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Abstract

This paper presents a new method for learning overcomplete dictionaries adapted to efficient joint representation of stereo
images. We first formulate a sparse stereo image model where the multi-view correlation is described by local geometric transforms
of dictionary atoms in two stereo views. A maximum-likelihood method for learning stereo dictionaries is then proposed, which
includes a multi-view geometry constraint in the probabilistic modeling in order to obtain dictionaries optimized forthe joint
representation of stereo images. The dictionaries are learned by optimizing the maximum-likelihood objective function using the
expectation-maximization algorithm. We illustrate the learning algorithm in the case of omnidirectional images, where we learn
scales of atoms in a parametric dictionary. The resulting dictionaries provide both better performance in the joint representation
of stereo omnidirectional images and improved multi-view feature matching. We finally discuss and demonstrate the benefits of
dictionary learning for distributed scene representationand camera pose estimation.

Index Terms

Sparse approximations, dictionary learning, multi-view imaging, omnidirectional cameras.

I. I NTRODUCTION

Multiple images of a 3D scene taken from different viewpoints contain information about both 3D structure and texture
of the objects in the scene. Therefore, these images give a richer description of the environment compared to a single view.
Multi-view images are usually captured by a network of cameras distributed in a 3D scene. Such visual sensor networks can
find usage in applications like 3D television, surveillance, robotics or exploration. However, dealing with the high dimensional
visual information still poses many challenges, such as multi-view compression, 3D geometry estimation and scene analysis.

Extraction of 3D information from multiple views relies on the theory of the multiple view geometry [1], which relates
image features that represent the same 3D objects in different views. Pixel-based image representation is used in most of the
image-based 3D geometry estimation methods that build dense depth maps by computing pixel correspondences. However,
pixel-based representations are highly inefficient for image coding and compression. On the other hand, image representations
with orthogonal bases are efficient for compression, but generally fail to efficiently capture the geometry of objects ina scene
and the correlation between views. Therefore, multi-view imaging requires new image representation methods that givegood
performance in both compression and scene geometry estimation.

This paper addresses the problem of learning dictionaries adapted to the representation of multi-view images. We consider
sparse image approximations with overcomplete dictionaries of geometrical atoms. As the correlation between multi-view
images arises from the geometric constraints on the objectsin the scene, it can be simply described by local transforms of
geometric atoms [2]. We propose to learn dictionaries that efficiently describe the content of natural images and simultaneously
permit to capture the geometric correlation between multi-view images. Dictionary learning for sparse signal representations
has become an extremely active area of research in the last few years, when it was realized that adapting the dictionary to
a specific task or imposing a certain structure to the dictionary can yield significant improvements of performance in target
applications. Researchers have addressed the problem of learning dictionaries for image [3]–[5] and video representation [6]–
[8]. To the best of our knowledge there has been however no work on learning dictionaries for multi-view representation.We
concentrate on the problem of two views and develop a maximumlikelihood (ML) method for learning dictionaries that lead
to improved image approximation under the sparsity prior, and at the same time give better multi-view geometry estimation
from sparse low-level visual features. Our method builds upon the ML method for learning overcomplete dictionaries from
natural monocular images, introduced by Olshausen and Field [3]. Additionally, the proposed probabilistic approach to learning
includes the epipolar geometry in the modeling, and hence matches corresponding atoms within the learning process itself.
The optimization problem is cast as an energy minimization problem, that we finally solve with an Expectation-Maximization
(EM) algorithm. The experimental results show the significant benefits of stereo dictionary learning for applications such as
distributed scene representation and camera pose recovery.

The organization of this paper is as follows. We first overview the related work on dictionary learning in Section II. The
stereo image model is introduced in Section III. Section IV presents the optimization problem for learning dictionaries adapted
to stereo images, while its energy minimization solution ingiven in Section V-B. Experimental results in omnidirectional
imaging are presented in Section VI.
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We use the following notation convention throughout the paper. Small bold face letters denote vectors, while capital bold
face letters denote matrices. CapitalL, R letters in the subscript and(L), (R) in the superscript denote the parameters that
refer to the left, respectively right, image in a stereo image pair. Small letters within square brackets in the superscript (e.g.,
h[k]) denote the counter parameter, for example the counter of iterations or the counter of pixels. We denote the vectorlp
norm as‖ · ‖p.

II. RELATED WORK

The earliest work addressing the problem of learning overcomplete dictionaries for image representation has appeared
in 1997, in the visual neuroscience research domain. It was the work of Olshausen and Field [3], [9], who developed a
maximum likelihood (ML) dictionary learning method from natural images under the sparse coding assumption. The goal of
the work was to give evidence that the coding in the primary visual area V1 in the human cortex probably follows the sparse
image model. Their learning method yielded dictionary components (atoms) that are localized, oriented and bandpass, and
resemble the receptive fields of simple neurons in the primary visual area V1 in mammalian brain. This method is based on
maximizing the likelihood that a natural imagey arises from the overcomplete dictionaryΦ, when the generative image model
is considered as sparse image decomposition into dictionary elements. Therefore, the ML method solves the optimization
problem Φ∗ = maxΦ P (y|Φ), for y = Φa, wherea is considered as a hidden variable. The optimization is solved in
two iterative steps: the sparse coding step, where the dictionary is kept fixed and the sparse coefficient vectora that best
approximates the image is found; and a dictionary update step, wherea is kept fixed and the dictionary is updated to maximize
the objective maximum likelihood function using gradient descent. This method has also been extended to time-varying visual
stimuli [6]–[8].

The probabilistic inference approach to overcomplete dictionary learning has been later adopted by other researchers. Engan
et al. [10], [11] have introduced a method of optimal directions (MOD), which includes the sparse coding and dictionary
update steps that iteratively optimize the objective ML function. Their method differs from the work of Olshausen and Field
in two aspects. First, while in [3] the sparse coding step involves finding the equilibrium solution of the differential equation
over a, MOD uses either the OMP [10] or the FOCUSS [11] algorithm to find sparse vectora. Second, the dictionaryΦ is
updated as the solution of the differential equation∂E/∂Φ = 0, whereE is the energy function that is in this case equal
to the residue‖y − Φa‖2

F and‖ · ‖F denotes the Frobenius norm. These two modifications make theMOD approach faster
compared to ML method of Olshausen and Field. Maximum a posteriori (MAP) dictionary learning method, proposed by
Kreutz-Delgado et al. [4] belongs also to the family of two-step iterative algorithms based on probabilistic inference. Instead of
maximizing the likelihoodP (y|Φ), the MAP method maximizes the posterior probabilityP (Φ,a|y). This essentially reduces
to the same two-step (sparse coding-dictionary update) algorithm, where dictionary update includes an additional constraint on
the dictionary that can be for example unit Frobenius norm ofΦ or unit l2 norm of all atoms in the dictionary. The sparse
coding step is performed with FOCUSS [12].

A slightly different family of dictionary learning techniques is based on vector quantization achieved by K-means clustering.
The VQ approach for dictionary learning has been first proposed by Schmid-Saugeon and Zakhor in Matching Pursuit based
video coding [13], [14]. Their algorithm optimizes a dictionary given a set of image patches by first grouping patterns such that
their distance to a given atom is minimal, and then by updating the atom such that the overall distance in the group of patterns
is minimal. The implicit assumption here is that each patch can be represented by a single atom with a coefficient equal to
one, which reduces the learning procedure to K-means clustering. Since each patch is represented by only one atom, the sparse
coding step is trivial here. A generalization of the K-meansfor dictionary learning, called the K-SVD algorithm, has been
proposed by Aharon et al. in [5]. After the sparse coding step(where any pursuit algorithm can be employed), the dictionary
update is performed by sequentially updating each column ofΦ using a singular value decomposition (SVD) to minimize the
approximation error. The update step is hence generalized K-means since each patch can be represented by multiple atoms
and with different weights.

