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Abstract—In this paper, we study the problem of efficient
medium access control (MAC) among cognitive radio devices
that are equipped with multiple radios and thus are capable of
transmitting simultaneously at different frequencies (channels).
We assume that radios contend on each channel using the Car-
rier Sense Multiple Access with Collision Avoidance (CSMA/CA)
protocol. We study two MAC problems: (i) the allocation of the
available channels among radios, and (ii) the optimal usage of
each allocated channel by the radios occupying it. Both problems
are studied in a game-theoretic setting, where devices aim to
selfishly maximize their share of the available bandwidth. As
for the first problem, we show that the ”price of anarchy" is
close to 1, that is, Nash equilibria imply nearly system optimal
allocations of the available channels. For the second problem, we
design a game such that it admits a unique Nash equilibrium
that is is both fair and Pareto-optimal. Furthermore, we propose
simple mechanisms that enable selfish cognitive radio devices not
only to coordinate efficiently on the available channels but also
to optimally use every single allocated channel.

Index Terms—Cognitive radio networks, MAC, CSMA/CA,
cooperation, game theory, Nash equilibrium, Pareto-optimality.

I. INTRODUCTION

W IRELESS communications rely on the frequency spec-
trum as a fundamental resource. With the increasing

demand from upcoming wireless communication technologies,
the available frequency spectrum became scarce. This initiated
the government agencies to carefully control the access to
this precious resource. First, this control was exercised based
on a first-come-first-served basis and then based on spectrum
auctions. Yet, this practice of fixed frequency assignment is not
flexible enough to maintain the pace with the advancement of
wireless communication technologies. Many frequency bands,
that are previously assigned, are almost unused, whereas some
networks serve an enormous communication demand.

Cognitive radio technology [1], [2] promises to mitigate
the inflexibility of existing spectrum regulations. Cognitive
radio devices are capable of adapting to their environment
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by selecting the unused frequencies and transmission powers
for communication. This enables users (or operators) with
cognitive radios to communicate using frequencies previously
assigned to other technologies called primary users without
interfering with them.

The emergence of cognitive radios can result in a flexible
spectrum management. However, cognitive radios are strategic
by definition, meaning that they implement an optimization
strategy that adapts to the best communication possibilities.
This selfish optimization of cognitive radio devices might
have a negative effect on the overall network performance.
Therefore, cognitive radio protocols have to be assessed in a
non-cooperative setting.

In this paper, we study the problem of non-cooperative
medium access of cognitive radio devices equipped with
multiple radio adapters. Since primary users are non-strategic
(typically they use older technologies that cannot even detect
the operation of cognitive radios), we focus exclusively on
the selfish game between cognitive radio devices. We assume
that the available frequency band is split into orthogonal
channels. We assume that channel access is based on the
CSMA/CA protocol. This protocol is the most popular in
currently upcoming technologies and we anticipate that first
cognitive radio systems will rely on this technology as well.

We define a two-tier medium access control (MAC) game
in which selfish cognitive radio devices first coordinate to
achieve a channel allocation of their radios over the available
channels assuming that the bandwidth of each channel will be
fairly allocated later. Then, they optimize the channel access
parameters of the CSMA/CA protocol of their radios on each
channel to indeed achieve this fair allocation. Selfish users
have two choices to obtain more throughput on any channel
c: (i) they either use several radios on c to exploit the per radio
fairness property of the CSMA/CA backoff algorithm or (ii)
they can subvert this backoff algorithm by cheating with the
backoff parameter. We explore both options in the MAC game
and accordingly we split it into two sub-games: the channel
allocation (CA) game and the multiple access (CSMA/CA)
game.

Figure 1 shows the unfolding of the MAC game. Let
T conv

CA and TCA denote the convergence time and the total
subgame time of the channel allocation game. Similarly,
T conv

CSMA/CA and TCSMA/CA denote the convergence time and total
time of the multiple access subgame. We assume that the
devices start optimizing their channel access parameters upon
the convergence of the channel allocation protocol. Thus the
channel allocation game ends with the convergence to a stable
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Fig. 1. The game played by the players: the players alternate between the channel allocation (CA) game and the per channel multiple access (CSMA/CA)
game.

state (i.e., T conv
CA = TCA). Then, the players optimize the

parameters of their CSMA/CA protocol within T conv
CSMA/CA. Fol-

lowing the convergence in the CSMA/CA game, the devices
communicate efficiently until a new CA game starts (i.e.,
T conv

CSMA/CA < TCSMA/CA). We show in Section VII that both
protocols converge quickly to a stable operation. Note that
the two-tier procedure is repeated from time to time to cope
with the potential dynamic nature of the network.

The main contribution of this paper is to extend the proto-
cols presented in [3] and [4]; and to establish the interaction
between the two games described therein. As we show in
Section VII-C, the CA game discourages players to apply
excessive cheating in the CSMA/CA game. Analogously, the
CSMA/CA game not only optimizes the channels’ usage, but
also provides an incentive to the players in the CA game to
behave “optimally".

The paper is organized as follows. In Section II, we survey
related work. In Sections III and IV, we present the system
and game-theoretic models, respectively. In Section V, we
present the channel allocation game, and Section VI studies
the CSMA/CA game. In Section VII, we present two sim-
ple mechanisms to achieve the efficient Nash equilibria. We
conclude in Section VIII.

II. RELATED WORK

Cognitive radio is a novel technology that enables flexible
spectrum utilization. Mitola [2] discusses the potential of
the cognitive radio architecture and outlines potential radio-
etiquette protocols. Haykin [1] gives an overview of the state-
of-the-art in cognitive radio. Mähönen [5] discusses trends
in the emergence of the cognitive radio technology. More
recently, Wang et al. [6] propose an iterative water-filling algo-
rithm for power-control and channel assignment in cognitive
radio networks. Zou et al. [7] study a QoS-aware dynamic
spectrum allocation protocol and propose two game-based
algorithms.

