An application of the constrained multinomial Logit (CMNL) for modeling dominated choice alternatives

F. Martinez, University of Chile, CL; E. Cascetta, F. Pagliara, University of Naples Federico II, IT, M. Bierlaire, EPFL Lausanne, CH, K. W. Axhausen, ETH, Zurich, CH Speaker: Michel Bierlaire

transp-or.epfl.ch

Transport and Mobility Laboratory Ecole Polytechnique Fédérale de Lausanne, Switzerland

Outline

- Motivation
- Concept of cutoffs (Constrained logit model)
- Concept of dominance
- Using dominance in the Constrained Logit Model
- Preliminary results
- Perspectives

Motivation

- Discrete choice models.
- Concept of utility based on trade-offs.
- Attributes threshold generally not accounted for.
- Dominated alternatives may not even be considered in the choice set.
- How do we model that?

Motivation

- Manski (1977): individual-based choice-set based on deterministic constraints
- Swait and Ben-Akiva (1987): random constraints
- Swait (2001), Martinez et al. (2008): Attribute cutoffs
- Cascetta and Papola (2005), Cascetta et al. (2007): implicit perception, dominance values

Idea: combine cutoffs and dominance

Optimization problem of rational consumer n:

$$\max_{\delta_{ni}} \sum_{i \in \mathcal{C}} \delta_{ni} U_{in}(X_i)$$

subject to

$$\sum_{i \in \mathcal{C}} \delta_{ni} = 1, \quad \delta_{ni} \in \{0, 1\}, \forall i \in \mathcal{C}$$

But attributes are meaningful only within some bounds

$$\ell_{nk} \leq X_{ik} \leq u_{nk} \ \forall i \in \mathcal{C}, \forall k$$

Idea: relax the constraint in a probabilistic way

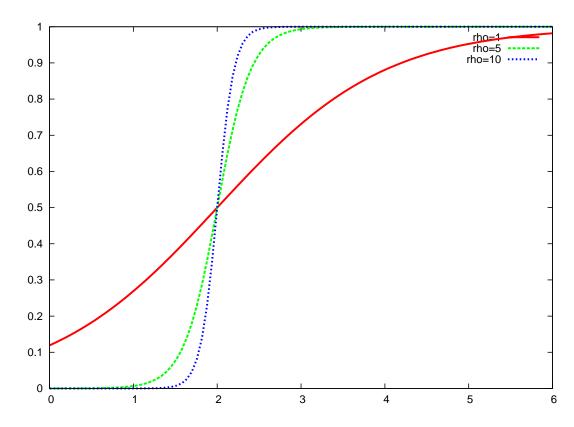
Example: constraint $\ell \leq X$

$$P(\text{considered}) = \frac{e^{\rho X}}{e^{\rho X} + e^{\rho \ell}} = \frac{1}{1 + e^{\rho(\ell - X)}}$$

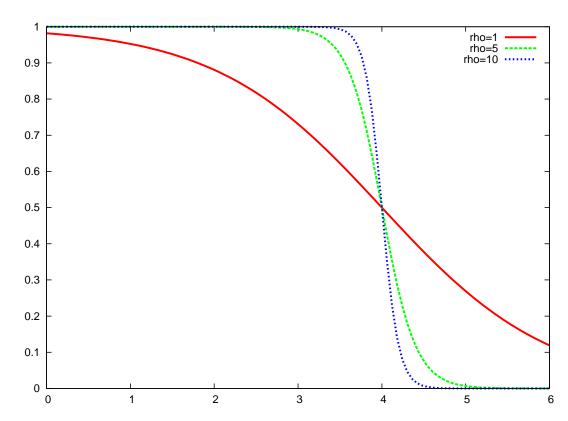
Example: constraint $X \leq u$

$$P(\text{considered}) = \frac{e^{-\rho X}}{e^{-\rho X} + e^{-\rho u}} = \frac{1}{1 + e^{\rho(X - u)}}$$

Example: $2 \le X$



Example: $X \leq 4$

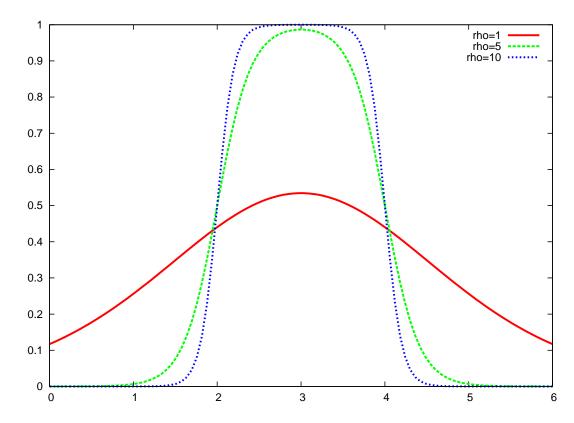


Constraint $\ell \leq X \leq u$

$$P(\text{considered}) = \frac{1}{1 + e^{\rho(\ell - X)}} \frac{1}{1 + e^{\rho(X - u)}}$$