Finally, there exist other approaches for learning specialtypes of dictionaries, like unions of orthonormal basis [15], shift-
invariant dictionaries [16], block-based dictionaries and constrained overlapping dictionaries [17]. A comparisonof all state-of-
the-art dictionary learning methods is made difficult by thefact that the efficiency of the algorithms differs with the dictionary
size and the training data. However, ML and MAP methods are characterized by a flexibility in extending the probabilistic
modeling to higher-dimensional data, like videos [7], [8] or stereo images. It is also possible to include different correlated
modalities such as audio and visual signals in order to learnaudio-visual dictionaries [18], [19]. Because of this property, we
have chosen the ML approach for learning parametric dictionaries in stereo imaging.

Even though there has been recently a great amount of research done in the domain of dictionary learning for single images,
there has been no work targeting the problem of learning overcomplete dictionaries for stereo imaging. Learning the binocular
cells receptive fields and disparity tuning curves has been,however, widely investigated without the assumption of thesparse
coding in overcomplete dictionaries. Hoyer and Hyvärinen[20] have applied the independent component analysis (ICA)to
learn the orthogonal basis of stereo images. In their model,each stereo pair is a linear combination of stereo basis functions,
which are composed of left and right components. Their algorithm resulted in Gabor-like basis functions that are tuned to
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different disparities. Okajima has proposed an Infomax learning approach, where the binocular receptive fields are learned by
maximizing the mutual information between the stereo imagemodel and the disparity [21]. They have obtained results similar
to Hoyer and Hyvärinen. The stereo dictionary learning method that we propose in this work learns stereo atoms from stereo
image pairs while simultaneously performing the disparityestimation of the learned image features. The disparity estimation
is included in the probabilistic model of stereo images, thus removing the need for disparity estimation as preprocessing step.
However, the main target of this work is not to study the receptive fields of binocular cells or their tuning characteristics. The
learning strategy that we propose here aims at designing stereo dictionaries that have the optimal properties for both image
approximation and disparity or 3D scene structure estimation. To the best of our knowledge, such problem has never been
studied in the past.

III. M ULTI -VIEW IMAGING

A. Stereo image model

Developing the maximum likelihood dictionary learning method for stereo images requires first a definition of the stereo
image model. We consider two images vectorized into column vectors: left imageyL and right imageyR. ImagesyL andyR
have sparse representations in dictionariesΦ andΨ, respectively. Both dictionaries are of sizeM . The images do not have to
be exactly sparse, but they can be approximated by sparse decompositions ofm atoms up to an approximation erroreL, resp.
eR. We have:

yL = Φa =

m
∑

k=1

alkφlk + eL

yR = Ψb =

m
∑

k=1

brk
ψrk

+ eR, (1)

whereL = {lk},R = {rk}, k = 1, ...,m label the sets of atoms that participate in the sparse decompositions ofyL andyR,
respectively. In other words,{lk}, {rk}, k = 1, ...,m denote the atoms for whichalk 6= 0 and brk

6= 0. This model assumes
that both stereo images arem-sparse, i.e., composed ofm atoms, but the atoms in the left and the right image do not haveto
be the same (L 6= R). Besides the different sparse supportsL andR, sparse image decompositions in Eq. (1) have different
vectors of coefficients:a for the left, andb for the right image. The motivation behind this model is thatleft and right images
record the visual information from the same 3D environment and typically contain the image projections of the same 3D
scene features, thus the number of sparse components will beapproximately the same. Moreover, if the dictionary consists
of localized and oriented atoms that represent well the edges and objects geometry in general, we can say that stereo images
contain similar atoms, but locally transformed (shifted, rotated, etc.). Therefore, we further assume that signalsyL andyR are
correlated in the following way:

yR =

m
∑

k=1

brk
ψrk

+ eR =

m
∑

k=1

brk
Flkrk

(φlk) + eR, (2)

whereFlkrk
(·) denotes a transform of an atomφlk in yL to an atomψrk

in yR, and it differs for eachk = 1, ...,m. This
correlation model is a special case of the model introduced in [2] when there are no occlusions. Since they do not participate
in stereo matching, occlusions should not be considered forthe learning of stereo dictionaries. Therefore, we assume in Eq. (2)
that the occlusions in the scene are not dominant and that they can be included in the approximation errorseR, eL. Object and
atom transforms arising from the change of viewpoint can be usually represented by the 2-D similarity group elements (2-D
translation, rotation and isotropic scaling) and additionally anisotropic scaling of the image features [2]. Such transforms are
efficiently represented with a parametric dictionary whoseconstruction is built on these transformations. Given a generating
function g defined in the Hilbert space, the parametric dictionaryD = {gγ}γ∈Γ is constructed by changing the atom index
γ ∈ Γ that defines the rotation, translation and scaling transformations applied to the generating functiong. This is equivalent to
applying a unitary operatorU(γ) to the generating functiong, i.e.:gγ = U(γ)g. The unitary operator transforms the generating
function by applying a linear transform of the coordinate system in the spaceH where the images and the dictionaries are
defined. Letv denote the coordinates inH andu denote the coordinates obtained by transformingv with an arbitrary linear
transformQ, i.e., u = Q(v). The functiong is hence transformed into a functiongγ as:

g(u) = g(Q(v)) = F (g(v)) = gγ(v). (3)

Further on, the functiongγ needs to be normalized and have thel2 norm equal to one. Therefore, we define atoms in the
structured dictionary as:φ = gγ/‖gγ‖2. The multi-dimensional space of parametersγ is continuous and infinite, thus building a
dictionary with all possible transforms will yield an infinite dictionary. However, in practical cases, only a discretesetΓ = {γ}
of transform parameters is used. We further define our dictionariesΦ and Ψ as structured dictionaries built on the same
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generating functiong, but using possibly different sets of parameters:ΓL for Φ, andΓR for Ψ. To simplify the notation, we
introduce the following equivalencies:

φl ≡ g
γ
(L)
l

, γ
(L)
l ∈ ΓL, for l = 1, ...,M

ψr ≡ g
γ
(R)
r

, γ(R)
r ∈ ΓR, for r = 1, ...,M, (4)

where we assume thatg
γ
(L)
l

andg
γ
(R)
r

are already normalized, so we drop the norm in the denominator. An important property
of the structured dictionary is that a transformation of an atom φl in the left image into an atomφr in the right image reduces
to a transform of its transform parameters, i.e.,

ψr = Flr(φl) = U(γ′)φl = U(γ′ ◦ γ(L)
l )g. (5)

In the following, the transformF (·) that changes atomφl into an atomψr is denoted asFlr(·). The corresponding linear
transform of the coordinate system asQlr(·).

The transformsFlkrk
, k = 1, ...,m relating the atoms in the left and right view in Eq. (2) are notarbitrary. As the

corresponding atoms are images of the same feature in the 3D space, the atom transformations have to satisfy multi-view
epipolar geometry constraints.

B. Multi-view geometry

The epipolar geometry constraint imposes a geometric relation between 3D points and their image projections. Considera
point on the left image, given by the coordinatesv, and a pointu on the right image. Let these two points represent image
projections of the same 3D pointp from two camera positions with relative pose(R,T). R ∈ SO(3) is the relative orientation
between cameras andT ∈ R

3 is their relative position. The epipolar geometry constraint is then:

uTT̂Rv = 0. (6)

The matrix T̂ is obtained by representing the cross product ofT with Rv as matrix multiplication. In the case where the
point v lies on the atomφl, as shown on the Fig. 1, our goal is to seek for a transformFlr (and equivalently forQlr) such
that u = Qlr(v). In other words, the pointu should lie on the atomψr = Flr(φl). The epipolar geometry constraint is then:

[Qlr(v)]
T
T̂Rv = 0. (7)

As formalized in Eq. (3), the transformQ(·) depends on the index parametersγ. In the case above,Qlr denotes the linear
transform of coordinates between atomsφl = g

γ
(L)
l

andψr = g
γ
(R)
r

, thus it depends on parametersγ(L)
l andγ(R)

r . Knowing
these parameters, it is very simple to derive the analytic form for Qlr. For omnidirectional imagesQlr is derived in [2] and
also given for completeness in Section VI-A.

