed simulation technique is analyzed in stationary conditions
without network entries and exits such that the expected stationary flow
1 through link j becomes a linear combination of its upstream flows:

My = Zpijui (12)
L)

where py; 1s the true turning probability from link i to link j in the particle
population.

Denote by q; the microscopic flow through link i, by p; its expectation, by
o7 its variance, and by q;; the microscopic flow from link i to link j. In
order to obtain the variance VAR{q;;}, the identity

VAR{qi;} = E{VAR{qy | ai}} + VAR{E{qy; | qi}} (13)

is used. Assuming independent turning decisions and hence a multinomial
turning move distribution, this turns into

VAR{qy} = E{py(1 —py)ai) + VAR{pyai}
= py(1 —py)u + o7 (14)
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If the intersection inflows are stochastically independent, this yields
o] —Zp 02+Zpu —pylu (15)

The first sum on the right-hand side represents the propagation of the up-
stream flow variances through the intersection into link j. The second term
constitutes an excitation that results from the variability of the particles’
turning choices at the intersection.

All turning count filters (), (6)), (), and (8]) are unbiased in that E{x;;} =
PijHi, where xy; is the filtered turning count from link i to link j. A combi-
nation of (I4) with the stationary transfer behavior of the respective filter
yields

(1 — s Z
VAR{x;;} = Mm + &o% (16)
C C
where
oo  infinite memory (@)
1 naive approach
c- poroach (@ | (17)
K rectangular vehicle distr. ([7]) of temporal width K
1 geometrical arrival distr. (B) of temporal width w.

Denote by §; the macroscopic flow through link i and by &7 its variance.

~ XI] ~
sl i)

can be obtained (Goodman, 1962; Mood et al., 1974), but the result is
somewhat unwieldy. Therefore, only the (reasonable) case of a large C is
considered, which results in VAR{x;;} — 0, almost deterministic flow splits
i — Pi, and, again for stochastically independent inflows, the simple
approximation

An approximation of

5% ~ Zpu 57, (18)

This corresponds to the microscoplc variance ([IB) without the excitation
term that is due to the microscopic turning decisions — an intuitive result.
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Only the transport of existing flow variance through the network remains.
In a macroscopic setting, this variance can be further reduced by inserting
the flows consistently with the assumed vehicle distributions: the wider
these distributions, the smoother the flows and the lower the variance of
the macroscopic network conditions. In addition, the dispersiveness of
many spatiotemporally discretized network loading procedures contributes
to this smoothing (Lebacque, 1996; LeVeque, 1992).

The overall message of this analysis is that the (typically undesirable) noise
in the macroscopic network conditions that is injected through the micro-
scopic particle simulation can be reduced to an arbitrary low degree by
choosing sufficiently wide vehicle distributions and, consequently, a suf-
ficiently inert turning counter update logic. However, the need to track
dynamic turning probabilities imposes a limit on this inertia. The next
section shows experimentally that a reasonable balance between noise re-
duction and tracking of time-dependent turning probabilities can be real-
ized.

4 Experimental investigation

The precision and the computational feasibility of the proposed simulation
technique are investigated. A detailed description of the experimental set-
ting and all involved model components can be found in (Fltterod, 2008).

The considered test case is modeled after the road network of Greater
Berlin, which is illustrated in Figure 2l This network consists of 1083
nodes and 2459 unidirectional links. A synthetic population of 206 353
motorist travelers with complete daily plans is available for this network
(Rieser et al., 2007). This is a 10 percent sample of Berlin’s true motorist
population. Thus, 10 macroscopic vehicle units need to be inserted together
with one particle into the simulation. However, since the simulations are
run on a thinned out version of the full Berlin network, the use of 2 in-
stead of 10 macroscopic vehicle units per particle already creates realistic
congestion patterns. An extended cell-transmission model is used as the
network loading procedure.

10



Figure 2: Major road network of Greater Berlin
The network consists of 1083 nodes and 2459 unidirectional links. The two clip-

pings indicate a locally high modeling resolution.
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Figure 3: Simulated Berlin morning peak
A simulation of the Berlin morning peak between 6 and 12 am. The curve shows
the macroscopic number of moving vehicles over time.

For the turning counter smoothing, the infinite-memory filter (8)) is used.
Every intersection has an individual w parameter that depend on its in-
dividual simulation time step duration T, which is location-specific in the
extended cell-transmission model deployed here. For example, T = 10s
results in w ~ 0.935.

All experiments consider the morning rush hour from 6 to 12 am. Figure
[Bl shows the total number of moving vehicles as a function of time. More
than 16 000 particles, i.e., 32 000 macroscopic vehicle units, are concurrently
simulated during the rush hour peak at approximately 8:30 am.

4.1 Precision of micro/macro coupling

The microscopic particle behavior influences the macroscopic flow splits
via the turning counter mechanism, whereas the microscopic particle move-
ments are guided by the macroscopic velocity field. The precision of this
micro/macro model synchronization is investigated here.
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(a) Microscopic and macroscopic density trajectory for a short link of
25 m length under heavy congestion. The discrete value domain of
the microscopic curve reflects the strong vehicle discretization noise.
The macroscopic curve removes most of this noise. Unrealistically high
microscopic densities are possible because of the massless particles. The
macroscopic curve, however, is within bounds.
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(b) Microscopic and macroscopic density trajectory for a 1.6 km long
link under heavy congestion. The discretization noise has a weaker effect
since a greater number of particles is averaged in the microscopic density
calculations. The microscopic signal trend is tracked very well by the

macroscopic curve.
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Figure [ shows the microscopic and macroscopic traffic density trajectories
for two selected links of the Berlin network. The macroscopic density is
the ratio of the amount of macroscopic vehicle units on a link to the link’s
space capacity, which is defined as its length times its number of lanes.
The microscopic density is calculated here as the quotient between twice
the microscopic particle count on a link and its space capacity. The factor
of two accounts for the fact that one particle represents two vehicle units
in the given experimental setting.