We denote this quantity by $\phi_n(X)$

Example: $2 \le X \le 4$



The utility function now becomes

$$V_i = \sum_k \beta_k X_{ik} + \sum_{k^*} \frac{1}{\rho} \ln \phi_n(X_{ik^*})$$

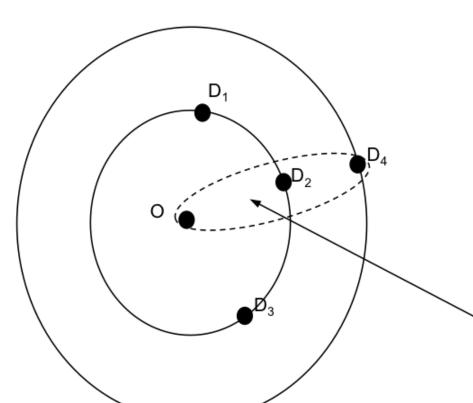
where k^* ranges only on constrained attributes. Note that

$$\ln \phi(X) = -\ln(1 + e^{\rho(\ell - X)}) - \ln(1 + e^{\rho(X - u)})$$

$$= -\ln(1 + e^{\rho\ell}e^{-\rho X}) - \ln(1 + e^{\rho X}e^{-\rho u})$$

Can be estimated, although it is difficult

- Destination choice (origin o)
- Dominance variables: reflect the spatial position and hierarchies of alternatives
- Dominance rules:
 - Weak dominance: Alternative d dominates alternative d* if
 - 1. $A_d > A_{d^*}$ (attractivity attribute)
 - 2. $c_{od} < c_{od^*}$ (generalized transportation cost)
 - Strong dominance: d strongly dominates d^* if it weakly dominates it and is along the path to reach d^* from o



 $WP_1 = WP_2 = WP_3 = WP_4$ $c_{OD1} = c_{OD2} = c_{OD3} < c_{OD4}$

D₁,D₂,D₃ dominate **WEAKLY** D₄

D₂ **STRONGLY** dominates D₄

area of possible zones STRONGLY dominating D₄

Examples of dominance variables for destination d. Consider 3 conditions:

- (a) d^* has average price lower than d
- (b) $\operatorname{dist}(o, d^*) < \operatorname{dist}(o, d)$
- (c) Strong rule: $dist(o, d^*) + dist(d^*, d) < dist(o, d)$

Strong global dominance variable nbr of d^* verifying (a), (b) and (c).

Weak global dominance variable nbr of d^* verifying (a) and (b)

Weak spatial dominance variable nbr of d^* verifying (b)

Strong spatial dominance variable nbr of d^* verifying (b) and (c).

Dominance variables are introduced directly in the utility function of an MNL model (Cascetta and Papola, 2005):

$$U_d = \sum_k \beta_k X_{dk} + \sum_j \gamma_j Y_{dj}$$

Dominance within CML

Idea: alternatives with a high dominance variable are not considered Constraint:

$$Y_{dj} \leq u$$

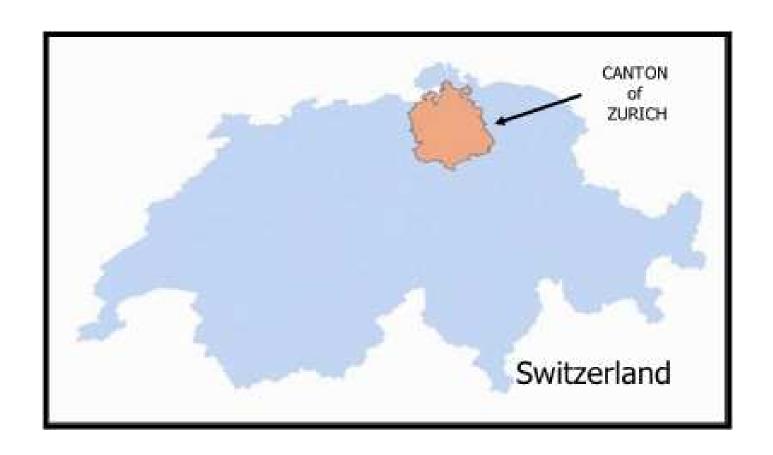
Problem: what is a reasonable threshold u?

Let's use the cutoffs:

$$\ln \phi(Y_{dj}) = -\ln(1 + e^{\rho Y_{dj}} e^{-\rho u}) = -\ln(1 + \bar{u}e^{\rho Y_{dj}})$$

We try to estimate \bar{u}

Case study: canton Zürich



Residential location choice

Model specification:

Price $_d$ average land price of zone d

LnStock $_d$ log of the housing stock in zone d

Logsum of the mode choice model for work pur-

pose (low-medium income)

Logsum of the mode choice model for work pur-

pose (high income)

LnWorkPlacesServ $_d$ log of the workplaces in services (retail, leisure,

services, incl. education and health) in d. Mea-

sure of quality of services.