The epipolar constraint in Eq. (7) is rarely satisfied exactly, due to discrete spatial sampling of images, and can be only
evaluated with a certain errorεl. The estimated epipolar constraintdel is thus given as:

del = [Qlr(v)]
T
T̂Rv + εL = dL + εL, (8)

wheredL = [Qlr(v)]TT̂Rv. Moreover, since there is uncertainty in epipolar geometryestimation, the epipolar measure is not
symmetric. When a pointu in the second image is transformed in a pointv in the first image, we have the epipolar geometry
estimateder given by

der = [Q−1
lr (u)]

T

T̂Ru + εR = dR + εR. (9)

wheredR = [Q−1
lr (u)]

T

T̂Ru. The most likely transformsQlr (and equivalentlyFlr) in pairs of stereo images are the transforms
that give small epipolar errors. We will thus use this fact inthe probabilistic framework for the maximum-likelihood learning
of stereo dictionaries, presented in the following section.

Fig. 1. Epipolar geometry between stereo atoms.
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IV. M AXIMUM -LIKELIHOOD LEARNING OF DICTIONARIES FOR STEREO IMAGES

A. Problem formulation

Following a similar approach as in [3], we formulate the probabilistic framework for the maximum likelihood learning
of overcomplete dictionariesΦ,Ψ that are used to represent stereo imagesyL and yR respectively. We want to define the
likelihood that stereo images captured by two cameras with arelative poseR,T are well represented with a small set of atom
pairs related by geometric transforms. In other words, we want to learn the dictionariesΦ andΨ simultaneously. Therefore,
we need to maximize the probability that the observed stereoimagesyL and yR arise from dictionariesΦ and Ψ under a
sparsity prior, and that the epipolar constraint between all corresponding points onyL andyR is equal to zero, i.e.,D = 0.
The epipolar geometry constraint is introduced in the probabilistic model in order to maximize the probability that theselected
stereo pairs of atoms is conformant with the multi-view geometry. Similarly to the problem proposed in [3], the dictionary
learning is performed by minimizing the Kullback-Leibler (KL) divergence between the probability distribution of natural
images arising from the image model and the actual distribution of natural imagesP ∗(yL,yR). This KL divergence is given
as:

KL =

∫ ∫

P ∗(yL,yR)log
P ∗(yL,yR)

P (yL,yR, D = 0|Φ,Ψ)
dyLdyR. (10)

SinceP ∗(yL,yR) is constant, minimizing the KL divergence is equivalent to maximizing the log-likelihood

logP (yL,yR, D = 0|Φ,Ψ)

that a set of stereo natural images(yL,yR) arises from the overcomplete sets of functionsΦ andΨ. Therefore, the goal of
learning is to find the overcomplete dictionariesΦ∗ andΨ∗ that are the solutions of the following optimization problem:

(Φ,Ψ)∗ = arg max
Φ,Ψ

〈max
a,b

logP (yL,yR, D = 0|Φ,Ψ)〉, (11)

whereyL = Φa andyR = Ψb. If we marginalize the cost function overa andb we obtain

P (yL,yR, D = 0|Φ,Ψ) =

∫

a,b

P (yL,yR, D = 0|a,b,Φ,Ψ)P (a,b|Φ,Ψ)dadb. (12)

In the rest of this section, we compute the objective function.

B. Coefficient vector distributions

In order to compute the cost function of Eq. (12), we first needto define the joint distributionP (a,b|Φ,Ψ) of the coefficients
a andb, given the dictionariesΦ andΨ. First, we note that we can decompose the joint distributionof coefficients in two
ways:

P (al, br|φl, ψr) = P (br|al, φl, ψr)P (al) (13)

P (al, br|φl, ψr) = P (al|br, φl, ψr)P (br), (14)

where we assume that priors on coefficients in each imageP (al) andP (br) are independent of the atoms. We can therefore
write

P (al, br|φl, ψr) =
√

P (br|al, φl, ψr)P (al|br, φl, ψr)P (al)P (br). (15)

We assume that the pairs of coefficients(al, br) are pairwise independent, which is usually the case when theimage approxi-
mations are sparse enough. Then, the distributionP (a,b|Φ,Ψ) becomes factorial, and we can write

P (a,b|Φ,Ψ) =

M
∏

l=1

M
∏

r=1

P (al, br|φl, ψr) =

M
∏

l=1

M
∏

r=1

√

P (br|al, φl, ψr)P (al|br, φl, ψr)P (al)P (br). (16)

We compute now the conditional probabilities and the distributions of the coefficients that are used in Eq. (16). We assume
that pixels keep their intensity values under the local transforms induced by the viewpoint change. This assumption holds
in multi-view images when the scene is assumed to be Lambertian, and when the atom transforms correctly represent local
transforms. Equivalently, we can write

∀k and ∀v s.t. φlk(v) 6= 0, ⇒ yL(v) = yR(Qlkrk
(v)) = yR(u), (17)

whereu = Qlkrk
(v). This means that if the transformQlkrk

maps a pixel at positionv on the imageyL into a pixel at
positionu on the imageyR, then those pixels have the same intensity. Under the assumption given in Eq. (17), we can use
the Lemma 1 in [22], which states the following equality:

〈yR, ψrk
〉 =

1
√

Jlkrk

〈yL, φlk〉, (18)
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whereJlkrk
= |∂u∂v | = |∂Ql

k
r

k
(v)

∂v | is the Jacobian determinant (or simply the Jacobian) of the linear transformQlkrk
. Recall

that the inner products in Eq. (18) correspond to the coefficientsbr andal related to the atoms under consideration. Using the
sparse image model and the relation in Eq. (18) we obtain the following probabilities:

P (br|al, φl, ψr) = P (al|br, φl, ψr) =
1

zb
exp

(

− 1

2σ2
b

(br −
al√
Jlr

)2
)

, (19)

wherezb is the normalization factor andσb is the standard deviation of the zero-mean Gaussian noise that models the difference
betweenbr andal/

√
Jlr. The detailed derivation of Eq. (19) is given in Appendix A.

We model now the distribution of the coefficients. The distribution of the coefficients actually depends on an arbitrarily
chosen dictionary. However, imposing the independence of the coefficients with respect to the dictionary during learning actually
leads to inferring a dictionary that gives the same prior distribution of coefficients for all types of images. Furthermore, when
the prior of coefficients is tightly picked at zero, the learning leads to a universal dictionary in which all natural images have
sparse decompositions. We chose here a different approach than the one proposed in [3], where the coefficient distribution
is taken to be continuous and peaked at zero. Instead, we assume that the coefficientsal and br are drawn from a Bernoulli
distribution over the activity of coefficientsI(al) andI(br), whereI denotes the indicator function. These distributions are:

P (al) =

{

p if I(al) = 1;
q if I(al) = 0.

P (br) =

{

p if I(br) = 1;
q if I(br) = 0.

