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Abstract

This paper presents a new method for learning overcompletmmiaries adapted to efficient joint representation efed
images. We first formulate a sparse stereo image model whemaulti-view correlation is described by local geometransforms
of dictionary atoms in two stereo views. A maximum-likeldtbmethod for learning stereo dictionaries is then propogsich
includes a multi-view geometry constraint in the probahiti modeling in order to obtain dictionaries optimized fbe joint
representation of stereo images. The dictionaries ar@ddaoy optimizing the maximum-likelihood objective furmstiusing the
expectation-maximization algorithm. We illustrate tharkeing algorithm in the case of omnidirectional images, whee learn
scales of atoms in a parametric dictionary. The resultimgiahiaries provide both better performance in the jointrespntation
of stereo omnidirectional images and improved multi-vi@attire matching. We finally discuss and demonstrate thefiteené
dictionary learning for distributed scene representatiod camera pose estimation.

Index Terms

Sparse approximations, dictionary learning, multi-viemaging, omnidirectional cameras.

I. INTRODUCTION

Multiple images of a 3D scene taken from different viewpsinbntain information about both 3D structure and texture
of the objects in the scene. Therefore, these images giveharrdescription of the environment compared to a single.vie
Multi-view images are usually captured by a network of casatistributed in a 3D scene. Such visual sensor networks can
find usage in applications like 3D television, surveillanaiotics or exploration. However, dealing with the higmdinsional
visual information still poses many challenges, such adimigw compression, 3D geometry estimation and sceneyaisal

Extraction of 3D information from multiple views relies ohet theory of the multiple view geometry [1], which relates
image features that represent the same 3D objects in differews. Pixel-based image representation is used in nfasieo
image-based 3D geometry estimation methods that buildeddapth maps by computing pixel correspondences. However,
pixel-based representations are highly inefficient forgsmaoding and compression. On the other hand, image repatisers
with orthogonal bases are efficient for compression, bueggly fail to efficiently capture the geometry of objectsarscene
and the correlation between views. Therefore, multi-viavaging requires new image representation methods thatggiod
performance in both compression and scene geometry etimat

This paper addresses the problem of learning dictionadagtad to the representation of multi-view images. We dmrsi
sparse image approximations with overcomplete dicti@sadf geometrical atoms. As the correlation between migdiivv
images arises from the geometric constraints on the objedise scene, it can be simply described by local transforfns o
geometric atoms [2]. We propose to learn dictionaries tifatiently describe the content of natural images and siamdbusly
permit to capture the geometric correlation between nvidtiy images. Dictionary learning for sparse signal repn&géns
has become an extremely active area of research in the lasydars, when it was realized that adapting the dictionary to
a specific task or imposing a certain structure to the dietiprcan yield significant improvements of performance iryéar
applications. Researchers have addressed the problerarofg dictionaries for image [3]-[5] and video represéota[6]—

[8]. To the best of our knowledge there has been however n& worearning dictionaries for multi-view representatiovie
concentrate on the problem of two views and develop a maxitikatihood (ML) method for learning dictionaries that lead
to improved image approximation under the sparsity priod at the same time give better multi-view geometry estiomati
from sparse low-level visual features. Our method builderughe ML method for learning overcomplete dictionariestfro
natural monocular images, introduced by Olshausen and B&lAdditionally, the proposed probabilistic approachgarning
includes the epipolar geometry in the modeling, and hencehea corresponding atoms within the learning procest.itse
The optimization problem is cast as an energy minimizatimblem, that we finally solve with an Expectation-Maximipat
(EM) algorithm. The experimental results show the signiftcaenefits of stereo dictionary learning for applicationshsas
distributed scene representation and camera pose recovery

The organization of this paper is as follows. We first ovewibe related work on dictionary learning in Section Il. The
stereo image model is introduced in Section Ill. Section f¢sents the optimization problem for learning dictionsuaelapted
to stereo images, while its energy minimization solutiongien in Section V-B. Experimental results in omnidireot
imaging are presented in Section VI.



We use the following notation convention throughout thegza@mall bold face letters denote vectors, while capitdd bo
face letters denote matrices. Capifal R letters in the subscript and.), (R) in the superscript denote the parameters that
refer to the left, respectively right, image in a stereo imagir. Small letters within square brackets in the supgts¢e.g.,
h!*l) denote the counter parameter, for example the counterrdtions or the counter of pixels. We denote the veétor
norm as|| - |-

Il. RELATED WORK

The earliest work addressing the problem of learning oveplete dictionaries for image representation has appeared
in 1997, in the visual neuroscience research domain. It Wwaswork of Olshausen and Field [3], [9], who developed a
maximum likelihood (ML) dictionary learning method fromtngal images under the sparse coding assumption. The goal of
the work was to give evidence that the coding in the primaspai area V1 in the human cortex probably follows the sparse
image model. Their learning method yielded dictionary comgnts (atoms) that are localized, oriented and bandpass, a
resemble the receptive fields of simple neurons in the psineaual area V1 in mammalian brain. This method is based on
maximizing the likelihood that a natural imagearises from the overcomplete dictionaby when the generative image model
is considered as sparse image decomposition into diciioel@ments. Therefore, the ML method solves the optiminatio
problem ®* = maxg P(y|®), for y = ®a, wherea is considered as a hidden variable. The optimization isesblwn
two iterative steps: the sparse coding step, where theodanty is kept fixed and the sparse coefficient veetadhat best
approximates the image is found; and a dictionary updafe stkerea is kept fixed and the dictionary is updated to maximize
the objective maximum likelihood function using gradieesdent. This method has also been extended to time-varignglv
stimuli [6]—[8].

The probabilistic inference approach to overcompletdatietry learning has been later adopted by other researdbegan
et al. [10], [11] have introduced a method of optimal direns (MOD), which includes the sparse coding and dictionary
update steps that iteratively optimize the objective MLdtion. Their method differs from the work of Olshausen aneldi
in two aspects. First, while in [3] the sparse coding steplives finding the equilibrium solution of the differentiajation
over a, MOD uses either the OMP [10] or the FOCUSS [11] algorithm tal fsparse vectas. Second, the dictionargp is
updated as the solution of the differential equatitfi/0® = 0, where E is the energy function that is in this case equal
to the residud|y — ®a||% and || - || » denotes the Frobenius norm. These two modifications mak&®B approach faster
compared to ML method of Olshausen and Field. Maximum a piosi§MAP) dictionary learning method, proposed by
Kreutz-Delgado et al. [4] belongs also to the family of twegsiterative algorithms based on probabilistic infereriostead of
maximizing the likelihoodP(y|®), the MAP method maximizes the posterior probabilty®, a|y). This essentially reduces
to the same two-step (sparse coding-dictionary updateyidign, where dictionary update includes an additionalst@int on
the dictionary that can be for example unit Frobenius norn®oér unit I, norm of all atoms in the dictionary. The sparse
coding step is performed with FOCUSS [12].

A slightly different family of dictionary learning technigs is based on vector quantization achieved by K-meanteaius.

