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To evaluate the bootstrap current in nonaxisymmetric toroidal plasmas quantitatively, a �f Monte
Carlo method is incorporated into the moment approach. From the drift-kinetic equation with the
pitch-angle scattering collision operator, the bootstrap current and neoclassical conductivity
coefficients are calculated. The neoclassical viscosity is evaluated from these two monoenergetic
transport coefficients. Numerical results obtained by the �f Monte Carlo method for a model
heliotron are in reasonable agreement with asymptotic formulae and with the results obtained by the
variational principle. © 2009 American Institute of Physics. �DOI: 10.1063/1.3121223�

I. INTRODUCTION

The bootstrap current in nonaxisymmetric toroidal de-
vices has significant influence on the confinement properties
of a plasma, such as equilibrium and stability, through the
change in rotational transform profiles and magnetic field
spectra.1–4 Because the bootstrap current is induced predomi-
nantly by the trapping and detrapping of particles in the low-
collisionality regime,5,6 a collision operator of the drift-
kinetic equation can be modeled appropriately by the pitch-
angle scattering term. With this assumption, a bootstrap
current coefficient D31 has been calculated numerically for
various nonaxisymmetric configurations.7 This coefficient
D31 is proportional to the geometric factor,8 which character-
izes the relative amplitude and sign of the bootstrap current
for a given toroidal configuration. For example, the �f Monte
Carlo method9,10 constitutes an efficient numerical technique
to calculate D31 by guiding-center particle simulations.

To evaluate the bootstrap current in a satisfactory man-
ner, however, we also need to take into account the momen-
tum conservation law of like-particle collisions and the cou-
pling between electrons and ions. Consequently, the �f
Monte Carlo method for D31, which relies only on the pitch-
angle scattering operator, is inadequate to evaluate the boot-
strap current quantitatively. In the analytical theory by Sha-
ing and Callen,8 the bootstrap current �J�B� on each flux
surface is determined from the momentum and heat-flux bal-
ance equations along the field lines. To treat such macro-
scopic balances correctly, one must simulate ensembles of
test electrons and ions with Maxwellian distributions and to
use the like and unlike-particle collision operators that pre-
serve the conservation laws. To date, such a self-consistent
Monte Carlo simulation of the bootstrap current has been

reported only for tokamaks11 but not for nonaxisymmetric
devices.

Recently, Sugama and Nishimura12,13 developed another
method to evaluate the bootstrap current, which overcomes
the above difficulties. They showed that parallel viscosities
�B · �� ·�a�� and �B · �� ·�a�� can be evaluated numerically
using the drift-kinetic equation solver �DKES� code;14,15 sub-
stituting these viscosity terms into the moment equations,16

the bootstrap current is determined algebraically without
breaking the conservation laws. While based on the pitch-
angle scattering approximation, the important feature of the
DKES code is that all the elements of the monoenergetic
transport matrix Dij �i , j=1,3� can be calculated by the
variational principle. We emphasize that this moment ap-
proach takes computational advantages of the pitch-angle
scattering operator and yet satisfies the physical requirement
of the conservation laws of the linearized Fokker–Planck
collision operator.12,17

In the moment approach by Sugama and Nishimura, not
only the nondiagonal element D31 but also the diagonal one
D33 of the monoenergetic transport matrix is required to cal-
culate the neoclassical viscosity. To our knowledge, D33,
which corresponds to a �monoenergetic� neoclassical con-
ductivity coefficient, has been calculated so far only by the
DKES code. We mention that this diagonal term D33 can be
related to the damping rate of neoclassical flows along the
field lines and is indispensable to determine the neoclassical
viscosity. Considering the �f Monte Carlo method for D31,
an extension of the method to the calculation of D33 will be
useful to evaluate the bootstrap current quantitatively with
the moment approach.