Choosingp ≪ q introduces a sparsity assumption on the coefficients, i.e.,it is much more probable that the coefficient takes
the value zero than a value greater than zero. If the images can be represented bym components from a dictionary of size
M , we get:

P (a) =

M
∏

l=1

P (al) = pm(1 − p)(M−m), (20)

P (b) =

M
∏

r=1

P (br) = pm(1 − p)(M−m). (21)

Without loss of generality, we posep = 1/(1 + e1/λ). Therefore, reducing the value ofλ increases the level of ”sparseness”
of coefficients. As the coefficientsal and br for l, r = 1, ..,M are independent and identically distributed, the Eqs (20) and
(21) can be rewritten as:

P (a) = (
e1/λ

1 + e1/λ
)M exp (−m/λ) =

1

zλ
exp

(

−‖a‖0

λ

)

, (22)

P (b) = (
e1/λ

1 + e1/λ
)M exp (−m/λ) =

1

zλ
exp

(

−‖b‖0

λ

)

. (23)

From Eqs.(19), (20) and (21), we can write:

P (a,b|Φ,Ψ) =
1

zbzλ
exp

(

− 1

2σ2
b

M
∑

l=1

M
∑

r=1

(br −
al√
Jlr

)2

)

exp

(

− 1

2λ
(‖a‖0 + ‖b‖0)

)

. (24)

We can now go back to the likelihood function in Eq. (12). Since P (a,b|Φ,Ψ) is the product of a zero-mean Gaussian
distribution and a discrete distribution tightly peaked atzero, we can approximate the integral in the right hand side of Eq.
(12) by its value at the maximum of its argument. A similar approximation is proposed in [9] in the learning of dictionaries
for natural images. Thus, Eq. (12) becomes:

P (yL,yR, D = 0|Φ,Ψ) ≈ P (yL,yR, D = 0|a,b,Φ,Ψ)P (a,b|Φ,Ψ). (25)

Finally, we have

P (yL,yR, D = 0|Φ,Ψ) ≈ P (yL,yR|D = 0,a,b,Φ,Ψ)P (D = 0|a,b,Φ,Ψ)P (a,b|Φ,Ψ) (26)

= P (yL,yR|a,b,Φ,Ψ)P (D = 0|a,b,Φ,Ψ)P (a,b|Φ,Ψ), (27)

where Eq. (26) follows from the chain rule, and Eq. (27) holdssinceD = 0 does not bring more information toyL,yR than
Φ,Ψ. In order to evaluate the likelihood function, we now have tocomputeP (D = 0|a,b,Φ,Ψ), which is the probability
that the epipolar constraintD is equal to zero given the stereo image model in Eq. (2).
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C. Epipolar matching probability

We compute now the probability that the atoms during learning correspond to the same 3D objects under our stereo image
model. The epipolar matching of two points on the left and right images, which are the projections of the same point in the
3D space, has been derived in the Section III-B. TheεL andεR on the estimation of the epipolar constraintsdel andder are
assumed to be i.i.d. white zero-mean Gaussian noises of variancesσ2

dl andσ2
dr, respectively. We have therefore:

P (εL) =
1

zdl
exp

(

− ε2L
2σ2

dl

)

, (28)

P (εR) =
1

zdr
exp

(

− ε2R
2σ2

dr

)

, (29)

wherezdl andzdr are the normalization factors. Equivalently, we can define the conditional probability of the random variables
del andder , given a pair of pointsv, u and atomsφl, ψr as:

P (del|v,u, φl, ψr) = P (del|dL) =
1

zdl
exp

(

− (del − dL)2

2σ2
dl

)

, (30)

P (der|v,u, φl, ψr) = P (der|dR) =
1

zdr
exp

(

− (der − dR)2

2σ2
dr

)

. (31)

The atomsφl andψr influence the functionsdL anddR that are based on the transformQlr, which depends on the atoms.
Since we want to find the probability that two atoms satisfy the epipolar constraint, we are interested in the probabilityof the
particular realization of the random variablesdel andder when they are simultaneously equal to zero. Therefore, we define
the conditional probability ofdel = 0, der = 0, givenv,u, φl, ψr as:

P (del = 0, der = 0|v,u, φl, ψr) = P (del = 0|v,u, φl, ψr)P (der = 0|v,u, φl, ψr)

=
1

zdlzdr
exp

(

− d2
L

2σ2
dl

)

exp

(

− d2
R

2σ2
dr

)

. (32)

We extend this conditional probability to all the pairs of pixels that undergo the transformation defined by the atom pair,
i.e., for all vi,ui, i = 1, ..., q. Let Dlr denote the event that the epipolar constraints are simultaneously respected for all
pairs of pixels. In this case,d[i]

el = 0, d
[i]
er = 0 for all i = 1, ..., q, whered[i]

el = d
[i]
L + εl = [Qlr(vi)]

T
T̂Rvi + εl and

d
[i]
er = d

[i]
R + εl = [Q−1

lr (ui)]
T

T̂Rui + εr. If we assume that the estimation of the epipolar distance for each pixel pairi can
be computed independently, we have

P (Dlr = 0|φl, ψr) =

q
∏

i=1

P (d
[i]
el = 0, d[i]

er = 0|vi,ui, φl, ψr)

=

q
∏

i=1

1

z
[i]
dl z

[i]
dr

exp

(

− (d
[i]
L )2

(2σ
[i]
dl )

2

)

exp

(

− (d
[i]
R )2

2(σ
[i]
dr)

2

)

=
1

zD
exp

(

− 1

2σ2
D

q
∑

i=1

(

w
[i]
l (d

[i]
L )2 + w[i]

r (d
[i]
R )2

)

)

=
1

zD
exp

(

− 1

2σ2
D

Wlr

)

, (33)

wherezD =
∏q
i=1 z

[i]
dl z

[i]
dr, w

[i]
l = σ2

D/(σ
[i]
dl )

2 andw[i]
r = σ2

D/(σ
[i]
dr)

2. The weightsw[i]
l , w

[i]
r permit to control the importance

of the epipolar constraints. In particular, they give more importance to the epipolar constraint for points that are closer to the
geometric discontinuity represented by the atom, where theestimation of the epipolar constraint is more reliable. Thefunction
Wlr has been introduced in Eq. (33) in order to simplify the notation.

Finally, the probability of the epipolar matching for the stereo image pair is the product of probabilities of epipolar matching
for pairs of active atoms. The active atoms participate in the sparse decompositions of the left and right image with their
respective coefficientsal andbr, which are different from zero. Then, we can model the probability P (D = 0|a,b,Φ,Ψ) as:

P (D = 0|a,b,Φ,Ψ) =
1

zD
exp

(

− 1

2σ2
D

M
∑

l=1

M
∑

r=1

I(al)I(br)Wlr

)

, (34)

whereI is the indicator function that models the distribution of the coeffficients.
We finally compute the last component of the objective function in Eq. (26), which is the probabilityP (yL,yR|a,b,Φ,Ψ)

that refers to the approximation error. We use a similar assumption as [3] where this probability is modeled by a Gaussian
white noise. We therefore have:

P (yL,yR|a,b,Φ,Ψ) = P (eL + eR) =
1

zI
exp

(

− 1

2σ2
I

(‖yL − Φa‖2
2 + ‖yR − Ψb‖2

2)

)

, (35)
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wherezI is a normalization factor, andσI is the variance of the Gaussian noise. Note that we have in Eq.(35) the fact that
the sum of two zero-mean Gaussian random variables is also a zero-mean Gaussian random variable.

We can now rewrite the optimization problem of Eq. (11) as:

(Φ,Ψ)∗ = argmax
Φ,Ψ

[

max
a,b

(logP (yL,yR|a,b,Φ,Ψ)P (D = 0|a,b,Φ,Ψ)P (a,b|Φ,Ψ))

]

(36)

whose components are given respectively by Eqs. (35), (34) and (24).

