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The VRP

It is given:
e a fleet of vehicles (K), each having a loading capacity (Q)
e a set of customers (V/), each requiring the delivery of goods
(di)
e a network (G=(V,A))
Decide:
e a route for each vehicle
Such that:
e each customer is in a route

e the sum of demands of the customers in each route does not
exceed the vehicle capacity

e the total travel distance is minimized
(BCP Fukasawa et al. '06, Book Golden et al eds. '08)
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The Split Delivery VRP

SDVRP: each customer can belong to more than one route, and
(fractionally) served by more than one vehicle:

Q-1 2 Q-1

potentially yielding a X2 saving.
It is a problem with several applications.
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Heuristics

Frizzel and Griffin ('95): grid network, tight multiple time
windows and nonlinear loading costs, contruction and local
search, instances with up to 150 customers

Bompadre Dror Orlin ('98): approximation algorithms

Archetti Savelsbergh Speranza ('06): tabu search

(up to 200 customers)

Archetti Savelsbergh Speranza ('07): MIP based heuristic
(same instances)

Chen Golden Wasil ('07): construction and MIP heuristic
(up to 200 customers)

Jin Liu Eksioglu ('07): column generation heuristic (good for
instances with large customer demands).
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Exact methods

Reduction to VRP (if data is rational in polynomial space and
time)

Dror Laporte Trudeau ('94): arc-based formulation, subtour
and connectivity constraints, branching (up to 20 customers
to optimality)

Belenguer Martinez Mota ('00): polyhedral study, model for a
relaxation of the problem

Jin Lin Bowden ('06): two-stage (partitioning—routing), with
7 new classes of valid inequalities (up to 20 customers to
optimality)
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Column generation

e Gendreau Dejax Feillet Gueguen ('07): SDVRP with TWs
e Set covering ILP formulation
e Column generation and hard pricing problem
e Relaxed model with easier pricing
e Few instances with up to 50 customers to optimality

e Desaulniers (CG2k8): SDVRP with TWs
e instances with up to 100 customers to optimality
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Our contribution

A problem reformulation and CG scheme which:
e yields good lower bounds on the optimal value

e is ‘simple’ to compute

allows for many VRP strategies to be applied (valid cuts,
branching ...)

‘nicely’ fits in a branch-and-price-and-cut scheme
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SDVRP flow formulation

Flow formulation (Dror Laporte Trudeau '94):
FLP

minsz: E E Cij E Xijk

ieVjeV  kekK

s.t. Z vik =1 VieV
keK
Z diyik < Q Vke K (1)
iev
injk 2 Yik VieV,ke K (2)
Jjev
subtour & VRP const ... (3)

xijk € {0,1},yic > 0 Vi,je V,ke K (4)
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SDVRP flow formulation

Flow formulation (Dror Laporte Trudeau '94):
FLP

minz,:p: E E Cij E Xijk

ievjeVv  keKk

S.t.ZYikzl VieV
keK
(xXijk> Yik) € Qk Vk eK

LP relaxation and convexification:
Qi = conv{ (X, yix) | 0 < xjie < 1,y > 0,(1),(2),(3)}
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DW reformulation

For each k € K, given an extreme point r: ()?U’-,)'/[) € Qy

Cr =2 icv jev CU

and

Xijk = Z;’A Vi,jeV
reQy
Yik = VA VieVv
rEQk
sty A =1
reQy

Ar 20 Vr e Qg
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Extended formulation

CCLP

min zccp = Z Z CrAr

keK reQy

sty > A1 Vie V(r) (1)
keK rey
Z A\ <1 Vk e K
reQy
Ar>0 Vk e K,re Qy

(+ tightening constraints)
observation: there always exists a solution in which only cols with
at most 1 fract coordinate are selected (set 2). (Jin et al '07)
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Simplifying the pricing
let be af = [y/]

for each k € K we define Q as the set of columns satisfying

E d— max d;+1<Q@Q
. ieV|al=1
ieV]ar=1 i

we observe that Q; C Qk
we substitute each covering constraint (1) as follows

D FA=1 VieVo

keK rey
> a1 Viev (2)
keK redy,

we obtain a relaxation of the master
(adding more vars and rounding up the lhs of > constr.).
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Final model
MP

min zyp = Z Z Cr A,

keK redi,

sty > afA>1 VieV (y

keK re,

Z/\rgl Vk € K
I’Eﬁk

A\ >0VkeK, rey

. .
& =D jev X jev CiXi — ey Vi @l + ...

i)
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Final model
MP
minzwp = Y 3 e
keK reﬁk
s.t. Z ai\r > yik Vk e K, Vi€V (vik)
rEQk

Z A\ <1 Vk e K

I’Eﬁk

keK

AN>0VkeK, reQu  yx>0VieV, kekK

. o
Cr = Eiev jev CU Ziev Yika; + ...
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Final model

MP
min zyp = Z Z CrAr
keK redi,
s.t. > A > yi Vk e K, Yie V (yik)
refy,

d A<t Vk e K
redy

Z yik =1 VieV
keK

Z diyik < Q Vke K
eV

AN>0VkeK, reQ  yx>0VieV, kekK

. L
Cr = Eiev jev CU Ziev Yika; + ...
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Quality of the bound

FLP: three-index flow based formulation
CCLP: DW reformulation of FLP

MP: our formulation

GDFG: Gendreau et al formulation

NCLP: DW reformulation of FLP leaving the capacity
constraints in the master problem

- CCLP
MP GDFG

T~
NCLP

\
FLP
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The pricing problem (PP)

The PP is a resource constrained elementary shortest path problem

e |abels contain both
D: the total demand of the visited customers
dsc: the demand of the potential split customer
e during extension, the capacity constraint can still be respected
if D+ d; — max(dj,dsc) +1 < Q.
e label S’ can dominate label S” only if
D/ < D//
D'~ dl < D" dl.
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Pricing problem - implementation

bounded bi-directional DP

Decremental State Space relaxation with smart core
initialization (RS '07)

Set U of unreachable customers (Feillet '04)
Greedy pricer

Heuristic DP pricer (relaxed domination criteria + Fractional
Knapsack Bounding)

involved multiple pricing policy (tackle symmetries)
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Computational results

We implemented the CG scheme in C using GLPK 4.16 as LP
solver, subset of Solomon instances (23 r- and 4 c- instances with

TWs)
| GDFG  MP
avg dual. gap 1.34% 1.64%
avg CPU time(s) 3.81 16.2
inst. with best bound 9 11
inst. with no dual. gap | 7 11



Results
oce

Additional remarks

o Effect of stabilization (using GLPK interior point method for
LPs):
50% iterations reduction (but much longer LP solution
times).
e Heuristics: only integrality checking.
e Branching: only naive branching implemented,
some instances with up to 50 customers solved to optimality.
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LPs):
50% iterations reduction (but much longer LP solution
times).
e Heuristics: only integrality checking.

e Branching: only naive branching implemented,
some instances with up to 50 customers solved to optimality.
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