The Constrained Multinomial Logit: A semi–compensatory choice model

F. Martinez (University of Chile)F. Aguila (University of Chile)R. Hurtubia (TRANSP-OR EPFL)

August 28, 2008

Introduction

- Traditional logit models assume a compensatory utility function (trade-off between attributes).
- This approach fails to recognize attribute thresholds in consumer behavior.
- A mixed strategy is proposed, using compensatory utilities with cutoff factors that that restrain choices to the available domain.

Contents of presentation

- Discrete choice problem
- Constrained random utility
- Constrained multinomial logit
- Application examples
- Calibration issues
- Conclusions

The constrained discrete choice problem

• Consumer's problem:

$$\max_{\delta_{ni}} \sum_{i \in C} \delta_{ni} U_n(X_i, p_i)$$

s.a
$$\sum_{i \in C} \delta_{ni} = 1, \quad \delta_{ni} \in \{0, 1\} \quad \forall i \in C$$

- Requires to:
 - Specify a utility function able to include constraints or
 - Specify a predefined set of available alternatives (*C*)

The constrained discrete choice problem

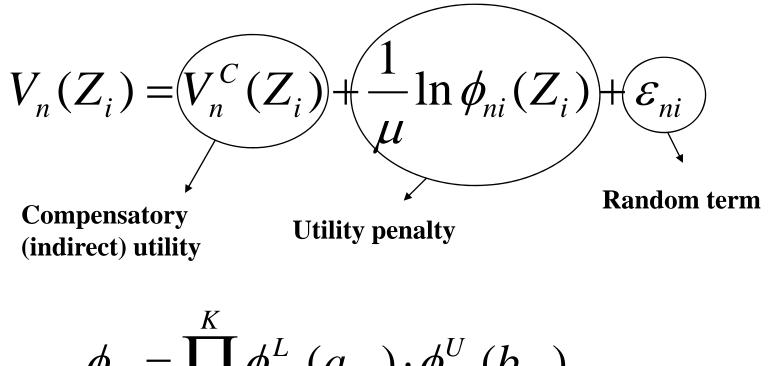
• Rational behavior: Max utility s.t. constraints:

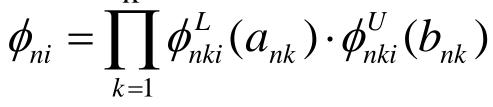
$$\begin{aligned} \max_{\delta_{ni}} \sum_{i \in C} \delta_{ni} U_n(X_i, p_i) \\ s.t \quad \sum_{i \in C} \delta_{ni} = 1, \quad \delta_{ni} \in \{0, 1\} \quad \forall i \in C \\ a_{nk} \leq X_{ik} \leq b_{nk} \quad \forall i \in C, k = \{1, \dots, K-1\} \\ a_{nK} \leq p_i \leq b_{nK} \quad \forall i \in C \end{aligned}$$

Approaches

 Non compensatory utility, e.g. elimination by aspects 	Tversky, 1972
 Two stage approach. Generate each consumer's feasible choice set. <i>Difficulty: large choice sets</i> Heuristic to reduce choice sets 	Manski, 77 Swait - BenAkiva, 87 BenAkiva - Boccara, 95 Cantillo - Ortúzar, 04 Morikawa, 95
• One step approach: reduced utility Deterministic model: linear penalties included in utility <i>Continuous but non-differentiable</i>	
Simulate availability/perception implicitly in the extended utility. Binomial logit	Cascetta - Papola, 01
STRANSP-OR	ECOLE POLYTECHNIQU