V. EM-BASED ENERGY MINIMIZATION ALGORITHM

A. Energy minimization problem

The optimization problem of Eq. (36) can be cast as an energy minimization problem. The ML optimization problem is
equivalent to solving the following energy minimization problem:

(Φ,Ψ)∗ = argmin
Φ,Ψ

〈min
a,b

E(yL,yR, D = 0,a,b|Φ,Ψ)〉, (37)

whereE denotes the energy function given as:

E(yL,yR, D = 0,a,b|Φ,Ψ) =
1

2σ2
I

(‖yL − Φa‖2
2 + ‖yR − Ψb‖2

2)

+
1

2σ2
D

M
∑

l=1

M
∑

r=1

I(al)I(br)Wlr

+
1

2σ2
b

M
∑

l=1

M
∑

r=1

(br −
al√
Jlr

)2 +
1

2λ
(‖a‖0 + ‖b‖0). (38)

The energy function thus consists in the sum of four main terms that are respectively

1) the data fidelity term, expressed by the energy of the approximation error after sparse approximation of imagesyL and
yR,

2) the epipolar constraint term, measuring the epipolar matching of atoms in sparse decompositions of a stereo image pair,
3) the coefficient similarity term, measuring the correlation of coefficients of stereo atom pairs under a local transform,
4) the sparsity term, expressing the degree of sparsity of the stereo image pair.

We can see that the first three terms depend on the choice of thedictionariesΦ andΨ, while the last term depends only on
the coefficient vectorsa and b. Therefore, we group the first three terms into a functionf(yL,yR,a,b,Φ,Ψ) and express
the energy function as:

E(yL,yR, D = 0,a,b|Φ,Ψ) = f(yL,yR,a,b,Φ,Ψ) +
1

2λ
(‖a‖0 + ‖b‖0). (39)

Our target optimization problem in Eq. (37) thus becomes thefollowing energy minimization:

(Φ,Ψ)∗ = arg min
Φ,Ψ

[

min
a,b

(

f(yL,yR,a,b,Φ,Ψ) +
1

2λ
(‖a‖0 + ‖b‖0)

)]

. (40)

B. EM-based algorithm

We have seen above that the ML learning problem can be writtenas an energy minimization problem. Inspired by the
method proposed in [3], we can solve the energy minimizationproblem iteratively by alternating between two steps. In the first
step,(Φ,Ψ) is kept constant and the energy function is minimized with respect to the coefficient vector(a,b). The second
step keeps the obtained coefficients(a,b) constant, while performing the gradient descent on(Φ,Ψ) to minimize the energy
E(yL,yR, D = 0,a,b|Φ,Ψ). Therefore, the algorithm iterates between the sparse coding and the dictionary learning steps
until convergence. Such an iterative solution for the ML learning problem is actually equivalent to an Expectation-Maximization
algorithm [23], where the images(yL,yR) are the observed variables,(a,b) represent hidden or latent variables, and(Φ,Ψ)
are parameters [24], [25]. The EM algorithm iterates between two steps: Expectation (E) and Maximization (M). In the E step
the energy is minimized with respect to(a,b), and it is essentially the sparse coding step. The M step performs minimization
with respect to the dictionaries, and it corresponds to the learning step.
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1) Minimization with respect to the coefficients:In the sparse coding step, we need to find the coefficientsa andb such
that

(a,b)∗ = arg min
a,b

f(yL,yR,a,b,Φ,Ψ) +
1

2λ
(‖a‖0 + ‖b‖0). (41)

We can see that this problem is similar to the constrainedl0 sparse approximation problem when casted as an unconstrained
problem. The multiplier 1

2λ is the trade-off parameter between minimizing the energy inf and the sparsity of coefficient
vectorsa andb. Since finding the global optimum of such a problem is NP-hard, we will use the greedy approach to find a
locally optimal solution. Although they are not guaranteedto find the sparsest solution for such problems, greedy algorithms
have performed quite well with fast convergence in practice[26]–[28]. An advantage of using a greedy approach here is that
it leads to a signal approximation using a small set of coefficients different from zero. In contrary,l1 minimization algorithms
could lead to many small but non-zero coefficients, which would increase the complexity of computing the epipolar constraint
part of the energy function in Eq. (38).

We propose a greedy algorithm that chooses at each iterationk the pair of atomsφlk , ψrk
that give the minimal value of

the function:

(φlk , ψrk
) = arg min

φl,ψr

[
1

2σ2
I

(‖h[k−1]
l − 〈h[k−1]

l , φl〉φl‖2
2 + ‖h[k−1]

r − 〈h[k−1]
r , ψr〉ψr‖2

2)

+
1

2σ2
D

Wlr +
1

2σ2
b

(〈h[k−1]
r , ψr〉 −

〈h[k−1]
l , φl〉
Jlr

)2], (42)

whereh
[k−1]
l andh

[k−1]
r are the residues of the left and right images respectively, after k− 1 iterations. At the beginning, the

residues are:h[0]
L = yL andh

[0]
R = yR and they are updated at each stepk as:

h
[k]
L = h

[k−1]
L − 〈h[k−1]

L , φlk〉φlk ,
h

[k]
R = h

[k−1]
R − 〈h[k−1]

R , ψrk
〉ψrk

. (43)

The coefficientsalk andbrk
are simply evaluated as:

alk = 〈h[k−1]
L , φlk〉,

brk
= 〈h[k−1]

R , ψrk
〉. (44)

We will refer to this algorithm as Multi-view Matching Pursuit (MVMP)1, which can be shown to be essentially the Weak
Matching Pursuit [29]. The bound of the approximation rate of MVMP in [30].

2) Minimization with respect to the atom scale parameters:Once the atomsφlk , ψrk
, k = 1, ...,m that participate in the

decomposition of imagesyL andyR have been found by MVMP, their coefficients are kept fixed while the atoms are updated
by minimizing the energy function. Knowing the selected atoms, the energy function at stept of EM becomes:

E[t] =
1

2σ2
I

(‖yL −
m
∑

k=1

alkφlk‖2
2 + ‖yR −

m
∑

k=1

brk
ψrk

‖2
2) +

1

2σ2
D

m
∑

k=1

Wlr

+
1

2σ2
b

m
∑

k=1

(brk
− alk√

Jk
)2 +

1

2λ
(‖a‖0 + ‖b‖0). (45)

It can be observed that the energy functionE[t] is actually an analytic function of the atom parameters{γ(L)
l } and {γ(R)

r }
in the case of parametric dictionaries as defined in Sec. III-A. Hence, we can calculate its derivatives with respect to each
parameter. Therefore, one can use the multivariate gradient descent, or the multivariate conjugate gradient method tofind the
local minimum ofE[t] with respect toγ(L)

l andγ(R)
r , given the coefficientsa andb.

The sparse coding and the learning steps are iteratively repeated until the convergence is achieved. The inference should
be, however, performed from a large set of data, i.e., from different multi-view pairs and with different camera poses. This is
achieved by sparse coding of a randomly selected set of stereo pairs yielding sparse coefficients for each pair. Then the energy
function is averaged over all pairs to perform the learning step.

VI. L EARNING FOR STEREO OMNIDIRECTIONAL IMAGES

A. Implementation for spherical images

The stereo image model given in Eq. (2) does not put any assumption on the type of cameras used for stereo image
acquisition. It can be applied to planar or omnidirectionalmulti-view images by defining the dictionary for the considered type
of images, and by introducing the epipolar geometry constraints that are defined for that particular image projection geometry.

1Although we take here only two images, we can generalize the algorithm to more than two images by pairwise image correspondence.
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Since omnidirectional cameras represent a convenient solution for 3D scene representation due to their wide field of view, we
perform learning of dictionaries for stereo omnidirectional images.

