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Abstrat. We onsider the metri unapaitated faility loation problem(UFL). In this paper wemodify the (1+2=e)-approximation algorithm of Chudak and Shmoys to obtain a new (1.6774,1.3738)-approximation algorithm for the UFL problem. Our linear programing rounding algorithm is the�rst one that touhes the approximability limit urve (f ; 1 + 2e�f ) established by Jain et al. Asa onsequene, we obtain the �rst optimal approximation algorithm for instanes dominated byonnetion osts.Our new algorithm - when ombined with a (1.11,1.7764)-approximation algorithm proposed byJain, Mahdian and Saberi, and later analyzed by Mahdian, Ye and Zhang - gives a 1.5-approximationalgorithm for the metri UFL problem. This algorithm improves over the previously best known 1.52-approximation algorithm by Mahdian, Ye and Zhang, and it uts the gap with the approximabilitylower bound by 1/3.The algorithm is also used to improve the approximation ratio for the 3-level version of the problem.
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1 IntrodutionThe Unapaitated Faility Loation (UFL) problem is de�ned as follows. We are given a set Fof nf failities and a set C of n lients. For every faility i 2 F , there is a nonnegative numberfi denoting the opening ost of the faility. Furthermore, for every lient j 2 C and faility i 2 F ,there is a onnetion ost ij between faility i and lient j. The goal is to open a subset of thefailities F 0 � F , and onnet eah lient to an open faility so that the total ost is minimized.The UFL problem is NP-omplete, and max SNP-hard (see [4℄). A UFL instane is metri if itsonnetion ost funtion satis�es a kind of triangle inequality, namely if ij � ij0 + i0j0 + i0jfor any i; i0 2 C and j; j0 2 F .The UFL problem has a rih history starting in the 1960's. The �rst results on approximationalgorithms are due to Cornu�ejols, Fisher, and Nemhauser [1℄ who onsidered the problem withan objetive funtion of maximizing the \pro�t" of onneting lients to failities minus theost of opening failities. They showed that a greedy algorithm gives an approximation ratio of(1 � 1=e) = 0:632 : : : , where e is the base of the natural logarithm. For the objetive funtionof minimizing the sum of onnetion ost and opening ost, Hohbaum [2℄ presented a greedyalgorithm with an O(logn) approximation guarantee, where n is the number of lients. The�rst approximation algorithm with onstant approximation ratio for the minimization problemwhere the onnetion osts satisfy the triangle inequality, was developed by Shmoys, Tardos, andAardal [3℄. Several approximation algorithms have been proposed for the metri UFL problemafter that, see for instane [4{10℄. Up to now, the best known approximation ratio was 1:52,obtained by Mahdian, Ye, and Zhang [10℄.We will say that an algorithm is a �-approximation algorithm for a minimization problemif it omputes, in polynomial time, a solution that is at most � times more expensive than theoptimal solution. Spei�ally, for the UFL problem we de�ne a notion of bifator approximation.We say that an algorithm is a (�f ,�)-approximation algorithm if the solution it delivers hastotal ost at most �f � F � + � � C�, where F � and C� denote, respetively, the faility and theonnetion ost of an optimal solution.Guha and Khuller [4℄ proved by a redution from Set Cover that there is no polynomialtime �-approximation algorithm for the metri UFL problem with � < 1:463, unless NP �DTIME(nlog logn). Jain et al. [9℄ generalized this argument to show that the existene of a(�f ,�)-approximation algorithm with � < 1 + 2e��f would imply NP � DTIME(nlog logn).