The VQ approach for dictionary learning has been first pregdsy Schmid-Saugeon and Zakhor in Matching Pursuit based
video coding [13], [14]. Their algorithm optimizes a diat&ry given a set of image patches by first grouping pattercis that

their distance to a given atom is minimal, and then by updatie atom such that the overall distance in the group of pette

is minimal. The implicit assumption here is that each pateh be represented by a single atom with a coefficient equal to
one, which reduces the learning procedure to K-means cingteSince each patch is represented by only one atom, trsesp
coding step is trivial here. A generalization of the K-me#&msdictionary learning, called the K-SVD algorithm, hasebe
proposed by Aharon et al. in [5]. After the sparse coding $tepere any pursuit algorithm can be employed), the dictipna
update is performed by sequentially updating each colum@& ofing a singular value decomposition (SVD) to minimize the
approximation error. The update step is hence generalizete&ns since each patch can be represented by multiple atoms
and with different weights.

Finally, there exist other approaches for learning spegjas of dictionaries, like unions of orthonormal basis][Ehift-
invariant dictionaries [16], block-based dictionariesl @onstrained overlapping dictionaries [17]. A comparisball state-of-
the-art dictionary learning methods is made difficult by thet that the efficiency of the algorithms differs with thetithnary
size and the training data. However, ML and MAP methods aeatiterized by a flexibility in extending the probabilistic
modeling to higher-dimensional data, like videos [7], [8]stereo images. It is also possible to include differentalated
modalities such as audio and visual signals in order to laadio-visual dictionaries [18], [19]. Because of this pedy, we
have chosen the ML approach for learning parametric diaties in stereo imaging.

Even though there has been recently a great amount of résgane in the domain of dictionary learning for single images
there has been no work targeting the problem of learningoowvaplete dictionaries for stereo imaging. Learning theobirdar
cells receptive fields and disparity tuning curves has bkeewgver, widely investigated without the assumption of sharse
coding in overcomplete dictionaries. Hoyer and Hyvarif2@] have applied the independent component analysis (I©A)
learn the orthogonal basis of stereo images. In their madalh stereo pair is a linear combination of stereo basigitums;
which are composed of left and right components. Their @lgor resulted in Gabor-like basis functions that are tuned t



different disparities. Okajima has proposed an Infomaxnlieg approach, where the binocular receptive fields amnézhby
maximizing the mutual information between the stereo imagelel and the disparity [21]. They have obtained resultslaim

to Hoyer and Hyvarinen. The stereo dictionary learninghudtthat we propose in this work learns stereo atoms fronester
image pairs while simultaneously performing the dispaesyimation of the learned image features. The disparifynason

is included in the probabilistic model of stereo imagessthemoving the need for disparity estimation as preproogsstep.
However, the main target of this work is not to study the réwefields of binocular cells or their tuning charactedstiThe
learning strategy that we propose here aims at designimgost#ictionaries that have the optimal properties for batlge
approximation and disparity or 3D scene structure estonatio the best of our knowledge, such problem has never been
studied in the past.

IIl. M ULTI-VIEW IMAGING
A. Stereo image model

Developing the maximum likelihood dictionary learning imad for stereo images requires first a definition of the stereo
image model. We consider two images vectorized into colueutors: left imagey, and right imageyr. Imagesy, andyg
have sparse representations in dictionafeand ¥, respectively. Both dictionaries are of sizé. The images do not have to
be exactly sparse, but they can be approximated by sparsengesitions ofmm atoms up to an approximation errey,, resp.
er. We have:

Pa = Z al, ¢1, +er
k=1

yL =
yr = Wb=) b, +er, 1)
k=1

whereL = {I;},R = {rx},k = 1,...,m label the sets of atoms that participate in the sparse deesitigns ofy; andyg,
respectively. In other wordgl;}, {ri},k = 1,...,m denote the atoms for whicty, # 0 andb,, # 0. This model assumes
that both stereo images ane-sparse, i.e., composed of atoms, but the atoms in the left and the right image do not tave
be the same/ # R). Besides the different sparse suppadfteind R, sparse image decompositions in Eqg. (1) have different
vectors of coefficientsa for the left, andb for the right image. The motivation behind this model is tledit and right images
record the visual information from the same 3D environmerd &pically contain the image projections of the same 3D
scene features, thus the number of sparse components walpjp@ximately the same. Moreover, if the dictionary cassis
of localized and oriented atoms that represent well the £dge objects geometry in general, we can say that stereesnag
contain similar atoms, but locally transformed (shifteatated, etc.). Therefore, we further assume that signalandyr are
correlated in the following way:

m m
YR = Zbrkwm +er= Z by, Fiyr,(¢1,) + €r, (2
k=1 k=1
where F, ., (-) denotes a transform of an atogn, in y; to an atomy,, in ygr, and it differs for eactk = 1,...,m. This
correlation model is a special case of the model introdung@]iwhen there are no occlusions. Since they do not padieip
in stereo matching, occlusions should not be considerethéolearning of stereo dictionaries. Therefore, we assumiei (2)
that the occlusions in the scene are not dominant and thatctrebe included in the approximation errers, er.. Object and
atom transforms arising from the change of viewpoint can &igally represented by the 2-D similarity group element®(2-
translation, rotation and isotropic scaling) and addaibnanisotropic scaling of the image features [2]. Sucmdfarms are
efficiently represented with a parametric dictionary whoseastruction is built on these transformations. Given aegatng
function g defined in the Hilbert space, the parametric dictionBry= {g-},cr is constructed by changing the atom index
~ € T" that defines the rotation, translation and scaling transétions applied to the generating functignrhis is equivalent to
applying a unitary operatdy (vy) to the generating functiog, i.e.: g, = U(v)g. The unitary operator transforms the generating
function by applying a linear transform of the coordinatsteyn in the spacé{ where the images and the dictionaries are
defined. Letv denote the coordinates iH andu denote the coordinates obtained by transformingith an arbitrary linear
transform@, i.e.,u = Q(v). The functiong is hence transformed into a functign as:

g(u) =g(Q(v)) = F(g9(v)) = gy(v). 3)

Further on, the functiory, needs to be normalized and have thenorm equal to one. Therefore, we define atoms in the
structured dictionary agi = g, /||g,||2. The multi-dimensional space of parametgiis continuous and infinite, thus building a
dictionary with all possible transforms will yield an inftaidictionary. However, in practical cases, only a discsetd” = {~}

of transform parameters is used. We further define our diaties® and ¥ as structured dictionaries built on the same



generating functiory, but using possibly different sets of parametéis:for ®, andI' for ¥. To simplify the notation, we
introduce the following equivalencies:

o = MR WZ(L)EFL, for l=1,...M
U = gm, AP el for r=1,..,M, (4)

where we assume thgt(m andg (r) are already normalized, so we drop the norm in the denomin&toimportant property
of the structured d|ct|onary is that a transformation of &mag; in the left image into an atom,. in the right image reduces
to a transform of its transform parameters, i.e.,

br = Fin(d) = U)o = U( o7 )g. (5)

In the following, the transform¥'(-) that changes aton; into an atoms,. is denoted a<,-(-). The corresponding linear
transform of the coordinate system @s.(-).

The transformsF, .., K = 1,...,m relating the atoms in the left and right view in Eq. (2) are adbitrary. As the
corresponding atoms are images of the same feature in thep88esthe atom transformations have to satisfy multi-view
epipolar geometry constraints.

