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AbstractThis article presents a computationally e�cient technique for themacroscopic (equation�based) network loading of microscopic (simulation�based) travel demand. It combines the expressive power of microsim-ulations as sampling tools for highly heterogeneous demand segmentswith mathematically well�understood macroscopic network loadingprocedures. The presented experimental results demonstrate the ef-�ciency and precision of the approach even for large and complexscenarios. This work is intended to contribute to the understand-ing and application of microsimulation techniques in the context ofmathematically motivated dynamic tra�c assignment procedures.Keywords: dynamic tra�c assignment, demand microsimulation,network loading, tra�c �ow modeling
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1 IntroductionInformally, the dynamic tra�c assignment (DTA) problem is to attain con-sistency between a dynamic model of travel demand and a dynamic modelof network supply. The feasibility of this problem, e.g., in terms of solutionexistence and uniqueness, depends on the mathematical properties of theinvolved model components. However, there also are computational issues,e.g., speed of convergence and required computer resources, that are justas relevant from an application point of view. Overall, the DTA problemrequires computationally strong solution procedures for realistic models ofconvenient mathematical structure. This article investigates one aspect ofthis problem in that it proposes a simulation technique that e�ciently linksthe subsequently described classes of demand and supply models.Regarding the demand model, it is a well-recognized fact that the negli-gence of heterogeneity in the population by an overly aggregated modelcan cause severe biases (Ben-Akiva & Lerman, 1985). This observationled to the development of increasingly disaggregate demand models, themost extreme case of which are approaches where every traveler is mod-eled individually (Raney & Nagel, 2006). Because of their mathematicalcomplexity, such models are typically evaluated through (micro)simulation(Train, 2003; Vovsha et al., 2004). This article assumes a microsimulation-based demand representation.On the supply side, there exists a broad range of modeling approaches.Microscopic models describe the progression of individual vehicles throughthe network, whereas macroscopic models capture tra�c �ows at an aggre-gate level and describe the movement of continuous tra�c streams throughthe system (Hoogendoorn & Bovy, 2001). While the former certainly bearthe potential for arbitrarily detailed modeling, the latter have the impor-tant advantage of possessing well-understood mathematical features thatstrongly support the design of algorithms not only for the equilibration ofdemand and supply but also for, e.g., calibration and optimization. Thisarticle assumes a macroscopic supply model.DTA requires to somehow feed the disaggregate demand into the aggre-1



gate supply model. Traditionally, heterogeneous demand segments are cap-tured by splitting tra�c volumes into partial �ows (commodities) (Hilliges& Weidlich, 1995; Kotsialos et al., 2002; Lebacque, 1996). For example,destination-bound commodities would exhibit di�erent turning behaviorat intersections in order to reach their destinations. However, the ap-plicability of this approach to systems of realistic network size and de-mand heterogeneity is limited by the computational cost of tracking par-tial �ows for every commodity on basically every link in the network. Inmicrosimulation-based DTA, this di�culty is circumvented by loading in-dividual trip-makers, which are sampled from the underlying commoditydistribution, on the network (Ben-Akiva et al., 1998; Cetin et al., 2003; DePalma & Marchal, 2002; Mahmassani, 2001; Nökel & Schmidt, 2002). Twoproblems arise in this approach. First, the results are inherently stochas-tic. Second, the network loading procedure is of a simulation-based naturewith only few guarantees regarding its mathematical properties (Peeta &Mahmassani, 1995).This work combines the computational e�ciency and expressive power ofdemand microsimulations with the mathematical convenience of equation-based supply models. The commodities are represented by massless parti-cles (commodity samples) that are dispersed in the macroscopic �ow. Theydrift along with the �ow according to its spatiotemporal velocity �eld, andthey guide the �ow towards consistency with their individual-level driv-ing choices. Commodity information for any spatiotemporal segment ofthe network can be recovered by counting the according particles withinthat segment. Despite of the microscopic demand representation, tractableequations are available for the evolution of the macroscopic network condi-tions. The particle discretization noise can be e�ciently suppressed. Themethod is easy to implement in conjunction with broad classes of demandand supply models.The remainder of this article is organized as follows. Section 2 speci�es theproposed simulation approach. Section 3 investigates some of its theoreticalproperties, and Section 4 demonstrates its precision and computationalfeasibility for a large-scale application. Finally, the article is summarizedin Section 5, and several applications of the method are indicated.2