The purpose of this paper is twofold: �i� to develop a �f
Monte Carlo method that calculates the monoenergetic trans-
port coefficient D33 and �ii� to incorporate this method into
the moment approach for evaluating the bootstrap current
�J�B�. Following the moment approach for the DKES code,a�Electronic mail: matuyama@center.iae.kyoto-u.ac.jp
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the neoclassical parallel viscosities �B · �� ·�a�� and
�B · �� ·�b�� are obtained from an output of the �f Monte
Carlo method, i.e., D31 and D33. We have implemented the �f
weighting scheme presented here into the VENUS+�f code9

developed at CRPP �Switzerland�. The numerical calculation
of the neoclassical viscosities is tested for a magnetic-field
model of the large helical device �LHD�.18

This paper is organized as follows. In Sec. II, the mo-
ment approach to evaluate the bootstrap current using the �f
Monte Carlo method is described. We begin with the drift-
kinetic equation with the pitch-angle scattering approxima-
tion and derive a �f weighting scheme to calculate D31 and
D33. The evaluation of the bootstrap current from these trans-
port coefficients is also discussed. In Sec. III, we describe the
numerical procedure and show benchmarking results with
asymptotic formulae and with the DKES code. Finally, the
conclusion will be given in Sec. IV. In the Appendix, an
additional topic on the present �f Monte Carlo method will
be discussed.

II. MOMENT APPROACH WITH A �f
MONTE CARLO METHOD

A. Basic formalism

We first consider the drift-kinetic theory based on the
pitch-angle scattering approximation. In this paper, we use
the coordinate system �x ,v ,��, where x is the guiding-center
position, v is the particle velocity, and ��v� /v is the pitch
variable. For transport applications, the guiding-center posi-
tion is usually written in Boozer coordinates,19 �s ,� ,�� :s is
the surface label, � is the poloidal angle, and � is the toroidal
angle. The Jacobian of the Boozer coordinate is denoted by
JB. The flux surface average in this coordinate is defined by
�A���		d�d�JBA� / �		d�d�JB�.

The neoclassical transport coefficients are calculated
from a steady-state solution of the linearized drift-kinetic
equation. Let f = f0+�f , where

f0 � fM =
n�s�

�3/2vT
3 exp�− K� �1�

is a local Maxwellian with the density n�s� and the tempera-
ture T�s� and �f is the perturbed part of a gyroaveraged
distribution function; vT= �2T /m�1/2 is the local thermal ve-
locity and K=mv2 /2T is the normalized kinetic energy. Ap-
proximating a collision operator by the pitch-angle scattering
term, the linearized drift-kinetic equation is written in terms
of g��f / f0 as

�V� − C�g = vd · �sA1 + Bv�AE, �2�

where

V� = v�b · �−
1

2
v�1 − �2��b · � ln B�

�

��
, �3�

C =
�D

2

�

��
�1 − �2�

�

��
, �4�

A1 = −
1

n

�n

�s
−

e

T

��

�s
, �5�

AE =
e

T

�BE��
�B2�

. �6�

Here, B�
B
 is the equilibrium magnetic-field strength,
b�B /B is the unit vector along the field line, E� is the par-
allel electric field, and � is the electrostatic potential. In Eq.
�2�, vd denotes the guiding-center drift velocity, while in the
left-hand side of Eq. �2� we explicitly assume the steady-
state solution such that �g /�t�0. The pitch-angle scattering
term C is characterized by the deflection frequency �D, and
the operator V� only includes terms up to the zeroth order of
�p /a	1, where �p=mv /eBp is the poloidal gyroradius �with
the characteristic poloidal magnetic field Bp� and a is the
plasma minor radius. Equation �2� is derived with the neo-
classical ordering, i.e., �p /a	1, which means the radial orbit
width is assumed to be small enough and the transport coef-
ficients can be determined locally on a flux surface. The
temperature gradient �T /�s is also neglected here. The mo-
noenergetic transport matrix Dij�K� �i , j=1,3�, which is a
function of the normalized kinetic energy K or equivalently
that of the collisionality �D /v, is defined in the DKES
code14,15 as follows:

Dij�K� � �
i
+,Fj

+� + �
i
+,Fj

−� �i, j = 1,3� . �7�

In the DKES code, the drift-kinetic equation �Eq. �2�� is
separated in terms of the symmetric �+� and antisymmetric
��� parts of the distribution function Fj

��j=1,3� with re-
spect to the time-reversal operation such that

V�Fj
− − CFj

+ = 
 j
+,

�8�

V�Fj
+ − CFj

− = 0 �j = 1,3� ,

with


1
+ = − vd · �s = −

2v2

3
�1 +

1

2
P2����b � � ln B · �s , �9�


3
+ = V��Bv�/�D� =

v2

�D
P2���B · � ln B . �10�

Here, =eB /m is the gyrofrequency and P2�����3�2

−1� /2 denotes the second-order Legendre polynomial. The
parentheses in Eq. �7� denote the inner-product operation de-
fined by