1.1 Our ontributionWemodify the (1+2=e)-approximation algorithm of Chudak [6℄, see also Chudak and Shmoys [7℄,to obtain a new (1.6774,1.3738)-approximation algorithm for the UFL problem. Our linear pro-graming (LP) rounding algorithm is the �rst one that ahieves an optimal bifator approximationdue to the mathing lower bound of (�f ; 1 + 2e��f ) established by Jain et al. In fat we obtainan algorithm for eah point (�f ; 1 + 2e��f ) suh that �f � 1:6774, whih means that we havean optimal approximation algorithm for instanes dominated by onnetion ost (see Figure 1).Our main tehnique is to sparsen the support graph orresponding to the LP solution beforelustering. The motivation for this tehnique is the \irregularity" of instanes that are potentiallytight for the original algorithm of Chudak and Shmoys. We propose a way of measuring andontrolling this irregularity. In fat our lustering is the same as the one used by Sviridenkoin his 1.58-approximation algorithm [8℄, but we ontinue our algorithm in the spirit of Chudak



Fig. 1. Bifator approximation piture. The gray area orresponds to the improvement due to our algorithm.
and Shmoys' algorithm, whih leads to a substantially easier analysis and an improved bifatorapproximation guaranty.Our new algorithm may be ombined with the (1.11, 1.7764)-approximation algorithm of Jainet al. to obtain a 1.5-approximation algorithm for the UFL problem. This is an improvementover the previously best known 1.52-approximation algorithm of Mahdian et al., and it uts ofa 1/3 of the gap with the approximation lower bound by Guha and Khuler [4℄.We also note that the new (1.6774,1.3738)-approximation algorithm may be used to improvethe approximation ratio for the 3-level faility loation problem to 2.492.2 PreliminariesWe will review the onept of LP-rounding algorithms for the metri UFL problem. These arealgorithms that �rst solve the linear relaxation of a given integer programing (IP) formulationof the problem, and then round the frational solution to produe an integral solution with avalue not too muh higher than the starting frational solution. Sine the optimal frationalsolution is at most as expensive as an optimal integral solution, we obtain an estimation of theapproximation fator.2.1 IP formulation and relaxationThe UFL problem has a natural formulation as the following integer programming problem.minimize Pi2F ;j2C ijxij +Pi2F fiyisubjet toPi2F xij = 1 for all j 2 C (1)xij � yi � 0 for all i 2 F ; j 2 C (2)xij ; yi 2 f0; 1g for all i 2 F ; j 2 C (3)
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Fig. 2. A luster. If we make sure that at least one faility is open around a luster enter j0 , then any otherlient j from the luster may use this faility. Beause the onnetion osts are assumed to be metri, the distaneto this faility is at most the length of the shortest path from j to the open faility.
A linear relaxation of this IP formulation is obtained by replaing Condition (3) by theondition xij � 0 for all i 2 F ; j 2 C . The value of the solution to this LP relaxation will serveas a lower bound for the ost of the optimal solution. We will also make use of the followingdual formulation of this LP.maximize Pj2C vjsubjet toPj2C wij � fi for all i 2 F (4)vj � wij � ij for all i 2 F ; j 2 C (5)wij � 0 for all i 2 F ; j 2 C (6)

2.2 ClusteringThe �rst onstant fator approximation algorithm for the metri UFL problem by Shmoys et al.,but also the algorithms by Chudak and Shmoys, and by Sviridenko are based on the followinglustering proedure. Suppose we are given an optimal solution to the LP relaxation of ourproblem. Consider the bipartite graph G with verties being the failities and the lients of theinstane, and where there is an edge between a lient j and a faility i if the orrespondingvariable xij in the optimal solution to the LP relaxation is positive. We all G a support graphof the LP solution. If two lients are both adjaent to the same faility in graph G, we will saythat they are neighbors in G.The lustering of this graph is a partitioning of lients into lusters together with a hoie ofa leading lient for eah of the lusters. This leading lient is alled a luster enter. Additionallywe require that no two luster enters are neighbors in the support graph. This property helpsus to open one of the adjaent failities for eah luster enter. Formally we will say that alustering is a funtion g : C ! C that assigns eah lient to the enter of his luster. For apiture of a luster see Figure 2.



All the above mentioned algorithms use the following proedure to obtain the lustering.While not all the lients are lustered, hoose greedily a new luster enter j, and build a lusterfrom j and all the neighbors of j that are not yet lustered. Obviously the outome of thisproedure is a proper lustering. Moreover, it has a desired property that lients are lose totheir luster enters. Eah of the mentioned LP-rounding algorithms uses a di�erent greedyriterion for hoosing new luster enters. In our algorithm we will use the lustering with thegreedy riterion of Sviridenko [8℄.