Constrained random utility

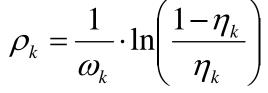




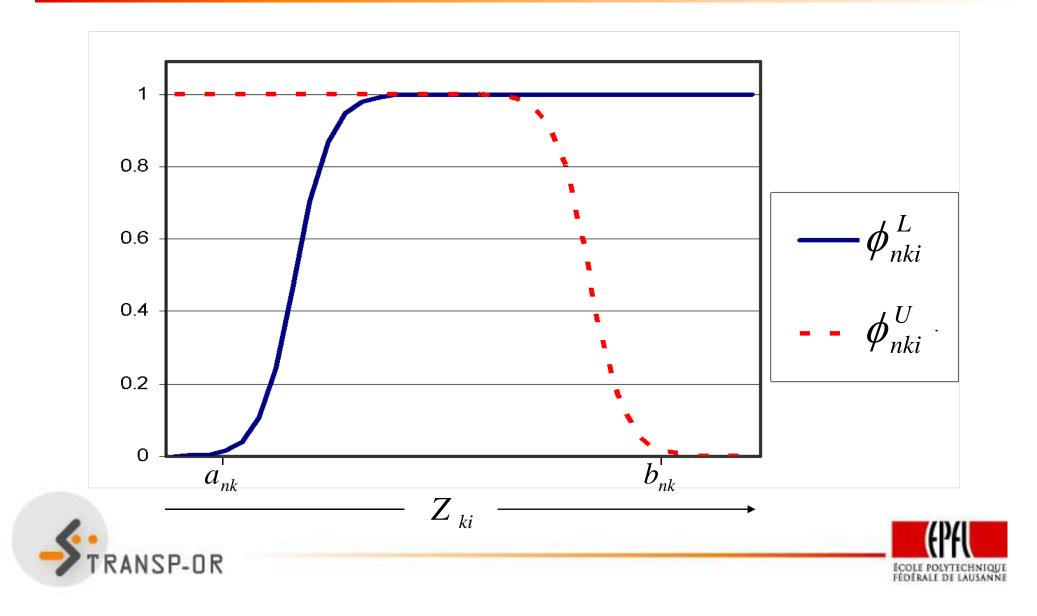
Constrained random utility

• Lower and upper cutoffs:

$$\phi_{nki}^{L} = \frac{1}{1 + \exp(\omega_{k}(a_{nk} - Z_{ki} + \rho_{k})))} = \begin{cases} \rightarrow 1 & \text{if } a_{nk} << Z_{ki} \\ \eta_{k} & \text{if } a_{nk} = Z_{ki} \end{cases}$$
$$\phi_{nki}^{U} = \frac{1}{1 + \exp(\omega_{k}(Z_{ki} - b_{nk} + \rho_{k})))} = \begin{cases} \rightarrow 1 & \text{if } b_{nk} >> Z_{ki} \\ \eta_{k} & \text{if } b_{nk} = Z_{ki} \end{cases}$$



Constrained random utility



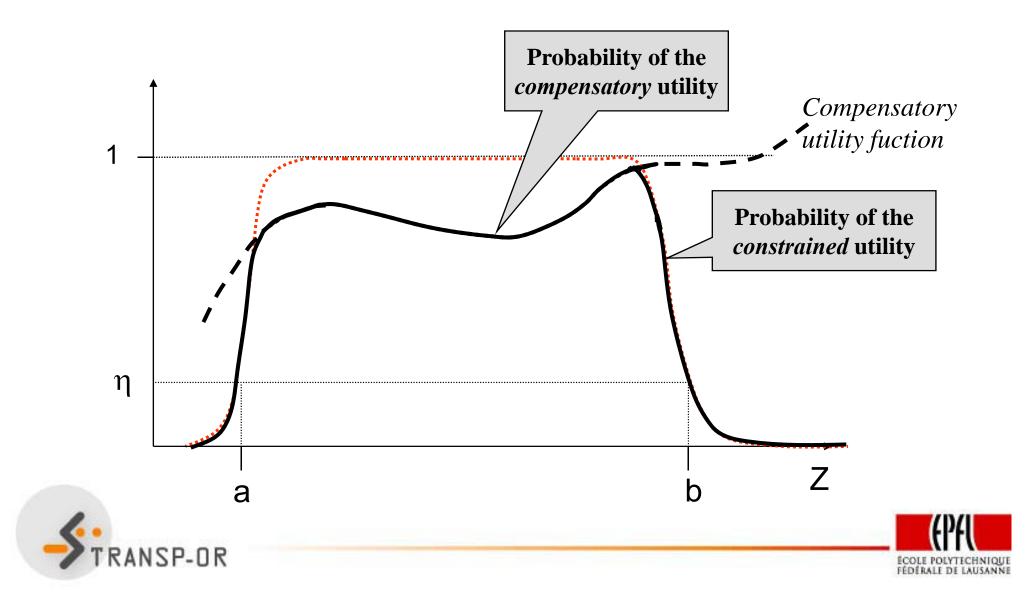
Constrained Multinomial Logit

$$V_n(Z_i) = V_n^C(Z_i) + \frac{1}{\mu} \ln \phi_{ni}(Z_i) + \varepsilon_{ni}$$

Gumbel distributed $(0,\mu)$

$$P_{ni} = \frac{\phi_{ni} \cdot \exp(\mu V_{ni}^{C})}{\sum_{j \in C} \phi_{nj} \cdot \exp(\mu V_{nj}^{C})}$$

Constrained Multinomial Logit



Constrained Multinomial Logit

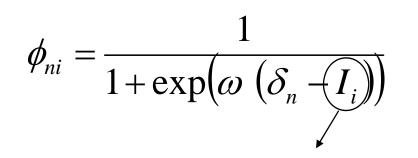
• Properties:

- Preserves the closed logit formula
- Represents a joint logit model
 - Modeling compensatory choice
 - Modeling constraint violation
- Applications:
 - Real estate supply: planning regulations
 - **Consumers**: income and time budgets, attribute perception, externalities and agglomeration economies
 - **Transport**: congestion