��,�� =
1

2


−1

1

d����� , �11�

where �·� denotes the flux surface average. Note that the
time-reversal symmetric properties of the operators V� and C
with respect to this inner-product operation apply such that

�V��,�� = − ��,V���, �C�,�� = ��,C�� . �12�

Equation �8� is derived with the adjoint equation14,15 of
the drift-kinetic equation, which prevents us from solving
Eq. �8� by �f Monte Carlo methods. Hence we need to con-
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struct an alternative set of the drift-kinetic equations that can
be solved as an initial-value problem using guiding-center
particle simulations. We now decompose the dependence of
the perturbed distribution function g into two independent
thermodynamic forces A1 and AE so that g=g1A1+gEAE,
which yields

�V� − C�g1 = − 
1
+, �13�

�V� − C�gE = Bv� . �14�

Comparing Eqs. �13� and �14� with Eq. �8�, we have obtained
the following relations:

g1 = − �F1
+ + F1

−� , �15�

gE = − �F3
+ + F3

−� + Bv�/�D. �16�

If we take the inner-product operation of eBv� with the so-
lutions of Eqs. �13� and �14�, the current carried by test par-
ticles in a simulation, which is here denoted by ĵ� ĵbs+ ĵOh, is
explicitly written in terms of D31 and D33,

ĵbs � e�Bv�,g1�A1 = − eD31A1, �17�

ĵOh � e�Bv�,gE�AE = − eD33AE +
e�B2�v2

3�D
AE, �18�

where ĵbs and ĵOh denote the monoenergetic bootstrap and
Ohmic currents, respectively. Equation �17� allows us to cal-
culate the bootstrap current coefficient D31 from the steady-
state solution g1. On the other hand, Eq. �18� yields the neo-
classical conductivity coefficient D33, but the inclusion of the
second term in the right-hand side of Eq. �18� is unfavorable
with respect to numerical accuracy. This term comes from
the classical Spitzer distribution gS�Bv� /�D, where gS is the
solution of the equation15 such that −CgS=Bv�. To eliminate
this Spitzer current from Eq. �18�, we introduce the drift-
kinetic equation such that

�V� − C�g3 = − 
3
+, �19�

where

g3 � gE − gS = − �F3
+ + F3

−� . �20�

Using the steady-state solution of Eq. �19�, we obtain the
monoenergetic neoclassical-conductive current ĵnc as

ĵnc � e�Bv�,g3�AE = − eD33AE. �21�

Equation �21� is more appropriate than Eq. �18� to calculate
D33 because in the collisional regime, the classical Spitzer
current ĵSp�e�B2�v2AE / �3�D� dominates over the first term

in Eq. �18� in the expression for ĵOh. This prohibits the ac-
curate evaluation of D33 using Eq. �18�. As a result, we find
that the monoenergetic transport coefficients D31 and D33 are
calculated from the steady-state solution of the drift-kinetic
equations �Eqs. �13� and �19��. It should be noted that these
equations are consistent with the DKES code through the
explicit relations in Eqs. �15� and �20�.

B. �f weighting scheme

Next, we develop a �f weighting scheme to solve the
drift-kinetic equations of Eqs. �13� and �19�. It is well known
that the introduction of marker weights into Monte Carlo
simulations reduces the statistical noise up to the order of
�f / f . Here, to solve Eqs. �13� and �19� simultaneously, we
introduce two marker weights w1�g1 /Fm and w3�g3 /Fm,
where Fm�x ,�� denotes a distribution function of test par-
ticles. We note that the particle velocity v is now manifestly
a constant of motion, i.e., v=const. These two marker
weights, w1 and w3, are assigned to test particles and are
updated by the integration along the test-particle trajectories.
The time evolution of wi is represented in terms of the
Lagrangian derivative as

Dwi

Dt
= − 
i

+ �i = 1,3� . �22�

For i=1, the right-hand side of Eq. �22� corresponds to the
radial excursion of test particles such that 
1

+=−ds /dt. The
Lagrangian derivative D /Dt is given by

D

Dt
�

�

�t
+ V� − C , �23�

where the equilibrium trajectory defined by Eq. �23� can be
simulated with the Monte Carlo method as will be described
later. At each time step of the simulation, the monoenergetic
transport coefficients D31 and D33 can be calculated by the �f
Monte Carlo integral.20 Using Eqs. �17� and �21�, we obtain