2.3 Saling and greedy augmentationThe tehniques desribed here are not diretly used by our algorithm, but they help to explainwhy the algorithm of Chudak and Shmoys is lose to optimal. We will disuss how salingfaility opening osts before running an algorithm, together with another tehnique alled greedyaugmentation may help to balane the analysis of an approximation algorithm for the UFLproblem.The greedy augmentation tehnique introdued by Guha and Khuller [4℄ (see also [5℄) is thefollowing. Consider an instane of the metri UFL problem and a feasible solution. For eahfaility i 2 F that is not opened in this solution, we may ompute the impat of opening failityi on the total ost of the solution, also alled the gain of opening i, denoted by gi. The greedyaugmentation proedure, while there is a faility i with positive gain gi, opens a faility i0 thatmaximizes the ratio of saved ost to the faility opening ost gifi , and updates values of gi. Theproedure terminates when there is no faility whose opening would derease the total ost.Suppose we are given an approximation algorithm A for the metri UFL problem and a realnumber Æ � 1. Consider the following algorithm SÆ(A).1. sale up all faility opening osts by a fator Æ;2. run algorithm A on the modi�ed instane;3. sale bak the opening osts;4. run the greedy augmentation proedure.Following the analysis of Mahdian, Ye, and Zhang [10℄ one may prove the following lemma.Lemma 1. Suppose A is a (�f ,�)-approximation algorithm for the metri UFL problem, thenSÆ(A) is a (�f + ln(Æ),1 + ��1Æ )-approximation algorithm for this problem.This method may be applied to balane an (�f ,�)-approximation algorithm with �f << �.However, our 1.5 approximation algorithm will be balaned di�erently. It will be a ompositionof two algorithms that have opposite imbalanes.
3 Sparsening the graph of the frational solutionSuppose that for a given UFL instane we have solved its LP relaxation, and that we have anoptimal primal solution (x�; y�) and the orresponding optimal dual solution (v�; w�). Suh afrational solution has faility ost F � = Pi2F fiy�i and onnetion ost C� = Pi2F ;j2C ijx�ij .Eah lient j has its share vj of the total ost. This ost may again be divided into a lient'sfrational onnetion ost C�j =Pi2F ijx�ij , and his frational faility ost F �j = v�j � C�j .



3.1 Motivation and intuitionThe idea behind the sparsening tehnique is to make use of some irregularities of an instaneif they our. We all an instane regular if the failities that frationally serve a lient j areall at the same distane from j. For suh an instane the algorithm of Chudak and Shmoysprodues a solution whose ost is bounded by F � + (1 + 2e )C�, whih also follows from ouranalysis in Setion 4. It remains to use the tehnique desribed in setion 2.3 to obtain anoptimal 1:463 : : :-approximation algorithm for suh regular instanes.The instanes that are not regular are alled irregular. DiÆult to understand are the irregu-lar instanes. In frational solutions for these instanes partiular lients are frationally servedby failities at di�erent distanes. Our approah is to divide failities serving a lient into twogroups, namely lose and distant failities. We will remove links to distant failities before thelustering step, so that if there are irregularities, distanes to luster enters should derease.We measure the loal irregularity of an instane by omparing a frational onnetion ostof a lient to the average distane to his distant failities. In the ase of a regular instane,the sparsening tehnique gives the same results as tehnique desribed in setion 2.3, but forirregular instanes sparsening also takes some advantage of the irregularity.