B. Multi-view geometry

The epipolar geometry constraint imposes a geometricioeldtetween 3D points and their image projections. Consader
point on the left image, given by the coordinatesand a pointu on the right image. Let these two points represent image
projections of the same 3D poiptfrom two camera positions with relative po§&, T). R € SO(3) is the relative orientation
between cameras aril € R? is their relative position. The epipolar geometry constrés then:

u'TRv = 0. (6)

The matrixT is obtained by representing the cross producflofvith Rv as matrix multiplication. In the case where the
point v lies on the atomy;, as shown on the Fig. 1, our goal is to seek for a transféym(and equivalently foiQ;,.) such
thatu = Q;,-(v). In other words, the poina should lie on the atom),. = F},.(¢;). The epipolar geometry constraint is then:

Qi (v)] " TRv = 0. (7

As formalized in Eq. (3), the transfor@(-) depends on the index parametersn the case above&),;,. denotes the linear
transform of coordinates between ators—= 9, and, = [NOT thus it depends on paramete,r@) and %R) Knowing
these parameters, it is very simple to denve the analytimfor @;,-. For omnidirectional image®);,- is derived in [2] and
also given for completeness in Section VI-A.

The epipolar constraint in Eq. (7) is rarely satisfied exaatlie to discrete spatial sampling of images, and can be only
evaluated with a certain erraj. The estimated epipolar constraiy is thus given as:

der = [Qu (V)] TR + e, = df, + ey, 8)

wheredy, = [er(v)]TTRv. Moreover, since there is uncertainty in epipolar geomestymation, the epipolar measure is not
symmetric. When a point in the second image is transformed in a poinin the first image, we have the epipolar geometry
estimated,, given by

der = Q' ()] ' TRu + e = dp + ep. 9)

wheredg = [Ql;l(u)]TTRu. The most likely transform&);,- (and equivalently},.) in pairs of stereo images are the transforms
that give small epipolar errors. We will thus use this facthia probabilistic framework for the maximume-likelihoodalaing
of stereo dictionaries, presented in the following section

Fig. 1. Epipolar geometry between stereo atoms.



IV. M AXIMUM -LIKELIHOOD LEARNING OF DICTIONARIES FOR STEREO IMAGES
A. Problem formulation

Following a similar approach as in [3], we formulate the m@bitistic framework for the maximum likelihood learning
of overcomplete dictionarie®, ¥ that are used to represent stereo imagesandyr respectively. We want to define the
likelihood that stereo images captured by two cameras witiaive poseR, T are well represented with a small set of atom
pairs related by geometric transforms. In other words, watwa learn the dictionarie® and ¥ simultaneously. Therefore,
we need to maximize the probability that the observed steremesy; andyr arise from dictionariesP and ¥ under a
sparsity prior, and that the epipolar constraint betweéraresponding points oy, andyr is equal to zero, i.e.D = 0.
The epipolar geometry constraint is introduced in the pbdistic model in order to maximize the probability that thelected
stereo pairs of atoms is conformant with the multi-view getm Similarly to the problem proposed in [3], the dictiopa
learning is performed by minimizing the Kullback-LeibleL() divergence between the probability distribution of uva
images arising from the image model and the actual distdbutf natural images”*(y.,yr). This KL divergence is given

as: N
P (yL7 }’R)

KL = P* l dyrdynp. 10
// (Yz,¥YR) OgP(yL,yR,D=0|‘1>,\I') yrdyr (10)

Since P*(y1,,yr) is constant, minimizing the KL divergence is equivalent taximizing the log-likelihood

1OgP(yLayRaD = O|(P7 lI’)

that a set of stereo natural imag@s.,yr) arises from the overcomplete sets of functi@g@saand ¥. Therefore, the goal of
learning is to find the overcomplete dictionari®$ and ¥* that are the solutions of the following optimization prahte

(@a \Il)* = arg%%ﬁ(<m1X1ogP(YLayRa D= O|‘I>7 ‘Il)>a (11)
wherey; = ®a andyr = ¥b. If we marginalize the cost function ovarandb we obtain
P(yr,yr,D =0|®,¥) = / P(yr,yr,D =0]|a,b, ®, ¥)P(a,b|®, ¥)dadb. (12)
a,b

In the rest of this section, we compute the objective fumctio

B. Coefficient vector distributions
In order to compute the cost function of Eq. (12), we first nizedefine the joint distributio(a, b|®, ¥) of the coefficients
a andb, given the dictionarie® and ¥. First, we note that we can decompose the joint distributibooefficients in two
ways:
P(al7br|¢laz/}7") = P(br|al7¢l7wr)P(al) (13)
P(alybr|¢la¢7‘) = P(al|br7¢lvwr)P(b7‘)a (14)

where we assume that priors on coefficients in each infa@ge) and P(b,) are independent of the atoms. We can therefore
write

P(ay,be|gr, ) = \/P(brlar, 1, 1) P(ai|br, 1,9, ) P(ar) P(by). (15)

We assume that the pairs of coefficief(ds, b,) are pairwise independent, which is usually the case wheinthge approxi-
mations are sparse enough. Then, the distribuft¢a, b|®, ¥) becomes factorial, and we can write

M M M M
P(a,b|®, ¥) HHP a, by |éy, ) —HH\/Pb lat, 1, ) P(aq|by, ¢, ) P(ar) P(by). (16)
I=1r=1 [=1r=1

We compute now the conditional probabilities and the distibns of the coefficients that are used in Eq. (16). We assum
that pixels keep their intensity values under the local dfams induced by the viewpoint change. This assumptiodshol
in multi-view images when the scene is assumed to be Lanalberdind when the atom transforms correctly represent local
transforms. Equivalently, we can write

Vk and Vv s.t. ¢, (v) #0, = yr(v) = yr(Qur (V) =yr(u), 17)

whereu = @, (v). This means that if the transfor®,,,, maps a pixel at positiow on the imagey;, into a pixel at
positionu on the imageyg, then those pixels have the same intensity. Under the asmmyiven in Eq. (17), we can use
the Lemma 1 in [22], which states the following equality:

(VW) = ﬁwmk» (18)



where J;, ., = |%| = |6Q”€67:f(v)| is the Jacobian determinant (or simply the Jacobian) of itheat transformy);, .. Recall
that the inner products in Eq. (18) correspond to the coefiisb, anda; related to the atoms under consideration. Using the
sparse image model and the relation in Eq. (18) we obtaindh@nfing probabilities:

Pltrlar du, ) = Plarlhr b1,7) = - xp (=502 = 02, (19)
2b 203 Jir
wherez, is the normalization factor ang, is the standard deviation of the zero-mean Gaussian nasenbdels the difference
betweenb, anda,;/+/J;-. The detailed derivation of Eq. (19) is given in Appendix A.

We model now the distribution of the coefficients. The disition of the coefficients actually depends on an arbitraril
chosen dictionary. However, imposing the independendesotoefficients with respect to the dictionary during leagractually
leads to inferring a dictionary that gives the same priofrithistion of coefficients for all types of images. Furthemaowhen
the prior of coefficients is tightly picked at zero, the laaghleads to a universal dictionary in which all natural ireadhave
sparse decompositions. We chose here a different apprbachthe one proposed in [3], where the coefficient distrdvuti
is taken to be continuous and peaked at zero. Instead, wenashat the coefficients; and b, are drawn from a Bernoulli
distribution over the activity of coefficient5(a;) andZ(b,.), whereZ denotes the indicator function. These distributions are:

if Z(a;) = 1;
Pla) = { 5 if Z(ai) = 0.

if Z(b.) = 1;
P(br) = { 5 it Z(b,) = 0.

