Optimization of Uncertainty Features for Transportation Problems

Niklaus Eggenberg Matteo Salani and Prof. M. Bierlaire

Transport and Mobility Laboratory, EPFL, Switzerland

STRC, Monte-Verità 2008

STRANSP-OR

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Outline

- Optimization under Uncertainty: Existing Methods
- Uncertainty Feature Optimization (UFO)
- UFO: generalized framework
- Example: Multi-Dimensional Knapsack Problem
- Simulation Results for MDPK
- Future Work and Conclusions

Optimization with Noisy Data

Typical Examples

- Portfolio Optimization
- Vehicle Routing (GPS, transport problems, ...)
- Project Management
- Many others!

- 1. Neglect and solve deterministic problem
 - Not realistic (Herroelen 2005, Sahinidis 2004)

- 1. Neglect and solve deterministic problem
- 2. On-line Optimization
 - Data-driven
 - > Not feasible for some problems (e.g. airline

schedules)

- 1. Neglect and solve deterministic problem
- 2. On-line Optimization
- Characterize the Uncertainty and solve robust or stochastic problems
 - > Need explicit Uncertainty characterization
 - Hard to characterize/model in general
 - Leads to difficult problems
 - Sensitive to uncertainty characterization

Examples from Airline Scheduling

- O Increase plane's idle time (Al-Fawzana & Haouari 2005)
- O Decrease plane rotation length (Rosenberger et al. 2004)
- O Departure de-peaking (Jiang 2006, Frank et al. 2005)
- O More plane crossings (Bian et al. 2004, Klabjan et al. 2002)

0 ...

- 1. Neglect and solve deterministic problem
- 2. On-line Scheduling
- 3. Characterize the Uncertainty
- 4. Model Uncertainty Implicitly => <u>Uncertainty Features</u>

Uncertainty **F**eature **O**ptimization

- I. Increase robustness/stability (e.g. idle time)
- II. Increase recoverability (e.g. plane crossings)

UF: Definition

Given a problem with Decision Variables x

UF: a function $\mu(\mathbf{x})$ measuring the "quality" of a solution \mathbf{x}

OBJECTIVE: MAX $\mu(x)$

s.t. **x** feasible solution to initial problem

General Optimization Problem

$MIN \ f(x)$
s.t. $a(x) \le b$
 $x \in X$

Maximal Optimality Gap

ρ

UFO: Multi-Objective Problem

$\begin{array}{ll} OPT & [f(x), \mu(x)] \\ s.t. & a(x) \leq b \end{array}$

 $x \in X$

UFO with Budget Relaxation

$MAX \mu(x)$ s.t. $a(x) \le b$ $f(x) \le (1 + \rho)f^*$ $x \in X$

UFO Properties

- I. Complexity not changed if $\mu(x)$ similar to f(x)
- II. Implicit modeling of uncertainty
- III. Differentiate solutions on optimal facet
- IV. "Plug" tool for any existing method
- V. Can use UF based on explicit uncertainty set
- VI. Generalizes existing methods

Stochastic Problem as an UFO

Given an Uncertainty Set **U** with a probability measure on it

$\begin{array}{ll} \min & E_U\{f(\boldsymbol{x})\}\\ s.\,t. & a(x) \leq b\\ & x \in X \end{array}$

Stochastic Problem as an UFO

$MAX \ \mu(x) = -E_U\{f(x)\}$ s.t. $a(x) \le b$ $f(x) \le (1 + \infty)f^*$ $x \in X$

Robust Optimization (Bertsimas & Sim 2004)

- Solving Linear Problems with noisy data
- Solution is feasible in the worst case
- Worst case parametrized and solutiondependent

BONUS

• Methodology to compute maximal values for the parameters to ensure a robust solution exists

• Similar to Fischetti & Monaci, 2008 in this context

<u>Multi-Dimensional Knapsack</u> Problem

$$\max \sum_{i=1}^{N} p_{i} x_{i}$$

s.t.
$$\sum_{j=1}^{N} a_{ij} x_{i} \leq b_{i} \quad \forall i = 1, \dots, M$$
$$x \in \mathbb{Z}_{+}^{N}$$

MDKP with Max Taken Object UFO

$$\min \left\{ \mu(\boldsymbol{x}) = \max_{i=1,\dots,N} \{x_i\} \right\}$$

s.t. $A\boldsymbol{x} \leq \boldsymbol{b}$
 $\boldsymbol{p}^T \boldsymbol{x} \geq (1 - \rho)\boldsymbol{p}^*$
 $\boldsymbol{x} \in \mathbb{Z}_+^N$

Other derived **UF**

- Max Taken (MTk): $\mu(x) = \max_{i=1,...,N} \{x_i\}$
- Diversification (Div):

$$\mu(\boldsymbol{x}) = \sum (\min\{1, x_i\})$$

• Impact Ratio (IR):

$$\mu(\boldsymbol{x}) = -\max_{i} \frac{a_{ij} x_j}{b_i}$$

• 2Sum: $\mu(\mathbf{x}) = -\max_{i,j \neq k} \frac{a_{ij}x_j + a_{ik}x_k}{b_i}$

Instances with 50 objects

- 1, 5 or 10 constraints
- Profit-weight correlation or not
- Marginal Profit Distribution: clustered, normal, wide
- Deviation Matrix \hat{A} proportional to A (0.2, 0.5, 0.8)
- Maximal varying coefficients: 2 or 50