Recently, several researchers have considered devices using
multiple radios, notably in mesh networks (for a survey on
mesh networks, see [8]). In the multi-radio communication
context, channel allocation and access also became crucial
topics. Related work on multi-radio medium access includes,
but is not restricted to [9]–[11]. Mishra et al. [12] propose
a channel allocation method for wireless local area networks
(WLANs) based on weighted graph coloring. Zheng and Cao
[13] present a rule-based spectrum management scheme for
cognitive radios.

In all the related work cited so far, the authors assumed
that the radio devices cooperate to achieve a high system
performance. But this assumption might not hold, as the users
of these devices are usually selfish and they want to maximize

their own performance without necessarily respecting the
system objectives. Game theory provides a straightforward
tool to study multiple access problems in competitive wireless
networks and has been applied to the CSMA/CA protocol
[3], [14] and to the Aloha protocol [15]. Furthermore, a fixed
channel allocation game was presented in [16] based on graph
coloring. But, the model in [16] does not apply to multi-
radio devices. For cognitive radio networks, the authors of
[17] propose a dynamic channel allocation scheme based on a
potential game. In addition, they suggest another technique
based on machine learning with different utility functions.
Neel et al. [18] suggest to study cognitive radio behavior using
S-modular and potential games. Cao and Zheng [19] propose
distributed spectrum allocation in cognitive radio networks
based on local bargaining.

III. SYSTEM MODEL

We assume that the available frequency band is divided into
orthogonal channels of the same bandwidth using the FDMA
method. We denote the set of available orthogonal channels
by C. We assume that there is a mechanism that enables the
wireless devices to use multiple channels to communicate at
the same time (as it is shown in [9] for example). Moreover,
the devices implement the Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol to resolve
contention at the Medium Access Control (MAC) layer on
each channel [20]. CSMA/CA protocols rely on the random
deferment of packet transmissions for the efficient use of a
shared wireless channel among many devices in a network;
this class of MAC protocols is one of the most popular for
wireless networks. We further assume that each radio of each
device has a unique MAC layer identifier (the MAC address)
which is achieved by an appropriate MAC layer authentication.

In our model, pairs of users want to communicate with each
other over a single hop. We assume that each user participates
in only one such communication session and we denote the
set of communicating pairs by N . We assume that N is finite.
Each user owns a device equipped with k radio adapters, all
having the same communication capabilities. We assume that:

k ≤ |C| (1)

This assumption is reasonable, because devices using the
802.11 MAC protocol are typically equipped with fewer radios
than the total number of channels.

The communication links between two devices are bidirec-
tional and devices always have some packets to exchange.
Due to the bidirectional communication links, the sender and
the receiver are able to coordinate and thus to select the
same channels to communicate. We assume that each device
can hear the transmissions of every other device if they are
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Fig. 2. A network graph for 3 pairs of users (i.e., |N | = 3) with the
corresponding contention graph.

using the same channel. This means that they reside in a
single collision domain. We make this assumption to avoid
the hidden terminal problem described for example in [20].
This assumption implies that the channels have roughly the
same radio characteristics.

From the network topology and the set of communication
pairs, we can construct a contention graph, as described in
[21] for example. Note that the notion of contention graph
was introduced for single channel systems and we adapt it for
the multi-channel scenario. We show an example in Figure 2.

IV. GAME-THEORETIC MODEL

We model the medium access problem in a two-tier medium
access control (MAC) game as follows. We refer to any
communicating pair of devices as a selfish player i, whose
objective is to maximize his total throughput ri in the net-
work. We will use the term “selfish player” to denote both
the communicating pair of devices and the communication
link between them. The players first coordinate to achieve a
channel allocation of their radios over the available channels
in C assuming a fair access on a single channel and then
they optimize the channel access parameters of the CSMA/CA
protocol of their radios on each channel. Accordingly, we split
the MAC game into two sub-games: the channel allocation
(CA) game and the multiple access (CSMA/CA) game.

The strategy si of player i defines his decisions in the game
taking the decisions of other players into account. In the CA
game, the strategy of player i defines the number of radios
player i uses in each channel. In the CSMA/CA game, the
strategy defines how assertively player i contends for the avail-
able bandwidth on a specific channel by adjusting the backoff
window parameter in the CSMA/CA protocol implemented in
his radios. We provide more details in Sections V and VI.
We denote the strategy space of player i by Si. The strategies
of the players define the strategy profile s = {s1, . . . , s|N |}.
We denote all players other than player i by “ − i” and their
strategy profile by s−i = {s1, . . . , si−1, si+1 . . . , s|N |}.

We assume that the players are rational and their objective
is to maximize their payoffs in the network. We denote the
payoff of player i by ui. We assume that each player i wants

to maximize his total throughput or bitrate (ri) in the system
and thus his payoff function is written as follows:

ui = ri =
∑
c∈C

ri,c (2)

where ri,c is the throughput achieved by player i on channel
c.

We further assume that the total available throughput
rc =

∑
i ri,c on a channel c (i.e., the sum of the achieved

throughputs of all players on channel c) is a non-increasing
function of the number of radios deployed on c. In theory, rc

is independent of the number of radios on c for the CSMA/CA
protocol [22]. In practice, the backoff window values used in
the CSMA/CA protocol implementation (e.g., in the 802.11
standard) are not optimal; and due to packet collisions, rc

becomes a decreasing function of the number of radios on c.
To characterize stability in the MAC game, we introduce

the concept of Nash equilibrium [23], [24].
Definition 1: The strategy profile s∗ = {s∗1, . . . , s∗|N|}

defines a Nash Equilibrium (NE), if for each player i the
following condition holds:

ui(s∗i , s
∗
−i) ≥ ui(s

′
i, s

∗
−i) (3)

for every strategy s
′
i ∈ Si.

This means that in a Nash equilibrium, none of the users
can unilaterally change his strategy to increase his payoff. A
Nash equilibrium is often inefficient from the system’s point
of view. We characterize the efficiency of the solution by the
concept of Pareto-optimality.