MNL

Number of observations = 657

$$\mathcal{L}(0) = -3419.032$$

$$\mathcal{L}(\hat{\beta}) = -53.971$$

$$-2[\mathcal{L}(0) - \mathcal{L}(\hat{\beta})] = 6730.123$$

$$\rho^{2} = 0.984$$

$$\bar{\rho}^{2} = 0.983$$

			Robust		
Variable		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	$Logsum_{od}^H$	15.3	2.85	5.36	0.00
2	$Logsum_{od}^{LM}$	16.6	2.97	5.58	0.00
3	$Price_d$	-0.00160	0.000221	-7.24	0.00
4	$LnStock_d$	1.12	0.102	10.92	0.00
5	${\sf LnWorkPlacesServ}_d$	0.187	0.180	1.04	0.30

MNL

- Very high ρ^2 : 0.98
- Correct signs
- Significant parameters, except the level of services

Next model:

- Include the strong spatial dominance variable (based only on distance, not on price)
- Simple linear specification

$$V_d = \cdots + \beta \operatorname{dom}_d$$

Linear dominance

Number of observations = 657

$$\mathcal{L}(0) = -3419.032$$

$$\mathcal{L}(\hat{\beta}) = -47.055$$

$$-2[\mathcal{L}(0) - \mathcal{L}(\hat{\beta})] = 6743.955$$

$$\rho^{2} = 0.986$$

$$\bar{\rho}^{2} = 0.984$$

			Robust		
Variable		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	dom_d	-0.0859	0.0120	-7.17	0.00
2	$Logsum_{od}^H$	16.1	2.62	6.16	0.00
3	$Logsum_{od}^{LM}$	17.1	2.76	6.20	0.00
4	$Price_d$	-0.00245	0.000313	-7.82	0.00
5	$LnStock_d$	1.20	0.133	9.01	0.00
6	${\sf LnWorkPlacesServ}_d$	-0.172	0.198	-0.87	0.39

Linear dominance

- Significantly better fit: -2(-53.971 47.055) = 202.052
- Correct signs
- Significant parameters, except the level of services

Next model: cutoff

$$V_d = \cdots - \ln(1 + \bar{u} \exp(\rho \operatorname{dom}_d))$$

= \cdots - \ln(1 + 1000 \exp(\rho \dom_d))

Notes:

- the estimation of \bar{u} failed; its value continuously increased
- in the final model, the value $\bar{u}=1000$ was used.

Number of observations = 657

$$\mathcal{L}(0) = -3419.032$$

$$\mathcal{L}(\hat{\beta}) = -47.057$$

$$-2[\mathcal{L}(0) - \mathcal{L}(\hat{\beta})] = 6743.952$$

$$\rho^{2} = 0.986$$

$$\bar{\rho}^{2} = 0.984$$

			Robust		
Variable		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	$Logsum_{od}^H$	16.1	2.62	6.16	0.00
2	$Logsum_{od}^{LM}$	17.1	2.76	6.20	0.00
3	$Price_d$	-0.00245	0.000313	-7.82	0.00
4	$LnStock_d$	1.20	0.133	9.01	0.00
5	${\sf LnWorkPlacesServ}_d$	-0.172	0.198	-0.87	0.39
6	ho	0.0859	0.0120	7.17	0.00

- Same improvement than the linear specification
- Actually, the model is almost linear, due to the high value of \bar{u}
- Question: can we accept a linear specification?
- We test it using a Box-Cox transform.

$$V_d = \cdots + eta \, rac{\mathsf{dom}_d^\lambda - 1}{\lambda}$$

Box-Cox test

TRANSP-OR

Number of observations = 657

$$\mathcal{L}(0) = -3419.032$$

$$\mathcal{L}(\hat{\beta}) = -43.120$$

$$-2[\mathcal{L}(0) - \mathcal{L}(\hat{\beta})] = 6751.826$$

$$\rho^{2} = 0.987$$

$$\bar{\rho}^{2} = 0.985$$

			Robust		
Variable		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	dom_d	-0.579	0.0539	-10.74	0.00
2	$Logsum_{od}^H$	16.9	2.66	6.36	0.00
3	$Logsum_{od}^{LM}$	18.0	2.68	6.72	0.00
4	$Price_d$	-0.00292	0.000324	-9.00	0.00
5	$LnStock_d$	1.42	0.175	8.10	0.00
6	${\sf LnWorkPlacesServ}_d$	-0.328	0.257	-1.28	0.20
7	λ	0.434	0.0388	11.19	0.00

Box-Cox test

- λ is significantly different from 1.0 (t-test = 14.6)
- λ is significantly different from 0.0 (t-test = 11.2)
- The linear specification is rejected

Conclusions

- Main idea: combination of two concepts: cutoffs and dominance
- First estimation results produces large values for the variance of the cutoff, so that it is basically equivalent to the linear model
- But... the linear specification is clearly rejected by a formal test.
- Next steps:
 - Consider new dominance rules, more consistent with the use of cutoffs
 - Investigate other data sets