IN TOTAL: 3240 Instances Described by p, b, A and \hat{A}

Simulation

A scenario is characterized by it's realized constraint matrix \tilde{A} :

- $\hat{A} : \tilde{A} \sim \rho \hat{A}$ matrix ($\rho = 0.75, 1.0$)
- $A : \tilde{A} \sim \rho A$ matrix ($\rho = 0.1, 0.2, 0.5$)
- $R : \tilde{A}$ randomly with average coefficient $\tilde{a}_{ij} = 10, 20, 30$

5 scenarios per instance => 129'600 scenarios

Comparison Criteria

- normalized UF value (max is always 1.0)
- # unfeasible scenarios (and percentage)
- Optimality gap to scenario's optimal solution
- Maximal number of violated constraints

MDKP Package

- Generation of problems
- Solve Models inc. Robust (combining possible)
- Simulation with user-defined parameters

Planned to be online soon.

TESTERS ARE WELKOME!!!

Different Simulations for clustered profit-correlated instances with 10 constraints

		Det	Rob_Â	Rob_A_0.1	MTk_0.2	Div_0.1	IR_0.3	2Sum_0.1
75, 100 (1800 Scen.)	UF value	-	-	-	0.974	0.610	0.962	0.932
	# Infeas.	1642	166	1014	914	1199	85	1174
	Infeas [%]	91.22	9.22	56.33	50.78	66.61	4.72	65.22
	Avg Opt Gap [%]	0.56	20.93	4.72	10.53	5.29	31.04	5.56
	Max Opt Gap [%]	25.21	68.36	38.91	49.81	50.47	59.53	41.99
	Max # Violated	9	3	7	4	5	1	5
A 10, 25, 50 (2700 Scen.)	UF value	-	-	-	0.974	0.610	0.962	0.932
	# Infeas.	2404	489	1232	1141	1544	76	1566
	Infeas [%]	89.04	18.11	45.63	42.26	57.19	2.81	58.00
	Avg Opt Gap [%]	0.56	18.13	5.09	11.38	6.03	30.04	6.03
	Max Opt Gap [%]	34.03	57.07	40.47	47.12	40.39	52.16	40.19
	Max # Violated	8	6	7	3	5	2	5
R 10, 20, 30 (2700 Scen.)	UF value	-	-	-	0.974	0.610	0.962	0.932
	# Infeas.	2616	1079	2100	1506	1974	171	1962
	Infeas [%]	96.89	39.96	77.78	55.78	73.11	6.33	72.67
	Avg Opt Gap [%]	0.45	17.32	3.36	11.24	5.36	33.33	5.53
	Max Opt Gap [%]	46.67	62.71	51.87	57.25	51.81	61.33	51.65
	Max # Violated	8	7	8	4	6	2	6

Performance evolution for increasing budget ρ (same instances)

		2Sum_0.1	2Sum_0.2	2Sum_0.3	IR_0.1	IR_0.2	IR_0.3	
75, 100 (1800 Scen.)	UF value	0.932	0.958	0.962	0.932	0.958	0.962	
	# Infeas.	1174	528	90	1220	528	85	
	Infeas [%]	65.22	29.33	5.00	67.78	29.33	4.72	
	Avg Opt Gap [%]	5.56	16.17	30.60	5.13	16.24	31.04	
	Max Opt Gap [%]	41.99	52.36	59.53	42.18	48.58	59.53	
	Max # Violated	5	3	1	5	3	1	
A 10, 25, 50 (2700 Scen.)	UF value	0.932	0.958	0.962	0.932	0.958	0.962	
	# Infeas.	1566	579	84	1671	592	76	
	Infeas [%]	58.00	21.44	3.11	61.89	21.93	2.81	
	Avg Opt Gap [%]	6.03	16.85	29.57	5.4	16.83	30.04	
	Max Opt Gap [%]	40.19	46.95	46.75	40.39	46.99	52.16	
	Max # Violated	5	3	2	5	3	2	
R 10, 20, 30 (2700 Scen.)	UF value	0.932	0.958	0.962	0.932	0.958	0.962	
	# Infeas.	1962	997	174	2001	996	171	
	Infeas [%]	72.67	36.93	6.44	74.11	36.89	6.33	
	Avg Opt Gap [%]	5.53	16.73	32.93	5.33	16.81	33.33	
	Max Opt Gap [%]	51.65	57.11	60.71	51.81	57.15	61.33	
	Max # Violated	6	3	2	5	4	2	