Choosingp <« ¢ introduces a sparsity assumption on the coefficients,ii.es,much more probable that the coefficient takes
the value zero than a value greater than zero. If the imagedeaepresented by, components from a dictionary of size
M, we get:

M

P(a) = [[ Pla) = p™ (1 —p) ™™, (20)
=1
M

Pb) =[] Pb) =p™(1—p) ™). (21)
r=1

Without loss of generality, we poge= 1/(1 + ¢'/*). Therefore, reducing the value afincreases the level of "sparseness”
of coefficients. As the coefficientg andb, for I, = 1,.., M are independent and identically distributed, the Eqs (2@) a
(21) can be rewritten as:

el/A M 1 lallo
Pla) = (M exp (/) = e (1510, 22
et/ M 1 [bllo
P(b) = (o) exp (-m/3) = —exp (- 1210, 29
From Egs.(19), (20) and (21), we can write:
1 1 L al 1
_ _ _ 2 i
Plabl®,¥) = — exp( 57 2 2 = ) )exp( 2A<|a|o+|b||o>). (24)

We can now go back to the likelihood function in Eq. (12). ®ife(a, b|®, ¥) is the product of a zero-mean Gaussian
distribution and a discrete distribution tightly peakedzato, we can approximate the integral in the right hand sfdEq
(12) by its value at the maximum of its argument. A similar @p@mation is proposed in [9] in the learning of dictionarie
for natural images. Thus, Eq. (12) becomes:

P(yr,yr,D =0|®,¥) ~ P(yr,yr,D =0[|a,b,®,¥)P(a,b|®, ¥). (25)

Finally, we have
P(yLavaD - O|¢)a\1l) ~ P(YL7YR|D :O,a,b,<I>,\I1)P(D = O|a,b,<I>,\Il)P(a,b|<I>,\Il) (26)
- P(yL7YR|aaba¢)a\Il)P(D = O|a7b7q>7‘Il)P(a7b|q>v‘Il)a (27)

where Eg. (26) follows from the chain rule, and Eq. (27) hdaee D = 0 does not bring more information tor, yr than
®, W. In order to evaluate the likelihood function, we now havectonputeP(D = 0Ola, b, ®, ¥), which is the probability
that the epipolar constraid® is equal to zero given the stereo image model in Eq. (2).



C. Epipolar matching probability

We compute now the probability that the atoms during legymiarrespond to the same 3D objects under our stereo image
model. The epipolar matching of two points on the left andhtrignages, which are the projections of the same point in the
3D space, has been derived in the Section IlI-B. Theande g on the estimation of the epipolar constraidts andd,., are
assumed to be i.i.d. white zero-mean Gaussian noises Gfnaic?, ando? , respectively. We have therefore:

P(er) ! e L (28)
= — X —_——
L Zdl P 2031 ’
1 e%
P(er) = ZGXP T952 )0 (29)
T dr

wherezy andzg, are the normalization factors. Equivalently, we can defireedonditional probability of the random variables
de; andd.,., given a pair of pointss, u and atomsp;, ¢, as:

_ o 1 (del - dL)2
P(del|va u, (blawr) - P(del|dL) — Zal exp ( 20_3” ’ (30)
1 der — dp)?
P(der v, 0, 1,00) = P(derldr) = —— exp <—M) | (31)
Zdr 2Udr

The atomsy; and ), influence the functiong; anddg that are based on the transfor,., which depends on the atoms.
Since we want to find the probability that two atoms satis®y épipolar constraint, we are interested in the probalilitthe
particular realization of the random variablés and d.,. when they are simultaneously equal to zero. Therefore, Viieale
the conditional probability ofl.; = 0,d., = 0, givenv, u, ¢;, v, as:

P(del - 07 de'r‘ = O|Va u, d)la ZZH) = P(del = O|V7 u, (blv’l/)r)P(der = O|Va u, d)la 107)
= L e —i e — dh (32)
T caca P\ 20 a P 203,/

We extend this conditional probability to all the pairs okgls that undergo the transformation defined by the atom pair
i.e., for all v;,u;, i = 1,...,q. Let Dy, denote the event that the epipolar constraints are sm&dtmiy respected for all
pairs of pixels. In this casejl =0,d% =o0foralli=1,..,q Whered” = dm + & = [Qu(vi)]"TRv; + £ and

dll = [R] +e = [Q;1 (uz)] TRu; + ¢,. If we assume that the estimation of the epipolar distanceséh pixel pairi can
be computed independently, we have

q
P(Diy =0, vr) = [P =0,dl = 0lvi,ui, 61, 9,)
=1

_ 11[ (_ ()2 )exp (_ <d5§_>2)
TP\ 2ol 2(a}0)?
_ 4 (dY2 4l (dlily2) ) = 2 1
= gexp< Z( + wy (dR)) —EGXP _FVVIT ) (33)

-1 D

wherezp = [T, 2200wl = 62 /(012 andwl! = o2 /(c1)2. The weightsw!”, w!” permit to control the importance
of the epipolar constraints. In particular, they give margortance to the epipolar constraint for points that areerido the
geometric discontinuity represented by the atom, wheresienation of the epipolar constraint is more reliable. Turection
Wi, has been introduced in Eqg. (33) in order to simplify the riotat

Finally, the probability of the epipolar matching for therso image pair is the product of probabilities of epipolatching
for pairs of active atoms. The active atoms participate m $parse decompositions of the left and right image withr thei
respective coefficients; andb,., which are different from zero. Then, we can model the prditabP (D = 0|a, b, ®, ¥) as:

1
P(D =0la,b,®,¥) = — exp ( Z ZI ()T Wzr> : (34)
2D

D =1 r=1
whereZ is the indicator function that models the distribution oé ttoeffficients.
We finally compute the last component of the objective fuorcin Eq. (26), which is the probabilit’(y ., yr|a, b, ®, ¥)

that refers to the approximation error. We use a similar mgsion as [3] where this probability is modeled by a Gaussian
white noise. We therefore have:

1 1
P(y1.yalab.®.%) = Ples + o) = - oxp (5 (v~ Bl + Iye - ¥I3)). (35)
I



wherez; is a normalization factor, and; is the variance of the Gaussian noise. Note that we have i{35{.the fact that
the sum of two zero-mean Gaussian random variables is alspoamzean Gaussian random variable.
We can now rewrite the optimization problem of Eq. (11) as:

(®,%)" = argmax |max (log P(yz,yrla,b,®, ¥)P(D = 0la,b, &, ¥)P(a,b|®, ¥)) (36)
whose components are given respectively by Egs. (35), (3d)(24).