Definition 2: The strategy profile spo is Pareto-optimal if
�s

′
such that:

ui(s
′
) ≥ ui(spo), ∀i (4)

with strict inequality for at least one player i.
This means that in a Pareto-optimal strategy profile spo one
cannot improve the payoff of any player i without decreasing
the payoff of at least one other player j.

We can characterize the efficiency of a wireless system
using the concept of the price of anarchy [25].

Definition 3: The price of anarchy (POA) is the ratio be-
tween the sum of the payoffs achieved by the players using the
system- (Pareto-) optimal strategy profile and in the worst-case
Nash equilibrium.

In the analysis (Sections V and VI), we assume that the
games are of perfect information, meaning that the players
know the other players, their potential strategies and their
payoff functions. In addition, players are able to observe the
actions of other players. We will relax these assumptions in
Section VII and design distributed convergence mechanisms
that rely only on local information.

V. CHANNEL ALLOCATION GAME

In this section, we first extend the basic concepts introduced
in Section IV and present the channel allocation (CA) game.
Then, we show the existence of Nash equilibria and study their
efficiency using the concept of the price of anarchy. We also
propose a distributed algorithm to achieve the identified Nash
equilibria and discuss its properties. We omit the proofs of the
results in this paper due to space constraints, but they can be
found in [26].
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A. Preliminaries

First, we extend the MAC game model by adding some
concepts that are specific to the CA game. The players are
the pairs of devices as in the MAC game. In the CA game,
we define the strategy of player i as his channel allocation
vector (i.e., that defines the number of his radios on each of
the channels). We denote the number of radios used by player
i on channel c by ki,c. Let us recall the important assumption
that the available number of radio adapters is smaller than the
total number of channels, i.e., k ≤ |C|. Then we can express
the strategy of i as si = {ki,1, . . . , ki,|C|}.

The intuition is that players should not use more than
one radio on any channel c. Note however, that the 802.11
backoff algorithm provides per radio fairness. Thus, any user
who uses multiple radios obtains a larger proportion of the
total channel throughput without tampering with the 802.11
protocol parameters. In addition, sophisticated selfish users
can manipulate with the backoff mechanism of 802.11 as well.
We study this latter problem in Section VI.

We denote the set of channels used by player i by Ci. The
total number of radios employed by player i can be written
as ki =

∑
c∈C ki,c. Similarly, we can obtain the number of

radios using a particular channel kc =
∑

i∈N ki,c. The strategy
vectors of all players defines the strategy matrix S (i.e., the
strategy profile).

As mentioned before, the players are rational and their
objective is to maximize their payoff ui (i.e., the achieved
throughput ri) in the network. Recall that the total available
throughput rc on a channel c is a non-increasing function of
the number of radios kc deployed on this channel. In addition,
we assume that the channels have the same characteristics.
Thus, we characterize the achievable throughput by the func-
tion r(kc). In the CA game, the players assume that the
total throughput on channel c will be equally shared among
the radio adapters using that channel. This fair throughput
allocation is indeed achieved as shown in Section VI in the
CSMA/CA game. We can then express the payoff ui of player
i as:

ui = ri =
∑
c∈C

ri,c =
∑
c∈C

ki,c

kc
· r(kc) (5)

B. Nash Equilibria

In this section, we study the existence of Nash equilibria
in the CA game. We assume that the total number of radios
in the system is higher than the number of channels (i.e.,
|N | · k > |C|), otherwise there is not conflict in how to
allocate these radios. If there is no conflict, then each channel
is occupied by one radio, which is obviously a Pareto-optimal
Nash equilibrium.

First, assuming that the above condition holds, we show the
following intuitive result: a selfish player should use all of his
radios in order to maximize his total throughput.

Lemma 1: If S∗ is a NE of the CA game, then ki = k, ∀i ∈
N .

Let us now consider two arbitrary channels b and c. Without
loss of generality, we assume that there are more radios using
channel b, meaning that kb ≥ kc, and denote their difference
by δb,c = kb − kc. Furthermore, let us divide the channels

in a channel allocation S into three sets. We define the set
of channels Cmax with the maximum number of radios, i.e.,
where b ∈ Cmax has kb = maxl∈C kl. Similarly, let us define
the set of the least occupied channels Cmin, where c ∈ Cmin

has kc = minl∈C kl. We denote the remaining set of channels
by Crem.

In the following lemma, we show that in a Nash equilibrium,
the difference in the total number of radios between any two
channels cannot exceed one, i.e., Crem = {∅}.

Lemma 2: If S∗ is a NE in the multi-radio channel alloca-
tion game, then δb,c ≤ 1 for all b, c ∈ C.

Lemma 2 shows that in a NE only the sets Cmax and Cmin

exist. This establishes an interesting property about NE: In
fact, all NE channel allocations achieve load-balancing over
the channels in C. Based on Lemma 2, we express a set of
sufficient conditions for the NE.

Using Lemma 2, we express a set of necessary and sufficient
conditions for the NE.

Theorem 3: Assume that |N | · k > |C|. Then a channel
allocation S∗ is a NE if the two following conditions hold:

� δb,c ≤ 1 for any b, c ∈ C and
� ki,c ≤ 1 for any c ∈ C.

An example of a NE channel allocation corresponding to
Theorem 3 is shown in Figure 3(a).

Theorem 3 suggests that players should distribute their
radios over the set of available channels. Surprisingly, there
exist another type of Nash equilibria in which some players
use multiple radios in some channels. We characterize these
Nash equilibria in the following theorem.

Theorem 4: Assume that |N | · k > |C|. Then a channel
allocation S∗ is a NE if the following conditions hold:

� δb,c ≤ 1 for any b, c ∈ C and
� for any player i that has ki,c ≥ 2 for c ∈ C, ki,c ≤

r(kc−1)/(kc−1)−r(kc+1)/(kc+1)
r(kc−1)/(kc−1)−r(kc)/(kc) also holds; and

� for any player i that has ki,b ≥ 2 and b ∈ Cmax, it is also
true that ki,c ≥ ki,b − 1, ∀c ∈ Cmin

Figure 3(b) presents an example for Theorem 4 assuming
that the second (numerical) condition of the theorem holds.