Link (a) is only 25 meters long, whereas link (b) has a length of 1 611 meters.
This difference is reflected in the much greater variance of the microscopic
density on the shorter link. Both macroscopic density trajectories track
the microscopic trends with high precision and almost no lag. The strong
discretization noise particularly on the shorter link is significantly reduced.
It is emphasized that the macroscopic trajectories are not calculated by
some kind of microscopic vehicle count averaging but result implicitly from
continuously tracked turning fractions that guide an appropriate amount
of truly macroscopic flow across each link.

In order to avoid arbitrariness, these links were automatically chosen ac-
cording to the following criteria: Link (a) exhibits the largest ratio of den-
sity to space capacity during the rush hour peak, whereas link (b) carries
the largest total amount of vehicle units, i.e., the largest product of density
and space capacity, in the same time interval. That is, the first crite-
rion prefers small links, and the second criterion prefers large links. Both
criteria favor congested links since uncongested conditions prevail anyway
before the rush hour sets in.

A network-wide point of view is adopted by means of the following two
characteristics:

MNB(k) =

(19)

A

100 Z pr(zllicro(k) o pglacro(k)
Y

represents the mean normalized bias where p™2 (k) (p™i<°(k)) is the macro-

scopic (microscopic) vehicle density on link a in time step k, p is the macro-
scopic jam density, and A is the set of all links in the network. The second
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Figure 5b: Mean normalized bias and error trajectories
Mean normalized bias MNB and mean normalized error MNE as defined in ([19))
and (20). The intermediate microscopic excess in MNB of about 1 per mille is
negligible and owed to the particle entrance mechanism, which puts particles ahead
of their macroscopic flow into the system. Likewise, there is a similar undershoot
as the particles leave the system ahead of their macroscopic flow at the end of the
rush hour.

considered characteristic is the mean normalized error

-IOO ‘ pm1cro macro (k) ‘
MNE(k . 20
p e (20)

acA

Figure bl shows that MNB fluctuates unsystematically around zero percent.
This indicates that the mass balance between microscopic and macroscopic
flow is well maintained. The maximum value of approximately three per-
cent for MNE is moderate and plausible in consideration of Figure [4l

These results show that the micro- and the macro-model are well synchro-
nized despite of their sparse interactions. The resulting macroscopic traffic
characteristics exhibit a significantly lower discretization noise than simple
averages over the microscopic particles.
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4.2 Computational performance

Clearly, the computational performance of these simulations depends not
only on the micro/macro coupling logic but also on the macroscopic net-
work loading procedure. Some numbers are given here anyway to provide
an intuition for the scenario size that can be handled by the proposed
approach.

The computational effort for micro- and macrosimulation is distinguished
in the following way. The macrosimulation runs the traffic flow model
plus the turning counter tracking mechanism, which basically corresponds
to repeated evaluations of (I1l). The microsimulation comprises the ad-
ditional operations necessary to update the individual particle locations
as described in Section 2.3l The total computational effort is somewhat
larger than the sum of micro- and macrosimulation because of the over-
head needed for bookkeeping and logical program control.

Recall that the simulated time period is 6 h = 21600 s. To simulate this
period, the macrosimulation requires 115 s and the microsimulation re-
quires another 100 s. The complete simulation time is 240 s because of the
aforementioned overhead. The resulting real time ratio of this simulation
is 21600 s / 240 s = 90. These results are obtained on a standalone 1.7
GHz Pentium 4 machine with 1 GB RAM, using the Sun Java Runtime
Environment 5.0 (java, accessed 2009). Clearly, the proposed simulation
scheme is applicable to large-scale scenarios. Its high performance is mainly
due to the fact that the macroscopic traffic flow model only moves single-
commodity flows. No care has to be taken of partial densities as it would
be the case if driver behavior such as route and destination choice was
represented macroscopically.

5 Summary and outlook

This article describes a computationally efficient technique for the net-
work loading of microscopically represented travel demand with macro-
scopic supply models. Beyond its experimentally demonstrated compu-
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tational performance, the following features of the method are notewor-
thy: (i) The macroscopic flow model is coupled to the microscopic demand
model through a filtering mechanism that effectively removes most vehicle
discretization noise. (ii) Analytical features such as continuity or differen-
tiability of the macroscopic traffic flow model are preserved despite of the
microscopic traveler representation.

These properties have already been exploited in a practically relevant ap-
plication: Assuming linearizable dynamics of the macroscopic traffic flow
model, it is possible to linearly predict the effect of individual-level driving
decisions on the global network conditions through ([IIl), which in turn pro-
vides information about how to adjust the demand for, e.g., system optimal
assignment or demand calibration. The latter application is described in
length in (Fl6tterdd, 2008). Another calibration-related advantage of the
proposed simulation approach is the possibility to apply derivative-based
calibration procedures for the identification of parameters of the macro-
scopic traffic flow model. Microscopic traffic flow models typically do not
provide such derivatives.

The proposition of a full DTA solution procedure that exploits the proposed
simulation technique is beyond the scope of this article. It is conjectured
that such a procedure can be developed for a stochastic user equilibrium
model where the particle population results from a Monte-Carlo evaluation
of an analytical demand model that may be of great behavioral hetero-
geneity. The advantage of this approach would be the maintenance of a
fully analytical model specification, while the microsimulation technique
enters the picture merely as a numerical tool for the efficient evaluation of
heterogeneous demand distributions.
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