3.2 DetailsWe will start by modifying the primal optimal frational solution (x�; y�) by saling the y-variables by a onstant  > 1 to obtain a suboptimal frational solution (x�;  �y�). Now supposethat the y-variables are �xed, but that we now have a freedom to hange the x-variables inorder to minimize the total ost. For eah lient j we hange the orresponding x-variables sothat he uses his losest failities in the following way. We hoose an ordering of failities withnondereasing distanes to lient j. We onnet lient j to the �rst failities in the ordering sothat for any failities i and i0 suh that i0 is later in the ordering if xij < yi than xi0j = 0.Without loss of generality, we may assume that this solution is omplete (i.e. there are noi 2 F ; j 2 C suh that 0 < xij < yi). Otherwise we may split failities to obtain an equivalentinstane with a omplete solution - see [8℄[Lemma 1℄ for a more detailed argument.Let (x; y) denote the obtained omplete solution. For a lient j we say that a faility i isone of his lose failities if it frationally serves lient j in (x; y). If xij = 0, but faility i wasserving lient j in solution (x�; y�), then we say, that i is a distant faility of lient j.De�nition 1. Let r(j) = �1Pi2fi2Fjxij=0g ijx�ij�C�jF �j be the measure of a loal irregularity ofthe instane. It is the average distane to a distant faility minus the frational onnetionost (whih is the general average distane to both lose and distant failities), divided by thefrational faility ost of a lient j.Let r0(j) = C�j�Pi2F ijxijF �j = r(j) � ( � 1) denote the frational onnetion ost minus theaverage distane to a lose faility, divided by the frational faility ost of a lient j.Observe, that for every lient j the following hold (see Figure 3):{ his average distane to a lose faility equals DCav(j) = C�j � r0(j) � F �j ,{ his average distane to a distant faility equals DDav(j) = C�j + r(j) � F �j ,{ his maximal distane to a lose faility is at most the average distane to a distant faility,DCmax(j) � DDav(j) = C�j + r(j) � F �j .
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Fig. 3. Distanes to failities serving lient j; the width of a retangle orresponding to faility i is equal to x�ij .Figure explains the meaning of r(j).
Consider a bipartite support graph G obtained from the solution (x; y), where eah lient isdiretly onneted to his lose failities. We will greedily luster this graph in eah round hoosingthe luster enter to be an unlustered lient j with the minimal value of DCav(j) + DCmax(j).With suh a lustering, eah luster enter has a minimal value of DCav(j) +DCmax(j) among alllients in this luster.

4 Our new algorithmConsider the following algorithm A1():1. Solve the LP relaxation of the problem to obtain a solution (x�; y�).2. Sale up the value of the faility opening variables y by a onstant  > 1, then hangethe value of the x-variables so as to use the losest possible frationally open failities (seeSetion 3.2).3. If neessary, split failities to obtain a omplete solution (x; y).4. Compute a greedy lustering for the solution (x; y), hoosing as luster enters unlusteredlients minimizing DCav(j) +DCmax(j).5. For every luster enter j, open one of his lose failities randomly with probabilities xij .6. For eah faility i that is not a lose faility of any luster enter, open it independently withprobability yi.7. Connet eah lient to an open faility that is losest to him.In the analysis of this algorithm we will use the following result:
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Fig. 4. Failities that lient j may onsider: his lose failities, distant failities, and lose failities of lusterenter j0.