D31 = −
�n=1

N JB�xn�B�xn�v�nw1
�n�

�n=1
N JB�xn�

�24�

and

D33 = −
�n=1

N JB�xn�B�xn�v�nw3
�n�

�n=1
N JB�xn�

, �25�

where N is the number of test particles. All the quantities in
the right-hand sides in Eqs. �24� and �25� are given along the
trajectory in �x ,�� space. To derive Eqs. �24� and �25�, we
have used here that

g�x,�� − gS =
1

CN
�
n=1

N

�w1
�n���x − xn���� − �n�A1

+ w3
�n���x − xn���� − �n�AE� , �26�

where CN�N /2 is a normalization constant to ensure
1
2�dx�−1

1 d�Fm�x ,��=1 and � is a Dirac delta function. The
separation of the marker weight into the thermodynamic
forces has been proposed by Tessarotto et al.21 for gyroki-
netic theory. We have applied this method to the monoener-
getic drift-kinetic equation in Eq. �2� such that �g−gSAE� /
Fm=w1A1+w3A3. The monoenergetic transport coefficients
D31 and D33 are therefore obtained from Eqs. �24� and �25�.
The numerical implementation of the present �f weighting
scheme is discussed in Sec. III A.

The �f weighting scheme �26� involves the standard �f
scheme to calculate the part corresponding to D31. To see
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this, we consider the standard one-weight �f scheme11,22,23

based on Eq. �2�, in which a marker weight w�g /Fm is
given by

g�x,�� =
1

CN
�
n=1

N

w�n���x − xn���� − �n� . �27�

The inner-product operation of eBv� with g yields

ĵ � e�Bv�,g� = − eD31A1 − eD33AE +
e�B2�v2

3�D
AE. �28�

In the calculation of the bootstrap current coefficient D31, the
parallel thermodynamic force is normally neglected, i.e.,
AE=0. Introducing the two marker weights w1 and w3, we
can calculate D31 and D33 independently excluding a contri-
bution from the Spitzer distribution for all collisionality re-
gimes. When we apply the �f Monte Carlo method to the
moment approach like that done with the DKES code, the
latter feature becomes important for accurate evaluation of
D33.

C. Evaluation of the bootstrap current

Using the �f Monte Carlo method described above, the
bootstrap current �J�B� can be evaluated with the moment
approach. Here, we follow the formulation by Sugama and
Nishimura.12 We consider a plasma that consists of electrons
and a single species of ions. In Secs. II A and II B, we have
not specified particle species because under the pitch-angle
scattering approximation, the monoenergetic transport coef-
ficients depend only on the collisionality and are irrelevant to
the particle species in these calculations. With the moment
approach, nonetheless, the transport coefficients obtained as
a function of �D /v can be used to describe the neoclassical
transport for multispecies plasmas.24

To determine the bootstrap current, we need to solve the
surface-averaged momentum and heat-flux balance equations
for electrons and ions,

�B · �� · �a�� − naea�BE�� = �BF�a1� , �29�

�B · �� · �a�� = �BF�a2� . �30�

The neoclassical parallel viscosities �B · �� ·�a�� and
�B · �� ·�a�� in the left-hand side of Eqs. �29� and �30� are
related to the plasma flows and the thermodynamic forces
through the viscosity-flow relations

��B · �� · �a��
�B · �� · �a�� � = �Ma1 Ma2

Ma2 Ma3
�� �u�aB�/�B2�

2

5pa
�q�aB�/�B2� �

+ �Na1 Na2

Na2 Na3
��Xa1

Xa2
� , �31�

where

Xa1 � −
1

na

�pa

�s
− ea

��

�s
, �32�

Xa2 � −
�Ta

�s
. �33�

Here, �u�aB� and �q�aB� are the surface-averaged flows of
particles and heat, and pa=naTa is the plasma pressure. The
parallel friction forces �BF�a1� and �BF�a2� in the right-hand
side of Eqs. �29� and �30� can also be expressed in terms of
the coefficients ljk

ab by the friction-force relations16

��BF�a1�
�BF�a2� � = �

b
� l11

ab − l12
ab

− l21
ab l22

ab �� �Bu�b�
2

5pa
�Bq�b� � , �34�

which are valid in any toroidal geometry and in any colli-
sionality regime. These friction-flow relations satisfy16,25 the
self-adjointness ljk

ab= lkj
ba and the momentum conservation

laws �al1k
ab=0. If one substitutes the viscosity-flow �Eq. �31��

and the friction-flow relations �Eq. �34�� into the parallel
momentum and heat-flux balance equations �Eqs. �29� and
�30��, the surface-averaged parallel current �J�B� is obtained
by