2 Speci�cationThe proposed simulation technique can be applied to a variety of demandand supply models. Here, a general description is given that adopts speci�cmodeling assumptions only where greater generality would introduce anunjusti�ed notational overhead.2.1 Microscopic demand modelFor the sake generality, only the most disaggregate demand representationwhere every traveler is modeled as an individual entity is considered. Theactivity and traveling intentions of a simulated traveler are denoted as itsplan. Physically, a plan describes a round trip through the transportationnetwork, which comprises a sequence of trips that connect intermediatestops during which activities are conducted, including all associated timinginformation. The �rst and last activity of a plan typically take place at thetraveler's home location.Dynamic origin/destination (OD) matrices result naturally as aggregationsof a traveler population's plan set. Vice versa, a given OD matrix can berepresented in disaggregate terms if every trip contained in the OD matrixis associated with a single synthetic traveler the plan of which consists ofthat trip only. Beyond these transformations from and to OD matrices,the potential to account for more complex demand patterns renders theplan�based, individual�level demand representation applicable to all kindsof activity-based travel demand models (Bowman & Ben-Akiva, 1998).2.2 Macroscopic supply modelThe macroscopic tra�c �ow model representing the network supply is re-quired little more than to specify a spatiotemporal velocity �eld on all linksin the network. A discrete version of this model is assumed here because ofits arguably greatest operational relevance; the subsequent developments3



can be applied symmetrically in continuous conditions. The supply modelis formalized in terms of a state space representationxs(0) = xs
0xs(k + 1) = f s[xs(k), β(k), k]

(1)where the vector xs(k) denotes the supply model's state at discrete sim-ulation time step k. For a spatially discretized 1st order model (such asthe cell-transmission model (Daganzo, 1994; Daganzo, 1995)), this vectorcontains one element for every cell (homogeneous link segment) in the net-work. The single-commodity �ow splits β(k) = (βij(k)) from every up-stream cell i to every downstream cell j at all intersections are exogenouslyspeci�ed. This notation comprises demand entries and exits if additionalturning moves into the network and out of the network are allowed for. Thevector-valued transition function f s de�nes the system's evolution throughtime. It fully encapsulates the speci�cally chosen tra�c �ow model.2.3 Particle movementConsider a set of particles n = 1 . . .N that are �oating through the net-work. Particles have no �mass� insofar as they do not contribute to themacroscopic occupancy in a cell. At the time of a particle's entrance intothe network, an appropriate amount of macroscopic �ow is also dismissedinto the system, resulting in a mass balance between particles and totalmacroscopic occupancy.The macroscopic tra�c �owmodel speci�es a local velocity vi(k) for all cells
i in all time steps k. In every time step of duration T , each particle advancesaccording to the local velocity in its current cell. Particle locations within acell are continuous quantities, and their movement is regarded as continuousin time as well: When a particle crosses a cell boundary during a single moveof duration T , it can freely choose its next cell according to its internal plan(if there is more than one downstream cell) and continue with the velocityencountered there until its available move time ends. This procedure isillustrated in Figure 1. The particle evaluates all traversed cells' velocities4



Figure 1: Particle movement across cell boundariesA particle approaches the upstream end of a congested road segment. The timestep duration is T = 8 s. The particle needs 5 s to reach the end of cell i at
vi = 40 km/h. During the remaining 3 s, it advances another 16.5m in cell j at
vj = 20km/h.at the start time of its move. In consequence, this simulation scheme isimprecise in the order of a time step length, just as the macroscopic tra�c�ow model itself.When a particle reaches its destination, it is removed from the system andan appropriate amount of macroscopic �ow is also �ltered out of the tra�cstream passing the exit location.2.4 Particle route choiceHaving stated the in�uence of macroscopic dynamics on individual parti-cles, the converse problem of synchronizing macroscopic �ows with indi-vidual particle behavior is considered next.The route choice of particle n is expressed by a vector un(k) = (uij,n(k))of turning move indicators

uij,n(k) =

{
1 if n proceeds from cell i to j at time step k

0 otherwise. (2)This representation can account for network entries and exits through addi-tional entry and exit cells that are located outside of the network (Cayfordet al., 1997). 5