Lemma 2. Given n independent events e1; e2; : : : ; en that our with probabilities p1; p2; : : : ; pnrespetively, the event e1 [ e2 [ : : : [ en (i.e. at least one of ei) ours with probability at least1� 1ePni=1 pi , where e denotes the base of the natural logarithm.Theorem 1. Algorithm A1( = 1:67736) produes a solution with expeted ost E[ost(SOL)℄ �1:67736 � F � + 1:37374 � C�Proof. The expeted faility opening ost of the solution isE[FSOL℄ =Pi2F fiyi =  �Pi2F fiy�i =  � F �.To bound the expeted onnetion ost we show that for eah lient j there is an openfaility within a ertain distane with a ertain probability. If j is a luster enter, one of hislose failities is open and the expeted distane to this open faility is DCav(j) = C�j � r0(j) �F �j .If j is not a luster enter, he �rst onsiders his lose failities (see Figure 4). If any of themis open, the expeted distane to the losest open faility is at most DCav(j). From Lemma 2,with probability p � (1� 1e ), at least one lose faility is open.Suppose none of the lose failities of j is open, but at least one of his distant failities isopen. Let pd denote the probability of this event. The expeted distane to the losest failityis then at most DDav(j).If neither any lose nor any distant faility of lient j is open, then he onnets himself tothe faility serving his luster enter g(j) = j0. Again from Lemma 2, suh an event happenswith probability ps � 1e . In the following we will show that if  < 2 then the expeted distanefrom j to the faility serving j0 is at most DDav(j) +DCmax(j0) +DCav(j0). Let Cj (Dj) be the setof lose (distant) failities of j. For any set of failities X � F , let d(j;X) denote the weightedaverage distane from j to i 2 X (with values of opening variables yi as weights).If the distane between j and j0 is at most DDav(j) +DCav(j0), then the remaining DCmax(j0)is enough for the distane from j0 to any of his lose failities. Suppose now that the distanebetween j and j0 is bigger than DDav(j) +DCav(j0) (*). We will bound d(j0; Cj0 n (Cj [ Dj)), theaverage distane from luster enter j0 to his lose failities that are neither lose nor distantfailities of j (sine the expeted onnetion ost that we ompute is on the ondition that jwas not served diretly). The assumption(*) implies that d(j0; Cj \ Cj0) > DCav(j0). Therefore, ifd(j0;Dj \ Cj0) � DCav(j0), then d(j0;Dj n (Cj [ Dj)) � DCav(j0) and the total distane from j issmall enough.



Fig. 5. Figure presents performane of our algorithm for di�erent values of parameter . The solid line orrespondsto regular instanes with r(j) = 0 for all j and it oinides with the approximability lower bound urve. Thedashed line orresponds to instanes with r(j) = 1 for all j. For a partiular hoie of  we get a horizontalsegment onneting those two urves; for  � 1:67736 the segment beomes a single point. Observe that forinstanes dominated by onnetion ost only a regular instane may be tight for the lower bound.
The remaining ase is that d(j0;Dj \ Cj0) = DCav(j0) � z for some positive z (**). Let ŷ =Pi2(Cj0[Dj) yi be the total frational opening of failities in Cj0 [ Dj in the modi�ed frationalsolution (x; y). From (*) we onlude, that d(j;Dj \ Cj0) � DDav(j) + z, whih implies d(j;Dj nCj0) � DDav(j) � z � ŷ�1�ŷ (note that (**) implies (Dj n Cj0) 6= ; and  � 1 � ŷ > 0), heneDCmax(j) � DDav(j)�z � ŷ�1�ŷ . Combining this with assumption (*) we onlude that the minimaldistane from j0 to a faility in Cj \ Cj0 is at least DDav(j) +DCav(j0) �DCmax(j) � DCav(j0) + z �ŷ�1�ŷ . Assumption (**) implies d(j0; Cj0 n Dj) = DCav(j0) + z � ŷ1�ŷ . Conluding, if  < 2, thend(j0; Cj0 n (Dj [ Cj)) � DCav(j0) + z � ŷ�1�ŷ . Therefore, the expeted onnetion ost from j to afaility in Cj0 n (Dj [ Cj) is at most DCmax(j) + DCmax(j0) + d(j0; Cj0 n (Dj [ Cj)) � DDav(j) � z �ŷ�1�ŷ +DCmax(j0) +DCav(j0) + z � ŷ�1�ŷ = DDav(j) +DCmax(j0) +DDav(j0)Putting all the ases together, the expeted total onnetion ost isE[CSOL℄ �Pj2C �p �DCav(j) + pd �DDav(j) + ps � (DDav(j) +DCmax(j0) +DCav(j0))��Pj2C �(p + ps) �DCav(j) + (pd + 2ps) �DDav(j)�=Pj2C �(p + ps) � (C�j � r0(j) � F �j ) + (pd + 2ps) � (C�j + r(j) � F �j )�= ((p + pd + ps) + 2ps) � C�+Pj2C �(p + ps) � (�r(j) � ( � 1) � F �j ) + (pd + 2ps) � (r(j) � F �j )�= (1 + 2ps) � C� +Pj2C �F �j � r(j) � (pd + 2ps � ( � 1) � (p + ps))�� (1 + 2e ) � C� +Pj2C �F �j � r(j) � (1e + 1e � ( � 1) � (1� 1e + 1e ))�Therefore, with  = 0 � 1:67736 suh that 1e + 1e0 � (0 � 1) � (1 � 1e + 1e0 ) = 0, we haveE[CSOL℄ � (1 + 2e0 ) � C� � 1:37374 � C�. utThe algorithm A1 with  = 1+� (for a suÆiently small positive �) is essentially the algorithmof Chudak and Shmoys.