�J�B�
�B2�1/2 = LE1

e Xe1 + LE2
e Xe2 + LE1

i Xi1 + LE2
i Xi2

+ �LEE + 
S�XE, �35�

where the linear transport coefficients LE1
a and LE2

a �a=e , i�
are the �full energetic� electron and ion bootstrap current
coefficients, LEE is the neoclassical conductivity, and 
S is
the classical Spitzer conductivity. The parallel thermody-
namic force XE is defined as

XE �
�BE��
�B2�1/2 . �36�

Equation �35� determines the bootstrap current �J�B� locally
on a flux surface for a given plasma profile in nonaxisym-
metric devices.

Although the general expression of the friction-flow re-
lations is obtained, the viscosity-flow relations must be
specified by the solution of the drift-kinetic equation. Con-
ventionally in nonaxisymmetric systems, the viscosity-flow
relations have been obtained by the asymptotic expansion8,25

of the drift-kinetic equation. In the present moment ap-
proach, this step is replaced by the �f Monte Carlo method.
Following the moment approach by Sugama and Nishimura,
we evaluate the two energy-dependent viscosity coefficients
Ma�K� and Na�K� in terms of the monoenergetic transport
coefficients D31 and D33 as

Ma�K� =
ma

2

Ta
��D

a �K��2D33�K�

��1 −
3ma�D

a �K�D33�K�
2TaK�B2� �−1

, �37�
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Na�K� =
ma

Ta
�D

a �K�D31�K��1 −
3ma�D

a �K�D33�K�
2TaK�B2� �−1

.

�38�

The dependence of the bootstrap current on the magnetic
configuration can be mainly determined by the viscosity co-
efficients Ma�K� and Na�K�. The neoclassical viscosity ma-
trices Maj and Naj are given in the form of energy integrals
as

�Maj,Naj� = na
2

��


0

�

dK�Ke−K�K −
5

2
� j−1

� �Ma�K�,Na�K�� . �39�

The extension of the �f Monte Carlo method to the calcula-
tion of D33 enables us to evaluate Ma�K� from Eq. �37�. If we
combine that with the results of D31, we can also determine
the other coefficient Na�K� using Eq. �38�. The �f Monte
Carlo method does not rely on the asymptotic expansion of
the drift-kinetic equation. The viscosity-flow relations can be
determined for arbitrary collisionality similar to the DKES
code. Because the neoclassical viscosity is dominated by the
test-particle portion of the collision operator,16 the use of the
pitch-angle scattering operator without the momentum con-
servation is justified to calculate the neoclassical viscosity.12

Because of the conservation properties of the friction-flow
relations in Eq. �34�, the bootstrap current �J�B� can be cal-
culated appropriately with the moment equations. An alge-
braic procedure to solve the moment equations is given in
Ref. 12.

III. NUMERICAL TESTS

In this section, we verify the numerical calculation of
D33 and of the viscosity coefficients M and N using the �f
Monte Carlo method. As already mentioned, these calcula-
tions account for the main portion of the present moment
approach. As a �f Monte Carlo code, we here used the
VENUS+�f code,9 which has been used7,9,26 to calculate the
bootstrap current coefficient D31 for several nonaxisymmet-
ric devices. We have implemented the �f weighting scheme
described in Sec. II B into this code for calculating D33.

We carried out calculation in a magnetic field model of
LHD, where the poloidal and toroidal-field periods are l=2
and m=10. The field strength in Boozer coordinates is given
by

B = B0�1 − �t�r�cos � − �h�r�cos�l� − m��� , �40�

where the average minor radius r is chosen as a flux surface
label. The toroidal geometry is specified by those values of
major radius R=4 m, the minor radius of last closed flux
surface a=0.8 m, and B0=1 T. The rotational transform is
assumed to be radially constant as �=0.375. The effect of the
net toroidal current on the equilibrium is neglected. We set
the radial profile of magnetic field ripple by �t=�ta�r /a� and
�h=�ha�r /a�2, where �ta and �ha are the values at the last
closed flux surface. In the following calculations, the
test particles were started from the initial surface: r /a=0.5

at time t=0. Thus we denote �t�r� and �h�r� by values on
r /a=0.5.