A demand state vector xd(k) = (xij(k)) is introduced. As a preliminaryde�nition, let each element xij(k) represent the average number of particleshaving turned from cell i into cell j until time step k:xd(k) =
1

k + 1

k∑

k′=0

N∑

n=1

un(k ′). (3)Equivalently, xd(k) =
k

k + 1
xd(k − 1) +

1

k + 1

N∑

n=1

un(k) (4)for k = 0, 1, . . .with xd(−1) = 0. The macroscopic turning fractions β(k) =

(βij(k)) used in (1) are now speci�ed as functions β(xd(k)) = (βij(xd(k)))of the turning counters where
βij(xd(k)) =

xij(k)
∑

l xil(k)
. (5)This is a maximum likelihood estimator of the microscopic turning proba-bilities if the particle turning moves follows a stationary multinomial dis-tribution (Jones & Vines, 1998). The resulting estimates can be directlyfed into the macroscopic tra�c �ow model by a substitution of β in (1). Inorder to avoid unde�ned 0/0 divisions at the beginning of a simulation, theturning counters should be initialized with small positive values instead ofall zeros.Speci�cation (4) works well only for stationary turning probabilities. Inthe following, two possibilities to account for time-dependency in theseprobabilities are discussed. To begin with, consider the naive approachxd(k) =

N∑

n=1

un(k). (6)It does not exhibit the in�nite memory of (4), thus it immediately tracksall demand dynamics, but it fails for low �ow rates and short time steplengths because of the frequent occurrence of 0/0 divisions in (5).6



To milden this problem, a rectangular probability distribution of the loca-tion of a vehicle may be assumed. This can be realized by assigning oneparticle to the front of this distribution and a second particle to its end,with the corresponding macroscopic �ow being dismissed into the networksuch that it is located between the particles. Denoting the turning moveindicator of vehicle n's second particle by vn(k), one obtainsxd(k) =
1

K

N∑

n=1

(un(k) − vn(k)) (7)where K is the average number of time steps a vehicle distribution needsto cross an intersection.A computationally more e�cient approach that disposes of the second par-ticle is to assume that the time step of a vehicle's arrival at an intersectionis geometrically distributed and that the actual particle identi�es the �rstpossible time of arrival. This results in the turning counter update equationxd(k) = wxd(k − 1) + (1 − w)

N∑

n=1

un(k) (8)where w ∈ (0, 1) speci�es the width of the arrival distribution. A conve-nient property of this �lter is its in�nite memory: Even if no particles reachan intersection for a while, the turning counters remain strictly positive andthus ensure well-de�ned �ow splits in (5).A uni�ed state space representation of this system can be given. Letx(k) =

[ xs(k)xd(k)

] (9)and f [x(k),u1(k) . . .uN(k), k] =

[ f s[xs(k), β(xd(k)), k]fd[xd(k),u1(k) . . .uN(k), k]

] (10)where fd is, e.g, (7) or (8). This results inx(k + 1) = f [x(k),u1(k) . . .uN(k), k]. (11)7



According to the notational conventions of control theory, the turning moveindicators un act as control variables in this model, and, in fact, the in-dividual particle behavior steers the macroscopic tra�c �ow. Note that xdoes not account for the microscopic states of individual particles, whichcould, however, be formalized along these lines, if needed. (For example,the rectangular vehicle distribution assumed in (7) requires that the secondparticle memorizes and imitates the turning moves of the leading one.)The purpose of (11) is to demonstrate that the macroscopic network loadingof a microscopic demand results in a mathematically tractable representa-tion of the macroscopic network conditions. For example, if the tra�c �owmodel is di�erentiable with respect to the turning fractions, (11) allows tolinearly predict the e�ect of individual-level behavior on the global networkconditions. Section 5 indicates some applications that exploit this property.3 Theoretical investigationThe proposed simulation technique is analyzed in stationary conditionswithout network entries and exits such that the expected stationary �ow
µj through link j becomes a linear combination of its upstream �ows:

µj =
∑

ij

pijµi (12)where pij is the true turning probability from link i to link j in the particlepopulation.Denote by qi the microscopic �ow through link i, by µi its expectation, by
σ2

i its variance, and by qij the microscopic �ow from link i to link j. Inorder to obtain the variance VAR{qij}, the identityVAR{qij} = E{VAR{qij | qi}} +VAR{E{qij | qi}} (13)is used. Assuming independent turning decisions and hence a multinomialturning move distribution, this turns intoVAR{qij} = E{pij(1 − pij)qi} +VAR{pijqi}

= pij(1 − pij)µi + p2
ijσ

2
i . (14)8



If the intersection in�ows are stochastically independent, this yields
σ2

j =
∑

i

p2
ijσ

2
i +

∑

i

pij(1 − pij)µi. (15)The �rst sum on the right-hand side represents the propagation of the up-stream �ow variances through the intersection into link j. The second termconstitutes an excitation that results from the variability of the particles'turning choices at the intersection.All turning count �lters (4), (6), (7), and (8) are unbiased in that E{xij} =

pijµi, where xij is the �ltered turning count from link i to link j. A combi-nation of (14) with the stationary transfer behavior of the respective �lteryields VAR{xij} =
pij(1 − pij)

C
µi +

p2
ij

C
σ2

i (16)where
C =






∞ in�nite memory (4)
1 naive approach (6)
K rectangular vehicle distr. (7) of temporal width K

1+w
1−w

geometrical arrival distr. (8) of temporal width w.

(17)Denote by �qi the macroscopic �ow through link i and by �σ2
i its variance.An approximation of�σ2

j = VAR{
∑

i

βij�qi

}

= VAR{
∑

i

xij∑
l xil

�qi

}can be obtained (Goodman, 1962; Mood et al., 1974), but the result issomewhat unwieldy. Therefore, only the (reasonable) case of a large C isconsidered, which results in VAR{xij} → 0, almost deterministic �ow splits
βij → pij, and, again for stochastically independent in�ows, the simpleapproximation �σ2

j ≈

∑

i

p2
ij�σ2

i . (18)This corresponds to the microscopic variance (15) without the excitationterm that is due to the microscopic turning decisions � an intuitive result.9



Only the transport of existing �ow variance through the network remains.In a macroscopic setting, this variance can be further reduced by insertingthe �ows consistently with the assumed vehicle distributions: the widerthese distributions, the smoother the �ows and the lower the variance ofthe macroscopic network conditions. In addition, the dispersiveness ofmany spatiotemporally discretized network loading procedures contributesto this smoothing (Lebacque, 1996; LeVeque, 1992).The overall message of this analysis is that the (typically undesirable) noisein the macroscopic network conditions that is injected through the micro-scopic particle simulation can be reduced to an arbitrary low degree bychoosing su�ciently wide vehicle distributions and, consequently, a suf-�ciently inert turning counter update logic. However, the need to trackdynamic turning probabilities imposes a limit on this inertia. The nextsection shows experimentally that a reasonable balance between noise re-duction and tracking of time-dependent turning probabilities can be real-ized.4 Experimental investigationThe precision and the computational feasibility of the proposed simulationtechnique are investigated. A detailed description of the experimental set-ting and all involved model components can be found in (Flötteröd, 2008).The considered test case is modeled after the road network of GreaterBerlin, which is illustrated in Figure 2. This network consists of 1 083nodes and 2 459 unidirectional links. A synthetic population of 206 353motorist travelers with complete daily plans is available for this network(Rieser et al., 2007). This is a 10 percent sample of Berlin's true motoristpopulation. Thus, 10 macroscopic vehicle units need to be inserted togetherwith one particle into the simulation. However, since the simulations arerun on a thinned out version of the full Berlin network, the use of 2 in-stead of 10 macroscopic vehicle units per particle already creates realisticcongestion patterns. An extended cell-transmission model is used as thenetwork loading procedure. 10



