Yard traffic and congestion in container terminals

Ilaria Vacca
Transport and Mobility Laboratory, EPFL

joint work with
Michel Bierlaire, Matteo Salani \& Arnaud Vandaele
$6^{\text {th }}$ International Conference on Computational Management Science May 1st, 2009

Outline

- Introduction and motivation
- Modeling
- Congestion measures
- Optimization
- Computational results
- Future work

Container Terminals (CT)

- Zone in a port to import/export/transship containers
- Different areas in a terminal: berths, yard, gates
- Different types of vehicles to travel between the yard and the berth
 FEDIRALE DE LAUSANNE

Motivation

- Along the quay, containers are loaded/unloaded onto/from several boats
- Containers' transfer lead to a high traffic in the yard zone
- The berth\&yard allocation plan assigns ships to berths and containers to yard blocks
- Terminal planners usually minimize the total distance travelled by the carriers, disregarding:
- Congestion issues (operations slowdowns because of bottlenecks)
- Alternative solutions (symmetries)

Aim of this study:

\checkmark Model the terminal and develop measures of congestion
\checkmark Evaluate the impact of the optimization of such measures on the terminal

Assumptions

- We take into account flows of containers from the quayside to the yard
- Given a berth\&yard allocation plan, we define a path as an OD pair:
- origin (berth)
- destination (block)
- number of containers
- We consider flows of containers over a working shift
- Decisions could be taken on:
- the berth allocation plan (berths and ships)
- the yard allocation plan (destination blocks)
- demand splitting over blocks
\rightarrow In this study: given a set of p paths, determine the destination blocks fedirall di laushnne

Literature

- Layout:
- Kim et al. An optimal layout of container yards, OR Spectrum, 2007.
- Congestion:
- Lee et al. An optimization model for storage yard management in transshipment hubs, OR Spectrum, 2006.
- Beamon. System reliability and congestion in a material handling system, Computers Industrial Engineering, 1999.

Modeling the terminal

Basic element

Modeling the terminal

- ($m \times n$) basic elements of 2 blocks each compose the yard
- coordinates system for OD pairs $\left(x_{o}, y_{o}\right)-\left(x_{d}, y_{d}\right)$
- only berth-to-yard and yard-toberth paths are considered

yard
berth

Routing rules

- Horizontal lanes are one way
- Vertical lanes are two way
- Toward the block, closest left vertical lane, turn right.
- Toward the quay, turn right at the first vertical lane.
- Back to origin berth position.
- Distance travelled, closed formula (Manhattan)

yard

Symmetries

Minimize distance:

in a 2×2 yard with 2 paths, no capacity on blocks

Congestion measures

- Aim of the study:
- estimate the state/congestion of a yard when implementing a plan
- provide simple closed formulas, to be used as secondary objectives
- Factors taken into account:
- interference between blocks sharing the same lane
- lane congestion
- interference between paths ECOLE POLYTRCHNIQU

1. Block congestion

- congestion among blocks sharing the same lane
- "area": blocks with the same entrance node
- \# of areas: $s=2 n+n(m-1)$
- c_{j} : \# of containers on path $j=1$...p
- \boldsymbol{N}_{i} : \# of containers allocated to area i
- \boldsymbol{N}^{*} : \# of containers in each area in the optimal solution (even distribution among areas)

$$
C_{b}=\frac{D}{D_{\max }}=\frac{\sum_{i=1}^{s}\left|N_{i}-N^{*}\right|}{\frac{2(s-1)}{s} \sum_{j=1}^{p} c_{j}}
$$

- 1-norm and 2-norm w.r.t. the best over the worst case

1. Block congestion

- 3 paths in a 2×3 yard (12 blocks) \rightarrow possible solutions : $12^{3}=1728$
- number of solutions with same block congestion (distribution of 2-norm C_{b}) :
 féDIRALE DE LAUSANNE

2. Edge congestion

- this indicator simply measures the average traffic over an edge

$$
\begin{array}{lll}
\theta=\max _{k} f_{k} \\
\mu=\min _{k} f_{k} & \theta_{\max }=\sum_{j=1}^{p} c_{j} & \mu_{\min }=0
\end{array}
$$

$$
C_{e}=\frac{\theta-\mu}{\theta_{\max }-\mu_{\min }}=\frac{\theta-\mu}{\sum_{j=1}^{p} c_{j}}
$$

- the best traffic situation is when flows are spread over the network: $\mu^{*}=\frac{\sum_{j=1}^{p} c_{j}}{n}$

$$
C_{e}=\frac{\theta-\mu^{*}}{\theta_{\max }-\mu^{*}}=\frac{\theta-\mu^{*}}{\sum_{j=1}^{p} c_{j}-\frac{\sum_{j=1}^{p} c_{j}}{n}}=\frac{(n) \theta-\sum_{j=1}^{p} c_{j}}{(n-1) \sum_{j=1}^{p} c_{j}}
$$