V. EM-BASED ENERGY MINIMIZATION ALGORITHM
A. Energy minimization problem

The optimization problem of Eq. (36) can be cast as an eneigymization problem. The ML optimization problem is
equivalent to solving the following energy minimizatioroptem:

(@7 ‘Il)* = arggli‘g<mglE(yLava D= Oa a7b|q>7 ‘Il)>a (37)
where £/ denotes the energy function given as:
1
E(y.yn.D=0,ab/® %) = ——(|yz—®al3+ |ys - ¥b|3)
I
1 M M
+ 3 ZZI(QZ)I(Z)T)VVIT
20 =1 r=1
1 M M ay 1
+ — by — 2+ —(llallo + [[bllo)- (38)
57 2 2 b = )"+ gy lallo + bl

The energy function thus consists in the sum of four main $etimat are respectively
1) the data fidelity term, expressed by the energy of the aqpeadion error after sparse approximation of imaggsand
yR!
2) the epipolar constraint term, measuring the epipolacchiag of atoms in sparse decompositions of a stereo image pai
3) the coefficient similarity term, measuring the correlatof coefficients of stereo atom pairs under a local transfor
4) the sparsity term, expressing the degree of sparsityeoftéreo image pair.

We can see that the first three terms depend on the choice diictienaries® and ¥, while the last term depends only on
the coefficient vectora andb. Therefore, we group the first three terms into a functigg ., yr,a, b, ®, ¥) and express
the energy function as:

1
E(yr,yr,D=0,a,b|®,¥) = f(yr,yr,a,b,® ¥)+ ﬁ(HaHo + [Ibllo)- (39)

Our target optimization problem in Eq. (37) thus becomesfdflewing energy minimization:

. . 1
(@) —argig o (2. v 2,0, 2.9)+ -l + bl )| (40)

B. EM-based algorithm

We have seen above that the ML learning problem can be wréigean energy minimization problem. Inspired by the
method proposed in [3], we can solve the energy minimizgtimiblem iteratively by alternating between two steps. knfihst
step, (@, ¥) is kept constant and the energy function is minimized witspeet to the coefficient vectda, b). The second
step keeps the obtained coefficiefdsb) constant, while performing the gradient descent@®)¥) to minimize the energy
E(yr,yr,D = 0,a,b|®, ¥). Therefore, the algorithm iterates between the sparsengaatid the dictionary learning steps
until convergence. Such an iterative solution for the MLritéiag problem is actually equivalent to an Expectation-Maxation
algorithm [23], where the imag€y ., yr) are the observed variablega, b) represent hidden or latent variables, ddg @)
are parameters [24], [25]. The EM algorithm iterates betwwe steps: Expectation (E) and Maximization (M). In the Epst
the energy is minimized with respect fa, b), and it is essentially the sparse coding step. The M steieasf minimization
with respect to the dictionaries, and it corresponds to ¢agniing step.
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1) Minimization with respect to the coefficients1 the sparse coding step, we need to find the coefficieraad b such
that

* . 1
(a’b) = argf;lglf(YL,}’maaba ®, ‘I’) + ﬁ(HaHO + ”bHO) (41)

We can see that this problem is similar to the constraigesparse approximation problem when casted as an uncorestrain
problem. The multiplier% is the trade-off parameter between minimizing the energy iand the sparsity of coefficient
vectorsa andb. Since finding the global optimum of such a problem is NP-harel will use the greedy approach to find a
locally optimal solution. Although they are not guarantéedind the sparsest solution for such problems, greedy igos
have performed quite well with fast convergence in pradi®&—[28]. An advantage of using a greedy approach hereas th
it leads to a signal approximation using a small set of cdefiiis different from zero. In contrary, minimization algorithms
could lead to many small but non-zero coefficients, which lkdrnicrease the complexity of computing the epipolar caxistr
part of the energy function in Eq. (38).

We propose a greedy algorithm that chooses at each iteriatibe pair of atomsy;, , ., that give the minimal value of
the function:

. 1 - — _ —
(b1 ¥r,) = arg min[z— ([0 — @ g3 + [P — mF=U g9, 12)
@5171/% 20[
1 1 (1 g
Wi, h[kfl] ) — l ’ 2 42
+ 202D Ir + 205(< r ﬂlJ > Jlr ) ]7 ( )

wherehgk_” andh" " are the residues of the left and right images respectivéilyy & — 1 iterations. At the beginning, the

residues areh[LO] =y and h[}g] = ygr and they are updated at each steps:

by = h = e)en,
h[I];] - h[Il%gil] - <h[]];71]7’¢)7”k>w7‘k' (43)
The coefficientsy;, andb,, are simply evaluated as:
a, = <h[[]‘€71]a ¢lk>a
b, = (M), (44)

We will refer to this algorithm as Multi-view Matching PuisMVMP)?!, which can be shown to be essentially the Weak
Matching Pursuit [29]. The bound of the approximation raté/&/MP in [30].

2) Minimization with respect to the atom scale paramete@sice the atomsy, , ¢y, ,k = 1,...,m that participate in the
decomposition of imageg; andyr have been found by MVMP, their coefficients are kept fixed a/liile atoms are updated
by minimizing the energy function. Knowing the selectednaso the energy function at stépf EM becomes:

1 m m 1 m
B = o (lye = > anoulE+lyr = Y _brtbnl3) + 5 > Wi
I _ _ D 5.
k=1 k=1 k=1
LS b = g2 L (afo + Blo) (45)
207 =1 "V 2\ .

It can be observed that the energy functiBf! is actually an analytic function of the atom paramet{evg“)} and {'yT(R)}

in the case of parametric dictionaries as defined in SedA.llHence, we can calculate its derivatives with respect thea
parameter. Therefore, one can use the multivariate gradestent, or the multivariate conjugate gradient methafihtb the
local minimum of ElYl with respect tO‘yl(L) and 7§R), given the coefficienta andb.

The sparse coding and the learning steps are iterativelyated until the convergence is achieved. The inferencelghou
be, however, performed from a large set of data, i.e., froffierdint multi-view pairs and with different camera posehbisTis
achieved by sparse coding of a randomly selected set ofospeties yielding sparse coefficients for each pair. Then trexgy
function is averaged over all pairs to perform the learnitep s

VI. LEARNING FOR STEREO OMNIDIRECTIONAL IMAGES
A. Implementation for spherical images

The stereo image model given in Eq. (2) does not put any adsampn the type of cameras used for stereo image
acquisition. It can be applied to planar or omnidirectiomallti-view images by defining the dictionary for the constbtype
of images, and by introducing the epipolar geometry coimgdhat are defined for that particular image projectioargetry.

1Although we take here only two images, we can generalize lgh@itam to more than two images by pairwise image corregpooe.
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Since omnidirectional cameras represent a convenientiaolfor 3D scene representation due to their wide field ofwiee
perform learning of dictionaries for stereo omnidirecibimages.