Figure 2: Major road network of Greater BerlinThe network consists of 1 083 nodes and 2 459 unidirectional links. The two clip-pings indicate a locally high modeling resolution.
11



Figure 3: Simulated Berlin morning peakA simulation of the Berlin morning peak between 6 and 12 am. The curve showsthe macroscopic number of moving vehicles over time.For the turning counter smoothing, the in�nite-memory �lter (8) is used.Every intersection has an individual w parameter that depend on its in-dividual simulation time step duration T , which is location-speci�c in theextended cell-transmission model deployed here. For example, T = 10 sresults in w ≈ 0.935.All experiments consider the morning rush hour from 6 to 12 am. Figure3 shows the total number of moving vehicles as a function of time. Morethan 16 000 particles, i.e., 32 000 macroscopic vehicle units, are concurrentlysimulated during the rush hour peak at approximately 8:30 am.4.1 Precision of micro/macro couplingThe microscopic particle behavior in�uences the macroscopic �ow splitsvia the turning counter mechanism, whereas the microscopic particle move-ments are guided by the macroscopic velocity �eld. The precision of thismicro/macro model synchronization is investigated here.12



(a) Microscopic and macroscopic density trajectory for a short link of25 m length under heavy congestion. The discrete value domain ofthe microscopic curve re�ects the strong vehicle discretization noise.The macroscopic curve removes most of this noise. Unrealistically highmicroscopic densities are possible because of the massless particles. Themacroscopic curve, however, is within bounds.

(b) Microscopic and macroscopic density trajectory for a 1.6 km longlink under heavy congestion. The discretization noise has a weaker e�ectsince a greater number of particles is averaged in the microscopic densitycalculations. The microscopic signal trend is tracked very well by themacroscopic curve.Figure 4: Precision of micro/macro model synchronization13



Figure 4 shows the microscopic and macroscopic tra�c density trajectoriesfor two selected links of the Berlin network. The macroscopic density isthe ratio of the amount of macroscopic vehicle units on a link to the link'sspace capacity, which is de�ned as its length times its number of lanes.The microscopic density is calculated here as the quotient between twicethe microscopic particle count on a link and its space capacity. The factorof two accounts for the fact that one particle represents two vehicle unitsin the given experimental setting.Link (a) is only 25 meters long, whereas link (b) has a length of 1 611 meters.This di�erence is re�ected in the much greater variance of the microscopicdensity on the shorter link. Both macroscopic density trajectories trackthe microscopic trends with high precision and almost no lag. The strongdiscretization noise particularly on the shorter link is signi�cantly reduced.It is emphasized that the macroscopic trajectories are not calculated bysome kind of microscopic vehicle count averaging but result implicitly fromcontinuously tracked turning fractions that guide an appropriate amountof truly macroscopic �ow across each link.In order to avoid arbitrariness, these links were automatically chosen ac-cording to the following criteria: Link (a) exhibits the largest ratio of den-sity to space capacity during the rush hour peak, whereas link (b) carriesthe largest total amount of vehicle units, i.e., the largest product of densityand space capacity, in the same time interval. That is, the �rst crite-rion prefers small links, and the second criterion prefers large links. Bothcriteria favor congested links since uncongested conditions prevail anywaybefore the rush hour sets in.A network-wide point of view is adopted by means of the following twocharacteristics: MNB(k) =
100

|A|

∑

a∈A

ρmicro
a (k) − ρmacro

a (k)

ρ̂
(19)represents the mean normalized bias where ρmacro

a (k) (ρmicro
a (k)) is the macro-scopic (microscopic) vehicle density on link a in time step k, ρ̂ is the macro-scopic jam density, and A is the set of all links in the network. The second14