In summary, Theorems 3 and 4 characterize two types
of Nash equilibria. In the first type, each player distributes
his radios such that he has at most one radio per channel.
Intuitively, this results in load balancing. Note, however, the
existence of a second type of Nash equilibria, in which
some players allocate multiple radios on certain channels. We
mention that there could be a small set of other Nash equilibria
that are not covered by these theorems, but they exist for
very specific conditions on the throughput function r(·). These
Nash equilibria can be derived from the proof of Theorem 4.

C. Efficiency

In the following, we study the efficiency of the Nash
equilibria in the CA game. In the next theorem, we show
that the selfish channel allocation of the players results in
an efficient spectrum utilization for the optimal rate function
derived in [22] (i.e., if the rate function is independent of the
number of radios).
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Fig. 3. Two types of Nash equilibria in the CA game: (a) Each player distributes his radios over the channels (i.e., ki,c ≤ 1, ∀i,∀c) or (b) certain players
use multiple radios on some channels (here player p1 uses two radios on channel c1). In (a) |C| = 6, |N | = 4 and k = 4, whereas in (b) |C| = 6, |N | = 7
and k = 4.

Theorem 5: If the rate function r(·) is independent of kc on
any channel c, then any NE channel allocation S∗ is Pareto-
optimal.

Theorem 5 also means that in the ideal case the price
of anarchy is 1. Note that this result is valid for the ideal
CSMA/CA protocol, but it does not hold in the practical case,
where r(·) is decreasing with the number of radios on channel
c. In the practical case, the players might remove some of
their radios to decrease the total number of radios on certain
channels. If they do this mutually, they could increase each
others’ payoffs. Clearly, in a Pareto-optimal solution, each
channel is used by only one radio.

We can express the efficiency of the Nash equilibria using
the concept of the price of anarchy (POA)1.

Theorem 6: If r(·) is a decreasing function of kc, then the
price of anarchy (POA) is given by:

POA =
r(1)(

kc + 1 − |N |·k
|C|
)

(r(kc) − r(kc + 1)) + r(kc + 1)
(6)

where kc =
⌊
|N |·k
|C|
⌋

(i.e., kc + 1 =
⌈
|N |·k
|C|
⌉
).

In practice, the throughput function r(·) is decreasing with
the number of users contending for the channel. Nevertheless,
it declines rather slowly, notably thanks to the RTS/CTS ex-
tension of the basic CSMA/CA protocol. Hence, the first term
in the denominator of (6) converges to 0. As the throughput
function converges to a constant function (i.e., being almost
independent of the number of radios), the upper bound in (6)
converges to 1. This suggests that the price of anarchy is 1 in
theory and it is close to 1 in practice.

VI. CSMA/CA GAME

In this section, we describe the CSMA/CA game that
is played between a group of players that share the same
channel (i.e., that have at least one radio on the channel). The
CSMA/CA game is played upon completion (convergence) of
the previous channel allocation (CA) game (Figure 1). In an
attempt to further increase their bandwidth, selfish players
may try to tamper with their radio adapters (for example,
deliberately reduce the contention window in the case of
IEEE 802.11 adapters [3], [27]). In this section, we study

1Note that all Nash equilibria have the same efficiency and hence the POA
definition holds.

the stability and efficiency of the group of players (sharing
the same channel) where one or several players manipulate
their radio adapters; more specifically, selfish players reduce
the contention window of their IEEE 802.11 adapters.

As we will show, the CSMA/CA game not only optimizes
the bandwidth utilization of every occupied channel, but also
provides incentives to the players in the CA game to behave
“optimally". By optimally, we mean that a selfish player i will
have an incentive to ensure that all the other players learn the
exact number of radio adapters on every channel that player i
is using; this is an important condition for reaching (nearly)
optimal allocations in the CA game. Moreover, the CSMA/CA
game ensures per-radio fairness, another important ingredient
of the CA game. Due to space constraints, we omit the proofs
of our results in this section as well, but they are presented in
[28].

A. Preliminaries

We first introduce the basic assumptions and terminology
used in the context of the CSMA/CA game. Recall that a
player owns multiple radio adapters, potentially allocated to
different radio channels. The same CSMA/CA game is played
on each channel in C between the players who have a radio
on that channel. Therefore, in our analysis, we will focus on
a single channel c ∈ C occupied by multiple radio adapters
owned by two or more players. All conclusions drawn from
this “single channel" model are applicable to other occupied
channels; the channels are indistinguishable in this regard.

We define the set Nc of players that have at least one radio
on the observed channel c ∈ C; note that Nc ⊆ N . In our
analysis, we will be dealing exclusively with IEEE 802.11
(in the Distributed Coordination Function (DCF) mode) [27];
however, we note that the analysis carried out in this setting
can also be extended to other CSMA/CA based protocols.
There can be a number of ways in which players can misbe-
have with their radio adapters. For example, in violation of the
standard protocol, player i ∈ Nc can initialize the contention
window size on his radio adapters to a lower value in order to
obtain a higher throughput. We will call this lower value Wi,�,
the contention window of player i’s �-th radio. This mode of
cheating is the easiest (and yet highly rewarding), since it
does not require changes to be made in the operation of the
IEEE 802.11 protocol. We would like to stress that the main
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conclusions of this study are applicable to any other cheating
technique.