Omnidirectional images obtained by catadioptric camesashe appropriately mapped to spherical images [31]. Thezef
we proposed to use a dictionary of atoms on the 2-D unit spagngroposed in [32] in order to represent spherical images.
The generating functiop is defined in the space of square-integrable functions onitatwa-sphereS?, g(6, p) € L*(5?),
where# is the polar angle ang is the azimuth angle. We use a dictionary of edge-like atomshe sphere, based on a
generating function that is a Gaussian in one direction &éddcond derivative in the orthogonal direction:

1 0 0
g(0,p) = . (16042 tan? 3 cos? o — 2) exp (—4 tan? 3 (a2 cos? o + (3% sin? go)) . (46)
A
For the weighting function in the epipolar geometry coristsaof Eq. (33) we use a Gaussian envelope of the form:
1 0
w(f,p) = T exp (—4 tan? 3 (12a2 cos® ¢ + (3% sin® go)) . 47
a

It gives positive weights to the points on the main (centtabe of the atomy (9, ¢), while the weights are close to zero
outside of the main lobe. The weights are higher towards tieed the discontinuity represented by the atom. Choosiurans

a weighting function for the epipolar geometry estimatiamrpits to use only the points that are likely to satisfy th@elar
constraints, and to exclude the points represented by ftipdes of the second derivative of the Gaussian. The diatjoisa
then built by changing the atom parameters: (7, v, ¢, «, 5) € T'. The triplet(r, v, ) represents Euler angles that describe
the motion of the atom on the sphere by angteand v along# and ¢ respectively, and the rotation of the atom around its
axis with an angle). Parameters. and 3 represent anisotropic scaling factors.

Epipolar geometry for the spherical camera model is fortedlan the same manner as for the perspective camera model,
except that the pixel (point) positions andu in Eq. (6) are expressed in spherical coordinates. Thefoamsu = Q.. (v)
that relates a point on atom¢; = g, to its corresponding transformed poiaton the transformed atom,. = g, can
be defined V|a the linear transform lof the coordlnate systéfnen the atoms), and ), are derived using the parameters

(L) (Tl( , (L), (L), (L),ﬁ(L)) and~y B — =( ) , <R), (R), ‘R),&R)), respectively, the poina can be written as:
u= R*}R) R V), (48)
where R NO) and R () are rotation matrices given by Euler angleéL) (L), (L)) and (Tr R)mpTR)), respectively,

and¢(+) defmes the gr|d transform due to anisotropic scaling. Ifspkerical coordinates of are denoted adls, p2) (unit
sphere is assumed), and the spherical coordinatas afe (6., 1), the function{(-) is a pair of transforms,(¢1) and

G (01,01, Gp(ip1)) given by:
aﬁR)ﬁl(L) sin @1 )

(p(p1) = arctan
’ oy

Y2 =
oS 1
0 P2 cos? + (L)y2 5in?2
02 = Gi(01,¢1,¢p2) = arctan tan?1 ( éR)) P (ﬁl(R)) . ;01 (49)
(ar )2 cos? o + (Br )2 sin” o

This is followed by the transform of spherical coordingis ¢-) to Euclidean coordinatas;. Finally we obtainu asR*(lR)ut.
Yr

B. Learning testbed

We describe now the experimental testbed that we have usedidiionary learning on stereo spherical images. Even if
the dictionary is constructed by translation, rotation andling of a generating function, we focus on the learningaafling
parameters only. The scaling parameters are the most iemfiggarameters since they directly define the shape of thasato
which become elongated as the scales become anisotropiteGother hand, translations and rotations depend hightyhen
distance and orientations of cameras, so learning thesangaers is meaningful only when cameras are static andtsesul
a position-specific dictionary. We want to perform learnafgscales(a™), 3()) from the set of atom paramete$™) and
() 3(R)) from ~(F) for atoms that are present in sparse approximations ofcstéesvs and satisfy the epipolar geometry
constraint. The energy function of Eq. (38) is minimizedyowiith respect to these four parameters. We have performed th
minimization using the conjugate gradi&nThe other parameters are kept fixed. The motion paraméters include the
positions of all pixels in an image. The rotation parametesampled uniformly betweefi to = with resolution aN,. We
have taken the same motion and rotation parameters for thane right dictionaries.

We have tested the proposed stereo dictionary learningitdgoon our "Mede” omnidirectional multi-view databds@he
database consists of 54 omnidirectional images of the indogironment, grouped into two sets: one set without pl§2Ts

2http://www.kyb.tuebingen.mpg.de/bs/people/carl/¢odeimize/
3Database is available upon request.
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Fig. 2. (a),(b): Two views from the "Mede” database, first gaaset. (c),(d): Two views from the "Mede” database, seconage set.

images), and one set with plants (27 images). Different sirave been captured by placing cameras on different posito
the floor, without camera rotation. We have formed 216 pdiisnages taken in the same set, with different distances dxtw
the cameras. Since we know the camera positions and théorotatidentity, the relative pose matricdsand R are known
for each image pair. Sample views are illustrated on Figure 2

The first step in the learning algorithm (i.e., the expeotafiE) step implemented by MVMP) needs to be performed on
a big set of statistically different stereo images for tharténg results to be meaningful. In order to limit the conjile of
the whole learning process and yet include the image diyerge select small patches df. x N, pixels from the spherical
images obtained by mapping the omnidirectional imageseéautiit sphere. As cropping a square image patch from a splheric
image is feasible only when its center lies on the equatonotate the sphere such that the center of the patch coinwiilles
the equator and then crop it. This rotation is taken into antavhen we estimate the epipolar geometry. Therefore,énEth
step we form a set of,, pairs of stereo patches. For egek- 1, ..., .S, we randomly choose an image pair from the database,
then we randomly select a point on the sphere and we extracpaiches from two stereo images centered on this point. The
MVMP is then performed on each pair of patches independeatigt V., atoms are selected. Examples of atoms are shown
on the Fig. 3(b)-(d) and (f)-(h). The dictionary learningst{M step) is then performed by minimizing the sum of the gner
function given by Eq. (45) for all patches.

(al)I (b) (c) (d)

(€) ®) ) (h)
Fig. 3. Example of a pair of stereo patches and their MVMPcsete atoms: a) left patch, b)-d) the first three atoms in theM®decomposition of the
left patch; e) right patch, f)-h) the first three atoms in th& WP decomposition of the right patch.

In our experiments, we have takép = 50 pairs of patches of sizé2 x 12, that have been obtained by cropping slightly
bigger patches of6 x 16 in order to avoid border effects. All patches have been nbzetto the same variandel in order
to equalize the importance of each patch. Moreover, thehpatbave been whitened by spherical filtering [33] in order to
flatten the image spectrum and make all frequencies equalbpitant, as proposed in [3]. The number of positions in the
dictionary construction i92 x 12, the number of rotations is set tb Finally, the pairs of scales have been independently
randomly initialized for the left and right dictionary, Wit pairs of anisotropic scales each in the rafige 5] (from big to
small atoms). The MVMP algorithm selecté,; = 3 atoms per patch. Since the size of the patches is small, Hioses are
usually enough to represent the main geometrical compsrnierthe patch. Before starting the learning algorithm, weeha
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performed MVMP on a set of randomly selected patches to estithe variances?, = 2.7- 1072 ando? = 0.047.

C. Learned dictionaries

We illustrate in this section the dictionary that has beearrled on stereo omnidirectional images. In order to see the
influence of the part of objective function that relies on thelti-view constraint, we have introduced a factoin the energy
function:

” 1
E(yr,yr, D =0,ab[®,¥) = F(HYL — ®all; + [yr — Tblf3)
I
1
+ p20- ZZI (/Yl( 77£R))
=1 r=1
1 M M
t P 72> (b )+ <||a||o+|\b|| ) (50)

=1 r=1
We can see that foy = 1, the energy function in Eq. (50) is equal to the one in Eq..(88) the other hand, fgs = 0, there
are no multi-view constraints in the energy function, anctidhary learning is based only on minimization of the resid
energy of both stereo images under sparse representations.