A. The �f Monte Carlo code

The numerical procedure of the VENUS+�f code is
briefly summarized as follows. A three-dimensional magne-
tohydrodynamic �MHD� equilibrium described in Boozer co-
ordinates is given as input data. The guiding-center trajecto-
ries of test particles are obtained from the drift orbit
equations, which are solved with the Runge–Kutta schemes
of second and fourth orders with fixed time steps.27 At each
time step, the pitch-angle scattering is simulated by the
Monte Carlo collision operator,28 and the perturbed distribu-
tion function �f is updated by the radial excursions of test
particles. In the original code, the monoenergetic bootstrap
current, which is here denoted by ĵbs, is calculated by the
standard one-weight �f scheme with AE�0.

To extend the �f weighting scheme used in the
VENUS+�f code, we have implemented the marker weight
w3�g3 /Fm with the weight equation of Eq. �22� into the
code, which allows us to evaluate D33 by the Monte Carlo
integral of Eq. �25�. The weight equation �Eq. �22�� for D33 is
explicitly written in Boozer coordinates as

Dw3

Dt
= −

v2

�D
P2���� ��

JB

�

��
+

��

JB

�

��
�ln B , �41�

where the prime denotes derivative with respect to the flux
surface label, � is the toroidal flux, and � is the poloidal flux.
Figure 1 shows the typical time evolution of D33. The simu-
lation reached the steady state in several collision times, and
a value of D33 was calculated from the time averaging over a
finite interval of this steady state. To check the convergence,
the Monte Carlo noise �D33 is measured with respect to this
time averaging. We should note that Eq. �23� does not in-
clude the nonlinear drift-term vd ·�, which implies that the
Lagrangian derivative D /Dt represents the derivative along
the equilibrium trajectories.11 A simple way to realize such a
test-particle trajectory in the simulation is to choose particle
velocities small enough such that �p /a remains much smaller

�

���

���

���

���

� ��� � ��� �

D 3
3*

�D t

(× 104)

FIG. 1. A typical time history of the normalized coefficient
D33

� �D33 / � 1
2vTK1/2� calculated with the VENUS+�f code for �t=0.1 and

�h=0.05. The collisionality is in the banana regime ��D /v=1�10−5�.
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than unity in all collisionalities. Under this condition,
the transport coefficients become insensitive to this param-
eter. Figure 2 shows the �p /a dependence of transport coef-
ficients D33 obtained by the code. In Fig. 2 and in the fol-
lowing, the diagonal elements D33 are normalized as
D33

� �D33 / � 1
2vTK1/2�. For small �p /a ��10−2�, D33

� is not sen-
sitive to this dimensionless parameter and for large �p /a, the
D33

� decreases with �p /a. In the latter case, test particles de-
viate from the initial surface owing to the radial guiding-
center drifts. In the following calculations, we chose
�p /a�4�10−4 to ensure negligible finite-orbit width effects.

In the simulation, we used N�104 particles. As already
mentioned, an important feature of the moment approach is
to calculate the neoclassical viscosity for arbitrary collision-
ality. To keep this feature, we require the accurate calculation
of D33 for a wide range of collision frequencies. To assist
this, we used a supplementary method to improve the nu-
merical convergence of D33 in the collisional regime: typi-
cally for �D /v�10−2. This method will be discussed in the
Appendix, and it was utilized to obtain the numerical results
in this paper.

B. Numerical results

We illustrate the numerical results for a model field de-
fined in the beginning of this section. For comparison, we
carried out calculations for the same parameters with those
used in Ref. 12 and compared the numerical results obtained
by the VENUS+�f code with those obtained by the DKES
code, where the results of the latter are given in Ref. 12.
Figure 3 shows the collisionality dependence of the calcu-
lated D33

� in the axisymmetric limit, �h=0. The solid line
shows the asymptotic formula13 in the banana regime for
D33

� ,

D33
� = f t�B2�

2

3��D/v�
. �42�

We thus confirmed the good convergence of D33
� in this re-

gime. Figure 4 shows the results for several values of �h such
that �h=0, 0.01, 0.05, and 0.1, where �t in Eq. �40� is kept
constant as �t=0.1. The difference due to the amplitude of
helical ripple �h manifests itself mainly in the plateau and the
collisional regimes. The results in Fig. 4 show good agree-
ment with those in Ref. 12.