We will designate those players who selfishly tamper with
their adapters as described above, as cheaters against the
standard protocol and refer to their set as Ic ⊆ Nc. In our
model, every cheater i ∈ Ic seeks to maximize the average
throughput ri,c he enjoys on channel c. For each cheating
player i ∈ Ic, we define the pure-strategy set Si as follows:

Si = {1, 2, . . . , Wmax, W∞} × . . . × {1, 2, . . . , Wmax, W∞}︸ ︷︷ ︸
ki,c

,

where × is the Cartesian product, ki,c is the number of
radio adapters player i uses on channel c, Wmax < ∞ is
a positive integer and the symbol W∞ means that the player i
does not transmit at all on channel c using the corresponding
adapter, which is equivalent to Wi = ∞ for that radio adapter.
Note that the set Si is finite. Strategy si ∈ Si of each
player i ∈ Ic in the CSMA/CA game consist in choosing the
contention window values si =

(
Wi,1, Wi,2, . . . , Wi,ki,c

)
such

that player i’s throughput ri,c is maximized on each channel c.
We modified the theoretical model of Bianchi [22] to derive

the throughput enjoyed by the cheaters tampering with the
802.11 protocol backoff parameter. A detailed model and the
resulting derivation is presented in [28]. For easier mathe-
matical treatment, we use the channel access probabilities
τi,� = 1

Wi,�+1 (� ∈ {1, . . . , ki,c}) instead of working directly
with contention windows Wi,� (� ∈ {1, . . . , ki,c}). Let τ
denote the channel access probabilities of non-cheating nodes.
Let us also denote with Ki,c the set of radio adapters that
player i uses on channel c, that is, Ki,c = {1, 2, . . . , ki,c}.
Then, we can express the (average) throughput ri,c of a cheater
i ∈ Ic on channel c as:

ri,c =
∑

�∈Ki,c

ri,c,� ,

where ri,c,� is the average throughput of player i’s �-th radio
adapter used on channel c and it is given by expression (7).

In expression (7), L represents the average packet length,
T s is the average time needed to transmit a packet of size L
(including the inter-frame spacing periods), T id is the duration
of the idle period (a single slot) and T c is the average time
spent in the collision. Moreover, we used two substitutions
p−i and q−i given by expressions (8) and (9), respectively.

Note here, that the only parameter that a cheating node i has
a control over is its own τi,� by manipulating Wi,�.

We denote the game as defined in this subsection by
GCSMA/CA =

〈Ic, (Si)i∈Ic , (ri,c)i∈Ic

〉
and call it a static

CSMA/CA game played on channel c ∈ C.

B. Static CSMA/CA Game: Inefficient, Unfair and Nonessen-
tial

In this subsection, we will characterize possible Nash equi-
libria of the static CSMA/CA game GCSMA/CA played on the
observed channel c. We first state the following straightfor-
ward lemma.

Lemma 7: For any strategy profile s∗ = (s∗1, . . . , s
∗
|Ic|)

that constitutes a Nash equilibrium in GCSMA/CA , there ex-
ists a cheating player i ∈ Ic with strategy s∗i =(
Wi,1, Wi,2, . . . , Wi,ki,c

) ∈ Si such that at least one Wi,�,
� = 1, . . . , ki,c, is set to 1.

The intuition of the lemma is that if a cheater i decreases
the contention window Wi,� of her device �, then ri,c,�

throughput either increases or remains the same. Based on this
reasoning, at least one cheater i is going to use the minimum
contention window 1 for one of her adapters. Lemma 7 gives
a necessary condition for a strategy profile to be a Nash
equilibrium. In [28] we show that Lemma 7 provides also
a sufficient condition. In other words, any strategy profile s
such that at least one contention window Wi,�, ∀i ∈ Ic and
∀� = 1, . . . , ki,c, equals 1 is a Nash equilibrium. From this
we can easily count that the static CSMA/CA game admits

(Wmax + 1)
∑

i∈Ic
ki,c − W

∑
i∈Ic

ki,c

max Nash equilibria. It is
more interesting, however, to observe that the equilibria can
be classified into two types. In the 1st type, there is only one
player i ∈ Ic who sets exactly one of the contention windows
Wi,�, � = 1, . . . , ki,c, to 1 and receives a non-null throughput
ri,c > 0, and rk,c = 0 for all players k ∈ Ic\{i}. In the Nash
equilibria of the 2nd type, more than one player i ∈ Ic set
at least one of their contention Wi,�, � = 1, . . . , ki,c, to 1, in
which case ri,c = 0, for all players i ∈ Ic. This 2nd type
of equilibria corresponds to the well-known tragedy of the
commons in game theory, because finally no player obtains
any useful throughput.

It is generally believed that for noncooperative channel
access games the tragedy of the commons (2nd type) is the
most likely equilibrium [24]. However, we have seen that

ri,c,� =
τi,� · p−i,� · L

τi,� ·
(

p−i,�

(
T s − T id

)
− q−i,�

(
T s − T c

))
+
(
1 − p−i,� − q−i,�

)
T c + q−i,�T s + p−i,�T id

(7)

p−i,� =
(
1 − τ

)|Nc|−|Ic| ×
∏
j∈Ic

k∈K̂j,c

(
1 − τj,k

)
, where K̂j,c

def
=
{

Kj,c, j 	= i;
Kj,c \ {�}, j = i.

(8)

q−i,� =
(
1 − τ

)|Nc|−|Ic| ×
∑
j∈Ic

k∈K̂j,c

τj,k

∏
m∈Ic

n∈K̂m,c

(
1 − τm,n

)
where K̂m,c

def
=

⎧⎪⎪⎨⎪⎪⎩
Km,c, m 	= j, m 	= i;
Km,c \ {k}, m = j, m 	= i;
Km,c \ {�}, m 	= j, m = i;
Km,c \ {k, �}, m = j, m = i.

(9)
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there exist another family of Nash equilibria in GCSMA/CA . It
can be shown that the tragedy of the commons equilibria
are nonessential (non robust) in the game GCSMA/CA , which
further implies that the game GCSMA/CA is nonessential [24]2.
Therefore, we look for an alternative solution to GCSMA/CA by
allowing the players to agree on the strategies they will use.

C. Unique, Per-Radio Fair and Pareto-Optimal Solution

Intuitively, a desirable solution for the CSMA/CA game
should exhibit the following three properties: (i) uniqueness
- this is to avoid uncertainties with respect to what solution
each player should choose, (ii) per-radio fairness - since, in
general, a player doesn’t know how many and what adapters
belong to another player, (iii) Pareto optimality - the solution
should result in a Pareto optimal allocation of the available
bandwidth.