The initial values of scales™), 3(1), o(F) and 57 for the learning algorithm have been chosen randomly, aay #ne
given in the first two columns of Table |. The atoms built wilese initial scales and centered at the North Pole are shown i
the first row on Fig. 4. We then learn the scaling parametetis 80 iterations of the EM algorithm. At this point, the chang
in parameters became small and the solution can be conditielee stable. The columns 3 to 10 in Table | give the values of
the learned scales™), 5(X), o) and 5(7). The results are given fgr = 0, 1, 3, 5, where the same initial scales have been
used for all values op. The corresponding atoms are shown in Fig. 4.

TABLE |
INITIAL AND LEARNED SCALE PARAMETERS FOR THE LEFT AND RIGHT IMAGE, FOR DIFFERENT VALUES OF THE PARAMETER.
Initial dictionary Learned dictionary
p=0 [ p=1_ [ p=3 [ p=5
| oD | B | a@) | B | a@) | B | a@) | B | oD | B |

13.15 5.98 8.61 6.34 | 10.82 | 8.68 6.86 | 10.17 | 7.84 | 10.92
14.06 7.78 2219 | 7.30 | 16.92 | 13.72 | 14.84| 9.95 | 16.53 | 12.36
6.27 10.47 3.40 3.56 | 3.81 5.05 2.82 | 10.26 | 3.17 | 11.39
1413 | 1458 | 25.88 | 22.95| 26.00 | 19.73 | 25.19 | 18.21 | 24.36 | 17.04
11.32 | 14.65 | 1452 | 14.78 | 557 | 11.25| 12.73 | 15.63 | 11.61 | 13.92

(@@ [ 5P [ o [ 5 [ o [ 5B [ o [ 5B [ o [ 50 |

6.58 6.42 294 | 269 | 358 | 4.73 2.72 9.36 | 3.01 | 10.77
14.71 9.22 12.18 | 5.04 | 11.72| 8.43 | 14.79 | 9.66 | 15.19| 11.00
1457 | 14.16 | 25.93| 20.30 | 25.57 | 18.94 | 24.75 | 17.86 | 23.94 | 16.55
9.85 12.92 6.60 6.80 | 5.70 | 10.56 | 6.72 | 10.13| 8.22 | 11.72
13.00 | 14.59 | 15.87| 16.05| 15.08 | 14.52 | 13.08 | 14.97 | 13.25| 14.85

We observe first that the learned dictionaries include atofrfferent scales and are therefore able to approximagieass
at various scales. Whem = 0, the learned atoms are elongated along the direction of #ies§$an function and narrow in
the direction of the second derivative of the Gaussian fancfThese results are in consistency with the previous veork
dictionary learning for image representation in the singkwv case [3]. However, when we increageand hence include
the geometry constraints in the stereo learning, we obtifierent results for atoms scales. The atoms become eleddat
the direction of the second derivative of the Gaussian fancand narrow in the direction of the Gaussian function,aluhi
is an opposite effect than in the case whgre- 0. In addition, forp > 0 the learned scales generally tend to give smaller
atoms than forp = 0. These two effects result from the multi-view geometry d¢aaists in the dictionary learning process.
They are most probably due to the local nature of the epipmbastraint. Namely, the depth of the scene rapidly changes
around object boundaries leading to different disparitg apipolar matching. Since the object boundaries are repted
by 2D discontinuities on the image of a 3D scene, the epipgdmmetry is mostly satisfied along the discontinuity and in a
limited area. This makes the learned atoms become anisotmod small. This highlights the great importance of thengetic
constraints in the learning of dictionaries for stereo ismg

D. Application to distributed scene representation

Distributed scene representation with stereo or multivw@ameras corresponds to the problem where each image of the
scene is approximated independently from the others. Named do not search for corresponding atoms during sparse
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Initial scales in® Initial scales in¥

Learned scales i®, p =0 Learned scales iw, p =0

Learned scales i®, p =1 Learned scales i, p =1

Learned scales i®, p =3 Learned scales iw, p =3

Learned scales i®, p =5 Learned scales iw, p =5

Fig. 4. Initial and learned scales of the atoms for the left aght dictionaries. All atoms are on the North pole.

approximation using MVMP, but we rather apply MP indeperlyeon each image and then match the corresponding atoms
for joint reconstruction. The number of correspondencas/den atoms from the different views is very important foerse
representation, because these pairs carry the geometriglatmn between two images. For example, in distributadtim
view coding, a bigger number of atom stereo pairs directjuoes the required transmission rate and improves the godin
performance [2]. If the atoms that form the learned dictitesa® and ¥ represent the statistically optimal atoms for both
image approximation and epipolar geometry, one shouldetxtpat the learned dictionary results in more correspandiom
pairs than a randomly initialized dictionary, even in dimited settings. In order to verify it, we select randomlytimage
patchesy; andyg with the same center from a randomly chosen pair of omnitoral images in the "Mede” database.
The size of the patches is set40 x 40 pixels, which is slightly larger than the size used for |éagn After independent MP
decomposition of the left and right patch using 10 atoms ja¢ctp the epipolar constraints are evaluated for all ptesgibirs
of left and right atomsia (¢, v,), I = 1,...,10, r = 1,...,10. The epipolar measuré, is equal to half of the valuéV;, in
Eq. (33), and represents the epipolar atom distance per view

Fig. 5(a) plots on thej-axis the number of atom paifg;, ¢,.) that have the epipolar distandg (¢;,.) smaller or equal
than the threshold value given on theaxis. We call this curve the cumulative correspondencebmiiCCN) curve. The left
part of CCN curves with smallet, is more important than the right part, because the correspures are more reliable when
their epipolar distance is smaller. All CCN curves have baeraged over 100 randomly chosen image pairs. We can dee tha
CCN curves forp = 1, p = 3 andp = 5 are all above the CCN curve of the randomly initialized aio&ry. This confirms
that our learning algorithms really produces dictionatiest result into a larger number of correspondences betatmns
of different views. On the other hand, fpr= 0, the CCN curve is either close to the CCN curve of the randactiagtiary,
or below it. This shows that designing dictionaries for imagpproximation without considering the multiview geomeatan
lead to suboptimal dictionaries for stereo images. Fig.)5sflmws the average approximation rate (i.e., energy deshayng
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the iterations of the MP for images, andyr. We plot the ratio between the sum of the residues of the teftraght images
after k iterations and the sum of their initial energies, versusitiation number:. We can see that for all values pfthe
approximation rate using learned dictionaries is bettanthsing random dictionaries. Moreover, increasinglows down
the approximation rate for a very small amount, hence optirgithe dictionaries for stereo matching does not inducéga b

penalty on the approximation rate.
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Fig. 5. Performance of the learned dictionaries in distabusettings: a) Cumulative correspondence number (CCNgsor initial dictionary and learned
dictionaries, forp = 0,1, 3,5; b) MP energy decay foy; andyr.