Performance for combined (normalized) objectives

		MTK_2Sum_0.3	_Rob_A_0.1 Div_1.0	Rob_A_0.1	Rob_A_0.2		
75, 100 (1800 Scen.)	UF value	0.969	1.475	-	-		
	# Infeas.	102	514	1014	643		
	Infeas [%]	5.67	28.56	56.33	35.72		
	Avg Opt Gap [%]	33.02	16.47	4.72	10.93		
	Max Opt Gap [%]	80.03	53.41	38.91	44.15		
	Max # Violated	2	5	7	5		
A 10, 25, 50 (2700 Scen.)	UF value	0.969	1.475	-	-		
	# Infeas.	111	542	1232	700		
	Infeas [%]	4.11	20.07	45.63	25.93		
	Avg Opt Gap [%]	31.90	16.93	5.09	11.59		
	Max Opt Gap [%]	76.44	51.97	40.47	45.34		
	Max # Violated	2	5	7	5		
	UF value	0.969	1.475	-	-		
10, 20, 30 00 Scen.)	# Infeas.	209	969	2100	1503		
	Infeas [%]	7.74	35.89	77.78	55.67		
	Avg Opt Gap [%]	34.94	17.16	3.36	9.18		
R 1 (27	Max Opt Gap [%]	80.20	61.17	51.87	55.81		
	Max # Violated	3	5	8	6		

Aggregated Results

Number of constraints matters

Feasibility failure for the deterministic model 1 constraint 37% 5 constraints 84% 10 constraints 01%

Aggregated Results

Clustered M.P. Distribution works best for UFs

Feasibility failure for the IR_0.3 modelClustered degeneration29%Normal degeneration55%Wide degeneration63%

Robust less sensitive to degeneration & correlation

Aggregated Results

- UFO less sensitive to change in noise & number constraints
- Robust sensitive to noise change
- Budget is a decent optimality loss estimator

Future Work

- Application of UFO to Airline Transportation
- Find an UF generator ?

Conclusions

- UFO allows to cope with uncertainty IMPLICITLY
- Using explicit uncertainty model is still possible
- UFO can be combined with any already existing method
- It is not sensitive to erroneous noise characterization

THANKS for your attention

Any Questions?

Robust problem as an **UFO**

Original LP Problem

MAX $\boldsymbol{c}^T \boldsymbol{x}$

s.t. $Ax \le b$ $x \in X$

Robust problem as an UFO

Formulation of Bertsimas and Sim (2004)

MAX $c^T x$

s.t. $Ax + \beta(x, \Gamma) \le b$ $x \in X$

$$\tilde{a}_{ij} \in [a_{ij} - \hat{a}_{ij}; a_{ij} + \hat{a}_{ij}] \quad \forall \ j \in J_i$$

$$\beta_{i}(x, \Gamma_{i}) = \max_{\{S_{i} \cup \{t_{i}\} | S_{i} \in J_{i}, |S_{i}| = [\Gamma_{i}], t_{i} \in J_{i} \setminus S_{i}\}}$$

$$\left\{\sum_{j\in S_{i}} \hat{a}_{ij} \mid x_{j} \mid +(\Gamma_{i} - \lfloor \Gamma_{i} \rfloor) \hat{a}_{it_{i}} \mid x_{t_{i}} \mid \right\}$$

Start with Feasibilty Problem $f^* = MIN \quad f(x)$

$= MIN \left[Ax + \beta(x, \mathbf{J})\right] - \mathbf{b}$ s.t. $x \in X$

Define **UF** and budget

$$\mu(\boldsymbol{x}) = \boldsymbol{c}^T \boldsymbol{x} \qquad \rho = \max_i \left\{ \frac{\rho_i f_i(\boldsymbol{x}^*)}{f^*} - 1 \right\}$$

Where

$$\rho_i = \begin{cases} \frac{\bar{\beta}_i(\boldsymbol{x}, \Gamma_i)}{f_i(\boldsymbol{x}^*)} & \text{and} \\ 0 & \text{if } f_i(\boldsymbol{x}^*) = 0 \end{cases}$$

 $\beta(x, \mathbf{J}) = \beta(x, \mathbf{\Gamma}) + \overline{\beta}(x, \mathbf{\Gamma})$

UFO formulation $MAX \ \mu(x) = \mathbf{c}^T \mathbf{x}$ s.t. $[A\mathbf{x} + \boldsymbol{\beta}(\mathbf{x}, \mathbf{J})] - \mathbf{b} \le (1 + \rho)f^*$ $\mathbf{x} \in X$

Replace Elements in Constraint $[A\mathbf{x} + \boldsymbol{\beta}(\mathbf{x}, \mathbf{J})] - \mathbf{b} \le (1 + \rho)f^*$ $[Ax + \beta(x, I)] - b \leq \overline{\beta}(x, \Gamma)$ Which is equivalent to $Ax + \boldsymbol{\beta}(x, \boldsymbol{J}) - \boldsymbol{\overline{\beta}}(x, \boldsymbol{\Gamma}) \leq \boldsymbol{b}$ $Ax + \boldsymbol{\beta}(x, \Gamma) \leq \boldsymbol{b}$

Retrieve Robust Formulation $MAX \ \mu(x) = c^T x$ $s.t. Ax + \beta(x, \Gamma) \leq b$

 $x \in X$

Q.E.D.