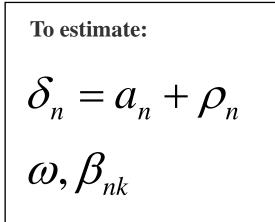
• Land-use model (Martinez et al, 2008):

$$P_{n/i} = \frac{\phi_{ni} \cdot \exp(B_{ni})}{\sum_{g \in C} \phi_{gi} \cdot \exp(B_{gi})}$$

$$B_{ni} = \alpha_n + \sum_k \beta_{nk} x_{ik}$$



Average income in zone *i*



Parameter	Income group	MNL $\phi = 1$	$CMNL \phi \neq 1$
α	2	-3.329	-0,238**
	3	-8,130	-2.272
	4	-14,228	-4.781
	5	-24.808	-10.257
In(floor space)	2	-1.840	-0.012
	3	-0.078	0.493
	4	-0.857	1.022
	5	0.346	2,502
In(zone income)	2	0.723	
	3	1.075	
	4	2.013	
	5	2.442	
Ac cessibili ty	1	0.283**	0.492**
	2	1,636	1,692
	3	2,262	2,295
	4	3,926	3,966
	5	3.125	3,377
δ _n	1		-63.769
	2		-23,953
	3		-18,290
	4		-11.601
	5		-0.069**
ω			0.242
Log-likelihood		-3.313	-3,316
Nr observations		600	600

Calibration of cutoff parameters for a land use model

Note: Estimates without asterix are significant (t-test>1.96), except when indicated by *(1.7<test-t<1.96) and by ** (t-test<1.7).

- Similar log-likelihood
- Cutoff parameters were possible to identify
- Constants are lower in the CMNL (behavior explained by cutoffs)
- Different forecasting results when constrained attribute changes significantly

Land-use model (MUSSA 2008)

Number of bidding households

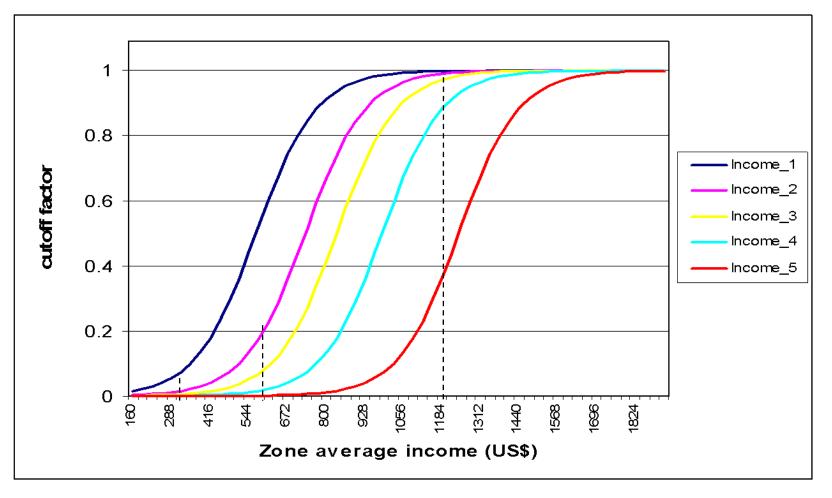
$$P_{n/i} = \frac{\phi_{ni} \cdot H_n \exp(B_{ni})}{\sum_{g \in C} \phi_{gi} \cdot H_g \cdot \exp(B_{gi})}$$

 $\phi_{ni} = \frac{1}{1 + \left(\frac{1 - \eta}{\eta}\right) \exp(\omega(a_n - I_i))} \qquad \rho = \frac{1}{\omega} \cdot \ln\left(\frac{1 - \eta}{\eta}\right)$

To estimate

Parameter	Income level				
	1	2	3	4	5
constant	0	0.658	-1.492	-3.799	-10.828
1_appartment	0	-0.118	2.842	-0.102	-0.186
ln(floor space)	0	-0.234	0.356	1.164	0.047
% non_res_surface	0.816	2.519	0.444	2.559	0
accessibility	1.071	1.288	1.736	2.875	2.570
a_n	3.542	8.630	11.879	16.610	24.553
ω	0.3239	0.3239	0.3239	0.3239	0.3239
Min tolerated average zone-income (US\$)	113	276	380	531	786

Income levels (US\$)	< 296	296 - 593	593 - 1186	1186 - 2371	> 2371
			·		



Calibration issues

• Explicit exogenous constraints (budget, capacity) are useful when forecasting demand.

Problems:

- Every observation complying with restrictions.
- Correlation between parameters in the cutoff and the compensatory utility function.

Conclusions

- The CMNL enhances the discrete choice models by imposing a realistic domain avoiding the choice set generation.
- Preserves the closed logit formula.
- Allows to include multiple constraints
- It can be used to model both endogenous and exogenous constraints.
- Requires further research on calibration methods

Questions?

