Uncertainty Feature Optimization for the Airline Scheduling Problem

Niklaus Eggenberg Dr. Matteo Salani

Funded by Swiss National Science Foundation (SNSF)

FRANSP-DRTransport and MobilityLaboratory, EPFL, Switzerland

- Head: Prof. Michel Bierlaire
- http://transp-or.epfl.ch
- > 17 members
- > 8 PhD Students
- ➢ 3 Post-Docs

Research Activities: http://transp-or2.epfl.ch/projets.php

Transportation Research

• A Prototype Transportation Land-use Model for the Region of Lausanne, Switzerland

Operations Research

- Optimization of container terminal operations
- Simulation-based optimization of the performance in hospital operating suites

Discrete Choice Models

• Behavioral modeling of human experts for scene analysis

Miscellaneous

Invariant features in omnidirectional images

Outline

- Uncertainty Feature Optimization (UFO)
- Application to Airline Scheduling
- The ROADEF Challenge 2009
- Computational Results
- Future Research

Optimization with Noisy Data

- Real world problems are due to noisy data
- Noise should not be neglected
- Methods using explicit uncertainty sets:
 - × Uncertainty sets are hard to model
 - × Methods are computationally hard
 - × Solutions are sensitive to errors in noise modeling

=> Uncertainty Features capture noise implicitly

Uncertainty Feature Optimization (UFO) Eggenberg, Salani and Bierlaire (2008)

Uncertainty Feature (UF): an implicit noise characterization

- ✓ No uncertainty set required
- Problem Complexity similar to original problem*
- Not sensitive to modification in noise's nature
- \checkmark Models what practitioners do for uncertain problems
- Requires a posteriori validation

UFO Framework

Deterministic Problem

 $z^* = \min f(x)$ s.t. $a(x) \le b$

 $x \in X$

UFO Formulation with scalar UF μ : $X \to \mathbb{R}$ max $\mu(x)$ s.t. $a(x) \leq b$ $f(x) \leq (1+\rho)z^*$ $x \in X$ **BUDGET CONSTRAINT**

Remarks

- UFs should increase robustness or recoverability
- Using UFs based on uncertainty sets is possible
 ⇒ Can express Stochastic Optimization and Robustness of Bertsimas and Sim (2004) as UFs
- Can extend any existing model with UFO
- Complexity is similar as long the UF is of same complexity than the deterministic problem

Application to Airline Scheduling

Desired Properties of a Schedule

- Absorb Delays
- Avoid disruption propagation effect
- Easier to recover in case of disruption

Methods used by Practitioners

- Increase idle time
- Increase number of plane crossings

Aircraft Scheduling Problem (ASP)

- A set of flights
- A set of aircrafts (fleets)
- A departure time and plane type
- for each flight (maximizing some
- potential revenue metric)

- One feasible route for each
- aircraft
- All flights are covered
- Aircraft assignment and
- departures as close as possible to
- input

ASP Model Eggenberg, Salani and Bierlaire (2008b)

$$\min \sum_{r \in \Omega} c_r x_r$$

$$t. \quad \sum_{r \in \Omega} b_r^f x_r = 1 \quad \forall f \in F$$

$$\sum_{r \in \Omega} b_r^s x_r = 1 \quad \forall s \in S$$

$$\sum_{r \in \Omega} b_r^p x_r \leq 1 \quad \forall p \in P$$

S

 $x_r \in \{0,1\}$

Column Generation Algorithm

- Use Constraint Specific Networks for each aircraft
- Pricing is a Resource Constrained Elementary Shortest
 Path Problem (RCESPP) on the networks

See Eggenberg, Salani and Bierlaire (2008b)

ASP: Budget Allocation

Lowest possible deviation of departure times

 C_{Γ} = total deviation from original schedule of route r Optimum of deterministic problem = 0 Budget Constraint => $f(x) \le (1+\rho)0 = 0 = z^*$

SOLUTION: Use a constant C for total deviation

$$\sum_{r\in\Omega}c_rx_r \leq C$$

General UFO Formulation

$$\max \quad \mu(x)$$
s.t.
$$\sum_{r \in \Omega} b_r^f x_r = 1 \quad \forall f \in F$$

$$\sum_{r \in \Omega} b_r^s x_r = 1 \quad \forall s \in S$$

$$\sum_{r \in \Omega} b_r^p x_r \le 1 \quad \forall p \in P$$

$$\sum_{r \in \Omega} c_r x_r \le C$$

$$x_r \in \{0,1\}$$

Used Uncertainty Features

Sum of Minimum Idle Times (MIT)

Total Idle Time (IT)

$$\mu_{MIT}(x) = \sum_{r \in \Omega} \delta_r^{MIN} x_r$$

 $\mu_{IT}(x) = \sum_{r=0}^{\infty} \delta_r x_r$

Number of Plane Crossings (CROSS) $\mu_{CROSS}(x)$

The ROADEF Challenge 2009

- Solve the disrupted airline recovery problem
- Qualification: 10 instances A01 A10
- •1012 flights, 85 aircrafts (A05 and A10)
- 608 flights, 85 aircrafts (A01-A04 and A06-A09)
- Provided solution and cost checkers

Tests Performed

• Compare a priori UF values for original schedule Or and schedules obtained by IT, MIT and CROSS

- Adapt disruption to schedule
- Compare a posteriori results of our recovery algorithm

A priori results (A01-A04, A06-A09)

MODEL	Or	IT	IT	IT	MIT	MIT	MIT	CROSS	CROSS	CROS
		2500	5000	10000	2500	5000	10000	2500	5000	10000
IT [k min]	12	14.5	17	19.2	13.5	14.1	16.8	11.5	11.4	11.1
MIT [min]	790	1025	1110	1255	2280	2225	3330	570	550	515
CROSS	3430	3462	3501	3489	3448	3426	3418	3510	3508	3522
Loss of Revenue [%]	0.0	0.19	0.21	1.02	0.40	1.35	1.85	0.91	1.70	1.95

Max Cost: 169,539€ (Avg: 87,426€ i.e. 1.00%) Max Passengers lost: 1.31% (Avg: 0.6%)

A posteriori results (A01-A04, A06-A09)

MODEL	Or	IT	IT	IT	MIT	MIT	MIT	CROSS	CROSS	CROSS
		2500	5000	10000	2500	5000	10000	2500	5000	10000
Cost [k€]	788.8	814.9	633.4	555.4	722.8	488.7	493.5	674.6	580.3	574.4
Savings [%]	0.00	-3.19	19.70	29.59	8.37	38.05	37.44	14.48	26.43	27.18
Avg. Psg Delay [min]	34.6	35.1	38.7	24.6	30.0	29.5	29.8	27.9	29.5	20.8
# Psg Canceled	582.8	580	499.3	420.0	546.9	384.5	385.3	500.0	422.0	429.4

Maximum Savings: 905,739.3€ (82.7%)

UF vs Recovery Costs

UF vs Average Delay

UF vs Canceled Flights

Bigger Instances (A05 & A10)

Results show same behavior, but there are convergence difficulties.

Conclusions

- UFO leads to *better* (more recoverable) solutions
- MIT 10000: Reduction of recovery costs by 37.4% in average
- Loss of revenue of 1.00% in average (87,426€)
- Number of passengers lost less than 0.6% in average

Future Work

- Improve convergence for bigger instances
- Try different UFs and recovery algorithms
- Model extensions:
 - Missed connections
 - Crew scheduling
- Application of UFO to other problems

THANKS for your attention! Any Questions?

References

http://transp-or2.epfl.ch/pubsPerPerson.php?Person=EGGENBERG or contact me at neg@mit.edu