2. Edge congestion

- 3 paths in a 2×3 yard (12 blocks) \rightarrow possible solutions : $12^{3}=1728$
- number of solutions with same edge congestion (distribution of improved C_{e}):

3. Path congestion

- interference among "crossing" paths
- proximity matrix $\boldsymbol{P}(2 p \times 2 p)$
- p berth-to-yard $+p$ yard-to-berth paths
- P is symmetric, 0 on the diagonal, 1 if two paths are "neighbours"
- definition of P is influenced by routing rules
- worst case: all 1 matrix (except diagonal)

$$
C_{p}=\frac{p}{N_{\max }}=\frac{1^{T} . P . c}{(2 n-1) \sum_{i=1}^{2 n} c_{i}}
$$

Example

- 3 paths in a 2×3 yard
- Distribution of the objective function $z=\lambda_{b} \cdot C_{b}+\lambda_{e} \cdot C_{e}+\lambda_{p} \cdot C_{p}$

Example

Objective function: $z=\lambda_{b} \cdot C_{b}+\lambda_{e} \cdot C_{e}+\lambda_{p} \cdot C_{p}$

	Nb solutions	Nb different values	MIN	Nb MIN	CPU (s)
(2x2) - 3 paths	512	46	0,4764	10	0,2
(2x2)-4 paths	4096	282	0,3473	30	1,4
(2x2) - 5 paths	32768	1831	0,5068	21	12,23
(2x2) - 6 paths	262144	7354	0,461	12	112,85
(2x3)-3 paths	1728	52	0,4764	116	0,67
(2x3)-4 paths	20736	470	0,3473	350	7,29
(2x3)-5 paths	248832	4271	0,13	108	121,65

Optimization algorithm: GRASP

- GRASP: Greedy Randomized Adaptive Search Procedure
- Objective: assign a destination to each path such that congestion is minimized
- The algorithm builds a solution iteratively:
- at each step, the destination for one specific path is chosen

Optimization algorithm: GRASP

	MIN	CPU (s) (enumeration)	CPU (s) (algorithm)	Nb iteration to reach optimum
(2x2) - 3 paths	0,4764	0,2	0,1	5
(2x2) - 4 paths	0,3473	1,4	0,2	10
(2x2) - 5 paths	0,5068	12,23	0,5	30
(2x2) - 6 paths	0,461	112,85	3	150
		0,67	0,1	5
(2x3) - 3 paths	0,4764	7,29	0,1	5
(2x3) - 4 paths	0,3473	121,65	0,5	25
$\mathbf{(2 \times 3) - 5}$ paths	0,13	$\mathbf{? ?}$		15
(2x3) - 6 paths	0,1953			1000

Computational tests

More realistic instances

	in 0,1s	in 1s	in 5s	in 10s	in 20s	in 60s
$\mathbf{(3 \times 1 0) - \mathbf { 3 }}$	0,4764	0,4764	0,4764	0,4764	0,4764	
$\mathbf{(3 \times 1 0) - \mathbf { 4 }}$	0,3473	0,3473	0,3473	0,3473	0,3473	
$\mathbf{(3 \times 1 0) - \mathbf { 5 }}$	0,13	0,13	0,13	0,13	0,13	
$\mathbf{(3 \times 1 0) - \mathbf { 6 }}$	0,389	0,195	0,195	0,195	0,195	
$\mathbf{(3 \times 1 0) - \mathbf { 7 }}$	0,343	0,267	0,267	0,267	0,267	
$\mathbf{(3 \times 1 0) - \mathbf { 8 }}$	0,26	0,1692	0,1646	0,1646	0,1646	
$\mathbf{(3 \times 1 0) - \mathbf { 9 }}$	0,304	0,2763	0,2763	0,2763	0,2763	
$\mathbf{(3 \times 1 0) - \mathbf { 1 5 }}$	0,2446	0,1931	0,1705	0,1582	0,1817	0,1602
$\mathbf{(3 \times 1 0) - \mathbf { 2 0 }}$	0,3275	0,2276	0,1663	0,1624	0,1609	0,1389

Conclusions and Outlook

- simple closed formulas to evaluate congestion in container terminals
- useful to differentiate symmetric solutions with equal distance

Ongoing work:

- validation of our approach via a CT simulator
- multi-objective optimization problem (explore other than weighted sum)
- improve the algorithm: study an exact approach; relax the assumptions, i.e. extend the set of possible decisions (berth allocation, demand splitting)

Thanks for your attention!