In order to derive such a solution, we use the Nash
Bargaining Framework (NBF) from the theory of cooperative
games [28], [29]. From the NBF, we know that we can obtain a
unique, fair (per-radio) and Pareto-optimal solution by solving
the following maximization problem:

maximize
∏

i∈Ic

∏ki,c

�=1 ri,c,�(s1, s2, . . . , s|Ic|) (10)

subject to si ∈ Si, ∀i ∈ Ic

where ri,c,�(s1, s2, . . . , s|Ic|) represents the throughput of
player i’s �-th radio adapter used on channel c. Note that the
above optimization problem is discrete. In [28], we proved that
a continuous version of this problem admits a unique solution
which is also per-radio fair and Pareto-optimal. We obtain a
a continuous version by relaxing the integrality constraints on
the variables (contention windows) Wi,�. Here we only state
the final result.

Theorem 8: A continuous version of the optimization prob-
lem (10) admits a unique solution τi,� = τ∗, ∀i ∈ Ic and
� = 1, . . . , ki,c, with τ∗ ∈ (0, 1) (for finite number of players).
Clearly, the unique solution is also Pareto-optimal and per-
radio fair. Note that τi,� = τ∗, ∀i ∈ Ic and � = 1, . . . , ki,c,
implies Wi,� = 1

τ∗ − 1, ∀i ∈ Ic and � = 1, . . . , ki,c.
In order to show the existence of an optimal integer value of

the contention window, in Figure 4 we plot the average aggre-
gated throughput obtained by 10 cheating players, all of which
use the same contention window size and have one adapter
on the shared channel. Note that in the simulations we take
the players that respect IEEE 802.11 protocol into account;
they, however, do not affect the qualitative conclusions of the
analytical treatment in this section. From this figure we can
see that there exists a unique joint contention window size W ∗

maximizing the system throughput, which is consistent with
the conclusion of Theorem 8.

We conclude that the optimal solution W ∗ to the optimiza-
tion problem (10) exhibits all the properties of a desirable
point of operation in the CSMA/CA game GCSMA/CA . In our
context, this is significant as the Pareto-optimal solution is
not a Nash equilibrium point and as such might not be stable.

2Informally, a game is non-essential if the Nash equilibria are non-robust
to small perturbations in the payoff structure of the game. Note that the
small change can result from inability of the game modeler to specify payoff
functions that are perfectly correct.
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Therefore, in the following subsection, we look at how to
make the unique, per-radio fair and Pareto-optimal point W ∗

a Nash equilibrium point.

D. Penalizing Mechanism: Towards a Unique and Pareto-
Optimal Nash Equilibrium

Having determined the desirable point of operation, we
now intend to devise a strategy that allows the players to
converge to this point. At the core of this strategy is the
penalty mechanism, by which one player can penalize severe
deviations of another player.

Let us consider two arbitrary players i and j from the set
Ic and their arbitrary radio adapters m and n used on the
common channel c. Let us assume that player i calculates the
penalty pj,c,n to be inflicted on player j’s n-th radio adapter
as follows

pj,c,n(s) =
{

rj,c,n(s) − ri,c,m(s), if rj,c,n(s) > ri,c,m(s);
0, otherwise .

(11)
Then the throughput of player j’s n-th adapter is rj,c,n(s) −
pj,c,n(s) = ri,c,m(s). Thus, the two adapters m and n receive
the same throughputs. Inspired by the penalty functions (11),
we have designed a simple penalizing scheme, in which the
packets of the noncooperative player’s adapter are selectively
jammed for a short duration of time, T jam, by the other
players using the channel. By the “noncooperative adapter"
we mean the adapter that deviates from the given equilib-
rium point (e.g., the Pareto-optimal point). Suppose that a
player i ∈ Ic detects the presence of a noncooperative
player j ∈ Ic. Thereafter, if the player i listens to a transmitted
packet corresponding to the player j’s noncooperative adapter,
it switches to transmission mode and jams enough bits so that
the packet cannot be properly recovered at the receiver.

Let the throughput obtained by the two adapters m and n
of players i and j over the last observation window, T obs, be
ri,c,m and rj,c,n, respectively, where ri,c,m > rj,c,n. As we
presented above, the penalty function (11) aims at making the
throughputs received by adapters m and n equal. We denote
with ri,c,�(t) the instantaneous throughput of adapter �. The
average throughput received by the adapter m and n should
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Fig. 5. Realization of the penalty through selective jamming: (a) Throughputs (payoffs) obtained by the cheaters over time in the presence of the noncooperative
cheater X and selective jamming mechanism; (b) Unilateral deviation by the cheater X with and without the penalty mechanism.

be the same over the total time duration of T obs + T jam, that
is,

1
T obs + T jam

∫ t+T obs+T jam

t

ri,c,m(t)dt = (12)

=
1

T obs + T jam

∫ t+T obs

t

rj,c,n(t)dt , (13)

where we have used the fact that the player i jams player j’s
adapter during the period T jam. Let us denote the average
throughput over a time period P starting at time instant t

by r(t, P ), that is, r(t, P ) = 1
P

∫ t+P

t
r(t)dt. Then, from the

expression (12) we obtain

T jam = T obs rj,c,n

(
t, T obs

)− ri,c,m

(
t, T obs

)
ri,c,m (t + T obs, T jam)

. (14)

We have implemented the jamming mechanism in ns-2. The
simulation setup is the previous section with 20 nodes using
the channel c and 10 cheating players (i.e., |Ic| = 10); every
player has only one adapter on channel c. We randomly pick
up a cheating player, designated as cheater X , and fix his
contention window size to be 10. The contention window size
for all the other cheaters in the system is fixed to the point
30. We use an observation window size, T obs, of 20 seconds.
Cheater X is detected by the other cheaters in the network
(e.g., using the mechanisms described in [27]) and is penalized
for his deviation.