To verify that the superior performance of the learned diwry over the initial one is not due to the unlucky selectibn
the initial dictionary, we compare the performance of tremed dictionaries to an average performance of diffe@mdomly
selected initial dictionaries. We select randomly 100iahidictionaries and 100 stereo image pairs, and plot theageeCCN
curve for the initial dictionary. This curve is shown withetlblue solid line on Fig. 6 (a). We see that the learned diafies
still give more correspondences than the random ones fosnial values ofd 4. Therefore, they lead to more atom pairs
with a better epipolar matching. The comparison of the eneeray in this case is shown on Fig. 6 (b), and it is similar
to the results of Fig. 5 (b). Since learned dictionaries lteisua higher number of correspondences with no penalty @ th
approximation rate, these dictionaries can be beneficiadlisiributed scene representation and distributed coding
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Fig. 6. Performance of the learned dictionaries in distedusettings, with averaging over random initial dictioesr a) Average Cumulative correspondence
number (CCN) curve for 100 random initial dictionaries an@NCcurves for learned dictionaries, fpr= 0, 1, 3, 5; b) MP energy decay foy; andyr.

E. Application to camera pose estimation

Finally, we discuss how the proposed learning algorithmlmamiseful for camera pose estimation [34]. We have performed
an experiment where the camera pose has been estimatedtlusingtial and learned dictionaries far= 3. Two pairs of
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images from "Mede” database have been selected, with &tmsIT = [1 0 0]" andT = [0 1 0]' respectively. For each
image pair, we have randomly chos2t patches ofd0 x 40 pixels. The same image patches are decomposed by MP using
initial and learned dictionaries, givirgjatoms for each patch and thé® atoms per image. Matching atoms from left and right
images and estimation of the camera pose has been perfosiregthe algorithm proposed in [34]. This algorithm extsact
atoms from two views in a distributed fashion, and then filgsatom pairs that are related by local geometric transforims
selected atom pairs and their transforms are then used t@dimd correspondences in two views, from which we estimiage t
camera pose using the eight-point algorithm [35]. Addiihy) we apply Ransac [36] for camera pose estimation in rotale
be more robust to outliers. The estimated translation wegrare shown in Table Il and Table Il for both target maside

We can see that using the learned dictionary for pose estimgives significantly better performance than using a oanlg
initialized dictionary. The learned dictionary leads to r@qise estimation of the translation, while initial dictary cannot
even determine the direction of the camera motion. More@gmplying Ransac does not improve the performance in the cas
of the learned dictionary. This leads to the conclusion #ilapoints on the learned atoms give reliable matches androssg
outliers.

TABLE Il
CAMERA POSE ESTIMATION WITH RANDOM INITIAL AND LEARNED DICTIONARIES, FOR TARGET TRANSLATIONTT = [1 0 0].
Target matrices T =11 0 0]
R=1I
learned dictionary initial dictionary

estimatedT'T, without Ransac| [0.9778 -0.1519 0.1441] [0.1910 -0.7284 0.6580]
estimatedT'T, with Ransac | [0.8144 -0.5436 0.2032] [0.7540 0.6067 0.2518]

TABLE Il
CAMERA POSE ESTIMATION WITH RANDOM INITIAL AND LEARNED DICTIONARIES, FOR TARGET TRANSLATIONTT = [0 1 0].
Target matrices T =100 1 0]
R=1I
learned dictionary initial dictionary

estimatedT T, without Ransac| [-0.0385 0.9951 0.0907] [0.9067 0.3484 0.2376]
estimatedT T, with Ransac | [-0.1317 0.9424 0.3075] [0.9003 0.3934 0.1866]

VII. CONCLUSIONS

We have proposed a new method for learning overcompletedaries that have optimal performance in representingste
images. The stereo (multi-view) image model where sparsgécomponents are related with local transforms is used as a
base for developing a maximum likelihood (ML) method forrtdag dictionaries for stereo images. The epipolar gegynetr
constraint has been included in the probabilistic modalingrder to force the learning algorithm to select atoms dfifer good
approximation performance, and simultaneously permitatisfy multi-view geometry constraints. The experimemtsults
with omnidirectional images have shown that one has to denshe geometry constraints to obtain atoms that are optima
for the representation of stereo images. Moreover, our atethsults in dictionaries that give both better stereo hiatcand
approximation properties than randomly selected dicti@saWe have finally shown that learning the dictionarigsdiptimal
scene representation has important benefits in applicasioch as distributed scene representation and cameragimsat®n.
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APPENDIXA
CONDITIONAL PROBABILITIES P(b.|a;, ¢1, %) AND P(a;|b,, d1, 1)

We first replace the expansions fgf andyr from Eq. (1) in Eq. (18), and get for al = 1,...,m
< b’l‘i’l/)h’v 1/)7” > + <eRa dj’l = ag,; ¢l1 ) ¢l <eLa Qsl A>a (51)
; ' ’ V Jlkrk Z g \/ Jlkrk ¥

=1
which can be rewritten as:

<eLv ¢lk>’ (52)

1
brA+ <b7‘iwri77/)%>+<e ,¢7~.>: a a ¢u¢ D
' ; ' " ’ V Jiyers nt V Jlka Z B T \/ Jlkrk

i#k
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or simply: a
by, = —==+1, (53)
§ JlkT’k
where:

(er, i) — (br:¥r, Yry) — (@R, Uiy )- (54)

Ms

N =—==)> (b, d,) +—F——=
Jlk’rk Z : Jlk’l‘k

We will further assume thaf’ is a small value, since it is a sum of the projection of someetd a chosen atom, and a linear
combination of inner products of a chosen atom with othemata the image decomposition. When the image decomposition
is sparse and the dictionary is overcomplete, the assumistiosually verified. However, we cannot use directly thereggion

in Eq. (53) to derive the distributio®(a, b|®, ¥) because the sparse support of the stereo images is not kaodrence
also the indexeg,, r, andk = 1, ..., m. Therefore, we say that an arbitrary stereo atom pai,. and their coefficients;, a,
satisfy Eqg. (53) up to a certain errgg, which includes alsa)’. Therefore, we have:

S,
h
T

b, = \/%al +n1, (55)
where J;,. is the Jacobian of the linear transform of the coordinatéesysnduced by the transform between atappsand),..
Whena; andb, are the coefficients of a stereo pair, then they satisfy Eg). th a small value of the noisg . Otherwise,

a; andb,. are not significant in sparse decompositions of stereo iméaEording to the model in Eqg. (1)) and hence the noise
m is also small. Therefore, we can model the nojsewith a white Gaussian noise of varianeg and get:

P(n) = P(bylar, o1, ) = 1exp(—2%,§<br—&>2)- (56)

Although ¢;, ¢,. are not explicitly contained in the probability expressitrey are implicitly there sincd,. is evaluated as a
Jacobian of a transform betweeépn and),.. Multiplying Eq. (53) with/J;,,, we can get a symmetric relation:

1
P(n2) = P(ailby, d1,¢r) = z_beXp< 7 2 =V Jirby) )
1
_ Z_bexp( Foa = V) )

1 1 ap o
= Lexp (b, — —2y2), 57
zbexp( 27 J”)) (57)

where we used the fact that variance of the ngise- /J;,-; can be evaluated as, = o,/ J;,-. Note that the same expression
for the conditional probabilityP(a;|b,, ¢1,1,) would be obtained if we consider the inverse transfdrm from atoma, to
atom ¢; because the Jacobian of the linear transform satisﬂ@?;l) =1/Jp.
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