Using the results of Fig. 4, we calculate the energy-
dependent viscosity coefficients M�K� and N�K�. First, Fig. 5
shows the �h dependence of a normalized viscosity coeffi-
cient M�, where M��M�K� / �mvTK3/2�. The viscosity coef-
ficient M�K� measures the damping rate of neoclassical flows
along the field line. The normalized coefficient M� is written
in terms of the normalized coefficient D33

� as

���

���

���

���

���

���

��
��

���� ���� ���� ���� ���

D 3
3*

�p/a

(× 103)

FIG. 2. The normalized coefficient D33
� =D33 / � 1

2vTK1/2� vs �p /a calculated
with the VENUS+�f code for �t=0.1 and �h=0.05. The collisionality is in
the banana regime ��D /v=1�10−4�.
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FIG. 3. The normalized coefficient D33
� �D33 / � 1

2vTK1/2� vs �D /v calculated
with the VENUS+�f code for �t=0.1 and �h=0. The solid line shows the
asymptotic values in the banana regime.
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FIG. 4. The normalized coefficient D33

� �D33 / � 1
2vTK1/2� vs �D /v calculated

with the VENUS+�f code for �h=0, 0.01, 0.05, and 0.1 with �t=0.1.
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M� =
��D/v�2D33

�

1 − 3
2 ��D/v�D33

� /�B2�
. �43�

The dashed segments in Fig. 5 show the asymptotic values in
the Pfirsch–Schlüter, plateau, and banana regimes. The
asymptotic formulae used here are given by12

MP.S.
� = 2

5 ��B · � ln B�2���T�K�/v�−1, �44�

Mplateau
� =

�

4
�B2�1/2�4�2/V��

�� �
�m,n���0,0�


�mn
2
m�� − n��
� , �45�

Mbanana
� = 2

3 �f t/fc��B2���D�K�/v� , �46�

where V is the volume enclosed by the flux surface and �mn

is the magnetic-field spectrum in Hamada coordinates.29 The
ratio of the fraction of trapped particles to that of circulating
ones is denoted by f t / fc. To be consistent with Ref. 12, the
test-particle frequency �T in Eq. �44� is set as �T=3�D.
In Fig. 5, the results obtained from the �f Monte Carlo
method are in reasonable agreement with the asymptotic
formulae. Next, we calculate the �h dependence of a nor-
malized viscosity coefficient N�K��, where N��N�K� /
��BvT /�K3/2�. The viscosity coefficient N�K� measures the
driving force of parallel flows mainly due to the trapped
particles. The normalized coefficient N� is written in terms of
D31

� and D33
� as

N� =
��D/v�D31

�

1 − 3
2 ��D/v�D33

� /�B2�
, �47�

where the bootstrap current coefficient D31 is normalized as
D31

� �D31 /� 1
2vT�BvT /�K�. Figure 6 shows the results for

N�. Also plotted for benchmarking are the results12 obtained
from the DKES code. The �f Monte Carlo method has re-
produced the curve obtained by the DKES code. Conse-
quently, the numerical results for M�K� and N�K� obtained

here are in reasonable agreement with the asymptotic formu-
lae and with those obtained by the DKES code. We thus
conclude that these numerical tests provide a sufficient
basis for applying the �f Monte Carlo method to the moment
approach.

IV. CONCLUSION

A �f Monte Carlo method has been presented to evaluate
the bootstrap current in nonaxisymmetric toroidal plasmas
with the moment approach. Using the �f weighting scheme
proposed in this work, the diagonal �D33� and the nondiago-
nal �D31� elements of the monoenergetic transport matrix are
calculated. The former have been calculated so far only by
the variational principle. In the numerical tests, we have cal-
culated the energy-dependent viscosity coefficients M and N
from D31 and D33 and have obtained the reasonable agree-
ment between the variational principle and the asymptotic
formulae. With the moment approach, the bootstrap current
�J�B� is evaluated from these viscosity coefficients with the
algebraic moment equations that satisfy the physical require-
ment of the conservation laws.

We have implemented the above �f weighting scheme
into one of �f Monte Carlo codes, namely, the VENUS+�f .
This code has been applied to the calculation of D31 in sev-
eral nonaxisymmetric devices such as LHD.26 In the LHD
experiment, the time evolution of the bootstrap current pro-
files has recently become possible to be measured.30 The
present work will be useful for experimental analysis of the
bootstrap current in LHD as future applications.