In Figure 5(a), we plot the throughput obtained by the
cheaters in the system over time, with and without the
penalizing scheme. As can be observed from Figure 5(a),
cheater X is detected and is penalized for his deviation. When
penalized, the cheater X’s throughput drops to zero. Observe
from this figure the dependency of the period T jam on the
observation period T obs; for better system efficiency, T obs

should be kept short (much shorter than 20 seconds as used
in our simulations).

Figure 5(b) plots the average throughput obtained by
cheater X , when it unilaterally deviates from the given equi-
librium point 30. The results are averaged over a duration of
1000 seconds. As can be observed from Figure 5(b), after
the introduction of the detection and penalizing mechanism,
cheater X achieves maximum throughput by operating at the

given equilibrium point where all cheater set their contention
window to 30. Thus, any unilateral deviation from this point
brings less payoff to the cheater X . Therefore, by definition,
this equilibrium point is a Nash equilibrium - unilateral
deviation is not profitable.

We conclude that by using penalty function as given in (11),
we can make an arbitrary value of the contention window
a Nash equilibrium point, including a value that is obtained
as the desirable Pareto-optimal solution of the optimization
problem (10) (Section VI-C).

VII. CONVERGENCE TO THE EFFICIENT NASH EQUILIBRIA

In this section, we propose one distributed protocol in each
game to achieve the identified Pareto-optimal Nash equilibria.
We also study the convergence properties of these protocols.

A. Convergence in the CA Game

In Section V, we presented a set of theoretical results to
identify Nash equilibria in the CA game and we showed that
they are efficient. We assumed that there is perfect information
[24], [26] available for the players about the set of radios on
each channel. In practice, the devices only know the number of
radios on the channels on which they have a radio themselves.

In this subsection, we propose a distributed convergence
algorithm to show that the previously identified Nash equilib-
ria are achievable even in the case of imperfect information.
We define a round-based distributed algorithm that works as
follows [26]. First, we assume that there exists a random radio
assignment of the players over the channels. For simplicity, we
exclude the Nash equilibria that correspond to Theorem 4. This
means that we assume that no player allocates more than one
device on any channel. After the initial channel assignment,
each player evaluates the number of radios (which defines the
approximate length of the round) on each of the channels on
the channels he knows (recall that we denote this set by Ci) and
decides with probability ρ to improve his total throughput by
reorganizing his radios. This probability is necessary to avoid
continuous reallocation of the radios if the players change in
the same round. We denote the average number of devices on
the channels in Ci by Ki (note that Ki is not necessarily an
integer). For each channel b ∈ Ci with kb − Ki ≥ 1, player i
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moves his radio to another channel c /∈ Ci. The probability to
choose a channel c /∈ Ci is 1

|C|\|Ci| . This is the first property
of the algorithm with imperfect information.

We can show that the above procedure reaches a stable
state. Unfortunately, the available local information might be
insufficient for the players to determine if the achieved stable
state is a Nash equilibrium (in rare cases, the stable state is
not a Nash equilibrium). Hence, the players use a second
probability ε to change even if they believe that a stable
state is reached (i.e., when 0 < kb − Ki < 1 for each
channel b ∈ Ci). This second property allows us to resolve
the inefficient stability

states, but at the same time, it will also cause the instability
of the Nash equilibria. Note, however, that the amount of
instability can be tuned using the parameter ε.

We calculate the average number of radios per channel as
K = |N |·k

|C| . We can compare the utilization of every channel
x to the average to achieve the total balance of the channel
allocation S:

Definition 4: (Balance:) The balance β of a channel allo-
cation S is defined as the sum β(S) =

∑
c∈C |kc − K|.

Let us first highlight the best and worst case in terms of
the desired load-balancing for this algorithm. The best case
is one of the NE channel allocations. The worst case, called
the unbalanced (UB) channel allocation, is characterized by
the fact that there exist k channels where each of the players
have a radio, whereas the rest of the channels have no radios
at all.

The notion of balance allows us to define the efficiency of
a given channel allocation as a proportion between the worst
case and the best case channel allocations.

Definition 5: (Efficiency:) The efficiency φ of a channel
allocation S is defined as φ(S) = β(SUB)−β(S)

β(SUB)−β(SNE) .
Let us emphasize that for any channel allocation S, it is true

that 0 ≤ φ(S) ≤ 1. Furthermore, φ(SNE) = 1 and φ(SUB) =
0 as desired by this measure.

Now we present an example run for our distributed algo-
rithm with imperfect information in Figure 6(a) for 5000s.
Here, we assume that the duration of one round (i.e., the time
needed to learn the number of radios on a given channel) is
equal to 100ms. One can notice that the algorithm quickly
reaches the NE state, i.e., the efficiency reaches one. Simula-
tion results show that this convergence time is in the order of
0.5 seconds. Also, one can observe that the players sometimes
leave the NE state due to the second property, but they quickly
return to it. Suppose that the total available throughput per
channel is r(kc) = 54Mbps, for any kc. Figure 6(b) presents
a snapshot of the total payoff of the players in the first NE
reached in the previous simulation. One can observe that
the total throughput is very similar for the users, hence we
conclude that our algorithm converges to load-balancing, fair
channel allocations.

B. Convergence in the CSMA/CA Game

In this subsection, we give a simple algorithm that is based
on the penalty function (11) proposed in Section VI-D and
that leads the players (their adapters on the observed channel)
to a unique Pareto-optimal Nash equilibrium. The main idea is

that one player i (his adapter m) acts as a coordinator on the
observed channel by inflicting penalties on the radios of other
players who receive a higher throughput. The equilibrium
coordination procedure is an interplay between two simple
algorithms.