5 The 1.5-approximation algorithmIn this setion we will ombine our algorithm with an earlier algorithm of Jain et al. to obtainan 1.5-approximation algorithm for the metri UFL problem.In 2002 Jain, Mahdian and Saberi [9℄ proposed a primal-dual approximation algorithm (theJMS algorithm). Using a dual �tting approah they have shown that it is a 1.61-approximationalgorithm. In a later work of Mahdian, Ye and Zhang [10℄ the following was proven.Lemma 3 ([10℄). The ost of a solution produed by the JMS algorithm is at most 1:11 � F �+ 1:7764�C�, where F � and C� are faility and onnetion osts in an optimal solution to thelinear relaxation of the problem.Theorem 2. Consider the solutions obtained with the A1 and JMS algorithms. The heaper ofthem is expeted to have a ost at most 1:5 times the ost of the optimal frational solution.Proof. Consider the algorithm A2 that with probability p = 0:313 runs the JMS algorithm andwith probability 1� p runs the A1 algorithm. Suppose that you are given an instane, and F �and C� are faility and onnetion osts in an optimal solution to the linear relaxation of theproblem for this instane. Consider the expeted ost of the solution produed by algorithm A2for this instane. E[ost℄ � p � (1:11 �F � + 1:7764 �C�) + (1� p) � (1:67736 �F � + 1:37374 �C�) =1:4998 � F � + 1:4998 � C� < 1:5 � (F � + C�) � 1:5 �OPT: utInstead of the JMS algorithm we ould take the algorithm of Mahdian et al. [10℄ - theMYZ(Æ) algorithm that sales the faility osts by Æ, runs the JMS algorithms, sales bak thefaility osts and �nally runs the greedy augmentation proedure. With a notation introduedin Setion 2.3, the MYZ(Æ) algorithm is the SÆ(JMS) algorithm. The MYZ(1.504) algorithmwas proven [10℄ to be a 1.52-approximation algorithm for the metri UFL problem. We mayhange the value of Æ in the original analysis to observe that MYZ(1.1) is a (1.2053,1.7058)-approximation algorithm. This algorithm ombined with our A1 (1.67736,1.37374)-approximationalgorithm gives a 1.4991-approximation algorithm, whih is even better than just using JMS andA1, but it gets more ompliated and the additional improvement is tiny.
6 Multilevel faility loationIn the k-level faility loation problem the lients needs to be onneted to open failities on the�rst level, and eah open faility ,exept on the last, k-th level, needs to be onneted to an openfaility on the next level. Aardal, Chudak, and Shmoys [14℄ gave a 3-approximation algorithm forthe k-level problem with arbitrary k. Ageev, Ye, and Zhang [13℄ proposed a redution of a k-levelproblem to (k� 1)-level and 1-level, whih results in a reursive algorithm. This algorithm usesan approximation level for single level problem and has a better approximation ration, but onlyfor instanes with small k. Using our new (1.67736,1.37374)-approximation algorithm instead ofthe JMS algorithm within this framework improves approximation for eah level. In partiular,in the limit as k tends to 1 we get 3.236-approximation whih is the best possible for thisonstrution.By a slightly di�erent method, Zhang [12℄ obtained a 1.77-approximation algorithm for the 2-level problem. By reduing to problem with lower number of levels, he obtained 2.523 1 and 2.811 This value deviates slightly from the value 2.51 given in the paper. The original argument ontained a minoralulation error
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