Omnidirectional images obtained by catadioptric cameras can be appropriately mapped to spherical images [31]. Therefore,
we proposed to use a dictionary of atoms on the 2-D unit sphereas proposed in [32] in order to represent spherical images.
The generating functiong is defined in the space of square-integrable functions on a unit two-sphereS2, g(θ, ϕ) ∈ L2(S2),
whereθ is the polar angle andϕ is the azimuth angle. We use a dictionary of edge-like atoms on the sphere, based on a
generating function that is a Gaussian in one direction and its second derivative in the orthogonal direction:

g(θ, ϕ) = − 1

KA

(

16α2 tan2 θ

2
cos2 ϕ− 2

)

exp

(

−4 tan2 θ

2

(

α2 cos2 ϕ+ β2 sin2 ϕ
)

)

. (46)

For the weighting function in the epipolar geometry constraints of Eq. (33) we use a Gaussian envelope of the form:

w(θ, ϕ) =
1

KG
exp

(

−4 tan2 θ

2

(

12α2 cos2 ϕ+ β2 sin2 ϕ
)

)

. (47)

It gives positive weights to the points on the main (central)lobe of the atomg(θ, ϕ), while the weights are close to zero
outside of the main lobe. The weights are higher towards the axis of the discontinuity represented by the atom. Choosing such
a weighting function for the epipolar geometry estimation permits to use only the points that are likely to satisfy the epipolar
constraints, and to exclude the points represented by the ripples of the second derivative of the Gaussian. The dictionary is
then built by changing the atom parametersγ = (τ, ν, ψ, α, β) ∈ Γ. The triplet(τ, ν, ψ) represents Euler angles that describe
the motion of the atom on the sphere by anglesτ andν alongθ andϕ respectively, and the rotation of the atom around its
axis with an angleψ. Parametersα andβ represent anisotropic scaling factors.

Epipolar geometry for the spherical camera model is formulated in the same manner as for the perspective camera model,
except that the pixel (point) positionsv andu in Eq. (6) are expressed in spherical coordinates. The transform u = Qlr(v)
that relates a pointv on atomφl = g

γ
(L)
l

to its corresponding transformed pointu on the transformed atomψr = g
γ
(R)
r

can
be defined via the linear transform of the coordinate system.When the atomsφl andψr are derived using the parameters
γ

(L)
l = (τ

(L)
l , ν

(L)
l , ψ

(L)
l , α

(L)
l , β

(L)
l ) andγ(R)

r = (τ
(R)
r , ν

(R)
r , ψ

(R)
r , α

(R)
r , β

(R)
r ), respectively, the pointu can be written as:

u = R−1

γ
(R)
r

· ζ(R
γ
(L)
l

· v), (48)

whereR
γ
(L)
l

and R
γ
(R)
r

are rotation matrices given by Euler angles(τ
(L)
l , ν

(L)
l , ψ

(L)
l ) and (τ

(R)
r , ν

(R)
r , ψ

(R)
r ), respectively,

andζ(·) defines the grid transform due to anisotropic scaling. If thespherical coordinates ofv are denoted as(θ2, ϕ2) (unit
sphere is assumed), and the spherical coordinates ofu are (θ1, ϕ1), the functionζ(·) is a pair of transformsζp(ϕ1) and
ζt(θ1, ϕ1, ζp(ϕ1)) given by:

ϕ2 = ζp(ϕ1) = arctan

(

α
(R)
r β

(L)
l sinϕ1

α
(L)
l β

(R)
r cosϕ1

)

θ2 = ζt(θ1, ϕ1, ϕ2) = arctan



tan
θ1
2

√

√

√

√

(α
(L)
l )2 cos2 ϕ1 + (β

(L)
l )2 sin2 ϕ1

(α
(R)
r )2 cos2 ϕ2 + (β

(R)
r )2 sin2 ϕ2



 . (49)

This is followed by the transform of spherical coordinates(θ2, ϕ2) to Euclidean coordinatesut. Finally we obtainu asR−1

γ
(R)
r

ut.

B. Learning testbed

We describe now the experimental testbed that we have used for dictionary learning on stereo spherical images. Even if
the dictionary is constructed by translation, rotation andscaling of a generating function, we focus on the learning ofscaling
parameters only. The scaling parameters are the most important parameters since they directly define the shape of the atoms,
which become elongated as the scales become anisotropic. Onthe other hand, translations and rotations depend highly onthe
distance and orientations of cameras, so learning these parameters is meaningful only when cameras are static and results in
a position-specific dictionary. We want to perform learningof scales(α(L), β(L)) from the set of atom parametersγ(L) and
(α(R), β(R)) from γ(R) for atoms that are present in sparse approximations of stereo views and satisfy the epipolar geometry
constraint. The energy function of Eq. (38) is minimized only with respect to these four parameters. We have performed the
minimization using the conjugate gradient2. The other parameters are kept fixed. The motion parameters(τ, ν) include the
positions of all pixels in an image. The rotation parameterψ sampled uniformly between0 to π with resolution aNr. We
have taken the same motion and rotation parameters for the left and right dictionaries.

We have tested the proposed stereo dictionary learning algorithm on our ”Mede” omnidirectional multi-view database3. The
database consists of 54 omnidirectional images of the indoor environment, grouped into two sets: one set without plants(27

2http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
3Database is available upon request.
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(a) (b) (c) (d)

Fig. 2. (a),(b): Two views from the ”Mede” database, first image set. (c),(d): Two views from the ”Mede” database, second image set.

images), and one set with plants (27 images). Different views have been captured by placing cameras on different positions on
the floor, without camera rotation. We have formed 216 pairs of images taken in the same set, with different distances between
the cameras. Since we know the camera positions and the rotation is identity, the relative pose matricesT andR are known
for each image pair. Sample views are illustrated on Figure 2.

The first step in the learning algorithm (i.e., the expectation (E) step implemented by MVMP) needs to be performed on
a big set of statistically different stereo images for the learning results to be meaningful. In order to limit the complexity of
the whole learning process and yet include the image diversity, we select small patches ofNc ×Nc pixels from the spherical
images obtained by mapping the omnidirectional images to the unit sphere. As cropping a square image patch from a spherical
image is feasible only when its center lies on the equator, werotate the sphere such that the center of the patch coincideswith
the equator and then crop it. This rotation is taken into account when we estimate the epipolar geometry. Therefore, in the E
step we form a set ofSp pairs of stereo patches. For eachp = 1, ..., Sp we randomly choose an image pair from the database,
then we randomly select a point on the sphere and we extract two patches from two stereo images centered on this point. The
MVMP is then performed on each pair of patches independently, andNat atoms are selected. Examples of atoms are shown
on the Fig. 3(b)-(d) and (f)-(h). The dictionary learning step (M step) is then performed by minimizing the sum of the energy
function given by Eq. (45) for all patches.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Example of a pair of stereo patches and their MVMP selected atoms: a) left patch, b)-d) the first three atoms in the MVMP decomposition of the
left patch; e) right patch, f)-h) the first three atoms in the MVMP decomposition of the right patch.

In our experiments, we have takenSp = 50 pairs of patches of size12 × 12, that have been obtained by cropping slightly
bigger patches of16× 16 in order to avoid border effects. All patches have been normalized to the same variance0.1 in order
to equalize the importance of each patch. Moreover, the patches have been whitened by spherical filtering [33] in order to
flatten the image spectrum and make all frequencies equally important, as proposed in [3]. The number of positions in the
dictionary construction is12 × 12, the number of rotations is set to4. Finally, the pairs of scales have been independently
randomly initialized for the left and right dictionary, with 5 pairs of anisotropic scales each in the range[5, 15] (from big to
small atoms). The MVMP algorithm selectsNat = 3 atoms per patch. Since the size of the patches is small, threeatoms are
usually enough to represent the main geometrical components in the patch. Before starting the learning algorithm, we have
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performed MVMP on a set of randomly selected patches to estimate the variancesσ2
D = 2.7 · 10−3 andσ2

b = 0.047.