ACKNOWLEDGMENTS

The authors thank S. Nishimura for providing the nu-
merical data in Ref. 12. The computation was performed on
the Opteron cluster system at the National Institute of Fusion
Science �NIFS�, Japan.

��
��

��
�


��
��

����

����

����

����

��
��
���� ���� ���� ���� ��� ��

�

�� � ����
�� � ����
�� � ����
�� � ����

M
*

�D/v
FIG. 5. The normalized viscosity coefficient M��M�K� / �mvTK3/2� vs �D /v
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APPENDIX: CALCULATION OF D33
IN COLLISIONAL REGIME

In this appendix, we discuss an additional topic of the �f
Monte Carlo method to calculate D33. The subject addressed
here is about the expression for the calculation of Dij in the
variational principle, which is given by Eq. �7�. In this equa-
tion, the time-reversal flux14 
i

+�i=1,3� is used not only for
the source term of the drift-kinetic equation but for the inte-
grand in the inner-product operation as well. We found that a
similar expression for the �f Monte Carlo method was useful
to improve the numerical convergence of D33 in the colli-
sional regime.

To derive an expression of D33 like Eq. �7�, we use the
symmetric properties of the operators V� and C in Eq. �12�.
In Eq. �18�, D33 is given by D33=−�Bv� ,g3�. Using the sym-
metric properties of Eq. �12�,

D33 = − �Bv�,g3� = �C�Bv�/�D�,g3� = �Bv�/�D,Cg3�

= �Bv�/�D,V�g3� + �Bv�/�D,
3
+� = − �
3

+,g3� , �A1�

where �Bv� /�D ,
3
+� automatically vanishes. Note that � is

the eigenfunction of the pitch-angle scattering operator �D
−1C

with the eigenvalue of �1. Therefore, C�Bv� /�D�=−Bv�.
From Eq. �A1�, we have obtained another expression for D33,

D33 = − �
3
+,g3�x,��� = −

�n=1
N JB�xn�
3

+�xn,�n�w3
�n�

�n=1
N JB�xn�

.

�A2�

The physical meaning of the equivalence between Eqs. �25�
and �A2� can be seen by taking the inner product of Eq. �19�
with Bv�,

�Bv�,V�g3� − �Bv�,Cg3� = 0. �A3�

From Eqs. �A1� and �A3�, we see that �Bv� ,g3� is propor-
tional to the momentum lost by collisions; �
3

+ ,g3� is propor-
tional to the momentum generated indirectly by the trapped
particles. From these physical pictures, we understand that
the numerical values �Bv� ,g3� and �
3

+ ,g3� measure the
quantities that are in balance with each other. In actual simu-
lations, however, such an exact balance cannot be achieved
because the terms �
3

+ ,g3� and �Bv� ,g3� are characterized by
the different relaxation times in transient phase of a initial-
value problem. To obtain the results in Sec. III B, we at-
tempted the calculation of D33 using both terms and conse-
quently found that the calculated transport coefficients
experience different levels of the Monte Carlo noise. Figure
7 shows the collisionality dependence of the noise observed
for D33 in the nonaxisymmetric case with �h=0.05. In
the low collisionality regime of �D�10−2, the noise
for D33�−�
3

+ ,g3� is considerably larger than that of
D33=−�Bv� ,g3�. In contrast, we obtained good convergence

of D33 by the expression D33=−�
3
+ ,g3� for the collisional

regime with �D�10−2. This result suggests that the use of
Eq. �A2� is favorable in the collisional regime to improve the
statistical convergence of D33. This result can be interpreted
by the difference of relaxation times between �
3

+ ,g3� and
�Bv� ,g3�.

Finally, we note that the bootstrap current D31 can also
be calculated by D31=−�
3

+ ,g1� in a similar way to Eq. �A2�.
Moreover, we see from the Onsager relation that the Ware
flux coefficient D13 can also be used as a measure of the
nondiagonal elements of transport matrix; the Ware flux co-
efficient D13 can be calculated using the marker weight w3

introduced in this paper. Such arbitrariness of the expression
to calculate the monoenergetic transport coefficients is a
freedom that may be used to improve statistics in the �f
Monte Carlo methods.
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