First, the coordinating adapter m chooses some initial
contention window value Wi,m = W0 > 1 and begins to
penalize the other players’s adapters (on the same channel)
with rj,c,n(s) > ri,c,m(s), j 	= i. The other players (affected
adapters) act selfishly and run the adaptation algorithm that
maximizes ri,c,m(s) (due to the penalty function (11)). This
algorithm simply attempts to equalize the other adapters’
contention windows with the coordinator’s contention window
Wi,m = W0; recall from Figure 5(b) that this value maxi-
mizes the throughput of each adapter. This stage lasts until
all the adapters that belong to the cheating players on the
observed channel, stabilize at a stage Nash equilibrium point
Wi′ ,� = W0, i

′ ∈ Ic and � = 1, . . . , ki,c.
After spending some finite time on this point (to let all the

adapters to learn that the system has reached an equilibrium
point), the coordinator further updates his contention window
to value W1 > W0 and again begins to penalize the other
players’s adapters (on the same channel) with rj,c,n(s) >
ri,c,m(s), j 	= i. In turn, the other players selfishly adjust
the contention windows of their adapter in order to maximize
their throughputs. At this stage, the coordinator compares the
throughput ri,c,m(W0) received at the previous equilibrium
point W0 and the throughput ri,c,m(W1) at the current equilib-
rium point W1. If the difference is |ri,c,m(W0)− ri,c,m(W1)|
is smaller than some small value Δ, the coordinator stops
increasing his contention window. The rationale here is that
the coordinator pulls all the other cheating adapters up to the
left side of the aggregate throughput curve shown in Figure 4,
until they all reach the maximum point, the Pareto-optimal
Nash equilibrium (due to the penalty function, no player
had an incentive to unilaterally deviate). It is important to
emphasize that there can be multiple groups of simultaneously
coordinating adapters.

We have implemented the proposed coordination procedure
in ns-2. The simulation setup consists of 20 players out of
which 7 cheaters (|Ic| = 7), all using the same channel.
Each player has only one radio adapter. The cheating players
initially set their contention windows to 5 (Wi,� = 5, i ∈ Ic,
� = 1, . . . , ki,c). The cheaters continue their search for the
Pareto-optimal point W ∗ only if they see an increase of 10%
or more in their throughput from the last stable point of
operation.

Figure 7(a) plots the sample evolution of the contention
window for 2 cheating adapters, X and Y , in the system.
Note that all of the cheaters follow a similar pattern and
eventually converge to a window size of 20. We are unable to
show their evolution in the same plot as it simply generates
overlapping lines. Note also that the convergence time is
relatively short, around 80 seconds for 7 cheaters (from
tstart ≈ 160 to tend ≈ 240; in these simulations we used
a warm-up period of around 160 seconds). It is important
to observe that 80 seconds incorporate the time for both the
detection and the penalization of potential deviations from the
current equilibrium point. What is more, the cheating adapters
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Fig. 6. Example simulation run: (a) The efficiency and (b) the total payoff of the players in the first NE. The parameter values are |C| = 8, |N | = 10,
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Fig. 7. Performance of the distributed coordination protocol, with 20 players and |Ic| = 7 (the axes in (b) are swapped for the convenience of matching
them with (a)): (a) Evolution of the contention windows; (b) Contention window vs. Average throughput.

receive positive throughputs (payoffs) during the coordination
procedure.

Figure 7(b) plots the average throughput obtained by the
cheaters at different contention window sizes. As can be seen
from Figure 7(b), the throughput is maximized at Wi,� = 20,
∀i ∈ Ic and ∀� = 1, . . . , ki,c. For completeness, we obtain
the “dotted” curves in Figure 7 by deliberately forcing the
cheaters to go beyond Wi,� = 20.

C. Mutual Reinforcement between the CA and the CSMA/CA
Games

As we have seen in Section VI, a selfish player i might
manipulate the channel access of his radios by choosing a
very small backoff window value in the CSMA/CA protocol
on any channel c to obtain the total achievable throughput
while the other radios receive zero throughput. Let us call this
behavior the fully selfish behavior in the CSMA/CA game. In
Theorem 9, we show that this behavior is discouraged by the
CA game: If a fully selfish player i seizes the access to channel
c, then other players believe that i is the only player on that
channel. This attracts them to channel c in the CA game.

Theorem 9: If the players expect a fair channel allocation
on each channel c and choose their channel allocation strate-
gies accordingly, then it is not beneficial for any player to be
fully selfish on any channel.

Proof: Assume that player i is fully selfish on channel
c with one pair of radios (i.e., he manipulates his backoff
window such that he is the only one who gets access to the
channel). For simplicity, we assume that player i has only one
radio on channel c, but the proof is similar if he uses several
radios. In this case, the other players falsely observe that there
is only one radio on channel c. Hence, they place their radios
on this channel in the CA game.

In the following CSMA/CA game, the other players detect
quickly that player i is fully selfish and hence they punish
him using the penalty mechanism presented in Section VI-D.
Hence, player i obtains no useful throughput in the CSMA/CA
game and the period after that. We can express his payoff if
he is fully selfish as rfs

i,c = 0. Whereas, if he is not, he obtains
his fair share of the throughput rnfs

i,c = 1
kc

· r(kc). We know
that kc > 0 and r(kc) > 0 and thus player i is always better
off being not fully selfish.

Note that the fully selfish player achieves some throughput
in the CA game, but, as we have seen previously in this
section, the CSMA/CA game is longer than the CA game.
This means that the initial gain from being fully selfish is
outweighed by the loss he suffers later.

We also have to mention that Theorem 9 does not exclude
selfishness that has smaller impact than the fully selfish behav-
ior. Note, however, that the penalty mechanism presented in
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Section VI-D detects more subtle manipulation of the backoff
windows as well. But, the detection time might be longer in
this case.

VIII. CONCLUSION

In this paper, we have considered the problem of competi-
tive medium access in cognitive radio networks. We modeled
the problem as a two-tier non-cooperative medium access
game composed of a channel allocation (CA) and a multiple
access (CSMA/CA) sub-games. In the CA game, we have
shown that the price of anarchy is close to 1, meaning that
Nash equilibria are socially desirable, load balancing channel
allocations. We have demonstrated that the CSMA/CA game
admits a unique, fair and Pareto-optimal Nash equilibrium.
In both cases, we proposed simple algorithms to achieve the
efficient Nash equilibria.

In terms of future work, we will extend our game model to
study selfish medium access in general topology networks. We
will also consider the effect of more realistic channel models
and the presence of primary users on the Nash equilibrium
outcomes.
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