C. Learned dictionaries

We illustrate in this section the dictionary that has been learned on stereo omnidirectional images. In order to see the
influence of the part of objective function that relies on themulti-view constraint, we have introduced a factorρ in the energy
function:

Ẽ(yL,yR, D = 0,a,b|Φ,Ψ) =
1

2σ2
I

(‖yL − Φa‖2
2 + ‖yR − Ψb‖2

2)

+ ρ
1

2σ2
D

M
∑

l=1

M
∑

r=1

I(al)I(br)DE(γ
(L)
l , γ(R)

r )

+ ρ
1

2σ2
b

M
∑

l=1

M
∑

r=1

(br −
al√
Jlr

)2 +
1

2λ
(‖a‖0 + ‖b‖0). (50)

We can see that forρ = 1, the energy function in Eq. (50) is equal to the one in Eq. (38). On the other hand, forρ = 0, there
are no multi-view constraints in the energy function, and dictionary learning is based only on minimization of the residual
energy of both stereo images under sparse representations.

The initial values of scalesα(L), β(L), α(R) andβ(R) for the learning algorithm have been chosen randomly, and they are
given in the first two columns of Table I. The atoms built with these initial scales and centered at the North Pole are shown in
the first row on Fig. 4. We then learn the scaling parameters with 50 iterations of the EM algorithm. At this point, the change
in parameters became small and the solution can be considered to be stable. The columns 3 to 10 in Table I give the values of
the learned scalesα(L), β(L), α(R) andβ(R). The results are given forρ = 0, 1, 3, 5, where the same initial scales have been
used for all values ofρ. The corresponding atoms are shown in Fig. 4.

TABLE I
INITIAL AND LEARNED SCALE PARAMETERS FOR THE LEFT AND RIGHT IMAGE, FOR DIFFERENT VALUES OF THE PARAMETERρ.

Initial dictionary Learned dictionary
ρ = 0 ρ = 1 ρ = 3 ρ = 5

α(L) β(L) α(L) β(L) α(L) β(L) α(L) β(L) α(L) β(L)

13.15 5.98 8.61 6.34 10.82 8.68 6.86 10.17 7.84 10.92
14.06 7.78 22.19 7.30 16.92 13.72 14.84 9.95 16.53 12.36
6.27 10.47 3.40 3.56 3.81 5.05 2.82 10.26 3.17 11.39
14.13 14.58 25.88 22.95 26.00 19.73 25.19 18.21 24.36 17.04
11.32 14.65 14.52 14.78 5.57 11.25 12.73 15.63 11.61 13.92

α(R) β(R) α(R) β(R) α(R) β(R) α(R) β(R) α(R) β(R)

6.58 6.42 2.94 2.69 3.58 4.73 2.72 9.36 3.01 10.77
14.71 9.22 12.18 5.04 11.72 8.43 14.79 9.66 15.19 11.00
14.57 14.16 25.93 20.30 25.57 18.94 24.75 17.86 23.94 16.55
9.85 12.92 6.60 6.80 5.70 10.56 6.72 10.13 8.22 11.72
13.00 14.59 15.87 16.05 15.08 14.52 13.08 14.97 13.25 14.85

We observe first that the learned dictionaries include atomsof different scales and are therefore able to approximate signals
at various scales. Whenρ = 0, the learned atoms are elongated along the direction of the Gaussian function and narrow in
the direction of the second derivative of the Gaussian function. These results are in consistency with the previous workon
dictionary learning for image representation in the singleview case [3]. However, when we increaseρ and hence include
the geometry constraints in the stereo learning, we obtain different results for atoms scales. The atoms become elongated in
the direction of the second derivative of the Gaussian function and narrow in the direction of the Gaussian function, which
is an opposite effect than in the case whereρ = 0. In addition, forρ > 0 the learned scales generally tend to give smaller
atoms than forρ = 0. These two effects result from the multi-view geometry constraints in the dictionary learning process.
They are most probably due to the local nature of the epipolarconstraint. Namely, the depth of the scene rapidly changes
around object boundaries leading to different disparity and epipolar matching. Since the object boundaries are represented
by 2D discontinuities on the image of a 3D scene, the epipolargeometry is mostly satisfied along the discontinuity and in a
limited area. This makes the learned atoms become anisotropic and small. This highlights the great importance of the geometric
constraints in the learning of dictionaries for stereo images.

D. Application to distributed scene representation

Distributed scene representation with stereo or multi-view cameras corresponds to the problem where each image of the
scene is approximated independently from the others. Namely, we do not search for corresponding atoms during sparse
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Initial scales inΦ Initial scales inΨ

Learned scales inΦ, ρ = 0 Learned scales inΨ, ρ = 0

Learned scales inΦ, ρ = 1 Learned scales inΨ, ρ = 1

Learned scales inΦ, ρ = 3 Learned scales inΨ, ρ = 3

Learned scales inΦ, ρ = 5 Learned scales inΨ, ρ = 5

Fig. 4. Initial and learned scales of the atoms for the left and right dictionaries. All atoms are on the North pole.

approximation using MVMP, but we rather apply MP independently on each image and then match the corresponding atoms
for joint reconstruction. The number of correspondences between atoms from the different views is very important for scene
representation, because these pairs carry the geometric correlation between two images. For example, in distributed multi-
view coding, a bigger number of atom stereo pairs directly reduces the required transmission rate and improves the coding
performance [2]. If the atoms that form the learned dictionaries Φ and Ψ represent the statistically optimal atoms for both
image approximation and epipolar geometry, one should expect that the learned dictionary results in more corresponding atom
pairs than a randomly initialized dictionary, even in distributed settings. In order to verify it, we select randomly two image
patches,yL andyR with the same center from a randomly chosen pair of omnidirectional images in the ”Mede” database.
The size of the patches is set to40× 40 pixels, which is slightly larger than the size used for learning. After independent MP
decomposition of the left and right patch using 10 atoms per patch, the epipolar constraints are evaluated for all possible pairs
of left and right atomsdA(φl, ψr), l = 1, ..., 10, r = 1, ..., 10. The epipolar measuredA is equal to half of the valueWlr in
Eq. (33), and represents the epipolar atom distance per view.

Fig. 5(a) plots on they-axis the number of atom pairs(φl, ψr) that have the epipolar distancedA(φl, ψr) smaller or equal
than the threshold value given on thex-axis. We call this curve the cumulative correspondence number (CCN) curve. The left
part of CCN curves with smallerdA is more important than the right part, because the correspondences are more reliable when
their epipolar distance is smaller. All CCN curves have beenaveraged over 100 randomly chosen image pairs. We can see that
CCN curves forρ = 1, ρ = 3 andρ = 5 are all above the CCN curve of the randomly initialized dictionary. This confirms
that our learning algorithms really produces dictionariesthat result into a larger number of correspondences betweenatoms
of different views. On the other hand, forρ = 0, the CCN curve is either close to the CCN curve of the random dictionary,
or below it. This shows that designing dictionaries for image approximation without considering the multiview geometry can
lead to suboptimal dictionaries for stereo images. Fig. 5 (b) shows the average approximation rate (i.e., energy decay)during
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the iterations of the MP for imagesyL andyR. We plot the ratio between the sum of the residues of the left and right images
after k iterations and the sum of their initial energies, versus theiteration numberk. We can see that for all values ofρ the
approximation rate using learned dictionaries is better than using random dictionaries. Moreover, increasingρ slows down
the approximation rate for a very small amount, hence optimizing the dictionaries for stereo matching does not induce a big
penalty on the approximation rate.
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Fig. 5. Performance of the learned dictionaries in distributed settings: a) Cumulative correspondence number (CCN) curves for initial dictionary and learned
dictionaries, forρ = 0, 1, 3, 5; b) MP energy decay foryL andyR.