Figure 5: Mean normalized bias and error trajectoriesMean normalized bias MNB and mean normalized error MNE as de�ned in (19)and (20). The intermediate microscopic excess in MNB of about 1 per mille isnegligible and owed to the particle entrance mechanism, which puts particles aheadof their macroscopic �ow into the system. Likewise, there is a similar undershootas the particles leave the system ahead of their macroscopic �ow at the end of therush hour.considered characteristic is the mean normalized errorMNE(k) =
100

|A|

∑

a∈A

∣

∣ρmicro
a (k) − ρmacro

a (k)
∣

∣

ρ̂
. (20)Figure 5 shows that MNB �uctuates unsystematically around zero percent.This indicates that the mass balance between microscopic and macroscopic�ow is well maintained. The maximum value of approximately three per-cent for MNE is moderate and plausible in consideration of Figure 4.These results show that the micro- and the macro-model are well synchro-nized despite of their sparse interactions. The resulting macroscopic tra�ccharacteristics exhibit a signi�cantly lower discretization noise than simpleaverages over the microscopic particles.15



4.2 Computational performanceClearly, the computational performance of these simulations depends notonly on the micro/macro coupling logic but also on the macroscopic net-work loading procedure. Some numbers are given here anyway to providean intuition for the scenario size that can be handled by the proposedapproach.The computational e�ort for micro- and macrosimulation is distinguishedin the following way. The macrosimulation runs the tra�c �ow modelplus the turning counter tracking mechanism, which basically correspondsto repeated evaluations of (11). The microsimulation comprises the ad-ditional operations necessary to update the individual particle locationsas described in Section 2.3. The total computational e�ort is somewhatlarger than the sum of micro- and macrosimulation because of the over-head needed for bookkeeping and logical program control.Recall that the simulated time period is 6 h = 21 600 s. To simulate thisperiod, the macrosimulation requires 115 s and the microsimulation re-quires another 100 s. The complete simulation time is 240 s because of theaforementioned overhead. The resulting real time ratio of this simulationis 21 600 s / 240 s = 90. These results are obtained on a standalone 1.7GHz Pentium 4 machine with 1 GB RAM, using the Sun Java RuntimeEnvironment 5.0 (java, accessed 2009). Clearly, the proposed simulationscheme is applicable to large-scale scenarios. Its high performance is mainlydue to the fact that the macroscopic tra�c �ow model only moves single-commodity �ows. No care has to be taken of partial densities as it wouldbe the case if driver behavior such as route and destination choice wasrepresented macroscopically.5 Summary and outlookThis article describes a computationally e�cient technique for the net-work loading of microscopically represented travel demand with macro-scopic supply models. Beyond its experimentally demonstrated compu-16



tational performance, the following features of the method are notewor-thy: (i) The macroscopic �ow model is coupled to the microscopic demandmodel through a �ltering mechanism that e�ectively removes most vehiclediscretization noise. (ii) Analytical features such as continuity or di�eren-tiability of the macroscopic tra�c �ow model are preserved despite of themicroscopic traveler representation.These properties have already been exploited in a practically relevant ap-plication: Assuming linearizable dynamics of the macroscopic tra�c �owmodel, it is possible to linearly predict the e�ect of individual�level drivingdecisions on the global network conditions through (11), which in turn pro-vides information about how to adjust the demand for, e.g., system optimalassignment or demand calibration. The latter application is described inlength in (Flötteröd, 2008). Another calibration�related advantage of theproposed simulation approach is the possibility to apply derivative�basedcalibration procedures for the identi�cation of parameters of the macro-scopic tra�c �ow model. Microscopic tra�c �ow models typically do notprovide such derivatives.The proposition of a full DTA solution procedure that exploits the proposedsimulation technique is beyond the scope of this article. It is conjecturedthat such a procedure can be developed for a stochastic user equilibriummodel where the particle population results from a Monte-Carlo evaluationof an analytical demand model that may be of great behavioral hetero-geneity. The advantage of this approach would be the maintenance of afully analytical model speci�cation, while the microsimulation techniqueenters the picture merely as a numerical tool for the e�cient evaluation ofheterogeneous demand distributions.ReferencesM. Ben-Akiva, et al. (1998). `DynaMIT: a simulation-based system fortra�c prediction'. Delft, The Netherlands. DACCORD Short Term Fore-casting Workshop. 17
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