To verify that the superior performance of the learned dictionary over the initial one is not due to the unlucky selectionof
the initial dictionary, we compare the performance of the learned dictionaries to an average performance of different randomly
selected initial dictionaries. We select randomly 100 initial dictionaries and 100 stereo image pairs, and plot the average CCN
curve for the initial dictionary. This curve is shown with the blue solid line on Fig. 6 (a). We see that the learned dictionaries
still give more correspondences than the random ones for thesmall values ofdA. Therefore, they lead to more atom pairs
with a better epipolar matching. The comparison of the energy decay in this case is shown on Fig. 6 (b), and it is similar
to the results of Fig. 5 (b). Since learned dictionaries result in a higher number of correspondences with no penalty in the
approximation rate, these dictionaries can be beneficial for distributed scene representation and distributed coding.
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Fig. 6. Performance of the learned dictionaries in distributed settings, with averaging over random initial dictionaries: a) Average Cumulative correspondence
number (CCN) curve for 100 random initial dictionaries and CCN curves for learned dictionaries, forρ = 0, 1, 3, 5; b) MP energy decay foryL andyR.

E. Application to camera pose estimation

Finally, we discuss how the proposed learning algorithm canbe useful for camera pose estimation [34]. We have performed
an experiment where the camera pose has been estimated usingthe initial and learned dictionaries forρ = 3. Two pairs of
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images from ”Mede” database have been selected, with translation T = [1 0 0]T andT = [0 1 0]T respectively. For each
image pair, we have randomly chosen20 patches of40 × 40 pixels. The same image patches are decomposed by MP using
initial and learned dictionaries, giving3 atoms for each patch and thus60 atoms per image. Matching atoms from left and right
images and estimation of the camera pose has been performed using the algorithm proposed in [34]. This algorithm extracts
atoms from two views in a distributed fashion, and then finds the atom pairs that are related by local geometric transforms. The
selected atom pairs and their transforms are then used to findpoint correspondences in two views, from which we estimate the
camera pose using the eight-point algorithm [35]. Additionally, we apply Ransac [36] for camera pose estimation in order to
be more robust to outliers. The estimated translation matrices are shown in Table II and Table III for both target matrices T.
We can see that using the learned dictionary for pose estimation gives significantly better performance than using a randomly
initialized dictionary. The learned dictionary leads to a precise estimation of the translation, while initial dictionary cannot
even determine the direction of the camera motion. Moreover, applying Ransac does not improve the performance in the case
of the learned dictionary. This leads to the conclusion thatall points on the learned atoms give reliable matches and no gross
outliers.

TABLE II
CAMERA POSE ESTIMATION WITH RANDOM INITIAL AND LEARNED DICTI ONARIES, FOR TARGET TRANSLATIONTT = [1 0 0].

Target matrices TT = [1 0 0]
R = I

learned dictionary initial dictionary
estimatedTT, without Ransac [0.9778 -0.1519 0.1441] [0.1910 -0.7284 0.6580]

estimatedTT, with Ransac [0.8144 -0.5436 0.2032] [0.7540 0.6067 0.2518]

TABLE III
CAMERA POSE ESTIMATION WITH RANDOM INITIAL AND LEARNED DICTI ONARIES, FOR TARGET TRANSLATIONTT = [0 1 0].

Target matrices TT = [0 1 0]
R = I

learned dictionary initial dictionary
estimatedTT, without Ransac [-0.0385 0.9951 0.0907] [0.9067 0.3484 0.2376]

estimatedTT, with Ransac [-0.1317 0.9424 0.3075] [0.9003 0.3934 0.1866]

VII. C ONCLUSIONS

We have proposed a new method for learning overcomplete dictionaries that have optimal performance in representing stereo
images. The stereo (multi-view) image model where sparse image components are related with local transforms is used as a
base for developing a maximum likelihood (ML) method for learning dictionaries for stereo images. The epipolar geometry
constraint has been included in the probabilistic modelingin order to force the learning algorithm to select atoms thatoffer good
approximation performance, and simultaneously permit to satisfy multi-view geometry constraints. The experimentalresults
with omnidirectional images have shown that one has to consider the geometry constraints to obtain atoms that are optimal
for the representation of stereo images. Moreover, our method results in dictionaries that give both better stereo matching and
approximation properties than randomly selected dictionaries. We have finally shown that learning the dictionaries for optimal
scene representation has important benefits in applications such as distributed scene representation and camera pose estimation.
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APPENDIX A
CONDITIONAL PROBABILITIES P (br|al, φl, ψr) AND P (al|br, φl, ψr)

We first replace the expansions foryL andyR from Eq. (1) in Eq. (18), and get for allk = 1, ...,m:

〈
m
∑

i=1

bri
ψri

, ψrk
〉 + 〈eR, ψrk

〉 =
1

√

Jlkrk

〈
m
∑

i=1

aliφli , φlk〉 +
1

√

Jlkrk

〈eL, φlk〉, (51)

which can be rewritten as:

brk
+

m
∑

i=1
i6=k

〈bri
ψri

, ψrk
〉 + 〈eR, ψrk

〉 =
1

√

Jlkrk

alk +
1

√

Jlkrk

m
∑

i=1
i6=k

〈aliφli , φlk〉 +
1

√

Jlkrk

〈eL, φlk〉, (52)
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or simply:
brk

=
alk

√

Jlkrk

+ η′, (53)

where:

η′ =
1

√

Jlkrk

m
∑

i=1
i6=k

〈aliφli , φlk〉 +
1

√

Jlkrk

〈eL, φlk〉 −
m
∑

i=1
i6=k

〈bri
ψri

, ψrk
〉 − 〈eR, ψrk

〉. (54)

We will further assume thatη′ is a small value, since it is a sum of the projection of some noise to a chosen atom, and a linear
combination of inner products of a chosen atom with other atoms in the image decomposition. When the image decomposition
is sparse and the dictionary is overcomplete, the assumption is usually verified. However, we cannot use directly the expression
in Eq. (53) to derive the distributionP (a,b|Φ,Ψ) because the sparse support of the stereo images is not known,and hence
also the indexeslk, rk andk = 1, ...,m. Therefore, we say that an arbitrary stereo atom pairφl, ψr and their coefficientsal, ar
satisfy Eq. (53) up to a certain errorη1, which includes alsoη′. Therefore, we have:

br =
1√
Jlr

al + η1, (55)

whereJlr is the Jacobian of the linear transform of the coordinate system induced by the transform between atomsφl andψr.
Whenal andbr are the coefficients of a stereo pair, then they satisfy Eq. (55) with a small value of the noiseη1. Otherwise,
al andbr are not significant in sparse decompositions of stereo images (according to the model in Eq. (1)) and hence the noise
η1 is also small. Therefore, we can model the noiseη1 with a white Gaussian noise of varianceσ2

b and get:

P (η1) = P (br|al, φl, ψr) =
1

zb
exp

(

− 1

2σ2
b

(br −
al√
Jlr

)2
)

. (56)

Althoughφl, ψr are not explicitly contained in the probability expression, they are implicitly there sinceJlr is evaluated as a
Jacobian of a transform betweenφl andψr. Multiplying Eq. (53) with

√
Jlr, we can get a symmetric relation:

P (η2) = P (al|br, φl, ψr) =
1

zb
exp

(

− 1

2σ2
a

(al −
√

Jlrbr)
2

)

=
1

zb
exp

(

− 1

2σ2
bJlr

(al −
√

Jlrbr)
2

)

=
1

zb
exp

(

− 1

2σ2
b

(br −
al√
Jlr

)2
)

, (57)

where we used the fact that variance of the noiseη2 =
√
Jlrη1 can be evaluated asσa = σb

√
Jlr . Note that the same expression

for the conditional probabilityP (al|br, φl, ψr) would be obtained if we consider the inverse transformFrl from atomψr to
atomφl because the Jacobian of the linear transform satisfies:J(Q−1

lr ) = 1/Jlr.
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